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Abstract

Nowadays, managing Cloud-Native applications is becoming increasingly com-
plex. These applications are progressively expanding into various domains and
cloud environments, including multi-cluster scenarios. Orchestrating such a highly
heterogeneous infrastructure becomes a challenge. In this work, conducted in the
scope of the CHARITY project, we focused on researching solutions for automat-
ing the management of these environments and applications. This included the
research of Cloud-Native approaches for consistent infrastructure bootstrapping
and multi-cluster interconnectivity.

In that sense, we proposed a Cloud-Native orchestration architecture tailored for
Kubernetes clusters and container-based applications. This architecture, aligned
with the principles of the Zero touch network & Service Management (ZSM)
framework from ETSI and closed loops, is rooted in the concept of automating the
creation and management of different kinds of services and resources (i.e., clusters,
applications, etc.). The proposed approach intends to allow ongoing monitoring
and reaction to changes in resources and infrastructure (e.g., creating a cluster
on demand, scale-in/-out a cluster on demand when needed). We implemented
and validated the conceived solution using different scenarios and use cases of
cross-cluster applications.

Our findings highlight the usefulness and feasibility of the proposed solution
for supporting a more efficient (i.e., automated) lifecycle management of a multi-
domain Cloud-Native infrastructure and applications. The performed implemen-
tation and obtained results were reflected in several scientific publications and
CHARITY project demonstrations.
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Orchestration, Automation, Kubernetes, Cloud-Native, Resource Management.
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Resumo

Atualmente, a gestão de aplicações Cloud-Native está a tornar-se cada vez mais
complexa. Estas aplicações estão a expandir-se progressivamente para vários
domínios e ambientes de cloud, incluindo cenários multi-cluster. Orquestrar
uma infraestrutura altamente heterogénea torna-se um desafio. Neste trabalho,
realizado no âmbito do projeto CHARITY, focámo-nos na pesquisa de soluções
para automatizar a gestão destes ambientes e aplicações. Isso incluiu a pesquisa
de abordagens Cloud-Native para a configuração consistente da infraestrutura e
interconetividade multi-cluster.

Nesse sentido, propusemos uma arquitetura de orquestração Cloud-Native adap-
tada para clusters Kubernetes e aplicações baseadas em containers. Esta arquitetura,
alinhada com os princípios do framework Zero Touch Network & Service Management
(ZSM) da ETSI e com closed loops, assenta no conceito de automatizar a criação e
gestão de diferentes tipos de serviços e recursos (ou seja, clusters, aplicações, etc.).
A abordagem proposta pretende permitir uma monitorização contínua e reação a
alterações em recursos e infraestrutura (por exemplo, criar ou redimensionar um
cluster quando necessário). Implementámos e validámos a solução concebida em
diferentes cenários e casos de uso de aplicações inter-cluster.

As nossas conclusões destacam a utilidade e viabilidade da solução proposta para
apoiar uma gestão mais eficiente (ou seja, automatizada) do ciclo de vida de uma
infraestrutura Cloud-Native multi-domínio e de aplicações. A implementação
realizada e os resultados obtidos foram refletidos em várias publicações científicas
e demonstrações do projeto CHARITY.

Palavras-Chave

Orquestração, Automação, Kubernetes, Cloud-Native, Gestão de Recursos.
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Chapter 1

Introduction

Nowadays, Cloud-Native applications are increasing in size, complexity and
number. The cloud-native approach aims to design, build and run virtual functions
and services exploiting the Cloud model. Such applications are developed using
tools that allow them to maximise the benefits of a Cloud-based environment.
These benefits include greater agility in development, integration and installation.
Tools and concepts such as Continuous Integration (CI) / Continuous Deployment
(CD), container engines and container orchestrators such as Kubernetes are among
the pillars and drivers of this Cloud-Native transformation.

On the other hand, these applications, which progressively take advantage of
the edge-to-cloud continuum, require a revamped orchestration approach. Large
distributed applications require intelligent and automated management instead
of manual, complex, and error-prone configuration. Today, the management of
clusters and applications mainly relies on the intervention of human operators
for their configuration and oversight. Managing such applications can include
orchestrating a complex infrastructure composed of heterogeneous environments
and numerous application components spanning such infrastructure.

Hence, approaches such as European Telecommunications Standards Institute
(ETSI) Zero-touch network & Service Management (ZSM) are considered today,
focusing on bringing intelligence as well as service automation for multi-domain
environments. Such intelligent and automated orchestration is a step towards the
aim of minimising the need for the human factor.

Considering that this work, conducted in the scope of a master’s internship at
OneSource [1] and integrated within the context of a European research project,
H2020 CHARITY [2], where OneSource is involved, focuses on researching solu-
tions for automating the lifecycle management of these cloud environments and
applications.

The major goal of this work was to develop a Cloud-Native orchestration system
capable of managing clusters and applications in multi-domain environments.
This included the research of Cloud-Native approaches for consistent infrastruc-
ture bootstrapping and multi-cluster interconnectivity.

We started by researching the main concepts of orchestration, management, and
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automation focused on clusters and Kubernetes. We researched concepts of the
Kubernetes itself, management-related frameworks and interconnectivity approach
targeting multi-cluster environments.

Such research resulted in the first proof of concepts regarding cluster interconnec-
tivity and orchestration. For cluster interconnectivity, two scenarios were created,
one for Liqo [3][4] and the other for Submariner [5][6]. These scenarios were used
to compare those frameworks and decide which would best fit the proposed ar-
chitecture. Concerning cluster orchestration, a scenario was created for Cluster
API [7] to assess its capabilities and provider support.

Later, we defined the requirements based on internal project discussions and
CHARITY objectives, and we proposed an orchestrator architecture to answer
them.

The final steps included developing the orchestrator and its functional testing,
integration and validation. We discuss the various architecture components and
their roles in several use cases of distributed applications. We started by deploying
the orchestrator in the CHARITY testbed. We performed a series of tests to validate
the orchestrator’s capabilities, and later, we conducted a set of integration and
validation to further evaluate the correct behaviour and suitability in supporting
the various project use cases.

1.1 Thesis Objective

In brief, this work aimed to develop a smart orchestration and management plat-
form focused on distributed Cloud-Native environments. This means designing,
implementing and evaluating a Cloud-Native orchestration solution focused on
Kubernetes clusters and application provisioning on distributed and edge-cloud
domains.

1.2 Contributions

The contributions of this work were:

1. Implementation of an orchestration proof of concept using Cluster API and
OpenStack for enabling the creation of clusters on demand.

2. Implementation of two proof of concepts for cluster interconnectivity using
different technologies, Liqo and Submariner.

3. Proposal of an orchestration solution based on the early proof of concepts.

4. Support of CHARITY integration and testing activities in the deployment
and configuration of various components and applications.

2
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5. Contribution to the CHARITY project documentation, and deliverables.

This work also resulted on the following scientific contributions:

• Video Streaming use-case discussed and presented in a journal publi-
cation entitled "Cross Kubernetes Cluster Networking to Support XR
Services: Challenges, Solutions and Performance Evaluation" submitted
to the IEEE Network Magazine. Despite not being credited as an author,
tests and results from this work contributed to the referred paper.

• Writing of a conference paper entitled ("Intelligent Multi-Domain Edge
Orchestration for Highly Distributed Immersive Services: An Immer-
sive Virtual Touring Use Case"), which was submitted and accepted to
the "IEEE Symposium on Intelligent Edge Computing and Communica-
tions (iEDGE)" conference.

• Showcasing the orchestrator capabilities at the EUCnC & 6G Summit
2023.

1.3 Document Structure

The structure of the document is organized as follows:

• Chapter 2 provides an overview of the concepts covered in this work, such
as container orchestration, cloud deployment models and multi-cluster archi-
tecture. It also provides an overview of the technologies used to implement
the proof of concepts.

• Chapter 3 presents this work’s research objectives and explains the ap-
proaches taken for each objective.

• Chapter 4 presents the planning and risks of this work.

• Chapter 5 describes the first proof of concepts developed.

• Chapter 6 provides a deep view of the development of the orchestration
system.

• Chapter 7 presents the orchestration’s system testing, integration and valida-
tion with external frameworks and CHARITY use-cases.

• Chapter 8 provides a conclusion and critical view of the work done during
the internship.

3
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Background and Related Work

This chapter introduces the concepts of orchestration, automation and cloud
deployment models, among other related topics needed to understand this work.
The multi-cluster architecture is also introduced, along with its usefulness and
challenges.

Section 2.1 briefly introduces the orchestration concept, the standard for current
state of the art orchestrators and the different types of resources that can be
orchestrated. Section 2.2 exposes concepts about the different cloud deployment
models and their different characteristics. Section 2.3 is dedicated to multi-cluster
architecture, where we introduce its concept, explain different approaches, the
advantages it provides, as well as its challenges. Section 2.4, different tools and
frameworks, that can be used to create possible solutions to the multi-cluster
challenges, are also presented and explained.

2.1 Containers, Virtual Machines and Clusters Orches-
tration

Orchestration consists of the automated configuration and coordination of infras-
tructure servers, applications and services converging in a seamless workflow
[8]. The automation reduces or entirely replaces human interaction with IT sys-
tems and instead uses software to perform the same tasks in order to reduce cost,
complexity, and errors.

European Telecommunications Standards Institute (ETSI) Zero-touch network
& Service Management (ZSM) is a framework and set of standards focused on
automating and simplifying the management of telecommunication networks and
services. It aims to reduce manual intervention in network operations and make
networks more agile and efficient. ETSI ZSM is closely related to orchestration,
especially in the context of network functions and service [9].

This framework focuses on automating various aspects of network and service
management, as orchestrators play a pivotal role in this endeavor by defining
and executing workflows for provisioning, scaling, and managing network re-
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sources and services. Orchestrators are typically built on technologies like Network
Functions Virtualization (NFV) and Software-Defined Networking (SDN), which
facilitate the automation of intricate network operations.

Several key features of the ETSI ZSM framework are detailed below:

• Service Orchestration: This framework introduces the concept of service
orchestration, which involves the automated provisioning and management
of end-to-end services, even when they span multiple network domains and
technologies. Orchestrators enable the creation and management of such
services by efficiently coordinating the deployment of Virtualized Network
Functions (VNF) and physical resources.

• NFV Integration: NFV is pivotal for ETSI ZSM framework. This entails
virtualizing network functions like routers, firewalls, and load balancers and
deploying them as software instances on standard hardware. Orchestrators
take charge of placing and connecting these virtualized functions as required
to fulfill service requirements.

• Resource Coordination: The framework encompasses the orchestration of
both physical and virtual resources. Orchestrators can dynamically allocate
compute, storage, and network resources based on the demands of services.
This ensures efficient resource utilization and the delivery of services with
the necessary performance and scalability.

• Multi-Domain Management: ETSI ZSM recognizes the need to manage
services that traverse multiple network domains and are offered by different
operators. Orchestrators facilitate the coordination of activities across vari-
ous administrative domains, enabling end-to-end service provisioning and
management.

• Complete Lifecycle Oversight: As a component of the framework, orchestra-
tion assumes responsibility for the entire lifecycle management of network
services. This encompasses service instantiation, scaling, self-healing, up-
dating, and decommissioning. Orchestrators guarantee that services remain
operational and adaptable to changing conditions.

• Policy-Driven Approach: The framework promotes a policy-driven orches-
tration model, where policies and rules dictate how services should be
managed and resources allocated. Orchestrators enforce these policies to
ensure compliance and the efficient use of resources [10].

ETSI ZSM establishes the overarching framework and standards for automating
the management of network and service operations, while orchestration plat-
forms put these principles into practice by automating and coordinating network
functions and resources to deliver services efficiently and at scale.

Considering the different resources that we can orchestrate (e.g., containers, virtual
machines, clusters), one does not replace the other. Each of the resources has its
own advantages and disadvantages, so rather than completely replace what is

6
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orchestrated, it is added to the pool of orchestration appliances. Automating
the process then becomes a necessity, as the difficulty increases as we increase
the number of orchestration resources in the system, and managing different
types of orchestration resources requires different configurations. Orchestrating
containers is different from orchestrating virtual machines and even more when
we orchestrate them together.

With the orchestration of a combination of resources, we acquire a more robust
and refined scaling, as some applications can’t run on a container due to its small
footprint, and other applications require a complete system to run, manage and
maintain them, which are designed as clusters. An application may run on the
frontend on a virtual machine, and use a cluster as the backend.

A Cluster is defined as a collection of physical and/or virtual machines, called
nodes, deployed as a single system running distributed workloads. Figure 2.1
represents the architecture of a Kubernetes cluster.

Figure 2.1: Kubernetes Single Cluster Architecture [11]

The nodes belonging to the cluster are viewed as computational resources, able
to run workloads that a single node wouldn’t be able to fulfil the performance
needed. With this in mind, we can easily scale the cluster vertically by adding
more and more nodes to the cluster. We can also scale horizontally, firstly by
replicating the resources inside the cluster. For example, if a node was running a
containerized application, we could instantiate replicas so we could load balance
the workload between replicas. These replicas could be distributed across nodes
delivering a form of disaster recovery to the system.

To ease and standardize the orchestration process of Cloud-Native applications, we
use Topology and Orchestration Specification for Cloud Applications (TOSCA)
blueprints.

TOSCA blueprints describe the architecture of cloud-based applications in a stan-
dardized format. TOSCA blueprints are written in .yaml and are used to define the
components that make up an application, their relationships, and the policies that
govern their deployment and operation, and are composed of two main sections:

7
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• The service template, which describes the topology of the application and the
components that make it up. It also defines the relationships between these
components, such as which component depends on which other component.

• The policy templates describe the rules and constraints that govern the
deployment and operation of the application. These can include things like
scaling policies, security policies, and performance policies.

TOSCA blueprints allow for the automation of the deployment, scaling and
management of cloud-based applications. This is achieved by using TOSCA-
compliant orchestration engines that can interpret the blueprint and use it to
create and manage the application on a cloud platform. These blueprints are
platform-agnostic and can be used to deploy applications on any cloud infras-
tructure that supports TOSCA, allowing portability of the applications across
different cloud environments. They are also widely adopted by cloud providers,
network functions vendors and other IT vendors to provide standardization and
automation of cloud application deployments.

2.2 Cloud Deployment Models

Cloud Computing, as defined by National Institute of Standards and Technology
(NIST), "is a model for enabling ubiquitous, convenient, on-demand network ac-
cess to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction" [12].

Cloud provides different types of services, the most common models being Infras-
tructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service
(SaaS), and are described briefly below [13]:

IaaS provides on-demand access to computational resources such as servers,
networking and storage, allowing users to scale resources as they are needed,
eliminating the planning of physical infrastructure. Compared to the other services,
IaaS is the lowest-level of computing resources.

PaaS provides developers with computational resources, development tools and
infrastructure, where they can manage and develop their applications. The whole
infrastructure is hosted and managed by the cloud provider at their data centre.
Nowadays, PaaS is built around containers, being an easier and more lightweight
way of deploying applications.

SaaS is application software hosted by the cloud provider and users can access it,
as long as they are connected to the service.

The resources and services demanded of cloud environments are dependent on the
cloud provider, and as such, to accommodate different software, different cloud
deployment models are needed.

There are 5 types of cloud deployment models [12] as described below:
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• Public Cloud: The cloud infrastructure is provisioned for use by the general
public and it runs on the premises of the cloud provider. "It may be owned
and managed by a business, academic, or government organization, or some
combination of them".

• Private Cloud: The cloud infrastructure is provisioned for a single organiza-
tion and it may exist on or off premises. The infrastructure can be owned
and managed by the said organization, a third party, or both.

• Community Cloud: The cloud infrastructure is provisioned for exclusive
use by a specific community consisting of member organizations that have
shared concerns.

• Hybrid Cloud: "The cloud infrastructure is a composition of two or more
distinct cloud infrastructures (private, public and community) that remain
unique entities, but are bound together by standardized or proprietary tech-
nology that enables data and application portability".

• Multi-Cloud: The cloud infrastructure is provisioned by two or more dif-
ferent cloud providers. Similar to the hybrid cloud deployment approach,
instead of combining private and public clouds, it combines multiple public
clouds. The multi-cloud deployment model allows users to take advantage of
specific services of each provider and lessens the chances of vendor-lock in.

We can deploy entire clusters to the cloud, and distribute them across different
cloud types and even different cloud providers, taking advantage of all the benefits
of each cloud type, and also of the services and tools supplied by specific cloud
providers. Most of the cloud deployment models rely on the usage of multi-cluster
architectures, hence the relevance of multi-cluster orchestration as referred in this
work.

2.3 Multi-Cluster Architecture

This section provides an overview of multi-cluster architecture along with its
concepts and challenges, as well as tools and frameworks used to research and
solve the multi-cluster topology challenges.

A multi-cluster infrastructure is a collection of clusters that can work together to
fulfil a set of business requirements. This allows new setups to be designed around
this type of architecture [14]. As an example, you can have cluster redundancy
architecture in which clusters are replicas of each other, ensuring high availability
through a load balancer, as shown in Figure 2.2.

The main advantages provided by multi-cluster architectures are the following
[15]:

• Increased scalability and availability: In multi-cluster topologies, clusters
can be spread across different regions, increasing the availability for the
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Figure 2.2: Multi-Cluster Architecture based on Kubernetes Clusters [14]

end-users, giving them a better experience, because of the reduced latency
and the faster communication between the end-user and the application.
Regarding the scaling, application deployments can be spread across clusters,
and scaled accordingly to the load and resource consumption of each cluster.

• Application isolation: True application isolation can be achieved, by using
different clusters for development and production, or by deploying distinct
applications to different clusters. Issues also become easier to diagnose, as
we are able to easily identify the problem, and optimizations on a cluster
don’t affect other deployments.

• Regulatory compliance: Regarding data privacy, different countries have
different regulations and policies dictating how, what and which data we
can exchange with users. Also, most regions only allow user data to reside
within geographical limits. With multi-cluster topologies, we can deploy
clusters in different geographical regions, each complying with different
data policies, limiting the scope and meeting the demanded requirements.

• Vendor lock-in: Cloud resources are most of the time outside of our control.
Cloud providers can lock consumers out, denying the services. With clusters
deployed across different providers, we can mitigate this issue, so even if
one provider fails, we still have access to cloud resources.

• Distributed applications: Most applications are now divided in multiple
components, which can be containerized. Considering the increasing on edge
computing requirements, the containerized components can be distributed
across edge clusters and core clusters, enabling better performance and experi-
ence overall.

Multi-cluster topologies can be divided in two main types regarding its design, the
types being segmentation and replication.

In a segmentation architecture, an application is separated into independent
components, which are then deployed to the different clusters. The components
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can be represented as Kubernetes services and they can interact with each other
across clusters if the application architecture demands it. Figure 2.3 presents an
example of a multi-cluster segmentation architecture.

Figure 2.3: Multi-Cluster Segmentation Architecture [14]

In the replication approach, exact replicas of the cluster are created and are usually
deployed to different regions, although it is not a requirement. Figure 2.4 presents
an example of a multi-cluster replication architecture with clusters deployed in
two different regions.

Figure 2.4: Multi-Cluster Replication Architecture [14]

As the clusters are deployed in different regions, you can route the services based
on the proximity to the end-user, ensuring the best performance is achieved. The
replication architecture also ensures disaster relief. If a cluster shuts down, a replica
can act as a backup.

Overall, the specific design of a multi-cluster architecture will depend on the
needs and goals of the system or application being deployed. However, despite
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the great advantages, multi-cluster topologies increase system complexity, making
it hard to manage and maintain. This complexity bears some challenges we need
to overcome, as detailed in the following subsections.

2.3.1 Multi-Cluster Connectivity

Cluster connectivity is a requirement in this type of topology, as pods and services
need to be able to communicate with pods and services on other clusters seamlessly.
This can prove to be quite bothersome, especially if the clusters are deployed across
different regions. Some cloud providers offer services that allow connectivity
between clusters, however, we are dependent on the cloud provider and we
cannot implement an architecture where we distribute clusters across different
cloud providers.

In Kubernetes clusters we can expose a service through an ingress using only native
Kubernetes resources, but we would have to do it manually. This is not feasible at
all, as every time we needed to expose a service, we needed to set up routing rules
and make sure that those rules do not interfere with the previously defined rules.
As the cluster complexity increases, this becomes an impossible task.

Liqo [3] [4] and Submariner [5] [6] are two of the technologies that can help miti-
gate the cluster connectivity issues, automating the process and providing some
useful features, as with Liqo we have workload offloading and with Submariner
we have service discovery. A more detailed explanation of Liqo and Submariner
is given in Sections 2.4.2 and 2.4.3 respectively.

Two proof of concept scenarios were implemented during the internship which de-
scribes in detail both implementations and helps better understand this challenge
(refer to Sections 5.3 and 5.4).

2.3.2 Multi-Cluster Orchestration

Multi-cluster orchestration refers to the process of coordinating and managing
multiple clusters in order to achieve a specific goal. This involves managing
and coordinating the activities of these clusters in order to ensure that they are
working together efficiently and effectively. Multi-cluster orchestration can include
tasks such as scheduling workloads, balancing resources, and monitoring the
performance of the clusters.

As we add clusters to the infrastructure, the complexity increases and management
becomes more of an issue. We can rely on tools like Kubernetes (detailed in Section
2.4.1) as it is already the most common tool for orchestration, but Kubernetes by
itself does not suffice. The clusters need a machine to be deployed to, which needs
to be already created before the cluster deployment. Cluster API is a tool that
takes Kubernetes manifest logic to a higher level, being able to deploy custom
virtual machines with clusters pre-installed, to different cloud providers.

A proof of concept scenario was implemented during the internship which solves
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this challenge (refer to Section 5.4).

2.3.3 Multi-Cluster Automation

Multi-cluster automation refers to automating the multi-cluster orchestration
process detailed in the previous subsection.

Despite the fact that all of the orchestration can be done step by step, it is simply
not feasible, as the complexity of the architecture is too great for a human to handle,
as it is prone to mistakes and takes too much time to manage such complex system.
There are several advantages to automate the orchestration process, as automation
can help:

• Improved efficiency: Streamline processes and eliminate the need for man-
ual intervention, resulting in improved efficiency.

• Increased accuracy: Reduce the risk of errors and improve the accuracy of
tasks.

• Reduced costs: Reduce the cost of operations by eliminating the need for
manual labor and improving the efficiency of processes.

• Better resource utilization: Optimize resource utilization, ensuring that
resources are used effectively and efficiently.

The creation of a custom orchestrator that can use both Kubernetes and Cluster API
(refer to Section 2.4.4) to its full potential, is the chosen approach for solving the
automation challenge.

The orchestrator will be based on the Observe, Oriente, Decide, Act (OODA)
approach [16] consisting in four steps, shown in Figure 2.5:

Figure 2.5: OODA Loop approach diagram [17]

• Observe: The first step is to identify the problem and gain an overall un-
derstanding of the environment. This can be interpreted as data gathering,
where all of the information regarding the current state of the system is
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collected. The key point about the observe step is recognizing that the sys-
tem is complex. All data is a snapshot in time and must be treated as such.
Therefore, entities must gather whatever information is available, as quickly
as possible in order to be prepared to make decisions based on the collected
data.

• Orient: The orientation phase involves thinking about the information gath-
ered through observations and deciding on the next steps to take. This
requires a high level of situational awareness and understanding in order to
make well-informed decisions. This phase involves consciously considering
the reasons behind the decisions made before choosing a course of action.
Machine learning tools can be used to create situational models that identify
potential outcomes [10] [18] [19].

• Decide: The decision phase makes suggestions towards an action or response
plan, taking into consideration all of the potential outcomes.

• Act: Action pertains to carrying out the decision and related changes that
need to be made in response to the decision. This step may also include any
testing that is required before carrying out an action.

2.4 Tools and Frameworks

This section focuses on giving a more detailed view of the technologies regarding
the multi-cluster architecture.

2.4.1 Kubernetes

Kubernetes [20] is an open-source container orchestration platform that auto-
mates many of the manual processes involved in deploying, managing, and
scaling containerized applications. Kubernetes focuses on automation and pro-
vides users with service discovery and load balancing, storage orchestration,
automated rollouts and rollbacks, automatic bin packing, self-healing and secret
and configuration management.

A description of the components is given to help understand how Kubernetes
works.

Kubernetes Pod

Pods [21] are the smallest deployable unit that one can create or deploy in Kuber-
netes. A pod is a group of one or more containers tightly coupled with shared
storage and network resources. For comparison, the same can be achieved with
Docker by grouping containers with shared namespaces and shared filesystems.

Figure 2.6 presents pods within nodes, constituting a Kubernetes cluster.

Kubernetes Node
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Figure 2.6: Kubernetes Pods within a cluster [22]

A Kubernetes Node [23] is a machine, virtual or physical, that houses pods running
containerized workloads. In a cluster, one can have multiple nodes, up to 5,000. A
node is composed of a kubelet, a container runtime and a kube-proxy.

• kubelet - kubelet is an agent that runs on each node in the cluster. It makes
sure that containers are running in a Pod. The kubelet takes a set of PodSpecs
that are provided through various mechanisms and ensures that the contain-
ers described in those PodSpecs are running and healthy. The kubelet doesn’t
manage containers which were not created by Kubernetes.

• container runtime - The container runtime is the software that is respon-
sible for running containers. Kubernetes supports container runtimes such
as containerd, CRI-O, and any other implementation of the Kubernetes CRI
(Container Runtime Interface).

• kube-proxy - kube-proxy is a network proxy that runs on each node in the
cluster, implementing part of the Kubernetes Service concept. It maintains
network rules on nodes, which allow network communication to the pods
from network sessions inside or outside of the cluster. kube-proxy uses the
operating system packet filtering layer if there is one and it’s available,
otherwise kube-proxy forwards the traffic itself.

Kubernetes Deployment

A Kubernetes Deployment [24] provides declarative updates for Pods and ReplicaSets.

Deployments tell Kubernetes how to create or modify instances of the pods that
hold a containerized application. Deployments can help to efficiently scale the
number of replica pods, enable the rollout of updated code in a controlled manner,
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or roll back to an earlier deployment version if necessary [25]. In a deployment,
the pods are scaled across all the working nodes of a cluster.

The main benefit of using deployments in Kubernetes is error mitigation and
time-saving which is achieved by automating the process involved in deploying,
scaling, and updating production applications. More automation translates to
faster deployments with fewer errors. Kubernetes deployment controller is continu-
ously monitoring the health of pods and nodes, allowing real-time changes like
replacing a crashed pod or if a node is down, scaling the deployment to other
working nodes, and ensuring the operation of critical applications.

Kubernetes DaemonSet

A Kubernetes DaemonSet [26] applies the same logic as the Kubernetes Deploy-
ment [24], the difference being that ensures that all nodes are running a replica of a
pod. These pods are created on demand, as nodes are added to the cluster. Figure
2.7 illustrates an example of how a daemonset is deployed.

Figure 2.7: DaemonSet deployment example [27]

Container Network Interface (CNI)

Container Network Interface is a framework that handles the configuration of
network resources dynamically. CNI defines an interface for configuring the
network, provisions IP addresses and maintains connectivity with several hosts
[28]. A CNI when used together with Kubernetes, integrates with the kubelet to
enable the use of an underlay network or overlay network to configure the
network within the cluster automatically. Overlay networks encapsulate network
traffic by using a virtual interface. Underlay networks work at the physical level
and include switches and routers. [28]

Following the choice of the network configuration type, the container runtime
defines the network that containers join. The container runtime adds the interface to
the container namespace via a call to the CNI plugin and allocates the subnetwork
routes via calls to the IP Address Management plugin.[28]

Kubernetes Service

A Kubernetes Service [29] is an abstraction of an application running on a set of
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Pods as a network service. They are mainly used to expose applications or micro-
services. As Kubernetes Pods [21] can be created or destroyed at any given time to
accommodate the desired needs of the cluster, their IP addresses are subject to
change. This can cause applications to become unaccessible, making the services
extremely useful.

Kubernetes Services breakdown into four types: ClusterIP, NodePort, LoadBalancer
and ExternalName [30]. Figure 2.8 presents the architecture of the different types of
services in Kubernetes.

Figure 2.8: Kubernetes Service Architecture [30]

Kubernetes Ingress

A Kubernetes Ingress is an "API object that manages external access to the services
in a cluster" [31]. Figure 2.9 is an example of an Ingress routing the traffic to a
single service.

Figure 2.9: Kubernetes Ingress [31]

The ingress exposes HTTP and HTTPS routes from outside the cluster to services
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within the cluster, similar to a network gateway. Traffic routing rules are defined
on the Ingress resource.

Kubernetes Namespace

A Kubernetes Namespace [32] are used to isolate groups of resources within a cluster.
Namespaces are useful in scenarios with many users, teams or even projects,
ensuring that no one can interfere with each other.

Kubernetes Scheduler

Kube-scheduler is the default Kubernetes scheduler and runs as part of the cluster
control plane [33]. The scheduler decides in which node unscheduled pods will
be deployed, based on the pod requirements. "The scheduler finds feasible nodes
for a pod and then runs a set of functions to score the nodes and picks the node
with the highest score among the feasible ones to run the pod. The scheduler then
notifies the API server about this decision in a process called binding".

Scheduling decisions take into account factors such as individual and collective
resource requirements, affinity and anti-affinity specifications, data locality, inter-
workload interference, and some other factors and constraints.

The node selection process consists of two steps, known as filtering and scoring.
The filtering step consists of finding the set of nodes where a pod can be scheduled
to run. After the filtering step, the scheduler ranks each of the filtered nodes and
assigns them a score. The pod will be scheduled to the node with the highest
score.

The scheduler allows customization of the scheduling policies and profiles, so we
can adjust them to our system needs.

Kubernetes Operator

Operators in Kubernetes [34] are software extensions that use custom resources to
manage applications and components. Operators are designed for automating
workloads beyond what Kubernetes already provides, expanding the cluster’s
behaviour and acting as controllers to custom resources.

An operator can be used to automate different tasks, such as deploying applica-
tions on demand, handling application updates, taking and restoring backups
of an application’s state, and publishing a service to applications that don’t sup-
port Kubernetes APIs, among others. To match the needs of different systems,
operators can be coded and tailored to implement the wanted behaviour. A list of
Kubernetes operators is presented below:

• Prometheus Operator: Manages Prometheus monitoring and alerting sys-
tems. It simplifies the deployment and management of Prometheus instances,
as well as the configuration of monitoring targets.

• Grafana Operator: Simplifies the management of Grafana dashboards and
configurations on Kubernetes.

• MySQL Operator: Automates the deployment and management of MySQL
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databases on Kubernetes. It handles tasks like backup, scaling, and high
availability.

• Kafka Operator: Automates the deployment and scaling of Apache Kafka
clusters. It simplifies the configuration of Kafka topics, brokers, and ZooKeeper.

• NGINX Ingress Controller Operator: Automates the deployment and man-
agement of NGINX Ingress controllers for routing external traffic into the
Kubernetes cluster.

2.4.2 Liqo

"Liqo is an open-source project that enables dynamic and seamless Kubernetes
multi-cluster topologies, supporting heterogeneous on-premise, cloud and edge
infrastructures" [3, 4].

Liqo provides interconnectivity between clusters using a peer-to-peer approach,
allowing workload offloading, service distribution across clusters, and multi-
cluster applications traffic routing. The simplicity of Liqo approach, when com-
pared to similar tools and frameworks like Skupper and Submariner, the latter also
studied in this work (refer to Section 2.4.3), is the main advantage, as the configura-
tion is minimal and offloading is very straightforward. Liqo is also CNI-agnostic,
allowing connectivity between clusters discarding the requirements of clusters
need of having the same CNI installed, despite still having some caveats with the
Calico plugin (refer to Chapter 5, Section 5.2 for more information on Calico), as it
is common with this type of frameworks.

Peering Clusters

Establishing a peer-to-peer relationship [35] between clusters using Liqo consists
in four steps:

• Authentication: each cluster, after being authenticated through tokens
shared previously, obtains an identity used to interact with other clusters.
This identity is then used to negotiate parameters and policies.

• Parameter Negotiation: the two clusters exchange parameters needed to
complete the peering relationship, such as the amount of resources shared
and the information about the setup of the network VPN tunnel. This process
is automatic and doesn’t require user intervention.

• Virtual Node Setup: the consumer cluster abstracts the resources shared
with the provider cluster by creating a virtual node in the cluster. This
enables task offloading [36] and is compliant with the standard Kubernetes
practice, dismissing API modifications.

• Network Fabric Setup: the two clusters configure their network and estab-
lish a secure VPN tunnel between them, using the parameters negotiated in
a previous step. This enables pods hosted by the local cluster to seamlessly
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interact with the pods offloaded to the remote cluster, regardless of the CNI
plugin and configuration.

Liqo supports two types of peering: in-band control plane and out-band control plane.

The network traffic in the out-band control plane is separated, where the traffic
between the pods of the two clusters flows in the VPN tunnel created during the
peering process and the Liqo control plane traffic flows outside the VPN tunnel.
This requires exposure of three different endpoints: Liqo VPN endpoint, Liqo
authentication endpoint and Kubernetes API endpoint.

Using the in-band control plane approach, all the traffic flows through the VPN
tunnel (pod traffic and Liqo control plane traffic), requiring only the Liqo VPN
endpoint to be exposed. Figure 2.10 presents Liqo in-band and out-band control
plane topologies.

Figure 2.10: Liqo Out-Band Control Plane (top) and In-Band Control Plane (bottom)
approaches [35]

Offloading Workloads

In the context of bidirectional cluster peering, Liqo introduces the concept of
virtual nodes within each cluster. These virtual nodes represent the resources
available in the remote cluster. Liqo goes further by introducing the concept of
offloading [36], which allows for the reflection and execution of workloads on
these virtual nodes. Offloading enables the exposure of services and the execution
of workloads in remote clusters. Liqo allows to offload namespaces, services, and
pods.

For example, when offloading a namespace, Liqo extends it by creating an identical
twin namespace in the remote cluster. This enables pods and services to operate
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within this shared cross-cluster namespace. Figure 2.11 compares pod offload-
ing and service offloading. Both modes start with establishing cluster peering,
involving creating a dynamic VPN tunnel and configuring a shared namespace.

However, the pod offloading strategy involves transferring the actual execution of
pods and services to the peered cluster. For instance, in Figure 2.11, application
components are initially deployed in the Green Cluster but are later executed
in the Rose cluster. This approach is particularly useful for resource-intensive
computing tasks, like video processing or managing peak traffic loads, which
can be seamlessly moved to a more suitable cloud cluster. By offloading certain
application workloads to a cloud cluster, resource utilization across the edge-cloud
continuum can be optimized, resulting in cost savings and improved overall
efficiency.

In contrast, service offloading focuses on exposing only the Kubernetes services in
a remote cluster. In this scenario, pod execution remains in the original cluster, and
the deployment of pods must be initiated anew in the target cluster. Additionally,
other components need to be aware of the service names in the remote cluster [37].

Figure 2.11: Pod offloading and Service Offloading [37]

2.4.3 Submariner

Submariner [5] is an open-source tool that allows connection across different
clusters and is built to be compatible with any network plugin. Submariner’s
architecture relies on several components to achieve cluster connectivity as shown
in Figure 2.12, highlighting the most relevant components:

• Gateway Engines responsible to manage the tunnels between clusters
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Figure 2.12: Submariner architecture [38]

• A Broker, which can be running on a dedicated cluster or on one of the
connected clusters, enables Gateway Engines to discover one another

• Route Agents injected in each node for routing the traffic from the nodes to
the gateway engine so the information can cross to the connected clusters

• Service Discovery providing DNS discovery of services across the connected
clusters

The Lighthouse project is accountable for the DNS service discovery in the Sub-
mariner by deploying an agent in each of the connected clusters. DNS discovery
is done by Lighthouse deploying an agent in every connected cluster, which
then communicates with the broker to exchange information about the deployed
services in all the clusters.

For every service in the local cluster for which a ServiceExport has been created,
the Agent creates a corresponding ServiceImport resource and exports it to the
Broker to be consumed by other clusters and for every ServiceImport resource in
the Broker exported from another cluster, it creates a copy of it in the local cluster.
This ends up having an overhead on the cluster because the amount of resources
created is proportional to the number of existing services. Kubernetes CoreDNS is
configured to forward requests to the Lighthouse external DNS server, which then
uses the ServiceImport to resolve the DNS request.

An existing issue with Submariner is the fact it cannot handle overlapping CIDRs
between clusters. In that case, we need to add another component to the architec-
ture which is the Globalnet Controller.

This component consists of a global private virtual network (global CIDR) de-
signed to support Submariner. Each cluster is assigned a subnet of the global
private virtual network, which is used to provide virtual IPs to the pods and ser-
vices of the cluster. New IP routing rules are created by the IP Address Manager
(IPAM) to accommodate the new IPs. Globalnet is also supported by Lighthouse
meaning the overlapping addresses will not affect the DNS resolving requests.
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2.4.4 Cluster API

Cluster API is a Kubernetes project focused on providing declarative APIs and
tooling to simplify provisioning, upgrading, and operating multiple Kubernetes
clusters [39].

Cluster API uses Kubernetes-style APIs and patterns to automate cluster life-
cycle management for platform operators. The supporting infrastructure, like
virtual machines, networks, load balancers, VPC, and the Kubernetes cluster con-
figuration are all defined in the same way that application developers operate
deploying and managing their workloads (.yaml blueprints). This enables consis-
tent and repeatable cluster deployments across a wide variety of infrastructure
environments [39]. Figure 2.13 represents Cluster API topology.

Figure 2.13: Cluster API topology [39]

Cluster API main components are briefly described below [40]:

• Cluster API Provider (CAP) is responsible for creating and managing the
underlying infrastructure for a Kubernetes cluster. The CAP communicates
with cloud providers or infrastructure providers, such as AWS, Azure, or
vSphere, to provision and configure the necessary resources for deploying a
cluster.

• Cluster API Management (CAM) is responsible for creating and managing
the Kubernetes objects that make up a cluster. This includes objects such
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as pods, services, and deployments. The CAM communicates with the
Kubernetes API server to create and manage these objects.

• Cluster API Bootstrap (CAB) is responsible for bootstrapping new control
plane nodes, which are the nodes that run the Kubernetes control plane
components. This includes objects such as the API server, etcd, and the
controller-manager.

Cluster API provides a set of Kubernetes CRDs that can be used to declaratively
define a cluster and its components. These CRDs can be used to create, update,
and delete clusters, as well as their underlying infrastructure and Kubernetes
objects. Some CRDs are described below:

• Cluster CRD represents a Kubernetes cluster and contains information such
as the number of nodes, the version of Kubernetes to use, and the cloud
provider or infrastructure provider to use.

• Machine CRD represents a single node in a Kubernetes cluster and contains
information such as the instance type, the image to use, and the network
configuration.

• MachineSet CRD represents a group of machines that are created together
and have the same configuration.

• MachineDeployment CRD represents a deployment of a set of machines.

• ClusterDeployment CRD represents a deployment of a cluster, it’s a parent
object of MachineDeployment.

• ClusterConfig CRD represents the configuration of a cluster and contains
information such as the Kubernetes version and the network configuration.

• ClusterStatus CRD represents the status of a cluster and contains informa-
tion such as the number of nodes that are up and running.

Cluster API is widely adopted to provide automation, standardization and porta-
bility of Kubernetes clusters across different cloud infrastructures, it works well
with other popular kubernetes tools like Kubernetes Operator, GitOps, and Helm.

2.4.5 OpenStack

"OpenStack is a cloud operating system that controls large pools of compute,
storage, and networking resources throughout a datacenter, all managed and
provisioned through APIs with common authentication mechanisms" [41]. Being
an IaaS, it also provides orchestration, fault management and service management
along with other functionalities. Figure 2.14 shows an overview of the OpenStack
architecture.
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Figure 2.14: Overview of OpenStack architecture [41]

MicroStack is a single-machine, snap-deployed OpenStack cloud. Being a lighter
version of OpenStack, it was built for testing workloads. It can also be used for
IoT and appliances and for the Edge Clouds. The caveats of this build are the lack
of services, as it only provides the main components: Nova, Keystone, Glance,
Horizon and Neutron (with OVN) [42]. MicroStack was used in the third proof of
concept (5.5) for its less demanding requirements and faster setup.

2.5 Summary

In this chapter, the key concepts about orchestration and automation of containers,
virtual machines and clusters are introduced, as well as the cloud deployment
topologies, to understand the multi-cluster architecture and its implementation
better.

In the first section, the concept of orchestration and ETSI ZSM standard for orches-
trators, as well as the resources that can be orchestrated. We explain the notion of
TOSCA blueprints, which can be used in the orchestration process.

The second section is the notion of cloud computing and the services it can provide.
The five different types of cloud deployment models are presented, and the concept
of edge cloud computing is introduced as well as its relation with the multi-cluster
architecture.

The third section introduces the multi-cluster architecture concept, which is a com-
mon architecture for cloud deployment models, and the different implementations
are discussed. Multi-cluster advantages and challenges that led to the proof of
concept scenarios (refer to Chapter 5) are also presented and discussed in this
section.

In the last section, several tools such as Kubernetes, Submariner, Liqo and Cluster
API are introduced, and their architecture and components are explained. The
tools described in this section are all fundamental to the resolution of the multi-
cluster challenges, also explained in this chapter. Furthermore, some of the tools
in this section are used in the development of the proof of concepts, explained in
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Chapter 5.
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Research Objectives and Approach

This chapter discusses the objectives and the proposed approach followed in this
work. Section 3.1 provides a breakdown of the several enumerated objectives, ex-
plaining and contextualizing each one. Section 3.2 explains the outlined approach
to accomplish the objectives.

3.1 Research Objectives

The main goal of this work was to develop an intelligent orchestration and man-
agement platform focused on distributed Cloud-Native environments. This means
designing, implementing and evaluating a solution for dynamic Kubernetes clus-
ter and application provisioning on distributed and edge-cloud domains. Such
objective was divided into various objectives as described below:

1. Objective 1 - Develop and evaluate an orchestration system

This objective is within the scope of the multi-cluster architecture challenges.
The orchestration solution should comply with a list of requirements and
meet the CHARITY goals. Moreover, the capabilities of such a solution
should be tested and evaluated. This solution should be in line with the
overall idea of bringing automation to the process of orchestrating a multi-
domain infrastructure and applications. Namely, we aim to incorporate the
concept of closed loops as discussed in the ZSM specification.

2. Objective 2 - Integrate and validate cluster inter-connectivity tools

This specific objective derives from the multi-domain nature of the targeted
environments. We aim to support cross-cluster connectivity that could allow
a seamless interconnection of various application components spread over
multiple clusters. We aim to research different cluster connectivity technolo-
gies, evaluate their capabilities and compare them to decide which one to
use in the final architecture.
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3. Objective 3 - Integrate and validate multi-cluster orchestration tools

Similar to the previous one, with this objective, we aim to investigate the
use of declarative APIs and tooling for bootstrapping and orchestration of
Kubernetes-based clusters. For objectives 2 and 3, we also aim to validate
both technologies within the scope of CHARITY use cases and demonstration
activities.

3.2 Proposed Approach

Following the state-of-the-art review about orchestration, automation focused on
clusters and Kubernetes, we started by defining the work plan (c.f. Chapter 4). This
included the list of risks and countermeasures. Later, we conducted a series of tests
and developed early proof-of-concepts to familiarise ourselves with and better
assess the technologies involved. Such exploratory work is reflected in Chapter 5.
Then, we elicited a list of requirements based on CHARITY project discussions
and needs. Afterwards, we defined a reference architecture (c.f. Chapter 6) to
answer the defined goals and requirements. Similarly to the requirements, this
architecture considers the overall CHARITY architecture and external components
the proposed solution should communicate. Later, we proceed to implement
such architecture. Last but not least, we tested and evaluated the capabilities
of the implemented solution and conducted additional validation taking into
consideration CHARITY project use cases (c.f. Chapter 7).

The mapping between each individual objective and the proposed approach is
overviewed below.

3.2.1 Objective 1 - Develop and evaluate an orchestration system

The first objective consisted of developing an orchestrator to automate the lifecycle
management of Kubernetes-based environments and applications. To achieve
that, we designed a reference architecture for a solution capable of bootstrapping
clusters automatically. Such a solution follows the OODA loop concept and will
use a Kubernetes Operator as an auxiliary mechanism to help the orchestrator’s
automation process.

3.2.2 Objective 2 - Integrate and validate cluster inter-connectivity
tools

After researching solutions regarding the multi-cluster architecture challenges, we
considered two candidate tools: Submariner and Liqo. These tools were deemed
the most promising tools to help resolve the cross-cluster connectivity challenge.
Both needed to be tested and compared to decide which tool was to be integrated
into the orchestrator. We develop a proof of concept for each of the technologies,
better detailed in Chapter 5, in Sections 5.3 for Submariner and 5.4 for Liqo.
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3.2.3 Objective 3 - Integrate and validate multi-cluster orchestra-
tion tools

Likewise, Cluster API was considered to be a promising solution to resolve the
orchestration challenge. Cluster API is free and natively supported by Kubernetes.
Moreover, it allows us to declarative define the infrastructure. We started to assess
Cluster API capabilities as an orchestration tool and also evaluate the OpenStack
compatibility as a provider, a proof of concept was developed, better detailed in
Chapter 5, in Section 5.5, fulfilling the proposed objective.
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Work Plan

This chapter overviews the internship work plan and compares the executed and
planned work plans. The tasks of the plan are briefly explained as well as the
risks.

4.1 First Semester

This section describes the work plan for the first semester of the internship. Figure
4.1 presents the expected workplan to be done in the first semester and Figure 4.2
presents the concluded work plan in the first semester.

Figure 4.1: 1st Semester Expected Work Plan

Figure 4.2: 1st Semester Executed Work Plan
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During the research phase of the internship, a new promising technology re-
garding the cluster connectivity challenge was found. Liqo promised to be more
powerful and more versatile than Submariner, which was proven in the proof of
concept scenarios 5.

A brief description of the tasks concluded in first semester is given below:

• Task 1 - State of the art review on orchestration: Research about the concepts
of orchestration and related technologies.

• Task 2 - Practical experiments with Cloud-Native technologies and Kuber-
netes clusters: Experimentation with the technologies to gain experience
and develop more insightful thoughts on the current research subjects.

• Task 3 - Multi-Cluster connectivity PoC with Submariner: Proof of concept
on multi-cluster connectivity using the Submariner technology.

• Task 4 - Multi-Cluster connectivity PoC with Liqo: Proof of concept on
multi-cluster connectivity using the Liqo technology.

• Task 5 - Multi-Cluster connectivity PoC with CAPI and OpenStack: Proof
of concept on multi-cluster orchestration and management using the Cluster
API framework with OpenStack cloud provider.

• Task 6 - State of the art review on multi-cluster challenges: Research about
multi-cluster topologies, its challenges and related technologies to solve
them.

• Task 7 - Writing intermediary report: Writing the report on the research
and development of the subjects conducted during the first semester of the
internship.

The schedule was extended and tasks delayed, as during the writing of this report
and development of the proof of concepts, other courses and projects of the masters
were being worked on in parallel.

4.2 Second Semester

This section describes the work plan for the second semester of the internship.

Figure 4.3 presents the second semester expected work plan and Figure 4.4 presents
the second semester executed work plan.

A brief description of the tasks concluded in the second semester is given below:

• Task 1 - Multi-Cluster architecture review: Review small details of the final
architecture.
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Figure 4.3: 2nd Semester Expected Work Plan

Figure 4.4: 2nd Semester Executed Work Plan

• Task 2 - CAPI + OpenStack with Liqo ready cluster deployments: Prepare
Cluster API to deploy clusters with Liqo, document, test and validate the
architecture.

• Task 3 - Orchestrator development: Development of the orchestrator that
will be integrated with CAPI and OpenStack, document, test and validate the
orchestrator, and integrate it with the Cluster API + OpenStack architecture.

• Task 4 - Writing final report: Writing the report on the research and develop-
ment of the subjects conducted during the internship, which will contribute
to CHARITY documentation.

As seen in the executed plan, new tasks were added or updated. A list of the new
and changed tasks is presented below:

• Task 1 (Deleted) - Multi-Cluster architecture review: This task is included
in the task 2 - CAPI + OpenStack with Liqo.

• Task 4 (Updated) - Documentation, Publishing and Writing Final Report:
Writing the report on the research and development of the subjects con-
ducted during the internship, contributing to CHARITY documentation
(deliverables) and publishing of a conference paper and a journal paper.
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• Task 5 (New) - EUCnC & 6G Summit Demo - Integration of the orches-
trator with AMF, as well as adding a custom metrics system and a custom
dashboard, readying the orchestration system for a live demo at the EUCnC
booth exhibition.

The testing and validation of the orchestrator, which included a live demonstration
at EUCnC & 6G Summit Conference, took longer than expected, leading to a
small delay. In turn, we also took the opportunity to improve the quality of
documentation and final report. Additionally, we also devoted significant efforts
to presenting the achievements of this work in the form of scientific publications.

4.3 Risk Assessment

This section describes the risks that may hinder the progress of this work. The list
of risks and their mitigation plans for each one are described below:

• Risk 1: Implementation challenges due to lack of experience with the tools
and frameworks.

Mitigation Plan: Research documentation and tutorials, practising with the
tools and frameworks. Develop and test initial prototypes to better assess
the time and complexity of each development task.

• Risk 2: Being too ambitious with the work, leading to features not being
implemented.

Mitigation Plan: Outline the envisioned approach, including the goals,
scope, work plan, and risk assessment. Moreover, define a limited list of
requirements and establish priorities for each.

• Risk 3: Changes in tasks and priorities derived from the CHARITY and
OneSource’s goals.

Mitigation Plan: Follow an agile-based approach with small iterations,
regular discussions and more frequent deliveries.

We were faced with Risk 1. To overcome that, we devoted quite a significant
amount of effort to early testing, experiments and PoC as presented in Chapter
5. Similarly, the underlying concept behind this work was concluded to be quite
ambitious. For the sake of this work, we had to define small, more concrete and
manageable goals and requirements that were pivotal to successfully achieving the
overall idea of having an orchestration solution. Moreover, at the halfway point of
this work, we revisited and better detailed the planned tasks and respective times.
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First Testing and Proof of Concepts

This chapter covers the proof of concept scenarios regarding the multi-cluster
architecture challenges. The proof of concepts described in this chapter were
developed with the goal of better understanding the technologies and validating
their capabilities.

Scenario I and Scenario II are possible solutions for the same challenge, using
Submariner and Liqo respectively, comparing both to decide what technology
better fits the purposes of this work. Scenario III is related to the multi-cluster
architecture orchestration challenge, and was developed to assess the extent of
Cluster API capabilities and functionalities, as well as evaluate the OpenStack
cloud provider compatibility with Cluster API.

5.1 Methodology

In this section, we explain the methodology and common approaches taken for
the scenarios in general, also during this section and the following sections, where
the scenarios are explained in detail, a cluster is considered to be a Kubernetes
cluster.

Every cluster represented in each scenario is a single node cluster, in which the
only node running is the control plane node. This is relevant to the diagrams of
each scenario.

The first two scenarios regarding cluster connectivity were developed with the
same goal in mind, connecting more than one cluster. To validate this goal, we
resort to a simple and common approach used to test single Kubernetes clusters
setups, and adapt to the multi-cluster setup, which is using a sleep pod to curl a
httpbin pod.

The httpbin pod runs a container with a simple HTTP request and response service
and the sleep pod runs a container that allows us to execute bash commands like the
curl command needed to test the connection. For the cluster connectivity scenarios,
the sleep pod is deployed in one cluster and the httpbin pod is deployed in the
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opposite cluster.

All the clusters in scenario I and II except one, were deployed using Kubeadm
bootstrap (for more details refer to Subsection 5.2). The exception cluster was
deployed with KinD which is also a tool to build Kubernetes clusters. This
exception was due to the fact that this cluster was running in an existing setup of
a member of the CHARITY team.

In the Submariner scenario, we opted for using Calico and for the Liqo scenario
we opted for Flannel. The change in CNI plugins was due to the fact that both of
them had caveats with Calico and some additional attention is needed regarding
the setup. As we were not using the additional features provided by Calico, we
decided to change to Flannel as it is a simpler and lighter solution.

For a functional setup, we also need a load balancing solution, where the chosen
was the installation of MetalLB [43], which is solution for Kubernetes that monitors
for services with the type LoadBalancer and assigns them an IP address from a
virtual pool. For more detail regarding MetalLB, refer to Subsection 5.2.

For the third scenario, we only need to prepare one cluster that will assume the role
as the management cluster. The management cluster is deployed with Kubeadm
and we use the Flannel CNI plugin, both detailed in Subsection 5.2.

All the scenarios each have a section dedicated to them in this chapter, to better
explain them.

5.2 Deployment Tools and Solutions Explained

This section lists some of the chosen deployment tools and solutions that help
build the scenarios’ setup, better detailing each one.

• Kubeadm: Kubeadm [44] performs the actions necessary to get a minimum
viable cluster up and running. It is a commonly known tool to deploy a
vanilla Kubernetes cluster, as it does not install any addons, like monitoring
solutions, load balancer and even a CNI plugin. Kubeadm is usually used
by more experient users, being more easily customized as it does not install
nothing besides the necessary components. Less experient users often opt
for K3S [45], Minikube [46] and KinD [47] as it already installs plugins
and add-ons by default, which provides the user with a deployment-ready
cluster.

• KinD: KinD [47] is a tool for running local Kubernetes clusters using Docker
container “nodes” and it was designed primarily for testing Kubernetes itself.
Despite bootstrapping the cluster with Kubeadm, it also installs addons like
the CNI plugin and it only supports the Docker CRI. Regarding the CNI, it
uses Kindnetd.

Kindnetd is a simple CNI solution that fulfills the two main CNI require-
ments, reachability and connectivity. As it is a simple plugin, it only works
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on simple network environments, where all the cluster nodes belong to the
same subnet.

• Calico: Calico [48] is a CNI plugin that provides a highly-scalable networking
and network security solution that supports fine-grained network segmen-
tation, traffic shaping, and network policy enforcement. Calico is built on
top of the BGP routing protocol and uses IP-in-IP encapsulation to provide
network connectivity between pods. When a pod is created, Calico assigns
an IP address to the pod and programs the host’s networking stack to route
traffic to the pod. It allows for inter-node communication by creating a vir-
tual network that spans across all nodes in the cluster. This virtual network
is created by using BGP to advertise the IP addresses of pods running on
each node to all other nodes in the cluster. This allows pods running on
different nodes to communicate with each other, even if they are not in the
same subnet. Calico CNI supports a rich set of network policies that can be
used to control network traffic between pods, services, and namespaces. It
also has built-in support for network segmentation and isolation, which can
be used to restrict access to specific pods or services.

• Flannel: Flannel [48] is the most popular CNI plugin for Kubernetes. When
a pod is created, the Flannel CNI plugin assigns an IP address to the pod
from the host’s subnet. This IP address is then used for communication
between pods and services within the Kubernetes cluster. Flannel CNI also
allows for inter-node communication by using an overlay network. This
overlay network allows pods running on different nodes to communicate
with each other, even if they are not in the same subnet. This is done by using
a Software-Defined Networking (SDN) technology called VXLAN to create a
virtual network that spans across all nodes in the cluster. Flannel is focused
on networking, unlike Calico which is focused on network policies.

• MetalLB: MetalLB [43] is installed on top of the cluster and provides a
load-balancer implementation to the network. It allows the creation of
LoadBalancer type services in clusters that do not have an alternative solution,
like a cloud provider load balancer. The two main features it provides are
address allocation, which allows IP address allocation to services using IP
Pools previously defined and external announcement, which announces the
allocated IPs beyond the cluster.

• NGINX Controller: NGINX [49] is a popular open-source web server that is
often used as a reverse proxy and load balancer. In the context of Kubernetes,
NGINX is commonly used as an ingress controller, which means that it acts
as the entry point for incoming traffic to your Kubernetes cluster.

When NGINX is deployed as an ingress controller in a Kubernetes cluster,
it is responsible for routing incoming requests to the appropriate backend
services based on the URL paths and hostnames defined in the ingress rules
and can also perform load balancing across multiple backend instances of
a service. In addition to its role as an ingress controller, NGINX can also
be used as a sidecar container alongside a web application container in a
Kubernetes pod. The NGINX container can handle tasks such as caching,

37



Chapter 5

SSL termination, and serving static content, while the application container
handles dynamic content.

• FastAPI: FastAPI [50] is a modern, high-performance web framework for
building APIs (Application Programming Interfaces) with Python. It is
designed to be fast, efficient, and easy to use. FastAPI leverages the asyn-
chronous capabilities of Python through the use of the asyncio library, mak-
ing it well-suited for high-performance applications that require concurrent
and scalable processing.

• TOSCA: TOSCA [51] provides a standardized and portable approach for
managing cloud applications throughout their lifecycle, from design and
deployment to scaling and monitoring. By using TOSCA, organizations can
achieve greater interoperability, flexibility, and automation in their cloud
application deployments, facilitating seamless integration and management
across different cloud environments and technologies.

TOSCA is typically written in .yaml format. The .yaml file contains the
specifications for the application’s topology, including its components, rela-
tionships, properties, and their configurations. It describes how the various
application components, such as software, containers, virtual machines, and
networking resources, are structured and interconnected. It may also include
definitions of policies, interfaces, workflows, and other metadata associ-
ated with the application. These elements define the desired behaviour and
operations of the application during its lifecycle.

• WireGuard: WireGuard [52] is a modern and secure open-source virtual
private network (VPN) protocol. It was designed with simplicity and effi-
ciency in mind, aiming to provide a fast and reliable solution for creating
secure network connections. Unlike traditional VPN protocols, such as
IPsec and OpenVPN, WireGuard is known for its simplicity, ease of use, and
minimalistic code base.

5.3 Scenario I - Cluster connectivity using Submariner

This section describes the scenario created to test cluster connectivity using Sub-
mariner, its goals and results.

The goals of the scenario are listed as the following:

• Evaluate Submariner architecture and functionalities

• Assess Submariner connectivity capabilities

Scenario Description and Procedure

Each cluster is running on a virtual machine deployed within CloudSigma cloud
provider infrastructure with Kubernetes v1.24 deployed with Kubeadm and Calico
CNI and using MetalLB v0.12.7. Figure 5.1 represents the schema for scenario I.
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Figure 5.1: Scenario I - Cluster connectivity with Submariner

After setting up the clusters, we proceed with the installation of Submariner,
following the official documentation [5].

As the clusters CIDR overlapped, we needed to enable Globalnet, so that Sub-
mariner would use a previously defined global IP pool to assign pods and services
in all the clusters a unique IP address.

The broker was deployed to Remote Cluster B and then we proceeded with the
cluster connection, which creates an IPSec VPN tunnel between the clusters. As
we were using Calico CNI, we needed to use a different IP range for Globalnet
because Calico uses the default values internally. We also needed to define IPPools
resources in both clusters, each pool representing the joined clusters CIDRs.

Then, we deployed a pod containing httpbin to Remote Cluster A and a pod
containing sleep to Remote Cluster B, exposed httpbin to the connected clusters
and we were able to curl the service using the sleep pod successfully.

Results and Discussion

We were able to fulfil the goals of the scenario, as we were able to connect the
two clusters, expose a service and access it through the opposing joined cluster.
After the defined goals were achieved, was deployed a service to a node where
the gateway service does not reside. The connection to it was not successful,
demonstrating that in the current version of Submariner, traffic rerouting is not
good enough.

5.4 Scenario II - Cluster Connectivity using Liqo

This section describes the scenario created to test cluster connectivity using Liqo,
its goals and results.

The goals of the scenario are listed as the following:

• Evaluate Liqo architecture and functionalities

• Assess Liqo connectivity capabilities to connect to more than one cluster

• Assess Liqo offloading capabilities for workload reflection
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Scenario Description and Procedure

The remote cluster is running on a virtual machine deployed within CloudSigma
cloud provider infrastructure with Kubernetes v1.24 and was deployed using
Kubeadm with Kube-Flannel CNI and MetalLB v0.13.5.

The local cluster is running on a virtual machine deployed on a local worksta-
tion with the Kubernetes v1.25 and was deployed using KinD with the default
configuration using kindnetd as CNI. Figure 5.2 represents the schema for scenario
II.

Figure 5.2: Scenario II - Liqo Connectivity

As KinD already provides a load balancing solution for cluster services using Node-
Port type resources, we do not need to install any additional software. Kubeadm
however, needs a proper solution. We opted for MetalLB as it is a common
solution for services load balancing and is briefly explained below.

After building the base setup, we proceeded with the installation of Liqo in each
cluster using the official documentation as a guide[3]. As we were limited by the IP
addresses in the remote cluster, we opted for the in-band control plane approach
as it only needs one public IP address for the peering process. We peered the
clusters successfully and connected them bidirectionally, allowing both inbound
and outbound traffic from each cluster.

To test the connectivity between the clusters we deployed a pod in the local cluster
with a sleep container, which will be used to send curl commands to another
pod, deployed in the remote cluster, containing an httpbin container which is a
simple webpage. After we successfully verified the connectivity, we also tested
Liqo pod offloading capabilities, by offloading the pod containing httpbin, to the
local cluster and then curling the httpbin pod.

Results and Discussion

With this scenario, we were able to validate both Liqo’s connectivity and offloading
capabilities. While not being a goal of this scenario, we also concluded that we
could use Liqo’s features independently of how we deployed the cluster and the
version of Kubernetes used in each one.

We also proved that Liqo is CNI agnostic as using different CNIs had no impact at
any point during the process (installation, peering and offloading). One caveat
of the in-band control plane approach is the need to have access to both clusters to
peer them, as we need access to both clusters’ configuration files.
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By comparing the Liqo scenario to the Submariner scenario, we decided to use
Liqo in the planned architecture for the second semester, because Liqo offers the
offloading feature which is a determining feature for distributed topologies and
it is lighter than Submariner, being better prepared for clusters deployed on the
edge of the network.

5.5 Scenario III - Cluster Provisioning using Cluster
API with OpenStack

This section describes the scenario created to test cluster deployment with Cluster
API with Openstack, its goals and results.

The goals of the scenario are listed as the following:

• Evaluate Cluster API architecture and functionalities

• Assess Cluster API deployment capabilities

• Assess compatibility with OpenStack provider

• Deploy a fully functional Kubernetes cluster

Scenario Description and Procedure

The management cluster is running on a virtual machine, deployed within
CloudSigma cloud provider infrastructure with Kubernetes v1.25 and is deployed
using Kubeadm and Kube-Flannel CNI. Figure 5.3 represents the schema for sce-
nario II.

Figure 5.3: Scenario III - Cluster Provisioning

In the management cluster, we install Cluster API following the official documen-
tation [7]. In the provider virtual machine we install MicroStack, a lightweight
distribution of OpenStack, following the official documentation [42].

After the basic setup is complete, we deploy a simple virtual machine in Open-
Stack, using a cirrOS image, to check if everything is correctly configured. We
also needed to define some specific configurations regarding OpenStack in Cluster
API, such as the access credentials and the environment variables. We generated a
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cluster blueprint specific to the OpenStack, which is an .yaml file we can modify
to our needs, but already comes with predefined parameters, using the previously
mentioned environment variables. Then, we upload to the OpenStack provider a
specific virtual machine image, which supports Cluster API deployments needed
by OpenStack in order to create compatible virtual machine instances.

Proceeding, we are ready to deploy a virtual machine with the provided cluster,
by applying the cluster blueprint as a normal resource of Kubernetes. Using the
dashboard of OpenStack, we verify that the machine containing our cluster is
running. To access the cluster, we retrieve the cluster configuration file, using
the Cluster API command line, and use the configuration file to interact with the
cluster. With the configuration file, we deploy a CNI plugin (Kube-Flannel), and
the provisioned cluster is completely functional.

Results and Discussion

As expected, we were able to deploy virtual machines running Kubernetes clusters
with Cluster API with the OpenStack provider. This was confirmed by checking
the Openstack dashboard and by using the cluster configuration file (kubeconfig)
to interact with the deployed clusters. We were also able to deploy a cluster and
command it to download and install Kube-Flannel automatically using only the
cluster blueprint. This was achieved by adding the needed kubectl commands
to the cluster blueprint previously generated by Cluster API. Regarding the
implementation, it took longer to implement than expected, mostly due to a lack
of documentation.

5.6 Summary

The tests conducted during this work were pivotal for understanding which and
how existing Open Source frameworks and technologies could be integrated
into the envisioned orchestrator. Cluster API will be used to strengthen the
orchestration features as it proved capable of using Kubernetes primitives for
cluster management and provides support for different providers, while Liqo will
be used for the cluster interconnectivity, as it proved superior to Submariner, as
the latter lacked workload distribution features. Such an early prototype was
also decisive for understanding the most relevant features to be automated and
integrated within an orchestration system.
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Proposed Solution

This chapter documents the development of the orchestrator integrating the tools
and frameworks related to automation and interconnectivity presented in the pre-
vious chapter. Section 6.1 gives a brief overview of the high-level requirements of
the orchestrator. Section 6.2 presents the high-level architecture of the orchestrator
and explains briefly each element composing the architecture. Section 6.3 explains
each component composing the orchestrator individually, presenting the role
and specific requirements of the component while also detailing the component
functionalities. All the work presented in this chapter was showcased during the
EUCnC & 6G Summit 2023 booth exhibition [53].

6.1 Requirements

This section gives an overview of the general requirements of this work. Based
on the CHARITY project discussions and needs, these requirements were set
to answer the previously defined objectives. We divided them into general re-
quirements, which the orchestrator needs to fulfil and individual component
requirements. Both requirements follow the MoSCoW scale.

Table 6.1 summarizes the requirements related to the main features of the orches-
trator.

ID Name Description MoSCoW Achieved
CHA1 Create clusters Create Kubernetes clusters Must have Y
CHA2 Delete clusters Delete Kubernetes clusters Must have Y
CHA3 Update clusters Update Kubernetes clusters Should have Y
CHA4 Deploy applications Deploy applications in the Kubernetes clusters Must have Y
CHA5 Delete applications Delete applications in the Kubernetes clusters Must have Y

CHA6 Connect clusters Establish a network connection between clusters
created via the orchestrator Must have Y

CHA7 Orchestrator components monitoring Obtain metrics from the orchestrator components Should have Y

CHA8 Orchestrator deployed clusters monitoring Obtain metrics from the Kubernetes clusters deployed
by the orchestrator Could have Y

CHA9 Support for AMF Add support for the AMF external component Could have Y

CHA10 Integration with Kafka Integrate Kafka with the orchestrator, for true
asynchronous communication Could have N

Table 6.1: General Requirements - Yes (Y), No (N)

These general requirements represent the key operations the orchestrator must
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be able to do. This includes create/scale/delete clusters and the deployment
and deletion of applications and different resources, including container-based
applications. Cluster connectivity is another key objective behind this work. The
orchestrator should be able to distribute workloads across the different clusters.
Additional capabilities, such as monitoring, were also identified but assigned as
less priority considering the complexity of the key features and, at the same time,
the time frame of this work.

6.2 Reference Architecture

This section presents the high-level proposed orchestration architecture, including
some of the external components directly interfacing the main orchestrator sys-
tem, which is the focus of this research work. This sections also introduces the
orchestrator components, their role and functions.

The architecture is represented in Figure 6.1.

Figure 6.1: Reference Architecture

A brief description of the components composing the architecture is given below:

• AMF Frontend: Represents the user interface for CICD admins that will be
used to interact with the system. Through the AMF, the user can design their
application that is translated into a TOSCA blueprint (refer to Section 5.2 for
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more details on the TOSCA blueprint). This is an external component that
interacts with the orchestrator via a REST API.

• AI-Driven Application and Cluster Scheduling: The AI component, based
on the information of the infrastructure and the requirements of the appli-
cation to be deployed, decides what is to be demanded of the orchestrator,
such as cluster creation, scaling and linking. This is then translated to the
CRD monitored by the operator. This is an external component that interacts
with the orchestrator via a REST API.

• Custom Resource Definition: The CRD contains the most up-to-date infor-
mation regarding the status of the infrastructure.

• Operator: The operator is responsible for monitoring the CRD and handling
its changes (i.e., insert, delete and update). When a change to the CRD
is detected, the operator acts accordingly. For instance, adding a cluster
definition to the CRD will trigger a new cluster provisioning as detailed
in Section 6.3.2. The operator was inspired by the ETSI ZSM standard and
closed-loop concept as a way to orchestrate and automate a Kubernetes-
based environment.

• Backend: The backend is responsible for executing the changes to the infras-
tructure detected by the operator. The backend is complemented by a REST
API that the operator uses to request the changes detected, and the backend
uses the data received to translate the changes (e.g., the operator requests
the creation of a cluster, sending the data collected from the CRD, the back-
end uses the data to create the cluster in the infrastructure and reports the
feedback). More details can be found in Section 6.3.3.

• Monitoring Aggregation: It is responsible for collecting metrics exposed by
the different components composing the orchestrator, as well as infrastructure
metrics (e.g., number of clusters running, number of providers, number of
applications).

• Dashboards: The dashboard allows visual feedback of the metrics collected
by the monitoring aggregation component.

• Distributed Multi-Domain Infrastructure: The infrastructure relies on dif-
ferent cloud providers that will host the clusters for the applications. An
application can be distributed or replicated across different clusters and
cloud providers. The clusters can be connected across different providers, if
the distribution of the application demands it, as to guarantee communica-
tion between the components comprising the application.

The orchestrator is prepared to be distributed across clusters, as each of the com-
ponents composing the orchestrator is independent. For example, the backend
could be in a different cluster than the operator and it will not affect the orches-
tration system’s operation, as long as the clusters have access to each other. This
independence is given through the developed middleware, acting as a bridge
between the components. The orchestrator is also prepared to support different
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cloud providers and as such, the environments created by the orchestrator can be
distributed across the supported providers.

A key idea behind the orchestrator and the CHARITY project consists of combining
an external AI scheduler for deciding and predicting the resource allocation. This
closes the gap in bringing intelligence to the orchestration process. The orchestrator
can accommodate such components by providing a REST interface. Nevertheless,
such integration and component is out of the scope of this thesis.

This work focus on the development of the orchestrator’s main components (refer
to Section 6.3): Custom Resource Definition (CRD), operator and backend, as well
as integrating the monitoring components and the AMF external component.

6.3 Orchestrator Development

This section describes in detail each of the components that compose the orches-
trator, where the focus of this work lies, including their requirements, roles and
functionalities.

6.3.1 Custom Resource Definition

The proposed orchestrator system leverages the concept of a CRD to maintain
the distributed infrastructure and keep a record of its status. Table 6.2 presents
the requirements for the operator, for fulfilling the general requirements of the
architecture(refer to Table 6.1).

ID Name Description MoSCoW Achieved

CR1 Syntax validation Basic validation for CR fields Must have Y
CR2 Support for cluster data Definition for cluster information fields Must have Y
CR3 Support for cluster links data Definition for cluster interconnectivity links fields Must have Y
CR4 Support for application data Definition for application information fields Must have Y

Table 6.2: CRD Requirements - Yes (Y), No (N)

The Custom Resource Definition specifies the structure and some validation rules
the Custom Resource should follow, as a native Kubernetes resource. These re-
sources are used together with a Kubernetes operator, which acts as a controller for
the CRD and its CRs, detecting changes made to the resources. The orchestrator
leverages a single Custom Resource is used to keep the registry of all the data
related to the infrastructure.

The CR always has the up-to-date status of the infrastructure. If this is not verified,
the operator, as the CRD controller, is always trying to translate the CR to the
infrastructure, until the status is the same in both the infrastructure and CR. The
CRD in the architecture 6.1 represents both the CRD and the CRs associated with
the CRD represented in Figure 6.2.

The CRD is mainly divided in the following fields:
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• Clusters: All the information regarding the clusters is registered within this
section of the CRD. It is represented as a list of clusters and each cluster is
treated as an individual, each containing its own information (e.g., each entry
of a cluster in the CRD contains additional fields such as name, kubernetes-
version, control-plane-count, control-plane-flavor, image)

• Links: This section contains the information regarding the clusters that are
peered and connected. It is represented as a list with pairs of the names of
connected clusters.

• Apps: This section contains the information regarding the applications
deployed. It is represented of a list of applications and each application is
treated as an individual, containing the following information (e.g., each
entry of an application contains additional fields such as name, owner, cluster,
components). As an application is considered a set of components, the
components also have their own fields (e.g., name, cluster-selector, image,
expose) as observed in Figure 6.2.

Figure 6.2: Orchestrator Custom Resource Definition and Custom Resource In-
stance

The CRD is persistent across the Kubernetes cluster and the resources (CRs) created
from it are also persistent but they are only persistent across namespaces as the
CRs are a namespaced resource. This data persistency is inherited from Kubernetes
as the all the native Kubernetes resources remain on the cluster/namespace as
long as they are not explicitly deleted as shown in Figure 6.3.
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Figure 6.3: Orchestrator CRD and CR overview

This makes the CRs true data registries as they are sustained across node/cluster
shutdowns, pod failures and recoveries, implementing a fault-tolerance mecha-
nism native to Kubernetes. As the CRD has its own Kubernetes operator (described
in the Section 6.3.2) managing the CRD and its custom resources lifecycle, if the
cluster restarts for whatever reason, the cluster shuts down and restarts, when the
operator resumes its normal behavior, it will read the CRD and CRs still remaining
in the cluster as they are persistent (considering nothing was deleted manually),
check for any requests to be sent to the backend still pending before the cluster
restart, and if so, proceeds to handle the pending requests.

6.3.2 Operator

ID Name Description MoSCoW Achieved

OP1 Webhook syntax validation Custom validation for CR fields Could have P

OP2 Detection of CRD and CR changes Detect changes done to any of the orchestrator CRD and CR,
ensuring constant monitoring Must have Y

OP3 Communication with the backend Request backend endpoints to execute detected changes Must have Y
OP4 Create new CRs Create CRs from scratch Must have Y

OP5 Update existing CRs Update existing CR fields
(e.g., count of worker/control-plane machines of clusters) Must have Y

OP6 Delete existing CRs Delete the namespaced CRs Must have Y
OP7 Asynchronous communication with the backend Communication with the backend is done asynchronously Could have N

Table 6.3: Operator Requirements - Yes (Y), No (N), Partial (P)

The operator is a containerized component running on the management cluster
leveraging the concept of a Kubernetes Operator, with the role of monitoring changes
to the Custom Resource created based on the CRD of the orchestrator. and request
action from the backend component based on the detected changes, acting as the
controller of the CRD The operator exposes a REST interface for handling outside
requests(i.e., Application Management Framework, more details on the AMF in
Chapter 7, Section 7.3). The REST interface is implemented with FastAPI [50].
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Table 6.3 presents the requirements for the operator, for fulfilling the general
requirements of the architecture.

The operator is constantly monitoring the CRD and its CRs, respecting the Observe,
Oriente, Decide, Act (OODA) loop, represented in Figure 6.4. First, the operator
is waiting for the monitored resources to change (observe phase). If any change
is detected, the operator is responsible for admitting and validating the change,
which consists of checking if the change is allowed and syntactically valid (orient
phase). Based on the changes made to the resources, it detects what type of
operation is needed (i.e. create, update, delete) and decides how to act based on
the type of operation, outlining the execution plan (decide phase). Finally, based
on the decision from the previous step, instead of executing the decided action
himself, it requests action from the backend component, responsible for changing
the infrastructure according to the data and demands received from the operator
(act phase). This describes the recurring working process of the operator.

Figure 6.4: Operator’s OODA Loop

6.3.3 Backend

The backend is a containerized component running on the management cluster,
which handles all the heavy-duty operations of the orchestration system involved
in updating the infrastructure (i.e., when requested to create a cluster, the back-
end communicates with Cluster API and OpenStack to create said cluster). The
backend exposes a REST interface used by the operator to request changes to the in-
frastructure. The REST interface is implemented with FastAPI [50]. To deliver most
of the operations, the backend integrates with Cluster API [7], Openstack [54]
and Liqo [3], researched and documented in the previous chapter (5).

Table 6.4 presents the requirements for the backend, for fulfilling the general
requirements of the architecture.

The backend working cycle starts when the operator detects a change in the CRD,
which also demands a change in the infrastructure. This triggers a request to

49



Chapter 6

Table 6.4: Backend Requirements

ID Name Description MoSCoW Achieved

BE1 Load Providers List Obtain the list of installed providers in CAPI Must have Y

BE2 Generate cluster manifest Get the Kubernetes cluster CR from CAPI and
adapt it, so it is ready for scheduling

Must have Y

BE3 Schedule cluster creation Schedule the Kubernetes cluster creation
on Openstack

Must have Y

BE4 Generate kubeconfig of deployed clusters Get the cluster access files
for the deployed Kubernetes clusters

Must have Y

BE5 Install add-on packages Install add-ons (NGINX, MetalLB, Prometheus, etc)
for additional features and use-case support

Must have Y

BE6 Peer clusters Link created clusters using Liqo Must have Y

BE7 Install deployments Transform CRD data into Kubernetes deployments Must have Y

BE8 Install services Transform CRD data into Kubernetes services Must have Y

BE9 Install ingresses Transform CRD data into Kubernetes ingresses Could have Y

BE10 Install docker secrets Transform CRD data into Kubernetes docker secrets Must have Y

BE11 Install TLS secrets Transform CRD data into Kubernetes TLS secrets Could have Y

BE12 Offload components Offload individual components of applications to achieve a
distributed multi-cluster environment

Must have Y

BE13 Unoffload components Unoffload individual components of applications Could have N

BE14 Unoffload applications Unoffload application as a whole Must have Y

BE15 Delete components Delete individual components of applications
running on scheduled clusters

Should have N

BE16 Delete applications Delete applications running on scheduled clusters Must have Y

BE17 Scale scheduled clusters Scale up/down nodes of scheduled clusters Could have Y

BE18 Associate floating IP to Virtual Machine Assign a floating IP to the VM, so the cluster
is accessible from the outside

Must have Y

BE19 TOSCA Conversion to CRD Convert TOSCA input to the orchestrator’s CRD syntax Should have Y

BE20 List deployed applications List deployed applications running on the scheduled clusters Must have Y

BE21 Schedule Cluster Deletion Schedule and delete the Kubernetes cluster from Openstack Must have Y

the backend REST interface, making then the backend act accordingly (activating
a functionality) to the request itself and data received within the request. This
should be assumed for all the functionalities explained in more detail, further in
this Section.

All the cluster operations made by the backend (i.e., create, update, delete, interact)
integrate the Cluster API [7] framework, enabling more powerful and robust func-
tionalities, and a better-managed infrastructure as the clusters and its resources
(i.e., worker machines, control-plane machines) are stored as CRs and are indepen-
dent per cloud provider (i.e., Openstack, AWS, BYOH) and per bootstrap provider
(i.e., Kubeadm, MicroK8S, K3S). As default bootstrap provider and cloud provider
for the functionalities explanation, found further in this Section, it should be
assumed Kubeadm and Openstack, respectively.

Cluster Operations

The cluster creation process includes the creation of the VM, which will host
the cluster and the bootstrapping of the cluster itself. The creation of a cluster
starts by loading the correct bootstrap and cloud provider (e.g., Kubeadm and
Openstack, respectively) from Cluster API based on the data received from the
operator, which is also stored in the CRD. Following this, the backend runs a
script that generates the cluster CR based on a CRD from ClusterAPI, and filled
using the data (i.e., name, image, machine count) from the request. During the
generation of the manifest, it is also added to PostKubeadmCommands field of
the generated cluster CR, bash commands to download, install and configure the
CNI of the cluster automatically. Although this makes the creation of the cluster
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slightly slower, it is rewarded with the creation of a cluster ready to use. After the
generation of the cluster manifest, it is then applied using the kubernetes CLI. The
management cluster is able to interpret the manifest as it is based on the Cluster
API CRD. During the cluster deployment, after the host VM is created, it is also
created a floating IP.

The floating IP is used by Cluster API to generate the cluster access file (kubeconfig).
Although the creation of the floating IP is done automatically by Cluster API and
Openstack, the assignment of this IP to the VM is not. The automation of this
step is central for seamless cluster creation, so a solution was implemented. This
assignment is done by checking if the VM is created, by checking the Cluster API
CRs, and when it is created, it assigns the floating IP previously created to the host
VM, automating the floating IP assignment step. Finally, the backend waits for
the cluster to be ready which is when all the nodes of the cluster achieve a READY
status.

The orchestrator supports the installation of add-on packages (i.e. Liqo, NGINX,
MetalLB, Prometheus, Kafka) and these packages can be installed after the cluster
is ready. Due to infrastructure limitations, these packages are all installed by
default with every cluster with the exception of Kafka as it is a more resource-
intensive add-on. A more detailed explanation of the behind-the-scenes process of
the installation and configuration of each package can be found in Section 6.3.5.
The cluster creation is truly finished when all the selected packages are installed.

After the cluster is created and ready, it is possible to scale the cluster. The
orchestrator supports scaling the control plane nodes and the worker nodes,
which can be scaled individually. The operator sends the cluster’s name, the
control plane node count and the worker node count saved within the CRD. As
the control plane and worker machines are stored in individual CRs, the backend
is capable of distinguish between them and checks for the resources individually.
If the resources exist, the backend changes their replica count to the desired value,
Cluster API detects changes to the CRs and acts accordingly, scaling the cluster
nodes, up or down.

For cluster deletion, the operator sends the cluster’s name registered in the CRD.
As the cluster resources are uniquely named, the backend checks for the CR resid-
ing in the management cluster, and proceeds to delete the Kubernetes resource.
Subsequently, this triggers the deletion of the cluster in the infrastructure.

Cluster Interconnectivity

Regarding cluster interconnectivity, the backend integrates Liqo [3][4] framework,
which in addition to providing a solution to cluster interconnectivity, provides
support to workload distribution across the connected clusters. The features
implemented by the orchestrator that integrate with the Liqo framework, are also
exposed by the backend to the operator via HTTP endpoints.

The starting point of the interconnectivity is the cluster peering. The backend
receives the names of the clusters that should be peered with Liqo from the operator
which are contained within the CRD. For the peering process, the backend does
a series of checks, to make sure the peering can begin. The checks are done

51



Chapter 6

individually by cluster and only when both clusters pass all the checks, the peering
process begins. First, the backend checks if the clusters are already deployed and
ready. If this first check is verified, the backend generates the .kubeconfig files
to access the clusters via the Cluster API CLI and perform the remaining checks.
Accessing the cluster, the backend checks for the list of components composing
the Liqo framework, verifying if they are ready and available.

After all the checks for both clusters are validated, the clusters are peered, using
the Liqo CLI (installed in the backend). As it functions similarly to the Kubernetes
CLI, the .kubeconfig files used to access the clusters can be inserted as a parameter
and the clusters are peered. If the cluster checks are not valid, the peering process
stops.

With peered clusters, it is possible to distribute components of an application,
using Liqo’s offloading capabilities (refer to Section 2.4.2).

Application Deployment

The orchestrator is prepared to deploy containerized applications in clusters hosted
within the providers integrated with Cluster API. If the applications are composed
of more than one component, the whole application can be deployed in a single
cluster or distributed across different clusters.

The application deployment process begins with a request sent from the operator
to the backend with the information regarding the application registered within
the CRD. The backend translates the information received into native Kubernetes
resources (i.e., deployment, services, ingresses) and deploys each component
individually, as not all of the components need to be exposed through an ingress
or even a service. It is also during this step that the backend distributes the
components across different clusters using Liqo’s offloading feature according to
the information registered within the CRD. The clusters where the components
of an application should be deployed are included in the information gathered
from the CRD, as each component may have a different cluster associated. The
backend uses Kubernetes labels and adds the name of the cluster as a label to the
Kubernetes deployment resources of each component (the Kubernetes deployments
are created from custom templates) with the name of the cluster associated to
the component. As labels are native to Kubernetes, Liqo already knows how to
leverage them during the offloading phase done by the backend using a bash
command via the Liqo CLI, installed in the backend component.

As every application and its components are namespaced Kubernetes resources,
when the deletion process is requested by the operator, the backend receives only
the name of the application, which is used to identify the namespace where the
application is deployed. Even if the application is distributed across clusters, as
the identification of the namespace is kept across clusters, the backend unoffloads
the namespace regardless of the application being distributed or not, as it does not
affect the outcome or the performance of the process. After the unoffloading, the
backend deletes the namespace and all the Kubernetes resources within.
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6.3.4 Cluster and Application Monitoring

The orchestrator supports a monitoring system via a Prometheus server running in
the management cluster, which collects the metrics exposed by the orchestrator, as
well as resources deployed by it (i.e., clusters, applications, links) if Prometheus
orchestration package (refer to Section 6.3.5) is installed within the clusters de-
ployed via the orchestrator. All the metrics collected by the Prometheus server can
be checked through a custom Grafana dashboard, as represented in Figure 6.5.

Figure 6.5: Orchestration Monitoring

The operator runs a routine as soon as it starts and every time a change is made to
the CRD. The routine consists of checking the CRD and calculating the wanted
metrics (i.e., number of clusters, number of applications, number of providers,
number of application components). As the CRD contains the most up-to-date
information regarding the infrastructure, the metrics are the most accurate. The
operator exposes an endpoint, which is registered in Prometheus server of the
management cluster, and the metrics can be visualized through a dashboard, as
the Prometheus server is registered in Grafana as a data source.

The orchestrator also integrates the metrics exposed through Liqo (for more details
on this process, refer to Section 6.3.5) and also leverages a Prometheus deployment
if the monitoring orchestration package is deployed with the clusters.

The metrics collected by the monitoring package include most of the cluster-related
metrics (e.g., CPU usage, RAM usage, disk usage, number of pods, number of
nodes). Many of the collected metrics can be filtered by node and namespace.
The metrics collected by Liqo include more specific information regarding the
connectivity between the clusters (e.g., latency between the clusters, cross-cluster
throughput, and number of connected clusters). All the metrics can be checked
via a custom dashboard in Grafana, represented in figure 6.6.

6.3.5 Orchestrator Related Packages

This section details the integration of the orchestration-related packages with
the clusters deployed with the orchestrator. The integration also involves the
overlapping of said packages, as they need to work together and share limited
resources (i.e., IPs, network ports).
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Figure 6.6: Custom Monitoring Dashboard

The orchestration-related packages are optional software packages which bring
additional functionalities to the deployed clusters. Depending on the type of
infrastructure, the orchestration-related packages may deem unnecessary as they
consume more resources of the cluster (i.e., if the cluster is located on the Edge,
which usually is more constrained in terms of resources, some orchestrator-related
packages may be discarded). Each add-on can be individually selected, installed,
and is ready to work simultaneously with the other supported orchestrator-related
packages.

The following list presents the currently supported packages by the orchestrator,
as well as their role/function:

• LoadBalancer: MetalLB

• Ingress controller: NGINX

• Cluster interconnectivity: Liqo

• Monitoring: Prometheus

• Asynchronous communication: Kafka

For a brief overview on some of the packages, please refer to Chapter 5 Section 5.2.

The orchestrator not only installs but also configures the orchestration-related
packages, fully automating the process. Each package has its own details and
requires a configuration tailored to it. The orchestrator contains bash scripts
dedicated for each package, with additional configuration files if needed (e.g.,
.yaml pre-configured templates of Kubernetes resources). The backend component
of the orchestrator is responsible for executing the bash scripts and passing needed
environment variables to the correct clusters.
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As the orchestration-related packages need to work together, some added care was
needed and applied to ease the overlapping of the packages, which is explained
below:

IP/Port Sharing

As we are limited regarding public IPs to only one public IP, all the orchestration-
related packages and applications deployed within the orchestration system need
to leverage this single IP and provide working services. This is IP sharing is
achieved by creating an IPPool Kubernetes resource supported by the MetalLB
package. The IPPool contains the single public IP and it allows us to share the IP
between Kubernetes services natively by recurring to Kubernetes annotations. In
the orchestration-related packages, this is taken into account and the Kubernetes
services of the packages are annotated automatically as needed. Although the IP
can be shared, two services cannot be exposed through the same IP and the same
network port. During the installation of the orchestration-related packages, the
default values of network ports of some services are overridden to avoid conflicts.

Cluster DNS

To expose a service in a particular namespace through an ingress using the NGINX
package, the clusters’ DNS needs to be configured properly. The configuration
allows the translation of hostnames into FQDN service names.

This is achieved by editing the Kubernetes CoreDNS configuration, which controls
the DNS of the Kubernetes cluster. All the configuration of both the NGINX and the
DNS is automated, adding the needed new rules of hostnames translation to the
cluster’s CoreDNS configuration. This configuration is done through a script using
regex to respect the syntax of the configuration files which are in .yaml format.

Liqo Metrics Exposition

Liqo’s metric collection is completely independent of the Prometheus orchestration
package. This allows better management of resources, as we do not need a whole
Prometheus deployment in each cluster to collect metrics from Liqo.

During Liqo’s installation, the orchestrator checks for the Prometheus deployment
of the management cluster. If it is running, the endpoint of Liqo’s metrics exposition
service is added to the management cluster’s Prometheus server via regex in the
Liqo’s installation script. As there are scenarios where multiple clusters with Liqo
may run together, the overlapping of endpoints is avoided by using the cluster’s
name, which is unique when adding the endpoint to the Prometheus configuration.

6.4 Summary

This chapter presented the elicited requirements for all the components of the pro-
posed orchestrator. Derived from the project discussions and needs, they intended
to characterize the key functionalities of the envisioned orchestrator. Later, this
chapter discussed the architecture and functionalities provided by the orchestrator
and the role of each component composing it. Such an orchestrator, inspired by the
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ETSI ZSM, aims to automate the lifecycle management of distributed Kubernetes-
based environments and containerized applications, the main goal behind this
thesis.

This orchestrator makes use of Kubernetes CRD and Operator to realize the idea
of closed loops for continuous infrastructure and application management. The
CRD keeps an updated registry of the applications and infrastructure, while the
operator monitors the CRD and reacts to its changes. We discuss how different
orchestration capabilities can be implemented using such an idea of closed loops
(e.g., OODA loops). The orchestrator also leverages the Cluster API and Liqo
OSS to fulfil two remarkable operations, the declarative infrastructure configura-
tion and bootstrapping, as well as the dynamic interconnection between several
Kubernetes clusters, following the intention of allowing a seamless distribution
of microservice-based applications across multiple clusters. Additionally, this
work also includes the monitoring and package installation as complementary
components to support the overall orchestration system.
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Testing, Integration and Validation

This chapter covers the integration and validation steps to ensure both the indi-
vidual and the overall system behave as expected. This included the integration
within the CHARITY testbed and components and the validation through the
deployment of applications. The work presented in this chapter contributed
to scientific publications. In the same way, this work also contributed to and
was demonstrated within the CHARITY project showcasing activities. Section
7.1 explains how the orchestration system was deployed and integrated within
the CloudSigma provider testbed. Section 7.2 details the tests used to evaluate
and validate the orchestrator’s functions. Section 7.3 details the integration of
the Application Management Framework (AMF) with the orchestrator. Section
7.4 details the integration of an asynchronous communication mechanism to the
CHARITY use cases and the orchestrator. Section 7.5 details the integration and
validation of different bootstrap providers with the orchestrator. Section 7.6 details
the orchestration system handling of real use cases.

7.1 Testbed Integration

This section details the testbed used to test and validate the orchestration system
together with the CHARITY use cases and the required adaptations regarding
the infrastructure environment, involving the CHARITY project cloud provider
CloudSigma.

CloudSigma [55] is a partner in the CHARITY project, and is the main provider
of cloud computing resources (e.g., Virtual Machines). The testbed for the or-
chestration system resided in a CloudSigma hosted environment. Despite being
a cloud provider, the resources were limited, specially regarding the public IPs,
as they are a recurrent needed resource throughout the several experiments and
the orchestrator’s features. The environment was composed of a virtual machine
hosting a single node Kubernetes cluster (the management cluster), and a virtual
machine hosting an OpenStack provider lightweight distribution, MicroStack.

As Cluster API does not support CloudSigma as an official cloud provider, the
orchestrator’s deployed clusters via Cluster API use the OpenStack provider
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hosted within CloudSigma premise. This means a cloud provider is hosting an-
other cloud provider, which consequently is hosting the virtual machines hosting
the Kubernetes clusters deployed via the orchestrator. Figure 7.1 represents the
infrastructural setup.

Figure 7.1: Testbed Infrastructure Setup

Aside from the provider itself, a VPN for accessing the virtual machines and the
Kubernetes clusters hosted within them from outside the network is deployed
using WireGuard [52] (for more details on WireGuard, refer to Section 5.2).

The testbed was used throughout the testing of the orchestration system, including
scenarios reported in a published paper [56] and live demonstrations such as at
CHARITY partner meetings and at EUCnC & 6G Summit 2023 [53], where the
orchestrator was showcased.

7.2 Functional Testing

This section describes the functional tests made to test the different functions
of the proposed solution. These tests aimed to assess the correct behaviour and
capabilities of the orchestrator. They were all performed in the CloudSigma testbed
(refer to Section 7.1).

The following list details such tests and their respective results mapped by each
requirement. The requirements lists can be found in the previous Chapter 6:
General Requirements (CHA-, Table 6.1), Custom Resource Definition (CR-, Table
6.2), Operator (OP-, Table 6.3) and Backend (BE-, Table 6.4). Each table entry
contains the result as follows: (Y)es, (N)o, and (P)artially achieved.
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• Create clusters - Deploying a Kubernetes cluster with/-out orchestration-
related packages.

We added a new cluster definition in the CRD and verified the operator
detected the change and that clusters were successfully created and could be
accessed through the .kubeconfig. Using the Openstack provider also means
the creation of a Virtual Machine. This test maps with the requirements (IDs):
CHA1, CR1-2, OP1-6, BE1-5, BE18.

• Scale a cluster - Scale an already existing Kubernetes cluster.

We updated the node count in the cluster definition and verified the clus-
ters were successfully scaled-in/-out, showing the different node counts.
VMs were also created and removed accordingly. This test maps with the
requirements (IDs): CHA3, CR1,CR2, OP1-6, BE1, BE4, BE17.

• Delete a cluster - Delete a Kubernetes cluster environment.

We deleted the cluster from the CRD and verified the clusters were success-
fully deleted, as they were not listed in the management cluster, and the
corresponding VM was also removed. This test maps with the requirements
(IDs): CHA2, CR1-2, OP1-6, BE21.

• Connect two clusters - Connect two existing Kubernetes clusters using Liqo.

We added a cluster link definition in the CRD and verified the clusters were
successfully connected (paired in Liqo terminology) by observing the connec-
tion status using Liqoctl, the Liqo CLI. This test maps with the requirements
(IDs): CHA6, CR1, CR3, OP1-6, BE6.

• Deploy a distributed application - Deploy an application across two Kuber-
netes clusters using Liqo’s offloading capabilities.

First, we added the application definition in the CRD and then verified the
application components were correctly installed in each cluster. Later, we
verified the network communication between components. For that, we used
different reference applications, including the VR Tour Creator and Video
Streaming use cases as later detailed in Sections 7.6.1 and 7.6.2) respectively.
This test maps with the requirements (IDs): CHA4, CR1, CR4, OP2-6, BE7-12.

• Delete a distributed application - Delete an application running in a Kuber-
netes environment.

We deleted the application definition from the CRD and verified the applica-
tion was deleted successfully by checking the content of the clusters using
the respective .kubeconfig. This test maps with the requirements (IDs): CHA5,
CR1, CR4, OP2-6, BE14, BE16.

• Metric collection - Collecting metrics using Prometheus and checking them
using a custom Grafana dashboard.

We verified the metrics and dashboard were working correctly by observing
the Prometheus/Grafana dashboards. This included metrics exposed by
Kubernetes itself through kube-state-metrics, and metrics exposed via orches-
trator. This test maps with the requirements (IDs): CHA7-8.
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Overall, the tests and requirements were successfully achieved, highlighting the
capabilities of the orchestrator in fulfilling the originally planned features. The
proposed architecture proved to be a valuable fit for bringing automation to
the orchestration process. Indeed, the idea of having different closed loops and
routines allowed for the automation of different aspects of orchestration based
on a declarative definition. Such definition, leveraging the concept of Kubernetes
CRDs, also plays a relevant role in future integration with additional components.

7.3 Application Management Framework Integration

This section describes the workflow between the orchestrator and Application
Management Framework (AMF), including the workflow and the process of
translating the output of the Application Management Framework (AMF) into the
orchestrator CRD. This integration fullfills the requirements with the following
IDs: CHA9, CR1, CR4, OP2-6, BE14, BE16, BE19, BE20.

AMF acts as a frontend for the developers to design and deploy their applications
to a distributed cloud infrastructure without worrying about infrastructural details.
The infrastructural transparency is delivered through the orchestration system
which takes the input received by the AMF, and converts it to the infrastructure.

Figure 7.2 represents the internal process running of the orchestrator integration
with the AMF.

Figure 7.2: Orchestration system handling the AMF Input

For a better understanding of the orchestrator’s behind-the-scenes process, figure
7.3 showcases an example of a TOSCA application blueprint and figure 7.4 rep-
resents a part of the custom resource resulting from the conversion done by the
orchestrator.

The process begins as soon as the user deploys the application through the AMF
frontend. Deploying the application via the AMF triggers an HTTP request to the
orchestrator with the TOSCA data of the application blueprint.

The operator’s middleware interprets the information regarding the components
of the application (i.e., name, image repository, component type), as well as
information about the network connections between the components, included
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Figure 7.3: TOSCA Application Blueprint Example

in the TOSCA blueprint. The blueprint may also include information regarding
external sources.

The conversion runs in the middleware part of the operator and starts by taking
the basic TOSCA data fields and assigns those fields to the corresponding fields
of an empty template based on the CR. These fields (i.e., name, image repository,
environment variables) are used to create the Kubernetes deployment. During this
first step, the components are also assigned additional information agnostic to the
AMF and the user, as is the cluster scheduling. The dynamic cluster scheduling
should be handled by an AI algorithm, but for testing purposes, there are default
clusters defined. The next step during the conversion is translating the component
network connections, known as virtual links in the TOSCA. This part is rather
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Figure 7.4: Custom Resource Converted From TOSCA

complex as the data received from the AMF is not designed with Kubernetes in
mind. As such, we need to analyse thoroughly the information given by the
TOSCA virtual links and decide if the components should be exposed internally
and/or externally. The analysis consists firstly on verifying the components which
are external to the application and save the links to which they are associated
on a list. This list will be used to compare to the application components virtual
links, so we know which components should be publicly exposed and create the
corresponding Kubernetes ingress. For the internal network exposition, we check
if the virtual links of the application components have a common virtual link. If
so, the component needs to be exposed as a Kubernetes service.
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The final step of the conversion is joining all of the converted data with the correct
.yaml syntax and format. The output of the TOSCA conversion is then applied to
the existing Custom Resource through the operator’s middleware. The operator
detects the changes in the CR and requests the backend to apply the changes to
the infrastructure. Feedback from the changes is sent from the infrastructure to
the AMF frontend, while going through the middleware of the orchestrator. This
results in a successfully deployed application with the AMF and the orchestrator.

It is also possible to delete applications through the AMF. Assuming the user is
logged in through the AMF, the user can request the orchestrator for a list of his
deployed applications. The request goes through the middleware of the operator,
and checks the CRD for entries of deployed applications, using the user who
requested the list as a filter. This is possible as the definition of an application
in the CRD requires it to be associated with a user. The list of applications is
then returned to the AMF with a list of the applications or, in case there is any
application associated with that user, an empty list.

For the deletion of an application through the AMF, assuming the user has at least
one deployed application, the user chooses from the list of applications obtained
and explained in the previous step. The user selects from the list, the application
to be deleted, and the request is sent to the orchestrator. The orchestrator’s mid-
dleware uses the content of the request, which is the name of the application and
deletes the whole application entry from the CR. This causes the operator to act,
as the CR changed and sends a request to the backend with data of the application
entry removed from CR. The backend then unoffloads the application, in case it
was distributed across clusters and deletes the namespace which the application
was deployed in, as all resources related to applications are namespaced.

7.4 Asynchronous Communication Mechanism Inte-
gration

This section details the integration of an asynchronous communication mechanism
using Kafka within a Kubernetes cluster residing in CloudSigma, offering the
CHARITY Use-Cases a new way to handle communications if they choose to
integrate Kafka.

Kafka [57] is an open-source distributed streaming platform, excels at handling
real-time data streams in modern data-driven applications. Its core design centers
around asynchronous communication between producers and consumers, en-
abling seamless data flow without immediate processing constraints. This unique
architecture empowers asynchronous data processing, making it exceptionally
effective for managing vast data volumes and real-time streams.

To deploy a Kafka cluster in Kubernetes, Strimzi [58] and Koperator [59] were
tested as potential solutions. Both solutions feature a Kubernetes operator, man-
aging the lifecycle of the Kafka cluster and its resources. As Koperator proved
to be difficult to install, and Strimzi offered an optional integrated dashboard
(CruiseControlUI [60]), we opted for the latter. For testing the Kafka cluster, a
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number of functional (i.e., creating, deleting topics, sending messages, message
history) and performance tests (i.e., number of Kafka nodes, number of topics,
message sizes, flow of traffic) were executed.

A first version of Kafka using Strimzi was deployed in the CloudSigma use-cases
testbed, and it was tested and integrated with the VR Tour Creator use-case (more
details in Section 7.6.1). The VR Tour Creator use-case uses Kafka topics to assign
media conversion tasks and handle them asynchronously.

Kafka with the Strimzi operator can be deployed to clusters managed by the orches-
trator, as an orchestration package 6.3.5, thus the same setup as in the CloudSigma
testbed can be created using the orchestrator. The orchestrator should also inte-
grate Kafka, using it as an asynchronous monitoring mechanism, enabling more
precise decisions regarding the actions between the components composing the
whole orchestration system. Stopping the deployment of a cluster or application if
an error is encountered and revert the changes made in the CRD, can be held as
examples of actions influenced by the asynchronous communication.

As the requests processed by the orchestrator are already handled as tasks that
change status according to the tasks’ steps and progress, each task should be
included in a Kafka topic, updated according to the progress of the task, resulting
in asynchronous monitoring and communication, as the the tasks’ feedback can be
exchanged between intervening components and with the exchanged information,
act accordingly. Kafka also provides persistency, as Kafka topics can remain stored
and be used for logs and debugging, allowing for further improvements.

7.5 Bootstrap Provider Integration and Validation

This section presents the bootstrap providers (i.e., Kubeadm, K3s, MicroK8S)
tested with Cluster API integrated with orchestrator and assess their compatibility
and performance.

Despite not being an author, the results presented in this section are reflected
in the publication "Cross Kubernetes Cluster Networking to Support XR Ser-
vices: Challenges, Solutions and Performance Evaluation", submitted to the IEEE
Network Magazine [56].

Kubeadm is the default provider and is officially supported by Cluster API, and as
such it is the most compatible. Although MicroK8S is officially supported by Cluster
API as a bootstrap provider, it only works with single node cluster deployments.
When deploying a cluster with more than one node with MicroK8S, the worker
nodes do not connect to the control plane node as the control plane deems the
worker nodes as foreign entities. A workaround was developed by injecting a
modified cloud-init script into each virtual machine hosting a node created by
Cluster API consisting on using SSH connections adding every node’s hostname
and IP to each node hosts list. Even with the custom script, the setup would often
fail when deploying with more than 1 node and it was deemed unfeasible in a real
environment. As such, we do not include tests for MicroK8S.
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K3s is not officially supported by Cluster API, but by analysing the templates avail-
able for the other bootstrap providers, a new usable custom template was created.
This is relevant as there maybe situations where computing resources are limited
and we need a lighter Kubernetes cluster and as such, the K3s provider is a lighter
Kubernetes distribution designed for the edge of the network. Through conse-
quence, as the orchestrator integrates Cluster API, we can support the deployment
of lighter Kubernetes environments.

The evaluation involved measuring several key steps, including the time required
to generate the cluster resource definitions (.yamls), apply these resources to the
management cluster, create the relevant Cloud resources (i.e., Virtual Machines in
OpenStack), and finally, set up the Kubernetes cluster itself. To generate the cluster
definitions, we utilized Cluster API CLI, along with default templates provided by
each provider (K3s a custom template was used, as explained above).

For each Kubernetes distribution, we assessed the provisioning time for different
node configurations: one node (comprising a control plane), three nodes (one
control plane and two workers), and five nodes (one control plane and four
workers). All nodes, including Virtual Machines, were set up using Ubuntu images
and a m1.medium flavor with 2 vCPUs, 4GB RAM, and 20GB of disk allocated for
both the control plane and worker nodes.

Figure 7.5: Cluster deployment time by bootstrap provider and cluster size [56]

In Figure 7.5, we showcase the experiment results, encompassing the deployment
time for the control plane and the overall deployment time for all cluster nodes.
The deployment time is measured as the duration until the control plane is marked
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as "Ready" for single-node clusters or until all nodes are marked as "Ready" for
multi-node clusters. To ensure reliability, each test was repeated 30 times, and the
error bars on the graph indicate the standard deviation.

As expected, the deployment time increases as we increase the number of nodes of
the cluster, in both Kubeadm and K3s. When comparing both bootstrap providers,
K3s has a faster deployment time than Kubeadm in all of the tests (i.e., 1 node, 3
nodes, 5 nodes). As K3s is designed as an edge Kubernetes distribution, is lighter
and consequently faster than Kubeadm which is considered to be the "vanilla"
Kubernetes distribution.

More detailed results are presented in the referred paper [56]

7.6 Use-Case Integration, Validation and Support

This section describes use-cases integrated with the orchestrator (specified in Sec-
tion 6.3). Initially, the use-cases were manually deployed with the manual process
being explained in detail in the respective sub-section for each use-case. Later on,
in the development phase, they were deployed using the orchestrator, showcasing
its versatility and capability for deploying different kinds of applications.

7.6.1 Use-Case I - VR Tour Creator Use-Case Multi-Cluster De-
ployment

This section describes the scenario created to test the deployment of real use-case
application of CHARITY (already working on a single-cluster architecture), on a
multi-cluster architecture using the Liqo and Cluster API, tools researched in the
previous scenarios described in this chapter (Liqo in section 5.4 and Cluster API
in section 5.5).

The VR Tour Creator use-case [61] is a "video editing software crafted for anyone
who wants to create 360º content and immersive digital experiences", which is
deployed in the cloud using Kubernetes.

The goals of the scenario are listed as the following:

• Compare the behaviour of the application between the single-cluster and
multi-cluster architectures.

• Compare the performance of the application between the single-cluster and
multi-cluster architectures.

Scenario Description and Procedure

The rose cluster is running on a virtual machine deployed within CloudSigma
cloud provider infrastructure with Kubernetes v1.25 and was deployed using
Kubeadm with Kube-Flannel CNI and MetalLB v0.13.7.
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The green cluster is running on a machine provisioned by ClusterAPI + Open-
Stack with Kubernetes v1.25 and was deployed using KubeAdm with Kube-Flannel
CNI and MetalLB v0.13.5. Figure 7.6 represents the schema for scenario IV.

Figure 7.6: Use Case I - VR Tour Creator Use-Case Multi-Cluster Deployment

In the rose cluster, we proceed with the installation of NGINX ingress controller
(refer to Section 5.1), which is responsible for the management of the ingress
resources needed for exposing services to network traffic external to the cluster.
After the installation of NGINX, we need to force it to use a fixed and public IP,
previously defined as a IPPool in MetalLB. With the ingress controller properly
installed and configured, we proceed with the installation of Liqo. Due to the fact
that Liqo gateway and authentication services need to be exposed to the outside,
in order to the green cluster to reach the rose cluster, and as we have only one
public IP, it needs to be shared between the NGINX controller and Liqo services.
By using Kubernetes annotations on both Liqo and NGINX services, we are able
to share the IP.

In the green cluster, we install MetalLB and define the IPPools to be used by the
services created by Liqo. Green cluster’s setup is simpler as it doesn’t need the an
ingress controller.

We proceed with the cluster peering using the in-band control-plane approach,
as we have access to the kubeconfig files of both green and rose clusters. The
peering is also bidirectional meaning that a virtual node representing each cluster
will be created in the opposing cluster. The green cluster will have a virtual
node representing the rose cluster and the rose cluster will have a virtual node
representing the green cluster. With the Liqo VPN tunnel established between
clusters, we start the offloading process and distribute the workload between the
clusters.

In the green cluster, we create a new namespace called "dotes-beta". In this specific
scenario, the nomination is extremely important as the endpoints defined in
the services of the application depend on the namespace’s identification. We
proceed with the offloading of the namespace using Liqo. During this process, we
override the Liqo’s default values and use the "–EnforceTheSameName flag" so
that the services can use the DNS of Kubernetes, maintaining the same operation
as the single-cluster architecture, as the components need this to communicate
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with each other.

As we have the .yaml files used to deploy the different components of the appli-
cation, in each of the them we define the affinity regarding the local or virtual
nodes so that Liqo and Kubernetes knows in which cluster to deploy the DOTES’
components. As illustrated in Figure 7.6, the database component is running on
the green cluster (ClusterAPI + OpenStack) and the cloud-editor, story-express
and backend components are running on the rose cluster. To verify that the compo-
nents were deployed in the correct cluster, the "describe" command of Kubernetes
CLI is used to ensure the correct deployment. With every component deployed
and running we can now test the access to the application by adding the ingress
hostname to the hosts file of our system.

Results and Discussion

After the deployment of the use-case, its features could be accessed via the web
browser as it is intended. Comparing the single-cluster against the multi-cluster
approach, we don’t notice any difference regarding the usability and the per-
formance of the application, although there is a minimal overhead in the traffic
flowing through the VPN tunnel. Liqo uses wireguard behind the scenes (refer
to Section 5.2) as the distributed components need to exchange data. With these
results, we assure that there is no compromise on the user side and the application
maintains its transparency regarding the implementation.

Orchestrator Integration

To support the VR Tour Creator use-case, new features were added to the orchestra-
tor, such as support for TLS certificates for outside communication through ingress.
The use-case can be deployed through the orchestrator in both single-cluster and
multi-cluster architectures.

This use-case is fully integrated with the orchestrator, and was showcased during
the EUCnC & 6G Summit 2023 [53] booth exhibition.

7.6.2 Use-Case II - Video Streaming Service

This section describes the scenario created to test the deployment of real use-case
application on a multi-cluster architecture using the Liqo and Cluster API, tools
researched in the previous scenarios described in this chapter (Liqo in Section 5.4
and Cluster API in Section 5.5).

Despite not being an author, the results of this use-case integration are reflected
in the publication "Cross Kubernetes Cluster Networking to Support XR Ser-
vices: Challenges, Solutions and Performance Evaluation", submitted to the IEEE
Network Magazine [56].

The goals of the scenario are listed as the following:

• Compare the behaviour of the application between the single-cluster and
multi-cluster architectures.
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• Compare the performance of the application between the single-cluster and
multi-cluster architectures.

Scenario Description and Procedure

The rose cluster is running on a virtual machine deployed within CloudSigma
cloud provider infrastructure with Kubernetes v1.25 and was deployed using
Kubeadm with Kube-Flannel CNI and MetalLB v0.13.7.

The green cluster is running on a machine provisioned by ClusterAPI + Open-
Stack with Kubernetes v1.25 and was deployed using KubeAdm with Kube-Flannel
CNI and MetalLB v0.13.7.

In this experiment, as there was not a single-cluster version of the application
already deployed, we start by deploying the video-streaming service in a single-
cluster architecture so we can compare to the multi-cluster approach. Figure 7.7
represents the single-cluster version of the video streaming service in Rose cluster.

Figure 7.7: Use Case II - Single-Cluster Deployment

For this first deployment, we chose the Rose cluster. We start by creating the
"streaming" namespace, where the video streaming components will be deployed
on. The ffserver component is responsible for receiving video data from a provider
and broadcasting it to clients. In this particular case, the ffmpeg component
produces a stream from a previously downloaded video file to the ffserver and the
ffmpeg-capture component consumes the video being broadcasted by the ffserver.
To make ffserver accessible to the both the providers and the clients (ffmpeg and
ffmpeg-capture), a Kubernetes service is added to the deployment, exposing the
component.

After deploying the components to the namespace, we start uploading the video to
the ffserver using ffmpeg and we start the capture using ffmpeg-capture. Ffmpeg-
capture saves the captured video to the pod and when the capture stops, the video
needs to be copied from the pod to the virtual machine, so we can observe the
capture results.

Figure 7.8 represents the multi-cluster version of the video streaming service.
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Figure 7.8: Use Case II - Multi-Cluster Deployment

Different from the single-cluster architecture, the first step is to peer the clusters
using Liqo, as explained in the VR Tour Creator use-case scenario (section 7.6.1).
With the green and rose clusters peered successfully, we create the streaming names-
pace in the green cluster and offload it to the rose cluster. With the namespace
now extended across both clusters, we deploy the video streaming components to
green cluster which will be distributed across both clusters. As the cluster affinity
was previously defined in the .yaml configuration files of each component, we just
apply them in the green cluster. The whole setup is now ready for testing. We
execute same test as in the single-cluster approach.

We start uploading the video to the ffserver using ffmpeg and we start the capture
using ffmpeg-capture. Ffmpeg-capture saves the captured video to the pod and
when the capture stops, the video needs to be copied from the pod to the virtual
machine, so we can observe the captured results.

Results and discussion

The multi-cluster deployment of the streaming service proved to be on par with the
single-cluster deployment, despite the network overhead of having two clusters
connected, as registered in the paper [56] and shown in the results presented
in Figure 7.9. This may occur as in the distributed scenario, neither cluster is
burdened with all the components leading to a reduction in latency on both
clusters. As the previous use-case (Section 7.6.1), the application works the same
in both approaches, maintaining the transparency needed for users. Despite not
being an author, this use case and its results contributed to the referred paper [56].

Orchestrator Integration

No additional orchestrator changes were needed. The video streaming use case
consisted of a regular containerized-based application, already supported by the
orchestrator.

7.7 Summary

Overall, the orchestrator proved to be a viable solution to automate and orchestrate
Cloud-Native applications. The orchestrator’s functionalities were thoroughly
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Figure 7.9: Latency between streaming and view times of the two scenarios [56]

tested using different scenarios and reference use cases.

Indeed, The VR-Tour use-case and the AMF integration with the orchestrator
were showcased during the EUCnC & 6G Summit 2023 [53] booth exhibition.
The attendee feedback, in general, was positive, stressing the relevance of such
solution.
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Conclusion

The next generation of cloud-based applications can be distributed across domains,
providers, and heterogeneous environments. Considering that, this work focused
on investigating approaches to address their lifecycle management, including the
underlying infrastructure of such multi-domain environments. We conceived a
Cloud-Native orchestration solution for automating the management of these
environments focusing on multi-cluster Kubernetes environments.

The overall thesis objective of researching an orchestration system was achieved.
We designed, implemented and tested a full-featured proof-of-concept of such a
solution. We investigated various open-source tools and frameworks as building
blocks of the whole orchestrator, having integrated and tested them within the
CHARITY testbed environment. We evaluated the various orchestrator’s capabili-
ties to assess their functional behaviour and performed the integration with AMF,
an additional component of CHARITY. Liqo and Submariner were analysed as
potential cluster interconnectivity solutions, while for cluster bootstrapping, the
considered tool was Cluster API. According to the results, Liqo proved superior
to Submariner due to its workload distribution features. Whereas Cluster API
proved to be a robust framework capable of unifying the cluster management
primitives across distinct providers. Moreover, Cluster API also allows the usage
of different bootstrap providers, such as Kubeadm and K3s.

In brief, we highlight the following contributions provided by this research: (i) the
proposed architecture and the AMF integration, which was part of a conference
paper; (ii) the orchestrator implementation itself leveraging Liqo and Cluster API;
(iii) the functional and performance evaluation of different Cluster API bootstrap
providers reflected as part of a contribution to a journal publication; (iv) the
validation using the VR Tour Creator use case of CHARITY; (v) and last but not
least, the showcasing of orchestrator capabilities at the EUCnC & 6G Summit 2023
[53].

The developed orchestrator represents a significant step towards bringing au-
tomation to the management of Cloud-Native container-based applications and
Kubernetes clusters. Nevertheless, these capabilities are planned to be further
integrated into CHARITY’s architecture by adding AI-based mechanisms for
intelligently deciding, for instance, what clusters need to be created or where
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to deploy the application components. Likewise, we plan to have components
to communicate asynchronously, which promotes a more modular approach to
initiating, delegating, and monitoring individual operations. This means that
time-consuming tasks, like cluster creation or package installation, can be initiated,
run in the background, and their status checked at any moment, irrespective of
the initial request.
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