
Rafael Lopes Belo Baptista

FRAMEDROP - MOBILE CLIENT

Dissertation in the context of the Master's in Informatics Engineering,
specialization in Information Systems, advised by Professor Frederico Cerveira
and presented to the Department of Informatics Engineering of the Faculty of

Sciences and Technology of the University of Coimbra.

July of 2023

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

Rafael Lopes Belo Baptista

Framedrop - Mobile client

Dissertation in the context of the Master's in Informatics Engineering, specialization
in Information Systems, advised by Professor Frederico Cerveira and presented to

the Department of Informatics Engineering of the Faculty of Sciences and
Technology of the University of Coimbra.

July of 2023

Acknowledgements

First and foremost, I would like to express my deepest gratitude and appreciation to

Professor Frederico Cerveira and Pink Room’s CEO Mário Gago for their valuable insights,

constructive feedback, and dedication to the quality of this work. A huge thank you to my

colleagues from Pink Room for their support and mentorship throughout the project, and to

my colleagues from Framedrop for always being available to contribute positively to the

success of this work. Your kindness and passion for the profession was very important to

motivate me to reach my goals.

To my family, I owe a debt of gratitude for their unconditional love, encouragement,

and steadfast belief in my abilities. My father's example of sacrifice has taught me the

importance of hard work and perseverance in achieving success. My mother's passion for her

own pursuits has inspired me to find meaning and motivation in my work, even in the face of

challenges. And to my sister, who has shown me that knowledge is a powerful tool on the

path to success, I am grateful for the reminder to never stop learning and growing.

To my course friends that I own a lot, for making my journey through academic life

incredible. Special thanks to Nuno Tiago, João Carnide, and Beatriz Ribeiro, who have been

by my side from the beginning, offering genuine friendship and unwavering support. To

Bernardo, Faria, Filipe, Gonçalo, Miguel, and Santana, thank you for the wonderful

memories and the camaraderie that has made my academic life unforgettable. I would also

like to acknowledge the support of my dear home friends Daniel Alves e Beatriz Mendes for

the moments of comfort, incessant help and care.

I humbly extend my deepest appreciation to my girlfriend, Lúcia Santos, for her

incomparable support and encouragement throughout the completion of this report. Her

kindness and understanding have been a constant source of motivation, pushing me to strive

for excellence. From all the valuable insights and suggestions, her contributions have

significantly enhanced the quality of this work. I am incredibly grateful for her presence in

my life, and I cannot thank her enough for being my shelter during this process. Her patience,

understanding, and belief in me have truly made a difference, and I am fortunate to have her

by my side.

For all that marked my journey positively, I really appreciate your presence. These

past years have been amazing!

Ⅰ

Ⅱ

Abstract

Today's entertainment comes in all kinds of forms and segments, where finding the

appropriate content can be challenging since it is dispersed in a tangled, ever-growing chaos

of information. The goal of this dissertation is to create an Android mobile client application

that focuses on providing entertainment through gaming content and promoting the

interactions between gaming communities, which enables content creators to grow and brings

fans closer together.

The proposed mobile application serves as a comprehensive solution, considering

market trends and business factors while emphasizing the consumption of short-form gaming

clips. The research conducted for this project encompassed a thorough analysis of market

competitors and substitutes, along with a study of state-of-the-art architectural patterns. These

findings guided the decision-making process, including the selection of video protocols and

other technological considerations, which were crucial during the subsequent development

phase.

The preparatory study for the development of this mobile application focused on the

analysis of market competitors and substitutes, as well as a state of the art of the architectural

patterns. Based on these findings, a decision was made regarding video protocols and other

technological concerns to be used during the development phase. The development proceeded

according to the plan outlined in this report, and presents the results of the implementation,

testing and other processes that were conducted such as usability tests and optimization

processes. The application's performance, functionality, and user experience were all taken

into account, ensuring a well-rounded and refined end product.

Keywords

Entertainment, gaming, software development, mobile development, android application.

Ⅲ

Resumo

Atualmente, o entretenimento surge em todo o tipo de formas e segmentos, onde

encontrar o conteúdo apropriado pode ser um desafio, uma vez que está disperso num total

caos de informação. O objetivo desta dissertação é criar uma aplicação cliente móvel que se

concentre em fornecer entretenimento de conteúdos de jogos e promover as interações entre

as suas comunidades, o que permite que os criadores de conteúdos cresçam e aproximem os

fãs.

A aplicação móvel proposta serve como uma solução abrangente, tendo em conta as

tendências do mercado e os fatores de negócio, ao mesmo tempo que enfatiza o consumo de

clips de jogos de curta duração. A investigação realizada para este projeto englobou uma

análise exaustiva dos concorrentes e substitutos do mercado, bem como um estudo dos

padrões de arquitetura mais avançados. Estas conclusões orientaram o processo de tomada de

decisões, incluindo a seleção de protocolos de vídeo e outras considerações tecnológicas, que

foram cruciais durante a fase de desenvolvimento subsequente.

O estudo preparatório para o desenvolvimento desta aplicação móvel centrou-se na

análise dos competidores e substitutos do mercado, bem como num estado da arte dos

padrões de arquitetura. Com base nestas conclusões, foi tomada uma decisão relativamente

aos protocolos de vídeo e outras preocupações tecnológicas a serem utilizadas durante a fase

de desenvolvimento. O desenvolvimento decorreu conforme o plano delineado neste relatório

e apresenta os resultados da implementação, dos testes e de outros processos que foram

realizados, como os testes de usabilidade e os processos de otimização. O desempenho, a

funcionalidade e a experiência do utilizador da aplicação foram todos tidos em conta,

garantindo um produto final completo e refinado.

Palavras-chave

Entretenimento, jogos, desenvolvimento de software, desenvolvimento mobile, aplicação

android.

Ⅳ

Contents

Chapter 1 Introduction 1
1.1. Motivation 1
1.2. Pink Room 3
1.3. Framedrop 3
1.4. Objectives 3
1.5. Document Structure 4

Chapter 2 State of the Art 5
2.1 Gaming Spectator Culture 5
2.2 Market Competitors 6

2.2.1. Market Analysis 6
2.2.2. Feature Analysis 7

2.3 Platform Analysis and Mobile Application 8
2.4 Android App Architecture 10

2.4.1. Android App Components 11
2.4.2. Architectural Principles 11
2.4.3. Architectural Patterns 13
2.4.4. Summary 17

2.5 Technological Research 19
2.5.1. Authentication with Twitch 19
2.5.2. Video Protocol and Media Player 21
2.5.3. Infinite Clip Scroll 26
2.5.4. Payments 26

2.6 CI/CD 28
2.6.1. Continuous Integration (CI) 28
2.6.2. Continuous Deployment (CD) 31

Chapter 3 Approach 33
3.1 Sprints 34
3.2 Scrum Events 35

3.2.1. Sprint Review and Showcase 35
3.2.2. Sprint Planning and Retrospective 35
3.2.3. Daily 36

3.3 Requirements definition methodology 36
3.4 Estimation 37
3.5 Development Process 38
3.6 Code Review and Quality Assurance 39
3.7 Delivery and Deployment 41
3.8 Risks and Mitigation 41

Ⅴ

3.8.1. Threshold of Success 41
3.8.2. Risk Analysis 43
3.8.3. Mitigation Plan 45

Chapter 4 Requirements 47
4.1 Out of Scope 47
4.2 Assumptions 48
4.3 Constraints 48
4.4 Non-Functional Requirements 48
4.5 Functional Requirements 52
4.6 Wireframing and Prototyping 53

Chapter 5 Architecture 55
5.1 System Context 56
5.2 Containers 57
5.3 Components 57

Chapter 6 Planning 59
6.1 High Level Plan 59

6.1.1. First Semester 59
6.1.2. Second Semester 60

6.2 Sprint Level Plan 61
Chapter 7 Results 65

7.1 Development 65
7.1.1. Application Showcase 66
7.1.2. Major Challenges 68

7.2 Tests and Validation 71
7.2.1. Unit Tests 72
7.2.2. Instrumentation Tests 73
7.2.3. Quality Assurance 74

7.3 Usability Test 75
7.3.1. Preparation 76
7.3.2. Results 77

7.4 App Optimization 79
7.4.1. Macrobenchmarking the Base Code 79
7.4.2. Generating a Baseline Profile 80
7.4.3. Optimizing the Views 80
7.4.4. Optimizing the ExoPlayer Implementation 80
7.4.5. Results 81

Chapter 8 Conclusion and Future Work 85
References 87

Ⅵ

Acronyms

AAB - Android App Bundle

AOT - Ahead-of-Time

ART - Android Runtime

API - Application Programming Interface

APK - Android Application Pack

CSS - Cascading Style Sheets

CPU - Central Processing Unit

GPS - Global Positioning System

GPU - Graphics Processing Unit

HTML - HyperText Markup Language

IOS - IDevice Operating System

JIT - Just-In-Time

JS - JavaScript

KMM - Kotlin Multiplatform Mobile

MVC - Model-View-Controller

MVI - Model-View-Intent

MVP - Model-View-Presenter

MVP - Minimum Viable Product

MVVM - Model-View-ViewModel

NFR - Non-Functional Requirement

OHA - Open Handset Alliance

PGO - Profile Guided Optimization

PO - Product Owner

QA - Quality Assurance

SDLC - Software Development Life Cycle

SM - Scrum Master

SSoT - Single Source of True

USB - Universal Serial Bus

UX - User Experience

Ⅶ

Ⅷ

List of Figures

Figure 1. MVC architecture diagram 13
Figure 2. MVP architecture diagram 14
Figure 3. MVI architecture diagram 15
Figure 4. MVVM architecture diagram 16
Figure 5. Framedrop’s mobile app Authentication with Twitch Sequence Diagram 20
Figure 6. Media Player and ExoPlayer layer of implementation [81] 25
Figure 7. Payment sequence diagram for token and clip payment. 26
Figure 8. Continuous Integration Pipeline 29
Figure 9. Continuous Integration flow diagram 31
Figure 10. Deployment flow diagram 31
Figure 11. Notion board with app progress (part 1) 33
Figure 12. Notion board with app progress (part 2) 33
Figure 13. Example of a user story structure from clip feed menu 36
Figure 14. Feature branch behavior example 38
Figure 15. Code Reviewers and Assignees 38
Figure 16. Example of a Pull Request 38
Figure 17. Tridimensional Matrix to measure risk priority 44
Figure 18. System context layer 55
Figure 19. Containers layer 55
Figure 20. Components layer 56
Figure 21. Real task plan for the first semester 58
Figure 22. Real task plan for the second semester 59
Figure 23. Product Burndown Chart artifact 61
Figure 24. Product Burndown Chart diagram for the first semester 61
Figure 25. Product Burndown Chart diagram for the second semester 61
Figure 26. Login menu 65
Figure 27. Creator Code menu 65
Figure 28. Login WebView 65
Figure 29. Clip Feed menu 66
Figure 30. Wallet menu 66
Figure 31. Profile menu 66
Figure 32. Search menu 67
Figure 33. Clip Contest games menu 67
Figure 34. Clip Contest scoreboard menu 67
Figure 35. Scroll transition between extended and collapsed toolbar 69
Figure 36. Wallet PayPal success unit test 72

Ⅸ

Figure 37. Login Pop-up Showing Test 73
Figure 38. User story with changes requested after QA 73
Figure 39. App Startup Time Results 81
Figure 40. Product Startup Time Results 81
Figure 41. Frame Duration Results (P50, P90, P95) 81
Figure 42. Frame Duration Results (P99) 81
Figure 43. Frame Overrun Results (P50, P90) 81
Figure 44. Frame Overrun Results (P95, P99) 81

Ⅹ

List of Tables

Table 1. Media players feature comparison 24
Table 2. Continuous Integration tool price analysis 29
Table 3. Results of SMART methodology 42
Table 4. Risk Statements analyzed by impact, likelihood and time bound 44
Table 5. Quality attribute 1 49
Table 6. Quality attribute 2 49
Table 7. Quality attribute 3 50
Table 8. Quality attribute 4 50
Table 9. Quality attribute 5 51
Table 10. User Story fields 52
Table 11. Profile Menu User Stories 53
Table 12. C4 concepts mapped to AchiMate 55
Table 13. Critical component’s unit test coverage 72
Table 14. Usability Test most severe problems 77
Table 15. Usability Test gathered suggestions 77

ⅩⅠ

ⅩⅡ

Chapter 1

Introduction

The following dissertation is written in the context of the Master's degree in

Informatics Engineering, specialization in Information Systems, from the University of

Coimbra. Here we analyze the results of the curricular internship, proposed by Pink Room, in

collaboration with Framedrop, to develop an Android mobile application.

1.1. Motivation

Oxford's dictionary defines the word “entertainment” as “the action of providing or

being provided with amusement or enjoyment” [1]. This “action” is something that we often

get involved in or, due to unpleasant situations, we involuntarily crave. Society and

technology have evolved significantly, regarding entertainment, where, in the old days, this

could come in the form of works of “art, music, theater, opera and the necessary

paraphernalia for his extravagant celebrations, dances, banquets, hunting, falconry, horse

riding” [2]. These sources of entertainment could only be shared if people were there to see it

in person. Even though it’s still doable nowadays, these forms of entertainment have become

more and more forgotten, with the emergence of other sources: the Internet.

XXI Century Entertainment

The Internet empowered user entertainment consumption around the world, by

breaking the distance limitation, with “millions of users who are searching for both

information and entertainment” [3], which drove to “an overload of entertainment available

for them to consume because of how easy it is to upload content and share it” [3]. According

to the Statista research department, “as of April 2022, there were more than five billion

internet users worldwide, which is 63.10% of the global population” [4], resulting in a giant

pool of digital content.

1

“The Internet is the most important single development in the history of human

communication since the invention of call waiting.”

Dave Barry

The Global Internet Phenomena Report of January 2022, done by SANDVINE,

showed that the majority (53.72%) of Internet traffic comes from video streaming. “1

Terabyte per month power users are growing sharply – driven by gaming, videoconferencing

and video streaming” [5].

The Rise of Smartphones and Streaming Media

It is undeniable that cell phones have undergone remarkable innovation over the

years. Counting only from the year 2000, we can already notice that we went from a simple

device that sent messages and received calls to something that is a fusion of several other

devices we use regularly, but in a portable and appealing version.

The evolution of smartphones was parallel to video streaming, which appeared on

June 24th 1993, when a live video stream featured the band “Severe Tire Damage”.

Performing from the patios of Xerox PARC1, they broadcast onto the Internet Multicast

Backbone (the “MBone”) [6]. Because the world press was watching the broadcast, “Severe

Tire Damage” was suddenly very popular. “Articles appeared in The Wall Street Journal, The

New York Times, The Washington Post, The Boston Globe, and foreign media such as British

Sky TV'' [7], and one year later, the Rolling Stones were also doing their first live streaming

Internet show.

Streaming media has become even more popular over the years, and in 2005,

YouTube was launched. In October of that year, a video of Ronaldinho getting a pair of

“golden boots” was hitting 1 million views. In December, the website was receiving 8 million

views a day [8].

1 Xerox PARC – Xerox Palo Alto Research Center (PARC) was a major research division of Xerox Corporation

based in Palo Alto, California, in the United States. PARC was founded in 1970 and became a stand-alone

company in 2002. It is famous for having been the birthplace of inventions such as the graphical user interface

(GUI) for personal computers, used by Apple Computer in the Macintosh and later popularized by other

operating systems.

2

Multimedia content creation and consumption was already beginning to dominate

Internet traffic, driven by the creation of Justin.tv in 2006, which would later become Twitch.

Netflix showed up in 2007 and Periscope in 2015, which allowed users to consume and share

live videos via their mobile devices. Facebook enabled live streaming in 2016 and in 2020,

more than 1/3 of all Internet users were gaming or social live streamers [9].

1.2. Pink Room

Pink Room is a software development studio that started in 2018 and focused on the

mobile development of Android and iOS applications. Since then, it has worked in a variety

of industries, such as Fintech, Medtech, and the Automotive Industry, and has specialized in

building digital products for mobile platforms, using both native and cross-platform

technologies.

1.3. Framedrop

Framedrop was founded in 2021 and develops cloud-based solutions for the live

streaming industry - it relies on Artificial Intelligence, mainly Computer Vision and Audio

Signal Analysis, to automate the process of content curation and clipping of long-form

broadcasts. Their product is a web app that enables Twitch streamers to collect their

highlights without having to exhaustively search through hours of stream content. This

process of capturing highlights during streams is made using Artificial Intelligence and

Machine Learning.

1.4. Objectives

During the course of this internship a mobile application is going to be developed,

aligned with Framedrop's value proposition of providing entertainment to gaming

communities in the form of short media content. This Android mobile application will allow

users to engage with Twitch streamers’ short highlight clips, by upvoting (liking),

commenting and sharing, as well as claiming clips by unlocking them with in-app credits.

Framedrop’s application clips come from their server which stores the streamers’ highlights

collected during streaming events.

3

1.5. Document Structure

This document starts with a brief introduction on Chapter 1 that defines the

motivations and the objectives for this project as well as a contextual perspective, regarding

the background for the topic and the field of study.

Moving to Chapter 2, State-of-the-Art, where the different product competitors,

substitutes, and the most recent features implemented at this stage are defined and analyzed.

As a development approach, a state-of-the-art analysis regarding architectural patterns and

technological stack is also described here, as well as the conclusions and decisions made

through the process, in the context of this project. Decisions on the different aspects of the

product are justified with the previous analysis detailed in the following chapters.

Chapter 3 describes the project's approach and decisions for specifying requirements,

selecting development strategies, and other events that occur during the project life cycle,

such as code reviews, quality assurance, and techniques for integrating, delivering, and

deploying the various versions of the product.

In Chapter 4, the assumptions, constraints, non-functional requirements, functional

requirements, and elements out of scope for the project are outlined and detailed, as well as

the process of wireframing and prototyping.

In Chapter 5, the architecture of the application is thoroughly described and discussed.

It provides a comprehensive overview of the design and layout of the system, including the

different components and how they interact with one another.

Chapter 6 outlines the plan for this assignment, including the high-level estimated and

accomplished plan for each semester.

Chapter 7 presents the outcomes of the development work, providing a

comprehensive overview of the major challenges encountered during the process. It includes

an application showcase that highlights the iterative nature of the project, as well as an

examination of the testing procedures employed. Additionally, the chapter delves into the

details of the usability testing conducted and the decisions that were informed by the results

of the test.

Chapter 8 concludes this document, highlighting the challenges and learning acquired

during the internship as well as the project's future work.

4

Chapter 2

State of the Art

The world of app development is constantly evolving, with new technologies and best

practices emerging all the time. As a result, apps are now more powerful and feature-rich than

ever before, offering users a wide range of functionality and convenience. From social media

and entertainment apps to productivity tools and utilities, there is an app for almost any

purpose. And with the app market growing at an incredible pace, there is no shortage of

options for users to choose from. This chapter presents the study performed on the base

concepts of gaming communities and a market analysis of competitor and substitute products

on how they access user’s needs and how Framedrop’s application might become successful

amidst the competition based on a discussion of their business model and functionalities.

2.1 Gaming Spectator Culture

Gaming experience can be divided into two main types, self-play and watching others

play, although they are not independent from each other. Users have traditionally derived

pleasure from watching others play, which in the early stages of the internet was limited to

the “people’s houses with friends” [10].

Internet speed and adoption proliferation enhanced the gaming communities since it

was shown that in November 2021, “the typical mobile internet user enjoyed a median

download speed of 29 Mbps, which is plenty fast enough to stream a 4K movie without any

buffering” [11].

The science behind the act of watching others play can be found in the neuroscientific

phenomenon of mirror neurons. These neurons, discovered over twenty years ago “in the

ventral premotor region F5 of the macaque monkey” [12], are a part of how we generate our

own actions and how we monitor and interpret actions from others [12]. These brain cells

play a role in our capacity to mimic. The known concept of “learning by watching others”

[13] is evidenced in the baby's ability to copy sounds and facial expressions. Many game

5

viewers watch others play so they can learn new skills, and acquire new knowledge to

improve their gaming experience. Other reasons why a spectator community is becoming

popular are the fast access to gaming content, escapist need from daily routines, tension

release and the difficulty of owning equipment to self-play, due to high costs, time, etc [14].

2.2 Market Competitors

The analysis of existent and significant market competitors, as well as potential

competitors can be “an important input to forecasting future industry conditions” [15].

Despite the clear need for “sophisticated competitor analysis in strategy formulation” [15],

such analysis can create dangerous assumptions. A competitor can be seen as a company that

wants the same goals and produces “the same or a similar product” [16]. A good example of

competitor products is Coca-Cola and Pepsi. If the user chooses a product that uses another

technology but it can fulfill the same needs it is called a substitute product [17]. If the product

is for example a restaurant, then a coffee shop would be a substitute product because it does

not compete directly with the restaurant (it provides different goods), but users could achieve

their goal of having a meal [18].

Companies can think that they know their competitors because they compete with

them every day, or discourage the idea of competitors' systematic analysis. This lack of

awareness of the competitors can be motivated by the difficulty of systematic collection of

data, much of which is not easy to find, leading to informal impressions, conjectures and

intuitions, which translates into an incorrect analysis of the competition [15].

2.2.1. Market Analysis

In order to develop a product that caters to the needs and preferences of our target

audience, an analysis of market competitors and substitutes was conducted. For the

competitor products, we analyzed Medal.tv2, Outplayed3, Hover4, and Powder5. For the

substitute products, our analysis englobed Youtube/Youtube Gaming6, Facebook Gaming7,

7 Facebook Gaming - https://www.facebook.com/gaming

6 Youtube - https://www.youtube.com/

5 Powder - https://powder.gg/

4 Hover - https://hover.gg/app/discover

3 Outplayed - https://outplayed.tv/

2 Medal - https://medal.tv/

6

https://outplayed.tv/
https://medal.tv/

Tiktok8, and Caffeine.tv9. The extended analysis is presented in Appendix A. This

comprehensive evaluation aimed to gain insights into the distinct product features offered by

competitors and understand how these features align with the preferences of our shared end

users. By closely examining the strategies employed by other market players, we were able to

identify the key features that resonate with our target audience and determine the desired

attributes for our own product.

2.2.2. Feature Analysis

Since Framedrop is developing a proof of concept application to analyze market

attraction, the following features represent a Minimum Viable Product (MVP), with the goal

of validating the product's value proposition and gathering feedback from early adopters as

quickly as possible. This allows the company to make informed decisions about what features

to add or remove, and how to improve the product based on real-world usage [19].

Authentication via Twitch

Since Framedrop works with Twitch streams highlights and user information, an

authentication via Twitch can provide connectivity between applications to manage user data

and provide security to the application.

Watch Clips

Representing the main feature of the application, users can watch clips from all

streamers. Further work will focus on creating different clip consumption modes such as

being suggested to the viewer, coming from a particular user or game, and coming from users

being followed.

Interaction with clips

Users may like videos (represented in Framedrop with an “Upvote” expression), as

well as engage in commenting and sharing. In upcoming developments, users will be

empowered to duplicate and personalize videos according to their preferences, represented by

a "Fork" symbol within Framedrop.

9 Caffeine.tv - https://www.caffeine.tv/

8 TikTok - https://www.tiktok.com/

7

Search for clips and users

Through the use of the mobile application, users can search for other users. As the

application evolves, we will receive feedback to validate if this decision is adequate or if

users tend to search for other characteristics (clips, specific game, tags, etc).

Claim clips

When users scroll through the app watching videos, some of them may be locked,

waiting for a user to claim them (unlocked videos are public to everyone to watch).

Unclaimed clips are submitted to an auction, so users can bid them with in-app tokens.

Clip contest

As the users interact with other user’s videos by claiming them, they are able to

participate in contests for specific games and earn in-app tokens if their videos are placed in

top scoring positions.

Top-up in-app wallet

As mentioned above, tokens are used to bid unclaimed clips. Therefore, users should

be able to buy these tokens through the app using a conventional payment system.

2.3 Platform Analysis and Mobile Application

The company made a strategic decision during the project's inception to adopt the

Kotlin programming language and exclusively focus on developing the mobile app for the

Android platform. While this decision imposed certain constraints on the project, a thorough

analysis was conducted to investigate the rationale behind this choice and better comprehend

the dynamics of the two major mobile platforms.

Android and iOS are the two dominant mobile operating systems on the market today.

Both have their own unique features and capabilities, and each has its own loyal user base.

One of the key differences between Android and iOS is the market share of each

platform. According to StatCounter, at the time of this report, Android has a market share of

67.56% globally, while iOS has a market share of 31.60% [20]. This means that there are

significantly more Android devices in use around the world than iOS devices.

8

Another key difference between Android and iOS is the range of devices available on

each platform. Google acquired the Android operating system from Android Inc. in 2005,

with the goal of developing a user interface for touchscreen devices. This development was

carried out in collaboration with the Open Handset Alliance (OHA), a group of developers

sponsored by Google. OHA consists of a number of partner companies, including Samsung,

HTC, Lenovo, and other smartphone manufacturers [21], so the Android devices are

available at a variety of price points, mostly due to market competition. This means that

consumers have a lot of choices when it comes to selecting an Android device, in contrast,

iOS devices are only made by Apple.

When it comes to app stores, Android and iOS both have a large selection of apps

available. However, there are some key differences between the two platforms. For example,

the Google Play Store has a larger selection of apps overall, being the largest app store with

3.3 million Android apps as of the first quarter of 2022. In the same period, the App Store

hosted 2.11 million apps, which makes it the second-largest on the market [22].

One of the main consequences of the disparity between App Store and Play Store

number of available applications is due to the deploying process to these platforms. The

submission process is similar, where publishers must first create a developer account in order

to submit their apps to the respective platforms. However, it is not free to register as a

developer. Google Play requires a one-time payment of $25, while the annual fee for Apple's

platform is $99. These fees may vary based on the region and currency. It is important to note

that maintaining developer status on Apple's platform requires the annual payment to be

made [22]. Apple also performs a strict app review process, beginning with the analysis of

each app element, “which include dimensions, design, keywords” [22], among others. The

app review process on Google Play is faster than on other platforms, where the standard time

to be reviewed and approved on Google Play Store is typically three days, however, it can

take longer for certain developer accounts [23]. Although developers need to follow some

guidelines, according to the Google Play Store App Criteria, they are not so severe compared

to Apple’s [23].

Framedrop's mobile application will be built using Steve Blank's Customer

Development framework, which consists of four steps that include identifying the need(s)

that customers have, creating a product to fulfill that need(s), testing the most effective

methods for acquiring and converting customers, and properly allocating resources within the

organization to meet the demand for the product [24]. Therefore, in order to determine

whether the product meets the needs of customers, it is important to choose a platform with a

9

large number of users (the larger the sample size, the more accurate the results). Since we

lack access to the specific number of Twitch users on each platform, it is necessary to make

the assumption that the Android platform potentially harbors a greater number of users. This

assumption is based on the global dominance of Android, with a larger user base compared to

iOS. This said, the first version of the product should be developed for Android.

When developing mobile applications, there are two main approaches, native and

hybrid. Native apps are developed specifically for one platform, using the platform's native

programming language and tools. Hybrid applications, on the other hand, are developed using

web technologies such as HyperText Markup Language (HTML), Cascading Style Sheets

(CSS), and JavaScript (JS), or more modern frameworks like React, and can be deployed on

multiple platforms.

One of the main advantages of native apps is that they are typically faster and more

responsive than hybrid apps, as they are designed to take full advantage of the capabilities of

the platform they are running on, such as the camera, Global Positioning System (GPS), and

push notifications. Hybrid apps, on the other hand, have the advantage of being able to run on

multiple platforms with minimal changes, however, hybrid apps may not perform as well as

native apps, and they may not have access to all the features and functionalities of the device

[25].

Hybrid apps can present some challenges when it comes to User Experience (UX).

Native mobile apps tend to offer a more seamless and enjoyable UX due to features such as

smooth scrolling and support for specific gestures like swipes. They also have more advanced

interface animations and effects, as well as faster performance. This type of app development

allows both developers and users to take full advantage of the capabilities of the software and

operating system [26]. While platforms like "React Native” and “Flutter" have made progress

in improving UX for hybrid apps, there are still some limitations, such as slower loading

times and slower performance. Additionally, apps like these “often look like a custom

website with a user interface of a mobile app” [26].

Following the determination to develop the application for the Android platform, the

choice of language fell upon Kotlin. This decision was driven by the fact that Kotlin was

officially endorsed as the recommended language for Android app development by Google at

its I/O conference in 2019 [27].

10

2.4 Android App Architecture

In a world that is constantly changing and evolving, it is important that mobile

applications can easily adapt to transformations, but, to achieve this result, programmers need

to follow some architectural principles.

2.4.1. Android App Components

The process of defining the architecture for an application involves deciding which

components to use, as Android offers a wide range of libraries that were tailored to meet the

specific needs of a project.

Android mobile applications were usually developed based on XML (eXtensible

Markup Language), to define the layout of the app’s user interface and is typically associated

with the Activities that are the main screens that users interact with in an Android app. They

represent the UI and business logic of an app, and are responsible for handling user input and

displaying the appropriate UI to the user. When an Activity is launched, the Android system

reads the layout resource file and creates the views and view hierarchy defined in the file to

display on the screen. These views may be divided in Android Fragments that are modular

components used to represent part of an Activity in an Android app. They divide the user

interface of an app into smaller, reusable pieces that can be combined to create complex

layouts.

Another approach is the use of Jetpack Compose, since it is a new declarative UI

toolkit for Android that allows developers to build apps faster and more efficiently. It is based

on the idea of composing small, reusable widgets to build a complete UI, rather than using

complex layouts and view hierarchies.

Considering the components responsible for managing the data for an app's UI,

architectural patterns suggest a ViewModel class designed to store and manage UI-related

data in a lifecycle-conscious way. It allows data to survive configuration changes such as

screen rotations, and it also helps to decouple the UI from the underlying data source.

Elements that are aware of their lifecycle, such as ViewModelScope, can cancel any ongoing

work when the ViewModel is no longer in use. Using Kotlin Coroutines to run asynchronous,

non-blocking tasks in a background thread, it is possible to update the UI once the task is

finished without interrupting the UI's operation.

11

2.4.2. Architectural Principles

For high-level architecture, we are following a Clean Architecture approach, created

by Robert C. Martin [28]. It is a software design paradigm that advocates separating the

business logic of a software system from its presentation and infrastructure concerns.

Good programming practices dictate that developers should strive to write clear and

well-structured code that is easy to read and understand. The SOLID design principles

describe how to arrange the functions and data structures, and how they should be

interconnected, so they can tolerate change, and provide a base for the software system. To

help achieve this goal and improve the overall design of a software system, it is important to

follow other principles such as Separation of Concerns [29], Single Source of Truth [30], and

Unidirectional Data Flow [31].

Separation of concerns, in the context of mobile applications, is the ability to divide

an entire application into different parts and give different responsibilities (concerns) to each

of them. When concerns are well-separated, there are more opportunities to upgrade and

reuse the code, as well as independent development.

Single Source of Truth is the practice of ensuring that the data is stored exactly once,

by designating a data source as the central source of truth for the rest of the application, so all

actions regarding data are done within that data source.

Unidirectional Data Flow is a technique found in reactive programming, which means

the data has one and only one way to be transferred to other parts of the application, allowing

better control of the processes.

SOLID Principles

The first principle dictates that each software module “has one, and only one reason to

change” [28], which means that each module should be responsible for only one actor, and

change according to him. A module is a cohesive set of functions and data structures and an

actor could be defined as a group of stakeholders that want the same things, and require the

same changes, to that module. For example, if two different actors use the same set of

functions to perform the same action but one requires a different result, it could cause a

problem to the other actor that uses the same set of functions and does not have any problem

with them. Therefore, it is important to separate the modules, so they can only be responsible

for one actor, and change without interfering with other actors [28].

12

The Open-Closed principle is a design philosophy that suggests that software classes

should be designed in a way that allows them to be easily extended to meet new requirements

without requiring modification of their existing code. An example of this principle is the

authentication process in the Framedrop app, which currently only supports authentication

through Twitch. If a client requests the ability to authenticate through Google, for instance,

simply adding an "if" statement to the existing code is not a proper solution because it may

not scale well as the number of authentication methods increase. Instead, the authentication

logic should be abstracted so that it can be extended to support other methods without

requiring modifications to the existing code.

The Liskov Substitution Principle states that if a program is using a base class, then

every derived class should perform the same tasks as the base class. In the Framedrop app,

the clips can have two states, claimed or unclaimed, and the interactions that the user can

perform with them are different. Assuming that we implement a base class “Clip” that gets

the claimer and the creator of that clip, and derive from that class the subclasses

“ClaimedClip” and “UnclaimedClip”, we expect that these subclasses perform the same as

the base class. The problem is that unclaimed clips do not have a claimer, so the program will

generate an error. According to this principle, it is important to structure inheritance so that

all subclasses can substitute the base class without affecting the correctness of the program.

The principle mentioned above, will reflect on the Interface Segregation Principle,

which states that classes should not be forced to implement methods that they do not use.

Using the same example for claimed and unclaimed clips, we should not force the

“UnclaimedClip” class to implement the method to get the claimer because it does not use it.

The Dependency Inversion Principle suggests that high-level modules of an

application should not depend on volatile concrete elements such as low-level modules, since

they are frequently changing, but rather both should depend on abstractions.

These principles take an important role in architectural design by guiding developers

into better programming approaches, but they do not show how the code should be

implemented. Architectural patterns specify components and behaviors that, if implemented

correctly, will lead to better code.

2.4.3. Architectural Patterns

Since Martin’s approach to Clean Architecture can be applied to any type of

application, the software engineer and architect, Fernando Cejas, wrote extensively on

13

Android development and proposed a Clean architectural approach specifically tailored for

Android development where it describes the use of dependency injection tools and

frameworks to manage these dependencies, which follows the Dependency Inversion

Principle. Additionally, Cejas' Android Clean Architecture includes specific guidelines for

how to structure an Android project, such as where to place different types of code and how

to organize packages [32].

Considering Martin’s high-level Clean Architecture and Cejas’ application to Android

development, Android officially recommends that an application should have at least two

layers: UI and Data, with an intermediate optional layer, Domain, that acts like a middle-man,

managing the interactions between the other two layers [33].

The Data layer contains the data structures and exposes the data to the rest of the app.

The Domain layer promotes the separation of concerns, since the business logic presented in

this layer can be divided into use cases that represent a set of actions that interact with the

Data model in order to retrieve information. For example, a use case could represent an

action of getting data from the Data layer, that can perform a request to a remote API, and

retrieve it to the View. The View layer refers to the interface that the user interacts with. It is

responsible for presenting the data to the user and handling his input. The View layer is

typically implemented as a user interface (UI) and is separated from the business logic of the

application [33].

Having this philosophy present for different application demands, some architectural

patterns were created in order to solve a particular set of problems.

Model-View-Controller (MVC)

The Model-View-Controller (MVC) pattern was first introduced in 1979 and was

designed to come up with a solution for managing complex components [34]. It is a popular

architectural pattern that separates an application into three main logical components: Model,

View, and Controller, represented in Figure 1.

14

Figure 1. MVC architecture diagram

The Model is the domain element since it is responsible for handling the data

structures, as well as managing all business logic [35]. The View component (or User

Interface) is responsible for data representation. The Controller manages the user interactions

with the View by accessing and changing the Model. To facilitate the communication

between the views and the Model, the Controller component is responsible for making

updates to the Model, which removes that logic from the View. In a mobile application,

usually the View is implemented using XML and the Controller is the Activity or Fragment,

leaving the Model to the data structures. Unit testing can be challenging, since the Controller

is placed on Android classes that provide less testing flexibility. Additionally, as the View is

dependent on both the Controller and the Model, any changes made to the UI logic may

require updates to multiple classes, which reduces the pattern's flexibility [36].

Model-View-Presenter (MVP)

This pattern originated in the early 1990s at Taligent with a joint venture of Apple,

IBM, and Hewlett-Packard [37]. As mentioned above, in MVC there is a connection between

the View and the Model. As described in Figure 2, MVP architecture breaks this connection

handling all the logic regarding the UI with the Presenter.

15

Figure 2. MVP architecture diagram

This leaves the View component exclusively for the rendering of the data bound by

the Model and capturing user’s input and the Presenter becomes the middle-man that

performs all the necessary modifications in the two other components. The View and

Presenter have a closely interrelated role, as a result, they need to have a reference of each

other.

Although we can achieve highly decoupled components, having a reference in the

View and Presenter components can lead to boilerplate code that architectures like MVC

dismiss.

Model-View-Intent (MVI)

MVI is an architectural design pattern based on reactive programming. The goal is to

have less complex, more testable, and easier to maintain code. The MVI schema may look

similar to MVP, but the main difference lies in the implementation of the components and

their interactions in the app. For instance, Models in MVI represent a state and in MVP they

represent data. This happens because, in MVI architecture there is no need to send data from

the Model to the Controller/Presenter to be rendered by the View, as described in Figure 3.

16

Figure 3. MVI architecture diagram

The Model has one overall state and it is immutable, which follows the principle of

Single Source of Truth, because it is updated from only one place and emitted to the View

that observes the state to be rendered [38]. MVI uses Intents that can be translated as the

“intention to do something” [38], which means that every action that the user has with the UI

triggers an Intent. These actions will perform changes at the Model component, updating the

state. This process chain follows the Unidirectional Data Flow and the Separation of

Concerns.

Model-View-ViewModel (MVVM)

In MVVM, the Views and the ViewModel are not strongly connected, since the View

has a reference to the ViewModel while the ViewModel has no information about the View,

as presented in Figure 4. This happens because “the View directly binds to properties on the

ViewModel to send and receive updates” [39]. The MVVM pattern was designed to make

event-driven programming of user interfaces simpler. While in the MVP pattern, the

Presenter would directly instruct the View on what to display, in MVVM the ViewModel

provides streams of events to which the Views can bind. This way, the ViewModel no longer

needs to maintain a reference to the View, as the Presenter would in MVP [40].

Figure 4. MVVM architecture diagram

17

Since the ViewModel “is completely separated from the UI or any Android classes”

[56], having a decoupled system eases the testing process and provides the creation of

effective tests compared to patterns like MVC that create bigger, slower and flaky tests, due

to a higher dependency between components [41].

2.4.4. Summary

The analysis of the different architectural patterns and the advantages and

disadvantages of each aims to provide a better decision of the “best-fit” for the application

that is being developed. The decision is not always exclusively about the project industry and

requirements, as it may have to do with constraints such as duration, budget, work

methodologies, among others.

There is a clear set of characteristics that we want the architecture to provide. It

should have low coupling, which means that there are few dependencies between

components, making them mostly independent. Loosely coupled components are easier to

develop, maintain, and test, because there is no need to affect the other components [42],

[43]. High cohesion is another characteristic that should be present in the architecture, to

make sure that the components are created with a single, well-focused purpose. These

components tend to be easier to maintain and because of low purpose complexity, could be

reusable [44].

Application

For the specifications of this project, we considered that MVVM architectural pattern

is the best-fit, since it is a well-established design pattern for building complex user

interfaces. It is particularly well-suited for Android mobile applications due to its ability to

easily support the separation of concerns required for good application design easing the

process of testing the different parts of the app in isolation.

Although unit testing can be performed in architectures like MVC and MVP, the low

level of component isolation when compared to MVVM, increases the difficulty to test as the

project evolves. In MVC, the controller handles both the UI and the business logic, making it

harder to test the business logic separately. In MVP, the presenter handles the business logic

and updates the view, making it harder to test the business logic and the view separately.

Since this mobile application is composed of a considerable number of screens, remote

requests to an API, and mechanisms of payment, providing low coupling between

components will ease the process of testing, as well as maintaining and developing new app

18

features. MVI was also a good candidate to be the architecture pattern of choice, except that it

features one more layer than MVVM, with all user intentions having to be mapped first. This

extra layer would create more boilerplate code that we felt was unnecessary.

User Interface

The user interface is going to be developed using Jetpack Compose, a modern toolkit

for building native Android UI. It is an alternative to the traditional XML-based layout

approach in Android. This can make it easier to write and maintain the UI, as well as give

more control over its appearance and behavior. It is based on a declarative style of

programming, where it focuses on describing what it is trying to achieve, rather than how to

achieve it, often used to build user interfaces and to specify data transformations [45].

Framedrop’s mobile application is more focused in the UI and user interactions with

the View layer, since most of the data modifications are communicated to the Framedrop

server, reducing the complexity of low-level layers. Being said, we need an architectural

pattern that provides a good separation of the complexity of the higher layers. That said,

using an architecture such as MVVM, it is possible to separate components that are

responsible for handling the data and logic that drives the View.

The use of a ViewModel instead of a Presenter is due to the fact that the Jetpack

Compose library is already designed to take advantage of the use of a ViewModel and its life

cycle. Another advantage of using a ViewModel is the use of states since the ViewModel

does not have a reference to the view, however, the View has a reference to the ViewModel

states and updates the UI when they change [46].

When following an MVVM approach, this pattern usually separates the different

states responsible to perform changes to the UI components of the screen. This can cause a

lot of boilerplate code, since it is necessary to instantiate the specific state every time we

want to perform changes to the UI, and repeat the process to every state. Since we are

diverging from a single source of truth (SSoT) approach when it comes to the states, it was

decided to use a principle of MVI’s architecture that follows the SSoT principle by merging

all the pieces of data into one state class. This way, all the states are stored in a single object,

and to access it on the View, we only need to instantiate it once, removing all the boilerplate

code and following the SSoT principle [38].

19

2.5 Technological Research

The implementation of certain features in Framedrop's mobile app can be challenging

due to the use of technologies with specific requirements, since they require a deeper analysis

to conclude which libraries are a best-fit for that set of problems.

This exercise is important because it provides information about the choices that were

made and it can be used to guide stakeholders through their decisions, making the

development process more transparent.

2.5.1. Authentication with Twitch

Twitch uses OAuth 2.0 for authentication [47], and has its own API that provides

integration to third-party applications. The documentation presented in the Twitch

Developers website describes three types of flows to authenticate:

● Implicit grant flow - This flow is used in applications that do not use a server. For

example, a client-side JavaScript app or mobile app.

● Authorization code grant flow - This flow is used if the application uses a server that

can securely store a client secret, and can make server-to-server requests to the Twitch

API.

● Client credentials grant flow - This flow is meant for apps that only need an app

access token, but follow the same specifications of “Authorization code grant flow”

[48].

Twitch documentation referred to an SDK that could ease the process of dealing with

the OAuth 2.0 flow. However, after analyzing the documentation, we concluded that there

was no information about that tool, which should come in the form of a library that presents

customized methods to that specific platform.

Twitch documentation also referred to the use of an OpenID Connect (OIDC) protocol

that defines optional mechanisms for robust signing and encryption, and integrates the OAuth

2.0 capabilities [49]. Since authentication communications must be secure, the integration of

this protocol in our application would ensure a security layer to the authentication process.

Implementing this protocol from scratch could generate security breaches, so we also

analyzed a set of libraries that implement this protocol, where we decided to use the AppAuth

library that is recommended by Google to help to implement the OAuth 2.0 flow [50].

20

AppAuth for Android is a client SDK for communicating with OAuth 2.0 and OpenID

Connect providers that strives to directly map the requests and responses of those services. In

addition to mapping the raw protocol flows, it still provides convenient methods to assist with

common tasks (for example, to perform an action with fresh tokens) [51].

Framedrop’s application will use Framedrop’s server to authenticate to Twitch, so the

process of authentication will not follow the steps provided by the Twitch Developers guide

mentioned above. Since the application contacts the server to perform the authentication,

there is no direct connection to the Twitch authentication server.

A representation of this flow is described in Figure 5.

Figure 5. Framedrop’s mobile app Authentication with Twitch Sequence Diagram

In the initial stages of development, the Framedrop team was engaged in an

assessment of potential implementation solutions for the authentication flow. To preempt any

delays in the mobile app's progress, I took the initiative to develop the authentication with

21

Twitch feature by creating a local server that facilitated the authentication process with the

Twitch service. Consequently, recognizing its suitability and fulfillment of the necessary

conditions, the Framedrop team integrated the implementation of the local server into their

infrastructure.

2.5.2. Video Protocol and Media Player

Framedrop uses the (HTTP Live Streaming) HLS communication protocol to share

content with its web app. Below follows an analysis of HLS video players that are compatible

with Kotlin.

Researching through a various number of well known applications like Facebook,

Instagram, TikTok, etc, we realize that the media players used by this big corporation are not

for general use, which means that they are built from scratch to fulfill the needs of each

company.

Nevertheless, there are some must-have features that are useful for Framedrop’s

application and could be used for comparison in media player research.

● Compatibility with HLS - Framedrop uses HLS protocol, so its required a player

with HLS compatibility.

● Portrait mode - Gaming content usually comes in landscape scale, so it is important

that the player provides a way to crop the video into portrait mode.

● Hide controls - To enhance user experience, videos must be free of any component

that could overlay them. Other applications already implement this feature such as

Instagram, Facebook, TikTok, among others.

● Autoplay - When the users navigate between videos, they must start without any

additional step.

● Restart on end - Videos may loop while they are exposed to consumption. Stopping a

video at the end adds no value to the user experience.

● Customizable UI - Since Framedrop has its own design, it is important to customize

the UI to their needs.

Here is a list of features that could be useful for future application updates.

● Advertisement insertion - Framedrop may want some form of monetization through

ads that may display between clips in the app.

● Download content - It could be given the possibility to users to download content.

22

● Analytics - Media player analytics may be necessary.

Since Framedrop uses HLS, the research will be around players compatible with HLS,

which reduces the search field and the margin of choice for a player who does not meet the

needs. The next section describes an analysis of the positive and negative aspects of media

players features.

ExoPlayer10

It is an application level media player for Android that supports media types like

HLS, DASH, SmoothStreaming, Progressive and RTSP. It is an open source project

alternative to Android’s MediaPlayer API, that is easier to customize and extend, and can be

updated through Play Store application updates [52].

Including this player in the app may increase the Android Application Pack (APK)

size by a few hundred kilobytes, which means that the application will take up more memory

when installed on a mobile device. Nevertheless, ExoPlayer has less variation across different

Android devices and versions, and allows for customization to specific use cases by replacing

components with custom implementations. It also supports playlists, various media formats,

Widevine common encryption on Android 4.4 and higher, and has well-detailed

documentation with a solid amount of snippet examples. Additionally, the player can be

updated along with the application.

NAGRA Player11

NAGRA’s player is an operator-centric OTT (over-the-top) player, that can detect and

prioritize between the available DRMs12. It provides an SDK for Android Java and Kotlin's

applications, which wraps and extends the media player API, providing a similar interface to

the Android video view [53].

While the SDK for NAGRA is available for Java and Kotlin, the documentation is

only provided in Java. Some essential features are not provided by NAGRA, although they

can be resolved with a workaround. On the positive side, once it is set up, the code base of

NAGRA player appears easy to work with and allows customization to specific use cases by

12 DRM - Digital Rights Management. Helps prevent copyright infringement by restricting the dissemination of
copied digital content, while securing and managing copyrights and trademarks.
* Ad insertion is done on the server side, which means that the server sends through HLS manifest when to
display the ads.

11 Nagra Connect Player - https://docs.nagra.com/doc/home/cpanddoc524x
10 ExoPlayer - https://exoplayer.dev/

23

https://docs.nagra.com/doc/home/cpanddoc524x
https://exoplayer.dev/

replacing components with custom implementations. It also supports playlists and various

media formats.

Bitmovin Player13

Bitmovin’s playback solution enables video streaming with a focus on high quality

and testing. It gives the possibility to analyze the data through a dashboard portal to receive

insights into how playback is performing for viewers.

Bitmovin player offers a 30-day free trial that includes a limited-time player for free.

To unlock the full version, a monthly fee of $249 must be paid. However, it does not include

video resize modes, and a portrait mode is a required feature. To set up the media player, a

player license key and a personal license key are necessary. Although it is a paid media

player, it offers simple integration with an application, and its documentation is

well-described with a great amount of tutorials and code examples. It allows customization to

specific use cases by replacing components with custom implementations and supports

playlists and various media formats.

NexPlayer14

NexPlayer has over 15 years of experience in video streaming, focusing on delivering

media content across all devices. The company integrates its service into other big company

products like Hisense, PlayStation, Xbox, Nintendo, among others. They are currently

bringing live streaming to the metaverse, integrating with Unreal Engine and Unity [54].

For the context of this project, NexPlayer does not provide some of the necessary

features and needs to use third-party entities to enable Ad insertion. Nonetheless, NexPlayer

provides well-described documentation with a great number of tutorials and code examples.

It supports playlists and various media formats.

Summary

To summarize the analysis of the different media players, Table 1 presents the features

that are useful for that Framedrop’s mobile application media player, and the players that

support which of them.

14 NexPlayer - https://nexplayer.github.io/Android-SDK/#/README
13 Bitmovin - https://bitmovin.com/docs/player/getting-started/android

24

https://nexplayer.github.io/Android-SDK/#/README
https://bitmovin.com/docs/player/getting-started/android

Feature ExoPlayer NAGRA Bitmovin NexPlayer

Portrait mode

Hide controls

Autoplay

Restart on end

Customizable UI

Advertisement

insertion

Download content

Analytics

Table 1. Media players feature comparison

From the analysis made in this document, it is possible to see that the ExoPlayer is the

best-fit solution for this specific problem. Not only does it meet all the feature requirements

without using third-party entities or workarounds, but also because of its popularity. Google

developed ExoPlayer for use in YouTube, Google Play Movie, Google Photos, Youtube

gaming, and Google Play Newsstand before releasing it to developers [55]. In 2018, there

were more than 140.000 applications in the Play Store that use ExoPlayer [56].

Another important characteristic of this player is the ability to update itself along with

the application, which means that it becomes a part of the application, so we can ship the

same exact version of ExoPlayer through the different Android releases, which provides a

consistent experience. Another important advantage of this model is feature addition that can

be supported through all versions of Android, because there are no dependencies on low level

media APIs or anything like that in the platform. An example of this advantage can be seen in

Android’s MediaPlayer which is implemented in Android’s operating system and not on the

25

app itself as we may see in Figure 6. When adding a new feature, in MediaPlayer, it will only

be available for subsequent releases of Android [56].

Figure 6. Media Player and ExoPlayer layer of implementation [81]

2.5.3. Infinite Clip Scroll

As mentioned in the video player analysis, the mobile application requests clips from

the Framedrop server in order to display them to the users. Thinking about a smooth user

experience, it is wrong to assume that the videos are only rendered once they are active on the

screen. If the videos are only rendered immediately before being consumed, the rendering

times aligned to other delays caused by the scroll animation and video start playing will not

guarantee a pleasant experience to the users.

Since the videos can not be rendered at the time they appear on the screen, we need to

follow TikTok’s approach of “preloading (loading the next video ahead of time) and

pre-rendering (rendering the first frame of the video ahead of time)” [57]. The company

accomplished this feature based on the use of a class Surface that is designed to be used with

a separate rendering thread to enable smooth animations and reduce the potential for dropped

frames [58]. By using this component, they could render the clips in the background and

expose the video already rendered when it becomes in focus [57].

2.5.4. Payments

Framedrop’s mobile application integrates in-app tokens that are used to trade for

unclaimed clips, where the user becomes the claimer of that specific clip and every user that

forks it to his profile will have the claimer’s name attached to it. In the first version of the

26

app, the claim price is fixed, leaving out of the scope the process of bidding for a clip. Further

iterations will focus on providing a payment feature for in-app tokens and an auction feature,

given the ability to bid a specific clip instead of the first-come-first-serve approach of the first

version.

The payment functionality is a critical aspect of the development process as it

involves handling users' money, which carries a high level of risk. During the initial phases of

development, the Framedrop team faced uncertainty regarding the payment service to be

utilized, as they engaged in discussions to identify the most suitable service aligned with their

business values. The sequence diagram depicted in Figure 7 illustrates the payment flow for

purchasing tokens and acquiring a clip based on the available information collected during

that period.

Figure 7. Payment sequence diagram for token and clip payment.

In further stages of development, the Framedrop team reached the determination to

incorporate the Paypal service for in-app payments. With this new information and how the

27

flow would perform, it was determined that no alterations to the existing sequence flow were

required, as it aligned precisely with our initial projections.

2.6 CI/CD

Before Grady Booch proposed the term Continuous Integration (CI) in 1991,

developers had to go through the tremendous effort of “integrating” a new feature code that

they had been working on for a couple of days or months. To do that, they had to merge their

changes into a mainstream repository, which had inevitably been changed, since there were

other developers working on other features at the same time. The code was only integrated

into the main repository once the feature was completed, taking a long period of time, which

increased the number of integration errors, leading to conflicts like bugs or failures that may

take a serious time and effort to correct (“integration hell”15) [59], [60]. Grady Booch

describes that this process “should not be a single ‘big bang’ integration event” [61].

2.6.1. Continuous Integration (CI)

CI minimizes and helps eliminate code drift between the mainline branch and a

feature under development, greatly reducing the risk of integration [62]. Although this

process was not advocated for several times a day, the software development methodology,

extreme programming (XP), embraced the idea of CI and encouraged integrating code

multiple times per day. The idea was to turn the conventional software process, plan, analyze,

design, implement, and test, into an iterative process, instead of a waterfall methodology that

follows a unidirectional flow throughout that process. By doing this “a little at a time” [63],

and following some XP principles, new code could be integrated with the current system after

“no more than a few hours” [63].

A research for the best suitable CI tool for Framedrop's project was performed,

respecting pricing, with the ideal scenario being a free tool. The results are represented in

Table 2.

15 Integration Hell - https://wiki.c2.com/?IntegrationHell

28

https://wiki.c2.com/?IntegrationHell

Name Description Pricing

Jenkins An open-source automation server that helps automate parts

of the software development process. It can be used to build,

test, and deploy software projects [64].

Free, but it needs
a hosting service
to be set up

GitLab

CI

A continuous integration tool built into the GitLab code

repository platform. It can be used to build, test, and deploy

software projects [65].

Free plan with
400 minutes per
month

Bitrise Bitrise is a cloud-based continuous integration and

continuous deployment (CI/CD) platform that is designed to

automate the process of building, testing, and deploying

mobile apps [66].

Free plan with
300 minutes per
month

CircleCI A cloud-based continuous integration and delivery platform

that can be used to build, test, and deploy software projects

[67].

Free plan with
6000 minutes per
month when
using Docker

GitHub

Actions

GitHub Actions is a continuous integration and continuous

deployment platform that allows developers to automate

their build, test, and deployment pipelines [68].

Free plan with
1000 minutes per
month

Table 2. Continuous Integration tool price analysis

From the analysis made on Table 4, there are a set of CI tools that could be considered

for the project, so the decision was based on build time per month and convenience. When

comparing the results, GitHub Actions stands out from the other tools, since we have the

advantage of setting CI/CD on the same platform where the repository is stored, not having

the additional step of getting an external platform just for that. An additional advantage is that

it offers a substantial amount of time for building projects, as compared to Bitrise and GitLab

CI. Additionally, it eliminates the need for hosting or searching for a hosting service, as it

runs on GitHub's virtual machines.

GitHub Actions

GitHub Actions is a tool that helps software development process automation by

providing a platform for continuous integration and continuous deployment (CI/CD). With

29

this tool, it is possible to create different workflows with specific actions that need to be

performed in different branches. For example, if the code that will be used to generate a AAB

to be deployed in the Play Store is on a branch called “production”, and the code that will be

used to generate an APK that is being tested in Quality Assurance is on a branch “release”,

these branches need to deploy their code to different environments, the production

environment (Play Store), and an internal environment to access QA, respectively.

Github workflows are initiated when specific activities in the repository are made

(e.g. pull request, merge, push). Jobs are created to represent the steps of the workflow, with

each step being either a shell script or an action that is executed in sequence and depends on

the successful completion of the previous step. If all steps in a job are running on the same

runner16, data can be shared between steps [68].

The flow for the continuous integration pipeline is described below, as shown in

Figure 8.

Figure 8. Continuous Integration Pipeline

Instrumented testing was integrated with Firebase Test Lab. This cloud-based testing

service enables testing the mobile application on a wide range of devices and configurations,

16 A runner is a machine that is responsible for executing the steps in a workflow when the workflow is
triggered. A runner can only run one job at a time. GitHub provides runners for Ubuntu Linux, Microsoft
Windows, and macOS to run your workflows [93].

30

mitigating the need to set up and maintain a physical test lab, providing detailed test results

and logs that ease the debugging process.

2.6.2. Continuous Deployment (CD)

Even though successful continuous integration provides regularly built, tested, and

merged code to a shared repository, minimizing the number of conflicts, it does not minimize

the effort of deploying the app to a live staging environment or to the customer [69], which is

still a manual process.

Manual tasks that are repeated often lead to errors and inconsistencies, which can

decrease the return on investment and waste valuable IT resources. For instance, manual code

analysis can allow technical problems to accumulate, testing can frequently miss regressions

and other issues until the software is deployed, managing infrastructure can introduce

anomalies in environment configuration and slow down issue resolution, and deployments

can be time-consuming and introduce risks from unintentional mistakes [70].

Automating this process with continuous deployment means that changes can be

automatically bug tested and deployed to a live staging environment, or directly to the

customer [69].

Firebase will also be used in Continuous Deployment, providing a staging

environment using App Distribution service, to distribute the application to perform Quality

Assurance. Every new version that is deployed to that environment will trigger an email

notification to the testers, so they can test the application, providing crash reports and

feedback.

The final step of the Continuous Deployment flow is deploying to the Play Store,

which is also automated with GitHub actions, using the Google Developer API, to perform

the upload of an Android App Bundle (AAB), a publish format that includes all your app’s

compiled code and resources [71]. The complete flow is described in Figure 9 and Figure 10.

31

Figure 9. Continuous Integration flow diagram

Figure 10. Deployment flow diagram

32

Chapter 3

Approach

Our approach followed an adaptation of Scrum, an agile development methodology

that is characterized by a focus on rapid iteration and continuous deployment, with the goal of

delivering high-quality software quickly and efficiently. It is based on the Agile Manifesto,

which values individuals and interactions over processes and tools, working solutions over

comprehensive documentation, customer collaboration over contract negotiation, and

responding to change over following a plan [72]. It divides work into small, manageable

chunks called "sprints", and each of them will be planned according to the previous one. This

happens because Scrum is an empirical process, meaning that it can not be planned upfront,

but rather learned by doing, and then feeding that information back into the process [73].

In the Scrum methodology, the three key roles are the Product Owner (PO), Scrum

Master (SM), and development team. João Diogo Costa, the founder of Framedrop, served as

the Product Owner, representing stakeholders and defining the product's vision. He prioritized

the product backlog items, ensuring alignment with the overall vision and stakeholder needs.

Working closely with the development team, he could adjust requirements and establish

acceptance criteria for backlog items, guiding the team's work and ensuring compliance with

standards.

Mário Gago assumed the role of Scrum Master, responsible for facilitating and

coaching the team in adhering to the Scrum methodology. As a software engineer, he offered

guidance on engineering practices, promoted principles, and removed obstacles to enable the

team to deliver high-quality products. Collaborating closely with the development team, the

Scrum Master ensured successful product delivery and effective teamwork.

Assuming the role of the development team, my primary responsibility was to

develop the product. I acquired the necessary skills and expertise to fulfill the sprint's work

requirements. Representing the development team, I made final architectural and

technological decisions, maintaining continuous communication with the Product Owner and

Scrum Master to discuss future development steps.

33

3.1 Sprints

Sprints are integral to the Scrum methodology for managing complex projects. They

offer several benefits such as goal clarity, time-bound focus, enhanced planning and

collaboration, adaptable course correction, and continuous deployment. User stories,

previously prioritized and added to the product backlog, are selected for development during

each sprint. These backlog items then progress through stages of development, review, code

review, continuous integration, and continuous deployment. The process is visualized using

Notion, allowing the Product Owner and Scrum Master to provide feedback and oversee the

overall planning.

Figure 11. Notion board with app progress (part 1)

34

Figure 12. Notion board with app progress (part 2)

3.2 Scrum Events

Scrum includes events that help the team organize and track their work. Some events

were merged together like Planning and Retrospective, and Review and Showcase meetings.

3.2.1. Sprint Review and Showcase

Sprint review and showcase meetings were conducted every two weeks to evaluate

the work completed at the end of each sprint. While typically separate events in the Scrum

methodology, they were merged into a single meeting for this project. Two separate meetings

were held in the academic environment, one with the University adviser, Scrum Master, and

developer, and another with the Product Owner, Scrum Master, and developer. The purpose

of these meetings was to review and showcase the development process, with the added

benefit of receiving suggestions from the University adviser regarding internship reports and

other relevant documents.

3.2.2. Sprint Planning and Retrospective

Sprint planning and retrospective meetings were combined into a single event,

occurring every two weeks. Attended by the Product Owner, Scrum Master, and developer,

these meetings served to evaluate the project's progress, address any obstacles or

35

impediments, and plan for the upcoming sprint. Due to the ongoing development of

Framedrop's server, these meetings assisted in prioritizing backlog items, many of which rely

on server endpoints.

3.2.3. Daily

Daily stand-up meetings, lasting no more than 15 minutes, were conducted by the

Pink Room company at a fixed time and location. Attended by the developer, Scrum Master,

and all team members, these meetings served as a platform to share progress updates, address

any blockers or issues, and plan for the day ahead. While not exclusive to the internship

project, these meetings were utilized to provide progress updates and seek support as needed.

The inclusive nature of these meetings allowed any Pink Room team member to assist in the

development process, thereby reducing the workload of the Scrum Master and minimizing

obstacles that may impede progress.

3.3 Requirements definition methodology

Requirements elicitation is non-trivial because requirements can not usually be

gathered from the user and customer by just asking them what the system should or not do.

Through an elicitation process, the requirements also need to be analyzed, modeled, or

specified, so that the final set of requirements specifies quality attributes and functionalities

for the system.

Since the project follows the Scrum methodology, the requirements were presented in

the form of user stories, which represent a short, informal description of a feature or piece of

functionality that a user of the system or application would like to see. User stories are used

to capture the requirements for a new system or application, and are typically written from

the perspective of the user, following a “who”, “what” and “why” structure that identifies the

actor, the goal that is trying to achieve, and the benefits of completing the goal, respectively.

An example of a user story is presented in Figure 15.

Figure 13. Example of a user story structure from clip feed menu

36

User stories are an important part of the requirements definition process, as they help

to ensure that the final product meets the needs of the users and stakeholders. They are also

useful for planning and tracking the work for each sprint in agile development, as they

provide a clear and concise description of the functionality that needs to be delivered.

Scrum defines two artifacts, product burndown chart and sprint burndown chart, one

representing the collection of user points of all the user stories throughout the development of

the application and the other only related to each sprint. For the context of this assignment,

the sprint burndown chart was placed out of the scope of deliverables since it could limit the

developer's flexibility to respond to changes in priorities or unexpected problems that arise

during the sprint, as well as if the estimates are unrealistic, it could lead to missed deadlines

and a breakdown between the developer and the stakeholders.

Before the development phase all the requirements were defined and translated into

the form of user stories that were placed into the product backlog. With this method of having

all the requirements in the beginning, it eased the process of re-prioritizing, improving the

responsiveness to changes in priorities or unexpected problems that arise during the project.

Overall, while a sprint backlog can be a useful tool for planning and tracking the work

for each sprint, a product backlog provides a longer-term view of the project and improved

communication and collaboration, which helps to better understand the overall scope and

complexity of the work.

3.4 Estimation

Effective time management is essential in project planning, involving the estimation

of task durations and overall project duration. It is important to consider potential delays,

risks, and uncertainties to provide accurate time estimates. Initially, hours were used for

estimating user stories, but this approach led to disparities between estimates and actual time.

To address this, a story points approach was adopted.

Story points are unitless and represent the effort and complexity of completing a user

story, allowing for relative comparison [74]. They minimize disparities and are contextual to

each developer's interpretation of effort. Planning poker, using a fibonacci-based sequence,

was utilized to lower uncertainty. Each team member provided individual estimates, which

were then discussed and agreed upon. The fibonacci-like scale is capped at thirteen to align

with agile methodology's focus on small increments.

37

User stories with high estimates were further analyzed, and if necessary, divided into

sub-requirements for re-estimation with lower values. When uncertain between two values,

the higher one was chosen to manage risk and stakeholder expectations. This approach

improved accuracy and empowered individual decision-making. Planning poker resolved

issues of excessive discussion and dominance of effort estimation [75].

3.5 Development Process

Until now some principles of Agile development were discussed like Scrum events,

product and sprint backlog and user stories that help to organize and manage the development

planning. At the stage of development, it is important to follow other principles that will

improve code quality and testability.

Effective use of efficient testing methods at any stage of the Software Development

Life Cycle (SDLC) can be a challenge, since there are several testing techniques that can be

used at different phases of testing. The selection process should not only consider subjective

knowledge, but also objective information in order to make the most appropriate choice of

testing techniques based on the requirements [76]. As the project grows, the codebase and the

number of tests grow with it, so it is a good practice that tests run every time a new feature is

developed, because this new added code may create defects on previous code. This process

can become exhaustive, because it is repeated every time something on the codebase changes.

Automating this step with continuous integration, which integrates the new code with the

existing one after running the already defined tests, ensures that there are no unnoticed

defects. Since we are using git as version control, it is important that on every failed test, the

integration is rejected, so it does not affect the stable codebase.

Figure 14. Feature branch behavior example

The process of adding the new code to the codebase can be assured using versioning

with feature branching, allowing developers to work on multiple features concurrently

38

without affecting the main branch of the codebase. Figure 14 describes the process of

creating a feature branch, working on the code by committing to git, and merging again to the

main branch. This process integrates automating testing because every commit triggers the

continuous integrations pipeline that runs the tests to check if the code has defects. By

encapsulating all the committed changes, it provides a fast way to debug and fix the code,

because there are committed several small parts of code instead of a full feature.

3.6 Code Review and Quality Assurance

When a feature passes all tests, a Pull Request is created so another developer can

review it. For this project, it was settled that if at least two reviewers approve the code, as it is

described in Figure 15, it could be merged into the main branch. The reviewers were not

always the same, so all the Pink Room elements could review the code, which improves code

quality, since different elements may detect different details in the code and less blockers for

the developer.

Figure 15. Code Reviewers and Assignees

If the code met the requirement specifications, the reviewer could accept the code

which the developer merges to the main branch. If the code needed changes, the reviewer

could leave comments about some aspects that may not be aligned with the purpose of that

feature or some advice about code style or optimization.

39

Figure 16. Example of a Pull Request

In Figure 16, a Pull Request has been reviewed by the Scrum Master, Mário Gago,

who requested changes. Since it was defined that every Pull Request would only be merged

to the main branch if at least two reviewers approve the code, in this example, it still needs to

be reviewed by at least one more element. When the code goes to the main branch it does not

mean that the work is complete, since there is always a margin to evolve. Agile methodology

is represented as a cyclical process, so a feature that was sent to the main branch can go back

to the development stage, because it was not optimized and there is a margin to enhance, or

because changes were requested or because it could potentiate future bugs. In this process, a

new feature branch is created and the steps are repeated.

40

All the APK versions generated from the code that is sent to the main branch should

be tested in quality assurance. Since code reviews are an internal process, and Agile

methodologies bring the customers closer to the development, it is important to provide a

way so they can test and give feedback about the application. As we defined in the context of

this internship, the PO integrates as an element of the quality assurance team, analyzing if the

developed features meet the requirements and to test potential bugs or defects. If a problem is

found, the team reports it and the issues must be prioritized to understand if it is an urgent

event that needs to be fixed right away or enqueued to a later fix. Only after that process the

feature can be delivered to a staging environment, which is still an internal environment and

aims to test under the same conditions of a production environment.

3.7 Delivery and Deployment

During development time the PO, SM, and developer should meet every two weeks to

ensure that the development meets the requirements by showcasing the app and to discuss

next approaches to the project, like prioritization of items in product backlog or converting

feedback to new product backlog items. The features that were approved after the previous

processes were deployed to the production environment, available to the end users. This

process was automated by using a continuous deployment pipeline that is responsible to

deploy the app to the specific environment. This should allow the release of small pieces of

code that can be easier to troubleshoot in case of a problem and provide feedback loop

acceleration.

3.8 Risks and Mitigation

Defining the threshold of success (ToS), followed by risk statements (condition and

consequence) helped to understand issues/concerns that could stop the project from being

successful (achieve the ToS). Risks were mostly defined using free-form brainstorming,

based on knowledge of the project specifications and development experience. Before

defining a mitigation plan for the identified risks, those must be subject to analysis to better

understand the risk by determining its expected impact, probability, and timeframe. The

levels of these attributes will be defined further.

41

3.8.1. Threshold of Success

When defining the number of conditions that must be met to consider a project a

success, the areas typically considered are: scope, budget, schedule, and quality. Also, these

conditions must be specific, measurable, and time bound. A good approach for building a

ToS is to draw a failure picture, by listing possible paths that guide the project to failure.

After this step, it becomes easier to convert these statements into minimum conditions to

success. A good Threshold of Success is represented by 3-4 SMART17 goals [77]. Table 3

represents the result of the methodology described above.

Sad path What failed? Minimum condition

The project was delivered
without the “must have”
requirements

“Must have” requirements Deliver the project with all
“must have” requirements

The project was not
delivered on schedule

Schedule Deliver the project on
schedule

The project did not satisfy
quality attributes

Quality attributes The project satisfied quality
attributes

Table 3. Results of SMART methodology

Building SMART goals with these minimum conditions requires a set of attributes

that ensure a good goal definition. Since this project is being developed as the scope of an

internship, the maximum delivery time is the end of the internship. Following SMART

framework, the next goals represent the minimum condition to project success:

● Deliver all “must requirements” present in the Software Requirements Specification

before the end of the internship.

● Deliver the project until the end of the internship.

● Product satisfies all the quality attributes present in the Software Requirements

Specification until the end of the internship.

17 SMART represents Specific, Measurable, Attainable, Relevant, and Timebound, and it is one of the most
effective goal-setting strategies, because they clearly define all the different parameters involved in completing a
task [104].

42

With the ToS defined, the next step is to define issues/concerns that could become a

barrier to project success.

3.8.2. Risk Analysis

The majority of Framedrop’s application operations depend on Framedrop’s server

API, since the data is stored in the Framedrop database and is only accessed from the server.

Although they have their own database, Framedrop is dependent on Twitch, since the data

stored in Framedrop’s database comes from there. Since the server API was being developed

in parallel with the mobile application, the majority of end-points were not available when

development started and have been made available as development of the app went along. It

is worth pointing out that the design process took place during the beginning of the semester,

and was already finished at the time of development.

The statements mentioned above represent potential risks to the project's success.

Converting them into risk statements (condition and consequence format) will facilitate their

analysis in terms of impact, likelihood and the time from its identification to time that is

required to deal with this risk.

● Framedrop’s API server is not developed at the time of app development; might delay

the development of the mobile application taking longer than was originally expected;

● Twitch blocks Framedrop’s dependency to its services; might compromise all the

application purpose;

● Framedrop’s design presents flaws; might delay the development of the mobile

application taking longer than was originally expected;

● The developer has less experience with the development language used in the project;

might delay the development time and/or compromise application architecture or

quality;

● Developed code is difficult to test; might compromise quality attributes.

With the risks identified, it becomes possible to identify their attributes. Impact

attributes can be defined in three levels:

1. Marginal - the ToS can be reached without great difficulty;

2. Critical - the ToS can be reached, but with great effort/cost;

3. Catastrophic - the ToS can not be reached.

43

The likelihood can be defined in three level, as well:

1. Low or unlikely - < 40%;

2. Medium - between 40% and 70% ;

3. High or likely - > 70%.

For last, time bound can be defined in three levels, since it is considered that the time

from identification to when one is required to deal with this risk is considered long for more

than 3 months.

1. Short - < 1 month;

2. Medium - between 1 and 3 months;

3. Long - > 3 months.

Risk priority can be represented using a tridimensional risk matrix, since there are

three attributes presented in Table 4.

Risk Impact Likelihood Time
Bound

Framedrop’s API server is not developed at the time of app

development; might delay the development of the mobile

application taking longer than was originally expected

because some requirements are dependent on server

end-points.

2 2 2

Twitch blocks Framedrop’s dependency to its services;

might compromise all the application purpose. 3 1 3

Framedrop’s design presents flaws; might delay the

development of the mobile application taking longer than

was originally expected.
1 2 1

The developer has less experience with the development

language used in the project; might delay the development

time and/or compromise application architecture or quality.
2 1 2

44

Developed code is difficult to test; might compromise

quality attributes. 2 1 2

Framedrop’s project is dependent on the client availability;

might delay the development of the mobile application. 3 1 1

Table 4. Risk Statements analyzed by impact, likelihood and time bound

Converting the data from the table below to a tridimensional risk matrix, represented

in Figure 17, becomes easier to rank the risk statements by their priority level and conclude

what risks are needed to be addressed first.

Figure 17. Tridimensional Matrix to measure risk priority

A comprehensive plan to manage, eliminate, or limit potential setbacks was

developed in order to proactively address potential risks and minimize their impact on the

overall success of the project.

3.8.3. Mitigation Plan

For each of the risks defined above a mitigation plan was developed which described

the steps involved to mitigate the respective risk. Below, we described the top three

mitigation strategies for the two highest priority risks. The complete plan for each risk is

presented in Appendix C.

45

“Framedrop’s API server is not developed at the time of app development; might delay

the development of the mobile application taking longer than was originally expected.”

1. Identify the specific requirements that are dependent on the server end-points, and

prioritize them in terms of their impact on the overall development of the mobile

application.

2. Develop a contingency plan for each of the identified requirements, in order to minimize

their impact on the development timeline. For example, this could involve identifying

alternative solutions or temporary workarounds that can be implemented until the API

server is ready.

3. Work closely with the team responsible for developing the API server to ensure that they

are aware of the dependencies on their work and to establish a clear timeline for the

development and testing of the server.

“Twitch blocks Framedrop’s dependency to its services; might compromise all the

application purpose.”

1. Identify and evaluate alternative services or platforms that could be used in place of

Twitch, in order to maintain the functionality of the application. This could involve

researching and comparing the features and capabilities of different platforms, as well as

seeking input from key stakeholders and users of the application.

2. Develop a contingency plan for implementing the use of an alternative service or

platform, including any necessary changes to the application's code or design. This

should include steps to ensure a smooth transition from Twitch to the new platform, with

minimal disruption to the application's functionality or user experience.

3. Work closely with the team responsible for implementing the use of the alternative

platform, to ensure that they are aware of the potential risks and the steps being taken to

mitigate them. This should include regular communication and collaboration to ensure

that the transition is carried out smoothly and efficiently.

46

Chapter 4

Requirements

At the time of requirements specification, different categories of requirements were

defined regarding functional requirements that were not related to system functionalities, but

to quality attributes (non-functional requirements), assumptions, and constraints.

The functional requirements represented the Minimum Feature Set (MFS), since we

are following a Minimum Viable Product (MVP) approach, reducing engineering waste to get

the product to the customers sooner [78]. Throughout the project, there were some variations

in the requirements, depending on the evolution of the users' needs, either adding new

functionalities or removing them. In general, by following an agile methodology, we could

have more flexibility to respond to the changes imposed on us.

Non-functional requirements (NFR) were defined considering Framedrop’s needs,

since they have another product and want to keep the same quality attributes. It was

important that these attributes were measurable, so we could validate how well the system

satisfies the needs of its stakeholders.

Software project assumptions are statements that are made about a project based on

incomplete information or a lack of certainty. These assumptions were made in order to move

forward with the project and can be revised during its development.

Constraints were defined based on resource limitations and business value

propositions which restrict the freedom of finding solutions to certain aspects of the

development. They may also be related to the competitive landscape and the needs of the

target market, which restricts the degree of freedom of application features on the project

scope, since it represents a specific audience and not all the features will be considered

useful.

4.1 Out of Scope

For this assignment, it was left out of the scope an iOS mobile app (since it was only

developed for the Android operating system), user clip recommendations based on previous

interactions, the possibility to bid for an unclaimed clip (substituted for fixed costs and

47

first-come-first-served approach), the notification menu, and the built-in editor to edit clips

when they are “forked”. It is important to notice that, for future work, these requirements are

planned to be re-analyzed and considered to the project.

4.2 Assumptions

Framedrop’s team has established the following assumptions for the project:

● Users want to authenticate through Twitch because they want to keep their

information, such as their username and avatar, so that their followers on Twitch can

recognize them.

● Users would like to be able to connect to the Framedrop mobile application through

multiple devices with a single account.

4.3 Constraints

For this project there were a set of constraints that were taken into account. The

minimum API level must be 24, which ensures a cumulative usage of 95.80% of Android

devices. Although API level 21 ensures a cumulative usage of 99.20%, this choice was based

on the rapid evolution of technology, and by the time the application is released, some older

devices could stop supporting recent libraries [79]. As already mentioned, the Pink Room

company has imposed the use of Kotlin for the development of the app, which is also the

language recommended by Google and used by the company in their work.

Finally, the streaming communications are made using only the HLS protocol and any

communications with third-party systems must be protected by encryption when circulating

sensitive data for the system. These types of data include any information that could

compromise the security of the system, user authentication data such as access tokens and

refresh tokens, or personal data of users.

4.4 Non-Functional Requirements

Non-functional requirements are an important aspect of software development that

impact the overall quality and effectiveness of an application. In the context of this

assignment, the quality attributes that were considered to play a critical role in determining

the user experience and the overall success of a software product were availability, security,

48

usability, performance, and testability. The tables presented below represent the scenarios

from the different quality attributes.

Availability is a key non-functional requirement that refers to the ability of an

application to be available and functional for users at all times, as it is formalized in Table 5.

Ensuring high availability is important for maintaining user satisfaction and ensuring that an

application is able to meet the needs of its users.

ID qa1

Actor App

Trigger Watch clips

Environment Network slow/failing

Artifact App

Response Network failure when performing an action that communicates
with Framedrop’s server

Response Measure App does not crash

Table 5. Quality attribute 1

Security is another critical non-functional requirement, particularly in today's digital

age where sensitive data is at risk of being accessed by unauthorized individuals.

Implementing strong security measures, such as secure authentication, is essential for

protecting user data and ensuring the integrity of an application, as it is mentioned in Table 6.

ID qa2

Actor App

Trigger Authentication

Environment Normal Operation

Artifact Data

Response Authentication successful

Response Measure Sensitive information (email/username and password) never

49

circulates again over the internet while the user is signed in

Table 6. Quality attribute 2

Usability is also an important factor to consider in the development process.

Applications that are difficult to use or navigate can be frustrating for users, leading to a poor

user experience. By designing interfaces considering the customers that will use them, will

ensure that applications are easy to use and that users can accomplish their goals efficiently.

Table 7 presentes this quality attribute.

ID qa3

Actor App

Trigger Navigate from the clip feed to the profile page

Environment Runtime

Artifact App

Response Open profile page

Response Measure Users are able to navigate from point clip feed to point profile
page in one click

Table 7. Quality attribute 3

Performance is another key non-functional requirement that can impact the user

experience. Applications that are slow or prone to crashing can be frustrating for users and

can lead to a poor overall impression of the product. Jakob Nielsen wrote in the “Usability

Engineering” book that users have an attention limit of 1 second, and in the cases that the

waiting time passes this limit, it should provide feedback to the user, since they do not know

what is happening in the background [80]. The specification of this quality attribute is

presented in Table 8.

ID qa4

Actor User

Trigger Scroll between clips

50

Environment Normal operation

Artifact App

Response Clip is rendered and start playing

Response Measure Less than 1 second of latency

Table 8. Quality attribute 4

Finally, testability is an essential aspect of the development process. By writing

comprehensive unit and integration tests, developers can ensure the reliability and correctness

of their code, leading to a higher-quality product, as mentioned in Table 9. By following good

architectural patterns that take advantage of low coupling components, and a continuous

integration pipeline that runs the tests for every chunk of code that is developed, we can

ensure that the application is less susceptible to defects.

ID qa5

Actor Tester

Trigger Merge code to main branch

Environment During development

Artifact Code

Response Build, run tests and notify in case of defects

Response Measure Tests pass and merge process is completed

Table 9. Quality attribute 5

Overall, non-functional requirements are a crucial aspect of software development

that can significantly impact the user experience and the overall success of a product. By

considering these requirements throughout the development process, we can ensure that the

application is reliable, secure, and easy to use, leading to a positive user experience and a

successful product.

51

4.5 Functional Requirements

The application has 65 user stories scattered through the different system menus.

While developing the Software Requirements Specification documented, annexed to this

document in Appendix D, every user story followed a set of fields that described it, and

served as a guide through the development process, described in Table 10.

Unique ID An unique identifier, easy to read and that can identify the
requirement and its location in the system.

Title Presented in a user-story format.

Notes An optional field that could serve as a guide when it is difficult to
describe the requirement and can lead to ambiguity.

Priority Following a MoSCoW (Must Have, Should Have, Could Have)
technique that helps to prioritize the development.

Dependency
Identification of another set of user stories that this user story is
dependent on. It helps to understand what needs to be completed in
order to develop the respective requirement.

Estimation
An estimation of the development using a fibonacci-like numerical
sequence. Helps to choose what user stories to develop next, based
on the recommended user story points for the sprint.

Wireframe
Reference

A reference to the wireframe that integrates this user story. Helps to
guide between the different screens.

Table 10. User Story fields

Table 11 describes the functional requirements related to the profile menu. The

complete list is described in Appendix D.

ID Priority Estimation

As an authenticated user, I should be presented with my
profile information, so I can manage it. Must Have 8

As an authenticated user, I should be able to navigate to the
settings menu, so I can edit my experience on the application. Could Have 1

As an authenticated user, I should be able to press to navigate
to my edit profile menu, so I can edit my profile information. Could Have 1

As an authenticated user, I should be able to navigate to the Could Have 1

52

wallet menu, so I can top-up my wallet.

As an authenticated user, I should be able to press the Twitch
icon, so I can navigate to my Twitch account. Could Have 2

As an authenticated user, I should be able to switch between
"Streamed", "Claimed", "Forked", and "Upvotes" tabs, so I
can see the content from each of them.

Must Have 3

As an authenticated user, I should be able to interact with a
clip, so I can watch it. Must Have 5

As an authenticated user, I should be able to navigate to clip
feed, so I can view recommended clips. Must Have 1

As an authenticated user, I should be able to navigate to the
search menu, so I can search for users or videos. Must Have 1

As an authenticated user, I should be able to navigate to the
clip contest menu, so I can see clip classifications of a game
that I like.

Must Have 1

Table 11. Profile Menu User Stories

4.6 Wireframing and Prototyping

During the project, we used wireframes to clearly define the requirements for the

mobile app. This step was crucial in refining the app's user interface and user experience with

the PO before actually building it. To do this, we were involved in a Product Design Sprint

that, where we followed Jake Knapp’s, Google Ventures, Design Sprint framework template

which allowed us to rapidly prototype and test ideas in a short period of time, enabling better

decisions and complex problem solving efficiently [81]. This framework helped us to identify

and address potential problems early on by gathering feedback from real users and

incorporating it into our design [82]. The complete description of this process is presented in

Appendix E.

53

54

Chapter 5

Architecture

To describe the software structure, we used Simon Brown’s C4 model that provides an

effective way to represent the different layers of detail, and will create the diagrams in Archi,

mapping ArchiMate concepts to the C4 meta model. The reason why we did not use

ArchiMate is the fact that it could be time consuming if the person who’s reviewing it is not

familiar with the language, since connections are not labeled and are oriented to different

goals [83]. The C4 model is based on an “abstraction-first” approach, reflected in four levels:

Context, Containers, Components, and Code.

For the purpose of this work, we only described the first three levels, since the Code

level does not add the appropriate level of detail. Other modeling languages could be taken

into account, like the standard Unified Modeling Language (UML), but to visualize the whole

application architecture, “would have to be drawn and brought together” [84], which can be

confusing and time costly, especially for larger architectures [84]. The C4 model is flexible

enough to be used in agile development, and features component reusability and

maintainability when used with software modeling tools like Archi.

The mapping concepts are presented in Table 12.

C4 ArchiMate

Person Business Actor

Software System and Container Application Component

Component Application Function

Relationship Triggering Relationship

Table 12. C4 concepts mapped to AchiMate

55

5.1 System Context

Figure 18 represents the system context for the Framedrop mobile application, which

in the C4 model represents the environment in which the system operates, including the other

systems and components that interact with it. It is used to help understand and communicate

the context in which the system exists and how it fits into the larger system landscape.

Figure 18. System context layer

The actors that interact with the system are authenticated and non-authenticated users,

and the system interacts with the Framedrop server in form of requests to the API and to

perform authentication. As we described in Chapter 2, the server deals with the process of

authenticating with Twitch and retrieving the token and refresh token. As a push notification

server, we use Firebase, which allows us to send notifications to the mobile application, and

for mobile crash logs, we use Firebase Crashlytics service.

56

5.2 Containers

Figure 19 describes the Container diagram that consists of a high-level architecture

that demonstrates how responsibilities are divided among its components, and how they

communicate with each other [85].

Figure 19. Containers layer

5.3 Components

Our Android mobile application uses the MVVM architectural pattern that was

decided after an analysis described in Chapter 2, taking the advantage of low decoupled

components and high cohesion. Following the clean architecture principles, the architecture

follows three main layers, presentation, domain and data. The presentation layer includes the

View and ViewModel components, where we defined a different architectural approach that

is also described in Chapter 2, using an MVVM approach with some concepts of the MVI

pattern, providing a Single Source of True for the states that the View component observes.

57

Figure 20. Components layer

Figure 20 details the architecture of Framedrop’s application and the interactions

between the different components. As it can be seen, the ViewModel acts as an intermediary

between the View and the Domain layer. It receives a user input from the View, processes it

triggering the appropriate use case, which contacts the Data layer and returns the results to

the ViewModel. The ViewModel will then change its state and the View, which observes that

state, will update accordingly.

Although the MVVM pattern helps to organize and structure code in a clean way, it

can still result in boilerplate code, particularly when accessing data from local or remote

databases.

The repository pattern as used in Android mobile development today, is based on the

same concept of data separation and abstraction of the one introduced by Robert C. Martin

[86]. In this context, the pattern is used to provide a clean separation between the data access

code and the UI code by introducing a Repository class, which acts as a mediator between the

Data layer and the Domain layer. This class is responsible for loading the data from the local

or remote data source and providing it to the ViewModel when it is requested. This allows the

ViewModel to remain decoupled from the underlying data source, making it easy to test and

maintain.

58

Chapter 6

Planning

This chapter provides an overview of the high-level plan for the development process,

milestones, and progress of the project. As the project follows agile methodologies, it is

important to note that a detailed plan cannot be provided. However, key milestones have been

identified to offer valuable insights into the development journey.

6.1 High Level Plan

The development process was planned to consist of 16 sprints, as we were following a

two week sprint duration and had already begun development in the first semester. The

following information covers the plan for the first and second semesters.

6.1.1. First Semester

The semester started as planned with the onboarding and first phases of writing the

internship report. When the development started, some issues regarding workload started to

influence the planning. Writing, developing and attending university courses became a

challenge to balance in terms of work, so the tasks became stacked to the end of the semester,

being the month of November the one with more intense university assignments and

deliverables.

The development process was slowed down due to a shortage of available working

time and delays in the development of the Framedrop API server. In addition, we encountered

an unexpected problem with authentication, as the documentation did not align with the

actual specifications. This required a thorough analysis of the authentication process. The

results of the real process are described in Figure 21.

59

Figure 21. Real task plan for the first semester

6.1.2. Second Semester

As we embrace an agile development methodology centered around component

iteration, our planning for the second semester perfectly aligned with this philosophy. It's

worth noting that almost none of the implemented system components were developed from

start to finish without requiring iterative enhancements. Figure 22 illustrates the progress

made during these iterations, showcasing the evolution and refinement of the application.

Figure 22. Real task plan for the second semester

60

6.2 Sprint Level Plan

Since the user stories were already estimated, and even though these estimations can

be refined during sprint planning, in every iteration a set of items in the product backlog was

selected by priority and developed, taking into account the choice of the items' story points so

that the sum would be close to the expected number of story points for the sprint.

Another important aspect to be mentioned is that during the first semester of the

internship, the effort of theoretical and practical work was balanced to prevent one from

jeopardizing the quality of the other, which directly impacted the product burndown chart,

where the number of story points spent on development were usually below the velocity

recommended for the sprint. The velocity is a measure used to help to determine the

appropriate amount of work to commit to in each sprint.

The product burndown story points was calculated using a full time development

approach along 16 sprints, and in the first semester, the work was made under part-time

conditions.

The development process initiated in the first semester facilitated a smooth transition

to full-time development, thanks to the groundwork already laid in the project base. As a

result of these decisions, the development process accelerated, with the majority of sprint

velocity exceeding the recommended pace, as depicted in Figure 23. This figure also

illustrates the burndown chart of the requirements implementation process, which aids in

analyzing the alignment between estimated and achieved goals.

61

Figure 23. Product Burndown Chart artifact

Figure 24 represents only the progress of the first semester.

Figure 24. Product Burndown Chart diagram for the first semester

62

Beginning the development process in the first semester allowed a faster learning

process, although balancing that part of the internship with theoretical work and classes

raised some implementation issues like delays and incapacity to produce in such a short

schedule window. Figure 25 represents only the progress of the second semester.

Figure 25. Product Burndown Chart diagram for the second semester

Overall, the requirements estimation process can be considered a success, with only

one user story surpassing the anticipated point value. The utilization of an agile approach

played a crucial role in achieving this outcome, as it allowed for the continuous analysis and

re-estimation of backlog items in each sprint. Such adjustments were necessary due to various

factors, such as alterations in the behavior of specific components. Consequently, upon

concluding the development phase, we exceeded the projected point total by 2 points. This

discrepancy arose primarily from significant design and logic modifications to the login

component, which made it challenging to accurately forecast the required implementation

effort.

The detailed estimations can be found in Appendix B, describing the specific user

story’s point usage, per sprint.

63

64

Chapter 7

Results

This chapter provides an overview of the outcomes achieved during the development

process. It discusses the major challenges we encountered and the decisions we made along

the way. Additionally, this chapter explores the testing and validation phase, including the

testing criteria and important component unit and instrumentation tests that were performed.

To assess the suitability of the Framedrop application for end customers, we conducted a

usability test, the details of which are described below. Based on the results of the usability

test, we made adjustments to a few features and implemented an optimization process, which

is also covered in this chapter. The final product is an application that not only obeys the

proposed functional and non-functional requirements but goes further and provides a usable

and optimized experience to the end user.

7.1 Development

This project involved a total of 65 user stories, as outlined in Appendix F. The user

stories went through several iterations, as the Framedrop team refined their product. Each

sprint involved prioritizing the user stories to determine if they were still relevant for

development. Notably, the decision was made to exclude the implementation of components

related to claiming clips through an auction system. Instead, the team settled on a first-come,

first-serve approach, for the purpose of this MVP.

During the development process, additional user stories were added, such as

incorporating a countdown timer in the clip contest menu to display the remaining time and

including a logout button for users to log out of the application, for example. In the end, a

total of 49 user stories were successfully implemented in the scope of this internship. The

remaining 16 user stories were not implemented, with 12 of them being deemed irrelevant for

this application and the remaining 4 awaiting the development of corresponding endpoints by

the Framedrop team.

Despite these unreleased features, they were not considered critical for this particular

release, as all the essential features for the minimum viable product were successfully

65

implemented, and the application is already deployed in internal testing on Play Store. The

next steps will encompass the release to the next phases - close testing, open testing, and

production.

7.1.1. Application Showcase

When launching the application for the first time, users are greeted with a login menu

(Figure 26) offering two authentication options: Twitch or Guest login. Opting for Twitch

authentication allows users to access additional features within the app, while selecting Guest

login restricts certain interactions. When logging via Twitch, the creator code menu is

presented (Figure 27) so the user can enter an optional creator code that will add more credits

to his wallet balance, if it is the first time he is logging to the application. To complete the

login process, users need to click the "Continue with Twitch" button, which opens a

WebView featuring the Twitch authentication service (Figure 28).

Figure 26. Login menu Figure 27. Creator Code menu Figure 28. Login WebView

After proceeding past the login menu, users are presented with the Clip Feed menu

(Figure 29), providing them with the ability to watch clips and engage with them through

actions such as upvoting, commenting, and sharing.

66

Additionally, they can navigate to the Wallet menu (Figure 30) to add funds to their

application wallet. The Wallet menu offers three predefined amount choices, but users also

have the option to input a custom amount. To complete the payment process, a WebView is

displayed, allowing users to finalize the transaction using the PayPal service.

Another way to access the Wallet menu is through the Profile menu (Figure 31). The

Profile menu not only presents user information but also showcases the clips they have

streamed, unlocked, and upvoted. Furthermore, it includes buttons to navigate to the user's

Twitch profile and to log out of the application.

Figure 29. Clip Feed menu Figure 30. Wallet menu Figure 31. Profile menu

When accessing the Search menu, users have the ability to search for other users, as

depicted in Figure 32. By clicking on the corresponding item from the search results, they can

easily navigate to the selected user's profile.

Lastly, upon entering the Clip Contest menu, users are presented with a list of

supported games (currently, Framedrop supports two games, as shown in Figure 33). Upon

selecting a specific game, users are directed to the Clip Feed Scoreboard menu (Figure 34),

where they can view the scoreboard for each contest period along with the remaining time.

Users can switch between contest periods by clicking on the desired period or swiping

67

horizontally through the clip list. Additionally, they can utilize the "My clips only toggle" to

exclusively display their own clips (whether streamed or unlocked).

Figure 32. Search menu Figure 33. Clip Contest games
menu

Figure 34. Clip Contest
scoreboard menu

7.1.2. Major Challenges

During the implementation of the project, we encountered specific challenges related

to working with complex components like ExoPlayer. Extensive investigation and research

were required to ensure proper utilization of this technology. From the initial implementation

to the optimization process, ExoPlayer proved to be a versatile tool with numerous

possibilities. As a general tool that can be integrated into various environments, it provides a

high level of customization, allowing developers to tailor it to their specific systems.

Since our app utilizes the HLS video format, we needed to delve into ExoPlayer HLS

customization. As HLS employs adaptive bitrate streaming, we had to incorporate bandwidth

awareness into ExoPlayer. Fortunately, the player already had predefined methods for this

purpose. Additionally, since our app focuses on short-form content, one important feature

was the ability for videos to loop seamlessly after playback. ExoPlayer offered a solution by

implementing flags with different reproduction modes.

68

However, we encountered an issue when receiving videos from the API, as they often

had extended durations compared to the desired length for the app. For example, if a video

was supposed to be 24 seconds long in the app, it might be received from the API with a

duration of 58 seconds. The API also provided starting and ending positions, allowing us to

seek the player to the specified position. However, due to the extended duration, achieving

seamless looping became problematic. Fortunately, our analysis of the ExoPlayer

documentation revealed a message system that triggers events at specific positions in the

video timeline. This discovery turned out to be the best-fit solution for triggering the loop.

When the playback time matches the ending position, an event is triggered, seeking the player

back to the starting position and enabling continuous looping of the video.

While the current solution is deemed the most optimal, the clips still experience a

buffering time when looping, a drawback that would be minimized if the clips matched the

exact duration displayed in the application. When presenting this issue to the client, the

Framedrop team acknowledged its existence but considered it relatively minor. They clarified

that reducing the clip duration to precisely match the video length would pose complications

with video compression due to the utilized codecs.

Additionally, several iterations were carried out to refine the user experience of

various app components. The login UI, as well as the UI for the Clip Contest and Profile

Screen, were among the components that were aimed at and underwent multiple

improvements to enhance their usability. In the previous implementation, the app would

redirect the user to the mobile's browser window, initiating a cumbersome back-and-forth

process where the browser would eventually redirect the user back to the app. However, with

the new implementation, a WebView is integrated directly within the app, eliminating the

need for external app redirections and streamlining the user experience.

The introduction of a WebView directly within the app brings several benefits to both

the users and the Framedrop application itself. Firstly, this new implementation offers a

seamless authentication process. Users no longer need to leave the app and open a separate

browser, ensuring a smoother transition and eliminating potential confusion or distractions

caused by switching between different applications. Moreover, by keeping users within the

app during the authentication process, the new implementation enhances security and privacy.

External browser windows may retain browsing history or leave temporary data behind,

which can pose security risks. With the WebView approach, sensitive authentication data

remains within the app's controlled environment, reducing the likelihood of information leaks

or unauthorized access.

69

The Clip Contest and Profile menu presented a significant challenge due to the

abundance of components, which made it difficult to navigate through the lists on these

screens. To address this issue, a decision was made to hide some of the items located above

the list, retaining only the essential ones, smoothly and seamlessly. To tackle this problem,

extensive research was conducted by examining similar events in popular apps like

Instagram18 and Twitter19. The objective was to determine which elements should be hidden

or preserved and their respective positions on the screen. Subsequently, the focus shifted

towards finding suitable implementation solutions.

As Jetpack Compose is a relatively new technology, there is a limited availability of

libraries that facilitate this specific action. Unfortunately, none of the existing libraries were

capable of addressing our specific issue, being adopted a manual implementation approach.

An Android Toolbar was created to consolidate the desired components for hiding or

repositioning, and an animation was applied to this Toolbar when users scrolled through the

screen. The resulting animation can be visualized in Figure 35, illustrating the transition

achieved during scrolling in the Clip Contest menu.

19 Twitter - https://twitter.com/
18 Instagram - https://www.instagram.com/

70

Figure 35. Scroll transition between extended and collapsed toolbar

This solution received an enthusiastic response from the Pink Room team, who

proposed the development of a library that would facilitate the animation of an Android

Toolbar. This library would allow for the collapse and expansion of the Toolbar by selectively

hiding or revealing components on the screen. As part of my future work in the company, I

will be creating this open-source library with the intention of making a positive contribution

to the Android community.

7.2 Tests and Validation

In the context of this project, it was decided to test the critical paths, which are the

most important and high-risk areas of the software, as they represent the functionalities that

are most critical to the software's success and user satisfaction. This approach has the

advantage of increasing the coverage of important functionality, by ensuring that the software

meets its requirements and the critical bugs are identified and fixed, and is also cost-effective,

71

since we are not testing all possible paths, which reduces the overall testing effort and

resources required. Hence, our decision is to ensure a minimum test coverage of 90% for the

critical paths as they constitute the primary focus of the testing process. This high coverage

level will mitigate issues within the high-risk areas of the application, thereby enhancing the

overall user experience.

7.2.1. Unit Tests

As our testing criteria we defined that we would be unit testing only the critical paths,

namely the login flow, clip interactions in the clip feed, and payments in the wallet menu.

The login menu offers two authentication methods, with the Twitch method being particularly

important as it relies on a third-party service that could potentially go down unnoticed,

resulting in a crash of the application.

Given that the primary user interactions involve watching videos and engaging with

them through actions such as upvoting, claiming, commenting, and sharing, it is crucial to

thoroughly test the underlying code for these events. This comprehensive testing is necessary

to prevent any crashes that could disrupt the user experience.

Lastly, although the payment process is handled by a third-party service like PayPal,

and we cannot directly test the specific code associated with it, it is essential that the

application appropriately responds to the information received from the PayPal service after

completing the payment. Whether the payment is successful or not, the app should update the

user's wallet balance accordingly and close the WebView used for the payment process.

Table 13 presents the coverage percentages of the mentioned components. It is crucial

to acknowledge that the ViewModel classes under testing include these components, with the

Clip Feed ViewModel encompassing more than just the critical components mentioned.

Consequently, the coverage percentages may not be very close to 100% as expected, unlike

the Wallet and Login ViewModel, which fully represent the component.

Critical Component Class Coverage (%) Method Coverage (%) Line Coverage (%)

Login ViewModel 100% 100% 100%

Wallet ViewModel 100% 100% 100%

Clip Feed ViewModel 68% 78% 76%

Table 13. Critical component’s unit test coverage

72

Figure 36 illustrates a unit test example that verifies the successful storage of user

data, including his wallet balance, following a completed PayPal checkout. Additionally, it

asserts that the user is redirected to the previous screen – the screen he was on before

accessing the wallet menu.

Figure 36. Wallet PayPal success unit test

7.2.2. Instrumentation Tests

During the development of the mobile application, our testing approach underwent

adaptation to accommodate the unique circumstances surrounding the project. As we neared

the completion of the development phase, the Framedrop company announced a significant

transformation, including an upcoming rebranding process. In light of this announcement, our

testing focus shifted primarily towards unit testing, considering that the core logic of the app

was not expected to undergo substantial changes. This decision was driven by the awareness

of forthcoming modifications to the application's user interface, leading us to prioritize

resource and time allocation, avoiding unnecessary UI testing that would become irrelevant

due to the imminent UI overhaul.

While unit testing took precedence, we still conducted some UI testing as part of our

academic environment to enhance our understanding of this specific testing domain. Our aim

was not to comprehensively validate the UI in its current state, but rather to gain practical

knowledge and insights into UI testing methodologies. This approach allowed us to

familiarize ourselves with the intricacies of UI testing and explore its potential impact on the

73

overall testing process. Figure 37 presents an example of an instrumentation test that asserts

that the login pop-up is displayed when a non-authenticated user clicks on the login button in

the Clip Feed menu.

Figure 37. Login Pop-up Showing Test

7.2.3. Quality Assurance

As described in Chapter 3, Subchapter 3.6, the Quality Assurance (QA) process was

an important step to ensure that the implemented code fulfilled the requirements and to

identify any bugs that may have gone unnoticed during the code review phase. Since we were

using the Notion tool to store the backlog items and manage the user stories progress through

the different phases of development, it was also used to store the QA review from the Product

Owner. This review may represent any issues that have been identified during the tests, as

well as the actions to be taken to resolve them. Since every user-story had its own card, the

QA information regarding specific user-stories was stored separately, leading to a more

organized and manageable environment.

An example of a user-story card is presented in Figure 38, that informs how the

application must react to the implemented code, under “Dev Notes”, and the QA review

under “QA Notes”.

74

Figure 38. User story with changes requested after QA

7.3 Usability Test

The primary objective of this test was to conduct a comprehensive evaluation of the

overall usability and user experience of the mobile app, with a specific emphasis on

identifying potential issues and gathering valuable feedback from users. In order to achieve

this goal, a carefully selected sample of 5 participants was invited to participate in the test,

and their feedback was systematically collected and analyzed.

In the field of usability testing, there is a prevailing tendency among some companies

to dismiss the significance of such tests due to misconceptions that they are

resource-intensive endeavors necessitating a large number of participants. Renowned

usability expert Jakob Nielsen has highlighted this concern, stating that many companies

75

mistakenly believe that the number of usability problems detected will stabilize as new

participants are involved, making additional feedback redundant. Nielsen has explained this

phenomenon through the application of Poisson Distribution, which elucidates the probability

of achieving a given number of successes in a series of trials. His research has led to the

conclusion that at least 15 users are required to unearth all the usability problems inherent in

a design. However, it should be noted that the utilization of 5 participants strikes a balance

between optimizing resources and attaining meaningful feedback [87].

While some companies may find it feasible to conduct a single usability test with a

larger pool of 15 participants, it is essential to emphasize that the present evaluation of the

Framedrop app is part of a series of planned usability tests in subsequent stages [88].

7.3.1. Preparation

To perform the usability tests, a structured approach was adopted, consisting of three

distinct sections. The first section involved an introduction, where the goals and objectives of

the test session were explained to the participants, presented in Appendix G. This

introduction served to set the stage and provide participants with an understanding of what

would unfold during the testing process.

Following the introduction, the second section entailed a series of general questions

that were posed to the participants, presented in Appendix H. These questions aimed to gather

additional information about the participants, including their personal background and their

habits related to gaming consumption. By eliciting such information, a clearer context could

be established, allowing for a better understanding of how the participants' backgrounds and

preferences might influence their experiences with the app. The answers are presented in

Appendix I.

The third section constituted the core of the usability test. Here, participants were

presented with the app and provided with a scripted set of tasks to perform:

● Task 1: Watch 4 clips in Clip Feed and upvote 2 of them.

● Task 2: Navigate to the owner’s profile of the 10th positioned clip in Clip Contest of

the game Valorant.

● Task 3: Top up the wallet with 10 credits. Stop when the app asks for payment

information.

● Task 4: Claim a clip.

76

The script served as a guide, ensuring consistency across the test sessions. The tasks

were thoughtfully crafted to cover a range of user interactions and encompassed typical app

usage scenarios. This approach allowed for a comprehensive evaluation of the app's usability,

as participants engaged with the app and completed the assigned tasks.

7.3.2. Results

Throughout the participant's task completion process, meticulous documentation of

their interactions was essential, ensuring a comprehensive understanding of their behaviors.

Continuous communication with the participant played a crucial role in capturing and

comprehending their actions effectively. At the conclusion of each task, any encountered

problems or challenges faced by the participant, as well as their suggestions, were recorded.

To facilitate this process, a set of predefined questions was employed to encourage an open

conversation and elicit valuable insights.

Upon completion of the designated tasks, participants were provided with a few

minutes to freely explore the app, during which they were encouraged to provide additional

feedback. This phase was of utmost importance as it allowed for the documentation of any

issues or suggestions that may have arisen in areas not explicitly addressed during the

structured usability test.

The 3 problems with the most severity are presented in Table 14, and the complete list

is presented in Appendix J. The list of suggestions are presented in Table 15.

Problems Severity Possible Solutions

Videos are slow to play and buffer
several times

High
Change clips buffer size. Framedrop
team changes video store service

Transition between videos not very
fluid

High Move some logic to another thread

Confirm that the user wants to unlock
the clip, to avoid accidental touches

High
Create a confirmation pop-up or
create a long-press animation

Table 14. Usability Test most severe problems

77

Suggestions Implementation Effort
Will it be included in
the current release?

After opening the keyboard, you can
hide it by touching anywhere on the
screen

Low Yes

Show mini clips of the user in the clip
that is locked (similar to youtube
videos, when the video ends)

High No

Table 15. Usability Test gathered suggestions

Usability tests play a crucial role in the development process by shedding light on

potential issues that may have been overlooked during the initial stages. These tests provide

valuable insights into how users interact with the product and identify areas where

improvements can be made to enhance the overall user experience. They also offer a unique

opportunity to evaluate the product's functionality, ease of use, and effectiveness in meeting

user needs. By involving real users in the testing process, we gain valuable feedback on their

preferences, pain points, and expectations.

With these insights in hand, a refactoring process started where we modified the

necessary code and implemented the recommended changes. Since some of the highest

priority problems relied on the application’s performance, it was decided to investigate app

optimization mechanisms. From this analysis, a report was developed measuring the app

performance before and after applying the optimization mechanisms.

In order to assess performance, the decision was made to utilize the Android

Macrobenchmark library, which offered the necessary functionalities for measuring app

startup time and scrolling. This tool was selected due to its official support from Google and

its development and maintenance by the Android team, ensuring compatibility with the latest

Android version. Its design aims to deliver consistent and accurate results across diverse

devices and Android versions, taking into consideration various factors that can influence app

startup time, such as device specifications, system resources, and background processes. By

providing dependable measurements, it obviates the need for third-party benchmarking tools.

Moreover, its integration with Android Studio allows for convenient execution of benchmark

tests and analysis of results within the development environment [89].

78

7.4 App Optimization

The optimization efforts were directed towards enhancing app performance and

minimizing frame drops during playback. This involved a four-step process:

macrobenchmarking the base code, generating a baseline profile, optimizing the views, and

refining the ExoPlayer implementation. Each step introduced specific optimizations to

improve the overall performance of the app.

Macrobenchmarking is a comprehensive performance testing approach employed to

evaluate the overall system performance of Android devices. It provides a holistic view of

how Android devices perform under real-world scenarios and workloads. During

macrobenchmarking, factors such as CPU and GPU performance, memory usage, battery

consumption, and thermal management are taken into consideration as they significantly

impact the device's performance. To ensure reliable and accurate results, the tests were

performed in 5 devices ranging from 2018 to 2022, giving a wide variety of software and

hardware.

In order to maintain accuracy and reliability, real devices were used for all tests

instead of emulators. This approach aimed to capture real-world performance characteristics

and variations. To minimize potential interference and resource allocation issues, the test

devices were devoid of any background apps or processes. This created a clean testing

environment, isolating the performance of the targeted task from any potential background

activities.

Additionally, a wired USB connection was employed to connect the devices for

testing, avoiding potential network-related latencies or fluctuations that could impact the test

results. This choice ensured a stable and reliable connection, allowing the study to focus

solely on the intrinsic performance capabilities of the devices.

The testing methodology revolved around running the same task for 100 iterations.

This approach was adopted to assess the consistency and stability of the task's performance

across multiple runs.

7.4.1. Macrobenchmarking the Base Code

Initially, the mobile app's base code, without any optimization, was

macrobenchmarked. The purpose of this step was to establish a baseline performance level

and identify areas for improvement.

79

7.4.2. Generating a Baseline Profile

Baseline Profiles enhance the speed at which code executes, resulting in an

improvement of “30% from the first launch” [90]. This is achieved by bypassing

interpretation and just-in-time (JIT) compilation steps for the relevant code paths.

When an app or library includes a Baseline Profile, the Android Runtime (ART) can

optimize specific code paths using Ahead-of-Time (AOT) compilation. As a result, every

new user and every app update can benefit from these performance enhancements. This

optimization technique, known as Profile Guided Optimization (PGO), enables apps to

optimize startup time, reduce instances of lag during user interactions, and enhance overall

runtime performance from the moment the app is first launched. [90]

7.4.3. Optimizing the Views

At the start of the internship, no prior experience with Jetpack Compose was

possessed. Consequently, the next objective was to enhance the app's views by leveraging the

increased familiarity and practice with the technology, enabling the code to be refactored

using a more effective approach. This involved streamlining the layout hierarchy, reducing

redundant view updates, and enhancing the rendering pipeline. The optimization efforts went

unnoticed, indicating a highly positive code review process and learning journey, as minimal

mistakes were made from the beginning.

7.4.4. Optimizing the ExoPlayer Implementation

As video playback performance was crucial for Framedrop, the next step involved

optimizing the ExoPlayer implementation. This optimization focused on enhancing video

decoding, buffering, and rendering processes. Techniques such as hardware acceleration,

adaptive streaming, and buffer management were employed to reduce frame drops, improve

playback smoothness, and minimize resource consumption.

In the Framedrop app, it is important to understand that the performance of video

optimization is inherently dependent on the server's capabilities. Currently, the Framedrop

team stores the videos in S3 buckets on AWS, which introduces a latency issue due to the

geographical location of the servers in the United States.

S3 buckets are designed primarily for storage rather than transmission of data. As a

result, when users access the videos from the app, there is a noticeable delay in video

playback due to the round trip time (RTT) required for data to travel from the user to the

80

servers and back. This latency typically ranges from 100 to 120 milliseconds, impacting the

user experience.

To address this latency concern and improve performance, the Framedrop team should

consider implementing a Content Delivery Network (CDN) on top of the S3 buckets. By

deploying a CDN, an on-edge server can be established closer to the app users. This means

that when a user requests a video, it would be transmitted from a closer server, reducing the

distance data needs to travel and consequently minimizing latency.

7.4.5. Results

The optimized app is the result of the three stages of optimization with baseline

profiles, view optimization, and exoplayer optimization. The following tests were made in

order to acquire the startup time of the application and the product. The main difference is

that for the application, we focused solely on the components developed by the development

team. Consequently, the timing measurement concluded before the application initiated the

process of requesting the video list for the Clip Feed menu. On the other hand, the product's

timing encompassed the complete flow until the first requested video started playing.

The third test aimed to evaluate the smoothness of the applications and detect any UI

jank. In Android, the user interface is rendered by generating frames from the app and

displaying them on the screen. If the app encounters slow UI rendering, frames may be

skipped, resulting in a recurring flicker known as jank [91]. To evaluate this, we analyzed two

key metrics: "Frame Duration" and "Frame Overrun." The first indicates the time required to

render a frame, while the second denotes the amount of time by which a frame misses its

deadline. Positive numbers signify dropped frames and visible jank or stutter, while negative

numbers indicate frames that are faster than the deadline [92].

These results are presented using the 50th, 90th, 95th, and 99th percentile, where the

95th and 99th percentile are the most crucial metrics. This is because the 95th percentile

response time denotes the time it takes for a request to be processed and is slower than 95%

of all other requests. To illustrate, if there are 100 requests, the 95th percentile response time

corresponds to the time it takes for the 95th slowest request to be fulfilled. The same applies

to the 99th percentile. This concludes that if the app presents a low 99th percentile response

time, it may indicate it is functioning efficiently even during periods of high workload [93].

The complete analysis is presented in Appendix K, with the results of each device. In

Figure 39 to Figure 44 is shown the optimization results from every device.

81

Figure 39. App Startup Time Results

Figure 40. Product Startup Time Results

Figure 41. Frame Duration Results (P50, P90, P95)

82

Figure 42. Frame Duration Results (P99)

Figure 43. Frame Overrun Results (P50, P90)

Figure 44. Frame Overrun Results (P95, P99)

83

Based on the results obtained from the Android Macrobenchmarking tests, we are

pleased with the outcomes, as they demonstrated positive performance improvements for our

app. However, we recognize that optimization is an ongoing process, and we remain

committed to further enhancing the app's performance.

The constantly evolving nature of technology means that new libraries and

frameworks are being developed every day, presenting exciting opportunities to leverage

advancements and potentially boost Framedrop’s app performance even further. We

acknowledge the importance of staying up-to-date with these developments and exploring

their potential benefits for our application.

In the context of our academic environment, the results obtained from the

Macrobenchmarking tests were encouraging. They provided valuable insights into the topic

of app measurement and optimization, offering an excellent opportunity to deepen my

understanding and knowledge in this field.

84

Chapter 8

Conclusion and Future Work

This dissertation presents the outcomes of the curricular internship conducted in

collaboration with Pink Room and Framedrop. The internship focused on the development of

an Android mobile application that offers gaming content for entertainment through

short-form gaming clips. The project provided valuable insights and lessons learned that can

be applied in future projects within this field.

Reflecting on the progress made during the first semester, initiating development

early posed a significant challenge. However, it enabled me to be involved in the entire

product development process from the beginning and acquire additional skills through an

extended learning period. Balancing university coursework with research and development

work proved to be one of the major hurdles. Juggling these responsibilities required

considerable effort and dedication, since I had to ensure that I dedicated sufficient time and

effort to each aspect of the project, striving to perform to the best of my abilities. This

experience allowed me to compare the academic environment with real-world client

expectations, equipping me with the skills to navigate rapid changes in project direction.

The second semester presented its own set of challenges, but it was comparatively less

stressful due to the groundwork laid in the previous phase. Building upon the foundation of

the developed application and leveraging enhanced mobile development experience

positively influenced the internship's results. The client's requirements for a mobile

application were successfully met, and the project had already entered the pre-production

phase.

Completing a project within the given time frame without compromising on quality

posed a challenge, as described by the "iron triangle" of project management. The iron

triangle concept asserts that three interconnected factors—time, cost, and quality—must be

balanced. Not compromising on the time frame may require increased costs or decreased

quality to meet the deadline. Similarly, not compromising on the cost could extend the time

frame or reduce the quality. The same applies to maintaining quality, which may necessitate

extending the time frame or increasing the cost. By prioritizing and striking a balance among

these three factors, we deemed the project a success. We achieved the project's scope within

85

the allocated time frame while ensuring high quality and satisfying all stakeholders.

Importantly, it should be noted that the success of the project was not contingent upon

reinventing the wheel for developing features similar to existing applications. By studying

and analyzing these applications, we were able to adopt optimized techniques that had been

refined over time.

The development phase offered more than just coding skills. It provided an

opportunity to learn about Quality Assurance, automated Testing, Usability Testing, and

optimization mechanisms for Android development, but that, generally speaking, are

Software Engineering concepts that can be applied in any Software project. Engaging in these

aspects of the development process allowed me to grow as an engineer, as these are concepts,

tools and processes that I will for sure come across again in the future.

Perhaps the biggest challenge I encountered during this project was my struggle to

engage with technical articles and documentation. In the past, I had difficulty maintaining

focus and motivation when reading technical materials, often delaying or avoiding them

altogether. However, this project helped me overcome this obstacle and appreciate the value

of staying updated with the latest advancements in mobile development. I recognized that in

order to deliver a high-quality and functional application, it was crucial to be aware of the

latest technologies and best practices in the field. Consequently, I consciously allocated time

each day for reading and research, and to my surprise, I became more interested in the subject

matter.

Given that certain requirements were not incorporated into this final application

release, our forthcoming efforts will focus on assessing the market's interest in the product

and establishing the subsequent set of requirements for implementation based on the obtained

results. As a developer, my primary responsibility will revolve around incessantly enhancing

the application and resolving any issues that are reported by end-users.

Concluding my internship, I would like to cover the importance of inspiration,

because I truly believe that “the most important thing is to try and inspire people so that they

can be great at whatever they want to do” - Kobe Bryant. And that is what this internship was

to me, as it inspired me to be a better engineer and inspire others to be better too. Working

within a company that upholds these values and consistently pushes me to transcend my

capabilities on a daily basis, not only as an engineer but as a human being, was truly

important to the success of this project and the perseverance of future work.

86

References

[1] “entertainment.” Accessed: Oct. 02, 2022. [Online]. Available:
https://dictionary.cambridge.org/dictionary/english/entertainment

[2] “History of entertainment – HiSoUR – Hi So You Are.”
https://www.hisour.com/history-of-entertainment-35999/ (accessed Oct. 02, 2022).

[3] R. Digicult, “How the Internet has Helped Entertainment Evolve • Digicult | Digital Art,
Design and Culture,” Digicult | Digital Art, Design and Culture, Mar. 09, 2018.
https://digicult.it/digimag/internet-helped-entertainment-evolve/ (accessed Oct. 02,
2022).

[4] “Internet and social media users in the world 2022,” Statista.
https://www.statista.com/statistics/617136/digital-population-worldwide/ (accessed Oct.
02, 2022).

[5] Sandvine, “Global Internet Phenomena.” https://www.sandvine.com/phenomena
(accessed Oct. 02, 2022).

[6] “Severe Tire Damage.” https://www.std.org/text/live.html (accessed Oct. 02, 2022).
[7] “LiveVideoStack » An interview with Severe Tire Damage: The first live band on the

Internet.”
https://www.livevideostack.cn/news/an-interview-with-severe-tire-damage-the-first-live-
band-on-the-internet/ (accessed Oct. 02, 2022).

[8] P. Leskin, “YouTube is 15 years old. Here’s a timeline of how YouTube was founded, its
rise to video behemoth, and its biggest controversies along way,” Business Insider.
https://www.businessinsider.com/history-of-youtube-in-photos-2015-10 (accessed Oct.
02, 2022).

[9] T. Ruether, “History of Streaming Media [Infographic],” Wowza, Apr. 25, 2022.
https://www.wowza.com/blog/history-of-streaming-media (accessed Oct. 02, 2022).

[10] L. J. Cabeza-Ramírez, S. M. Sánchez-Cañizares, F. J. Fuentes-García, and L. M.
Santos-Roldán, “Exploring the connection between playing video games and watching
video game streaming: Relationships with potential problematic uses,” Comput. Hum.
Behav., vol. 128, p. 107130, Mar. 2022, doi: 10.1016/j.chb.2021.107130.

[11] “Digital 2022: Internet Connection Speeds Accelerate,” DataReportal – Global
Digital Insights. https://datareportal.com/reports/digital-2022-internet-connection-speeds
(accessed Nov. 04, 2022).

[12] J. M. Kilner and R. N. Lemon, “What We Know Currently about Mirror Neurons,”
Curr. Biol., vol. 23, no. 23, pp. R1057–R1062, Dec. 2013, doi:
10.1016/j.cub.2013.10.051.

[13] “How Observational Learning Affects Behavior,” Verywell Mind.
https://www.verywellmind.com/what-is-observational-learning-2795402 (accessed Jan.
04, 2023).

[14] C. Weightman, “Crucible: the science behind why watching others playing video
games has become so popular,” The Conversation.
http://theconversation.com/crucible-the-science-behind-why-watching-others-playing-vid

87

eo-games-has-become-so-popular-139190 (accessed Nov. 08, 2022).
[15] M. E. Porter, Competitive Strategy: Techniques for Analyzing Industries and

Competitors, First. New York, NY 10020: The Free Press, 1980.
[16] “What is the difference between competitors and substitutes? | - FintechAsia,” Feb.

05, 2022.
https://fintechasia.net/2022/02/05/what-is-the-difference-between-competitors-and-substi
tutes/ (accessed Oct. 18, 2022).

[17] H. B. Review, “THE FIVE COMPETITIVE FORCES THAT by Michael E. Porter,”
Jan. 2008.

[18] “What is the difference between competitors and substitutes? - Business Questions,”
Oct. 09, 2022.
https://businessqs.com/what-is-the-difference-between-competitors-and-substitutes/
(accessed Oct. 18, 2022).

[19] “Produto viável mínimo,” Wikipédia, a enciclopédia livre. Oct. 05, 2022. Accessed:
Dec. 26, 2022. [Online]. Available:
https://pt.wikipedia.org/w/index.php?title=Produto_vi%C3%A1vel_m%C3%ADnimo&o
ldid=64516352

[20] “Mobile Operating System Market Share Worldwide,” StatCounter Global Stats.
https://gs.statcounter.com/os-market-share/mobile/worldwide (accessed Dec. 30, 2022).

[21] “Open Handset Alliance,” Wikipedia. Oct. 17, 2022. Accessed: Dec. 30, 2022.
[Online]. Available:
https://en.wikipedia.org/w/index.php?title=Open_Handset_Alliance&oldid=1116652164

[22] “Apple App Store vs Google Play Store (2022 Comparison),” Jun. 29, 2021.
https://cybercrew.uk/software/app-store-vs-play-store/ (accessed Dec. 30, 2022).

[23] “How Long Does It Take for an App Store to Approve Your App,” Appy Pie, Aug. 06,
2020. https://www.appypie.com/how-long-does-it-take-to-publish-apps (accessed Dec.
30, 2022).

[24] “What is Customer Development?,” Agile Alliance |, Jul. 15, 2017.
https://www.agilealliance.org/glossary/customer-development/ (accessed Jan. 07, 2023).

[25] “How to Choose the Right Type of Mobile App: Native, Web or Hybrid,” The
Interaction Design Foundation.
https://www.interaction-design.org/literature/article/native-vs-hybrid-vs-responsive-what-
app-flavour-is-best-for-you (accessed Jan. 05, 2023).

[26] A. Tapcrew, “User Experience in Native vs Hybrid App Development: | Tapcrew.”
https://tapcrew.com/user-experience-in-native-vs-hybrid-app-development/ (accessed
Dec. 30, 2022).

[27] “Kotlin for Android | Kotlin,” Kotlin Help.
https://kotlinlang.org/docsandroid-overview.html (accessed Oct. 03, 2022).

[28] R. A. Martin, Clean Architecture, 1st edition (13 Sept. 2017). United States: Financial
Times Prentice Hall.

[29] “Separation of concerns,” Wikipedia. Jul. 16, 2022. Accessed: Oct. 03, 2022. [Online].
Available:
https://en.wikipedia.org/w/index.php?title=Separation_of_concerns&oldid=1098544788

[30] sina.rahimi, “Single source of truth,” Medium, Jul. 20, 2019.
https://medium.com/@sina.rahimi/single-source-of-truth-with-mvvm-retrofit2-livedata-rx
java-and-room-in-repository-pattern-f5304f39175 (accessed Oct. 03, 2022).

88

[31] “Unidirectional Data Flow,” GeeksforGeeks, Apr. 26, 2019.
https://www.geeksforgeeks.org/unidirectional-data-flow/ (accessed Oct. 03, 2022).

[32] F. Cejas, “Architecting Android…The clean way?,” Fernando Cejas, Sep. 03, 2014.
http://fernandocejas.com/2014/09/03/architecting-android-the-clean-way/ (accessed Jan.
06, 2023).

[33] “Guide to app architecture | Android Developers.”
https://developer.android.com/topic/architecture (accessed Oct. 03, 2022).

[34] “MVC Architecture – What is a Model View Controller Framework?,”
freeCodeCamp.org, Sep. 24, 2021.
https://www.freecodecamp.org/news/mvc-architecture-what-is-a-model-view-controller-f
ramework/ (accessed Oct. 04, 2022).

[35] M. Gago, “Development of a platform for promotion, reading and recommendation of
short stories,” University of Coimbra, Coimbra, 2018.

[36] F. Muntenescu, “Android Architecture Patterns Part 1: Model-View-Controller,”
upday devs, Nov. 01, 2016.
https://medium.com/upday-devs/android-architecture-patterns-part-1-model-view-control
ler-3baecef5f2b6 (accessed Jan. 10, 2023).

[37] M. Phan, “MVP architectural pattern.”
http://ducmanhphan.github.io/2019-08-05-MVP-architectural-pattern/ (accessed Oct. 04,
2022).

[38] R. Gazzah, “MVI Architecture With Android,” The Startup, Nov. 06, 2020.
https://medium.com/swlh/mvi-architecture-with-android-fcde123e3c4a (accessed Oct.
06, 2022).

[39] “Model–view–viewmodel,” Wikipedia. Sep. 09, 2022. Accessed: Oct. 07, 2022.
[Online]. Available:
https://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%93viewm
odel&oldid=1109295015

[40] F. Muntenescu, “Android Architecture Patterns Part 3: Model-View-ViewModel,”
upday devs, Nov. 04, 2016.
https://medium.com/upday-devs/android-architecture-patterns-part-3-model-view-viewm
odel-e7eeee76b73b (accessed Oct. 07, 2022).

[41] “Fundamentals of testing Android apps,” Android Developers.
https://developer.android.com/training/testing/fundamentals (accessed Jan. 10, 2023).

[42] “Coupling in Java,” GeeksforGeeks, Nov. 09, 2017.
https://www.geeksforgeeks.org/coupling-in-java/ (accessed Oct. 14, 2022).

[43] “Low coupling - Functional Kotlin [Book].”
https://www.oreilly.com/library/view/functional-kotlin/9781788476485/401a0d5f-dcc7-4
f4a-b343-ff9790fffe30.xhtml (accessed Oct. 14, 2022).

[44] “Cohesion in Java,” GeeksforGeeks, Oct. 31, 2017.
https://www.geeksforgeeks.org/cohesion-in-java/ (accessed Oct. 14, 2022).

[45] M. Yiğit, “Say Hello to Jetpack Compose and Compare with XML,” Medium, Jan. 24,
2022.
https://blog.kotlin-academy.com/say-hello-to-jetpack-compose-and-compare-with-xml-6b
c6053aec13 (accessed Jan. 03, 2023).

[46] “Use Kotlin coroutines with lifecycle-aware components | Android Developers.”

89

https://developer.android.com/topic/libraries/architecture/coroutines (accessed Jan. 03,
2023).

[47] “Twitch API,” Twitch Developers, Nov. 29, 2022. https://dev.twitch.tv/api/ (accessed
Dec. 01, 2022).

[48] “Using OIDC to get OAuth Access Tokens | Twitch Developers.”
https://dev.twitch.tv/docs/authentication/getting-tokens-oidc (accessed Dec. 01, 2022).

[49] “OpenID Connect | OpenID,” Aug. 01, 2011. https://openid.net/connect/ (accessed
Dec. 01, 2022).

[50] “OAuth 2.0 for Mobile & Desktop Apps | Authorization,” Google Developers.
https://developers.google.com/identity/protocols/oauth2/native-app (accessed Jan. 04,
2023).

[51] “openid/AppAuth-Android: Android client SDK for communicating with OAuth 2.0
and OpenID Connect providers.” https://github.com/openid/AppAuth-Android (accessed
Dec. 01, 2022).

[52] “ExoPlayer.” https://exoplayer.dev/ (accessed Nov. 21, 2022).
[53] “Android SDK 5 Player Features.”

https://docs.nagra.com/doc/home/cpanddoc524x/android-sdk-5-player-features (accessed
Nov. 21, 2022).

[54] “NexPlayer | The Premium Multiscreen Player SDK for Video Apps,” NexPlayer.
https://nexplayersdk.com/ (accessed Nov. 23, 2022).

[55] M. Chayabanjonglerd, “Playing video by ExoPlayer,” Medium, Dec. 22, 2021.
https://medium.com/fungjai/playing-video-by-exoplayer-b97903be0b33 (accessed Nov.
23, 2022).

[56] ExoPlayer: Flexible media playback for Android (Google I/O ’17), (May 18, 2017).
Accessed: Nov. 23, 2022. [Online Video]. Available:
https://www.youtube.com/watch?v=jAZn-J1I8Eg

[57] “Precise Improvements: How TikTok Enhanced its Video Social Experience on
Android,” Android Developers Blog.
https://android-developers.googleblog.com/2022/08/precise-improvements-how-tiktok-en
hanced-its-social-experience-on-android.html (accessed Jan. 03, 2023).

[58] “Surface,” Android Developers.
https://developer.android.com/reference/android/view/Surface (accessed Jan. 03, 2023).

[59] D. R. B. Svensson and D. M. Staron, “Chalmers University of Technology University
of Gothenburg”.

[60] “Continuous Integration,” martinfowler.com.
https://martinfowler.com/articles/continuousIntegration.html (accessed Dec. 20, 2022).

[61] G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Connallen, and K. A.
Houston, “Object-oriented analysis and design with applications, third edition,” ACM
SIGSOFT Softw. Eng. Notes, vol. 33, no. 5, pp. 29–29, Aug. 2008, doi:
10.1145/1402521.1413138.

[62] J. Hall, “A brief history of CI/CD,” Jonathan Hall.
https://jhall.io/archive/2021/09/26/a-brief-history-of-ci/cd/ (accessed Dec. 20, 2022).

[63] K. Beck, “Embracing change with extreme programming,” Computer, vol. 32, no. 10,
pp. 70–77, Oct. 1999, doi: 10.1109/2.796139.

[64] “Jenkins,” Jenkins. https://www.jenkins.io/ (accessed Dec. 20, 2022).
[65] “GitLab CI/CD | GitLab.” https://docs.gitlab.com/ee/ci/ (accessed Dec. 20, 2022).

90

[66] “Bitrise | Mobile DevOps to Maximize App Impact.” https://bitrise.io (accessed Jan.
10, 2023).

[67] “Continuous Integration and Delivery,” CircleCI. https://circleci.com/ (accessed Dec.
20, 2022).

[68] “Understanding GitHub Actions,” GitHub Docs.
https://ghdocs-prod.azurewebsites.net/en/actions/learn-github-actions/understanding-gith
ub-actions (accessed Dec. 20, 2022).

[69] “What is CI/CD?” https://www.redhat.com/en/topics/devops/what-is-ci-cd (accessed
Dec. 20, 2022).

[70] “continuous-deployment,” Aug. 06, 2021.
https://www.ibm.com/cloud/learn/continuous-deployment (accessed Dec. 20, 2022).

[71] “About Android App Bundles,” Android Developers.
https://developer.android.com/guide/app-bundle (accessed Jan. 06, 2023).

[72] “Manifesto for Agile Software Development.” https://agilemanifesto.org/ (accessed
Dec. 26, 2022).

[73] Atlassian, “Sprint Planning,” Atlassian.
https://www.atlassian.com/agile/scrum/sprint-planning (accessed Dec. 27, 2022).

[74] “Story Points vs. Hours: The Relationship and the Difference | LinearB,” Sep. 21,
2021. https://linearb.io/blog/story-points-vs-hours/ (accessed Dec. 27, 2022).

[75] N. Pathak, “INNOVATION ROOTS,” INNOVATION ROOTS, Aug. 25, 2018.
https://innoroo.com/blog/2018/08/25/interview-with-james-grenning/www.innoroo.com
(accessed Dec. 27, 2022).

[76] M. Victor and N. Upadhyay, “Selection of Software Testing Technique: A Multi
Criteria Decision Making Approach,” in Trends in Computer Science, Engineering and
Information Technology, D. Nagamalai, E. Renault, and M. Dhanuskodi, Eds., in
Communications in Computer and Information Science. Berlin, Heidelberg: Springer,
2011, pp. 453–462. doi: 10.1007/978-3-642-24043-0_46.

[77] -, “Threshold of Success.”
https://www.neverletdown.net/2010/01/threshold-of-success.html (accessed Dec. 14,
2022).

[78] “Steve Blank Perfection By Subtraction – The Minimum Feature Set,” Steve Blank,
Mar. 04, 2010.
https://steveblank.com/2010/03/04/perfection-by-subtraction-the-minimum-feature-set/
(accessed Dec. 28, 2022).

[79] E. Belinski, “Android API Levels.” https://apilevels.com/ (accessed Jan. 03, 2023).
[80] J. Nielsen, Usability Engineering. Morgan Kaufmann Publishers Inc.340 Pine Street,

Sixth FloorSan FranciscoCAUnited States, 1994.
[81] J. Knapp, How to Solve Big Problems and Test New Ideas in Just Five Days, First

edition March 2016. Simon & Schuster Audio; Unabridged edition.
[82] “The Design Sprint — GV.” http://www.gv.com/sprint (accessed Oct. 10, 2022).
[83] “C4 Model, Architecture Viewpoint and Archi 4.7 – Archi.”

https://www.archimatetool.com/blog/2020/04/18/c4-model-architecture-viewpoint-and-ar
chi-4-7/ (accessed Nov. 02, 2022).

[84] M. Weidmann, “The four C’s of software architecture,” devlix Blog, Feb. 01, 2021.
https://medium.com/devlix-blog/the-four-cs-of-software-architecture-58a784bdb19

91

(accessed Nov. 02, 2022).
[85] “The C4 model for visualising software architecture.” https://c4model.com/ (accessed

Nov. 02, 2022).
[86] “P of EAA: Repository.” https://martinfowler.com/eaaCatalog/repository.html

(accessed Jan. 03, 2023).
[87] “Why 5 is the magic number for UX usability testing | Inside Design Blog.”

https://www.invisionapp.com/inside-design/ux-usability-research-testing/ (accessed May
31, 2023).

[88] J. Nielsen, “Why You Only Need to Test with 5 Users,” Nielsen Norman Group, Apr.
18, 2000. https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
(accessed May 31, 2023).

[89] “Benchmark your app | App quality,” Android Developers.
https://developer.android.com/topic/performance/benchmarking/benchmarking-overview
(accessed Jun. 05, 2023).

[90] “Baseline Profiles | App quality,” Android Developers.
https://developer.android.com/topic/performance/baselineprofiles/overview (accessed
May 31, 2023).

[91] “UI jank detection | Android Studio,” Android Developers.
https://developer.android.com/studio/profile/jank-detection (accessed Jun. 05, 2023).

[92] “Capture Macrobenchmark metrics | App quality,” Android Developers.
https://developer.android.com/topic/performance/benchmarking/macrobenchmark-metric
s (accessed Jun. 05, 2023).

[93] vikas kumar, “The 95th and 99th percentiles are the most crucial application
metrics,” Medium, Apr. 04, 2023.
https://medium.com/@vikaskumar4793/the-95th-and-99th-percentiles-are-the-most-cruci
al-application-metrics-33085d2d3e34 (accessed Jun. 30, 2023).

[94] Medal [@medal_tv], “In Case You Missed It (ICYMI) Powered by AI, Medal can
now automatically create clips and bookmarks as soon as key moments happen in your
game. This new option can be found in Settings > Clips or search Enable ICYMI in the
Search bar! https://t.co/LJxcSu8BiE,” Twitter, Jul. 29, 2020.
https://twitter.com/medal_tv/status/1288584748818980865 (accessed Jan. 04, 2023).

[95] “Record and Clip PC and Mobile Games | Medal.tv,” Medal.tv | #1 Free Clip
Platform. https://medal.tv/features/clipping (accessed Oct. 19, 2022).

[96] “The Best Gaming Video Editor - Ever | Medal.tv.” https://medal.tv/features/editing
(accessed Oct. 19, 2022).

[97] “Outplayed,” Overwolf | Tech for developers who love gaming.
https://www.overwolf.com/app/Overwolf-Outplayed (accessed Oct. 19, 2022).

[98] T. 29 posts https://thefranswah-studio com Owner and O. of T. Studio, “Hover.gg -
The TikTok For Streamers,” TheFranswah Studio, Feb. 21, 2022.
https://thefranswah-studio.com/hover-gg-the-tiktok-for-streamers/ (accessed Oct. 19,
2022).

[99] “What Was Youtube Gaming and Why Was it Discontinued?”
https://www.failory.com/google/youtube-gaming (accessed Oct. 03, 2022).

[100] “Top 6 Twitch Competitors - Digiaide.com,” Oct. 05, 2021.
https://digiaide.com/twitch-competitors/ (accessed Oct. 03, 2022).

[101] W. Geyser, “Top Facebook Gaming Stats Every Brand Should Know in 2022,”
92

Influencer Marketing Hub, Jul. 02, 2020.
https://influencermarketinghub.com/facebook-gaming-stats/ (accessed Oct. 03, 2022).

[102] “20 Essential TikTok Statistics You Need to Know in 2022,” The Social Shepherd.
https://thesocialshepherd.com/blog/tiktok-statistics (accessed Nov. 08, 2022).

[103] “Most downloaded apps worldwide 2021,” Statista.
https://www.statista.com/statistics/1285960/top-downloaded-mobile-apps-worldwide/
(accessed Nov. 08, 2022).

[104] “TikTok,” Business Model Toolbox. https://bmtoolbox.net/stories/tiktok/ (accessed
Nov. 08, 2022).

[105] “TikTok Categories Grabbing the Most Views,” IZEA, Feb. 14, 2022.
https://izea.com/resources/tiktok-categories-grabbing-the-most-views/ (accessed Nov. 08,
2022).

[106] Caffeine.TV: The Twitch Competitor Backed By Drake | Forbes, (Feb. 26, 2020).
Accessed: Jan. 04, 2023. [Online Video]. Available:
https://www.youtube.com/watch?v=dVnhUdpAIw4

[107] “Caffeine Review,” PCMAG. https://www.pcmag.com/reviews/caffeine (accessed
Oct. 03, 2022).

[108] “caffeine.tv vs twitch.tv Traffic Comparison,” Similarweb.
https://www.similarweb.com/website/caffeine.tv/vs/twitch.tv/ (accessed Oct. 03, 2022).

[109] D. Chmielewski, “Behind Streaming Upstart Caffeine’s Plan To Take On Twitch:
Draft Drake,” Forbes.
https://www.forbes.com/sites/dawnchmielewski/2020/02/11/behind-streaming-upstart-caf
feines-plan-to-take-on-twitch-draft-drake/ (accessed Oct. 03, 2022).

[110] “The Design Sprint.” https://www.thesprintbook.com/the-design-sprint (accessed Oct.
10, 2022).

[111] “Jake Knapp’s Design Sprint template | Miroverse.”
https://miro.com/miroverse/design-sprint-jake-knapp/ (accessed Oct. 10, 2022).

[112] “DAU/MAU Ratio.” https://www.klipfolio.com/metrics/saas/dau-mau-ratio (accessed
Oct. 10, 2022).

[113] N. Eyal, Hooked: how to build habit-forming products. 375 Hudson Street: Penguin
Group.

[114] “Product Design Sprint Process, Methods, Tools and Templates: A Complete Guide to
Running a Design Sprint.”
https://www.netguru.com/blog/product-design-sprint-methods-tools-templates (accessed

Oct. 12, 2022)

93

94

Appendixes

95

Appendix A - Market Analysis

Market Competitors

Medal20

For Windows, Mac, IOS, Android

It is a digital tool with over 7 million users which lets them share clips of themselves

playing video games and join in video chats. Users can select games that interest them from a

menu, as well as which players they want to follow and chat with. It is a convenient way for

like-minded gamers to socialize, share, and talk about their best gaming moments. Medal has

its own AI for capturing user highlights titled “In Case You Missed It” [94] (ICYMI) that

stores all the clips gathered in the user's profile so he can edit and share them [95]. Medal’s

game clips editor has a complete suite of easy-to-use and customizable filters, stickers, GIFs,

and sound effects to add to the footage [96].

It is free to use, but it has another paid plan, “Medal Premium” which increases

upload clip size, removes watermark and credits, among other bragging rights features.

Outplayed21

For Windows

Outplayed is a video capturing app that tracks and records the best moments, but can

be manually recorded on demand. Users can edit the recorded clips using the platform’s

editor and share it across social networks. Up to the date of this thesis, it supports over 400

games [97]. It is free to use.

21 Outplayed - https://outplayed.tv/

20 Medal - https://medal.tv/

96

Hover22

For Web, IOS, Android

Hover allows sharing clips and videos on the platform with emphasis and focus on

gamers. It integrates directly with Twitch allowing users to share any clip from the user's

Twitch channel from the last 2 weeks. Viewers can navigate directly to a streamer’s Twitch

profile by pressing the Twitch button when viewing a clip in Hover. The platform has its own

clip cloud making it easy to manage PC and phone clips. Hover still integrates directly with

Xbox and Twitter, and indirectly with PlayStation and Switch accounts, because these are

pulled by linking Twitter to Hover [98]. It is free to use.

Powder23

For Windows, IOS, Android

Powder provides a highlight tracker for PC and mobile devices that gathers the best

moments from users' gaming sessions, from 27 different games (up to the date of this thesis).

Powder’s editor allows gamers to turn their game clips into shareable content and submit

them for challenges in the app and get rewarded for it. As a social network, it allows users to

scroll through the highlights of other Powder creators, discover games, and join their

communities. It is free to use, and allows users to get rewarded for winning challenges.

Feature Comparison

From a brief description of product competitors, it is unquestionable the similarities

between them, since they aim for the same goals. In Table 1, the list of the features supported

by each product is presented. Most of these products rely on a strong connection between

their mobile and web applications, and since Framedrop also has its own, it is interesting to

list the features of the web application as well.

23 Powder - https://powder.gg/

22 Hover - https://hover.gg/app/discover

97

Game Recording on PC

Game Recording on Mobile

AI highlight tracker

Camera overlay in live-recording

Record only game sounds (discard

notification of third-party apps)

Built-in clip editor

Trim or montage clips

Add effects/music to clips

Tag friends in captured videos

Cloud for storing captured clips

Directly share embed link for social

networks

Watch clips

Like/comment/share/follow user

Download clip

98

Authenticate with Username and

Password

Authenticate with Discord

Authenticate with TikTok

Authenticate with Twitch

Authenticate with Steam

Authenticate with Twitter

Authenticate with Riot Games

Authenticate with Facebook

Authenticate with Apple ID

Authenticate with Xbox

Check other user activities

Follow clips from a specific game

Built-in chat function

Search for users, games and tags

Watch videos in full size with

mobile in landscape mode

99

Redirect to Twitch profile directly

from clip (no need to go tho his

profile)

Upload a clip

Automatically import Twitch clips

Information if the user is live on

Twitch in real time

See recommended clips

See followed user clips

See clips from users that are live on

Twitch at the moment

Receive more profile exposure on

the app by interacting with it

Edit profile information

Challenges for best clips of a

specific category

System of rewards/badges for the

user, by engaging with the platform

Block user

Report Clip

Reformat clip size to appear

streamer face and clip in portrait

mode

100

Table 1. Product competitors feature comparison

Market Substitutes

Youtube/Youtube Gaming24

For Web, Windows, Mac, IOS, Android

Youtube Gaming was a separate YouTube app aimed at the gaming community. The

app also had popular features such as the Super Chat, dedicated Game Pages, and even

Channel Membership [99]. It was launched in 2015, and its main goal was to provide

exclusive game-related videos. Due to YouTube main app popularity, numbers showed that

YouTube gaming was not doing so well, causing the app to be discontinued in 2019. Luckily,

when merged into the main app as “Gaming Vertical”, the app became popular again. This

new version contained all the features of the old one such as the Super Chat, dedicated Game

Pages, and even Channel Membership [100].

Facebook Gaming25

For Web, IOS, Android

Taking advantage of Twitch popularity, Facebook Gaming was launched in 2018,

getting its own tab in Facebook's original app. The popular platform accounts for 3% of the

total hours watched in live streaming, and this equals to 356 million streaming hours that

have been watched by viewers [100]. In 2018 and 2019, Facebook gaming was far behind its

present competitors, Twitch and YouTube Gaming. Contrary to expectations of its cadence in

the livestreaming business, according to Streamlabs, 2021 saw the social media giant blow,

with 1.06 billion gaming hours [101], taking its direct competitor, YouTube Gaming with

1.37 billion gaming hours. This platform is getting an important share of the market, as the

25 Facebook Gaming - https://www.facebook.com/gaming
24 Youtube - https://www.youtube.com/

101

time goes by. This is happening due to the acquisition of big influencers and streamers,

coming from other platforms and because of “Gaming’s Talent Acquisitions” which attracted

users that wanted to improve their game skills.

TikTok26

For Web, IOS, Android

TikTok is a social media app dedicated to short-form (15 to 60 seconds) content

creation and consumption. In September 2021, the app reached one billion active users [102],

and according to Statistica27, it was the most mobile downloaded app in 2021 with 656

million downloads [103].

TikTok’s mission is to inspire users creativity, leading to a mobile short-form content

entertainment. With their artificial intelligence technology, users receive desired content

without the need to explicitly search for that. The Revenue model of the app is through in-app

gift purchases. Users can exchange real money for “TikTokens” and use them to show their

interest for a specific creator [104].

The company does not operate in a specific area of entertainment, as the application

offers a variety of categories, such as dance, fitness, fashion, market and so on [105].

Caffeine.tv28

For Web, IOS, Android

“It is a more refined version of the application Twitch” [106]. Launched in 2016, with

a core objective to refine real time chat between the streamer and the viewers. The company

did not focus primarily on gaming livestream, embracing other varieties of categories in its

product, which did not “quite match those that just stick to video games” [107].

Although Twitch had opened live streaming to other categories as well, they still

provided good quality to gaming. Caffeine offers low quality resolution for gaming, and it is

only compatible with about 900 PC games (as of June 18, 2020) [107]. Nowadays,

Caffeine.tv is not a threat to Twitch, since in August 2022, they had 337.7 thousand visits

28 Caffeine.tv - https://www.caffeine.tv/
27 Statistica - https://www.statista.com/
26 TikTok - https://www.tiktok.com/

102

against 1.3 billion visits on Twitch [108], but Keighran’s vision for the future of

entertainment, which he calls “social broadcasting”, attracted a lot of investors and triggered

a joint venture, Caffeine Studios, where the core is to produce esports, sports and live

entertainment from the Fox studio lot in Los Angeles [109].

Feature Comparison

As it was done for the competing products, the Table 2 shows the features that each

substitute product integrates in its constitution.

Game Recording on PC

Game Recording on Mobile

AI highlight tracker

Camera overlay in
live-recording

Record only game sounds
(discard notification of

third-party apps)

Built-in clip editor

Trim or montage clips

Add effects/music to clips

Tag friends in captured videos

Cloud for storing captured clips

Directly share embed link for
social networks

103

Watch clips

Like/comment/share/follow
user

Download clip

Authenticate with Username
and Password

Authenticate with Discord

Authenticate with TikTok

Authenticate with Twitch

Authenticate with Steam

Authenticate with Twitter

Authenticate with Riot Games

Authenticate with Facebook

Authenticate with Apple ID

Authenticate with Xbox

Check other user activities

Follow clips from a specific
game

Built-in chat function

Search for users, games and
tags

Watch videos in full size with
mobile in landscape mode

Redirect to Twitch profile
directly from clip (no need to

104

go tho his profile)

Upload a clip

Automatically import Twitch
clips

Information if the user is live on
Twitch in real time

See recommended clips

See followed user clips

See clips from users that are
live on Twitch at the moment

Receive more profile exposure
on the app by interacting with it

Edit profile information

Challenges for best clips of a
specific category

System of rewards/badges for
the user, by engaging with the

platform

Block user

Report Clip

Reformat clip size to appear
streamer face and clip in

portrait mode

Table 2. Product substitutes feature comparison

105

Appendix B - Product Burn

106

Appendix C - Mitigation Plan

“Framedrop’s API server is not developed at the time of app development; might delay

the development of the mobile application taking longer than was originally expected

because some requirements are dependent on server end-points.”

1. Identify the specific requirements that are dependent on the server end-points, and

prioritize them in terms of their impact on the overall development of the mobile

application.

2. Develop a contingency plan for each of the identified requirements, in order to

minimize their impact on the development timeline. For example, this could involve

identifying alternative solutions or temporary workarounds that can be implemented

until the API server is ready.

3. Work closely with the team responsible for developing the API server to ensure that

they are aware of the dependencies on their work and to establish a clear timeline for

the development and testing of the server.

4. Regularly review the progress of the API server development and adjust the

development plan for the mobile application accordingly, in order to ensure that the

overall timeline remains on track.

5. Regularly communicate with all relevant stakeholders, including project managers,

developers, and other key personnel, to ensure that everyone is aware of the potential

risks and the steps being taken to mitigate them.

“Twitch blocks Framedrop’s dependency to its services; might compromise all the

application purpose.”
107

1. Identify and evaluate alternative services or platforms that could be used in place of

Twitch, in order to maintain the functionality of the application. This could involve

researching and comparing the features and capabilities of different platforms, as well

as seeking input from key stakeholders and users of the application.

2. Develop a contingency plan for implementing the use of an alternative service or

platform, including any necessary changes to the application's code or design. This

should include steps to ensure a smooth transition from Twitch to the new platform,

with minimal disruption to the application's functionality or user experience.

3. Work closely with the team responsible for implementing the use of the alternative

platform, to ensure that they are aware of the potential risks and the steps being taken

to mitigate them. This should include regular communication and collaboration to

ensure that the transition is carried out smoothly and efficiently.

4. Regularly review the progress of the transition to the alternative platform, and adjust

the plan as necessary in order to ensure that the application remains functional and

successful. This could involve conducting user testing and gathering feedback to

identify any potential issues or concerns, and taking steps to address them.

“Framedrop’s design presents flaws; might delay the development of the mobile

application taking longer than was originally expected.”

1. Identify the specific design flaws that are causing or have the potential to cause delays

in the development process. This could involve conducting a thorough review of the

design, seeking input from key stakeholders and developers, and identifying any

potential issues or areas of concern.

2. Develop a contingency plan for addressing the identified design flaws, in order to

minimize their impact on the overall development timeline. This could involve
108

implementing alternative solutions or redesigning certain elements of the application

in order to resolve the issues.

3. Work closely with the design team to ensure that they are aware of the identified flaws

and the steps being taken to address them. This should include regular communication

and collaboration to ensure that the design is updated and refined as necessary.

4. Regularly review the progress of the design updates and the development process, and

adjust the plan as necessary in order to ensure that the overall timeline remains on

track. This could involve conducting user testing and gathering feedback to identify

any potential issues or concerns, and taking steps to address them.

“The developer has low knowledge about the development language used in the project;

might delay the development time and/or compromise architectural or quality

requirements.”

1. Identify the specific areas of the project where the developer's lack of knowledge is

causing or has the potential to cause delays or other issues. This could involve

conducting a thorough review of the developer's work and seeking input from other

team members and stakeholders.

2. Develop a plan for providing the developer with the necessary training and support to

improve their knowledge and skills in the relevant development language. This could

involve providing access to online resources, assigning a mentor or experienced team

member to provide guidance, or enrolling the developer in a relevant training course

or program.

3. Monitor the developer's progress and provide ongoing support and guidance as

necessary, in order to ensure that they are able to effectively contribute to the project.

109

This should include regular communication and feedback to identify any areas where

additional support or training may be needed.

4. Regularly review the overall progress of the project and the developer's contributions,

and adjust the plan as necessary in order to ensure that the project remains on track

and meets all architectural and quality requirements. This could involve conducting

regular code reviews, user testing, and other forms of quality assurance to identify and

address any potential issues.

“Developed code is difficult to test; might compromise quality attributes.”

1. Identify the specific areas of the code that are difficult to test, and the reasons why

they are causing issues. This could involve conducting a thorough review of the code,

seeking input from other team members and stakeholders, and identifying any

potential challenges or obstacles to testing.

2. Develop a plan for addressing the identified challenges to testing, in order to ensure

that the code can be effectively tested and that the quality attributes are maintained.

This could involve implementing changes to the code itself, such as refactoring or

restructuring, or developing additional tools or processes to support testing.

3. Work closely with the development and testing teams to ensure that they are aware of

the challenges to testing and the steps being taken to address them. This should

include regular communication and collaboration to ensure that the code is updated

and tested as necessary.

4. Regularly review the overall progress of the project, including the testing of the code,

and adjust the plan as necessary in order to ensure that the project remains on track

and meets all quality requirements. This could involve conducting regular code

reviews, user testing, and other forms of quality assurance to identify and address any

potential issues.
110

“Framedrop’s project is dependent on the client availability; might delay the

development of the mobile application.”

1. Identify the specific areas of the project where the client's availability is necessary,

and the reasons why their availability is critical to the project's success. This could

involve conducting a thorough review of the project plan and timeline, and seeking

input from other team members and stakeholders.

2. Develop a contingency plan for addressing potential delays or other issues that may

arise due to the client's availability. This could involve identifying alternative

solutions or workarounds, or establishing clear communication and coordination

processes to ensure that the project remains on track even if the client is not

immediately available.

3. Work closely with the client to ensure that they are aware of the project's

dependencies on their availability, and to establish a clear plan for communication and

coordination. This should include regular communication and collaboration to ensure

that the project remains on track and that any potential issues are addressed in a

timely manner.

4. Regularly review the overall progress of the project, including the client's availability,

and adjust the plan as necessary in order to ensure that the project remains on track

and successful. This could involve conducting regular project reviews and status

updates, and taking steps to address any potential delays or other issues that arise.

111

Appendix D - Requirements

Login Menu

In this menu, users can authenticate via their Twitch account to access the application.

At this stage of development, there are no other ways to authenticate to the application.

The user stories are the following:

us_lm1 As a non-authenticated user, I should be able to authenticate via
Twitch, so I can authenticate via Framedrop.

Priority Must Have

Estimation 8

Dependency -

Notes -

Wireframe
Reference

-

us_lm2 As a non-authenticated user, I should be able to authenticate via
Framedrop, so I can login into the application.

Priority Must Have

Estimation 5

Dependency -

Notes -

Wireframe
Reference

-

Clip Feed Menu

112

Figure 1. Clip Feed Menu

This menu represents the main menu of the application where users can consume

gaming content by scrolling down the screen (1). For every clip being watched, it is displayed

its creator (2), the owner of that clip (3) and the person who claimed it (4). The users can

upvote (5), comment (6), share (7) and fork the clip (8). They can navigate to the wallet menu

(9) and notification center (10) or change the tab from recommended clips feed to followed

users clips (11) or vice-versa. Like in every menu, there is a bottom navigation bar, to

navigate to the other menus.

The next tables represent the user stories for this menu:

us_cf1 As an authenticated and a non-authenticated user, I should be
presented with a clip when entering the clip feed, so I can watch it.

113

Priority Must Have

Estimation 3

Dependency -

Notes -

Wireframe
Reference

Clip Feed

us_cf2 As a user, I should be able to navigate between clips, so I can watch
them.

Priority Must Have

Estimation 5

Dependency us_cf1

Notes -

Wireframe
Reference

Clip Feed

us_cf3 As a user, I should be able to consume clips, so I can be entertained.

Priority Must Have

Estimation 5

Dependency us_cf1

Notes -

Wireframe
Reference

Clip Feed

us_cf4 As an authenticated user, I should be able to interact with the
comment button, so I can view other people's comments.

Priority Must Have

114

Estimation 8

Dependency -

Notes -

Wireframe
Reference

Clip Feed

us_cf5 As an authenticated user, I should be able to interact with the
comment button, so I can comment on the clip.

Priority Must Have

Estimation 5

Dependency us_cf4

Notes -

Wireframe
Reference

Clip Feed

us_cf6 As an authenticated user, I should be able to interact with a
comment button, so I can like other people's comments.

Priority Could Have

Estimation 3

Dependency us_cf4

Notes -

Wireframe
Reference

Clip Feed

us_cf7 As an authenticated user, I should be able to interact with the
upvote button, so I can show my interest for that specific clip.

Priority Must Have

Estimation 5
115

Dependency -

Notes -

Wireframe
Reference

Clip Feed

us_cf8 As an authenticated user, I should be able to interact with the share
button, so I can share with the people that I want.

Priority Should Have

Estimation 3

Dependency -

Notes -

Wireframe
Reference

Clip Feed

us_cf9 As an authenticated user, I should be able to interact with the fork
button, so I can have a personalized clip copy done by me on my

profile.

Priority Could Have

Estimation 2

Dependency -

Notes -

Wireframe
Reference

Clip Feed

us_cf10 As a user, I should be able to interact with the clip's user avatar, so I
can navigate to his profile.

Priority Must Have

Estimation 1

116

Dependency us_cf1

Notes -

Wireframe
Reference

Clip Feed

us_cf11 As a user, I should be able to press the clip's claimer name, so I can
check his profile.

Priority Must Have

Estimation 1

Dependency us_cf1

Notes -

Wireframe
Reference

Clip Feed

us_cf12 As an authenticated user, I should be able to navigate to the
notification center, so I can check who interacted with me.

Priority Could Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Clip Feed

us_cf13 As an authenticated user, I should be able to navigate to the
"Following" tab, so I can only see clips from followed users.

Priority Must Have

Estimation 1

Dependency -
117

Notes -

Wireframe
Reference

Clip Feed

us_cf14 As an authenticated user, I should be able to navigate to the "Feed"
tab, so I can see all recommended clips from all users.

Priority Must Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Clip Feed

us_cf15 As an authenticated user, I should be able to navigate to the wallet
menu, so I can check my wallet amount or top it up.

Priority Must Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Clip Feed

us_cf16 As a user, I should be able to navigate to the search menu, so I can
search for users or videos.

Priority Must Have

Estimation 1

Dependency -

Notes -

118

Wireframe
Reference

Clip Feed

us_cf17 As a user, I should be able to navigate to clip contest, so I can see
clip classifications of a game that I like.

Priority Must Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Clip Feed

us_cf18 As an authenticated user, I should be able to navigate to my profile,
so I can manage it.

Priority Must Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Clip Feed

us_cf19 As an authenticated user, I should be able to interact with an
unclaimed clip, so I can try to claim it.

Priority Must Have

Estimation 1

Dependency -

Notes -

119

Wireframe
Reference

Clip Feed

us_cf20 As an authenticated user, I should be able to see the auction time left
and last bid made on an unsigned clip, so I can manage my bid.

Priority Must Have

Estimation 5

Dependency -

Notes -

Wireframe
Reference

Clip Feed

us_cf21 As a non-authenticated user, I should be able to login or create an
account when I try to interact with app functionalities.

Priority Must Have

Estimation 2

Dependency -

Notes -

Wireframe
Reference

Clip Feed

Search Menu

120

Figure 2. Search Menu

The Search Menu was designed with the goal of providing users a way to search for

specific users or clips (3 and 4), as well as discover new games, watch popular clips,

streamers “on the rise”, among others (1).

The user stories for this menu are described above:

us_sm1 As a user, I should be presented with a search bar, so I can search
for users or clips.

Priority Must Have

Estimation 2

Dependency -

Notes -

Wireframe
Reference

Search Menu

121

us_sm2 As a user, I should be presented with popular clips, so I can explore
it.

Priority Could Have

Estimation 3

Dependency -

Notes -

Wireframe
Reference

Search Menu

us_sm3 As a user, I should be presented with popular games, so I can
explore it.

Priority Could Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Search Menu

us_sm4 As a user, I should be presented with recommended clips, so I can
explore it.

Priority Could Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Search Menu

122

us_sm5 As a user, I should be presented with streamers on the rise, so I can
explore them.

Priority Could Have

Estimation 2

Dependency -

Notes -

Wireframe
Reference

Search Menu

us_sm6 As a user, I should be presented with clips waiting to be unlocked, so
I can try to claim them.

Priority Could Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Search Menu

us_sm7 As a user, I should be able to search for a specific user or clip, so I
can interact with them.

Priority Could Have

Estimation 5

Dependency us_sm1

Notes -

Wireframe
Reference

Search Menu

123

us_sm8 As a user, I should be able to navigate to clip feed, so I can view
recommended clips.

Priority Must Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Search Menu

us_sm9 As a user, I should be able to navigate to clip contest, so I can see
clip classifications of a game that I like.

Priority Must Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Search Menu

us_sm10 As an authenticated user, I should be able to navigate to my profile,
so I can manage it.

Priority Must Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Search Menu

124

us_sm11 As a non-authenticated user, I should be able to login or create an
account when I try to interact with app functionalities.

Priority Must Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Search Menu

Clip Contest Menu

Figure 3. Clip Contest Menu

125

In the Clip Contest Menu, users are presented with a first screen to choose between a

variety of games, to access their contest (1). When in the contest screen, they can switch

between “daily”, “weekly” or “monthly” classifications (3), and interact with the scoreboard,

by watching the clip or navigating to users profiles (5), or they may want to check only their

clips (4).

The user stories are the following ones:

us_cc1 As a user, I should be presented with a list of games when entering
the clip contest, so I choose which I want to access clip contest.

Priority Must Have

Estimation 3

Dependency -

Notes -

Wireframe
Reference

Clip Contest Menu

us_cc2 As a user, I should be presented with a clip classification, so I can
see who's winning.

Priority Must Have

Estimation 5

Dependency us_cc1

Notes -

Wireframe
Reference

Clip Contest Menu

us_cc3 As a user, I should be able to navigate back to the game list, so I can
choose another game.

Priority Must Have

Estimation 1

126

Dependency us_cc1

Notes -

Wireframe
Reference

Clip Contest Menu

us_cc4 As a user, I should be able to interact with a specific clip, so I can
watch it.

Priority Must Have

Estimation 5

Dependency us_cc2

Notes -

Wireframe
Reference

Clip Contest Menu

us_cc5 As a user, I should be able to switch between daily, weekly and
monthly contest, so I can view classifications.

Priority Must Have

Estimation 2

Dependency us_cc1

Notes -

Wireframe
Reference

Clip Contest Menu

us_cc6 As an authenticated user, I should be able to display my clips only,
so I can view my own clips.

Priority Must Have

Estimation 2

Dependency us_cc1
127

Notes -

Wireframe
Reference

Clip Contest Menu

us_cc7 As a user, I should be able to navigate to clip feed, so I can view
recommended clips.

Priority Must Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Clip Contest Menu

us_cc8 As a user, I should be able to navigate to search menu, so I can
search for users or videos.

Priority Must Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Clip Contest Menu

us_cc9 As an authenticated user, I should be able to navigate to my profile,
so I can manage it.

Priority Must Have

Estimation 1

Dependency -

Notes -

128

Wireframe
Reference

Clip Contest Menu

us_cc10 As a non-authenticated user, I should be able to login or create an
account when I try to do with the app functionalities.

Priority Must Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Clip Contest Menu

Profile Menu

129

Figure 4. Profile Menu

This menu represents the user profile and, without some elements (1, 2 and 4), it

represents the profile menu of a third user (not the owner of that account). In their own

profile, users can edit it (1 and 2), navigate to the wallet menu to get more credits (2),

navigate to their Twitch profile (3) and watch their own clips (5). They may also filter their

clips by “Streamed”, “Claimed”, “Forks” and “Upvotes”. These four categories will present

different content (5).

Above is a list of the user stories:

us_pm1 As an authenticated user, I should be presented with my profile
information, so I can manage it.

130

Priority Must Have

Estimation 8

Dependency -

Notes -

Wireframe
Reference

Profile Menu

us_pm2 As an authenticated user, I should be able to navigate to the settings
menu, so I can edit my experience on the application.

Priority Could Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Profile Menu

us_pm3 As an authenticated user, I should be able to press to navigate to my
edit profile menu, so I can edit my profile information.

Priority Could Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Profile Menu

us_pm4 As an authenticated user, I should be able to navigate to the wallet
menu, so I can top-up my wallet.

Priority Could Have
131

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Profile Menu

us_pm5 As an authenticated user, I should be able to press the Twitch icon,
so I can navigate to my Twitch account.

Priority Could Have

Estimation 2

Dependency -

Notes -

Wireframe
Reference

Profile Menu

us_pm6 As an authenticated user, I should be able to switch between
"Streamed", "Claimed", "Forked", and "Upvotes" tabs, so I can

see the content from each of them.

Priority Could Have

Estimation 3

Dependency -

Notes -

Wireframe
Reference

Profile Menu

us_pm7 As an authenticated user, I should be able to interact with a clip, so I
can watch it.

Priority Must Have

132

Estimation 5

Dependency -

Notes -

Wireframe
Reference

Profile Menu

us_pm8 As an authenticated user, I should be able to navigate to clip feed, so
I can view recommended clips.

Priority Must Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Profile Menu

us_pm9 As an authenticated user, I should be able to navigate to the search
menu, so I can search for users or videos.

Priority Must Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Profile Menu

us_pm10 As an authenticated user, I should be able to navigate to the clip
contest menu, so I can see clip classifications of a game that I like.

Priority Must Have

Estimation 1
133

Dependency -

Notes -

Wireframe
Reference

Profile Menu

Wallet Menu

Figure 5. Wallet Menu

134

To top up the in-app wallet, users can select one of the standard amount options (3) or

enter a custom value on their own (4), and confirm the transaction (5). Users can also check

their balance in this menu (1).

The list of user stories is the following:

us_wm1 As an authenticated user, I should be able to check my current
credits, so I can manage it.

Priority Must Have

Estimation 5

Dependency -

Notes -

Wireframe
Reference

Wallet Menu

us_wm2 As an authenticated user, I should be able to top-up my wallet, so I
can make in-app purchases.

Priority Must Have

Estimation 20

Dependency -

Notes This user story has an estimated time over the maximum defined. This
means that it still needs to be decomposed in sub-requirements, but we
still don’t have any information about the payment option to define the

process.

Wireframe
Reference

Wallet Menu

us_wm3 As an authenticated user, I should be able to navigate back to clip
feed, so I can see recommended clips.

Priority Must Have

135

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Wallet Menu

us_wm4 As an authenticated user, I should be able to navigate back to my
profile, so I can manage it.

Priority Must Have

Estimation 1

Dependency -

Notes -

Wireframe
Reference

Wallet Menu

Clip Auction Menu

136

Figure 6. Clip Auction Menu

When trying to claim an unsigned clip, users are presented with an auction menu,

where they can check the remaining auction time, and the highest bid at that time, as well as

the latest bidders. They can also place a bid by entering a value and confirming the

transaction.

137

Appendix E - Product Design Sprint

1. Introduction
The purpose of this document is to present an overview of the Product Design Sprint

of Framedrop’s mobile application. It focuses on a brief explanation of what the company

provides as a service and expectations regarding the mobile application, the tools and

methodologies used to perform it as well as the artifacts developed.

2. Sprint Duration
The original document states that the period to complete the Product Design Sprint is

5 days, divided by 5 stages: Map, Sketch, Decide, Prototype and Test [110].

In this case, the process was led by one of Framedrop's summer interns, Manuel

Masseno, and due to the proximity of the end of the summer internship, the Product Design

Sprint was reduced to two days, leaving Prototyping and Testing out of scope.

3. First Day
The plan for the first day was to define a long-term goal, metrics that could measure if

the long-term goal was achieved and the risks that could prevent from achieving it. By the

end of the day, we mapped all the interactions between customers and the product. For doing

this, all the potential users were taken into account as well as the different forms of

discovering and interacting with the product. All the information gathered before would help,

after a round of interviews with experts on the subject, to identify, on the map, the core

problem to be solved, transforming it into an opportunity.

3.1. Introduction
As the first day of the Product Design Sprint, it was necessary to define the team's

roles and responsibilities. The two most important roles were Sprint Leader and Decider,

given to Framedrop’s summer intern Manuel Masseno and company CEO João Diogo Costa,

respectively. The Sprint Leader was responsible to conduct the sprint, control time and

facilitate the decisions of the group. The Decider took the responsibility to make all key

decisions and on the occasions where the group was splitted between choices.

138

Define a long-term goal

As the name implies, the objective of this task was to agree on the project’s 12-18

months mission [111], assuming that everything went perfectly. The group ideas were likely

similar, focusing on providing entertainment for the viewers and revenue for the content

providers. The most voted idea was the one that we concluded that was more focused on the

product sustainability, which was “100% running an app with a stable and growing user base

and some big streamers using it actively”. With this long-term goal, it would be possible to

continue revenuing streamers and providing content to the viewers.

Define metrics to measure if the long-term was achieved

To perform this task, each person drafted two metrics, assuming once again that

everything went perfectly. Since the long-term goal was focusing on product maintainability,

the metrics followed the same path, with enhancement on the number of viewers and

streamers per day or active on the platform.

After a voting round, there were two metrics that the group considered the most

important:

● DUA/MAU ratio is over 20% - which means Daily Active Users to Monthly Active

Users ratio, and represents how active users are on a daily basis. This metric presents

the number of days that the user was engaged with the service sufficient time to

consider him an active user [112]. “A higher DAU/MAU Ratio generally indicates

high stickiness, meaning users consistently return to the app” [112].

● 10% of the streamers with over 1000 concurrent viewers are using it - having a good

base of big streamers is important and represents a strong relation of users with the

service.

Define risks

Assuming a worst case scenario, the group tried to figure out what might prevent from

reaching the long-term goal and metrics defined on the previous exercises. Using a “yes or

no” approach, the questions came down to streamer and viewer engagement, whether the

platform's content would be addictive enough (like other existing ones, e.g. TikTok) and

whether streamers would trust their image with Framedrop.

139

After a round of debating and improving the presented questions, we came down to

two risks, regarding the possibility of designing a “super engaging app” and the possibility of

competing for attention with other market competitors such Youtube. Launching a product in

a market with big competitors could be a challenge, especially when trying to break users' old

engagement routines and make them interact with our product. Even if they interact with the

app, there’s another challenge that we need to face: retain users and make them engage with

the app for as long as it takes for it to become a habit [113].

Map the product

In the original framework, the exercise “Asking Experts” would come before mapping

the product, having more information to make the Map [111]. In our case, we preferred to

follow the book’s author preference and use the Map as a reference for the conversations,

because there was already an initial idea of the application screen flow.

The initial steps to define the Map were the following:

● Define customers;

● Define the discovery path, which means the moments where the customer learns and

starts using the app;

● Define the core experience, which represents the flow of actions that the customer can

perform through the app.

Customers could be different actors with different intentions of engaging with the app.

The most high-level customers would be streamers and fans. From them we can define other

actors like:

● Casual Viewer - it doesn’t have the particular fanaticism for a streamer;

● Creator fan - it has a particular fanaticism for a streamer or a group of streamers;

● Creator supporter - like the name implies, aims to support creator’s content;

● Trader - is a user that want to unlock and sell clips to top up his wallet;

● Montage Editor - edits is own clips on top of streamers clips;

● Staff - streamer’s staff that maintains the streamer’s profile.

140

After the analysis of the different end-users, it was necessary to define the various

channels where they could discover Framedrop and start engaging with it. This exposure

could be done from three approaches: Streamers word-of-mouth, brand publicity and brand

exposure by reaching out to customers. Streamers would provide the majority of exposure,

because they have a niche of end-users following them and have a variety of tools to

communicate with them like social networks, Discord community and during streaming. The

next interactions are presented in the image below.

Figure 1. Map of interactions channels between possible end-users and Framedrop

The core experience, which represents the user walkthrough in the app was defined

aiming to a target moment: unlocking a clip. This action is the most important to Framedrop

because users paying to unlock the clip revenues the company with a percentage of that

transaction, and it’s a sign that the users are engaging with the app. To get users to perform

this action, it was taken into account the minimal steps needed (number of screens or clicks)

141

to do it and the moments after it, that should encourage repetition. With this information, the

flow is described below.

Figure 2. Application flow and target moment

Identify core problems

After mapping the product, we conducted the “Ask Experts” meeting where we

learned about streamer’s routines, engagement with fans, communication channels, tools used

in stream to interact with fans and other aspects regarding Twitch and the community. This

interview was complemented with an exercise where we drafted some “How Might We”

notes that consisted of problems that we could convert into opportunities, valuing the

product. The vote picked the following questions as the most important:

1. “How might we do an UX that focus on viewer's karma points (eg.

exponentiate bragging rights)?”

2. “How might we provide further value and bragging rights in a user’s profile?”

3.2. Conclusion

At the end of the day, we identified what we considered the most important aspects

regarding the application, collecting as much information as possible from the exercises

performed during the day and felt ready to move to the Sketch and Decide section.

142

4. Second Day
The second day was mainly focused on finding a solution to the target moment

identified on the first day. The original document used the time only for sketching ideas,

reviewing the existing ones and improving [82], but with a short time, the plan was to sketch

possible detailed, opinionated solutions and decide the best ideas for the prototype.

4.1. Introduction

The original framework tells that the Sketch section is only for the target moment,

identified on the earlier sections, but as we were designing the product as a whole, we

focused our Sketch section to all the application screens and the target moment.

The first exercise aimed to find inspiring solutions from other industries or, in other

words, components that could be beneficial to implement in Framedrop. It was given 3

minutes to gather as much information as possible for this task. Some examples are presented

below.

143

Figure 3. Component inspiration gathered during the exercise

With all these components as inspiration, was “time to sketch” where each team

element would brainstorm some ideas on a piece of paper and create sketches of the different

application screens. These drafts were anonymous so it was important to have a significant

amount of detail to be well interpreted by the team.

The next exercise was to analyze the sketches and individually vote for the best

component or characteristic idea of the different solutions. The most voted ideas were

discussed by the group and labeled. This exercise is important to mitigate interpretation

problems.

The next part was an update to the book, called “Call out the hypotheses”. It consisted

of getting specific about the hypotheses that might meet the long-term goal and metrics,

behind the winning solutions, which could be very helpful to focus the team on the

storyboard, prototype and test [111]. The two most voted hypotheses considered to be the

ones who might met the long-term goal and metrics were the following:

● “IF we implement gamification techniques THEN customers will feel rewarded and

get hooked on the app”;

144

● “IF we show "unlocked by", feature badges, and highlight level ups THEN customers

will feel more eager to use the app and retain”;

● “If we make clip watching more interactive and community-driven, we'll have a much

stronger value proposition than our competitors”.

To conclude the Product Design Sprint, the group used the approach inspired by

AJ&Smart’s called “Storyboarding 2.0”, which represents an easier approach to start the

storyboard. With this technique, we didn’t do the storyboard exercise because we felt that the

conclusions gathered from this “pre-exercise” were enough to proceed to prototyping and we

were running out of time. To perform this exercise, we needed to identify the prototype’s first

6 steps, starting with an opening scene or entry before the product. Then the following steps

should represent screens and clicks to show who customers move through the prototype

respecting the flow that was mapped in the first day. The storyboards are presented below,

being the first the most voted by the group.

Figure 4. Storyboard 2.0 highlighting the most voted by the group

145

4.2. Conclusion

Concluding the Product Design Sprint, we felt that the exercise was a success and had

the information needed to develop a prototype for the product. With the long-term goal and

metrics in mind, and the sketches as a solution for the target moment, we could mitigate the

error of designing a prototype that won’t fit for the product.

5. Conclusion and Future Work

“In a nutshell, a Product Design Sprint is a workshop that allows businesses to reduce

the risk associated with bringing a new product or feature to market, and to answer complex

business questions within a very short time” [114]. The next phases will be focused on

requisite gathering and priorities definition, so we can map all the different components of

the application in time and create estimations for each of them.

146

Appendix F - User Story List

User Story
Functional

Requirement
Priority Done?

As a user, I should be presented with the
menu icons, so I can interact with them.

us_cf1 Must Have

As a user, I should be able to navigate
between clips, so I can watch them.

us_cf2 Must Have

As a user, I should be able to interact with
clips, so I can pause and play.

us_cf3 Must Have

As an authenticated user, I should be able
to interact with the comment button, so I
can view other people's comments.

us_cf4 Must Have

As an authenticated user, I should be able
to interact with the comment button, so I
can comment on the clip.

us_cf5 Must Have

As an authenticated user, I should be able
to interact with a comment button, so I
can like other people's comments.

us_cf6 Could Have

As an authenticated user, I should be able
to interact with the upvote button, so I can
show my interest for that specific clip.

us_cf7 Must Have

As an authenticated user, I should be able
to interact with the share button, so I can
share with the people that I want.

us_cf8 Must Have

As an authenticated user, I should be able
to interact with the fork button, so I can
have a personalized clip copy done by me
on my profile.

us_cf9 Will Not
Have

As a user, I should be able to interact with
the clip's user avatar, so I can navigate to
his profile.

us_cf10 Must Have

As a user, I should be able to press the
clip's claimer name, so I can check his

us_cf11 Must Have

147

profile.

As an authenticated user, I should be able
to navigate to the notification center, so I
can check who interacted with me.

us_cf12 Could Have

As an authenticated user, I should be able
to navigate to the "Following" tab, so I can
only see clips from followed users.

us_cf13 Could Have

As an authenticated user, I should be able
to navigate to the "Feed" tab, so I can see
all recommended clips from all users.

us_cf14 Could Have

As an authenticated user, I should be able
to navigate to the wallet menu, so I can
check my wallet amount or top it up.

us_cf15 Must Have

As a user, I should be able to navigate to
the search menu, so I can search for users
or videos.

us_cf16 Must Have

As a user, I should be able to navigate to
clip contest, so I can see clip classifications
of a game that I like.

us_cf17 Must Have

As an authenticated user, I should be able
to navigate to my profile, so I can manage
it.

us_cf18 Must Have

As an authenticated user, I should be able
to interact with an unclaimed clip, so I can
try to claim it.

us_cf19 Must Have

As an authenticated user, I should be able
to see the auction time left and last bid
made on an unsigned clip, so I can manage
my bid.

us_cf20 Will Not
Have

As a non-authenticated user, I should be
able to login or create an account when I
try to interact with app functionalities.

us_cf21 Must Have

As an authenticated user, I should be able
to unlock a video, so I can own it.

us_cf22 Must Have

As a user, I should be presented with a
search bar, so I can search for users or

us_sm1 Must Have

148

clips.

As a user, I should be presented with
popular clips, so I can explore it.

us_sm2 Will Not
Have

As a user, I should be presented with
popular games, so I can explore it.

us_sm3 Will Not
Have

As a user, I should be presented with
recommended clips, so I can explore it.

us_sm4 Will Not
Have

As a user, I should be presented with
streamers on the rise, so I can explore
them.

us_sm5 Will Not
Have

As a user, I should be presented with clips
waiting to be unlocked, so I can try to
claim them.

us_sm6 Will Not
Have

As a user, I should be able to search for a
specific user or clip, so I can interact with
them.

us_sm7 Must Have

As a user, I should be able to navigate to
clip feed, so I can view recommended
clips.

us_sm8 Must Have

As a user, I should be able to navigate to
clip contest, so I can see clip classifications
of a game that I like.

us_sm9 Must Have

As an authenticated user, I should be able
to navigate to my profile, so I can manage
it.

us_sm10 Must Have

As a non-authenticated user, I should be
able to login or create an account when I
try to interact with app functionalities.

us_sm11 Must Have

As a user, I should be presented with a list
of games when entering the clip contest,
so I choose which I want to access.

us_cc1 Must Have

As a user, I should be presented with a clip
classification, so I can see who's winning.

us_cc2 Must Have

149

As a user, I should be able to navigate back
to the game list, so I can choose another
game.

us_cc3 Must Have

As a user, I should be able to interact with
a specific clip, so I can watch it.

us_cc4 Must Have

As a user, I should be able to switch
between daily, weekly and monthly
contest, so I can view classifications.

us_cc5 Must Have

As an authenticated user, I should be able
to display my clips only, so I can view my
own clips.

us_cc6 Must Have

As a user, I should be able to navigate to
clip feed, so I can view recommended
clips.

us_cc7 Must Have

As a user, I should be able to navigate to
the search menu, so I can search for users
or videos.

us_cc8 Must Have

As an authenticated user, I should be able
to navigate to my profile, so I can manage
it.

us_cc9 Must Have

As a user, I should be able to see the
contest time left when I enter a clip
contest.

us_cc10 Must Have

As a non-authenticated user, I should be
able to login or create an account when I
try to do with the app functionalities.

us_cc11 Must Have

As an authenticated user, I should be able
to click on the clip owner's name, so I can
view his profile.

us_cc12 Must Have

As an authenticated user, I should be able
to click on the clip claimer's name, so I can
view his profile.

us_cc13 Must Have

As an authenticated user, I should be
presented with my profile information, so I
can manage it.

us_pm1 Must Have

150

As an authenticated user, I should be able
to navigate to the settings menu, so I can
edit my experience on the application.

us_pm2 Will Not
Have

As an authenticated user, I should be able
to press to navigate to my edit profile
menu, so I can edit my profile information.

us_pm3 Will Not
Have

As an authenticated user, I should be able
to navigate to the wallet menu, so I can
top-up my wallet.

us_pm4 Must Have

As an authenticated user, I should be able
to press the Twitch icon, so I can navigate
to my Twitch account.

us_pm5 Could Have

As an authenticated user, I should be able
to switch between "Streamed", "Claimed",
"Forked", and "Upvotes" tabs, so I can see
the content from each of them.

us_pm6 Must Have

As an authenticated user, I should be able
to interact with a clip, so I can watch it.

us_pm7 Must Have

As an authenticated user, I should be able
to navigate to clip feed, so I can view
recommended clips.

us_pm8 Must Have

As an authenticated user, I should be able
to navigate to search menu, so I can
search for users or videos.

us_pm9 Must Have

As an authenticated user, I should be able
to navigate to clip contest menu, so I can
see clip classifications of a game that I like.

us_pm10 Must Have

As an authenticated user, I should be able
to check my current credits, so I can
manage it.

us_wm1 Must Have

As an authenticated user, I should be able
to top-up my wallet, so I can make in-app
purchases.

us_wm2 Must Have

As an authenticated user, I should be able
to navigate back to clip feed, so I can see
recommended clips.

us_wm3 Must Have

151

As an authenticated user, I should be able
to navigate back to my profile, so I can
manage it.

us_wm4 Must Have

As a non-authenticated user, I should be
able to authenticate via Twitch, so I can
authenticate via Framedrop.

us_lm1 Must Have

As a non-authenticated user, I should be
able to authenticate via Framedrop, so I
can login into the application.

us_lm2 Must Have

As a non-authenticated user, I should login
with Twitch with a streamer’s code
referral, so I can get more free credits

us_lm3 Must Have

As a user, I should be able to see a splash
screen with Framedrop logo, as I enter in
the application.

us_lm4 Must Have

152

Appendix G - Usability Test Script

Hello!

We are developing a mobile app for Framedrop, a company that creates highlights

capture software for Twitch streams, to help content creators save time. These clips are then

available on Framedrop's web app and can be purchased by fans/interested parties for the

streamer/clip, unlocking the clip for other users to view. This application focuses on helping

streamers grow as content creators and bring fans closer together.

As I mentioned, the clips that become available on the platform can be purchased,

with the purchaser becoming the claimer of the clip, and becoming bound to the creator of the

clip (streamer). Users who claim clips are automatically eligible to participate in a contest,

where they can win tokens to claim new clips.

Users of the Framedrop application, can view clips that are unlocked, claim locked

videos, upvote a clip (similar to the like function), comment and share.

The mobile app follows on from the web app, giving users the same experience from

their smartphone.

This session will be about 20 minutes long. Please feel free to be as candid as possible

so that we can learn and improve this application. We want to make it clear up front that the

purpose is to test the app and not you, meaning you will do no wrong here! Your sincerity is

key to detecting problems/opportunities in early stages of development, avoiding critical

issues in the future.

I would like to ask for your consent to record this session. The recording will be used

internally, only to take results and avoid wasting precious information and time taking notes

during the session.

We will start with some general questions before we begin testing the application.

153

Appendix H - Usability Test Form Questions

154

155

156

157

158

159

160

161

162

163

Appendix I - Usability Test Form Answers

164

165

166

167

168

169

170

Appendix J - Usability Test Results

Problems Severity Possible Solutions

Videos are slow to play and buffer
several times

High
Change clips buffer size. Framedrop
team changes video store service

Transition between videos not very
fluid

High Move some logic to another thread

Confirm that the user wants to unlock
the clip, to avoid accidental touches

High
Create a confirmation pop-up or
create a long-press animation

The app has a long loading time Medium
Load only the necessary
components at the beginning

When claiming a clip, the loading of the
pull to refresh also appears

Low
Create a new state for the pull to
refresh

When refreshing the page, only the
video should be refreshed, not the
whole page

Low
Update only the view that contains
the list of clips

Icons (wallet, upvote) are not very
explicit

Low
Create an onboarding page that
explains buttons and their behaviors

Images have different sizes between
devices

Low
Ask Framedrop to use images with
the same sizes

Going to another screen and returning
to the wallet gives error on paypal page

Low Correct navigation between screens

The paypal menu could have more
information (having only one button
makes no sense)

Low Add more content to the page

When watching a clip, the creator's
avatar could be bigger

Low Increase avatar size

171

Suggestions Implementation Effort
Will it be included in
the current release?

After opening the keyboard, you can
hide it by touching anywhere on the
screen

Low Yes

Show mini clips of the user in the clip
that is locked (similar to youtube
videos, when the video ends)

High No

172

Appendix K - Macrobenchmark Results

Google Pixel 3XL (2018)

App Startup
Time

Base Code Optimized App

Min Median Max Min Median Max

553.0 571.0 615.0 451.5 466.5 508.7

Product Startup
Time

Base Code Optimized App

Min Median Max Min Median Max

1 378.6 1 620.9 1 887.6 1 243.4 1 481.6 1 632.9

Scroll Clips
Base Code Optimized App

P50 P90 P95 P99 P50 P90 P95 P99

Frame Duration 5.5 9.9 12.5 108.9 8.1 14.5 35.1 83.8

Frame Overrun -14.1 -7.8 41.6 94.0 -7.9 12.8 48.1 70.0

Optimization

Min Median Max

App Startup Time 101.5 (18.35%) 104.5 (18.3%) 106.3 (17.28%)

Product Startup
Time

135.2 (9.80%) 139.3 (8.59%) 254.7 (13.49%)

P50 P90 P95 P99

Scroll Clips
0 (0%) 0 (0%) 0 (0%) 25.1 (23.05%)

0 (0%) 0 (0%) 0 (0%) 24 (25.53%)

173

Samsung Galaxy S10E (2019)

App Startup
Time

Base Code Optimized App

Min Median Max Min Median Max

539.8 583.8 927.2 485.0 554.8 649.8

Product Startup
Time

Base Code Optimized App

Min Median Max Min Median Max

1 385.9 1 493.9 2 943.5 1 272.4 1 372.5 2 755.3

Scroll Clips
Base Code Optimized App

P50 P90 P95 P99 P50 P90 P95 P99

Frame Duration 8.0 12.2 31.6 186.0 8.3 25.3 29.3 159.8

Frame Overrun 0.0 17.0 58.9 186.8 0.2 17.6 48.6 160.0

Optimization

Min Median Max

App Startup Time 54.8 (10.15%) 29 (4.97%) 277.4 (29.92%)

Product Startup
Time

113.5 (8.19%) 121.4 (8.13%) 188.2 (6.39%)

P50 P90 P95 P99

Scroll Clips
0 (0%) 0 (0%) 2.3 (7.28%) 26.2 (14.09%)

0 (0%) 0 (0%) 10.3 (17.49%) 26.8 (14.35%)

174

Xiaomi POCO M3 (2020)

App Startup
Time

Base Code Optimized App

Min Median Max Min Median Max

1 458.7 1 508.5 2 170.7 1 278.7 1 359.2 1 743.3

Product Startup
Time

Base Code Optimized App

Min Median Max Min Median Max

2 494.6 2 864.2 6 919.1 2 231.7 2 707.6 5 280.1

Scroll Clips
Base Code Optimized App

P50 P90 P95 P99 P50 P90 P95 P99

Frame Duration 5.5 11.2 18.3 120.2 6.3 12.5 23.5 89.2

Frame Overrun 1.0 3.1 5.5 196.2 2.3 8.2 10.2 150.2

Optimization

Min Median Max

App Startup Time 180 (12.33%) 149.3 (9.90%) 427.4 (19.69%)

Product Startup
Time

262.9 (10.54%) 156.6 (5.47%) 1 639 (23.69%)

P50 P90 P95 P99

Scroll Clips
0 (0%) 0 (0%) 0 (0%) 38 (25.80%)

0 (0%) 0 (0%) 0 (0%) 46 (23.45%)

175

Xiaomi Redmi 10S (2021)

App Startup
Time

Base Code Optimized App

Min Median Max Min Median Max

850.0 875.2 1 022.8 656.5 696.1 735.8

Product Startup
Time

Base Code Optimized App

Min Median Max Min Median Max

1 774.4 2 044.6 3 101.3 1 648.1 1 910.7 2 930.4

Scroll Clips
Base Code Optimized App

P50 P90 P95 P99 P50 P90 P95 P99

Frame Duration 7.3 10.5 16.5 197.0 7.0 9.2 20.3 186.4

Frame Overrun -3.0 -1.6 32.6 188.6 -11.0 -1.9 24.1 176.9

Optimization

Min Median Max

App Startup Time 193.5 (22.76%) 179.1 (20.46%) 287 (28.06%)

Product Startup
Time

126.3 (7.12%) 133.9 (6.55%) 170.9 (5.51%)

P50 P90 P95 P99

Scroll Clips
0.3 (4.11%) 1.3 (12.38%) 0 (0%) 10.6 (5.38%)

-8 -0.3 8.5 (26.07%) 11.7 (6.20%)

176

Poco X4 Pro 5G (2022)

App Startup
Time

Base Code Optimized App

Min Median Max Min Median Max

1 098.6 1 203.4 2 247.8 856.5 902.6 1 930.0

Product Startup
Time

Base Code Optimized App

Min Median Max Min Median Max

1 908.4 2 259.5 5 495.9 1 709.1 1 996.0 4 516.4

Scroll Clips
Base Code Optimized App

P50 P90 P95 P99 P50 P90 P95 P99

Frame Duration 5.0 8.8 11.5 54.1 3.3 8.0 13.1 45.6

Frame Overrun -3.6 -2.2 3.6 98.2 -3.6 -1.2 26.1 77.3

Optimization

Min Median Max

App Startup Time 242.1 (22.04%) 300.8 (25.00%) 317.8 (14.14%)

Product Startup
Time

199.3 (10.44%) 263.5 (11.66%) 979.5 (17.82%)

P50 P90 P95 P99

Scroll Clips
1.7 (34%) 0.8 (9.09%) 0 (0%) 8.5 (15.71%)

0 (%0) 0 (0%) 0 (0%) 20.9 (21.28%)

177

178

