

Miguel André Lourenço Rabuge

BIO-INSPIRED AUTOMATIC FEATURE

ENGINEERING FOR AUDIOLOGY

Dissertation in the context of the Master in Informatics Engineering,
specialization in Intelligent Systems, supervised by Professor Nuno António

Marques Lourenço and presented to the Department of Informatics
Engineering of the Faculty of Sciences and Technology of the University of

Coimbra.

July of 2023

DEPARTMENT OF INFORMATICS ENGINEERING

Miguel André Lourenço Rabuge

Bio-Inspired Automatic Feature
Engineering for Audiology

Dissertation in the context of the Master in Informatics Engineering,
specialization in Intelligent Systems, supervised by Prof. Nuno António

Marques Lourenço and presented to the Department of Informatics Engineering
of the Faculty of Sciences and Technology of the University of Coimbra.

July 2023

This work was funded by project A4A: Audiology for All (CENTRO-01-0247-
FEDER-047083) financed by the Operational Program for Competitiveness and
Internationalisation of PORTUGAL 2020 through the European Regional Devel-
opment Fund and by the FCT - Foundation for Science and Technology, I.P. /
MCTES through national funds (PIDDAC), within the scope of CISUC RD Unit -
UIDB/00326/2020 or project code UIDP/00326/2020.

v

Acknowledgements

I would like to express my gratitude to my supervisor, Nuno Lourenço, with
whom I have learned a great deal, for allowing me to participate in research
projects for the past 3 years. Thank you for sparking my interest in research and
for all of your answers, criticism and reassurance. For my friends, Duarte Dias,
Gabriel Fernandes and Pedro Rodrigues thank you for your constant availability
to discuss my work, giving me helpful clues on what I could be doing wrong. I
would also like to thank my family, for believing in me. Thank you for all of your
support and willingness to listen to subjects you do not quite understand, but still
striving to comprehend them. Lastly, I would like to thank Inês, my significant
other, for all of our time together and for the trust, patience and support that you
have given me throughout these years.

vii

Abstract

Hearing Loss (HL) is becoming a concerning problem in modern society. In
February 2023, the World Health Organization (WHO) stated that over 5% of
the world’s population (430 million people) requires rehabilitation to address HL
[WHO - Hearing Loss]. As more medical data is being produced and stored dig-
itally, data scientists and engineers are trying to help solve medical field-related
problems in an automated manner. Therefore, a method to preemptively predict
HL is of utter importance.

Given the current trend where information of varied types is being collected from
multiple sources, a need to select and combine these pieces of information arises
when aiming to maximize the prediction of HL.

Feature Engineering (FE) is a time-consuming and error-prone task as it is usually
made by human experts. The framework examined in this work aims to automat-
ically boost Machine Learning (ML) models’ performance by enhancing original
features through evolutionary Feature Selection (FS) and Feature Construction
(FC) methods.

This work proposes FEDORA, an Evolutionary Automated Machine Learning
(AutoML) framework for FE. The proposed framework will be compared with
state-of-the-art FE techniques and analysed in terms of performance and of FE.
The best result of the framework is 76.2% balanced accuracy, using 9 total features
(5 Original, 2 Engineered and 2 Complex) out of the 60 original ones. FEDORA
was able to engineer a transformation that achieved a score of 72,8% balanced
accuracy with 1 single complex feature. Results point to FEDORA being able
to reduce the dimensionality of the data while statistically maintaining perfor-
mance.

Keywords

Automated Machine Learning, Evolutionary Computation, Grammatical Evolu-
tion, Feature Engineering, Hearing Loss.

ix

Resumo

A perda de audição é um problema cada vez mais sério na sociedade. Em Fevereiro
de 2023, a Organização Mundial da Saúde (OMS) afirmou que 5% da população
mundial (430 milhões de pessoas) necessita de reabilitação para tratar da sua
perda auditiva [WHO - Hearing Loss]. À medida que dados médicos vão sendo
gerados e armazenados digitalmente, engenheiros e ciêntistas de dados procu-
ram ajudar a resolver problemas na área da medicina, de forma automatizada.
Deste modo, um método que consiga prever preemptivamente perda auditiva é
de extrema importância.

Dada a tendência atual onde dados de vários tipos estão a ser obtidos de diversas
fontes, surge a necessidade de selecionar e combinar esta informação com vista a
maximizar a deteção de perda auditiva.

Feature Engineering é uma tarefa demorada e propensa a erros, dado que geral-
mente é realizada por especialistas humanos. A framework examinada neste tra-
balho tem como objetivo aumentar automaticamente o desempenho dos mode-
los de Machine Learning, aprimorando os atributos originais através de métodos
evolucionários de seleção e construção de atributos.

Este trabalho propõe FEDORA, uma framework evolucionária de Automated Ma-
chine Learning para Feature Engineering. A framework proposta será comparada
com técnicas estado-da-arte de Feature Engineering e analisada em termos de de-
sempenho e de seleção e construção de atributos. O melhor resultado da frame-
work é de 76,2% Balanced Accuracy, usando 9 atributos (5 originais, 2 Engineered e
2 complexos) dos 60 originais. A framework foi capaz de gerar uma transformação
que alcançou uma pontuação de 72,8% Balanced Accuracy com 1 único atributo
complexo. Os resultados apontam para a framework ser capaz de reduzir a di-
mensionalidade dos dados enquanto estatisticamente mantém performance.

Palavras-Chave

Aprendizagem Computacional Automática, Computação Evolucionária, Evolução
Gramatical, Engenharia de Atributos, Perda Auditiva

xi

Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Contributions . 3
1.3 Organization . 3

2 Background 5
2.1 Evolutionary Computation . 5
2.2 Automated Machine Learning . 14
2.3 Related Work . 18

3 The FEDORA Framework 23
3.1 Implementation Details . 24

4 Experimental Study 27
4.1 Hearing Loss Detection Dataset . 27
4.2 FEDORA for Feature Engineering . 30
4.3 AutoML with FEDORA . 53

5 Conclusion 61
5.1 Future Work . 62

Appendix A Hyper-parameter Search for Feature Engineering Methods 69

xiii

Acronyms

A4A Audiology for All.

AE Autoencoder.

AI Artificial Intelligence.

ANN Artificial Neural Network.

ANOVA Analysis of Variance.

AST Abstract Syntax Tree.

AutoML Automated Machine Learning.

BNF Backus-Naur Form.

CASH Combined Algorithm Selection and Hyperparameter optimization prob-
lem.

CFG Context-Free Grammar.

CNN Convolutional Neural Network.

DT Decision Tree.

EA Evolutionary Algorithm.

EC Evolutionary Computation.

ER Entity-Relationship.

ETL Extract, Transform and Load.

FC Feature Construction.

FE Feature Engineering.

FMS Full Model Selection.

FS Feature Selection.

GA Genetic Algorithm.

GBGP Grammar-Based Genetic Programming.

GE Grammatical Evolution.

xv

Chapter 0

GP Genetic Programming.

HL Hearing Loss.

HPO Hyper-parameter Optimisation.

HyTEA Hybrid Tree Evolutionary Algorithm.

ML Machine Learning.

MLP Multi-Layer Perceptron.

NaN Not a Number.

PCA Principal Component Analysis.

RF Random Forest.

SGE Structured Grammatical Evolution.

SOM Self-Organizing Map.

UMAP Uniform Manifold Approximation and Projection.

WHO World Health Organization.

XGB Extreme Gradient Boosting.

xvi

List of Figures

1.1 Objectives . 3

2.1 Evolutionary Computation Tree. Adapted from [Zhang, 2020] . . . 5
2.2 Evolutionary Algorithm Cycle. Adapted from [Brabazon et al., 2015] 6
2.3 Binary Genetic Flip Mutation . 7
2.4 Binary Genetic One-point Crossover 7
2.5 Genetic vs Phenotypic Spaces . 8
2.6 Abstract Syntax Tree representing max(X1 − 0.5, cos(X2)) 9
2.7 Full method . 9
2.8 Grow method . 10
2.9 Sub-tree Crossover . 10
2.10 Sub-tree Mutation . 11
2.11 Example of a Backus-Naur Form Grammar. Adapted from [Mon-

teiro et al., 2021] . 12
2.12 Grammatical Evolution Mapping Process 13
2.13 Structured Grammatical Evolution genotype example 14
2.14 Structured Grammatical Evolution mapping 14
2.15 Structured Grammatical Evolution crossover 14
2.16 A Simple Machine Learning Pipeline. Adapted from [Assunção

et al., 2020] . 15
2.17 Grid Search vs Random Search . 15
2.18 Feature Construction Example . 17
2.19 Single-tree feature engineering example 19
2.20 Multi-tree feature engineering example 20

3.1 The FEDORA framework . 23
3.2 FEDORA Implementation Details . 25

4.1 Entity-Relationship Diagram . 29
4.2 Autoencoder architecture . 32
4.3 Experiment rf-200-100 . 34
4.4 Experiment xgb-200-100 . 36
4.5 Experiment dt-200-100 . 38
4.6 Experiment dt-1000-50 . 39
4.7 Experiment mlp-100-50 . 41
4.8 Boolean Grammar . 46
4.9 Experiment dt-1000-50-bool . 47
4.10 Experiment xgb-200-100-low10 . 49
4.11 Experiment xgb-200-100-penalty . 52

xvii

Chapter 0

4.12 Simplified derivation tree of the best individual’s phenotype 54
4.13 Experimental Architecture of FEDORA with AutoML-DSGE 55
4.14 AutoML-DSGE grammar modifications 56
4.15 AutoML-DSGE Experiment Testing Results 57
4.16 AutoML-DSGE Machine Learning Pipelines 58
4.17 Pipeline Components . 59

A.1 Hyper-parameter Search for rf-200-100 70
A.2 Hyper-parameter Search for xgb-200-100 71
A.3 Hyper-parameter Search for dt-200-100 72
A.4 Hyper-parameter Search for dt-1000-50 73
A.5 Hyper-parameter Search for mlp-100-50 74

xviii

List of Tables

2.1 Data set . 17

4.1 FEDORA Experimental Settings . 31
4.2 Kruskal-Wallis Test Results . 42
4.3 Dunn’s test effect sizes - rf-200-100 43
4.4 Dunn’s test effect sizes - xgb-200-100 43
4.5 Dunn’s test effect sizes - dt-200-100 43
4.6 Dunn’s test effect sizes - dt-1000-50 43
4.7 Dunn’s test effect sizes - mlp-100-50 43
4.8 Dunn’s test effect sizes - dt-1000-50-bool 48
4.9 Dunn’s test effect sizes - xgb-200-100-low10 50
4.10 Dunn’s test effect sizes - xgb-200-100-penalty 53
4.11 AutoML with FEDORA Experimental Settings 56

xix

List of Algorithms

1 Genetic Algorithm . 7
2 FEDORA Instantiation in Python 3 25

xxi

Chapter 1

Introduction

Over the years, large amounts of information have been produced and stored. We
need methods to automatically extract knowledge to make good use of this data.
Artificial Intelligence (AI), namely Machine Learning (ML), provides a pathway
to this end by offering a wide range of methods that look forward to harnessing
the knowledge in the data.

In particular, the medical field has generated a vast amount of information that
is becoming ever more useful as the personalized medicine field is evolving, tai-
loring medical solutions to a specific set of patients. Currently, multi-disciplinary
teams composed of medical staff, data scientists and engineers are working to-
gether to better understand medical problems by studying them from different
perspectives, with different backgrounds. This problem-solving paradigm en-
ables the discovery of creative and interdisciplinary solutions.

Audiology is the medical branch that studies hearing, balance and respective dis-
orders. In February 2023, the World Health Organization (WHO) stated that over
5% of the world’s population (430 million people) requires rehabilitation to ad-
dress Hearing Loss (HL) [WHO - Hearing Loss]. The same report states that by
2050 nearly 2.5 billion people will suffer from HL to some degree, with 1 out of 10
people having disabling HL. Therefore, hearing health is of utter importance to
society, since HL can negatively impact every person, leading to social interaction
deficits, which can by itself jeopardize a person’s professional and personal life.

To minimize the problems associated with HL, specialized technicians can con-
duct hearing screenings to assess the hearing health of people. During these
procedures, several pieces of information regarding the patient are collected and
stored in a database. Later, one can use this information to create ML models to
help guide the screening towards people at risk.

A well-known ML model performance improvement technique is Feature Engi-
neering (FE). This process selects and enhances the original data in a manner
that ML models can use to achieve better results, especially those that cannot
create a complex internal representation of the given data. Many methods are
traditionally used for this task, such as Principal Component Analysis (PCA) or
even manual selection by humans. Evolutionary FE methods also show them-

1

Chapter 1

selves as successful, with Genetic Programming (GP) based methods being the
most used [Ahmed et al., 2014; Tran et al., 2016a,b; Zhang et al., 2022]. FERMAT
[Monteiro et al., 2021], the first Structured Grammatical Evolution (SGE) based
FE framework enables the selection and construction of novel features through a
Grammar-Based GP engine, given a supervised dataset for a regression task.

This work proposes FEDORA, an Automated Machine Learning (AutoML) frame-
work for FE based on FERMAT, where the ML model used to evaluate the qual-
ity of the features being constructed can be specified by the user. The proposed
framework can address classification or regression tasks.

The problem that this work addresses is HL detection, by predicting (classify-
ing) if a person has HL based on contextual features, using ML models. The su-
pervised dataset used for the experiment is built from audiology data provided
by an audiology company and public HL related data, such as medical and de-
mographic information. The label is a binary variable, classifying each entry as
having or not having HL.

An experimental study will be conducted to assess the viability of the proposed
framework for the above-mentioned problem, in multiple contexts. The study
consists of running the framework with different parameters and proxy models,
for a total of 5 experiments. The results will be analysed with regards to perfor-
mance, Feature Construction (FC) and Feature Selection (FS), and compared with
the baseline and other common FE methods. Also, three evolution biasing meth-
ods are tested, to address some of the behaviours of the proposed framework.
Lastly, FEDORA was added as a pre-processor of the AutoML-DSGE framework
[Assunção et al., 2020], which is capable of addressing the Combined Algorithm
Selection and Hyperparameter optimization problem (CASH), to understand if
their transformations can match the performance of common pre-processors.

1.1 Objectives

This work has 2 objectives. The first one aims to automate the first steps of the ML
pipeline (Figure 1.1) by studying FE techniques, namely FS and FC. This objec-
tive is fulfilled with the study and development of FEDORA, an Evolutionary FE
framework. The goal of the framework is to boost the performance of the models
for the given HL detection problem. This is achieved through the selection and
construction of novel enhanced features from the original dataset. The level of
satisfaction of this objective defines the success criteria of this work and hence
will be the primary focus.

The second objective is related to the model selection and corresponding hyper-
parameter optimization steps in the ML pipeline. This objective is fulfilled by
completing the full pipeline with a method that can properly address the CASH
and by studying the impact that the FEDORA transformations have in these
steps, which aim to maximize classification performance. The method selected
to address them is the AutoML-DSGE framework [Assunção et al., 2020], which
can select and tune the models of a full ML pipeline.

2

Introduction

Figure 1.1: Objectives

1.2 Contributions

This work provides multiple contributions. Regarding the problem, this work
is focused on detecting HL through the use of only personal, medical and de-
mographic factors that contextualize each person in their corresponding environ-
ment, instead of using an audiology screening or similar test, as most works do.

Concerning the approach, the development of an AutoML Evolutionary FE frame-
work contributes to the development of the Evolutionary Computation (EC) and
AutoML fields, with regards to FE. Also, the framework is compared with com-
mon FE techniques, which allows pragmatic contextualising of the results ob-
tained through this alternative method.

Results show that FEDORA can engineer new features that can improve the per-
formance of the chosen model, with some degree of interpretability. Most of the
framework’s results are statistically better than commonly used FE techniques,
such as PCA, Uniform Manifold Approximation and Projection (UMAP), Self-
Organizing Maps (SOMs) and Autoencoders (AEs). Results also point to the
choice of the proxy as a decisive factor in the behaviour of the framework, whether
in terms of performance or FE.

The framework’s best result obtained is 76.2% balanced accuracy using an indi-
vidual from an Extreme Gradient Boosting (XGB) proxy experiment, with also
XGB as the testing model, using 9 total features (5 Original, 2 Engineered and 2
Complex) out of the 60 original ones. When using the least amount of features,
the best result is 72,8% balanced accuracy using an individual from a Decision
Tree (DT) proxy experiment and a Random Forest (RF) algorithm as the testing
model, using 1 single complex feature.

1.3 Organization

Chapter 2 describes the EC and AutoML concepts and methods that this work
addresses, as well as the related work. Chapter 3 describes FEDORA, the pro-
posed FE framework. Chapter 4 reports the results of the proposed framework
regarding both objectives. Chapter 5 presents the conclusion of this document
and points to future work.

3

Chapter 2

Background

This work aims to solve a Hearing Loss (HL) detection problem through an evolu-
tionary Feature Engineering (FE) framework. Therefore, concepts and methods
from Evolutionary Computation (EC) and Automated Machine Learning (Au-
toML) are required. This chapter overviews both fields and provides related work
on this work’s problem and approach.

Section 2.1 gives an overview of EC, namely Evolutionary Algorithms (EAs),
Genetic Algorithms (GAs), Genetic Programming (GP), Grammatical Evolution
(GE) and Structured Grammatical Evolution (SGE). AutoML is described in sec-
tion 2.2, providing background in Hyper-parameter Optimisation (HPO), FE and
Machine Learning (ML) Pipeline Optimization. At last, section 2.3 describes the
progress of ML in HL detection and the state-of-the-art of evolutionary FE ap-
proaches.

2.1 Evolutionary Computation

EC is a field of Artificial Intelligence (AI) that draws inspiration from Nature.
It comprises many optimization algorithms, drawing inspiration from Physics,
Darwin’s theory of evolution [Darwin, 1859] and Swarm Intelligence, as classified
in [Zhang, 2020].

This field addresses the development of meta-heuristic algorithms that do not re-
quire much computational effort to reach near-optimal solutions when compared
to precisely calculating the global optimum. [Eiben and Smith, 2015]

Evolutionary
Computation

Physics Inspired

Darwin’s Theory of Evolution Inspired

Swarm Intelligence Inspired

Figure 2.1: Evolutionary Computation Tree. Adapted from [Zhang, 2020]

5

Chapter 2

Figure 2.2: Evolutionary Algorithm Cycle. Adapted from [Brabazon et al., 2015]

2.1.1 Evolutionary Algorithms

EAs are a sub-field of EC. An EA is a population-based meta-heuristic, guided by
an objective (fitness) function. It is inspired by Darwin’s theory of evolution by
natural selection - survival of the fittest - and by modern genetics.

In biological terms, EAs utilizes an initial population (set of candidate solutions)
that will be modified throughout several iterations. The population will evolve
through a given fitness-defined environment as it will be subject to evolution
mechanisms, such as selection, variation operators and retention of fit forms
[Brabazon et al., 2015], as shown in Figure 2.2.

2.1.2 Genetic Algorithms

GAs are a sub-field of EAs. The GAs contain a genotype-to-phenotype mapping
concept, where each individual is evaluated and selected at the phenotypic level
while being modified via recombination and mutation at the genetic level. This
distinction aims to better simulate Nature’s evolution knowledge by incorporat-
ing modern genetic discoveries. In modelling terms, it also allows for generic
genotypic representations and operators, since the mapping and the fitness func-
tion are the only problem-dependent components. Also, the search space is dif-
ferent from the solution space. Algorithm 1 details a GA.

Resembling other EAs, GAs start by initializing a population, in a stochastic man-
ner. This population will be iterated for many generations. In each generation,
each individual in the population is evaluated by the fitness function, at the phe-
notypic level. Next, some will be selected to produce new solutions by a selection
operator, such as tournament or roulette wheel. This selection process is stochas-
tic but fitness-biased since the fittest individuals are more likely to be selected.
Then, the chosen individuals reproduce, i.e. generate new solutions, through ge-

6

Background

Algorithm 1 Genetic Algorithm

1: procedure GENETICALGORITHM(Ngenerations, Spopulation, Pcrossover, Pmutation)
2: population← initialize_population(Spopulation)
3: population← evaluate(population)
4: for i← 1 to Ngenerations do
5: parents← select_parents(population)
6: offspring← crossover(parents, Pcrossover)
7: offspring←mutation(offspring, Pmutation)
8: offspring← evaluate(offspring)
9: population← survive(population, offspring)

10: end for
11: return best(population)
12: end procedure

1

' 1

Figure 2.3: Binary Genetic Flip Mutation

netic crossover and mutation operators, producing offspring. Together, the pop-
ulation and the offspring will face a replacement operator that will define which
individuals will pass on to the next generation. This operator is usually age-based
or fitness-based [Eiben and Smith, 2015]. Figures 2.3 and 2.4 give an example of
a mutation and crossover operator, for a binary string representation.

1

1

Figure 2.4: Binary Genetic One-point Crossover

The genotype usually consists of a binary string or an array of floats. The crossover
and mutation are dependent on the genotype representation. The phenotype con-
sists of a candidate solution for the given problem. Figure 2.5 illustrates the geno-

7

Chapter 2

Figure 2.5: Genetic vs Phenotypic Spaces

type and phenotype differences, related to the search and solution space, with an
example where two binary genes (G1, G2) map into two phenotypic characteris-
tics (P1, P2) through the mapping function M.

2.1.3 Genetic Programming

GP [Koza, 1993] is another variant of EAs. The evolution paradigm in GP does
not focus on evolving solutions but on evolving executable programs that can
find a solution for the problem. Typically, the representation used for this type of
EA is an Abstract Syntax Tree (AST), but there are alternatives. In GP the leaves
of the AST are Terminals, given by the terminal set T, which comprises variables
and constants. On the other hand, the nodes are functions, from the function set
F, that must have the property of closure, i.e., must guarantee type consistency
and evaluation safety [Poli et al., 2008]. Figure 2.6 illustrates a simple AST repre-
sentation with T = {X1, X2, X3, 0.5, 1} and F = {min, max, cos, sen,+,−}
As the representation is given by an AST, specific initialization procedures are
required. The grow and the full methods are the earliest ones described. Both of
them require the definition of a maximum depth parameter for the AST. In the
full method, the nodes are chosen from the function set F, until the maximum
depth - 1 is reached in every branch. From that point forward, only terminal
symbols can be chosen to complete the individual. This method guarantees that
every individual will be a complete tree, up to the defined depth. On the other
hand, the grow method randomly selects a terminal or a function as it generates
the AST. When a branch reaches maximum depth - 1, only a terminal can be

8

Background

Figure 2.6: Abstract Syntax Tree representing max(X1 − 0.5, cos(X2))

+

Figure 2.7: Full method

selected onward for that branch. This procedure diversifies the trees as they can
be as short as a single terminal or as deep as the maximum depth parameter [Poli
et al., 2008], [Brabazon et al., 2015].

Assuming that the AST root is at depth 0, the maximum depth is 3 and the ter-
minal and function sets are the ones given above, an example of the full and the
grow method are represented in Figures 2.7 and 2.8.

Ramping is also a technique used to increase the population’s diversity. It consists
of varying the maximum depth parameter on any given initialization method.
Ramped-half-and-half is another initialization method, and the most commonly
used [Eiben and Smith, 2015], which utilizes the ramping technique with both full
and grow methods, each one initializing half of the individuals in the population.
This strategy ensures diversity in terms of structure and content. [Brabazon et al.,
2015]

As initialization, variation operators are also GP-specific. Figures 2.9 and 2.10
depict a sub-tree crossover and a sub-tree mutation, respectively.

One subject of intense study over the years is a phenomenon labelled as bloat

9

Chapter 2

Figure 2.8: Grow method

Figure 2.9: Sub-tree Crossover

10

Background

Figure 2.10: Sub-tree Mutation

[Poli et al., 2008]. Bloat happens when the average number of nodes in a popula-
tion starts growing at a very fast pace, while not being accompanied by a corre-
sponding fitness increase. As programs grow in size, more resources are needed
to face up to the complex requirements. As such, these individuals become more
computationally expensive to evolve and evaluate. There are several methods
proposed to counteract bloat, but the most widely accepted is parsimony pres-
sure, which introduces a term in the fitness function that decreases the fitness of
larger individuals. [Eiben and Smith, 2015]

2.1.4 Grammatical Evolution

GE [O’Neill and Ryan, 2001] is a GP variant. Unlike standard GP, GE separates
the genotype, a linear string of integers, from the phenotype, an executable pro-
gram defined by an AST structure. As a Grammar-Based Genetic Programming
(GBGP) approach, GE relies on a Context-Free Grammar (CFG) to define the
genotype-to-phenotype mapping rules. A grammar can be defined by the tuple
G = (T, N, S, P) where T is the set of Terminals, N is the set of Non-Terminals,
S ∈ N acts as the start symbol, or axiom, and P is the set of production rules
such that α −→ β, where α ∈ N and β ∈ (T ∪ N)*. The language L defined by
this grammar G is given by L(G) = {w : S ∗−→ w, w ∈ T*}, which defines every
possible word w that the grammar can produce, i.e. which programs can be struc-
tured by the algorithm. Therefore, GE addresses the closure requirement of GP
by constraining how the programs are built through a CFG. Figure 2.11 illustrates
a CFG in the Backus-Naur Form (BNF).

The mapping is performed by repeatedly getting an integer i from the linear
genome (in the case of a binary string, 8 bits are used to generate a corresponding
integer value). Each integer value is then used to select which production rule
will be chosen from the grammar, by a modulo operation such as:

i MOD Nrules

The mapping ends when a word w ∈ L(G) is built. If it runs out of integers
in the genotype, it wraps around to the beginning of the genome. This method

11

Chapter 2

 =

 =

 =

 =

Figure 2.11: Example of a Backus-Naur Form Grammar. Adapted from [Monteiro
et al., 2021]

is known as wrapping. Figure 2.12 provides a simple mapping example for the
grammar depicted in Figure 2.11, for N f eatures = 4.

As in GAs, the separation of the genotype from the phenotype allows for generic
genotypic representations and operators. Also, the initialization of GE is directly
linked with the genetic representation. Instead of a simple random initialization,
GE should be initialized by a method that properly ensures diversity. An alterna-
tive method could be sensible initialization, which uses the ramped-half-and-half
approach of standard GP and applies it to GE. [Ryan et al., 2018]

In terms of performance, GE was compared to GP in a set of problems, outper-
forming GP in 2 out of 3. [O’Neill and Ryan, 2001]

As for drawbacks, GE has known redundancy and low locality issues [Rothlauf
and Oetzel, 2006], [Lourenço et al., 2016]. Two genetically different individu-
als are labelled as redundant if they map into the same phenotype. This phe-
nomenon can be witnessed in Figure 2.5. Although being a known Nature mech-
anism to ensure robustness, given that it neutralizes some mutations, too much
redundancy in the population has practical consequences, since it slows down
evolution processes and therefore declines the algorithm’s efficiency. An indi-
vidual has a low locality if a small genetic variation does not relate to a small
phenotypic one. This is the most concerning problem since if it is not addressed,
GE’s performance will come near random search performance.

12

Background

Figure 2.12: Grammatical Evolution Mapping Process

2.1.5 Structured Grammatical Evolution

SGE proposed in [Lourenço et al., 2015] and later enhanced [Lourenço et al., 2018],
is a GE variant that addresses the redundancy and low locality issues of GE. With
a novel representation, where each gene is bound to a specific non-terminal of the
grammar, with a list of integers assigned to each non-terminal, SGE ensures that
a genetic modification does not affect the derivation path of other non-terminals,
thereby narrowing the number of phenotypic changes that could have occurred
otherwise. Formerly, the size of each list is given by computing the maximum
number of possible expansions for each non-terminal. The maximum number
of derivation choices for the associated non-terminal sets a limit on each gene’s
value. As an example, for a simple grammar (adapted from [Lourenço et al.,
2015]):

< start > ::=< char > | < char >< char >< char >
< char > ::= a|b|c

The set of non-terminals N is {< start >,< char >}, hence the genotype com-
prises two lists, each one linked to a non-terminal symbol. The maximum number
of possible expansions for <start> is one since it appears only as the axiom. On
the other hand, three is the value for the <char> non-terminal, since there is a
derivation path where this symbol appears three times. Therefore, the list linked
to <start> is one gene long, while the <char> list has a length of three. Finally, the
<start> symbol has two derivation alternatives, while the <char> has three. This
implies that the corresponding lists’ genes will take values from zero to two and
from zero to three. A SGE genotype example is provided in Figure 2.13.

The genotype-to-phenotype mapping of Figure 2.13 is illustrated in Figure 2.14.

13

Chapter 2

Figure 2.13: Structured Grammatical Evolution genotype example

Figure 2.14: Structured Grammatical Evolution mapping

Concerning variation operators, SGE mutates the individuals by randomly re-
placing some non-terminal gene with a new integer. Crossover is performed us-
ing a binary mask with a length equal to the number of non-terminal symbols.
Figure 2.15 depicts the crossover process.

Figure 2.15: Structured Grammatical Evolution crossover

A problem arises when the grammars have recursive production rules, such as
in the grammar of Figure 2.11, which was previously solved by defining a maxi-
mum recursion depth and pre-processing the grammar to remove the recursion.
The current version of SGE [Lourenço et al., 2018] deals with this problem by
generating the required genes on the fly, only requiring the definition of the max-
imum tree depth. This implies that the lists now have a dynamic size rather than
a fixed one. It constrains the size of the trees by only allowing non-recursive
derivation rules to be chosen for expanding the current non-terminal, once the
trees reach the depth limit.

Performance-wise, SGE has reportedly outperformed GE [Lourenço et al., 2016]
[Lourenço et al., 2017], as it can effectively reduce high redundancy levels and
address low locality issues of it.

2.2 Automated Machine Learning

AutoML is a field of ML that aims to provide hands-free solutions by completely
removing humans from the ML pipeline. This enables ML to be accessible to non-

14

Background

Figure 2.16: A Simple Machine Learning Pipeline. Adapted from [Assunção et al.,
2020]

experts and to systematise its practice, which usually is an ad hoc process. Cur-
rent AutoML methods can outperform human ML experts in some tasks [Hutter
et al., 2019]. AutoML research revolve around the traditional ML Pipeline. The
main ones can be summarized (Figure 2.16) as Data Collection, Data Clean-up,
FE, Model Selection and Hyper-parameter optimization.

Besides the combinatorial complexity related to the problems, algorithms and
parameters in this field to automatically extract some data-driven knowledge,
explainability in AutoML also presents itself as a challenge. Explainability refers
to how the AutoML method’s choices relate to its results. It is essential because,
by explaining the models, a human may be able to comprehend the fundamental
decision criteria, advancing human knowledge discovery.

2.2.1 Hyper-parameter Optimization

HPO is one of the earliest and most basic, yet complex, tasks in AutoML. It aims
to tune the parameters of a given method to its increase performance. Regarding
the HPO methods, grid and random search are the most basic model-free black-
box optimization methods. They rely on a grid and stochastic sampling of the
search space, respectively. Other methods, such as Bayesian optimization and EC
related, have also been applied successfully to HPO problem instances [Feurer
and Hutter, 2019]. Figure 2.17 illustrates grid and random search approaches in
a bi-dimensional search space.

Figure 2.17: Grid Search vs Random Search

15

Chapter 2

2.2.2 Feature Engineering

Feature Engineering (FE) is a step in the ML pipeline, as well as an AutoML topic
of interest for this work, where a pre-processed data set undergoes selection and
transformation processes. FE can be sub-divided into two fields: Feature Selec-
tion (FS) and/or Feature Construction (FC).

Both FS and FC can be divided into three categories: filter, wrapper and embed-
ded methods [Cherrier et al., 2019]. Filter methods are model-free ranking meth-
ods, as they do not require a model to rank the features by relevance. Wrappers
assess a model’s performance to evaluate which set of features is relevant to the
problem at hand. Due to the use of heavier techniques, wrapper methods usu-
ally outperform filter methods, although being much slower. At Last, embedded
methods combine both virtues of filter and wrapper methods, as they perform FE
while training the model.

The intent of FS is to reduce the dimensionality of the data set to remove redun-
dant or misleading data that can negatively affect the models’ performance. From
a practical standpoint, it also reduces the training time, as less data is required.
The resulting data set is a subset of the original one.

The goal of FC is to build novel features from the original data set D, building a
new data set D’. The main goal of the newly generated features is to enhance the
models’ performance, namely those that suffer from a lack of complex internal
representation of the data. Figures 2.18a and 2.18b show how a cosine transfor-
mation of one original feature distinguishes between both classes in the resulting
data set. The data set is provided in table 2.1.

2.2.3 Machine Learning Pipeline Optimization

Machine Learning Pipeline Optimization is a research branch of AutoML that
aims to automatically choose the best-performing algorithms (pre-processing,
predictors) and the corresponding hyper-parameters for a given problem. The
simplest form comprises selecting, training and testing a small range of predictors
and picking the best one. However, this method becomes too expensive as more
algorithms are added to the search space and when the hyper-parameter search
space becomes too large. As such, more intelligent search methods are needed.
Auto-WEKA [Kotthoff et al., 2019] addresses the Combined Algorithm Selection
and Hyperparameter optimization problem (CASH), also known as Full Model
Selection (FMS), by a Bayesian optimization technique. Auto-sklearn is another
Bayesian optimization-based method [Feurer et al., 2019]. As for EC approaches,
TPOT is a GP pipeline optimization technique [Olson and Moore, 2019]. Another
EC example is AutoML-DSGE [Assunção et al., 2020], which also addresses this
problem, this time through the use of SGE as the search engine.

16

Background

Table 2.1: Data set

Class X1 X2 cos(X2)
A 0 0 1
B π π -1
A 2π 2π 1
B 3π 3π -1
A 4π 4π 1
B 5π 5π -1
A 6π 6π 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
X1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

X
2

Class A

Class B

(a) Original data set (X1, X2)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
X1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

co
s(
X

2
)

Class A

Class B

(b) Transformed data set (X1, cos(X2))

Figure 2.18: Feature Construction Example

17

Chapter 2

2.3 Related Work

For this work, there are two main topics worth covering in terms of related work:
Advances in ML for HL detection and FE related tasks using EC.

2.3.1 Machine Learning in Hearing Loss Detection

In Miranda [2022] an overview of the current status of ML in HL detection is
made. In terms of features, attributes such as age, gender, demographics, med-
ical data and duration and intensity of noise exposure are the most insightful in
the performed experiments. These attributes are also pointed out by the World
Health Organization (WHO) as relevant HL causes. Images, such as magnetic
resonance scans and otoscopy images [Byun et al., 2022], have also been used
with Deep Learning to address HL detection.

From regular ML algorithms, such as K-Nearest Neighbors, Support Vector Ma-
chines and ensemble methods, applied to standard ML datasets to Convolutional
Neural Networks (CNNs) applied to magnetic resonance scans, HL detection has
been tried in many ways, successfully performing well above simple random
classification. Performance metrics are hard to compare as the datasets and the
metrics differ between works.

Despite the progress made in this research area, its focus has not been on detect-
ing HL through the use of only personal, medical and demographic factors that
contextualize each person in their corresponding environment. Instead, the focus
of the above-mentioned studies is set on actively detecting HL, through the use
of ML models that act upon audiology screening or similar tests. Often, HL de-
tection studies address particular types or causes of HL, such as sensorineural or
noise-induced, respectively, or places where people are prone to losing hearing,
such as industrial environments [Tomiazzi et al., 2019].

2.3.2 Evolutionary Feature Engineering

Evolutionary FE has been a research topic over the years. Most works rely on GP-
based methods to engineer novel features using different approaches in terms of
representation such as single-tree or multiple-tree [Zhang et al., 2022].

In single-tree representation, each individual is represented by an AST where
the leaves are the original features, while the nodes act as the transformation
functions. This type of representation allows for single or multiple generated
features, as the AST’s sub-branches may be engineered features themselves. A
random subset of the generated features set is chosen for the transformation, as
shown in Figure 2.19.

Ahmed et al. [2014] use a single-tree representation to evolve multiple features. It
generates engineered features from the ASTs’ root and sub-trees and selects them
based on a method to measure discriminating information between the classes,

18

Background

(a) Abstract Syntax Tree (b) Possible subtree features

Figure 2.19: Single-tree feature engineering example

namely a fitness function based on the Fisher criterion and the one-way analysis
of variance p-value.

In Tran et al. [2016a] each individual of the proposed method also has a single-
tree representation. The novel features are generated by six different criteria: The
first one uses the root of the tree to construct a feature. The second incorporates
the first and adds the first n features, where n is given by the number of leaves
(selected features). The third is the set of leaves (selected features). The fourth
is a union of the first and the third. The fifth is given by every possible sub-tree,
as well as the root. Finally, the sixth is a union of the third and fifth criteria.
Evolution is guided by the average balanced accuracy metric of a classification
made by the individual itself. Also mentioned in the above work, another way
to generate engineered features may rely on using a specific function from which
the resulting sub-tree is selected as an engineered feature.

On the other hand, in a multi-tree representation, each individual is represented
as a list of ASTs. This design option allows for more FE choices but it has a
computational cost trade-off. Figure 2.20 gives a feature engineering example
of a multi-tree representation. It considers using each whole AST as a feature.
From the 2 available trees, it selects a random subset of them to generate the
transformation. In the given example, it selects both.

In MultGPFC [Tran et al., 2016b], each GP individual is encoded as a list of ASTs.
Each constructed feature is related to one of those trees using the root node. To
engineer m features, an individual representation must contain m trees. Then, by
combining a filter and a wrapper FE method, the fitness function components are
defined by the Czekanowski distance metric, as the filter, and the performance of
a Decision Tree (DT), as the wrapper.

In Cherrier et al. [2019] work, both GP representations are presented. For an
individual to engineer m features, its representation will be of m trees. This work
also presents relevant explainability design choices, such as type-based grammar,
ensuring dimensional consistency and a probabilistic transition matrix, which
biases the choices on the grammar, introducing domain knowledge.

19

Chapter 2

Figure 2.20: Multi-tree feature engineering example

The work of Zhang et al. [2022] uses a multi-tree representation for a regression
problem, where each AST root represents an engineered feature. As such, each
individual implicitly represents a set of engineered features. Each individual is
evaluated by a 5-fold cross-validation scheme using a DT model. The resulting
decision trees are oblique, i.e. they divide the original space by oblique hyper-
planes since they are trained using the engineered features. The evaluation score
is given by a fitness vector, using the absolute error metric for each train data
entry. The selection is made by the lexicase selection operator. The best GP indi-
viduals are stored in an archive of a predetermined size. Once it reaches that size,
the worst are replaced by ones that outperform them. At the end of the evolution,
GP individuals are used to build DT models. The combination of these models
forms the regression forest.

Some works use GE as the search algorithm. The work of Gavrilis et al. [2008]
provides a GE-based wrapper FE framework where the evolution is guided by
accuracy or negative mean squared error metrics, for classification and regression
tasks, respectively. Each GE individual corresponds to k features. The genotype-
to-phenotype mapping is done by splitting the genotype into k equal components
and mapping each component into a function for a novel feature through the
given grammar. Thereby, the phenotype is a function of the transformed data
set.Tsoulos et al. [2022] applies a similar framework to predict COVID-19 mortal-
ity, this time with a Radial Basis Function acting as the wrapper’s model. There
is a second stage, where the best individual is applied to the data set, obtaining
the transformed data set. Then a neural network is evolved by a GA using that
data set.

Lastly, SGE has also been used to FE. FERMAT [Monteiro et al., 2021] is a wrapper
FE framework that uses SGE as the search algorithm to engineer an enhanced
data set, aiming to improve the performance of the test models. Each individual
consists of a set of feature transformations. The population is evaluated by a DT
that acts as a proxy for a Random Forest (RF), the testing model. FERMAT has

20

Background

shown being able to create insightful novel features and at the same time perform
FS, for 2 regression problems.

21

Chapter 3

The FEDORA Framework

FEDORA is a wrapper Feature Engineering (FE) framework based on FERMAT,
where the Machine Learning (ML) model used to evaluate the quality of the fea-
tures being constructed, i.e. the proxy model, can be specified by the user. Each
phenotype of an individual consists of a set of selected or constructed features,
i.e. a transformation of the original dataset.

Figure 3.1: The FEDORA framework

The FEDORA framework is described in Figure 3.1. The first step (Data Splitting)
consists of randomly splitting the original dataset into training, validation and
test subsets. This split is made once in each run and is not modified throughout
it.

The training and validation sets are passed to the second step, the Evolutionary

23

Chapter 3

Feature Engineering step. In this step, Structured Grammatical Evolution (SGE)
searches for the best individual’s phenotype, i.e. the transformation that makes
the proxy model provide the best validation performance, based on any selected
metric. The search space is defined by the user through a problem-specific gram-
mar that details which individuals the SGE algorithm can generate. Every trans-
formation (individual) is applied to the training and validation sets, resulting
in engineered training and validation sets. The proxy model fits the engineered
training set and predicts the labels of the engineered validation set. These pre-
dictions are used to calculate the validation set error, based on any given error
metric. The quality of each individual is given by this error value, which means
that the individuals with the lowest validation error are the ones who have bet-
ter (lower) fitness and are more likely to survive and pass their genes to the next
generation. This process is repeated for the defined number of generations in the
SGE parameters. At the end of this step, the individual that achieved the lowest
validation error is passed to the third and last step, the testing step.

In the testing step, the transformation of the best individual is given as input to
the test set evaluation method, alongside the training, validation and test subsets.
Any method capable of performing the test set evaluation, given the mentioned
inputs may be applied here. The simplest one is to apply the transformation to
the whole dataset, resulting in engineered training, validation and test sets. The
engineered training and validation sets are then used to fit a ML model, while the
engineered test set is used to assess its generalization capability to unseen data.
This step is not directly related to FE but it is needed to complete the ML pipeline.

3.1 Implementation Details

Although having outstanding results in regression problems [Monteiro et al.,
2021], the FERMAT framework was not properly implemented to withstand pa-
rameterisation for classification problems, nor was its configuration simple and
modular. As such, FERMAT does not have an Open-Source instance.

Since FEDORA is based on FERMAT, the first effort made to build towards the
FE framework that this work proposes, was an adequate implementation of FER-
MAT and corresponding validation on the same problems. The architecture is
similar to the original, although having some slight modifications. First, numeri-
cal attributes are bounded to a 32-bit float range, as some of Scikit-Learn’s compo-
nents were designed to work with this format. Hence, values below or above this
range are capped at the corresponding boundary. Not a Number (NaN) values,
obtained from some operator result, are mapped to 1. This assures that every in-
dividual is valid in the evaluation step, and there is no need to purge the invalid
ones, by assigning them the worst possible fitness value. Also, the given run
seed is applied to every component of the framework, such as the data splitting
function, SGE and to the random state hyper-parameter of Scikit-Learn models.

The obtained results were consistent with the ones described in the FERMAT
paper. Therefore, an experimental study was conducted to check the viability
of the FEDORA framework, by allowing the user to specify different proxy and

24

The FEDORA Framework

testing models, on a classification problem. This study is conducted in Chapter
4. To allow for the use of scale-dependent proxy models, the fitness evaluation of
an individual starts by standardizing the transformed dataset.

Figure 3.2: FEDORA Implementation Details

The current version of the FEDORA framework is illustrated in Figure 3.2. It
takes as input the original dataset, the number of runs and corresponding seeds,
SGE parameters (where the grammar path is included), the fitness error metric,
the proxy model and an optional fitness penalty function that receives as argu-
ment the fitted proxy model. As output for each run, the framework gives out
two JSON files, one containing the phenotype of the individual with the best val-
idation score, while the other gives the SGE parameters, for logging purposes.
The SGE progress report file is also provided, which includes the best, the mean
and the standard deviation fitness of the population, and other generational at-
tributes. The Python 3 code to run the framework is presented in Algorithm 2.

Algorithm 2 FEDORA Instantiation in Python 3

1: configs = {
2: "proxy_model": DecisionTreeClassifier(),
3: "error_metric": ErrorMetric.balanced_accuracy,
4: "sge_configs": SGEConfigs.audiology,
5: "seeds": range(30),
6: "data": Data.audiology(),
7: }
8: fedora = Fedora(**configs).run(runs=30, name="experiment_name")

25

Chapter 4

Experimental Study

An experimental study was performed to compare the proposed framework in
multiple contexts to address both objectives of this work. Firstly, Section 4.1 de-
scribes the problem and the full process to obtain the data needed to address
it. Concerning the first objective, i.e. automating the first steps of the Machine
Learning (ML) pipeline by studying Feature Engineering (FE) techniques, the FE-
DORA framework was compared with common FE methods, such as Principal
Component Analysis (PCA), Uniform Manifold Approximation and Projection
(UMAP), Self-Organizing Maps (SOMs) and Autoencoders (AEs), with regards
to performance and FE, in Section 4.2. Evolution biasing ideas were also tested in
this section. Regarding the second objective, to complete the full ML pipeline, the
AutoML-DSGE framework was used to address the Combined Algorithm Selec-
tion and Hyperparameter optimization problem (CASH) in section 4.3. FEDORA
was added as a possible pre-processor to understand if the transformations can
match the performance of common pre-processors.

4.1 Hearing Loss Detection Dataset

The problem that this work addresses is Hearing Loss (HL) detection using con-
textual attributes. We will use an audiology dataset that was built using per-
sonal, demographic and medical data from Portugal. This data was collected
from an audiology company and trusted databases, namely PORDATA [POR-
DATA] and the Portuguese National Health System (SNS) open-data initiative
[SNS - Portal da Transparência]. The final dataset comprises 60 features and 25398
entries. The label is a binary variable, classifying each entry as having or not hav-
ing HL, based on an audiology screening, where people that have at least one ear
above the 40dB threshold were diagnosed with HL. Each sample is characterized
by 16 boolean variables and 44 real values. The dataset labels can be considered
balanced, due to 58% positive and 42% negative percentages.

The full process of building this dataset is documented in [Miranda, 2022]. In the
former work, Hybrid Tree Evolutionary Algorithm (HyTEA) was proposed and
this problem was addressed for the first time, using the above-described dataset,

27

Chapter 4

achieving an accuracy of approximately 73%. It is the only available reference of
this problem in the literature since the dataset is built from private sources and
thus cannot be disclosed publicly. This section summarizes the process of identi-
fying, obtaining, structuring and transforming the data to address this problem.

4.1.1 Data Collection

As in any supervised ML problem, the first step in the pipeline is data collection.
In our case, for the HL detection problem, an initial study was made to under-
stand which factors have an impact on HL in the scope of the Audiology for All
(A4A) research project. From it, medical, demographic and personal data was
highlighted as the more influential.

The following step consists in finding credible sources of data. As the data pro-
vided by the main stakeholder for the A4A research project was mostly from
Portuguese people, and corresponding hearing loss screenings, the search for
sources of data was therefore biased. [PORDATA], a certified Portuguese statis-
tics database, and [SNS - Portal da Transparência], a Portuguese National Health
System (SNS) open-data initiative, were hence selected as the sources for demo-
graphics and medical data, correspondingly.

Finally, the data needs to be properly stored and organized to be worked upon,
namely through a database. Data related to ageing, diabetes, blood pressure,
stroke fatality, ENT exams, education levels, wages, number and turnover of
companies were associated with a specific date and geographical location. A
Portuguese county (Concelho) was selected as the location granularity level. It
is through this location granularity that data from the mentioned public sources
and the main stakeholder are linked. This Extract, Transform and Load (ETL)
process results in the Entity-Relationship (ER) diagram depicted in Figure 4.1.

A total of 25398 screenings were stored in the database. Screenings data was col-
lected between January 2020 and June 2021. Each screening contains anonymized
data from the patient, such as the birth date and address, and from the screening-
related setup, such as the screening device, type of headphones and geographical
place where the screening took place. It also contains data from the screening
itself, such as the hearing level of both ears and the frequencies used.

4.1.2 Data Pre-Processing

The next step in the pipeline is Data Pre-processing. It consists of properly trans-
forming the structured data into a format which can be given to a ML algorithm.
This transformation process is fully detailed in [Miranda, 2022]. To link the pub-
lic data to the stakeholder’s data, the attributes of hypertension, diabetes, stroke
and ENT exams tables were decomposed into 7 features each: mean, standard
deviation, minimum, maximum and quartiles. This was made due to the mul-
tiple temporal measurements of each variable for the same place. This way, the
resulting features overcome this issue, since time is no longer a dimension. For

28

Experimental Study

Figure 4.1: Entity-Relationship Diagram

29

Chapter 4

schooling, age group, ageing and company tables, as the temporal measurements
were at maximum four by table attribute, a single value was selected from each
one. Company data was previously split by type of economic activity, hence each
type provided a value, from each corresponding temporal measurement avail-
able. Questionnaire features were transformed by One-Hot Encoding and Ordi-
nal Encoding methods. At last, missing values were replaced by the mean of the
corresponding features.

The supervised labels were defined by a threshold of 40 dB. People that have at
least one ear above the threshold were considered to have hearing loss. Hence,
the screening audiometry data was removed since it positively biased the models
to always correctly classify each data point, due to the definition of the label being
derived from them.

From this process, 204 features were obtained. 42% of the labels (10667 entries)
were defined as having HL. A study was then carried on to assess class discrim-
ination and redundancy issues of the features. Concerning class discrimination,
feature mean differences, of each class, were statistically tested by an indepen-
dent t-test at a 95% confidence level. Features that had no statistically significant
mean differences were therefore removed. Correlation metrics between the fea-
tures and the labels were also considered. Pearson, Kendall and Spearman corre-
lations were used and the most correlated features for each method were stored,
resulting in sixteen features always appearing in the top 50. Also, Analysis of
Variance (ANOVA) F-values were calculated and the features were sorted based
on these values. Regarding feature redundancy, features were grouped in conso-
nance with their original database table. A maximum correlation threshold be-
tween features of the same group was defined at 80%. Features that did not meet
this requirement were removed sequentially, as features with higher ANOVA’s
F-value were preferred not to be removed. Finally, the 16 features that always
appeared in the top 50 were added to the resulting data set in case of removal.
This process reduced the previous data set with 204 features into 60 features. This
is the data set that will be used throughout this work. As it happens, the data set
was already manually feature-engineered by the processes described above and
will be considered pre-processing steps for simplicity.

4.2 FEDORA for Feature Engineering

The first objective of this work is addressed by conducting an experimental study
concerning the viability of FEDORA. This section compares the proposed frame-
work with other common FE methods, namely PCA, UMAP, SOMs and AEs,
regarding performance, Feature Construction (FC) and Feature Selection (FS).
Three methods to bias the evolution process are also reported in this section.

30

Experimental Study

4.2.1 Experimental Settings

Concerning the experimental settings, Table 4.1 summarizes the selected parame-
ters of the framework for each one of the 5 experiments performed. Most settings
are alike, only diverging in the proxy model, population or generations. All the
models used the default Scikit-Learn package parameters, except for the Ran-
domForest where the n_estimators and max_depth parameters were defined to
5. The grammar used is also common in all experiments and is depicted in Figure
2.11. The axiom of the grammar can be expanded to a maximum of 60 < expr >
non-terminals, to not bias the evolution since the total number of features in the
original dataset is 60. The grammar defines the possible operations between orig-
inal features through the < op > non-terminal. Therefore, addition, subtraction,
multiplication and division are the only accepted operators, effectively creating
polynomial-like structures.

Table 4.1: FEDORA Experimental Settings

Name rf-200-100 xgb-200-100 dt-200-100 dt-1000-50 mlp-100-50
Proxy Model RandomForest XGB DecisionTree MLP
Population 200 1000 100
Generations 100 50
Runs 30
Elitism 10%
Crossover Rate 0.9
Mutation Rate 0.1
Min. Tree Depth 3
Max. Tree Depth 10
Selection Tournament (size 3)
Fitness 1 - Balanced Accuracy

For each experiment, 30 runs were performed due to the stochastic nature of the
framework. Each run uses a different seed to set the Structured Grammatical
Evolution (SGE) algorithm, the dataset split, the model’s random state and every
other random number generator seed. The original dataset was split into 40%
train, 40% validation and 20% test.

For each one of the 5 experiments, 30 individuals were selected, one for each run.
Every single individual, i.e. transformation, had the best validation score on their
respective run. Each one will be applied to the original dataset and tested with 4
different models. The testing models are the same as the defined proxies in Table
4.1, using the default Scikit-Learn package parameters. The results are compared
to their respective baseline, i.e. not applying any transformation to the original
dataset.

Other common FE methods, such as PCA, UMAP, SOMs and AEs, are also used
to validate the results of the FEDORA framework. These methods were cho-
sen due to belonging to different FE categories. PCA is the most popular linear
dimensionality reduction technique and UMAP is a novel non-linear manifold
dimension reduction method that has a much better time complexity than any
other manifold technique while maintaining state-of-the-art performance. SOMs

31

Chapter 4

and AEs are 2 different types of Artificial Neural Networks (ANNs) that can learn
efficient representations by reducing the dimensionality of the data. The AE ar-
chitecture is described in Figure 4.2. Its parameters are 50 neurons for the single
hidden layers, using linear activation functions, and mean squared error as the
error metric. It is trained using a batch size of 32, with 50 epochs and using
Stochastic Gradient Descend as the optimizer. The remainder of the methods
used their default package parameters. A grid search on the hyper-parameters of
the UMAP, SOMs and AEs methods was also performed in Appendix A, show-
ing that the selected parameters do not negatively bias the general performance
of the algorithm.

Figure 4.2: Autoencoder architecture

To make a fair comparison, each technique will use the same number of features
of the FEDORA individual. As an example, if the FEDORA individual used 15
features, the number of PCA and UMAP components would be set to 15, the 2D
SOM grid will have the dimensions of 15x1 and the code size of the AE will be
15. s.

The seed that generated its corresponding individual is once again used for all
the testing and comparison tasks mentioned above.

4.2.2 Main Results and Discussion

Regarding results and corresponding discussion, a detailed analysis is performed
for each one of the 5 experiments, regarding performance and FE. We will anal-
yse the fitness evolution of the individuals in the Evolutionary Algorithm (EA)
through the mean values of the 30 runs, for each experiment. In parallel, their
number of features is also presented. Such metrics allow us to overview the evo-
lution process, and to check for any relevant behaviours that must need to be
addressed. Concerning the best FEDORA individuals, we will analyse them by
counting the number of features that they use and classifying each feature into 1
of 3 categories: original, engineered or complex. This gives us insights from FC
and FS standpoints.

The FEDORA transformations will be compared to common FE methods, by mea-
suring the balanced accuracy given by ML classifiers, for every method. This

32

Experimental Study

comparison assesses the practical viability of the proposed framework. To com-
pare the performance results of the different experiments, we performed a statis-
tical analysis, to check for meaningful differences.

Using Random Forests as Proxy

Figure 4.3 presents a set of plots with the results of the rf-200-100 experiment,
from various points of view. Panel 4.3a shows how the mean of the populations
and the mean of the bests of the 30 runs evolves throughout the generations. As
the SGE algorithm considers the minimization of the fitness function, i.e. the
validation error given by 1 - balanced accuracy, both lines decrease over the gen-
erations. Looking at the plot, one can see that the best line can achieve a lower
error score than the population line, but both seem to stabilize at around the 20-
generation mark, having small improvements in the remaining generations.

In Panel 4.3b it is possible to observe 4 lines, where each one represents the mean
number of constructed or selected features by FEDORA for the overall population
(population), the best individual (best) and the individuals with the least (mini-
mum) and with the greatest (maximum) number of features. The plot shows that
the minimum and maximum lines tend to be around both limits of the number
of allowed features by the grammar. It also shows that the population and best
fitness lines tend to grow up together until the 50-feature mark, with the latter be-
ing slightly above the former. Note that it is likely that the population line starts
from the 30 features mark, due to the random uniform initialization of the SGE
population in the given grammar.

Panel 4.3c shows feature ratios from the best individual of each run. To produce
this chart, we assume that a feature produced by FEDORA is said to be original if
it is solely selected from the original dataset (e.g. feature1), engineered if a single
operator is merging 2 original features (e.g. feature1 + feature2), and complex if
2 or more operators are used (e.g. feature1 + feature2 - feature3). When interpret-
ing this Panel, one should also take into consideration Panel 4.3d, which gives
the total number of generated features by each best individual. This is relevant
since the ratios are normalized by the total number of features of each individual,
which implies that the sum of the 3 ratios is always equal to 1. Therefore, the
ratios are given by the equations below:

Roriginal =
NSelected
NTotal

Rengineered =
NEngineered

NTotal
Rcomplex =

Ncomplex

NTotal

Hence, Panel 4.3c shows that roughly 70% of all the features present in the in-
dividual are original ones, 15% are engineered and 15% are complex. This is an
interesting result that shows that FEDORA can select original features, since the
ratio of the original features is not null, and construct novel features, due to the
sum of the engineered and complex ratios not being null, for every best individ-
ual.

Looking at 4.3d, one can see the total number of features. It is possible to observe

33

Chapter 4

0 20 40 60 80 100
Generation

0.26

0.28

0.30

0.32

0.34

Fit
ne

ss

Fitness Plot (30 runs)
Best
Population

(a) Fitness Plot

0 20 40 60 80 100
Generation

0

10

20

30

40

50

60

FE
DO

RA
 Fe

at
ur

es

Feature Evolution (30 runs)

Minimum
Maximum
Population
Best

(b) Feature Evolution Plot

0.0 0.2 0.4 0.6 0.8 1.0
Ratio

0

5

10

15

20

25

Ru
n

Ratio of Features
Original
Engineered
Complex

(c) Feature Complexity Ratios

0 10 20 30 40 50 60
FEDORA Features

0

5

10

15

20

25

Ru
n

Number of Features

(d) Number of features

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.55

0.60

0.65

0.70

0.75

Ba
la

nc
ed

 A
cc

ur
ac

y

Comparison with other feature engineering techniques

Transformation
None
FEDORA
PCA

UMAP
SOM
Autoencoder

(e) Feature Engineering Methods Comparison

Figure 4.3: Experiment rf-200-100

34

Experimental Study

that the best individuals rarely used the maximum number of possible features,
i.e. 60. Nevertheless, most of them still seem to use a considerable amount of
features.

Regarding the comparison with the baseline and other common FE methods,
Panel 4.3e shows a collection of 24 boxplots related to the testing results. Each
boxplot contains 30 points, one for each seed. The value of each point corre-
sponds to the balanced accuracy of the respective testing model. Results show
that the FEDORA can maintain baseline performance, although using fewer fea-
tures. Concerning the other FE techniques, a clear general baseline performance
loss is observable. FEDORA can outperform them in every classifier. The best-
performing individual was obtained in run 19, with a 76.2% balanced accuracy
score, using the Extreme Gradient Boosting (XGB) classifier with 57 total features
(45 Original, 6 Engineered and 6 Complex).

Using Extreme Gradient Boosting as Proxy

Figure 4.4 summarizes the obtained results of the xgb-200-100 experiment. Simi-
larly to the rf-200-100 experiment, Panel 4.4a shows a clear effective minimization
of the error, this time achieving even lower error scores with both lines stabilizing
earlier, at the 10-generation mark.

The analysis made for the Panels 4.3b, 4.3c and 4.3d of the rf-200-100 experiment
is directly applicable to the Panels 4.4b, 4.4c and 4.4d of this experiment, i.e. FE-
DORA is effectively able to perform FS and FC since the original ratio and the
sum of the remaining ratios are positive, correspondingly. The ratios are also
similar to the Random Forest (RF) experiment, containing roughly 70% original,
15% engineered and 15% complex features.

Concerning the comparison (Panel 4.4e), FEDORA is still able to maintain base-
line performance across all classifiers. The difference between the FEDORA frame-
work and the other FE methods is still quite noticeable, with FEDORA outper-
forming the common methods, especially when using the RF and XGB classifiers.
It is possible to observe a slight improvement over the baseline with the XGB clas-
sifier when using the FEDORA individuals. The best-performing individual was
obtained in run 19, with a 76% balanced accuracy score, using the XGB classifier
with 58 total features (39 Original, 13 Engineered and 6 Complex).

Using Decision Trees as Proxy

Concerning the dt-200-100 experiment, Figure 4.5 illustrates the obtained results.
Unlike the previous experiments, the current one shows different characteristics.
Panel 4.5a shows once again that SGE is effectively minimizing the error. Unlike
the population line, the best line does not seem to stabilize. It linearly improves
until the 29% error mark, while the population’s line finishes around the 32% er-
ror mark. However, both lines achieve worse validation scores than the previous
experiments.

35

Chapter 4

0 20 40 60 80 100
Generation

0.25

0.26

0.27

0.28

0.29

0.30

0.31

Fit
ne

ss

Fitness Plot (30 runs)
Best
Population

(a) Fitness Plot

0 20 40 60 80 100
Generation

0

10

20

30

40

50

60

FE
DO

RA
 Fe

at
ur

es

Feature Evolution (30 runs)

Minimum
Maximum
Population
Best

(b) Feature Evolution Plot

0.0 0.2 0.4 0.6 0.8 1.0
Ratio

0

5

10

15

20

25

Ru
n

Ratio of Features
Original
Engineered
Complex

(c) Feature Complexity Ratios

0 10 20 30 40 50 60
FEDORA Features

0

5

10

15

20

25

Ru
n

Number of Features

(d) Number of features

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Ba
la

nc
ed

 A
cc

ur
ac

y

Comparison with other feature engineering techniques

Transformation
None
FEDORA
PCA

UMAP
SOM
Autoencoder

(e) Feature Engineering Methods Comparison

Figure 4.4: Experiment xgb-200-100

36

Experimental Study

The population and best lines of Panel 4.5b also show differences from the pre-
vious experiments, with both lines having a negative trend and not showing any
signs of stabilizing. Also, it appears to exist a correlation between the best fit-
ness and population lines. This suggests that the choice of the proxy model has a
direct impact on the overall behaviour of the framework.

Panel 4.5c shows once again that FEDORA can construct and select features, for
most individuals. This time, it is noticeable greater ratios of engineered and com-
plex figures. This is due mainly to the fact that a lot of individuals have a low
number of features, as observed in Panel 4.5d. Runs 6, 8 and 25 were able to gen-
erate individuals without any original features, being composed of engineered or
complex features only.

Panel 4.5d illustrates the true FE impact that the choice of a Decision Tree (DT)
as the proxy model has. The framework was able to greatly reduce the number
of features in the individuals, down to 1 single feature, while maintaining base-
line performance. In fact, in terms of having the best performance with the least
amount of features, run 8 gives the best individual, achieving a 72.8% balanced
accuracy score with a RF classifier, with only 1 complex feature.

From Panel 4.5e, one can observe differences between the current and the past ex-
periments. When using a DT as the testing model, the FEDORA boxplot improves
the baseline performance. In the remaining models, it deteriorates baseline per-
formance. Concerning the other FE techniques, most of them still lay below the
FEDORA boxplots. Also, the FEDORA scores seem to be consistent across all
the testing models, not showing as much of a difference when comparing to the
rf-200-100 and xgb-200-100 experiments, although not quite achieving such high
performances.

Resembling the dt-200-100 analysis, the dt-1000-50 experiment further extends its
behaviour, since it has more overall fitness evaluations. The plots are illustrated
in Figure 4.6. Panel 4.6a shows that both lines keep decreasing throughout the
generations, with the best effectively stopping at the 28% error mark, showing
signs of stabilizing. The mean of the population also achieves slightly lower error
fitness scores.

In Panel 4.6b, the best and population lines can further decrease the number of
required features. This means that evolution is effectively generating individuals
with fewer features while keeping on improving performance. This experiment’s
results also support the claim that the choice of the proxy model has a direct
impact on the framework’s behaviour. It is also noticeable an initial increase in
the number of features of the population line for the first 10 generations, up to
around 45 features. From then onwards, a clear gradual reduction of the number
of features is observable.

Panel 4.6c also points to the ability of FEDORA to construct and select features
from the original dataset. Engineered and complex ratios also have higher values,
for the same reason as Panel 4.5c.

Panel 4.6d shows that most of the best individuals have a small number of fea-
tures. This is excepted since the dt-200-100 experiment has already suggested that

37

Chapter 4

0 20 40 60 80 100
Generation

0.29

0.30

0.31

0.32

0.33

0.34

0.35

Fit
ne

ss

Fitness Plot (30 runs)
Best
Population

(a) Fitness Plot

0 20 40 60 80 100
Generation

0

10

20

30

40

50

60

FE
DO

RA
 Fe

at
ur

es

Feature Evolution (30 runs)

Minimum
Maximum
Population
Best

(b) Feature Evolution Plot

0.0 0.2 0.4 0.6 0.8 1.0
Ratio

0

5

10

15

20

25

Ru
n

Ratio of Features

Original
Engineered
Complex

(c) Feature Complexity Ratios

0 10 20 30 40 50 60
FEDORA Features

0

5

10

15

20

25

Ru
n

Number of Features

(d) Number of features

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.50

0.55

0.60

0.65

0.70

0.75

Ba
la

nc
ed

 A
cc

ur
ac

y

Comparison with other feature engineering techniques

Transformation
None
FEDORA
PCA

UMAP
SOM
Autoencoder

(e) Feature Engineering Methods Comparison

Figure 4.5: Experiment dt-200-100

38

Experimental Study

0 10 20 30 40 50
Generation

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35
Fit

ne
ss

Fitness Plot (30 runs)
Best
Population

(a) Fitness Plot

0 10 20 30 40 50
Generation

0

10

20

30

40

50

60

FE
DO

RA
 Fe

at
ur

es

Feature Evolution (30 runs)

Minimum
Maximum
Population
Best

(b) Feature Evolution Plot

0.0 0.2 0.4 0.6 0.8 1.0
Ratio

0

5

10

15

20

25

Ru
n

Ratio of Features
Original
Engineered
Complex

(c) Feature Complexity Ratios

0 10 20 30 40 50 60
FEDORA Features

0

5

10

15

20

25
Ru

n

Number of Features

(d) Number of features

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.55

0.60

0.65

0.70

0.75

Ba
la

nc
ed

 A
cc

ur
ac

y

Comparison with other feature engineering techniques

Transformation
None
FEDORA
PCA

UMAP
SOM
Autoencoder

(e) Feature Engineering Methods Comparison

Figure 4.6: Experiment dt-1000-50

39

Chapter 4

this reduction is a direct consequence of the proxy choice. Therefore, with more
evaluations, it is expected a greater reduction in such numbers.

Panel 4.6e shows that when using a DT or a RF as the testing model, FEDORA
individuals median can improve the baseline one. In the DT case, a clear im-
provement is observable. Regarding the XGB and Multi-Layer Perceptron (MLP)
classifiers, FEDORA individuals seem to worsen baseline performance. Compar-
ing the results of the remaining FE methods, there is a clear difference between
them and the framework scores, with FEDORA outperforming them. This effect
is perhaps more noticeable in this experiment, due to the low number of features
that each individual has, generally. This forces the common FE methods to also
restrict themselves to that number of features, which might not be optimal for
them. Nevertheless, the FE methods match the number of features that the FE-
DORA individuals use. Once again, the FEDORA scores are consistent across all
classifiers, not showing remarkable differences.

Using Multi-Layer Perceptrons as Proxy

Lastly, Figure 4.7 describes the obtained results for the mlp-100-50 experiment.
Panel 4.7a shows that the error decreases for both lines throughout the genera-
tions. The best line has a very small improvement, stopping at around the 26%
error threshold. The population line has a bigger improvement, ending at an
error of around 28%.

Panel 4.7b shows an already-seen behaviour in the rf-200-100 and xgb-200-100 ex-
periments. The best and population lines seem to grow together until slightly be-
low the 50 features mark. Also, the minimum and maximum lines seem to rather
be growing towards one another, in a very faint manner. The trend of such lines
is certainly different than in the other experiments. Therefore, it seems to exist
a pattern relating the choice of the proxy model and the behaviour of FEDORA.
Panel 4.7c shows once more that FEDORA creates and selects original features.
The proportions of the ratios are similar to the ones observed in the rf-200-100
and xgb-200-100 experiments. In Panel 4.7d, one can observe that the number of
features used by each best individual is somewhat high, although reducing the
original number of features of the dataset.

Regarding performance, Panel 4.7e shows that FEDORA can maintain perfor-
mance, although having slightly worse results than the baseline for all classifiers.
Concerning the remaining FE methods, the proposed framework still can visu-
ally outperform all of them. The best-performing individual was obtained in run
19, with a 76.1% balanced accuracy score, using the MLP classifier with 43 total
features (33 Original, 5 Engineered and 5 Complex).

Statistical Analysis

To compare the results of the different experiments, we performed a statistical
analysis to check for any meaningful differences. The statistical tests were only
applied to the FE methods of one single testing classifier for each experiment,

40

Experimental Study

0 10 20 30 40 50
Generation

0.26

0.28

0.30

0.32

0.34
Fit

ne
ss

Fitness Plot (30 runs)
Best
Population

(a) Fitness Plot

0 10 20 30 40 50
Generation

0

10

20

30

40

50

60

FE
DO

RA
 Fe

at
ur

es

Feature Evolution (30 runs)

Minimum
Maximum
Population
Best

(b) Feature Evolution Plot

0.0 0.2 0.4 0.6 0.8 1.0
Ratio

0

5

10

15

20

25

Ru
n

Ratio of Features
Original
Engineered
Complex

(c) Feature Complexity Ratios

0 10 20 30 40 50 60
FEDORA Features

0

5

10

15

20

25
Ru

n

Number of Features

(d) Number of features

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Ba
la

nc
ed

 A
cc

ur
ac

y

Comparison with other feature engineering techniques
Transformation

None
FEDORA
PCA

UMAP
SOM
Autoencoder

(e) Feature Engineering Methods Comparison

Figure 4.7: Experiment mlp-100-50

41

Chapter 4

for simplicity. The chosen testing model for the statistical test is the same as the
proxy of the corresponding experiment.

Without making any parametric or paired assumptions, the Kruskal-Wallis non-
parametric test was applied to compare the FE techniques, in each experiment,
to check if the medians of all the groups are equal. A significance level of 0.05
was selected. Having the null hypothesis rejected, pair-wise comparisons were
made using Dunn’s posthoc test and correcting the resulting p-values with the
Bonferroni correction. Cliff’s δ was used to measure the effect size. The symbol
"∼" denotes a negligible effect size (|δ| < 0.147), "+" denotes a small effect size
(0.147 ≤ |δ| < 0.33), "++" a medium one (0.33 ≤ |δ| < 0.474) and "+++" a large
one (|δ| ≥ 0.474).

Table 4.2: Kruskal-Wallis Test Results

Experiment Model Test Statistic P-Value
rf-200-100 RandomForestClassifier 156.48 0

xgb-200-100 XGBClassifier 145.27 0
dt-200-100 DecisionTreeClassifier 143.45 0
dt-1000-50 DecisionTreeClassifier 143.65 0
mlp-100-50 MLPClassifier 116.58 0

Table 4.2 gives the Kruskal-Wallis test results for every experiment. As the p-
value is 0 for all experiments, every experiment rejects the null hypothesis, i.e.
there are differences in the medians of the groups. Therefore, a pairwise post hoc
analysis is required for every pair of groups in each experiment.

Table 4.3 details the effect sizes for Dunn’s posthoc analysis for the rf-200-100
experiment. It shows that there are statistically significant differences between
FEDORA and the other FE methods, with a large effect size. There are also dif-
ferences between the baseline and the common FE methods, with a large effect
size. There is no evidence of differences between the baseline and the FEDORA
groups, meaning that the framework can statistically maintain performance, for
this experiment. Furthermore, there are statistically significant differences be-
tween the PCA and UMAP groups and between the AE and UMAP groups, with
large effect sizes.

Table 4.4 gives the effect sizes for the xgb-200-100 experiment. The statistical
analysis is the same as the one made for Table 4.3 since the tables are identical.

Table 4.5 provides the effect sizes for the dt-200-100 experiment. Once again,
the baseline and the proposed framework have statistically significant differences
with the common FE methods. Also, the baseline and FEDORA groups do not
seem to have differences. There are statistically significant differences between
the UMAP and the ANN based FE methods, i.e. the SOMs and the AEs, both
with large effect sizes.

Table 4.6 reports the effect sizes for the dt-1000-50 experiment. The analysis is the
same made for Table 4.5, except the comparison between the UMAP and PCA
groups, which show statistically significant differences, with large effect size.

42

Experimental Study

Table 4.3: Dunn’s test effect sizes - rf-200-100

RandomForest baseline FEDORA PCA UMAP SOM Autoencoder
baseline

FEDORA
PCA +++ +++

UMAP +++ +++ +++
SOM +++ +++

Autoencoder +++ +++ +++

Table 4.4: Dunn’s test effect sizes - xgb-200-100

XGB baseline FEDORA PCA UMAP SOM Autoencoder
baseline

FEDORA
PCA +++ +++

UMAP +++ +++ +++
SOM +++ +++

Autoencoder +++ +++ +++

Table 4.5: Dunn’s test effect sizes - dt-200-100

DecisionTree baseline FEDORA PCA UMAP SOM Autoencoder
baseline

FEDORA
PCA +++ +++

UMAP +++ +++
SOM +++ +++ +++

Autoencoder +++ +++ +++

Table 4.6: Dunn’s test effect sizes - dt-1000-50

DecisionTree baseline FEDORA PCA UMAP SOM Autoencoder
baseline

FEDORA
PCA +++ +++

UMAP +++ +++ +++
SOM +++ +++ +++

Autoencoder +++ +++ +++

Table 4.7: Dunn’s test effect sizes - mlp-100-50

MLP baseline FEDORA PCA UMAP SOM Autoencoder
baseline

FEDORA
PCA +++

UMAP +++ +++ +++
SOM +++ +++ +++

Autoencoder +++ +++ +++ +++

43

Chapter 4

Lastly, Table 4.7 shows the effect sizes for the mlp-100-50 experiment. The base-
line still maintains statistically significant differences with the common FE meth-
ods. However, besides the proposed framework not having statistically signifi-
cant differences with the baseline, it also does not have differences with the PCA
technique, for this experiment. Concerning the common FE groups, there are
significant differences for both the PCA and the AE groups with the UMAP and
SOM groups, with large effect sizes.

Discussion

Concerning the evolution plots, all fitness plots show that individuals are gradu-
ally evolving throughout the generations. When using a DT model as the proxy,
the lines appear to be the ones with greater evolution progress, although not quite
reaching the other experiments’ low error performances, on either the best or the
population lines.

The feature evolution plots show a different angle of such evolution. The num-
ber of features in the DT experiments’ best individuals is decreasing throughout
the generations, alongside the population mean. Such an event is not noticeable
in the other experiments. The exact opposite happens, i.e. the best and popu-
lation lines tend to grow and stabilize, with the latter resembling a logarithmic
function. By observing the number of features in the DT experiments, it is no-
ticeable that its individuals’ transformations can achieve a much lower feature
dimensionality. These experiments also show a higher ratio of engineered and
complex features, although having fewer features biasing them. For RF, XGB and
MLP experiments, it is possible to observe that FEDORA can simultaneously se-
lect and construct novel features since the ratio of original features and the sum
of engineered and complex features’ ratios are positive.

Regarding the comparison with other common FE methods and the baseline, the
comparison plots show that FEDORA is consistently above the PCA, UMAP,
SOMs and AEs methods while statistically maintaining baseline performance.
In the DT experiments, FEDORA is also able to improve past the baseline values
when using a DT as the testing model, although such results not being statisti-
cally significant.

From the analysed experiments, a pattern emerges in the behaviour of FEDORA.
The DT experiments can reduce the number of features to a degree that the other
proxy models cannot. When comparing the inner workings of the models, the
RF, XGB and MLP models all have one thing in common that the DT model does
not: the ability to create a more complex internal representation of the given data
or decision boundary, which generally translates into better performances. A DT
can only make simple decisions with the provided data, which translates into
axis-parallel hyper-planes decisions in the feature space, which might not prop-
erly address a complex dataset. As such, if the evolution transformations do
not provide adequate features to this model, i.e. constructed features that allow
for oblique hyper-plane decisions in the original feature space, the DT will most
likely have worse performance than the remaining models, when facing a hard
problem. Consequently, this encourages evolution to provide well-engineered

44

Experimental Study

features, thus making the fitness function much more discriminant. On the other
hand, the remaining models do not put this kind of pressure on the evolution
process. Each model takes charge of either constructing its features internally or
defining a more complex decision boundary. Therefore, evolution just gives it
a solid amount of original features, so that the model can find what works best
for itself, and a few suggestions in the form of engineered and complex features.
Consequently, the best individuals tend to have a much higher number of fea-
tures in the RF, XGB and MLP experiments. When using these models as the
proxy, aiming for individuals with a low number of features becomes a problem.
As such, ways to bias the evolution are required, namely reducing the number of
features that a transformation can produce in the grammar, e.g. 1 to 10 instead
of 1 to 60, or adding a fitness component that penalizes individuals with many
features. The usage of different feature combining operators may also be of use.
These modifications might prove themselves useful in such a task.

When comparing FEDORA with PCA by pinning variance thresholds and select-
ing the individuals with the closest number of features, FEDORA still overall
outperforms PCA.

Given these results and considering that FEDORA and the other methods are
usually working with fewer features, with their main purpose being a FE tech-
nique, effectively reducing the number of features and statistically maintaining
the baseline performance are great results. From the methods used in this work,
FEDORA is the only one that can almost always have this behaviour. Also, it is
possible to understand a FEDORA individual’s transformation logic to a certain
degree, depending on the choice of the operators defined in the grammar.

4.2.3 Evolution Biasing

Other experiments were conducted to validate how some evolution biasing meth-
ods impact the performance and FE aspects of the proposed framework. These
three ideas consist of using a problem-specific boolean grammar, reducing the
number of possible features in the grammar or modifying the fitness function.

Boolean Grammar

The boolean grammar is depicted in Figure 4.8. This strategy consists in setting
apart float and boolean attributes from one another, where they will have specific
operators. The float attributes will maintain the addition, subtraction, multiplica-
tion and division, while the boolean ones will have the logical AND, the logical
OR and the logical negation. These operators were selected due to the nature of
the types in the dataset. Any user-custom operator might be defined in the gram-
mar, provided that it makes sense in its corresponding problem-specific context.

Notice that the expansions of the < expr > non-terminal (< exprr > or <
exprb >) are repeated a specific number of times. This is made to try no mini-
mize the bias over the feature type since there are 44 real features and 16 boolean

45

Chapter 4

 =

 =

 =

 =

 =

 =

 =

 = | | |
 | | | |
 | | | |
 | | |

Figure 4.8: Boolean Grammar

ones. Therefore, there is a ratio of 4 booleans for every 11 real features, which
corresponds to the number of repetitions.

Contrary to the constructed float attributes, the boolean features can be read in
an intelligible manner. Therefore, by choosing a DT as the proxy model with
individuals generated by this grammar, the interpretability of the underlying de-
cisions might increase. Figure 4.9 shows the results of the dt-1000-50 experiment,
with the boolean grammar, which we will name dt-1000-50-bool for simplicity.

Panels 4.9a, 4.9b and 4.9d plot identical results to the dt-1000-50 experiment, with
lines of the fitness and of the number of features decreasing similarly.

Panel 4.9c shows the feature ratios but splits the engineered and complex ratios
by their type, i.e. boolean (brighter) or real (darker). The number of engineered
and complex features increases relatively to the dt-1000-50 experiment, which
may be explained due to the introduction of boolean expressions. The engineered
and complex boolean features have greater ratios than the real ones in the best
individuals, showing that the constructed boolean expressions are more relevant

46

Experimental Study

0 10 20 30 40 50
Generation

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35
Fit

ne
ss

Fitness Plot (30 runs)
Best
Population

(a) Fitness Plot

0 10 20 30 40 50
Generation

0

10

20

30

40

50

60

FE
DO

RA
 Fe

at
ur

es

Feature Evolution (30 runs)

Minimum
Maximum
Population
Best

(b) Feature Evolution Plot

0.0 0.2 0.4 0.6 0.8 1.0
Ratio

0

5

10

15

20

25

Ru
n

Ratio of Features
Original
Engineeredbool

Engineeredreal

Complexbool

Complexreal

(c) Feature Complexity Ratios

0 10 20 30 40 50 60
FEDORA Features

0

5

10

15

20

25
Ru

n

Number of Features

(d) Number of features

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.55

0.60

0.65

0.70

0.75

Ba
la

nc
ed

 A
cc

ur
ac

y

Comparison with other feature engineering techniques

Transformation
None
FEDORA
PCA

UMAP
SOM
Autoencoder

(e) Feature Engineering Methods Comparison

Figure 4.9: Experiment dt-1000-50-bool

47

Chapter 4

to achieve better performances than the real expressions.

Lastly, Panel 4.9e also shows different results than the dt-1000-50 experiment.
Across all testing models, the standard deviation value of the FEDORA groups
has decreased, showing more consistency in the obtained results. Also, in the
DT testing model, the minimum value of the FEDORA group is above the best
DT baseline result, when discarding outliers. Regarding other common feature
engineering techniques, all of them are underperforming FEDORA. These results
point to the relevance of problem-specific operators when aiming for good and
consistent performance scores.

An example of a phenotype generated by this grammar is presented below. It
comprises 1 original real feature (age), 2 original boolean features (question_2_1
and question_3) and a complex boolean feature, separated by semicolons. This
transformation achieved 72.8% balanced accuracy with XGB as the testing model.

XR
age ; XB

question_2_1 ; XB
question_3 ; ¬XB

question_1_1 & ¬XB
question_3_3

Concerning statistical results, the same analysis of the previous experiments is
applied here. The Kruskal-Wallis non-parametric test was applied to the DT test-
ing model groups, which lead to the null hypothesis being rejected for a signifi-
cance level of 0.05. Therefore, Table 4.8 summarizes the Cliff’s δ effect sizes of the
post hoc pairwise comparisons between the groups, using Dunn’s test.

The baseline has statistically significant differences with the PCA, UMAP and
SOMs methods, with large effect sizes, while having no differences with the FE-
DORA and AE groups, showing that FEDORA can maintain performance. The
FEDORA framework has meaningful differences with all common FE techniques,
with a large effect size. Lastly, the UMAP has large effect size differences with the
ANN based methods, and the PCA group has differences with the AE group.

Table 4.8: Dunn’s test effect sizes - dt-1000-50-bool

DecisionTree baseline FEDORA PCA UMAP SOM Autoencoder
baseline

FEDORA
PCA +++ +++

UMAP +++ +++
SOM +++ +++ +++

Autoencoder +++ +++ +++

Available Features

This idea consists of forcefully reducing the number of features that an individual
can have in the grammar. By default, any individual can select between 1 to 60
features to not bias the evolution. Therefore, changing the maximum number of
features to a lower value, i.e. 60 features into 10, is possible. From the 5 main
experiments reported in Subsection 4.2.2, all but the DT experiments had similar

48

Experimental Study

0 20 40 60 80 100
Generation

0.26

0.28

0.30

0.32

0.34

0.36

0.38
Fit

ne
ss

Fitness Plot (30 runs)
Best
Population

(a) Fitness Plot

0 20 40 60 80 100
Generation

2

4

6

8

10

FE
DO

RA
 Fe

at
ur

es

Feature Evolution (30 runs)

Minimum
Maximum
Population
Best

(b) Feature Evolution Plot

0.0 0.2 0.4 0.6 0.8 1.0
Ratio

0

5

10

15

20

25

Ru
n

Ratio of Features
Original
Engineered
Complex

(c) Feature Complexity Ratios

0 10 20 30 40 50 60
FEDORA Features

0

5

10

15

20

25
Ru

n

Number of Features

(d) Number of features

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Ba
la

nc
ed

 A
cc

ur
ac

y

Comparison with other feature engineering techniques

Transformation
None
FEDORA
PCA

UMAP
SOM
Autoencoder

(e) Feature Engineering Methods Comparison

Figure 4.10: Experiment xgb-200-100-low10

49

Chapter 4

behaviours in terms of reducing the number of features. Therefore the XGB ex-
periment was arbitrarily selected to apply this evolution biasing idea, which we
will name xgb-200-100-low10.

Figure 4.10 presents the results for the xgb-200-100-low10 experiment. Panel 4.10a
shows a similar evolution to the xgb-200-100 experiment, this time with both lines
stabilizing around the 20th generation.

Panel 4.10b shows that this experiment maintains the same behaviour as the xgb-
200-100 experiment, with the lines increasing and stabilizing over the genera-
tions, but this time the maximum allowed number of features is 10 instead of
60.

Panel 4.10c also presents a recurring distribution of the feature types, with around
70% original, 15% engineered and 15% complex. The last 2 analysed charts strongly
point out that biasing the number of features allowed in the grammar has no im-
pact on the behaviour of the evolution when using XGB as the proxy model, even
though the number of features being forcefully reduced to a maximum of 10, as
one can see in Panel 4.10d.

Panel 4.10e presents the testing results for all the FE methods. It is possible to
observe that the FEDORA framework has negligible differences with the baseline
across all testing models. The FEDORA results are slightly worse than in the xgb-
200-100 experiment but use much fewer features. Concerning the remaining FE
methods, FEDORA can achieve better performance results.

Regarding the statistical results, the Kruskal-Wallis test was rejected in the XGB
testing models groups, for a significance level of 0.05. Table 4.9 reports the Cliff’s
δ effect sizes for Dunn’s post hoc test.

The baseline and FEDORA groups have statistically significant differences, with
a large effect size, with all common FE methods, but have no meaningful differ-
ences between one another. Also, the AE group has large effect sizes differences
with the PCA and UMAP methods.

Table 4.9: Dunn’s test effect sizes - xgb-200-100-low10

XGB baseline FEDORA PCA UMAP SOM Autoencoder
baseline

FEDORA
PCA +++ +++

UMAP +++ +++
SOM +++ +++

Autoencoder +++ +++ +++ +++

These results are very interesting since they show that FEDORA can maintain
baseline performance, outperforming common FE techniques when using 10 fea-
tures as the maximum allowed dimensionality. There is also evidence that force-
fully reducing the number of features does not impact the framework’s general
strategy to evolve individuals when using an XGB model, since the number of
features tends to grow throughout the generations and ends up achieving similar

50

Experimental Study

ratios to the xgb-200-100 experiment, with a negligible loss of performance, i.e.
less than 0.2% mean balanced accuracy across all testing models except for the
DT, but with fewer total features.

Fitness Function Penalization

The last approach that we evaluated concerns the penalization of individuals that
provide more features to the classifiers than the ones that the models are effec-
tively using. For instance, an individual could provide 40 features to the clas-
sifier and it would only end up using 30. The penalty is given by the ratio of
unused features by the model. In this example, the penalty would be calculated
by counting the number of unused features (40 − 30 = 10) and dividing it by
the total number of features (10/40), which would lead to a penalty of 0.25. The
formula is described below, where I is the individual and M is the fitted model.

Penalty(I, M) =
I f eatures −Mused

I f eatures

Therefore, the equation below gives the fitness function, which SGE looks to min-
imize. The higher the penalty, i.e. the number of unused features, the worse the
fitness. Notice that both components of the fitness function are bounded to the
same interval, i.e. [0, 1], hence both have the same weight in the fitness of an
individual.

Fitness(I) = Score(I) + Penalty(I, M)

This evolution biasing method makes the fitness function consider the score and
the number of unused features as equally relevant. This technique will be applied
to the xgb-200-100 experiment, to check if it can change the underlying strategy
to evolve individuals. Figure 4.11 shows the results of this experiment, which we
will name xgb-200-100-penalty.

Panel 4.11a shows that both fitness lines decrease throughout the generations.
These lines cannot be perceived as performance, but rather as a mean of the per-
formance and the unused feature ratios.

Panel 4.11b reports a completely different behaviour of the framework when us-
ing the XGB model as the proxy. The population and best lines tend to simulta-
neously decrease until reaching a plateau where both stabilize, around 18 total
features.

Regarding the ratios of the features, Panel 4.11c shows the FEDORA is always
able to select and construct features. The ratio of engineered and complex had
a small increase when comparing it to the xgb-200-100 and xgb-200-100-low10
experiments.

Panel 4.11d shows that the framework was able to reduce the number of features
of the best individuals to around 15 total features, with some variance.

51

Chapter 4

0 20 40 60 80 100
Generation

0.25

0.28

0.30

0.33

0.35

0.38

0.40

0.43

Fit
ne

ss

Fitness Plot (30 runs)
Best
Population

(a) Fitness Plot

0 20 40 60 80 100
Generation

0

10

20

30

40

50

60

FE
DO

RA
 Fe

at
ur

es

Feature Evolution (30 runs)

Minimum
Maximum
Population
Best

(b) Feature Evolution Plot

0.0 0.2 0.4 0.6 0.8 1.0
Ratio

0

5

10

15

20

25

Ru
n

Ratio of Features
Original
Engineered
Complex

(c) Feature Complexity Ratios

0 10 20 30 40 50 60
FEDORA Features

0

5

10

15

20

25

Ru
n

Number of Features

(d) Number of features

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Ba
la

nc
ed

 A
cc

ur
ac

y

Comparison with other feature engineering techniques

Transformation
None
FEDORA
PCA

UMAP
SOM
Autoencoder

(e) Feature Engineering Methods Comparison

Figure 4.11: Experiment xgb-200-100-penalty

52

Experimental Study

Concerning results, Panel 4.11e shows that FEDORA can match baseline perfor-
mance across all testing models while performing well above common FE meth-
ods. The best-performing individual was obtained in run 19, with a 76.2% bal-
anced accuracy score, using the XGB classifier with 9 total features (5 Original, 2
Engineered and 2 Complex). This corresponds to the best-obtained result of this
work. Figure 4.12 illustrates the phenotype of this individual using a simplified
derivation tree.

Regarding the statistical comparison, the Kruskal-Wallis non-parametric test was
applied to the groups of the XGB testing model, resulting in the rejection of the
null hypothesis, for a significance level of 0.05. Table 4.10 reports the Cliff’s δ
effect sizes for Dunn’s post hoc test.

Table 4.10: Dunn’s test effect sizes - xgb-200-100-penalty

XGB baseline FEDORA PCA UMAP SOM Autoencoder
baseline

FEDORA
PCA +++ +++

UMAP +++ +++
SOM +++ +++

Autoencoder +++ +++ +++ +++ +++

Once again, the baseline and FEDORA groups have statistically significant dif-
ferences, with a large effect size, with the common FE techniques, but have no
meaningful differences between each other. The AE group has large effect sizes
differences with the PCA and UMAP methods.

The results of this experiment show that by adding a penalization component to
the fitness function one can guide the evolution strategy of the framework, to not
only achieve individuals with fewer features but also to increase performance.
Due to the being a component that directly affects the evolution fitness, this bi-
asing method is highly likely to work with any other proxy model that tends not
to decrease the number of features throughout the evolution, such as RFs or MLP
models.

4.3 AutoML with FEDORA

This section addresses the second objective of this work, i.e. completing the full
ML pipeline, by performing a comparison study with FEDORA and a method
capable of addressing the CASH problem, the AutoML-DSGE framework [As-
sunção et al., 2020]. This framework has been applied to 10 different datasets
with good results. The best FEDORA individuals are added to the list of pre-
processors of the AutoML-DSGE framework to check if such transformations can
match other common pre-processing methods.

53

Chapter 4

Figure 4.12: Simplified derivation tree of the best individual’s phenotype

54

Experimental Study

4.3.1 Experimental Settings

Figure 4.13 describes the AutoML-DSGE architecture and how it was merged
with FEDORA for this study. Firstly, the Data Splitting step consists of randomly
splitting the original dataset into training, validation and test subsets, for each
run. In the Evolutionary Feature Engineering step, the best FEDORA individuals
of the 5 experiments reported in Section 4.2 are selected and added to the list of
pre-processors of the AutoML-DSGE framework.

Figure 4.13: Experimental Architecture of FEDORA with AutoML-DSGE

In the final step (AutoML-DSGE Testing step), given a collection of pre-processing
algorithms and classifiers defined in a Context-Free Grammar (CFG), the AutoML-
DSGE framework searches for the optimal ML pipeline, i.e. the one that provides
the lowest validation error, with SGE. At the end of the evolution, the ML pipeline
with the lowest validation error is selected and is trained on the training and val-
idation subsets to predict the test set.

The AutoML-DSGE framework was adapted from the original code, available
in [AutoML-DSGE Github]. Some Scikit-learn components were not up-to-date
with the current version of the package, namely some parameters and even algo-
rithm class names. Therefore, the proper adjustments were performed.

Figure 4.14 describes the modifications made to the original grammar of AutoML-
DSGE to include the FEDORA individuals. Notice that a FEDORA pre-processor

55

Chapter 4

needs 2 parameters: the FEDORA experiment name that generated the individ-
uals and their seed. For each run of AutoML-Fedora, 5 individuals are added as
possible pre-processors, one for each experiment, matching the corresponding
run seed. Therefore, the seed parameter is None in the grammar because it is
redefined programmatically based on the seed of the current run.

Figure 4.14: AutoML-DSGE grammar modifications

This experimental study consists of comparing the AutoML-FEDORA and AutoML-
Baseline groups that are defined by the performances of AutoML-DSGE on the
original dataset with or without the possibility of adding the best FEDORA indi-
viduals as pre-processors, respectively. These experiments will allow us to have
further insights on whether the FEDORA transformations are as good as com-
mon FE methods. If a FEDORA transformation is chosen by AutoML-DSGE as a
preprocessor for a given run, FEDORA is effectively matching common FE tech-
niques. Otherwise, FEDORA transformations might be more useful in a different
scenario other than solely performance maximization, namely when there is a
need to drastically reduce data dimensionality while maintaining performance.
Both groups will be compared with one another by performing a statistical com-
parison.

Table 4.11: AutoML with FEDORA Experimental Settings

Parameters AutoML-Baseline AutoML-FEDORA
Population 100
Generations 100
Runs 30
Elitism 5%
Crossover Rate 0.9
Mutation Rate 0.1
Min. Tree Depth 5
Max. Tree Depth 17
Selection Tournament (size 2)
Fitness 1 - Balanced Accuracy
Max. pipeline train time 5 minutes
Stop criteria 5 generations without improvement
Individuals as pre-processors False True

Table 4.11 presents the parameters chosen for both groups, adapted from [As-
sunção et al., 2020]. Notice that the inclusion of more pre-processing methods in
the grammar increases the search space of AutoML-DSGE.

56

Experimental Study

4.3.2 Results and Discussion

Concerning results, Figure 4.15 shows a boxplot comparison of both groups. The
scores that were obtained using the FEDORA transformations are highlighted
with a solid dot in the AutoML-FEDORA group. One can see that both groups
achieve similar results over the 30 runs, with the median of AutoML-FEDORA
being slightly higher. A single FEDORA transformation was selected, enabling a
ML pipeline to obtain a testing score of 75.2% balanced accuracy, which is above
the median values of both groups. The overall best pipeline achieved a score
of 76.4% balanced accuracy on the AutoML-FEDORA group but did not use a
FEDORA transformation.

AutoML-baseline AutoML-fedora
Group

0.72

0.73

0.74

0.75

0.76

Ba
la

nc
ed

 A
cc

ur
ac

y

AutoML-DSGE Experiment Testing Results

Fedora Transformation

Figure 4.15: AutoML-DSGE Experiment Testing Results

Both pipelines are presented in Figure 4.16. The pipeline that uses FEDORA
(Panel 4.16a), selects as the classifier an ExtraTreesClassifier, while the best pipeline
(Panel 4.16b) does not require any pre-processing method and simply uses a Ran-
domForestClassifer on the original dataset.

Figure 4.17 shows the components of the 30 best pipelines for each group, distin-
guishing between pre-processors and classifiers. Regarding the classifiers, both
groups used the same ones, namely AdaBoost, GradientBoosting, ExtraTree and
RandomForest, with similar ratios. As for pre-processing methods, a large num-
ber of pipelines did not use any pre-processing method while the remaining ones
used a variety of them. The AutoML-FEDORA used a total of 8 pre-processing
methods, with FEDORA being one of them, while the AutoML-Basline used 5.

57

Chapter 4

(a) FEDORA Pipeline (b) Best Pipeline

Figure 4.16: AutoML-DSGE Machine Learning Pipelines

Despite only being selected once, these results point to the potential of FEDORA
as an effective FE method to maximize the performance of ML models, since
it was chosen by AutoML-DSGE, scoring above the median value. Concerning
the statistical analysis, the Mann-Whitney U non-parametric test was selected to
check for meaningful differences between both groups. For a significance level of
0.05, the null hypothesis failed to be rejected with a p-value of 0.48, meaning that
there is no statistical evidence that both groups differ.

58

Experimental Study

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Baseline Methods Count (%)
Pr

e-
pr

oc
es

sin
g

M
et

ho
ds

M
in

M
ax

Sc
al

er
Po

ly
no

m
ia

lFe
at

ur
es

St
an

da
rd

Sc
al

er
Ro

bu
st

Sc
al

er
Si

m
pl

eI
m

pu
te

r
No

ne

Cl
as

sif
ica

tio
n

M
et

ho
ds

Ad
aB

oo
st

Gr
ad

ie
nt

Bo
os

tin
g

Ex
tra

Tr
ee

Ra
nd

om
Fo

re
st

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FEDORA Methods Count (%)

FE
DO

RA
M

ax
Ab

sS
ca

le
r

Ro
bu

st
Sc

al
er

Se
le

ct
Fd

r
Va

ria
nc

eT
hr

es
ho

ld
Po

ly
no

m
ia

lFe
at

ur
es

M
in

M
ax

Sc
al

er
Si

m
pl

eI
m

pu
te

r
No

ne

Ad
aB

oo
st

Gr
ad

ie
nt

Bo
os

tin
g

Ex
tra

Tr
ee

Ra
nd

om
Fo

re
st

Pi
pe

lin
e

Co
m

po
ne

nt
s

Figure 4.17: Pipeline Components

59

Chapter 5

Conclusion

Hearing Loss (HL) is becoming a concerning problem in modern society. A way
to preemptively detect such loss is of utter importance since it allows for mea-
sures to be taken. As medical data is being produced, multi-disciplinary teams
composed of medical staff, data scientists and engineers are working together to
help solve medical field-related problems in an automated manner. Automated
Machine Learning (AutoML) and Evolutionary Computation (EC) provide the
necessary tools to such end.

The first objective of this work, i.e. automating the first steps of the Machine
Learning (ML) pipeline by studying Feature Engineering (FE) techniques, was
fulfilled by the proposal of an Evolutionary AutoML FE framework for a HL de-
tection problem. The FEDORA framework aims to boost the performance of ML
models by automatically enhancing original features through Feature Selection
(FS) and Feature Construction (FC) evolutionary methods. Results show that the
framework can evolve individuals that transform the original data set into a more
predictive one, requiring fewer features.

Most of the framework’s results are statistically better than commonly used FE
techniques, such as Principal Component Analysis (PCA), Uniform Manifold Ap-
proximation and Projection (UMAP), Self-Organizing Maps (SOMs) and Autoen-
coders (AEs). Results point to the choice of the proxy as a decisive factor in the
framework’s behaviour, whether in terms of performance or FE.

By applying baseline classification algorithms, without any hyper-parameter tun-
ing, the best result obtained is 76.2% balanced accuracy using an individual from
the rf-200-100 instance, and a Extreme Gradient Boosting (XGB) as the testing
model, using 57 total features (45 Original, 6 Engineered and 6 Complex) out of
the 60 original ones. When using the least amount of features, the best result is
72,8% balanced accuracy using an individual from the dt-200-100 instance, and
a Random Forest (RF) algorithm as the testing model, using 1 single complex
feature.

By biasing the evolution, a better performance result was obtained when adding
a penalty proportional to the number of features that the XGB algorithm was
not using in the xgb-200-100 instance. A score of 76.2% balanced accuracy was

61

Chapter 5

obtained by a XGB testing model, using 9 total features (5 Original, 2 Engineered
and 2 Complex).

Regarding the second Objective, the full ML pipeline was completed by using
the FEDORA transformations as possible pre-processors to the AutoML-DSGE
framework [Assunção et al., 2020]. The results showed that a FEDORA prepro-
cessor was chosen 1 out of 30 times. The corresponding pipeline was able to
obtain a test score of 75.2% balanced accuracy, which places it above the average
of the 30 runs. This means that FEDORA has the potential to effectively match
common FE methods for performance improvement. The overall best pipeline
obtained achieved a score of 76.4% balanced accuracy on the AutoML-FEDORA
group but did not use a FEDORA transformation.

5.1 Future Work

Future work may consist of an in-depth study of how the framework behaves
when using other models than the ones used in this experimental study, as well
as applying it to other problems. Considering the evolution biasing work per-
formed, which suggests potential performance and FE improvements on the pro-
posed framework, further studying such techniques may prove helpful to achieve
better results. Also, including a filter component in the fitness function, alongside
the wrapper score, is a valid and powerful idea. Lastly, comparing the full ML
pipeline to other full pipeline frameworks may be of use to contextualize and
compare the framework on the AutoML and EC scenes.

62

References

Soha Ahmed, Mengjie Zhang, Lifeng Peng, and Bing Xue. Multiple feature con-
struction for effective biomarker identification and classification using genetic
programming. In Dirk V. Arnold, editor, Genetic and Evolutionary Computation
Conference, GECCO ’14, Vancouver, BC, Canada, July 12-16, 2014, pages 249–256.
ACM, 2014. doi: 10.1145/2576768.2598292. URL https://doi.org/10.1145/
2576768.2598292.

Filipe Assunção, Nuno Lourenço, Bernardete Ribeiro, and Penousal Machado.
Evolution of scikit-learn pipelines with dynamic structured grammatical evolu-
tion. CoRR, abs/2004.00307, 2020. URL https://arxiv.org/abs/2004.00307.

Anthony Brabazon, Michael O’Neill, and Seán McGarraghy. Natural Comput-
ing Algorithms. Natural Computing Series. Springer, 2015. ISBN 978-3-662-
43630-1. doi: 10.1007/978-3-662-43631-8. URL https://doi.org/10.1007/
978-3-662-43631-8.

Hayoung Byun, Chae Jung Park, Seong Je Oh, Myung Jin Chung, Baek Hwan
Cho, and Yang-Sun Cho. Automatic prediction of conductive hearing loss us-
ing video pneumatic otoscopy and deep learning algorithm. Ear and Hearing,
pages AUD–0000000000001217, 2022.

Noëlie Cherrier, Jean-Philippe Poli, Maxime Defurne, and Franck Sabatié. Con-
sistent feature construction with constrained genetic programming for exper-
imental physics. In IEEE Congress on Evolutionary Computation, CEC 2019,
Wellington, New Zealand, June 10-13, 2019, pages 1650–1658. IEEE, 2019. doi: 10.
1109/CEC.2019.8789937. URL https://doi.org/10.1109/CEC.2019.8789937.

Charles Darwin. On the Origin of Species by Means of Natural Selection. Murray,
London, 1859. or the Preservation of Favored Races in the Struggle for Life.

A. E. Eiben and James E. Smith. Introduction to Evolutionary Computing, Sec-
ond Edition. Natural Computing Series. Springer, 2015. ISBN 978-3-662-
44873-1. doi: 10.1007/978-3-662-44874-8. URL https://doi.org/10.1007/
978-3-662-44874-8.

Matthias Feurer and Frank Hutter. Hyperparameter optimization. In Frank Hut-
ter, Lars Kotthoff, and Joaquin Vanschoren, editors, Automated Machine Learning
- Methods, Systems, Challenges, The Springer Series on Challenges in Machine
Learning, pages 3–33. Springer, 2019. doi: 10.1007/978-3-030-05318-5_1. URL
https://doi.org/10.1007/978-3-030-05318-5_1.

63

https://doi.org/10.1145/2576768.2598292
https://doi.org/10.1145/2576768.2598292
https://arxiv.org/abs/2004.00307
https://doi.org/10.1007/978-3-662-43631-8
https://doi.org/10.1007/978-3-662-43631-8
https://doi.org/10.1109/CEC.2019.8789937
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/978-3-030-05318-5_1

Chapter 5

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg,
Manuel Blum, and Frank Hutter. Auto-sklearn: Efficient and robust auto-
mated machine learning. In Frank Hutter, Lars Kotthoff, and Joaquin Van-
schoren, editors, Automated Machine Learning - Methods, Systems, Challenges, The
Springer Series on Challenges in Machine Learning, pages 113–134. Springer,
2019. doi: 10.1007/978-3-030-05318-5_6. URL https://doi.org/10.1007/
978-3-030-05318-5_6.

Dimitris Gavrilis, Ioannis G. Tsoulos, and Evangelos Dermatas. Selecting and
constructing features using grammatical evolution. Pattern Recognit. Lett., 29
(9):1358–1365, 2008. doi: 10.1016/j.patrec.2008.02.007. URL https://doi.org/
10.1016/j.patrec.2008.02.007.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors. Automated Ma-
chine Learning - Methods, Systems, Challenges. The Springer Series on Challenges
in Machine Learning. Springer, 2019. ISBN 978-3-030-05317-8. doi: 10.1007/
978-3-030-05318-5. URL https://doi.org/10.1007/978-3-030-05318-5.

Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-
Brown. Auto-weka: Automatic model selection and hyperparameter optimiza-
tion in WEKA. In Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors,
Automated Machine Learning - Methods, Systems, Challenges, The Springer Series
on Challenges in Machine Learning, pages 81–95. Springer, 2019. doi: 10.1007/
978-3-030-05318-5_4. URL https://doi.org/10.1007/978-3-030-05318-5_
4.

John R. Koza. Genetic programming - on the programming of computers by means of
natural selection. Complex adaptive systems. MIT Press, 1993. ISBN 978-0-262-
11170-6.

Nuno Lourenço, Francisco B. Pereira, and Ernesto Costa. SGE: A struc-
tured representation for grammatical evolution. In Stéphane Bonnevay,
Pierrick Legrand, Nicolas Monmarché, Evelyne Lutton, and Marc Schoe-
nauer, editors, Artificial Evolution - 12th International Conference, Evolution Ar-
tificielle, EA 2015, Lyon, France, October 26-28, 2015. Revised Selected Papers,
volume 9554 of Lecture Notes in Computer Science, pages 136–148. Springer,
2015. doi: 10.1007/978-3-319-31471-6_11. URL https://doi.org/10.1007/
978-3-319-31471-6_11.

Nuno Lourenço, Francisco B. Pereira, and Ernesto Costa. Unveiling the properties
of structured grammatical evolution. Genet. Program. Evolvable Mach., 17(3):
251–289, 2016. doi: 10.1007/s10710-015-9262-4. URL https://doi.org/10.
1007/s10710-015-9262-4.

Nuno Lourenço, Joaquim Ferrer, Francisco Baptista Pereira, and Ernesto Costa.
A comparative study of different grammar-based genetic programming ap-
proaches. In James McDermott, Mauro Castelli, Lukás Sekanina, Evert Haas-
dijk, and Pablo García-Sánchez, editors, Genetic Programming - 20th European
Conference, EuroGP 2017, Amsterdam, The Netherlands, April 19-21, 2017, Pro-
ceedings, volume 10196 of Lecture Notes in Computer Science, pages 311–325,

64

https://doi.org/10.1007/978-3-030-05318-5_6
https://doi.org/10.1007/978-3-030-05318-5_6
https://doi.org/10.1016/j.patrec.2008.02.007
https://doi.org/10.1016/j.patrec.2008.02.007
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-030-05318-5_4
https://doi.org/10.1007/978-3-030-05318-5_4
https://doi.org/10.1007/978-3-319-31471-6_11
https://doi.org/10.1007/978-3-319-31471-6_11
https://doi.org/10.1007/s10710-015-9262-4
https://doi.org/10.1007/s10710-015-9262-4

References

2017. doi: 10.1007/978-3-319-55696-3_20. URL https://doi.org/10.1007/
978-3-319-55696-3_20.

Nuno Lourenço, Filipe Assunção, Francisco B. Pereira, Ernesto Costa, and Pe-
nousal Machado. Structured grammatical evolution: A dynamic approach. In
Conor Ryan, Michael O’Neill, and J. J. Collins, editors, Handbook of Grammatical
Evolution, pages 137–161. Springer, 2018. doi: 10.1007/978-3-319-78717-6_6.
URL https://doi.org/10.1007/978-3-319-78717-6_6.

Francisco Paim de Bruges Rodrigues Miranda. HYTEA-HYBRID TREE EVOLU-
TIONARY ALGORITHM FOR HEARING LOSS DIAGNOSIS. PhD thesis, Uni-
versidade de Coimbra, 2022.

Mariana Monteiro, Nuno Lourenço, and Francisco B. Pereira. FERMAT: fea-
ture engineering with grammatical evolution. In Goreti Marreiros, Fran-
cisco S. Melo, Nuno Lau, Henrique Lopes Cardoso, and Luís Paulo Reis,
editors, Progress in Artificial Intelligence - 20th EPIA Conference on Artificial
Intelligence, EPIA 2021, Virtual Event, September 7-9, 2021, Proceedings, vol-
ume 12981 of Lecture Notes in Computer Science, pages 239–251. Springer,
2021. doi: 10.1007/978-3-030-86230-5_19. URL https://doi.org/10.1007/
978-3-030-86230-5_19.

Randal S. Olson and Jason H. Moore. TPOT: A tree-based pipeline optimiza-
tion tool for automating machine learning. In Frank Hutter, Lars Kotthoff,
and Joaquin Vanschoren, editors, Automated Machine Learning - Methods, Sys-
tems, Challenges, The Springer Series on Challenges in Machine Learning, pages
151–160. Springer, 2019. doi: 10.1007/978-3-030-05318-5_8. URL https:
//doi.org/10.1007/978-3-030-05318-5_8.

Michael O’Neill and Conor Ryan. Grammatical evolution. IEEE Trans. Evol. Com-
put., 5(4):349–358, 2001. doi: 10.1109/4235.942529. URL https://doi.org/10.
1109/4235.942529.

Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A Field Guide
to Genetic Programming. lulu.com, 2008. ISBN 978-1-4092-0073-4. URL http:
//www.gp-field-guide.org.uk/.

PORDATA. https://www.pordata.pt.

Franz Rothlauf and Marie Oetzel. On the locality of grammatical evolution. In
Pierre Collet, Marco Tomassini, Marc Ebner, Steven M. Gustafson, and Anikó
Ekárt, editors, Genetic Programming, 9th European Conference, EuroGP 2006, Bu-
dapest, Hungary, April 10-12, 2006, Proceedings, volume 3905 of Lecture Notes in
Computer Science, pages 320–330. Springer, 2006. doi: 10.1007/11729976_29.
URL https://doi.org/10.1007/11729976_29.

Conor Ryan, Michael O’Neill, and J. J. Collins. Introduction to 20 years of gram-
matical evolution. In Conor Ryan, Michael O’Neill, and J. J. Collins, editors,
Handbook of Grammatical Evolution, pages 1–21. Springer, 2018. doi: 10.1007/
978-3-319-78717-6_1. URL https://doi.org/10.1007/978-3-319-78717-6_
1.

65

https://doi.org/10.1007/978-3-319-55696-3_20
https://doi.org/10.1007/978-3-319-55696-3_20
https://doi.org/10.1007/978-3-319-78717-6_6
https://doi.org/10.1007/978-3-030-86230-5_19
https://doi.org/10.1007/978-3-030-86230-5_19
https://doi.org/10.1007/978-3-030-05318-5_8
https://doi.org/10.1007/978-3-030-05318-5_8
https://doi.org/10.1109/4235.942529
https://doi.org/10.1109/4235.942529
http://www.gp-field-guide.org.uk/
http://www.gp-field-guide.org.uk/
https://www.pordata.pt
https://doi.org/10.1007/11729976_29
https://doi.org/10.1007/978-3-319-78717-6_1
https://doi.org/10.1007/978-3-319-78717-6_1

Appendix

AutoML-DSGE Github. https://github.com/fillassuncao/automl-dsge/.

SNS - Portal da Transparência. https://transparencia.sns.gov.pt/.

WHO - Hearing Loss. https://www.who.int/news-room/fact-sheets/detail/
deafness-and-hearing-loss.

Jamile Silveira Tomiazzi, Danillo Roberto Pereira, Meire Aparecida Judai, Pa-
trícia Alexandra Antunes, and Ana Paula Alves Favareto. Performance of
machine-learning algorithms to pattern recognition and classification of hear-
ing impairment in brazilian farmers exposed to pesticide and/or cigarette
smoke. Environmental Science and Pollution Research, 26:6481–6491, 2019.

Binh Tran, Bing Xue, and Mengjie Zhang. Genetic programming for feature con-
struction and selection in classification on high-dimensional data. Memetic
Comput., 8(1):3–15, 2016a. doi: 10.1007/s12293-015-0173-y. URL https://doi.
org/10.1007/s12293-015-0173-y.

Binh Tran, Mengjie Zhang, and Bing Xue. Multiple feature construction in
classification on high-dimensional data using GP. In 2016 IEEE Symposium
Series on Computational Intelligence, SSCI 2016, Athens, Greece, December 6-9,
2016, pages 1–8. IEEE, 2016b. doi: 10.1109/SSCI.2016.7850130. URL https:
//doi.org/10.1109/SSCI.2016.7850130.

Ioannis G. Tsoulos, Alexandros T. Tzallas, and Dimitrios G. Tsalikakis. Pre-
diction of COVID-19 cases using constructed features by grammatical evolu-
tion. Symmetry, 14(10):2149, 2022. doi: 10.3390/sym14102149. URL https:
//doi.org/10.3390/sym14102149.

Hengzhe Zhang, Aimin Zhou, and Hu Zhang. An evolutionary forest for regres-
sion. IEEE Trans. Evol. Comput., 26(4):735–749, 2022. doi: 10.1109/TEVC.2021.
3136667. URL https://doi.org/10.1109/TEVC.2021.3136667.

Xian-Da Zhang. A Matrix Algebra Approach to Artificial Intelligence. Springer, 2020.
ISBN 978-981-15-2769-2. doi: 10.1007/978-981-15-2770-8. URL https://doi.
org/10.1007/978-981-15-2770-8.

66

https://github.com/fillassuncao/automl-dsge/
https://transparencia.sns.gov.pt/
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://doi.org/10.1007/s12293-015-0173-y
https://doi.org/10.1007/s12293-015-0173-y
https://doi.org/10.1109/SSCI.2016.7850130
https://doi.org/10.1109/SSCI.2016.7850130
https://doi.org/10.3390/sym14102149
https://doi.org/10.3390/sym14102149
https://doi.org/10.1109/TEVC.2021.3136667
https://doi.org/10.1007/978-981-15-2770-8
https://doi.org/10.1007/978-981-15-2770-8

Appendices

67

Appendix A

Hyper-parameter Search for Feature
Engineering Methods

For each experiment in Section 4.2.2, some of the hyper-parameters of UMAP,
SOMs and AEs were analysed concerning testing performance to check if the
choice of the hyper-parameters was not negatively biasing the performance of
these methods.

Regarding the UMAP algorithms, we performed a grid search for the n_neighbors
and min_dist parameters, allowing them to take the values in {5, 15, 25} and
{0.1, 0.5, 1} respectively. For the SOMs algorithms, a grid search was made for
the sigma and learning rate, both allowed to take the values in {0.1, 1}, and for
the architecture, i.e. the grid being Nx1 or 1xN. Concerning the AEs algorithms,
we checked the activation functions, linear or ReLU, the number of epochs, 50 or
100, and the size of the hidden layer, with {20, 30, 40, 50} as possible values. The
number of components was set according to the current FEDORA individual of
the given experiment.

Figures A.1, A.2, A.3, A.4 and A.5 display the results obtained for the rf-200-100,
xgb-200-100, dt-200-100, dt-1000-50 and mlp-100-50 experiments, respectively.

Notice that the default parameters used in Section 4.2.2 were 15 n_neighbors and
0.1 min_dist for the UMAP algorithm, Nx1 architecture, sigma of 1 and learning
rate of 1 for the SOM algorithm and linear activation functions, with 50 epochs
and 50 hidden size for the AE. The results show that the chosen hyper-parameters
do not negatively bias the performance of the algorithms, since there are no mean-
ingful differences across all testing models. The only considerable difference can
be seen in the choice of linear or ReLU activation functions for the AE algorithm
when using the Multi-Layer Perceptron (MLP) classifier as the testing model in
Panels A.1c, A.2c and A.5c.

69

Chapter 5

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.60

0.62

0.64

0.66

0.68

0.70

0.72

Ba
la

nc
ed

 A
cc

ur
ac

y

UMAP Grid Search

Hyper-parameters
n_neigh=5 dist=0.1
n_neigh=5 dist=0.5
n_neigh=5 dist=1.0
n_neigh=15 dist=0.1
n_neigh=15 dist=0.5

n_neigh=15 dist=1.0
n_neigh=25 dist=0.1
n_neigh=25 dist=0.5
n_neigh=25 dist=1.0

(a) UMAP Grid Search

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Ba
la

nc
ed

 A
cc

ur
ac

y

SOM Grid Search

Hyper-parameters
Arch=1xN sigma=0.1 lr=0.1
Arch=1xN sigma=0.1 lr=1.0
Arch=1xN sigma=1.0 lr=0.1
Arch=1xN sigma=1.0 lr=1.0

Arch=Nx1 sigma=0.1 lr=0.1
Arch=Nx1 sigma=0.1 lr=1.0
Arch=Nx1 sigma=1.0 lr=0.1
Arch=Nx1 sigma=1.0 lr=1.0

(b) Self-Organizing Maps Grid Search

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ba
la

nc
ed

 A
cc

ur
ac

y

Autoencoder Grid Search
Hyper-parameters

linear e=50 hs=20
linear e=50 hs=30
linear e=50 hs=40
linear e=50 hs=50

linear e=100 hs=20
linear e=100 hs=30
linear e=100 hs=40
linear e=100 hs=50

relu e=50 hs=20
relu e=50 hs=30
relu e=50 hs=40
relu e=50 hs=50

relu e=100 hs=20
relu e=100 hs=30
relu e=100 hs=40
relu e=100 hs=50

(c) Autoencoders Grid Search

Figure A.1: Hyper-parameter Search for rf-200-100

70

Hyper-parameter Search for Feature Engineering Methods

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.62

0.64

0.66

0.68

0.70

0.72

Ba
la

nc
ed

 A
cc

ur
ac

y

UMAP Grid Search

Hyper-parameters
n_neigh=5 dist=0.1
n_neigh=5 dist=0.5
n_neigh=5 dist=1.0
n_neigh=15 dist=0.1
n_neigh=15 dist=0.5

n_neigh=15 dist=1.0
n_neigh=25 dist=0.1
n_neigh=25 dist=0.5
n_neigh=25 dist=1.0

(a) UMAP Grid Search

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.64

0.66

0.68

0.70

0.72

0.74

Ba
la

nc
ed

 A
cc

ur
ac

y

SOM Grid Search

Hyper-parameters
Arch=1xN sigma=0.1 lr=0.1
Arch=1xN sigma=0.1 lr=1.0
Arch=1xN sigma=1.0 lr=0.1
Arch=1xN sigma=1.0 lr=1.0

Arch=Nx1 sigma=0.1 lr=0.1
Arch=Nx1 sigma=0.1 lr=1.0
Arch=Nx1 sigma=1.0 lr=0.1
Arch=Nx1 sigma=1.0 lr=1.0

(b) Self-Organizing Maps Grid Search

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ba
la

nc
ed

 A
cc

ur
ac

y

Autoencoder Grid Search
Hyper-parameters

linear e=50 hs=20
linear e=50 hs=30
linear e=50 hs=40
linear e=50 hs=50

linear e=100 hs=20
linear e=100 hs=30
linear e=100 hs=40
linear e=100 hs=50

relu e=50 hs=20
relu e=50 hs=30
relu e=50 hs=40
relu e=50 hs=50

relu e=100 hs=20
relu e=100 hs=30
relu e=100 hs=40
relu e=100 hs=50

(c) Autoencoders Grid Search

Figure A.2: Hyper-parameter Search for xgb-200-100

71

Chapter 5

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.50

0.55

0.60

0.65

0.70

Ba
la

nc
ed

 A
cc

ur
ac

y

UMAP Grid Search

Hyper-parameters
n_neigh=5 dist=0.1
n_neigh=5 dist=0.5
n_neigh=5 dist=1.0
n_neigh=15 dist=0.1
n_neigh=15 dist=0.5

n_neigh=15 dist=1.0
n_neigh=25 dist=0.1
n_neigh=25 dist=0.5
n_neigh=25 dist=1.0

(a) UMAP Grid Search

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

Ba
la

nc
ed

 A
cc

ur
ac

y

SOM Grid Search

Hyper-parameters
Arch=1xN sigma=0.1 lr=0.1
Arch=1xN sigma=0.1 lr=1.0
Arch=1xN sigma=1.0 lr=0.1
Arch=1xN sigma=1.0 lr=1.0

Arch=Nx1 sigma=0.1 lr=0.1
Arch=Nx1 sigma=0.1 lr=1.0
Arch=Nx1 sigma=1.0 lr=0.1
Arch=Nx1 sigma=1.0 lr=1.0

(b) Self-Organizing Maps Grid Search

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.50

0.55

0.60

0.65

0.70

0.75

Ba
la

nc
ed

 A
cc

ur
ac

y

Autoencoder Grid Search
Hyper-parameters

linear e=50 hs=20
linear e=50 hs=30
linear e=50 hs=40
linear e=50 hs=50

linear e=100 hs=20
linear e=100 hs=30
linear e=100 hs=40
linear e=100 hs=50

relu e=50 hs=20
relu e=50 hs=30
relu e=50 hs=40
relu e=50 hs=50

relu e=100 hs=20
relu e=100 hs=30
relu e=100 hs=40
relu e=100 hs=50

(c) Autoencoders Grid Search

Figure A.3: Hyper-parameter Search for dt-200-100

72

Hyper-parameter Search for Feature Engineering Methods

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.50

0.55

0.60

0.65

0.70

Ba
la

nc
ed

 A
cc

ur
ac

y

UMAP Grid Search

Hyper-parameters
n_neigh=5 dist=0.1
n_neigh=5 dist=0.5
n_neigh=5 dist=1.0
n_neigh=15 dist=0.1
n_neigh=15 dist=0.5

n_neigh=15 dist=1.0
n_neigh=25 dist=0.1
n_neigh=25 dist=0.5
n_neigh=25 dist=1.0

(a) UMAP Grid Search

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

Ba
la

nc
ed

 A
cc

ur
ac

y

SOM Grid Search

Hyper-parameters
Arch=1xN sigma=0.1 lr=0.1
Arch=1xN sigma=0.1 lr=1.0
Arch=1xN sigma=1.0 lr=0.1
Arch=1xN sigma=1.0 lr=1.0

Arch=Nx1 sigma=0.1 lr=0.1
Arch=Nx1 sigma=0.1 lr=1.0
Arch=Nx1 sigma=1.0 lr=0.1
Arch=Nx1 sigma=1.0 lr=1.0

(b) Self-Organizing Maps Grid Search

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.55

0.60

0.65

0.70

0.75

Ba
la

nc
ed

 A
cc

ur
ac

y

Autoencoder Grid Search
Hyper-parameters

linear e=50 hs=20
linear e=50 hs=30
linear e=50 hs=40
linear e=50 hs=50

linear e=100 hs=20
linear e=100 hs=30
linear e=100 hs=40
linear e=100 hs=50

relu e=50 hs=20
relu e=50 hs=30
relu e=50 hs=40
relu e=50 hs=50

relu e=100 hs=20
relu e=100 hs=30
relu e=100 hs=40
relu e=100 hs=50

(c) Autoencoders Grid Search

Figure A.4: Hyper-parameter Search for dt-1000-50

73

Chapter 5

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.60

0.62

0.64

0.66

0.68

0.70

0.72

Ba
la

nc
ed

 A
cc

ur
ac

y

UMAP Grid Search

Hyper-parameters
n_neigh=5 dist=0.1
n_neigh=5 dist=0.5
n_neigh=5 dist=1.0
n_neigh=15 dist=0.1
n_neigh=15 dist=0.5

n_neigh=15 dist=1.0
n_neigh=25 dist=0.1
n_neigh=25 dist=0.5
n_neigh=25 dist=1.0

(a) UMAP Grid Search

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Ba
la

nc
ed

 A
cc

ur
ac

y

SOM Grid Search

Hyper-parameters
Arch=1xN sigma=0.1 lr=0.1
Arch=1xN sigma=0.1 lr=1.0
Arch=1xN sigma=1.0 lr=0.1
Arch=1xN sigma=1.0 lr=1.0

Arch=Nx1 sigma=0.1 lr=0.1
Arch=Nx1 sigma=0.1 lr=1.0
Arch=Nx1 sigma=1.0 lr=0.1
Arch=Nx1 sigma=1.0 lr=1.0

(b) Self-Organizing Maps Grid Search

DecisionTreeClassifier RandomForestClassifier XGBClassifier MLPClassifier
Model

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ba
la

nc
ed

 A
cc

ur
ac

y

Autoencoder Grid Search
Hyper-parameters

linear e=50 hs=20
linear e=50 hs=30
linear e=50 hs=40
linear e=50 hs=50

linear e=100 hs=20
linear e=100 hs=30
linear e=100 hs=40
linear e=100 hs=50

relu e=50 hs=20
relu e=50 hs=30
relu e=50 hs=40
relu e=50 hs=50

relu e=100 hs=20
relu e=100 hs=30
relu e=100 hs=40
relu e=100 hs=50

(c) Autoencoders Grid Search

Figure A.5: Hyper-parameter Search for mlp-100-50

74

	Introduction
	Objectives
	Contributions
	Organization

	Background
	Evolutionary Computation
	Automated Machine Learning
	Related Work

	The FEDORA Framework
	Implementation Details

	Experimental Study
	Hearing Loss Detection Dataset
	FEDORA for Feature Engineering
	AutoML with FEDORA

	Conclusion
	Future Work

	Appendix Hyper-parameter Search for Feature Engineering Methods

