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Abstract

Artificial Intelligence (AI) is becoming more sophisticated and more widely used
in our day-to-day lives, from virtual assistants like Alexa or Siri to self-driving
cars. The increase in use and capabilities of AI leads to it being more frequently
used in critical systems, creating the need to have some type of system that can
detect malfunctions. Despite all the research done to improve the performance of
AI, the problem of error detection is still yet to be resolved, so we will propose an
approach to overcome this problem. Our approach is based on the use of mon-
itors to supervise the critical model and omit when it makes an error. We will
have three different approaches for the monitor, from which will result five dif-
ferent monitors, one approach will be a Machine learning model to detect errors,
another will calculate the distance to the classification boundary, and the last one
will use clustering to know which points are covered by the training set. If this
approach proves to be successful in detecting errors, it is expected that it starts to
be used in critical systems so that it can improve Machine Learning (ML) safety.
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Resumo

Inteligência Artificial (IA) está cada vez mais sofisticado e mais presente nas nos-
sas vidas, desde assistentes virtuais como a Alexa e a Siri até carros que con-
duzem sozinhos. Este aumento do uso e capacidades da inteligência artificial
leva a que seja utilizado cada vez mais em situações críticas e para tal é preciso
ter algum tipo de mecanismo que permite saber se houve algum error por parte
da IA. Apesar de toda a investigação feita para melhorar a performance de IA,
o problema de deteção de erros ainda se encontra por resolver, por isso apresen-
tamos um método para resolver este problema. O nosso método baseia-se no
uso de um monitor para supervisionar o modelo crítico e informar quando este
faz um erro. Vamos ter três abordagens diferentes de monitores das quais vão
resultar cinco monitores no total, uma das abordagens vai utilizar inteligência ar-
tificial para detetar erros, outra vai calcular a distância a fronteira de decisão e a
última vai utilizar clustering para saber se os pontos estão cobertos pelo conjunto
de treino. Se este método tiver sucesso em detetar erros espera-se que comece a
ser utilizada em sistemas criticos pois pode melhorar a segurança de modelos de
machine learning.
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Chapter 1

Introduction

Artificial Intelligence (AI) is a technology that is expanding rapidly, and it is be-
lieved that it will have an immense role in the future of humanity and impact
various industries, from the automotive industry to the healthcare industry.

The increased in data and complexity in healthcare led to an acceptance of AI
which is expected to be extensively used in 10 years [1]. The organizations that
already have started to embrace AI, are making use of Machine Learning, and
deep learning [2]. Both these applications are beneficial for making predictions
either with data or images. These capabilities can be paradigm-shifting in some
areas of healthcare, such as radiology which is one of the areas that makes the
most out of them. In this field of medicine, AI can be used to make imaging
of the thorax, brain, and abdominal, as well as help, assess mammography or a
colonic polyp [3].

The primary intent for the AI imaging is to increase efficacy and efficiency in
clinical care [3] so that radiologists’ productivity increases. This can be achieved
when there is a seamless integration of AI with the radiologist workflow because
he only needs to examine the images that already have the features identified, this
can help in most phases of radiologist work, which are detecting, characterizing,
and monitoring. It is worth reminding that the Machine Learning models are
supposed to be used to support clinical decision-making [3], so it is a human-on-
the-loop situation [4].

Another area that is being developed due to the capabilities of making predictions
based on images and data of both Machine Learning and Deep Learning is the
self-driving cars industry. There are already some semi-automated cars in the
automotive industry, such as Teslas and Mercedes, and strides are being made to
have fully automated cars.

With the development of Deep Learning and unsupervised learning, predictions
and diagnoses will become more accurate due to better data utilization which
means that it will be more widely used. However, this increase in performance
is not enough to achieve trustworthy and robust AI, to achieve trustworthy AI, a
vast number of parameters must be fulfilled, from the ethical and lawful side to
the technical side [5].
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1.1 Motivation

Although AI and Machine Learning can outperform humans in some tasks, there
needs to be an assurance that the systems are safe since their impact on people’s
lives can be significant, and if mistakes were to happen, the consequences could
be fatal. Machine learning models mainly deal with example-based supervised
learning algorithms, which can lead to mistakes of receiving a case that is not
prepared to handle, because of this there is a need to design an environment that
can guarantee the models’ safety. In order to guarantee a safe environment, we
need to overcome the problem that is no error detection for machine learning
models.

To fight this need, we will make use of software techniques that are used to
achieve fault tolerance, more specifically by adding a supervisor that can monitor
the model during its execution. With this supervisor we will be able to not only
detect errors made by machine learning models but also prevent their propaga-
tion.

1.2 Research Objectives

The main goal of this thesis is to create monitors that guarantee the safety of
Machine Learning models that are used in critical systems. This means that we
have to create a system that can detect errors made by the model.

Error detection is a part of fault tolerance, a common way for it being introduced
into a system is with the addition of a monitor. Adding this technique to a ma-
chine learning model is something that has been discussed about but the results
of its capability are still unknown which leads us to our first research question:

RQ1: Can monitors precisely detect when Machine Learning models make incor-
rect predictions?

We have the following hypothesis, errors have patterns that allow for prediction
of whether a machine learning model will provide a correct result or not. There is
a wide range of possible ways to detect these patterns we will make use of three
different approaches, some will be distance based and others will also include
machine learning models, this leads us to the following:

RQ2: Out of the three techniques which one produces the best monitor?

We will have to compare the model with and without the monitor to evaluate
if the addiction of the monitor was a worthwhile one. To know this, we will be
comparing the overall performance of the model which will show if the monitor
was beneficial or not, if the overall performance improves then we can assume
that the model is safer, this leads us to our third research question:

RQ3: Does the model accuracy improve with the presence of the monitor?

As we mentioned error detection is a part of fault tolerance the second part is
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Introduction

recovery, where the errors are handled. Despite there being a variety of ways of
doing this part we decided to enforce fail-silent behaviour which basically sup-
presses wrongful outputs, this means that if the model produces output it most
likely is correct. From this arises our last research question.

RQ4: Can we enforce fail-silent behaviour on machine learning models?

After answering these questions, we should be able to have a better understand-
ing if it is possible to have error detection in machine learning models, as well as
if it the makes the model safer.

1.3 Contributions

The main contributions from this work are the following:

• Creation of five different monitors out of the three techniques presented;

• Experimentation of our approach in nine different datasets, including one
that is being used by CardioID;

• A scientific paper that still is in preparation which can be viewed in the
Appendix B;

• Evaluation of the performance of the monitors.

1.4 Document outline

In this section, we will portray the structure of this thesis.

In Chapter 1, it is presented the problem, motivation, and research objectives for
this thesis.

Chapter 2 presents vital concepts such as what is trustworthy AI and also what
is dependability concentrating on fault tolerance. We will also detail some of the
most common errors that lead to Machine Learning models making mistakes. It
will also demonstrate some of the uses of AI in critical systems and what tech-
niques are being used to increase the performance of Machine Learning models.
There is also a comparison between the different algorithms that can be used for a
ML model. Finally, we present the metrics that will be used to evaluate our moni-
tors performance and explain in more detail the techniques we will be using, like
fault-silent behaviour.

Chapter 3 gives insight into what are the difficulties of having safety in machine
learning when compared with more standard software. We also detail what tech-
niques have been used to improve machine learning safety.

In Chapter 4, we will explain our approach to deal with the problem and explain
the different ways that it can be achieved.

3



Chapter 1

Chapter 5 presents results of the performance of all our different monitors to all
the different datasets that we will be making use and analyse which one had the
best results.

Chapter 6 will be the conclusion to this work and some thoughts for future work.

4



Chapter 2

State of the art

Due to the increased use of AI, there has been an increase in research to make it
safer and more reliable. In this chapter, we are going to talk about the impact of
AI on critical systems such as self-driving cars or healthcare and the need to have
trustworthy AI. We will also detail what reliable AI is, what techniques have been
used by the AI community to improve performance, and how dependability and
safety can help in increasing reliability in Machine Learning (ML).

This chapter will also provide a better look at some of the classifiers that can be
used in Machine Learning and demonstrate their advantages and disadvantages.
It will explain what clustering and feature reduction are and why they are needed
for this thesis. We will also define what metrics will be used to classify the per-
formance of our monitors.

2.1 AI in critical systems

Although AI is still a novel concept, it is starting to be used in health and self-
driving cars. There are already some applications in health care, such as diag-
nosing cancer and strokes, for health research, drug development, and disease
prevention.

In health, AI can be used as a support tool, for example, aiding radiologists in
making a diagnosis. It is also used to help in research about genomics and accel-
erating drug development. There are also some potential uses for public health
surveillance to prevent diseases and have a better outbreak response. Despite the
most apparent and impactful use of AI to have it detect anomalies, it can also be
used in an administrative way to improve processes [1].

There are plenty of usages for AI in the automobile industry, from autonomous
vehicles to virtual assistants. There are different levels of automation in a car, it
can be a lower level with assistance to the driver, such as blind spot alerts or lane
changing technology, or it can be a higher level like a fully autonomous driving
car [6]. Regarding virtual assistants, it can be beneficial to monitor the emotional
state and mood of the driver so that recommendations can be made, for example,
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detect fatigue or an unstable state and suggesting a break which also has the
purpose of increasing road safety and preventing accidents.[7]

Regardless of the context where AI is being used, it has the principal goal of
automating and improving the systems by reducing human errors and increasing
efficiency.

2.2 Trustworthy AI

Trustworthy AI has three main components according to the European commis-
sion [8] these components are that they should comply with all the applicable
legislation and regulations, even though there is not a lot legislation in place for
AI it will be developed as the technology advances, they should be safe and ro-
bust from a technical side which is what we are going to try to achieve in this
thesis, lastly it also has the need to be ethical.

The importance of trustworthy AI in critical systems is paramount because fail-
ures can impact multiple people in a short time by making wrong predictions
about people that have the same health conditions, whereas humans despite
being capable of making mistakes their impact will be smaller [5]. This impor-
tance is particularly relevant in critical systems because of the more severe con-
sequences of it not working correctly. For example, if an error occurs in an AI
that makes suggestions of what music you might like to hear the result is not that
harmful however if an error occurs when making a recommendation of which
drug to use to treat a patient the outcome can be deadly.

The main focus on increasing the safety of AI is so that it does not cause uninten-
tional harm. For this to be achieved, there is a need not only to create a safe and
secure environment so that the system can perform in an intended manner but
also need protection to guarantee that there is no harm done if an error happens
to occur. Which is necessary so that we can enforce the principle of prevention
of harm. This principle is strongly connected to the technical side of robustness
which is to behave as intended, minimize unintentional harm and prevent it from
happening. To have technical robustness and safety the following requirements
must be realized, according to the AI European Commission[8]:

• Resilience to attacks and security

There needs to be a secure environment so that our system cannot be co-
erced by malicious actions, this is what it is trying to be achieved with the
adversarial training.

• Fallback plan and safety

There must be a fallback plan in place in case an error occurs. This plan can
be to ask a human for input before continuing its operation.

6
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• Accuracy

The accuracy of a machine learning model is the likelihood of it making a
correct prediction, and it is given by the percentage of correct predictions in
the test dataset. Since we are talking about critical systems, their accuracy
is required to be high. However, it is not feasible to have a hundred percent
accuracy which means that the model should have some way to indicate
how likely it is to have made a mistake or even remove the prediction if it
is not a confident one.

• Reliability and Reproducibility

It is necessary that the results of an AI system are reproducible and reliable.

2.3 Causes of errors in machine learning

Even though we will not detect the root cause of the errors made by models it is
worth knowing what might cause a model to make wrongful predictions. Some
of the causes are described below:

• Concept Drift: This is a problem that can occur in real-time machine learn-
ing models, where there is hidden context that is not necessarily express
through features. Changes in this hidden context have an impact in the
ability of the model to make predictions [9], a good example for this can be
a value prediction model for houses, even if the features have all the speci-
fication of a house the price of it is heavily dependent of what is the state of
the market, which is impacted by inflation, new legislation, etc. There are
two types of drift, it can be sudden or gradual.

• Overfitting: Is when a model does not generalize well from observed data
to unseen data, this usually happens when the model memorizes all the
data, including noise on the training set, instead of learning the patterns
present in the data. This leads to the model performing perfectly on the
training set and performing poorly on the testing set. [10]

• Underfitting: Is when a model fails to adequately capture the relationships
between the variables in the data, it is the opposite of what happens in an
overfitted model. The reasons for this happening might be the wrong choice
of model, incomplete training [11] or due to data being imbalanced.

• Data quality: This is an overall problem that encapsulates many others,
such as, missing features to represent the problem correctly, noise present
in the data which might be attribute noise or class noise this can worsen the
performance and efficiency of the model [12], not enough training data and
class imbalance which might lead to underfitting.
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• Adversarial attacks: They are small changes that have the goal of altering
the predictions of models which can be problematic if done with malicious
intent. There are a wide range of adversarial attacks like one pixel attack,
fast gradient sign method or FGSSM, amongst others [13].

2.4 Techniques used in AI

In the search for more reliable and accurate machine learning models, strides are
being made by the AI community in developing various techniques to increase
the performance of machine learning models, and thus also increasing their trust.

The construction of a Machine Learning model typically revolves around a pipeline
like the one depicted in the figure below.

Figure 2.1: Machine learning pipeline

Other than different model algorithms there are other techniques that are used to
improve the performance of machine learning models. Those techniques can be
used in the different stages of the machine learning pipeline, here we have some
of the techniques that are used for each stage of the pipeline:

• Data preparation and Pre-processing

The techniques utilized in this stage have the goal of transforming raw data
into a format that can be used by the machine learning model. Some of the
techniques used are features normalization, which helps to deal with some
linear regression problems when two features have entirely different scales.
Some techniques to mitigate this problem are standardization, centering,
and unit range[14], .Feature reduction is used when there is a need to lower
the dimensional space of the original dataset. The dimensional reduction
can be achieved with the use of techniques such as Principal Component
Analysis (PCA) and T-SNE.[15] One technique that is often used to pass
from categorical data to numerical is data transformation.

• Model selection

In this stage we need to select which algorithm yields the best results for
that there are several techniques, such as, K-fold cross-validation which
can estimate the expected prediction error. This technique aims to have val-
idation without creating a validation set [16]. The K-fold technique divides
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the data into equal parts, the data until K-1 is used for training the model,
and the rest is used to test the model. This method is repeated K times to cal-
culate the estimated error. The typical values for K are 5 or 10. A particular
case of K-fold technique where K=N is the Leave-one-out cross-validation,
this technique only use one sample for estimating the error. So, it will have
a low bias at the cost of high variance[16]. It is also during this stage where
hyperparameter tuning happens to find what are the best possible configu-
ration for the model.

• Model Assessment

This stage is responsible for evaluating performance of the model. There
are a lot of ways to evaluate the model such as metrics like sensitivity and
specificity.

2.4.1 Clustering and Feature reduction

Clustering is a method that aims to divide data into separate groups or clusters
that have significant similarities between themselves and great dissimilarity with
the other clusters [17]. Clustering is one of the most used approaches when it
comes to unsupervised learning, which is when the data that we want to use in
the model does not have labels. One of the most well-known and used algorithms
for clustering is K-means. Although we are not going to explain in detail how the
k-means algorithm operates, it is significant to note that in this algorithm, it is
necessary to pass the number of clusters in its initialization. This value has a vital
role in the correctness of the algorithm. So, to improve clustering performance to
the maximum, we will be using the elbow method to select the number of clusters
[18].

It is common to use feature reduction in clustering to reduce the problem of di-
mensionality. Although it might worsen our clusters [19], it will allow the visu-
alization of the clusters and enable all the calculations we will need to perform
in calculating the distances of the points to the centroid, it essential to calculate
the distance between categorical data. One of the most used feature reduction
methods is PCA.

This method will prove vital for calculating distances for both the clustering and
classification boundary monitor, because without the dimensionality reduction,
the amount of time to calculate distances would take too much to have any real-
world usage, in particular for the classification boundary monitor. After all, the
time would increase with the number of features of the data, so it would only
have acceptable performance on datasets with few features limiting its use.

2.4.2 Ensemble learning

Ensemble learning envelops methods that use multiple inducers, also known as
base-learner, to make a decision. This methodology is based on human nature
where we gather a range of opinions in order to make a complex decision, the
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main idea being that weighing and grouping multiple opinions wields better re-
sults than only taking an opinion from a single individual [20]. Some require-
ments have to be fulfilled so that this method works better than a single inducer,
they need to be independent, they need to be capable of making decision with
local information, they also need to have a diversity of opinions and some mech-
anism to turn these private decisions into a collective decision.

There are a lot of advantages with this method, it helps avoiding overfitting, com-
putational advantage because a single learner has a higher risk of getting stuck,
one final big upside is that it can reach optimal hypothesis that cannot be reached
by any single model [20], by combining multiple solutions to find the best op-
tion. Apart from these advantages it can also help solve various nontrivial ma-
chine learning challenges that we mentioned in Section 2.3 like, class imbalance
and concept drift, as well as, tackling the curse of dimensionality, which is when
there is an overwhelming number of features, and the models cannot generalize
them.

There are two main frameworks that ensembles methods can fall into those being
dependent framework where the output of each inducer affects the construction
of the next one, and the other being independent framework where each inducer
is built independently from other inducers [20]. Some of the most used methods
in the dependent framework are AdaBoost and gradient boosting machines like
XGBoost . When it comes to the independent framework the most used ones are
random forest and bagging.

2.4.3 Knowledge distillation

One technique that is used mostly for its gain in efficiency although it can also im-
prove the overall performance of models is knowledge distillation, also known
as teacher-student model.

Knowledge distillation is about transferring the knowledge of a large model,
the teacher, to a smaller one, the student. There are three different distillations
schemes that can be used according to [21], offline distillation, which is when the
knowledge is transferred from a pre-trained teacher model into a student one,
then there is online distillation, that was developed to overcome some of the lim-
itations of the previous scheme, it differs from it because both the teacher model
and student model are updated simultaneously, lastly there is self-distillation
where both the teacher and the student used the same network, and the knowl-
edge from deeper sections of the network is distilled to shallower sections. All of
these different schemes work for model compression, and both the online knowl-
edge distillation and self-knowledge distillation can improve the performance of
the deep model. Although this technique might be interesting for our context be-
cause it generates a smaller model which is usually simpler to evaluate, it is not
what we are trying to achieve with our approach because the fundamental goal
of a teacher/student model is the creation of a model that is more lightweight
that serves the same purpose of the teacher, whereas we want to create a model
that can detect the errors of another model, which means that their goal will be
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wildly different.

Although these techniques are useful to enhance the performance of the model,
they will ultimately suffer from the fact that machine learning models are highly
dependent on their training data set, which means that its reliability, precision,
and recall are good if the training set is good and poor if the training set is
mediocre so basically, it is “garbage in garbage out”. As pointed out previously
most errors occur due to data, either it be that is does not explain the problem
correctly or that is overfits, amongst other problems. Despite the fact that these
techniques help mitigate some of these errors they do not outright remove them
so there has to be different ways other than improving a model’s performance to
increase the dependability of machine learning models.

2.5 Dependability

The original definition of dependability is the ability to deliver service that can
justifiably be trusted[22]. There is also another definition that says a system is
dependable when the system is capable of avoiding service failures that are more
frequent and severe than is acceptable. A common way of putting it is that the
system should be as dependable as the trust placed in that system. Since depend-
ability is such a vast topic, it encloses availability, reliability, safety, integrity,
and maintainability. For this thesis, the most significant ones are reliability and
safety because they guarantee that the service operates correctly for a given time
frame and the absence of unexpected consequences for both users and the envi-
ronment, respectively.[22]

There are several ways of achieving dependability, such as fault prevention,
fault tolerance, fault removal, and fault forecasting. Fault tolerance and fault
prevention both strive to deliver a service that can be trusted, so both of them are
needed to achieve trustworthy AI.

2.5.1 Fault Tolerance

Fault tolerance aims to ensure that there are no service failures in the presence
of faults, and it is carried out by error detection and system recovery, all the
different fault tolerance techniques can be seen the figure below that was obtain
from [22].
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Figure 2.2: Fault tolerance techniques

Fault tolerance can suffer from a lack of fault tolerance coverage, and this can be
either because of faults in the fault tolerance mechanism or due to fault assump-
tions that do not represent reality. There are two different ways to detect errors,
preemptive detection, which is detecting errors before an error occurs, and con-
current detection which is detecting errors while the system is operating. Since
our goal is to have runtime error detection we will be focusing on the latter. In
order to have fault tolerance, we will use a specialized support system for fault
tolerance, such as a monitor.[22]

Regarding the recovering portion of fault tolerance, we will be enforcing fail
silent behavior in the ML models.

2.5.2 Online monitoring

Online monitoring can provide increased robustness, security, fault tolerance,
adaptability to the system they are monitoring, and detect runtime errors [23].
In this case, the Machine Learning model will be considered a piece of software,
meaning that a software monitor will be used. Since this technique is external
to the model, it is able to complement other techniques to create safer Machine
Learning models.

2.5.3 Fail silent behaviour

Since the goal is to implement fail-silent v in machine learning, it is necessary
to define what fail-silent behaviour is. According to [24] fail-silent is when the
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system only produces correct results, if an error happens to occur, the system
does not output them. To enforce this behaviour in machine learning there is a
need to detect the errors made by the model and then omit their output. This will
be particularly valuable in a critical environment because it guarantees that every
prediction of the model is correct, and the ones that the model did not produce
output might have been wrong. This is technique that is used often in critical
systems.

2.6 Classifiers comparison

Since we will use machine learning models further along in this thesis, we need
to have an idea of what types of classifiers exist and what their advantages are,
so we are going to make use of the following table adapted from [25].

Classifiers Advantages Disadvantages
Logic based algo-
rithm:
Decision Trees

Comprehensibility
(easy to understand)

Difficulty/incapability to deal
with lack of input information
There is no common accepted
algorithm to build DT (best
features selection, e.g. C4.5)
Requires pruning

Logic based algo-
rithm:
Learning set of rules

Comprehensibility
(easy to understand)

Difficulty/incapability to deal
with lack of input information

Perceptron based
Techniques:
Neural networks

Accuracy Easy to occur overfitting situa-
tions
No comprehensibility
Incapability to deal with lack
of input information

Probabilistic:
Naïve Bayes
(Bayesian networks)

Fast Simple Able to
cope with lack of in-
put information

Attributes’ independence as-
sumption

Instance based learn-
ing:
k-Nearest neighbour

- Incapability to deal with lack
of input information
Large computational time for
classification
Sensitive to the choice of sim-
ilarity function to compare in-
stances

Support vector ma-
chines:
Support vector ma-
chine

Suitable when num-
ber of features is
larger than the
number of training
instances

Difficulty to deal with lack of
input information
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Boosting:
Extreme Gradient
Boosting

Reduction of bias Not scalable
Dependent on outliers which
can lead to overfitting

Table 2.1: Pros and Cons of classifiers

As we can analyze from this table, there are some differences between all these
classifiers. A problem that may surface is the lack of information, which is not
uncommon in the health industry, so classifiers that do not deal well it that lack
of information might not be ideal, making a classifier like Naïve networks more
appealing in this context.

Although it is outside of the goal of this thesis, it is worth mentioning that the
model chosen has to be transparent so that it can be trustworthy according to the
European Commission[8]. This will not only lead to the tradeoff of accuracy for
better explainability as well as make the choice of which classifier to use more
complex because most classifiers transform the data in ways that make it not
comprehensible to humans, like neural networks and Support Vector Machine
[26].

2.7 Metrics to evaluate monitors’ performance

For evaluating our monitors, we will make use of some of the already established
metrics in the AI community which, according to Stephen Marsland [27] and to
[28], are:

• True Positive Rate (TPR), or recall, or sensitivity, is the ratio of the number
of correct positives (True Positive (TP)) out of the ones classified as positive.

TPR =
TP

TP + FN

• False Positive Rate (FPR), is the ratio of the number of incorrect negative
classifications False Positive (FP) out of the ones that are classified as nega-
tive.

FPR =
FP

FP + TN

• Accuracy, is the sum of correct classifications divided by all the classifica-
tions made, although it is not the best metric it is a simple metric that helps
showing the performance of the monitor in a broader range.

Accuracy =
TP + TN

TP + FN + TN + FP

• Specificity, or TNR, is the ratio of the number of correct negatives (True
Negative (TN)) out of the ones classified as negative.
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Speci f icity = 1 − FPR =
TN

TN + FP

• Positive Predictive value, or PPV, is the ratio of correct positives out of the
ones that are classified as positive.

PPV =
TP

TP + FP

The Receiver Operating Characteristic (ROC) curve is generally used for visual-
izing and selecting classifiers based on their performance [29] so it will be useful
to compare the performance of the monitors against each other. We will use mul-
tiple thresholds for each monitor so that we have multiple points and can create
the curve. For each threshold we will calculate the TPR, which is the y-axis, and
the FPR, which is the x-axis. After this step we can calculate the Area Under
the Curve (AUC) which gives insight into the performance of the monitor. If the
AUC is 0.5 it is as good as a random guess, if it is 1.0 then it is the perfect classifier
and if it is 0.0 it is an anti-classifier. Specificity is the only metric that we will not
specify directly in the results, but it can be easily extracted from the ROC curves
since it is 1-FPR.

2.8 Conclusion

Due to everything discussed in this chapter, there is an evident need to have some
way to detect when Machine Learning models make mistakes. Since that has not
been achieve by the current techniques used in AI, we have to think outside the
box and apply techniques used in software engineering by adding dependability
strategies to Machine Learning models, more concretely adding fault tolerance
through the use of a monitor that enforces fail-silent behaviour so that errors do
not manifest themselves.
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Related Work

In this chapter we are going to explain the dependability limitations that exists
in Machine Learning, and what existing methods and techniques are being used
to get over these limitations and thus increasing the safety of machine learning
models.

3.1 Safety limitations in machine learning

The main obstacle with guaranteeing safety for machine learning is that it does
not comply with the traditional engineering development standards. This leads
to five open challenges that compromises safety, according to [30], the first is
design specification because it is not feasible to use formal design specification,
another one is the inherited lack of transparency of machine learning models that
makes it difficult to have traceability, one other is performance and robustness
which is the most researched topic in ML which unlike code-base algorithms sta-
tistical learning algorithms tend to contain to residual error rate that they gener-
ate, which makes it harder to improve the performance, there is also the difficulty
to use formal methods for verification due to the high dimensionality of the data,
lastly runtime monitoring is also a challenge that has not been completed in ma-
chine learning because it naturally differs from standard software monitors that
are based on a rule-set to detect hardware errors and software crashes.

3.2 Strategies for safe machine learning models

According to [30], there are three different strategies to achieve safety in Machine
Learning:

1) Inherently Safe Design, refers to techniques that are used to design Ma-
chine Learning models that are error-free. Some of the techniques that are
used for this strategy are model transparency, which is one the requirements
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for trustworthy AI [8], design specification and model verification and test-
ing, such as formal methods.

2) Enhancing Performance and Robustness, refers to techniques that improve
the Machine Learning models performance, and their robustness, such as
robust network architecture, robust training, and data sampling and aug-
mentation. This is the strategy that is most commonly used, and it is an ef-
fective one because creating ML models that make less mistakes inherently
makes them safer.

3) Runtime Error Detection, refers to techniques that can detect errors made
by the Machine Learning model at runtime. This can prevent misclassifica-
tions, which leads to a safer model. Some of the key approaches to detect
these errors are model uncertainty estimation, adversarial attack detection,
out-of-distribution detection and runtime monitoring.

Out of these three strategies the one that is developed the furthest is the enhanc-
ing performance and robustness. This strategy envelops almost all the current
research that is being done in the field. This is also because it envelops a lot of
parts of the area, from new algorithms that have more accuracy or are more effi-
cient to adversarial training.

One technique that is being explored is adversarial training [30], which trains
the models with adversarial examples, it has the ultimate goal of increasing the
model’s robustness against attacks. Although, this is a great approach to fight
against malicious attacks and a must have in a system where safety is required,
the main problem is that it has high computational cost due to the creation of the
adversarial examples, so the main research being done to overcome this problem
is to make the creation of adversarial examples faster.

Despite all the techniques that are developed for increasing the robustness and
performance of models it is unavoidable that there needs to exist runtime error
detection to guarantee that there are no mistakes done by machine learning mod-
els. Since our approach is about detecting errors at runtime by using monitors
it is important to detail what has been done in this area. The main approach for
runtime error detection is selective prediction also known as model with reject
option [31] [32], which has the goal of limiting the number of errors made by a
model by not making a prediction when is a doubtful one, which is what we are
achieving through the enforcement of fail silent behaviour. The main methods
used for runtime error detection are the following according to [30]:

1) Prediction Uncertainty
Prediction uncertainty reports the confidence of the prediction made by the
model. For example, for deep learning neural networks it is used the soft-
max probability of the predicted class to get this uncertainty value. This can
be problematic due to the overconfidence of the model. To combat overly
confident predictions of the models it is used model calibration, which con-
sists of designing training methods so that the softmax matches the proba-
bility of a correct prediction. Another solution is uncertainty quantification
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that aims to design prediction confidence measure for Machine Learning
models.

2) Out-of-Distribution Detection
Out-of-Distribution (OOD) pertains to points that are outliers or that are not
covered by the training of the model. The detection is a binary classification
task to classify the ones that are covered by the training and the ones that
are not. Some of the techniques for the detection are distance-based tech-
niques, which measure the distance between the input and the training set,
classification-based detection, which tries to encode normality and OOD
detection scores, and density-based detection, which creates a probability
density function from the source distribution to detect OOD.

3) Adversarial Detection and Guards
Adversarial Detection and guards have the goal of guaranteeing correct pre-
dictions of the models even in the case that there has been tampering with
the input. One of the simplest solutions to detect adversarial attacks is to
have a second model that is trained to be an adversarial attack detector,
there is also other alternatives such as, statistical testing that compares the
distribution of adversarial examples and clean examples, test-time adver-
sarial guard which aims to predict correctly both the adversarial and nor-
mal inputs with the use of pre-processing, or by applying transformation
and randomness.

One of the most used approaches falls into the prediction uncertainty method
and is to have a reject option in a model, which means that if the probability
of the prediction being correct is lower than a given threshold it abstains itself
from making the prediction. There has been experiments realized to apply this
behaviour in Deep neural networks by [33] and have them embedded in SVM
by [34], both these experiments have been rather successful. One problem to this
approach is the high confidence of prediction by NN even when the sample is
not part of the training set, [35] tried to mitigate this problem for ReLu NN by
proposing a robust optimization scheme through adversarial training, however
the results proved that this problem of overconfidence cannot be avoid.
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Approach

The goal of this thesis is to present a monitor to guarantee safety for Machine
Learning models that are used in critical applications. Given that our goal is to
detect when the model makes an incorrect prediction, we decided to implement
a monitor that will run in parallel to the model that will take in the same input of
the model and will suppress the output of the model if the model’s value is not
trustworthy, if it is trustworthy the output will be normal, as can be seen in the
following figure

Figure 4.1: Monitor of machine learning model

Since there is a multitude of ways to create a monitor, we are going to propose
three different approaches for its creation. Before going over the monitors that
are proposed there are some aspects that are common to all the different ap-
proaches. The performance of the monitors will be tested for two different model
algorithms, Support Vector Machine and Neural Network (NN).

4.1 Implementation and Specification

For the development of this work, we started by using python 3.10 since we
wanted to use the scikit-learn library which allows us the creation of machine
learning models and the creation of the ROC curves alongside matplotlib. We
also used jupyter notebook which we had inside a virtual environment, where
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we had all the libraries needed for the work. Some of the more important ones
are numpy, mne for the drowsiness dataset, kneed for the clustering monitor,
pandas, and XGBoost.

4.2 Monitor using Machine Learning

For this monitor, the idea is to use Machine Learning to create a monitor that
learns to evaluate the model that is being used in a critical environment.

To achieve this approach, we are going to use the same features that are used in
the critical model but instead of using the labeled values , we are going to use the
difference between the prediction of the model and the real value. This will allow
us to have a monitor that knows were the critical model is most likely to make
wrong classifications.

For our monitor we decided to test three different algorithms, those being, Sup-
port Vector Machine, Neural Network, and Extreme Gradient Boosting (XGB).

To get the labels for the monitor we will need to compare the predictions of the
model and the real value. Then we will assign zero to the classifications that the
model made correctly and assign one to the classifications that the model made
incorrectly, as can be seen in Figure 4.2. Due to this, we need to divide the dataset
in three parts, one will be used to train the model, another will be to train the
monitor and the last one will be to test both the model and the monitor. The split
that was used was 40/40/20. Despite the fact that this will limit the data available
to train the model it is necessary to train the monitor, because we need to make
predictions with the model so that we can create the labels for the monitor, and
for this we need to have data the model has not seen.

Figure 4.2: Machine learning monitor scheme

After the creation of the monitor, we will need to test different thresholds and
get the TPR and FPR so that we can create the ROC curve and then calculate the
AUC, these thresholds are going to be at which probability the monitor considers
a prediction as positive.
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4.3 Monitor using Clustering

The main idea of this monitor is to know if a given input is covered by the training
dataset, the working of the monitor can be seen in Figure 4.4. This will allow us
to know at runtime if the input is covered or not by the training dataset, if it is
not then we cannot be sure that the prediction of the model is correct else we can
assume that the prediction is valid. This technique is a distance-based technique
where we check what are the points that are farther away from the centroid.
Although we are going to be using labeled data in our test for this approach, we
will ignore the labels when creating the clusters.

Figure 4.3: Monitor using clustering

After creating and training the model we use PCA to reduce the dimensions of
our dataset to 3. We decided to use K-means as our algorithm to create the clus-
ters, so we need to decide how many clusters we are going to have. To get this
value we made use of the elbow method by using the kneed library which sim-
plifies the method because it does not require the analysis of the graph to choose
the optimal one. The next step is to create the different clusters and get their cen-
troids. After this is done, we can calculate the euclidean distance of all training
points to their respective centroid. Finally, we also calculate the distance of all the
testing points to their respective centroid as can be seen the following figure.
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Figure 4.4: Monitor using clustering

Once we have the distance of all training points, we can calculate the distance
of all the different percentiles from 0% to 99%. These distances will act as the
threshold of this monitor. Any point that is further away from the centroid then
the percentile distance is considered as a positive. Then we calculate the TPR and
FPR for each percentile so that we can create the ROC curve and calculate the
AUC.

4.4 Monitor using Classification Boundary

The goal of this monitor is to know if the input point is close to the classification
boundary, which might correspond to a misclassification. This technique is also
a distance-based technique and will act as a baseline for this thesis.

After creating and training the model we will once again use PCA, for this mon-
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itor we will reduce the dimensional of the dataset to two, to facilitate the cal-
culation to the classification boundary. Afterwards, we will need to check the
minimum distance of each point to the decision boundary that makes the predic-
tion changes its value. For example, if the original prediction is 1, what is the
minimum distance it needs to be to become a 0. In order to make a prediction
with the model we have to make the inverse of the pca to get back the features
that we reduced. This can be seen in the following figure that shows how the
monitor works.

Figure 4.5: Classification boundary monitor scheme

For this approach we will calculate an approximation to the classification bound-
ary. We start by adding a step of 0.1 at the x-axis, then if the classification bound-
ary is not found we start by checking the vicinity from 0 to 2π with rotations of
π
4 as can be seen in Figure 4.6, if we reach the x-axis once again and the boundary
was not found we increment the step and do this all over again until finding the
boundary. After finding the classification boundary for every point, we need to
calculate all the euclidian distances to the classification boundary of all our train-
ing points so we can then calculate at which percentile a value can be considered
doubtful. After the calculation of all the percentiles we get our thresholds.
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Figure 4.6: Scheme of the calculation of the Classification boundary

Following this, we also need to calculate the distance of the testing points to the
decision boundary so that we can check if this distance is inside our percentile.
If it is inside the percentile, which means closer to the boundary, we consider it
dubious otherwise, it is considered correct. This is the opposite of what we did in
the clustering monitor, the points inside the percentile are considered positives,
being that a true positive is a case where our monitor flagged a point that the
critical model has misclassified, and a False Positive is a point that our monitor
flagged that the critical model has classified correctly. We then calculate the TPR
and FPR for every percentile so that we can get the ROC curve and calculate the
AUC to evaluate the performance of the monitor.
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Results and analysis

This chapter will show the results of all the monitors for all nine datasets and
compare the performance between them. We will start by detailing the data that
was used, then we explain the methodology used for the experiences, follow by
the results such as the AUC and ROC curves, then the metrics we mentioned
before and comparing the performance of the model with and without a monitor.
To end the chapter, we discuss the results obtain that will give an answer to the
research questions.

5.1 Data analysis

In this section we detail the various datasets that we used and report the accuracy
for both the Support vector machine model and the neural network model, as can
be seen in the following table.

Dataset SVM model accuracy NN model accuracy
Breast cancer 0.947 0.991

Drug classification 0.7 0.8
Orthopedic patients 0.806 0.823

Drowsiness detection 0.908 0.862
Liver disease 0.681 0.681
Heart failure 0.875 0.859

Diabetes detection 0.766 0.753
Weather prediction 0.741 0.795

Milk quality 0.92 0.967

Table 5.1: Accuracy of models across all datasets.

Most of the datasets used are from a healthcare environment with the exception
of, the drowsiness detection which is the dataset that is being used by Cardioid
to detect fatigue on drivers which is also a critical system, the weather prediction
and also the milk quality prediction dataset are the ones that are not from a critical
system. Most of the dataset are binary classification datasets, such as the breast
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cancer, drowsiness detection, liver disease, heart failure and the diabetes detec-
tion dataset, the rest of the datasets have multiple classes. All the datasets, other
than the drowsiness detection, which was obtain from the DROZY database, were
obtain from Kaggle. It is worthy to mention that to extract the features from the
drowsiness dataset we used a module that was provided by ISEP.

Having a closer look to the datasets used we have following enumeration that has
the number of records in the dataset, the number of classes and their respective
division and a general overview of the problem.

1. The breast cancer dataset [36] has 569 records (357 benign 212 malignant),
it has two classes, so it is a binary classification problem those being benign
and malignant, and the goal is to assign the tumor to one of the classes by
using features that were obtain from an image of a breast mass.

2. The drug classification dataset [37] has 200 records (91 drugY 23 drugA 16
drugB 16 drugC 54 drugX), it is a multi-classification problem because it
has five classes, one for each of the different type of drug, and the goal is to
assign the correct drug to the patient by analyzing their blood results.

3. The orthopedic patients dataset [38] has 310 records (60 Hernia 100 Normal
150 Spondylolisthesis), it has three different classes them being the type
of condition that the patients have, Spondylolisthesis, Normal or Hernia,
and the goal is to classify the patient’s condition through six biomechanical
attributes.

4. The drowsiness detection dataset [39] has 323 records (134 awake 189 drowsy),
it has two different classes, which are 0 when the subject is awake and 1
when he is drowsy, these values are obtain from the kss scale, which is a
self-evaluation that was made by the subjects to evaluate their drowsiness,
the scale goes from 1 to 9 and so we decided that any value above 5 is con-
sidered as drowsy and the rest are considered as awake. The goal is to see
if the model can classify the state of the subject by analysing their ECG.

5. The liver disease dataset [40] has 579 records (414 negatives 165 positives),
the goal is to detect if a patient has a liver disease or not, so it is a binary clas-
sification problem, and it achieves this classification by analyzing multiple
chemical compounds present in the human body.

6. The heart failure dataset [41] has 918 records (410 negatives 508 positives),
it has two classes which are 1 if the patient has a heart disease and 0 if it
is normal, this is obtain with multiple features such as ecg, cholesterol and
other values.

7. The diabetes detection dataset [42] has 768 records (500 negatives 268 pos-
itives), it has two classes that are 1 if the patient has diabetes and 0 if they
do not, this has the goal to detect if a female has diabetes by analyzing the
number of pregnancies, blood pressure and more.

8. The weather prediction dataset [43] has 1461 records (53 drizzle 101 fog 641
rain 26 snow 640 sun), and it has five different classes which represent the
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different types of weather, drizzle, rain, sun, snow and fog, these classifica-
tions are based on the wind, the maximum temperature and other values.

9. The milk quality dataset [44] has 1059 records (256 high 429 low 374 medium),
and it has three types of classes, which are the grade of the milk, it can be
low, medium or high, this classification is based on observations such as
pH, color, odor and others.

5.2 Experimental methodology

To make sure that the experimentation is fair we decided to use the same train-test
spilt for every dataset and monitor to guarantee that the training data and the test
data of the monitor is always the same. This cause us to divide the data into a split
of 40/40/20, we need to divide it in three parts because of the machine learning
monitors. The first 40 % is used for training the model, the second one is to train
the monitor for the machine learning approaches, for the other approaches these
40% are ignored because they are not needed for training, the last 20% are for
testing both the model and the monitor.

5.3 Monitors AUCs and ROC curves

In this section, we will present and analyse the ROC curves and respective AUC
for all the different approaches and datasets. We will start by showing the AUC
values followed by the ROC curves.

Dataset
Monitor AUC of AUC of AUC of AUC of AUC of

Boundary Clustering SVM XGBoost NN
Breast cancer 0.977 0.603 0.75 0.665 0.693

Drug classification 0.496 0.424 0.708 0.708 0.696
Orthopedic patients 0.733 0.482 0.79 0.818 0.883

Drowsiness detection 0.685 0.381 0.816 0.757 0.828
Liver disease 0.0 0.457 0.688 0.716 0.699
Heart failure 0.768 0.714 0.747 0.664 0.784

Diabetes detection 0.681 0.385 0.541 0.58 0.601
Weather prediction 0.586 0.542 0.752 0.816 0.626

Milk quality 0.747 0.495 0.957 0.922 0.826
Mean 0.63 0.498 0.75 0.738 0.738

Table 5.2: Area under the curve (AUC) of all five monitors, for the SVM model,
for all datasets.

As can be seen in the Table 5.2 the machine learning approaches are the ones that
provide the best results for a Support Vector Machine (SVM) model, both on av-
erage and also because they are well ahead of the other approaches in all but 2
datasets, those being the breast cancer and the diabetes detection, which has the
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classification boundary as the best one. The boundary monitor has a lot of vari-
ability when compared to the machine learning ones, so despite being the best for
those two datasets it has a significantly worst average, this is also because it has
an AUC of 0.0 for the liver disease dataset, which means the monitor never clas-
sified anything as a positive, so the TPR is zero, this happened because the model
classified everything as a negative so there is no classification boundary, this can
be viewed as a limitation of this approach. The clustering monitor is consistently
the poorest performing monitor, for this model the mean is even worst then a
random guess, because for some datasets the errors arise near to the centroids of
clusters, which means that the indicator that we used that was the proximity to
the training centroid is poor for some cases, and at its best it is only a reasonable
indicator.

Dataset
Monitor AUC of AUC of AUC of AUC of AUC of

Boundary Clustering SVM XGBoost NN
Breast cancer 0.987 0.854 0.389 0.876 0.301

Drug classification 0.582 0.309 0.625 0.797 0.637
Orthopedic patients 0.694 0.447 0.802 0.779 0.884

Drowsiness detection 0.614 0.741 0.831 0.722 0.645
Liver disease 0.67 0.464 0.693 0.674 0.711
Heart failure 0.775 0.618 0.771 0.754 0.822

Diabetes detection 0.694 0.423 0.594 0.626 0.659
Weather prediction 0.657 0.575 0.701 0.791 0.535

Milk quality 0.829 0.561 0.957 0.939 0.815
Mean 0.722 0.555 0.707 0.773 0.668

Table 5.3: Area under the curve (AUC) of all five monitors, for the NN model, for
all datasets.

As can be seen in the Table 5.3 the Boundary, SVM and XGBoost are the ones that
provide the best results for a NN model with fairly similar performance between
0.7 and 0.77. Both SVM and the Boundary monitor have a greater variability
than XGBoost, there are two cases where the SVM monitor performs poorly and
there is one where the Boundary performs poorly, though this is an improvement
for the boundary monitor when compared to how it performed with the other
model. The XGBoost monitor is still the most consistent one being the one that
has the least variability, which explains its higher average. The NN monitor de-
spite performing the best for more datasets than any other monitor it has one of
the worst averages, this is because it has a high variability having a 0.301 and a
0.535 which negatively impacts its average performance. The clustering monitor,
despite improving the performance for the NN model, still has poor performance
when compared to the other ones.

In the Figure 5.1 we have the full picture to further help us understand the values
of AUC that we had in the previous tables, as we can see the clustering does
not work at all, with roc curve being lower then y = x (5.1b and 5.1d) which is
the same as a random guess, this would suggest that perhaps the labels where
switch but if we did that then we would lose the performance in the case where it
performs reasonably like 5.1a, we also do not have any way of telling when they
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should be inverted or not only after calculating the AUC can we know.

It is also visible that the green (SVM), red (XGB) and purple (NN) lines curves are
constantly on the top which proves its high average in the Table 5.2. Although the
blue line also is sometimes on top like for 5.1a, it has very negative performances
like for the liver dataset 5.1e and also underperforms for the weather prediction
dataset 5.1h and the drug classification dataset 5.1b.
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(a) Breast cancer
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(b) Drug classification
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(c) Orthopedic patients
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(d) Drowsiness detection
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(e) Liver disease
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(f) Heart failure
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(g) Diabetes detection
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(h) Weather prediction
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Figure 5.1: ROC Curves of all five monitors, for the SVM model, for all datasets
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(a) Breast cancer
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(b) Drug classification
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(c) Orthopedic patients
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(d) Drowsiness detection
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(e) Liver disease
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(f) Heart failure

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(T

PR
)

(g) Diabetes detection
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(h) Weather prediction
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Figure 5.2: ROC Curves of all five monitors, for the NN model, for all datasets

Regarding the ROC curves for the NN model, Figure 5.2, we have a similar re-
sults, however there are some differences. We can see that there is more variabil-
ity with the NN and SVM approaches, it is rather evident for the breast cancer
dataset 5.2a. It is also notable that the consistency of the classification boundary
is much better in this case being at its best almost the perfect classifier 5.2a and
even at worst 5.2h is still similar to the other monitors. Despite the slight im-
provement of the clustering method it still is the worst one in almost all datasets
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with the exception of the 5.2a and 5.2d.

5.4 Monitor metrics

In this section, we will show the metrics of our monitor for a particular configu-
ration. We decided upon the configuration with the highest TPR while limiting
the FPR to 15 % or less, this is what we though was reasonable for a real world
scenario, of course this is dependent on the scenario and the urgency of catching
these errors, if it is paramount to catch every single error than it is probably worth
to increase the FPR which will lead to more mistakes caught by the monitor, at the
cost of itself also making more mistakes, and so lowering the PPV of the monitor.
We will show the accuracy, TPR or sensitivity, Positive Predictive value (PPV) of
all the monitors and we will also compare the accuracy of the model with and
without monitors.

We will start by showing the results of monitors for SVM models. Here we have
a table for each metric, one for accuracy, one for sensitivity and another for PPV.

Regarding accuracy it is important to mention that it is heavily influenced by the
accuracy of the model, since if the monitor does not find any error its accuracy is
going to be the exact same as the model, with this mind it is not abnormal that
the accuracy of the monitor is lower than the model, because to find errors the
monitor makes some of his own, which means that the accuracy of the monitor
will only be superior to the models if the PPV is greater than 0.5, this will be
further explored once we look into the Table 5.6. As the accuracy of the monitor
is that heavily correlated to the model it can even be seen as the accuracy of the
model if the monitor inverted the prediction of all the points it caught.

Dataset
Monitor Boundary Clustering SVM XGBoost NN

Accuracy Accuracy Accuracy Accuracy Accuracy
Breast cancer 0.961 0.947 0.904 0.93 0.904

Drug classification 0.7 0.65 0.8 0.8 0.775
Orthopedic patients 0.758 0.806 0.871 0.855 0.839

Drowsiness detection 0.815 0.908 0.877 0.831 0.862
Liver disease 0.681 0.653 0.655 0.681 0.647
Heart failure 0.821 0.788 0.804 0.788 0.815

Diabetes detection 0.721 0.71 0.695 0.701 0.669
Weather prediction 0.693 0.676 0.744 0.799 0.724

Milk quality 0.92 0.792 0.962 0.991 0.925
Mean 0.786 0.77 0.812 0.819 0.795

Table 5.4: Accuracy of all five monitor, for SVM model, when FPR less or equal
to 15%

In Table 5.4 we can see that in terms of accuracy the monitors are all rather close
but with the SVM and XGBoost comfortably in front. When it comes to sensitivity
the difference becomes more apparent, this being the metric that we want to see
be the highest because it translates to the percentage of errors that the monitor
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can detect. Ass can be seen in Table 5.5 all the machine learning monitors have
similar performance with the best being SVM, detecting on average 49% of the
errors made by the model. We can still see the same trend with the boundary
monitor, that has excellent performance for the Breast cancer dataset with 1.0 of
TPR but then there are datasets with TPR of 0.0. The clustering monitor does not
even detect 10% of the errors made by the model, which is very poor, and clearly
tells us that it has no ability of detecting errors.

Dataset
Monitor Boundary Clustering SVM XGBoost NN

Sensitivity Sensitivity Sensitivity Sensitivity Sensitivity
Breast cancer 1.0 0.0 0.333 0.333 0.333

Drug classification 0.0 0.167 0.583 0.583 0.5
Orthopedic patients 0.333 0.0 0.667 0.583 0.75

Drowsiness detection 0.333 0.0 0.667 0.167 0.667
Liver disease 0.0 0.051 0.216 0.27 0.189
Heart failure 0.565 0.348 0.478 0.304 0.565

Diabetes detection 0.278 0.053 0.139 0.111 0.056
Weather prediction 0.211 0.145 0.408 0.632 0.303

Milk quality 0.0 0.118 0.941 0.882 0.647
Mean 0.302 0.098 0.492 0.43 0.446

Table 5.5: Sensitivity of all five monitor, for SVM model, when FPR less or equal
to 15%

The Table 5.6 is necessary for us to evaluate if the monitor is detecting errors
because it has ability to do so or if it is sheer luck. This tables will tell us the
likelihood of a positive made by the monitor is being correct.

Dataset
Monitor Boundary Clustering SVM XGBoost NN

PPV PPV PPV PPV PPV
Breast cancer 0.6 0 0.222 0.333 0.222

Drug classification 0 0.333 0.7 0.7 0.667
Orthopedic patients 0.364 0 0.667 0.636 0.562

Drowsiness detection 0.2 0 0.4 0.143 0.364
Liver disease 0 0.25 0.421 0.5 0.389
Heart failure 0.361 0.25 0.314 0.233 0.351

Diabetes detection 0.37 0.133 0.238 0.222 0.105
Weather prediction 0.348 0.268 0.508 0.608 0.451

Milk quality 0 0.065 0.696 1.0 0.524
Mean 0.249 0.144 0.463 0.486 0.404

Table 5.6: Positive Predictive value (PPV) of all five monitor, for SVM model,
when FPR less or equal to 15%

From this table we can observe that the boundary and clustering monitor are not
good because most of the positives are incorrect. The machine learning monitors
are more interesting in that aspect because almost 50% of their positives were
indeed an error made by the model, this despite not being the highest value be-
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comes interesting when in conjunction with a recovery process. It is worth noting
that the XGBoost is the best when it comes to Positive Predictive value (PPV).

Here we have the results for NN models, having once again three tables one for
each metric.

Looking at Table 5.7, the results are very similar to the table of the other model.
However, there are some differences and that is the fact that looking at mean
for the accuracy we can observe that it increased overall for all monitors. As
we mentioned before this accuracy is correlated to the accuracy of the model so it
does not necessarily mean that the monitor is doing a better job for the NN model
then the SVM model, it can be just that this model has better accuracy then the
SVM model. Looking at accuracy the SVM monitor is the best closely followed
by the XGBoost monitor.

Dataset
Monitor Boundary Clustering SVM XGBoost NN

Accuracy Accuracy Accuracy Accuracy Accuracy
Breast cancer 0.98 0.991 0.991 0.877 0.991

Drug classification 0.8 0.8 0.825 0.85 0.75
Orthopedic patients 0.774 0.823 0.855 0.839 0.839

Drowsiness detection 0.8 0.8 0.892 0.908 0.785
Liver disease 0.655 0.647 0.672 0.698 0.69
Heart failure 0.815 0.777 0.804 0.821 0.832

Diabetes detection 0.701 0.695 0.701 0.76 0.727
Weather prediction 0.751 0.724 0.747 0.778 0.72

Milk quality 0.967 0.84 0.995 0.901 0.986
Mean 0.805 0.788 0.832 0.826 0.813

Table 5.7: Accuracy of all five monitor, for NN model, when FPR less or equal to
15%

Regarding Table 5.8 there are also some notable differences and that is the fact that
the XGBoost monitor performs significantly better when compare to the SVM and
NN monitor, this is rather evident in the breast cancer dataset where the XGBoost
monitor can detect all errors while the other two cannot detect a single one, and
for the drug classification dataset where it has a TPR of 0.625 while the other two
have only a TPR of 0.25, this leads to it having a much better average of detecting
errors when compare to the others, managing to detect more than 50% of errors.
Another reason for the difference in performance between XGBoost and the other
two machine learning approaches is that the XGBoost performed better with the
NN model whereas the other two performed worst. The clustering monitor had
a small increase when looking at its mean while the boundary one had a small
decrease when comparing to how they performed for the SVM model.

35



Chapter 5

Dataset
Monitor Boundary Clustering SVM XGBoost NN

Sensitivity Sensitivity Sensitivity Sensitivity Sensitivity
Breast cancer 1.0 0.0 0.0 1.0 0.0

Drug classification 0.0 0.0 0.25 0.625 0.25
Orthopedic patients 0.364 0.0 0.636 0.545 0.636

Drowsiness detection 0.111 0.444 0.667 0.333 0.333
Liver disease 0.216 0.054 0.27 0.351 0.189
Heart failure 0.538 0.269 0.423 0.385 0.615

Diabetes detection 0.079 0.079 0.158 0.184 0.211
Weather prediction 0.2 0.167 0.317 0.483 0.2

Milk quality 0.0 0.286 0.857 0.857 0.571
Mean 0.279 0.144 0.398 0.529 0.334

Table 5.8: Sensitivity of all five monitor, for NN model, when FPR less or equal to
15%

Dataset
Monitor Boundary Clustering SVM XGBoost NN

PPV PPV PPV PPV PPV
Breast cancer 0.333 0.0 0 0.067 0.0

Drug classification 0.0 0.0 0.667 0.625 0.333
Orthopedic patients 0.364 0.0 0.583 0.545 0.538

Drowsiness detection 0.167 0.333 0.6 1.0 0.273
Liver disease 0.421 0.25 0.476 0.542 0.538
Heart failure 0.389 0.241 0.344 0.37 0.432

Diabetes detection 0.214 0.2 0.3 0.538 0.4
Weather prediction 0.324 0.244 0.365 0.46 0.261

Milk quality 0.0 0.065 1.0 0.231 1.0
Mean 0.246 0.148 0.482 0.487 0.42

Table 5.9: Positive Predictive value (PPV) of all five monitor, for NN model, when
FPR less or equal to 15%

This table is very similar to the Table 5.6 we still have the boundary and clustering
one performing the worst and the other three being better and rather close. The
best monitor for this model is once again the XGBoost with an average of 0.487
which further proves the consistency of this approach.

We have two tables one for each model with all the metrics and all the monitors
to make the comparison and analysis of data more compact and easier. These
tables can be found in the appendix A.
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For the Tables 5.10 and 5.11, we used the same configuration for the monitors
that we used when we limited the FPR to 15%, this means that the configuration
might not be the one that provides the best accuracy for a particular monitor.
Since we are omitting the output of the monitors positives for the calculation of
accuracy, we removed every positive caught by the monitor, that means that the
true positives were subtracted to the incorrect model predictions and the false
positives were subtracted to the correct model predictions, this way we are being
fair by not counting the positives as neither good nor bad.

Dataset
Monitor Original XGBoost SVM NN Boundary Clustering

ACC ACC ACC ACC ACC ACC
Breast cancer 0.947 0.963 0.962 0.947 1.0 0.947
Drug classifi-
cation

0.7 0.833 0.833 0.652 0.7 0.706

Orthopedic
patients

0.806 0.902 0.92 0.768 0.843 0.806

Drowsiness
detection

0.908 0.914 0.964 1.0 0.927 0.908

Liver disease 0.681 0.719 0.701 0.716 0.681 0.676
Heart failure 0.875 0.896 0.919 0.921 0.932 0.901
Diabetes de-
tection

0.766 0.765 0.767 0.776 0.795 0.755

Weather pre-
diction

0.741 0.869 0.806 0.74 0.757 0.742

Milk quality 0.92 0.99 0.995 0.895 0.92 0.917
Mean differ-
ential

—– +0.056 +0.056 +0.008 +0.023 +0.002

Table 5.10: Accuracy comparison of SVM model with and without monitors
across all datasets, when FPR less or equal to 15%

As we can see for the SVM model we increased the accuracy of the model for most
datasets, with the ones that had the biggest increase being the drug classification
one and the weather prediction with the XGBoost monitor. The values that are
bold are the ones that have the best accuracy. There were some other cases that
the monitor could not find any errors, so the accuracy stayed the same, and there
were also a few cases that the accuracy was worse than the original one, this
mostly happen with the clustering monitor. From this we can prove the trend we
already saw in the other results that is that both the XGBoost and SVM monitor
are the ones that prove improve the model the most, we can also see that there
are some applications where the boundary monitor is the best one, however it is
not as flexible as the other two.
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Dataset
Monitor Original XGBoost SVM NN Boundary Clustering

ACC ACC ACC ACC ACC ACC
Breast cancer 0.991 1.0 0.991 0.991 1.0 0.991
Drug classifi-
cation

0.8 0.906 0.838 0.754 0.8 0.8

Orthopedic
patients

0.823 0.902 0.92 0.829 0.863 0.823

Drowsiness
detection

0.862 0.903 0.945 0.889 0.864 0.906

Liver disease 0.681 0.739 0.716 0.709 0.701 0.676
Heart failure 0.859 0.898 0.901 0.932 0.919 0.877
Diabetes de-
tection

0.753 0.78 0.761 0.776 0.75 0.748

Weather pre-
diction

0.795 0.865 0.83 0.792 0.812 0.802

Milk quality 0.967 0.995 0.995 0.949 0.967 0.972
Mean differ-
ential

—– +0.051 +0.041 +0.009 +0.016 +0.007

Table 5.11: Accuracy comparison of NN model with and without monitors across
all datasets, when FPR less or equal to 15%

As shown in the Table 5.11 the accuracy increased with the addition of the XG-
Boost monitor for every dataset, the biggest increase in performance was once
again in the drug classification dataset just like for the SVM model. The other
machine learning monitors where able to improve the accuracy in some cases
like for the drowsiness dataset and the heart failure, however they were not able
to improve in a few datasets such as the breast cancer one. The boundary monitor
despite having a case where he is the best there are some cases like for the dia-
betes dataset where it hinders the accuracy of the model. Even worst results can
be observed when it comes to the clustering monitor because it rarely improves
the accuracy and can actually reduce it. From all of this it becomes evident that
NN monitor is clearly the worst one out of the machine learning approaches.

Both these tables have to be taken with a grain of salt because since we are re-
moving all the positives that result from the monitor, we can be removing a lot
of correct predictions from the model if we do not keep in mind the PPV. As can
be seen when taking a look into the breast cancer, even though the XGBoost and
boundary monitor reached the same accuracy the boundary monitor is much bet-
ter for this approach as it has a greater PPV of 0.333 when compared to a PPV of
0.067 for the XGBoost.

5.5 Discussion and observations

Here we will discuss the results obtain, explain some of the observations made
and emphasize their importance.

38



Results and analysis

Starting with the observations we can see that there is a connection between the
performance of the monitor and the performance of the model, the better the
model the better the monitor is at detecting the errors made, this is especially
evident when looking at the TPR for the breast cancer and milk quality dataset
where some monitors were able to detect the majority of errors. The reverse also
is applicable as the models that have the worst accuracy like the liver disease
and diabetes dataset are the ones that have the lowest TPR across all the differ-
ent monitors. There was no noticeable correlation between the problem being
multiclass or binary and the performance the monitor.

We did not notice any relation between the performance of the monitor and the
model it was monitoring, this becomes clear when looking into the impact of the
monitors in the accuracy of the model, where the increase of accuracy is very
similar for both the models and even when looking into the PPV Tables 5.6, 5.9
which also had very similar results. Where the values differ the most was in the
accuracy Tables 5.4, 5.7, but as we mentioned this difference is more due to the
difference in performance of the models then due to the difference in performance
of the monitors.

The clustering monitor does not work it makes gross mistakes in the datasets
where the errors appear near to the cluster centroid, which leads it to not being
able to improve the model’s accuracy for most datasets as can be seen in the
Tables 5.10 and 5.11. From this we can discard this approach as one that should be
used as it constantly underperformed. The same cannot be said about the other
monitors, even the classification boundary that had some problems for certain
datasets like the liver dataset, it had some where it was clearly the best. Which
means that despite the XGBoost monitor being the most consistent one it still
underperforms heavily for some cases like for the drowsiness detection dataset
and diabetes, this proves that there are no silver bullets, so the decision of which
monitor to use should still be analyzed for each particular model.

It is also worth noting the difference in performance between the monitors, the
classification boundary one is the slowest one because it is a search-based ap-
proach which means it is not as fast as a single shot execution of a support vector
machine.

Since we have monitors that can detect more than 50% of errors made by machine
learning model while having a reasonable PPV we can say that our monitors can
precisely detect incorrect predictions made by machine learning models, which
answers RQ1. Regarding the RQ2 we can say that out of the three different tech-
niques used the best one to use for a monitor is the machine learning approach
because it had the best averages in almost every category, regarding the best one
out of the machine learning monitors the one that provided the best results was
the XGBoost monitor, closely followed by the SVM monitor. The accuracy repre-
sents the probability that the model has of making an error occurring, since we
were able to increase it with the use of monitor it answers RQ3, to a greater ex-
tent we can say that the safety of the model was increased by using the monitor
since it made less errors. For the final research questions RQ4, we can say that the
enforcement of fail-silent behavior is doable as it was able to increase the overall
performance of the model, but a proper recovery solution can be arranged in or-
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der to limit the number of incorrect detections of the monitor, which will increase
the PPV of the monitors, and so improve the performance of the monitor itself.
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Conclusion

The increased use of machine learning models in critical systems, generates con-
cerns over the trust of the models since it can have a big direct impact on people.
To guarantee the existence of trustworthy AI there are wide range of requirements
that have to be fulfilled like ethical, lawful and technical requirements.

Most the research being done by the AI community is done in this technical side
of the requirements, however it is in a different area than the one we are tack-
ling. Their efforts are more for enhancing of the performance of machine learning
models because it is the biggest topic of the area as it involves new algorithms for
models, distillation learning, ensemble learning, and other techniques.

The technical requirements revolve around safety and reliability, which are both a
part of a bigger topic that is dependability. In our work, to achieve dependability
we decided to add error detection, which is a part of fault tolerance, through the
use of monitors.

We had the hypothesis that errors made by the model have patterns that allow
for prediction of whether a machine learning model will provide a correct result
or not.

To detect the errors made by the machine learning models we tested multiple
approaches with the best one overall being the XGBoost one, although the SVM
approach also provided decent results. The distance-based approaches were not
as successful with the classification boundary monitor being very inconsistent,
that is, it had brilliant results for some cases and was underwhelming for others,
the clustering was bad all around as the distance to the training set proved that it
did not have anything to do with the reason to why the model makes mistakes.

The results obtained were promising especially for the models that had better
accuracy, this is even more significant when taking into account that our moni-
tors are to be used mostly in critical environments where the performance of the
models has to be high.

Most importantly we were able to improve the accuracy of the model with the use
of monitors, which makes the model in itself safer and that was the main goal we
had. Another noteworthy achievement in this work was the enforcement of fail-
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silent behaviour on machine learning models which proved to be a decent but
flawed technique.

Our work brings us one step closer to having trustworthy AI has we were able
to add error detection to machine learning models, despite there being the possi-
bility for improvements it was an important advancement in this area which was
lacking in comparison with the rest of the field.

6.1 Future work

Since the best approach turned out to be the machine learning we can improve
our monitors by using some of the enhancing performance techniques that are
used to improve the performance of machine learning models.

We mainly focused in the area of error detection which means that for future
work, we can explore better recovery techniques. Although the enforcement of
fail-silent behaviour was a decent solution it can remove many correct predictions
which is not ideal, with a proper way of recovering from the errors we might be
able to limit the number of correct predictions suppressed, which will ultimately
improve the performance of this technique and the use of monitors for error de-
tection.

For the error recovery part, we can start by testing the possibilities of using en-
sembles, re-executing with a different input or having the input be executed in a
different model that is tailored to specific cases.

Past that it would also be interesting to test the impact of the monitors for more
complex models that are being used in the real world.
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Appendix B

Scientific Paper

Here is the scientific paper that is being written alongside this thesis, this paper
is still in preparation.
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Machine Learning Monitors
Bernardo Carvalho, Raul Barbosa, and ..., Life Fellow, IEEE

Abstract—Artificial Intelligence (AI) is becoming more sophisticated and more widely used in our day-to-day lives, from virtual
assistants like Alexa or Siri to self-driving cars. The increase in use and capabilities of AI leads to it being more frequently used in
critical systems, creating the need to have some type of system that can detect malfunctions. Despite all the research done to improve
the accuracy of AI, the problem of error detection is still yet to be resolved, so we will propose an approach to overcome this problem.
Our approach is based on the use of monitors to supervise the critical model and omit the errors made by the model. We will have
three different approaches for the monitor, from which will result five different monitors, one approach will be a Machine learning model
to detect errors, another will calculate the distance to the classification boundary, and the last one will use clustering to know which
points are covered by the training set. If this approach proves to be successful in detecting errors, it is expected that it starts to be used
in critical systems so that it can improve Machine Learning (ML) safety.s

Index Terms—Monitoring, Critical systems, Fault tolerance, Error detection, Selective Prediction, Artificial Intelligence, Trustworthy AI,
Machine Learning, ROC, True Positive Rate, False Positive Rate, Dependability

✦

1 INTRODUCTION

AI is a technology that is expanding rapidly, and it is be-
lieved that it will have an immense role in the future of hu-
manity and impact various industries, from the automotive
industry to the healthcare industry. Both these industries
have higher requirements of safety when compared to oth-
ers because they generally are used in critical environments
where a mistake might be deadly, which means that there is
a need to have trustworthy AI. According to the European
commission [1] there are three main components to achieve
trustworthy AI, these components are that they should
comply with all the applicable legislation and regulations,
even though there is not a lot legislation in place for AI it
will be developed as the technology advances, they should
be safe and robust from a technical side which is what we
are going to try to achieve in this thesis, lastly it also has the
need to be ethical. To increase the safety of machine learning
models we can improve the performance of the model, have
inherently safe design and runtime error detection.

The idea of monitoring machine learning models comes
from the need to detect errors made by the model, which
can be achieve through fault tolerance. According to [2],
fault tolerance is a mean to achieve dependability and it
has the goal of avoiding service failures when a fault occurs.
Fault tolerance is divided into two parts, error detection and
recovery which we are not going to be undertaking in this
paper. Error detection is also divided by two, concurrent
detection which mean during runtime and preemptive de-
tection which means detecting the error before it occurs.
There are multiple ways to introduce fault tolerance to
a system, we decided to have a monitor because it is a
specialized support system of fault tolerance.

There is already some work that has been done by the AI
community, by [3] and [4] which aims to limit the number of
errors made by machine learning models by having models
with a reject option also known as selective prediction which
makes the model not make prediction when it is uncertain
that it is correct.

2 RELATED WORK

Due to the increased use of AI, there has been an increase
in research to make it safer and more dependable. In this
chapter, we will go over what is dependability and how it
can improve the safety of machine learning models, we will
describe some of the causes of errors in machine learning
and what strategies to increase the safety of machine learn-
ing models are being used.

2.1 Dependability

The original definition of dependability is the ability to
deliver service that can justifiably be trusted [2]. There is
also another definition that says a system is dependable
when the system is capable of avoiding service failures that
are more frequent and severe than is acceptable. A common
way of putting it is that the system should be as dependable
as the trust placed in that system. Since dependability is
such a vast topic, it encloses availability, reliability, safety,
integrity, and maintainability. For this work, the most signif-
icant ones are reliability and safety because they guarantee
that the service operates correctly for a given time frame
and the absence of unexpected consequences for both users
and the environment, respectively. [2]

There are several ways of achieving dependability, such
as fault prevention, fault tolerance, fault removal, and fault
forecasting. Fault tolerance and fault prevention both strive
to deliver a service that can be trusted, so both of them are
needed to achieve trustworthy AI.

Fault tolerance aims to ensure that there are no service
failures in the presence of faults, which is carried out by
error detection and system recovery. Regarding the error
detection part there are two different ways to detect errors,
preemptive detection, which is detecting errors before an
error occurs, and concurrent detection which is detecting
errors while the system is operating. Since our goal is
to have runtime error detection, we will be focusing on
the latter. In order to have fault tolerance, we will use a
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specialized support system for fault tolerance, such as a
monitor [2].

Fail silent is according to [5] when the system only
produces correct results, if an error happens to occur, the
system does not output them. To enforce this behaviour
in machine learning there is a need to detect the errors
made by the model and then omit their output. This will
be particularly valuable in a critical environment because it
guarantees that every prediction of the model is correct, and
the ones that the model did not produce output might have
been wrong.

2.2 Causes of errors in machine learning
Even though this approach will not detect the root cause of
the errors made by models it is worth knowing what might
cause a model to make wrongful predictions. Some of the
causes are described below:

• Concept Drift: This is a problem that can occur in real-
time machine learning models, where there is hidden
context that is not necessarily express through features.
Changes in this hidden context have an impact in the
ability of the model to make predictions [6], a good
example for this can be a value prediction model for
houses, even if the features have all the specification of
a house the price of it is heavily dependent of what is
the state of the market, which is impacted by inflation,
new legislation, etc. There are two types of drift, it can
be sudden or gradual.

• Overfitting: Is when a model does not generalize well
from observed data to unseen data, this usually hap-
pens when the model memorizes all the data, including
noise on the training set, instead of learning the patterns
present in the data. This leads to the model performing
perfectly on the training set and performing poorly on
the testing set. [7]

• Underfitting: Is when a model fails to adequately cap-
ture the relationships between the variables in the data,
it is the opposite of what happens in an overfitted
model. The reasons for this happening might be the
wrong choice of model, incomplete training [8] or due
to data being imbalanced.

• Data quality: This is an overall problem that encap-
sulates many others, such as, missing features to rep-
resent the problem correctly, noise present in the data
this might be attribute noise or class noise which can
worsen the performance and efficiency of the model
[9], not enough training data and class imbalance which
might lead to underfitting.

• Adversarial attacks: They are small changes that have
the goal of altering the predictions of models which
can be problematic if done with malicious intent. There
are a wide range of adversarial attacks like one pixel
attack, fast gradient sign method or FGSSM, amongst
others [10].

2.3 Strategies for safe machine learning models
According to [11], there are three different strategies to
achieve safety in machine learning:

1) Inherently Safe Design, refers to techniques that are
used to design ML models that are error-free. Some

of the techniques that are used for this strategy are
model transparency, which is one the requirements
for trustworthy AI [1], design specification and model
verification and testing, such as formal methods.

2) Enhancing Performance and Robustness, refers to
techniques that improve the ML models performance,
and their robustness, such as robust network architec-
ture, robust training, and data sampling and augmen-
tation. This is the strategy that is most commonly used,
and it is an effective one because by creating ML models
that make less mistakes inherently makes them safer.

3) Runtime Error Detection, refers to techniques that can
detect errors made by the ML model at runtime. This
can prevent misclassifications, which leads to a safer
model. Some of the key approaches to detect these
errors are model uncertainty estimation, adversarial
attack detection, out-of-distribution detection and run-
time monitoring.

Out of these three strategies the one that is developed
the furthest is the enhancing performance and robustness.
This strategy envelops almost all the current research that
is being done in the field. This is also because it envelops a
lot of parts of the area, from new algorithms that have more
accuracy or are more efficient to adversarial training.

Despite all the techniques that are developed for in-
creasing the robustness and performance of models it is
unavoidable that there needs to exist runtime error detection
to guarantee that there are no mistakes done by machine
learning models. Since our approach is about detecting
errors at runtime by using monitors it is important to detail
what has been done in this area. The main approach for
runtime error detection is selective prediction also known
as model with reject option [3] [4], which has the goal
of limiting the number of errors made by a model by
not making a prediction when is a doubtful one, which
is what we are achieving through the enforcement of fail
silent behavior. The main methods used for runtime error
detection are the following according to [11]:

1) Prediction Uncertainty
Prediction uncertainty reports the confidence of the
prediction made by the model. For example, for deep
learning neural networks it is used the softmax proba-
bility of the predicted class to get this uncertainty value.
This can be problematic due to the overconfidence of
the model. To combat overly confident predictions of
the models it is used model calibration, which con-
sists of designing training methods so that the softmax
matches the probability of a correct prediction. Another
solution is uncertainty quantification that aims to de-
sign prediction confidence measure for ML models.

2) Out-of-Distribution Detection (OOD)
OOD pertains to points that are outliers or that are not
covered by the training of the model. The detection
is a binary classification task to classify the ones that
are covered by the training and the ones that are not.
Some of the techniques for the detection are distance-
based techniques, which measure the distance between
the input and the training set, classification-based de-
tection, which tries to encode normality and OOD
detection scores, and density-based detection, which
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creates a probability density function from the source
distribution to detect OOD.

3) Adversarial Detection and Guards
Adversarial Detection and guards have the goal of
guaranteeing correct predictions of the models even in
the case that there has been tampering with the input.
One of the simplest solutions to detect adversarial
attacks is to have a second model that is trained to
be an adversarial attack detector, there is also other
alternatives such as, statistical testing that compares the
distribution of adversarial examples and clean exam-
ples, test-time adversarial guard which aims to predict
correctly both the adversarial and normal inputs with
the use of pre-processing, or by applying transforma-
tion and randomness.

One of the most used approaches falls into the predic-
tion uncertainty method and is to have a reject option in a
model, which means that if the probability of the prediction
being correct is lower than a given threshold it abstains itself
from making the prediction. There has been experiments
realized to apply this behaviour in Deep neural networks by
[12] and have them embedded in SVM by [13], both these
experiments have been rather successful. One problem to
this approach is the high confidence of prediction by NN
even when the sample is not part of the training set, [14]
tried to mitigate this problem for ReLu NN by proposing
a robust optimization scheme through adversarial training,
however the results proved that this problem of overconfi-
dence cannot be avoid.

3 METHOD

3.1 Clustering

This approach has the goal to calculate the test coverage
of a given dataset and then check if the input points that
the model receives are covered by the test coverage or not,
this would allow us to detect if the prediction made by the
model is valid or dubious at run time.

Once we have our model, we reduce the dimensions of
the dataset to 3 using PCA. The clustering algorithm that
we decided to use for our approach is K-means, which
means that we need to decide how many clusters we will
have. To get this value we made use of the elbow method
through the use of the kneed library which simplifies the
method because it does not require the observation of the
graph to choose the optimal number of clusters. After this
step we can then create the different clusters and calculate
their centroids. Following this we calculate the euclidean
distance of all the training points to their respective centroid,
has can be seen in Figure 1.

Fig. 1: Clustering monitor scheme

Using the training points distance, we can calculate the
distance of all the different percentiles from 0% to 99%, these
will act as our thresholds for the creation of the ROC curves
that we will use to evaluate the performance of the monitors.
Lastly, we also calculate the distance of all the testing points
to their centroid, then we just need to check if they are inside
or outside the percentile, points inside are covered by the
test coverage and so are considered as negatives, and points
outside are not covered are considered as positives.

3.2 Machine learning
For this monitor, the idea is to use machine learning to create
a monitor that learns to evaluate the model that we desire.

To achieve this approach, we are going to use the same
features that were used for the creation of the model except
we will be changing the labeled values for the difference
between the prediction of the model and the ground truth.
This will allow us to have a monitor that is trained to detect
when the model is likely to make wrong predictions. We
will use two different learning algorithms for our monitor,
those being Support Vector Machines or SVM and Extreme
Gradient Boosting most commonly known as XGBoost.

To get the labels for the monitor we need to compare the
predictions of the model and the ground truth, the ones that
have the same value we assign the value of 0 and the ones
that differ we assign the value of 1, as can be seen in figure
2. In order to do this, we need to divide the dataset in three
parts, one will be used to train the model, another will be
used to train the monitor and the other will be used to test
both the model and the monitor. Since we need to divide
the dataset in three parts, we decided that the best split is
a 40/40/20 split. This will limit the data available, but it is
necessary so that we can train the monitor, because we need
to make predictions on unseen data with the model to create
the labels for the monitor.

Fig. 2: Machine learning monitor scheme

To get the ROC curve we will need to test different
thresholds so that we have multiple TPR and FPR, these
thresholds are going to be at which value does the monitor
consider a prediction as positive.

3.3 Distance to Classification Boundary
The goal of this monitor is to know if the input point is too
close to the classification boundary, which might correspond
to a misclassification. This technique is also a distance-based
technique and will act as a baseline for this work.

After creating and training the model we will once again
use PCA to facilitate the calculation to the classification
boundary. Afterward, we will need to check the minimum
distance of each point to the decision boundary that makes
the prediction changes its value. For example, if the original
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prediction is 1, what is the distance it needs to be to become
a 0. In order to make a prediction with the model we have
to make the inverse of the PCA to get back the features that
we reduced, this can be seen in the Figure 3.

Fig. 3: Classification boundary monitor scheme

For this approach we will calculate an approximation to
the classification boundary. We start by adding a step of 0.1
at the x-axis, then if the classification boundary is not found
we start by checking the vicinity from 0 to 2π with rotations
of π

4 , if we reach the x-axis once again and the boundary was
not found we increment the step and do this all over again
until finding the boundary. After finding the classification
boundary for each point, we then need to calculate all the
euclidian distances to the classification boundary of all our
training points so we can then calculate at which percentile
a value can be considered doubtful. After the calculation of
all the percentiles we get our thresholds. For this approach
any point inside the percentile, which means closer to the
boundary, is a positive.

3.4 Monitor Metrics
For evaluating our monitors, we will make use of some of
the already established metrics in the AI community which,
according to Stephen Marsland [15] and to [16], are:

• TPR, or recall, or sensitivity, is the ratio of the number
of correct positives (TP) out of the ones classified as
positive.

TPR =
TP

TP + FN

• FPR, is the ratio of the number of incorrect negative
classifications FP out of the ones that are classified as
negative.

FPR =
FP

FP + TN

• Accuracy, is the sum of correct classifications divided
by all the classifications made, although it is not the
best metric it is a simple metric that helps showing the
performance of the monitor in a broader range.

Accuracy =
TP + TN

TP + FN + TN + FP

• Positive Predictive value, or PPV, is the ratio of correct
positives out of the ones that are classified as positive.

PPV =
TP

TP + FP

The ROC curve is useful to compare the performance
of the monitors against each other. We will use multiple
thresholds for each monitor so that we have multiple points
and so can create the curve. For each threshold we will

calculate the TPR, which is the y-axis, and the FPR, which is
the x-axis. After this step we can calculate the AUC which
gives insight into the performance of the monitor. If the
AUC is 0.5 it is as good as a random guess, if it is 1.0 then it
is the perfect classifier and if it is 0.0 it is an anti-classifier.

4 EXPERIMENTAL EVALUATION

This chapter will show the results of all the monitors for
all nine datasets and compare each monitors performance.
We will start by detailing the data that was used, then we
explain the methodology used for the experiences, follow by
the results such as the AUC and ROC curves, then the met-
rics we mentioned before and comparing the performance
of the model with and without a monitor.

4.1 Datasets

Here we have a table that shows the accuracy of the model
of the various datasets that will be used for this paper.

Dataset SVM model accuracy NN model accuracy
Breast cancer 0.947 0.991

Drug classification 0.7 0.8
Orthopedic patients 0.806 0.823

Liver disease 0.681 0.681
Heart failure 0.875 0.859

Diabetes detection 0.766 0.753
Weather prediction 0.741 0.795

Milk quality 0.92 0.967
Risk stratify 0.894 0.91

TABLE 1: Accuracy of models across all datasets.

Most of these datasets are from a healthcare environment
with the exception of, the weather prediction and also the
milk quality dataset. All of the datasets were obtained from
Kaggle, with the exception of the risk stratify. Detailing them
a bit further we have:

1) The breast cancer dataset [17] has 569 records (357
benign 212 malignant), it has two classes, so it is a
binary classification problem those being benign and
malignant, and the goal is to assign the tumor to one of
the classes by using features that were obtain from an
image of a breast mass.

2) The drug classification dataset [18] has 200 records (91
druguY 23 drugA 16 drugB 16 drugC 54 drugX), it is a
multi-classification problem because it has five classes,
one for each of the different type of drug, and the goal
is to assign the correct drug to the patient by analyzing
their blood results.

3) The orthopedic patients dataset [19] has 310 records
(60 Hernia 100 Normal 150 Spondylolisthesis), it has
three different classes, them being the type of condition
that the patients have, Spondylolisthesis, Normal or
Hernia, and the goal is to classify the patient’s through
six biomechanical attributes.

4) The liver disease dataset [20] has 579 records (414
negatives 165 positives), the goal is to detect if a patient
has a liver disease or not, so it is a binary classification
problem, and it achieves this classification by analyzing
multiple chemical compounds present in the human
body.
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5) The heart failure dataset [21] has 918 records (410
negatives 508 positives), it has two classes which are 1 if
the patient has a heart disease and 0 if it is normal, this
is obtain with multiple features such as ecg, cholesterol
and other values.

6) The diabetes detection dataset [22] has 768 records (500
negatives 268 positives), it has two classes that are 1 if
the patient has diabetes and 0 if they do not, this has
the goal to detect if a female has diabetes by analyzing
the number of pregnancies, blood pressure and more.

7) The weather prediction dataset [23] has 1461 records
(53 drizzle 101 fog 641 rain 26 snow 640 sun), and it
has five different classes which represent the different
types of weather, drizzle, rain, sun, snow and fog, the
classifications are based on the wind, the maximum
temperature and other values.

8) The milk quality dataset [24] has 1059 records (256 high
429 low 374 medium), and it has three types of classes,
which are the grade of the milk, it can be low, medium
or high, this classification is based on observations such
as pH, color, odor and others.

9) The risk stratify dataset has 2400 records (1148 0s 1252
1s), it has two different classes, which are 1 if the patient
has Acute coronary syndrome or 0 if does not, this
classification is based on observations such as age, heart
rate, etc.

4.2 Experimental methodology
To make sure that the experimentation is fair we decided to
use the same train-test spilt for every dataset and monitor
to guarantee that the training data and the test data of the
monitor is always the same. This cause us to divide the data
into a split of 40/40/20, we need to divide it in three parts
because of the machine learning monitors. The first 40 %
is used for training the model, the second one is to train
the monitor for the machine learning approaches, for the
other approaches these 40% are ignored because they are
not needed for training, the last 20% are for testing both the
model and the monitor.

4.3 Results
In this section, it will be presented the results of all the
different monitors for all the different datasets. We will start
by showing their AUC, followed by their ROC curves, then
we will have a table showing the monitors accuracy, TPR
or sensitivity and PPV. We will have one final table that
compares the performance of the model with and without
the monitors.

As can be seen in Table 2 the machine learning ap-
proaches are the ones that provide the best results for a
SVM model, both on average and also because they are
well ahead of the other approaches in all but 3 datasets,
those being the breast cancer, heart failure and the diabetes
detection, which has the classification boundary as the best
one. The boundary monitor has a lot of variability when
compared to the machine learning ones, so despite being
the best for those three datasets it has a significantly worst
average, this also because it has an AUC of 0.0 for the liver
disease dataset, which means the monitor never classified
anything as a positive, so the TPR is zero, this happened

because the model classified everything as a negative so
there is no classification boundary, this can be viewed as
a limitation of this approach. The clustering monitor is con-
sistently the poorest performing monitor for this model, the
mean is even worst then a random guess, because for some
datasets the errors arise near to the centroids of clusters,
which means that the indicator that we used that was the
proximity to the training centroid is poor for some cases,
and at its best it is only a reasonable indicator.

As can be seen in the Table 3 the Boundary, SVM and
XGBoost are the ones that provide the best results for a
NN model. Both SVM and the Boundary monitor have
a greater variability than XGBoost, there are three cases
where the SVM monitor performs poorly and there is two
where the Boundary performs poorly, though this is an
improvement for the boundary monitor when compared
to how it performed with the other model. The XGBoost
monitor is still the most consistent one being the one that
has the least variability, which explains its higher average.
It is also relevant to note that the difference of performance
between the SVM and XGBoost monitors is significantly
bigger when compared to the previous table. The clustering
monitor, despite improving the performance for the NN
model, still has poor performance when compared to the
other ones.

In the Figure 4 we have the full picture to further help us
understand the values of AUC that we had in the previous
tables, as we can see the clustering does not work at all, with
ROC curve being lower then y = x, for 4b and 4d, which
is the same as a random guess, this would suggest that
perhaps the labels where switch but if we did that then we
would lose the performance in the case where it performs
reasonably like 4a, we also do not have any way of telling
when they should be inverted or not, only after calculating
the AUC can we know if they should be inverted or not.

It is also visible that the green (SVM) and red (XGBoost)
lines curves are constantly on the top which proves its high
average in the Table 2. Although the blue (Boundary) line
also is sometimes on top like for 4a, it has very negative
performances like for the liver dataset 4d, where there is
no line because it cannot detect a single error, and also
underperforms for the weather prediction dataset 4h and
the drug classification dataset 4b. The clustering is always
below the monitors with the exception of the heart failure
dataset.

Regarding the ROC curves for the NN model, Figure 5,
we have a similar results, however there are some differ-
ences. We can see that there is more variability with the
SVM approach, it is rather evident for the breast cancer
dataset 5a. It is also notable that the consistency of the
classification boundary is much better in this case being at
its best almost the perfect classifier 5a and even at its worst
5i it is still similar to the other monitors. Despite the slight
improvement of the clustering method, it still is the worst
one in almost all datasets with the exception of the 5a and
5i.

Now taking a look to the metrics of our monitor for a
particular configuration. We decided upon the configuration
with the highest TPR while limiting the FPR to 15 % or
less, this is what we though was reasonable for a real world
scenario, of course this is dependent on the scenario and
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(a) Breast cancer
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(b) Drug classification
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(c) Orthopedic patients

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(T

PR
)

Classification Boundary
Clustering
Support Vector Machine
XGBoost

(d) Liver disease
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(e) Heart failure
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(f) Diabetes detection
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(g) Weather prediction
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(h) Milk quality
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(i) Risk stratify

Fig. 4: ROC Curves of all four monitors, for the SVM model, for all datasets
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(a) Breast cancer
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(b) Drug classification
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(c) Orthopedic patients
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(d) Liver disease
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(e) Heart failure
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(f) Diabetes detection
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(g) Weather prediction
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(h) Milk quality
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(i) Risk stratify

Fig. 5: ROC Curves of all four monitors, for the NN model, for all datasets
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Dataset AUC of Boundary monitor AUC of Clustering monitor AUC of SVM monitor AUC of XGBoost monitor
Breast cancer 0.977 0.603 0.75 0.665

Drug classification 0.496 0.424 0.708 0.708
Orthopedic patients 0.733 0.482 0.79 0.818

Liver disease 0.0 0.457 0.688 0.716
Heart failure 0.768 0.714 0.747 0.664

Diabetes detection 0.681 0.385 0.541 0.58
Weather prediction 0.586 0.542 0.752 0.816

Milk quality 0.747 0.495 0.957 0.922
Risk stratify 0.543 0.462 0.645 0.56

Mean 0.615 0.507 0.731 0.717

TABLE 2: Area under the curve (AUC) of all four monitors, for the SVM model, for all datasets.

Dataset AUC of Boundary monitor AUC of Clustering monitor AUC of SVM monitor AUC of XGBoost monitor
Breast cancer 0.987 0.854 0.389 0.876

Drug classification 0.582 0.309 0.625 0.797
Orthopedic patients 0.694 0.447 0.802 0.779

Liver disease 0.67 0.464 0.693 0.674
Heart failure 0.775 0.618 0.771 0.754

Diabetes detection 0.694 0.423 0.594 0.626
Weather prediction 0.657 0.575 0.701 0.791

Milk quality 0.829 0.561 0.957 0.939
Risk stratify 0.528 0.462 0.408 0.631

Mean 0.713 0.524 0.66 0.763

TABLE 3: Area under the curve (AUC) of all four monitors, for the NN model, for all datasets.

the urgency of catching these errors, if it is paramount to
catch every single error than it is probably worth to increase
the FPR which will lead to more mistakes caught by the
monitor, at the cost of itself also making more mistakes,
and so lowering the PPV of the monitor. We will show the
accuracy, TPR or sensitivity, of all the monitors and we will
also compare the accuracy of the model with and without
monitors.

In both Tables 4 and 5 we have the accuracy, TPR or
sensitivity, and Positive Predictive value (PPV) of all our
monitors for each single dataset. Regarding accuracy it is
important to mention that it is heavily influenced by the
accuracy of the model, since if the monitor does not find
any error its accuracy is going to be the exact same as the
model, with this mind it is not abnormal that the accuracy of
the monitor is lower than the model, because to find errors
the monitor makes some of his own which means that the
accuracy of the monitor will only be superior to the models
if the PPV is greater than 0.5.

In the Table 4 we can see that in terms of accuracy the
monitors are all rather close but with SVM and XGBoost
comfortably in front. When it comes to sensitivity the dif-
ference become more apparent, this being the metric that
we want to see be the highest because it translates to the
percentage of errors that the monitor can detect. Both the
machine learning monitors have similar performance with
the best being SVM, detecting on average almost 45% of the
errors made by the model. We can still see the same trend
with the boundary monitor, that has excellent performance
for the Breast cancer dataset with 1.0 of TPR but then there
are datasets with TPR of 0.0. The clustering monitor can
only detect around 11% of the errors made by the model,
which is very poor, and clearly tells us that it has no ability
of detecting errors.

It is necessary for us to have the PPV so we can evaluate
if the monitor is detecting errors because it has ability to
do so or if it is sheer luck. Looking at the PPV it becomes

obvious that the boundary and clustering monitor are not
good because most of the positives are incorrect. The ma-
chine learning monitors are a more interesting in that aspect
because almost 50% of their positives were indeed an error
made by the model in the case of the XGBoost monitor,
this despite not being the highest value becomes interesting
when in conjunction with a recovery process.

Regarding Table 5, the results are very similar to the
previous table. However, there are some notable differences
and that is the fact that the XGBoost monitor performs
significantly better when compare to the SVM, this is rather
evident in the breast cancer dataset where the XGBoost
monitor can detect all errors and the SVM cannot detect
a single one, and for the drug classification dataset where it
has a TPR of 0.625 while the SVM only has a TPR of 0.25,
this leads to it having a much better average of detecting
errors when compare to the others, managing to detect
more then 52% of errors. In regard to accuracy the SVM
monitor is the best closely followed by the XGBoost monitor.
The clustering monitor and classification boundary monitor
have very similar performance when compared with the
other model. The PPV for the NN model is slightly worst
overall to the PPV for the SVM model, in particular for the
XGBoost monitor, we still have the boundary and clustering
one performing the worst and the other two being better
and rather close. The best monitor when it comes to PPV is
the SVM monitor with an average of 0.426.

For the Tables 6 and 7, we used the same configuration
for the monitors that we used when we limited the FPR
to 15%, this means that the configuration might not be
the one that provides the best accuracy for a particular
monitor. Since we are omitting the output of the monitors
positives for the calculation of accuracy, we removed every
positive caught by the monitor, that means that the true
positives were subtracted to the incorrect model predictions
and the false positives were subtracted to the correct model
predictions, this way we are being fair by not counting the
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Dataset
Monitor Boundary Clustering SVM XGBoost

Acc TPR PPV Acc TPR PPV Acc TPR PPV Acc TPR PPV
Breast cancer 0.961 1.0 0.6 0.947 0.0 0 0.904 0.333 0.222 0.93 0.333 0.333

Drug classification 0.7 0.0 0 0.65 0.167 0.333 0.8 0.583 0.7 0.8 0.583 0.7
Orthopedic patients 0.758 0.333 0.364 0.806 0.0 0 0.871 0.667 0.667 0.855 0.583 0.636

Liver disease 0.681 0.0 0 0.653 0.051 0.25 0.655 0.216 0.421 0.681 0.27 0.5
Heart failure 0.821 0.565 0.361 0.788 0.348 0.25 0.804 0.478 0.314 0.788 0.304 0.233

Diabetes detection 0.721 0.278 0.37 0.71 0.053 0.133 0.695 0.139 0.238 0.701 0.111 0.222
Weather prediction 0.693 0.211 0.348 0.676 0.145 0.268 0.744 0.408 0.508 0.799 0.632 0.608

Milk quality 0.92 0.0 0 0.792 0.118 0.065 0.962 0.941 0.696 0.991 0.882 1.0
Risk stratify 0.808 0.176 0.153 0.775 0.137 0.099 0.825 0.255 0.22 0.806 0.235 0.182

Mean 0.785 0.285 0.244 0.755 0.113 0.155 0.807 0.447 0.443 0.817 0.437 0.491

TABLE 4: Metrics of all monitors, for SVM model, when FPR less or equal to 15%

Dataset
Monitor Boundary Clustering SVM XGBoost

Acc TPR PPV Acc TPR PPV Acc TPR PPV Acc TPR PPV
Breast cancer 0.98 1.0 0.333 0.991 0.0 0 0.991 0.0 0 0.877 1.0 0.067

Drug classification 0.8 0.0 0 0.8 0.0 0 0.825 0.25 0.667 0.85 0.625 0.625
Orthopedic patients 0.774 0.364 0.364 0.823 0.0 0 0.855 0.636 0.583 0.839 0.545 0.545

Liver disease 0.655 0.216 0.421 0.647 0.054 0.25 0.672 0.27 0.476 0.698 0.351 0.542
Heart failure 0.815 0.538 0.389 0.777 0.269 0.241 0.804 0.423 0.344 0.821 0.385 0.37

Diabetes detection 0.701 0.079 0.214 0.695 0.079 0.2 0.701 0.158 0.3 0.76 0.184 0.538
Weather prediction 0.751 0.2 0.324 0.724 0.167 0.244 0.747 0.317 0.365 0.778 0.483 0.46

Milk quality 0.967 0.0 0 0.84 0.286 0.065 0.995 0.857 1.0 0.901 0.857 0.231
Risk stratify 0.817 0.209 0.143 0.792 0.163 0.099 0.81 0.14 0.1 0.812 0.279 0.169

Mean 0.807 0.29 0.243 0.787 0.113 0.122 0.822 0.339 0.426 0.815 0.523 0.394

TABLE 5: Metrics of all monitors, for NN model, when FPR less or equal to 15%

positives as neither good nor bad.
As we can see in Table 6 for the SVM model we increased

the accuracy of the model for most datasets, with the ones
that had the biggest increase being the drug classification
and the weather prediction with the XGBoost monitor. The
values that are bold are the ones that have the best accuracy.
There were some other cases that the monitor could not
find any errors, so the accuracy stayed the same, and there
were also a few cases that the accuracy was worse than
the original one, this mostly happen with the clustering
monitor. From this we can prove the trend we already saw
in the other results that is that both the XGBoost and SVM
monitor are the ones that prove improve the model the
most, we can also see that there are some applications where
the boundary monitor is the best one, however it is not as
flexible as the other two.

As shown in the Table 7 the accuracy increased with
the addition of the XGBoost monitor for every dataset,
the biggest increase in performance was once again in the
drug classification dataset just like for the SVM model. The
other machine learning monitors where able to improve the
accuracy in some cases like for the drowsiness dataset and
the heart failure, however they were not able to improve in
a few datasets such as the breast cancer one. The boundary
monitor despite having a case where he is the best there are
some cases like for the diabetes dataset where it hinders the
accuracy of the model. Even worst results can be observed
when it comes to the clustering monitor because it rarely
improves the accuracy and can actually reduce it.

Both these tables have to be taken with a grain of salt
because since we are removing all the positives that result
from the monitor, we can be removing a lot of correct
predictions from the model if we do not keep in mind the
PPV. As can be seen when taking a look into the breast
cancer, even though the XGBoost and boundary monitor
reached the same accuracy the boundary monitor is much

better for this approach as it has a greater PPV of 0.333 when
compared to a PPV of 0.067 for the XGBoost.

4.4 Discussion and observations

Starting with the observations we can see that there is a
connection between the performance of the monitor and the
performance of the model, the better the model the better
the monitor is at detecting the errors made, this is especially
evident when looking at the TPR for the breast cancer and
milk quality dataset where some monitors were able to
detect the majority of errors. The reverse also is applicable
as the models that have the worst accuracy like the liver
disease and diabetes dataset are the ones that have the
lowest TPR across all the different monitors. There was no
noticeable correlation between the problem being multiclass
or binary and the performance the monitor.

We did not notice any relation between the performance
of the monitor and the model it was monitoring, this be-
comes clear when looking into the impact of the monitors
in the accuracy of the model, where the increase of accuracy
is very similar for both the models and even when looking
into the PPV that can be seen in the Tables 4, 5 they also had
very similar results. Where the values differ the most was
in the accuracy, but as we mentioned this difference is more
due to the difference in performance of the models then due
to the difference in performance of the monitors.

The clustering monitor does not work it makes gross
mistakes in the datasets where the errors appear near to the
cluster centroid, which leads it to not being able to improve
the model’s accuracy for most datasets as can be seen in the
Tables 6 and 7. From this we can discard this approach as
one that should be used as it constantly underperformed.
The same cannot be said about the other monitors, even the
classification boundary that had some problems for certain
datasets like the liver dataset, it had some where it was
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Dataset
Monitor Original XGBoost SVM Boundary Clustering

Accuracy Accuracy Accuracy Accuracy Accuracy
Breast cancer 0.947 0.963 0.962 1.0 0.947

Drug classification 0.7 0.833 0.833 0.7 0.706
Orthopedic patients 0.806 0.902 0.92 0.843 0.806

Liver disease 0.681 0.719 0.701 0.681 0.676
Heart failure 0.875 0.896 0.919 0.932 0.901

Diabetes detection 0.766 0.765 0.767 0.795 0.755
Weather prediction 0.741 0.869 0.806 0.757 0.742

Milk quality 0.92 0.99 0.995 0.92 0.917
Risk stratify 0.894 0.906 0.91 0.9 0.892

Mean differential —– +0.057 +0.054 +0.022 +0.002

TABLE 6: Accuracy comparison of SVM model with and without monitors across all datasets, when FPR less or equal to
15%

Dataset
Monitor Original XGBoost SVM Boundary Clustering

Accuracy Accuracy Accuracy Accuracy Accuracy
Breast cancer 0.991 1.0 0.991 1.0 0.991

Drug classification 0.8 0.906 0.838 0.8 0.8
Orthopedic patients 0.823 0.902 0.92 0.863 0.823

Liver disease 0.681 0.739 0.716 0.701 0.676
Heart failure 0.859 0.898 0.901 0.919 0.877

Diabetes detection 0.753 0.78 0.761 0.75 0.748
Weather prediction 0.795 0.865 0.83 0.812 0.802

Milk quality 0.967 0.995 0.995 0.967 0.972
Risk stratify 0.91 0.924 0.912 0.918 0.912

Mean differential —– +0.048 +0.032 +0.017 +0.003

TABLE 7: Accuracy comparison of NN model with and without monitors across all datasets, when FPR less or equal to
15%

clearly the best. Which means that despite the XGBoost
monitor being the most consistent one it still underperforms
heavily for some cases like for the drowsiness detection
dataset and diabetes, this proves that there are no silver
bullets, so the decision of which monitor to use should still
be analyzed for each particular model.

It is also worth noting the difference in performance
between the monitors, classification boundary one is the
slowest one because it is a search-based approach which
means it is not as fast as a single shot execution of a support
vector machine.

5 CONCLUSION

The increased use of machine learning models in critical
systems, generates concerns over the trust of the models
since it can have a big direct impact on people. To guarantee
the existence of trustworthy AI there are wide range of
requirements that have to be fulfilled like ethical, lawful and
technical requirements.

Most the research being done by the AI community is
done in this technical side of the requirements, however it is
in a different area than the one we are tackling. Their efforts
are more for enhancing of the performance of machine
learning models because it is the biggest topic of the area as
it involves new algorithms for models, distillation learning,
ensemble learning, and other techniques.

The technical requirements revolve around safety and
reliability, which are both a part of a bigger topic that is
dependability. In our work, to achieve dependability we
decided to add error detection, which is a part of fault
tolerance, through the use of monitors.

We had the hypothesis that errors made by the model
have patterns that allow for prediction of whether a machine
learning model will provide a correct result or not.

To detect the errors made by the machine learning
models we tested multiple approaches with the best one
overall being the XGBoost one, although the SVM monitor
also provided decent results. The distance-based approaches
were not as successful with the classification boundary
monitor being very inconsistent, that is, it had brilliant
results for some cases and was underwhelming for others,
the clustering was bad all around as the distance to the
training set proved that it did not have anything to do with
the reason to why the model makes mistakes.

The results obtained were promising especially for the
models that had better accuracy, this is even more significant
when taking into account that our monitors are to be used
mostly in critical environments where the performance of
the models has to be high.

Most importantly we were able to improve the accuracy
of the model with the use of monitors, which makes the
model in itself safer and that was the main goal we had.
Another noteworthy achievement in this work was the
enforcement of fail-silent behaviour on machine learning
models which proved to be a decent but flawed technique.

Our work brings us one step closer to having trust-
worthy AI has we were able to add error detection to
machine learning models, despite there being the possibility
for improvements it was an important advancement in this
area which was lacking in comparison with the rest of the
field.

5.1 Future work

Since the best approach turned out to be the machine
learning we can improve our monitors by using some of the
enhancing performance techniques that are used to improve
the performance of machine learning models.
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We mainly focused in the area of error detection which
means that for future work, we can explore better recov-
ery techniques. Although the enforcement of fail-silent be-
haviour was a decent solution it can remove many correct
predictions which is not ideal, with a proper way of recov-
ering from the errors we might be able to limit the number
of correct predictions suppressed, which will ultimately
improve the performance of this technique and the use of
monitors for error detection.

For the error recovery part, we can start by testing
the possibilities of using ensembles, re-executing with a
different input or having the input be executed in a different
model that is tailored to specific cases.

Past that it would also be interesting to test the impact of
the monitors for more complex models that are being used
in the real-world.
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