

Bernardo Marques Graça

Accelerating fault injection campaigns

using failure models

Dissertation in the context of the Master in Informatics Engineering,

specialization in Software Engineering, advised by Professor Frederico

Cerveira, co-advised by Professor Henrique Madeira, and presented to

the Department of Informatics Engineering of the Faculty of Sciences

and Technology of the University of Coimbra.

July of 2023

DEPARTMENT OF INFORMATICS ENGINEERING

Bernardo Marques Graça

Accelerating fault injection
campaigns using failure models

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. Frederico Cerveira,
co-advised by Prof. Henrique Madeira and presented to the Department of
Informatics Engineering of the Faculty of Sciences and Technology of the

University of Coimbra.

July of 2023

Abstract

Computer systems are becoming increasingly complex and being used for vari-
ous tasks, some of which are critical. For a trustable service delivery, the system
must be able to avoid or tolerate failures that may occur during its execution.
Fault injection is an experimental technique for the validation of a system and its
fault-handling mechanisms.

Campaigns involving Fault Injection (FI) may last months, and care must be taken
during their planning in order not to produce unreliable results. Thus, improv-
ing fault injection efficiency through approaches that aim to accelerate the exper-
iments without losing representativeness is important.

The goal of this dissertation is the acceleration of fault injection campaigns. For
that purpose, we developed a technique for injecting failure models. Failure mod-
els are the outcome of a fault like a crash or hang that can affect a system. To
validate the technique, we performed experiments in a virtualized setup in order
to compare our injection technique with traditional FI.

We started by studying the state of the art of dependability and FI to understand
the approaches used for FI acceleration and support our choices and help us de-
fine our technique. We performed 1739 experiments over three months, and the
results obtained from our validation show that the injection of crash failures in
the hypervisor can replace hardware FI when we aim to analyze specific metrics,
producing failure results almost 3x faster. The hang failure injection is also a valid
alternative to hardware FI when we want to study the manifestation latency. The
results show that injecting failures can be an effective approach to evaluate the
performance of fault tolerance mechanisms, however it is not a good alternative
for evaluating the dependability of a system or for designing failure prediction
mechanisms

Keywords

Dependability, Fault injection, Failure injection, Fault injection tools, Fault injec-
tion acceleration, Hardware faults, Software faults, Virtualization.

v

Resumo

Os sistemas informáticos estão a tornar-se cada vez mais complexos e a ser usados
para variadas tarefas, sendo algumas delas consideradas críticas. Para um fornec-
imento fiável do serviço, o sistema deve conseguir evitar ou tolerar avarias que
possam ocorrer durante a sua execução. Injeção de falhas é uma técnica baseada
em experiências, usada para a validação de um sistema e dos seus mecanismos
de tratamento de falhas.

As campanhas de injeção de falhas podem durar vários meses e deve-se ter cuidado
durante o seu planeamento de modo a que não produza resultados não fiaveis.
Assim, é importante a melhoria da eficiência de injeção de falhas através de abor-
dagens que tenham o objetivo de acelerar as experiências sem a perda de repre-
sentatividade.

O objetivo desta dissertação é a aceleração de campanhas de injeção de falhas.
Para esse propósito, desenvolvemos uma técnica para a injeção de modelos de
avarias de maneira a acelerar a validação de um sistema. Um modelo de avaria é
o resultado de uma falha como um crash ou hang que pode afetar o sistema. Para
validar a técnica, efetuamos experiências num sistema virtualizado para com-
parar a nossa abordagem com a injeção de falhas tradicional.

Começamos por realizar um estudo acerca do estado da arte da confiabilidade e
da injeção de falhas para se perceber algumas abordagens e também para apoiar
as escolhas efetuadas na implementação da nossa técnica. Realizamos 1739 exper-
iências ao longo de três meses e os resultados obtidos a partir da nossa validação
mostrou que a injeção de crashes no hypervisor pode substituir a injeção de falhas
de hardware quando temos como objetivo estudar certas métricas, produzindo
resultados de avarias aproximadamente 3x mais rapido. A injeção de hangs pode
também ser uma alternativa à injeção de falhas de hardware quando queremos
estudar a latência da manifestação da avaria. Assim a injeção de avarias pode
ser uma abordagem eficiente quando o objetivo é avaliar um mecanismo de tol-
erância de falhas no entanto não é uma boa alternativa quando se quer avaliar
a confiabilidade de um sistema ou para desenhar mecanismos de previsão de
avarias.

Palavras-Chave

Confiabilidade, Injeção de falhas, Injeção de avarias, Ferramentas de injeção de
falhas, Aceleração de Injeção de Falhas, Falhas de hardware, Falhas de software,
Virtualização

vii

Acknowledgements

First, I would like to thank my parents for all the efforts and sacrifices they made
during this academic stage of mine and who supported me through all the good
and bad times. I want to thank my sister for her support. I also thank my girl-
friend for all her support and motivation throughout this work and for believing
in me.

I also want to thank my advisor Frederico Cerveira because, without him, this
work would not have been possible. I appreciate all the attention and help he
gave me at all times and all the teachings, having always been ready to answer
and solve my doubts. I also thank my co-advisor Henrique Madeira for his help
and suggestions during the development of this work.

I thank all my family for their support through these five years and for the mo-
tivation they gave me. Finally, I want to thank my friends for all the good times
and fun we spent together, for all the help in this phase, and for the moments of
work we spent together.

ix

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Contributions . 2
1.4 Document Structure . 2

2 Background 5
2.1 Dependability . 5

2.1.1 Dependability Attributes . 5
2.1.2 Fault . 6
2.1.3 Error . 7
2.1.4 Failure . 8
2.1.5 The Chain of a System Failure 9
2.1.6 Dependability Means . 10

2.2 Fault Injection . 11
2.2.1 Fault Injection Properties . 11
2.2.2 Hardware Fault Injection . 13
2.2.3 Software Fault Injection . 15
2.2.4 Fault Injection Tools . 17

3 State of the Art 19
3.1 ucXception Tool . 19

3.1.1 ucXception Architecture . 19
3.1.2 ucXception Components . 20
3.1.3 ucXception Fault Injectors . 21

3.2 Fault Injection Acceleration . 23
3.2.1 FI Acceleration Techniques of Hardware Faults 23
3.2.2 FI Acceleration Techniques of Software Faults 25
3.2.3 Failure Injection . 26

4 Approach 29
4.1 Failure Model Injection . 30
4.2 Validation and Comparison to Fault Injection 30

4.2.1 Setup . 30
4.2.2 Recovery Mechanism . 31
4.2.3 Fault Injection . 32
4.2.4 Failure Model Injection Validation 32
4.2.5 Failure Model . 34
4.2.6 Metrics . 35

xi

Chapter 0

4.2.7 Fault and Failure Model Injection Flow 36

5 Results 39
5.1 Dataset Characterization . 39
5.2 Failure Percentage . 41
5.3 Manifestation Latency Analysis . 42
5.4 Percentage of recovered VMs Analysis 47
5.5 Downtime Analysis . 50
5.6 Limitations . 50
5.7 Summary . 52

6 Planning and Methodology 53
6.1 First Semester . 53
6.2 Second Semester . 54

6.2.1 Limitations . 56

7 Conclusion 59
7.1 Future Work . 60

Appendix A Fault and Failure Model Injection Flow 67

Appendix B ISSRE 2023 - Paper Submission 71

xii

Acronyms

DTI Data Type Identification

DUE Detected Unrecoverable Error

FI Fault Injection

HFI Hardware Fault Injection

HWIFI Hardware Implemented Fault Injection

ISA Instruction Set Architecture

ODC Orthogonal Defect Classification

SDC Silent Data Corruption

SEU Single Event Upset

SFI Software Fault Injection

SWIFI Software-Implemented Fault Injection

VM Virtual Machine

VMs Virtual Machines

xiii

List of Figures

2.1 The chain of a system failure [2] . 10

3.1 ucXception architecture [21] . 20
3.2 ucXception - Hardware Faults in Virtualized systems Fault Injec-

tion (FI) [21] . 22

4.1 Virtualized system setup architecture [20] 31
4.2 System detailed architecture [31] . 33
4.3 Experimental Setup [20] . 34
4.4 Manifestation Latency Scheme . 36

5.1 Register distribution in the HW dataset 40
5.2 Operator Distribution . 41
5.3 Manifestation Latency - Ping . 43
5.4 Manifestation Latency - Ping (subset of datasets) 44
5.5 Manifestation Latency - Solr (Workload) 45
5.6 Manifestation Latency - Solr (Workload) (subset of datasets) 46
5.7 Recovered Virtual Machines (VMs) (Solr) 48
5.8 Recovered VMs (OS) . 49
5.9 Cumulative Histogram Recovered VMs (solr) 49
5.10 Cumulative Histogram Recovered VMs (OS) 50
5.11 Recovery Downtime . 51

6.1 First Semester Work . 54
6.2 Second Semester Work . 55
6.3 Actual Second Semester Work . 56
6.4 Risks matrix . 57

A.1 Hardware FI Flow . 68
A.2 Software FI Flow . 69
A.3 Failure Model Injection Flow . 70

xv

List of Tables

2.1 Fault Classification Table [2] . 7
2.2 Defined Fault Model [19] . 17
2.3 FI Tools . 18

3.1 FI Acceleration Techniques . 26

5.1 Datasets Characterization . 40
5.2 Failure Statistics per Dataset . 42

6.1 Risks Table . 56

xvii

Chapter 1

Introduction

Nowadays, we are becoming more dependent on hardware-heavy and software-
heavy systems for various services. The constant technological innovation and
the application of new technologies in multiple tasks, from the most simple to the
most critical, means that systems are becoming more complex, involving multiple
components and integrating different features. Therefore, ensuring that a system
does not fail and consequently stops providing the correct service is essential.

FI is an important technique for evaluating dependability that can generate real-
istic results faster than through the natural occurrence of faults during the service
deliverance of a system. In this technique, faults are injected into a system in or-
der to study its behavior and understand how we can improve its reliability. FI is
a vast research field that can be useful in different scenarios, and there are already
multiple techniques targeting different systems and goals. However, despite the
existing research, there are still limitations regarding the acceleration of FI.

1.1 Motivation

FI can be seen as a viable solution for evaluating systems and their components
however, it is an experimental process that can be slow and last several months
in order to perform an evaluation. This drawback is a consequence of the com-
plexity of FI may present since there are multiple variables to be considered, such
as the fault type, where it should be injected, and the time of injection [1].

Therefore it is essential to improve the efficiency of FI through new research and
approaches, with the aim of keeping the consistency and representativeness of
results from the experiments. There are already multiple techniques and research
on this topic. However, there are still problems associated with the acceleration
of FI.

This dissertation was carried out in the context of the Master in Informatics En-
gineering (MEI) with specialization in software engineering at the University of
Coimbra. Thus, this dissertation should help research in the fault injection field
and allow the creation of new research strands to study new approaches. It is

1

Chapter 1

also integrated in VALU3S 1, a European project that aims to evaluate the state-
of-the-art V&V (verification and validation) methods for automated systems in
the industries such as agriculture, railway, healthcare, and aerospace.

1.2 Goals

Our main goal is to develop failure model injection (also referred to, in this dis-
sertation, as failure injection or the injection of failure models), compare it against
traditional fault injection and validate its ability as a technique capable of accel-
erating the FI process compared to traditional FI techniques. Although this type
of injection has already been used in other contexts, we aim to validate in which
situations it can replace FI and which failure models and injection points generate
more realistic results.

The other objective was the integration of our approach in the ucXception frame-
work in order to provide free access to the approach and enable other researchers
to use it and help in new research works that target the injection of failure models.

1.3 Contributions

As a result of this dissertation, we have written a paper submitted to ISSRE 2023
Conference 2. This paper summarizes the work conducted in this dissertation,
namely, the experiments and results obtained from the comparison between FI
and failure model injection.

We also contributed with a failure model injection tool in ucXception 3 so that
other people can use the tool for various academic purposes and new studies
involving failure models.

Lastly, we have created a GitHub repository 4 with all scripts necessary to per-
form campaigns in a virtualized setup identical to ours so that it can be used in
future works of FI or failure model injection field. It also comprises the scripts for
the result analysis used in this dissertation.

1.4 Document Structure

This dissertation comprises seven chapters: Introduction, Background, State of
the art, Approach, Results, Methodology, and Conclusion.

1https://valu3s.eu/
2https://issre.github.io/2023/
3https://ucxception.dei.uc.pt/
4https://github.com/ucx-code/fi-campaign-manager

2

Introduction

The Chapter 1 identifies the scope and context of the dissertation and the report’s
motivation, goals, contributions, and structure.

In Chapter 2, a deep study of the multiple topics addressing this dissertation and
that support our investigation is presented. Firstly, the topic of dependability
and its various means are explained. Dependability refers to the evaluation of a
system and its service correctness. Afterward, we detail fault injection, a more
specific technique of dependability, and the main topic of this dissertation. This
section presents the multiple fault injection classes as well as the existing tools for
FI experiment performance.

The Chapter 3 describes in more detail the ucXception tool since it is the frame-
work where we will integrate our approach. Then we present FI acceleration
topic and its multiples techniques for hardware and software faults. Finally, we
present an overview of some existing failure injection techniques to accelerate
FI experiments and some tools that companies use to test their systems through
injection of failures.

The fourth chapter describes the setup that was used for the validation of our
technique. We also present the main characteristics of our approach, such as the
possible targets for the injection, the type of failures we injected, and the metrics
that were used to compare our technique with the traditional FI.

The Chapter 5 presents the results of our experiments. We studied each defined
metric and compared the data resulting from our approach with the traditional FI
datasets. In the end of the analysis, we presented a summary of all the results. We
also suggest future work that can be developed from the results and conclusions
we have achieved with this study.

Chapter 6 presents the plan and methodology for the first and second semesters
by describing the multiple stages of work and the respective Gantt charts. This
section also defines the limitations we faced during the dissertation, the risks
associated with the work developed in the second semester, and the mitigation
plans for each.

Lastly, the Chapter 7 summarizes the research scope and the conclusions we re-
trieved from all the work developed during the year.

3

Chapter 2

Background

This chapter provides all the background concepts of dependability in software
systems, an overview of fault injection, and its multiple tools that can be used for
fault injection campaigns.

2.1 Dependability

Nowadays, different systems are required to be trustworthy due to their increas-
ing use in multiple services that can be critical. Therefore, they cannot fail and
must always be available, or at least most of the time. Examples of services that
can be critical are bank management, hospital monitoring, or even airplanes. Soft-
ware should deliver correct service, that is, do the functions it was designed to
and implemented. Thus, dependability is an important factor that should be con-
sidered when evaluating a specific system.

A possible definition of dependability is "the ability to deliver service that can
justifiably be trusted" [2]. However, this definition is vague because it raises the
question: how do we consider a system to be trusted? Furthermore, trust is sub-
jective, it cannot be measured and may vary among different people and systems.

Therefore Avizienis et al. give another definition: "dependability of a system is
the ability to avoid service failures that are more frequent and more severe than
is acceptable" [2]. This idea means that during the execution of a service, the
system is probable to fail at some point, and we can define a level of acceptance
for the service failures that should not be exceeded. Dependability aims to control
failures and minimize its damage to the system in question.

2.1.1 Dependability Attributes

Dependability encompasses multiple attributes that should be used to charac-
terize and validate a system. If it meets those attributes, then it can be trusted.
As Avizienis et al. [2] refers, these attributes are availability, reliability, safety,
integrity, and maintainability. Although these attributes may be confused and

5

Chapter 2

overlap, there are differences between them and the way they relate to the sys-
tem.

• Availability refers to the system being operable most of the time. Modular-
ity and Redundancy can help a system reach the pretended level of avail-
ability [3].

• Reliability is the system’s ability to keep providing the correct service over
time.

• Safety is when the system might cause catastrophic events that may cause
death or environmental disasters. This attribute might not be present in
every system since not all systems evolve this type of danger when they fail
or stop.

• Integrity directs that unauthorized people or third-party systems should
not alter the respective service without authorization.

• Maintainability means that when a system fails, its repair or maintainabil-
ity should be easy.

Availability and reliability are two terms that seem similar, although availability
only concerns being operable all the time. On the other hand, reliability is the
deliverance of service correctness. Moreover, they have different ways of being
calculated. Reliability is proportional to mean time between failure (MTBF) [3],
which is the interval time between a system failure, an irregularity in the exe-
cution, and the next one. The formula to calculate the reliability of a system is
R(t) = e−λt where R(t) represents the reliability of the system at time t and λ is
the failure rate [4]. While availability results from the measure of two mean value
times: MTBF and mean time to repair (MTTR), meaning the mean time it takes to
repair from a failure. Thus, the following formula estimates the exact percentage
of availability MTBF

MTBF+MTTR

2.1.2 Fault

The dependability of a system is susceptible to threats. The first threat to depend-
ability is the fault, which can be a bug in the software code or a defect in one of the
multiple components composing a system, thus leaving the system in a state of
fault where it is vulnerable to errors. When a fault is present but is not activated,
it is described as dormant. Faults can be classified with the help of classes, and
each can belong to more than one type depending on its characteristics. Table 2.1
presents a scheme with all the fault type classifications and its description.

6

Background

Viewpoint Class Description
Development Fault Occurs in the development or maintenance phasePhase of creation or occurrence Operational Fault Happens when a user is using the service

Internal Fault Source is in the product itselfSystem Boundaries External Fault Results from the user or environment
Human-made Fault Human actions caused itPhenomenological cause Natural Fault Its causes did not have human participation in it

Hardware Fault Affects hardwareDimension Software Fault Affects programs or their data
Malicious Fault Introduced with the intent of damaging the systemObjective Non-malicious Fault There is no intention to harm the system
Deliberate Fault Created due to an erroneous decisionIntent Non Deliberate Fault Unintentionally introduced
Accidental Fault Introduced inadvertentlyCapability Incompetence Fault Lack of professional competence
Permanent Fault Persists in time, even if we restart the systemPersistence Transient Fault Determined in time and may disappear with a restart

Table 2.1: Fault Classification Table [2]

One fault can belong to multiple classes, although some cannot be used together
in a fault classification. For example, a fault cannot be classified as both natural
and intent simultaneously since a natural fault has no human intervention. Thus,
we cannot classify the purpose of its introduction into the system.

As mentioned in Table 2.1, a fault can be permanent or transient depending on
its persistence in the system over time. Within the permanent faults, we can dis-
tinguish them according to their reproducibility. If a fault’s activation is repro-
ducible, it is a solid or hard fault, whereas if it is not reproducible, it is defined as
an elusive or soft fault.

Transient faults can occur due to energetic particles. For example, a cosmic ray
can strike an electric circuit and cause a soft error which can be translated into
a bit-flip or the inversion of a state of a given processor [5]. Although such sit-
uations are rare, they can happen in all systems, particularly those farther away
from the earth’s surface (e.g., aircrafts, satellites), as these are more subject to
cosmic rays.

Elusive and transient faults can be grouped due to the way that they manifest as
intermittent faults [2], which is a fault that occurs intermittently, i.e., disappears
and shows up randomly, usually caused by an unstable component in a hardware
system [6].

2.1.3 Error

A fault activation causes an error. That is, the fault passes from a dormant to an
active state which can cause the incorrect service of the affected component and,
ultimately, may lead to the system’s failure. If the service detects the error and
activates an error message, it is defined as detected. By contrast, if the system
does not detect it, although it is present, it is called latent error [2]. Typically an
error affects one component and is called a single error, but if it involves more
than one component, it is called multiple related errors.

In a complex system, an error is even more harmful due to the probability of

7

Chapter 2

error propagation which is when an error turns into other errors, thus causing
an internal propagation within the component. When a component is dependent
on another component, it can propagate the error to it, leading to its failure, thus
providing incorrect service. Nowadays, systems are becoming more complex,
involving multiple components. Therefore, an error in a single component can
affect all of them through a propagation chain that can lead to a system failure.

2.1.4 Failure

A failure scenario is when a system deviates from the foreseen outcome. In other
words, the user or component that depends on the affected service detects an
anomaly that prevents it from performing its expected execution. Thus the ser-
vice cannot meet the requisites for which it was designed. A system does not fail
the same way every time and thus can have different failure modes, where each
one might have a different degree of severity too. Therefore, it is possible to char-
acterize an incorrect service according to four service failure mode viewpoints:
domain, detectability, consistency, and consequences [2].

The first viewpoint, the failure domain, refers to what failed in the system. The
failure can be a content failure, meaning that the service content presented to the
user differs from the expected, or a timing failure, when the content might be
accurate but delivered out of time, too early, or late compared to the desired time.
However, a service can fail simultaneously in content and time. In that scenario,
it is possible to distinguish the failure in two modes: when the system blocks
and no activity is observable by the user, which is a halt failure. Although, if the
system delivers its service but is inconsistent, it is an erratic failure, and therefore
the service cannot be trusted.

Another viewpoint is detectability. A system should check and validate the deliv-
ered service’s correctness through detection mechanisms to avoid a failure going
unnoticed during service use. When the system signals a deviation from the cor-
rect service, the failure is defined as a signaled failure. In reverse, if the failure
goes unrecognized, it is an unsignaled failure.

Consistency is about how different users of the service notice the incorrect service
of it. So, a service failure can affect all users in the same way, which is a consistent
failure since it is general to all. However, if only some users perceive a similar
incorrect service, it is an inconsistent failure. In that case, some may experience
correct service usage and not notice the respective failure.

To complete the four viewpoints used to characterize a failure is the consequences
of it. The various consequences of a failure must be taken into account and scru-
tinized in order to able to prevent undesirable and dangerous situations for the
user and for those who provide the system. If a failure causes insignificant dam-
age to the system and its service, it is a minor failure because its losses will be
small or nonexistent compared to the gains of the correct service. Thus, there is
no great urgency to resolve it. Although, if the failure endangers human lives or
its losses are enormous compared to the gains that the correct service generates,
it is classified as a catastrophic failure and presents an urgent character at the

8

Background

level of resolution to avoid the mentioned above situations. These viewpoints
support the characterization of a failure so that its mitigation can be adjusted and
it is possible to have adequate control over failures in different situations.

As mentioned, a fault can originate a soft error that can generate failures if there is
no protection against it. Silent Data Corruption (SDC) is the most severe type of
failure that can arise and refers to errors that are not detected by fault detection
mechanisms, thus affecting the outcome of the system. If the error is detected,
although not rectified, it is called a Detected Unrecoverable Error (DUE). When
the outcome was not affected by the failure, then it is defined as a "false DUE",
but if the failure affects the outcome, then it is a "true DUE" [5].

There are multiple studies addressing the origin of failures since it is vital to guar-
antee that a system delivers the correct service consistently. For example, Jim
Gray studied the various system failure modes of Tandem Systems [3], the dom-
inant enterprise of fault-tolerant computer manufacture. He concluded that the
administration of the service, such as operator action, system configuration, or
maintenance and software, are the dominant sources of failures. On the other
hand, hardware and environment (fire, flooding, etc.) are the minor cause. Op-
penheimer et al. analyzed three large-scale internet services, each with different
features and purposes, an online service, a content hosting service, and a read-
mostly one [7]. They found that operator error is the most significant failure cause
of two services (online and content) and software errors that affect the network
for the read-mostly service.

2.1.5 The Chain of a System Failure

In summary, a service can enter an erroneous state due to a fault, which can cause
it to not fulfill the expected functional or non-functional requirements, hence
leading to a service failure. Furthermore, systems are becoming more complex
and extensive due to the evolution of technologies and their uses, thus it becomes
more common for a system to suffer from faults that may affect its execution.

Figure 2.1 schematizes the events that may lead to a system failure. In this ex-
ample, the target system comprises components A and B. When a present fault is
activated, it will generate an error in the respective component that may cause it
to fail. In this situation, component B is dependent on component A. Therefore,
incorrect service delivery from component A will affect component B, which may
also generate a fault that becomes an error and later a failure. Thus, component
B fails, and because it is crucial for the correct service of the target system, it will
lead to the same sequence of fault, error, and failure propagating to the main
system, and thus the system can become inoperable. The chain of a system’s fail-
ure works the same way for most systems composed of multiple components. It
is, therefore, essential to mitigate fault occurrences and their effects before they
propagate.

9

Chapter 2

Figure 2.1: The chain of a system failure [2]

2.1.6 Dependability Means

As explained above, as the complexity and the number of components that com-
pose a system increase, so does the probability of service failure. Some techniques
can help improve dependability by acting on the faults that a system may con-
tain. These techniques can be divided into four categories with the same goals
but different approaches for achieving dependability. They are fault prevention,
fault tolerance, fault removal, and fault forecasting.

Fault prevention is a set of techniques that tries to prevent the happening of
a fault in order to deliver a reliable service. Although this technique may go
unnoticed, it is used in most development projects through methodologies and
rules common to all teams. The management of a project is a critical area for its
success. For example, in the requirement phase, some incomplete or ambiguous
requirements may lead to potential faults in the development phase. Thus it is
crucial to have adequate management to prevent faults from happening.

Another category is fault tolerance. These approaches try to make the system
maintain its service correctness in the presence of fault through tolerance of it.
Techniques such as fault-masking [2] or n-version programming [8] belong to
this category.

If the technique aims to remove the fault from the system, it belongs to the fault
removal category. Common techniques to remove faults are model checking or
simply testing the system to verify its functions.

The last category is fault forecasting, which contains techniques that aim to pre-
dict the number of faults and their incidence. Currently, these techniques are not

10

Background

widely explored in terms of fault field.

More than ever, computer systems need to be resilient, i.e., keep executing in the
presence of faults or undesirable situations, since they are increasingly used and
require involving a great complexity, thus being impossible to be free of vulnera-
bilities. Hence it is common for systems to contain fault handling mechanisms in
order to contain faults and thus increase their resilience. However, these mech-
anisms must be tested in multiple scenarios and with multiple types of faults.
Because of this need, the fault injection technique arises.

2.2 Fault Injection

Fault Injection (FI) is an experimental set of techniques that consists of intention-
ally injecting or emulating faults into a system computer to study how it will
behave in its presence. R. Barbosa et al. define FI as "the process of deliberately
introducing faults or errors in computer systems, allowing researchers and sys-
tem designers to study how computer systems react and behave in the presence
of faults" [9]. This means that it allows evaluating and analyzing how a system
handles a fault and its effect.

Faults are injected into a system defined as the target system, which is also the
system to be analyzed and evaluated. For that, the system must perform a se-
quence of predefined tasks to behave as in a typical execution of the system. This
sequence is called workload. In contrast, the set of faults injected in the target
system is called faultload [9].

A fault injection experiment injects a single fault in a target system and analyzes
the system and its behavior. Typically, for an accurate analysis of the system,
multiple faults are injected so that it is possible to analyze the behavior of the
system in many situations. The injection of a set of faults is called a fault injection
campaign [9].

It is used to evaluate and validate fault handling mechanisms. It can also be used
to analyze the impact of various faults and system behavior in their presence and
for dependability benchmarking.

2.2.1 Fault Injection Properties

There are many different techniques for fault injection, and each one has different
characteristics that should be compared to measure the viability of each technique
and simplify the choice of a particular technique to apply. Therefore, a set of
properties characterize every FI technique [9][1]:

• Controllability is controlling the time and location of the injection of faults.

• Repeatability is the ability to repeat the same experiment multiple times
and get the same result.

11

Chapter 2

• Observability is the ability to record and see the FI experiments to analyze
their effects.

• Reproducibility means the capacity to reproduce the result of a FI experi-
ment.

• Representativeness is the accuracy of a workload, a faultload, or the target
system compared to reality.

These five properties can apply to every (FI) experiment, although other proper-
ties can be considered in some specific injections [10]:

• Reachability is the ability to reach the fault location.

• Intrusiveness is the unintentional impact on the temporal and spatial be-
havior of the target system.

There are two modes of testing a target system, 1) injecting faults on a real sys-
tem or 2) injecting faults in a model that simulates a software system or emulates
a hardware system. We have a more accurate experiment in real systems since
it is the system itself that we want to test, i.e., higher system representativeness.
Furthermore, when the goal is to test fault handling mechanisms, it is more au-
thentic since we are testing the actual mechanisms [9].

Fault models used in simulation or emulation based systems may have higher
fault representativeness than injecting artificial faults on a real system since it is
not so accurate because we have no guarantees that the real faults are similar to
those injected. Also, the properties referred to above are higher in simulation
mode since there is better control over the target system and the fault injected.
However, it always depends on the simulation model’s degree of accuracy [11].
Finally, although there are some drawbacks regarding the overhead, in hardware
emulation and especially in software simulation, there is a significant time over-
head [6]. Currently, multiple fault injection techniques use both ways to test.
These techniques are called Hybrid Fault Injection [9].

The application of FI requires much complexity since, for an accurate analysis of
the system, it is also necessary that the faults are precise and representative of
reality. Without a good representation of reality, a system cannot be guaranteed
to behave as it does when there is a real fault. Therefore three parameters should
be considered and studied when we want to perform a FI experiment to ensure
the injection has accurate results [12][13].

The first is fault type, which can be seen as "what to inject", meaning the fault
model and its characteristics. This choice defines the fault representativeness
which should be as high as possible so that the FI experiment is as close as possi-
ble to the reality we want to evaluate. Another parameter is fault location which
means "where to inject", the location on injection is essential because it is not vi-
able to inject a fault in every location since there are a massive number of locations
where we can inject [1]. Lastly is the injection time meaning "when to inject",
which needs to be considered to achieve a good accuracy of the time when the

12

Background

fault happened in a realistic situation since the execution of a system has multiple
states that vary across the time.

It is possible to inject various types of faults into multiple systems. The following
sections present the different hardware and software FI classes.

2.2.2 Hardware Fault Injection

Hardware Fault Injection (HFI) is the injection of faults regarding the hardware
part of a system, for example, a component or a microcontroller. These faults can
occur due to production defects, the aging of the components, or from radiation
[14].

A hardware fault can be permanent, transient, or intermittent [6]. Depending on
the injection injection form that is chosen, these three types can be injected with
more or less difficulty.

Hardware Implemented FI

Hardware Implemented Fault Injection (HWIFI) includes techniques for injecting
physical faults in the target system using hardware. Although it is not the most
used technique type, it has some advantages in injecting via hardware. One ad-
vantage is that for the injection of a fault is not necessary to change the target
hardware, i.e., the intrusiveness is minimum for most of the techniques inserted
in this category. The fault representativeness is expected to be higher since ac-
tual faults are injected into the real hardware [9]. Also, the reachability property
is typically higher since it is possible to reach specific fault locations with some
techniques involving radiation [6]. On the other hand, there are some drawbacks
like the cost. The application of fault injection experiments through hardware
may need particular types of equipment that can be expensive [15]. Furthermore,
these techniques usually have lower controllability because it is difficult to man-
age when a fault is going to happen and the system’s state. Likewise, these tech-
niques have low observability since the data collection to analyze the results may
be complex, making the technique not viable for some experiments [6] [16].

One technique is the pin-level FI. This technique uses pins of digital circuits,
changing their logical values from 0 to 1 and vice versa, simulating a "stuck-at"
fault through probes connected to the circuits [17]. However, the technique be-
came outdated due to the increasing complexity of the electronic circuits of most
available computer systems [9]. Power supply disturbances (PSDs) are infre-
quently used due to low repeatability. However, they can complement other FI
techniques for evaluating error detection mechanisms [9].

Another technique used is test port-based, which consists of setting a breakpoint
to know the target location and then reading the target location’s value via the
test port, manipulating it, and writing it back with the fault value. This technique
is suitable for modern microprocessors since they are built with debugging and
testing features accessed with test ports. The fault type to be injected depends on

13

Chapter 2

these features supported by microprocessors [9].The principal advantage of this
technique is the minimum intrusiveness that it causes to the target system. How-
ever, this injection type has some limitations, such as the difficulty of accessing
hardware structures in the microarchitecture that are invisible to the programmer
since the manufacturers usually do not disclose information accessing that struc-
tures. The time overhead can impact the efficiency of FI, and ports such as JTAG
or BDM are low-speed ports which can be a hindrance in the experiences [9].

Radiation-Based FI

As said before, radiation can hit a system component and make a bit-flip in its
circuits. This bit-flip can be defined as a Single Event Upset (SEU), a transient
fault that affects registers and microcontrollers’ memories [14]. Therefore, a way
of injecting faults into a target system is by exposing it to radiation to evaluate
fault tolerance mechanisms [9]. Furthermore, this type of injection allows better
reachability since it is possible to inject faults in challenging accessible fault lo-
cations. For example, with the Heavy-ion method, it is feasible to inject faults in
VLSI circuits in exclusive locations [6]. However, the controllability of this set of
techniques is very low since we cannot control the time and location of a specific
injection, leading to low repeatability [9].

Software-Implemented Fault Injection of Hardware Faults

One manner of injecting faults in target hardware is through software. This set of
techniques is called Software-Implemented Fault Injection (SWIFI) and consists in
executing a software code that emulates a hardware fault in a specific component
of the target system, like the register or memory corruption [18]. This type of
injection has been increasingly used since it presents less complexity and cost
than hardware-implemented FI. Another advantage of this set of methods is their
portability because it is more readily applicable to other fault types and systems.
However, there are some limitations, like the difficulty of emulating a permanent
fault since it needs to manipulate that fault every time the system reads it. Their
reachability is usually lower than hardware-implemented [18]. As is also its fault
representativeness since faults generated by software may not be similar to actual
physical faults [17]. As R. Barbosa et al. says, the representativeness depends on
the presumption that SWIFI can emulate real hardware fault effects [9].

There are two typical approaches for hardware faults emulation by software: run-
time injection, where faults are injected during the system’s workload execution.
In this approach, the run-time overhead may be significant since it needs to stop
the workload to inject a fault and then start the workload again, thus being more
intrusive to the target system. The other approach is pre run-time injection, and
this technique presupposes faults are injected before the workload begins, hav-
ing less run-time overhead in comparison with run-time approaches. However,
performing a complete fault injection campaign is more time-consuming since it
needs to prepare each fault injection that composes a campaign [9][17].

14

Background

Simulation-Based Fault Injection

FI can be conducted through the simulation model of the target hardware in dif-
ferent levels like the device level, logical level, Instruction Set Architecture (ISA)
level, block level, or system level [9]. The target system and faults are modeled in
software, typically a fault simulator [16].

A critical point of simulation FI is system representativeness since the simulated
model needs to be accurate with the real one so that the FI results may be repre-
sentative of reality [6][14].

This type of injection allows the injection of both permanent and transient faults.
Usually, it presents higher controllability due to better control of a fault’s timing
and location and high observability, thus more appropriate for rigorous fault in-
jection effects analysis [18]. Also, the level of intrusiveness is minimum since the
injection is not on the real system, not having the risk of damaging it. Therefore,
it is a good way of evaluating a system in the early stages of development and
design when there is no physical prototype [14][17]. Although there are some
drawbacks, like the development efforts it takes to model the target system and
faults model, the accuracy of the model. Also, it is very time-consuming the per-
formance of simulation tests [6][16].

Hardware Emulation-Based Fault Injection

As referred, simulation-based is very time-consuming in performing the FI ex-
periments. Therefore, Hardware Emulation-Based FI arises to overcome this lim-
itation [16]. This technique uses Field Programmable Gate Arrays circuit for the
hardware emulation to speed up the experiments [6]. This technique has the same
benefits as the simulation-based and is less time-consuming for the experiments.
However, the observability property can be low since communication with the
emulated circuit is needed to collect and analyze the results [9].

Hybrid Approaches for Hardware Fault Injection

Nowadays, it is common to combine different techniques of injection in order to
improve the accuracy and efficiency of a FI campaign. A typical combination is
the software-implemented FI with monitorization by hardware which is usually
more accurate [6]. These combinations are made to extract maximum efficiency
and consistency of results from a fault injection.

2.2.3 Software Fault Injection

Software faults are one of the principal causes of failures in a system due to the
common mistakes that programmers make in developing a system [3][7]. There-
fore, the system must handle its respective faults and maintain its resilience. This
situation is tested and validated through FI of software faults.

15

Chapter 2

Software Fault Injection (SFI) is recent in comparison with hardware FI [12], and
the fault target is software, thus being difficult to inject software faults through
hardware. Therefore the techniques for SFI use only software-implemented fault
injection [9].

However, a critical point of SFI is fault representativeness since it is difficult to
predict the mistakes made by a human, and modeling it is incredibly complicated
and subjective [9] [19]. For an accurate FI experiment, the injected faults must
reproduce the residual faults of a program. Residual faults are the ones present
in the software that were not detected by the testing of the system [12].

SFI has two main approaches that can be used to perform an experiment in a
target system: fault injection and error injection.

SFI with Error Injection

Error injection tries to emulate the effects of a fault by injecting the error that
a fault can generate, i.e. instead of injecting the software faults, we emulate
the effects of it [12]. According to R. Barbosa et al., two main techniques are
used when injecting errors: program state manipulation, which consists of alter-
ing variables, points, and other data stored in CPU-Registers or main memory.
In comparison, parameter corruption is modifying functions parameters, proce-
dures, and system calls [9].

Error injection is a helpful method for robustness testing since representativeness
is not the critical point for that type of testing because the goal is to discover
frailties in the component that builds a system [12].

FI of Software Faults

The other way to evaluate a system concerning software faults is by changing the
source code, object, or machine code to introduce a fault. These manipulations
are defined as mutations [9].

The characterization and classification of software faults are crucial for an accu-
rate and consistent FI experiment. Thus, Durães et al. created a fault model based
on analyzing several programs where they collected the faults found in them [19].
They used 12 programs as fault sources and found 668 faults in total. First, they
classified the faults according to the Orthogonal Defect Classification (ODC), a
technique for fault classification that is widely used and allows comparison with
other techniques. This method categorizes a fault according to its characteristics
and can be an assignment, checking, interface, timing/serialization, algorithm,
or function. Then, through precise analysis and study, they defined thirteen op-
erators, each of which contemplates a type of fault [19]. Table 2.2 presents a table
with the defined operators.

This fault model is one of the most accepted and, therefore, one of the most used
in SFI [12][20]. Although representativeness remains a critical point, it is still
studied to improve the accuracy of SFI.

16

Background

Operator Fault Type
OMFC MFC - Missing Function call

OMVIV MCIC - Missing variable initialization using a value
OMVAV MVAV - Missing variable assignment using a value
OMVAE MVAE - Missing variable assignment using an expression
OMIA MIA - Missing if construct arround statements
OMIFS MIFS - Missing if construct plus statements
OMIEB MIEB - Missing if construct plus statemnets plus else before statements

OMLAC MLAC - Missing "AND EXPR" in expression used as branch condition
OMLOC MLOC - Missing "OR EXPR" in expression used as branch condition
OMLPA MLPA - Missing small and localized part of the algorithm
OWVAV WVAV - Wrong value assigned to variable
OWPFV WPFV - Wrong variable used in parameter of function call
OWAEP WAEP - Wrong arithmetic expression in parameter of a function call

Table 2.2: Defined Fault Model [19]

If we are concerned about the accuracy of the effects caused by the injected faults,
then this approach is suitable compared to error injection since the goal is to in-
ject faults that are representative of the ones existing in the field of a target sys-
tem. However, this goal is not easy to achieve since it is necessary for a thorough
analysis of the location of the fault, i.e. which instructions should be changed to
represent the actual faults in a system [12]. For example, in a random location,
SFI campaign will have fallacious results since we are injecting faults in locations
that might never activate the respective fault, and this process can be slow. A
drawback of mutations is that they involve access to the source code and hence
a recompilation of code which can be a long process. Durães et al. developed
the G-SWFIT technique [19], which consists in performing the mutations on the
binary code. However, this technique raises problems in the mapping process
between the fault model and the machine instructions.

In order to inject hardware or software faults into a system, a set of tools can be
used, and they provide different techniques and characteristics more suitable for
specific situations. The following section briefly presents multiple tools for FI.

2.2.4 Fault Injection Tools

Multiple tools are used for injecting faults and further analysis of the campaign.
These tools vary in their fault model and the injection process. Therefore, each
tool provides a set of properties, making them better for a determined FI cam-
paign. Next, two commonly used tools are presented, GOOFI-2 [10], and Xcep-
tion [18], each with specific features and techniques. We detailed these tools more
because they are widely used and present different ways of injecting faults.

One widely used tool is GOOFI-2. This tool is used for FI of hardware faults
and provides three techniques. One is a test port-based technique defined as
Nexus-based injection, and it injects faults via the Nexus ports through a set
breakpoint to inject the fault. It provides high observability and reachability. To

17

Chapter 2

perform Nexus-based, it is not necessary to change the workload making the spa-
tial intrusiveness low. However, its temporal intrusiveness is high. The second
is a SWIFI technique named Exception-based FI and uses exceptions activated
by hardware breakpoints to inject faults. It provides high controllability. How-
ever, compared with Nexus-based, the observability is low. The last one is the
Instrumentation-based FI a SWIFI technique, where faults are injected by cre-
ating a software breakpoint and expanding the workload with an instrumenta-
tion function. In this technique, the spatial intrusiveness is low and has high
repeatability and controllability. Although it does not support the target system’s
monitoring, the Nexus debugger can overcome the drawback. The fault model
of GOOFI-2 is the emulation of transient hardware faults affecting registers and
memory of a microcontroller using single or multiple bit-flip errors [10].

Xception is another tool for FI and provides SWIFI techniques. Nowadays, most
modern processors contain advanced debugging and monitoring features, and
Xception uses them for fault injection. In other words, Xception injects faults
through the raised exceptions, making it the fault trigger during the target pro-
gram execution. Furthermore, it can monitor their impact through the monitor-
ization features of the processors. Since it uses exceptions of the program, the
interference with the target program is minimal since it is not modified. The fault
model of Xception is transient hardware faults like stuck-at-zero, stuck-at-one,
and bit-flip on memory [18] [9].

Table 2.3 presents other FI tools that can be used for FI experiments. However, it
is worth noting that tools like FIAT, FERRARI, FTAPE, DOCTOR, and Xception
can potentially be used for software faults since they manipulate the system state,
although there is no support for that.

Tool Tool Description Fault Model

MESSALINE [6] Used for pin-level FI
using both active probes and sockets

stuck-at and
complex logical faults

FIAT [9] Corruption of the code or the data area
of the program’s memory

zero-a-byte, set-a-byte
and two-bit compensation

FERRARI [9] It uses software traps to inject CPU,
Memory, and bus faults.

address line, data line
and condition code faults

DOCTOR [15] Used for injection
in distributed real-time systems

memory faults, CPU faults
and communication faults

FTAPE [9] Used to evaluate benchmarking
and computers of fault tolerance

memory faults, CPU faults
and I/O faults

DEFINE [9] Mutation of assembly language
listings of the target program.

Software Faults: initializations, assignment,
condition check and function faults

G-SWFIT [19] Perform mutations at the machine-code level
in order to emulate software faults

The used fault model is the set of operators
defined by Durães et al.

Table 2.3: FI Tools

18

Chapter 3

State of the Art

The state-of-the-art chapter contains various approaches to accelerating injection
experiences. These techniques are divided into FI acceleration techniques for
hardware and software faults. Then it presented some used failure injection tech-
niques to accelerate experiments and some tools used by companies.

3.1 ucXception Tool

ucXception 1 is an open-source framework developed at the University of Coim-
bra and allows performing FI campaigns. Furthermore, it supports the injection
of hardware and software faults, and the experiments can target different sys-
tems, such as virtualized and cloud computing systems.
One of the advantages of ucXception is that it is not necessary to have deep
knowledge about FI and its specifications because the use of the tool is through
a graphical interface that the framework provides, thus being easy to use. The
other advantage is the ability to integrate new tools in ucXception, making it ex-
pandable to new experimental tools and techniques [21].

3.1.1 ucXception Architecture

The architecture of ucXception is mainly composed of two modules, frontend,
and backend.

The frontend is the graphical interface provided to the user where he can manage
his campaigns and evaluate them. More specifically, the user can execute prelim-
inary analysis, create new campaigns and analyze and download its results. As
mentioned, the interface is easy to use, so the framework is suitable for any user
with minimal knowledge of FI [21].

The backend module comprises two components: the Manager and a REST API.
For each campaign in execution, there is an instance of the Manager, which is the

1https://ucxception.dei.uc.pt/

19

Chapter 3

main element of the ucXception framework since it is responsible for the execu-
tion of FI campaigns and storing results. The results are stored in CSV files in an
SQLite database that also contains the user information. Lastly, the REST API is
responsible for the connection between the Manager and the graphical interface,
the frontend, through HTTP requests.

Figure 3.1 presents the architecture designed by P. Almeida et al. of ucXception
[21].

Figure 3.1: ucXception architecture [21]

3.1.2 ucXception Components

ucXception has several pre-made components that the user may use in its cam-
paigns to monitor and evaluate the target system. Although a variety of com-
ponents already exist, the user can add new ones to the framework and thus in-
crease the accuracy and efficiency of FI campaigns. The components are divided
into pre-probes, post-probes, parsers, and transformers [21].

Pre-probes collect system-wide metrics, thus being used to monitorization of the

20

State of the Art

target system and collect metrics that can later be used for system analysis when
running the fault injection campaign. Various pre-probes are already available in
the framework: Logs probe, Intel PCM probe, Ping probe, SAR probe, TCPDump
probe, and Xentrance probe, each with specific metrics monitorization.

Post-probes are used to monitor specific processes instead of all systems like pre-
probes. Currently, only one post-probe is available, the Pidstat probe.

The parsers convert the results from a FI campaign to a more practical and com-
pact format, thus being helpful for the later analysis of results which are always
written in CSV files. The available ones are HW FI parser, SW FI parser, Pcap
-> TCP parser, Info parser, MD5 output parser, Return code parser, and Current
Folder parser.

The last component category is the transformers, which are identical to parsers,
but the output generated by transformers is stored in individual files in their own
results folder. They are mainly used to convert the output of the probes into a
more effortless format. The available ones are: Pcap -> TCP 2 CSV transformers,
Pidstat 2 CSV transformer, SAR 2 CSV transformer, Ping 2 CSV transformer, and
save output transformer.

More information and detail about each component is present in P. Almeida et al.
article [21].

3.1.3 ucXception Fault Injectors

ucXception framework provides three default fault injectors that implement dif-
ferent fault models. Two of these are used for hardware fault emulation, and the
other for emulating software faults. Although only three fault injectors are avail-
able, as mentioned, ucXception is expandable, so it is possible to integrate new
fault injectors.

One of the fault injectors is Hardware faults in Linux-based systems. This in-
jector emulates soft errors, namely bit-flips, in CPU components and registers.
Although it is only possible to perform bit-flips in CPU registers, there is no sup-
port for executing them in memory since it is possible to accurately represent this
injection type with injection in the register files. Firstly, the fault injector attaches
to a process through the aim of ptrace functionality available in most Linux instal-
lations. Then, collect the register data structure, perform the bit-flip, and resume
the program target system execution where the registers have suffered from a bit-
flip. This tool performs SWIFI, so no changes are needed in the target system’s
hardware. The tool also provides logging functionalities for a more detailed anal-
ysis of the respective campaign [21].

Another FI tool available is Hardware faults in virtualized systems. As the name
says, this tool is used for virtualized systems. Like the previous one, this tool
injects bit-flips, which can target CPU registers. The injection involves changing
the register value kept in the data structure that stores a Virtual Machine’s (VM)
CPU state that is updated immediately before a context switch. Although, this
technique is dependent on the rate of context switch occurrences. This switch

21

Chapter 3

rate must be accurate and analyzed since the bigger it is, the higher the precision
of the injection, however if it is too elevated, it will cause a considerable overhead
and intrusiveness to the target system [21]. Figure 3.2 presents this tool FI scheme.

Figure 3.2: ucXception - Hardware Faults in Virtualized systems FI [21]

The FI process starts on the privileged virtual machine (PVM), known as dom0
in Xen’s nomenclature, where the ucXception activates the trigger functionality.
When the trigger is activated, the toolstack is called and performs a hypercall to
a hypervisor function and sends the FI parameters. The parameters for the FI
are the target Virtual Machine (VM) since the system may have multiple VMs,
and the goal is focused on one. Also, the target register and target bit and the
last parameter, which is the start and end memory’s range which the rip register
will be pointing in the injection. Then the hypercall function writes the respective
parameters to a structure which, when the context switching occurs, the structure
is read, and if all conditions are fulfilled, the bit-flip is performed [21].

Moreover, the last available tool is Software fault injection in C source code.
This tool uses the source code of any program written in C language and ap-
plies modifications. The fault model used for the respective modifications is the
Durães et al. fault model mentioned before since it is one of the most representa-
tive of software faults. First, the tool produces the abstract syntax tree of the input
source code through a lexical and syntactic analysis. Later, it searches on the tree
to identify potential nodes to FI, modifying the nodes with faults and converting
the tree back to source code representation [21].

22

State of the Art

3.2 Fault Injection Acceleration

Although FI is a beneficial process for evaluating systems and fault-handling
mechanisms, it is very time-consuming. As mentioned, a FI experiment evolves
a location, the timing of injection, and fault type. The combination of these three
variables makes a target system present a vast number of FI possible experiments
that may take too long. Furthermore, it may be inaccurate and inconsistent since
there might be locations that are never executed and other locations that are used
very often.

In order to accelerate and achieve good accuracy in FI campaign, there are mul-
tiple types of research in FI acceleration field, both for hardware and software
faults. These techniques always aim to accelerate the FI campaigns. However,
acceleration has multiple meanings, such as reducing the time taken to complete
a fault injection campaign or maximizing the number of failures (thus requiring
less experiment runs to obtain a certain amount of failures).

The following section demonstrates some FI acceleration techniques for hardware
and software faults that vary in the acceleration type.

3.2.1 FI Acceleration Techniques of Hardware Faults

Behrooz Sangchoolie et al. [1] presented two pre-injection techniques for improv-
ing controllability and efficiency in Instruction Set Architecture level FI (i.e., in-
jection in CPU registers and memory locations reachable from software). Pre-
injection techniques are executed before the realization of a FI campaign to ana-
lyze the target system and its specific characteristics.

The first technique is Data Type Identification (DTI) which is used to improve
controllability which is, as mentioned, the ability to control the time and loca-
tion of the injection. This technique identifies data-items (the register or memory
content which can be a data variable, memory address or control information)
where faults will be injected. This technique presents two identification meth-
ods: Instruction-Based and Location-Based DTI [1].

In Instruction-Based DTI, by knowing the machine instruction type used for ac-
cessing some location during the system execution, it is possible to identify some
types of data-items. For example, the lbz instruction in assembly code loads a byte
from memory, meaning that a register used in that instruction is an Address data-
item (a value that represents the location of a part of data in memory). Whereas
in Location-Based DTI, it is possible to know the data-item type that a register
or memory segments hold since some locations always hold the same data-item
type. For example, in an assembly code, a register can be categorized as a Text
segment address data-item when used in an mtlr instruction since this instruc-
tion places a general purpose register into the link register (LR), which is always
pointing to somewhere in the Text segment [1].

The other technique is Fault Space Optimization which is used to improve the

23

Chapter 3

efficiency of FI campaigns by removing bits of data-items that would always raise
an exception in the system’s execution, thus accelerating the campaign [1]. An
example provided by B. Sangchoolieis et al. [1] is the Stack segment address
data-items, where the bits 17 to 22 would always raise a hardware exception.

In another article, Behrooz Sangchoolie et al. compare the efficiency of inject-
on-read and inject-on-write techniques in FI at ISA-level [22]. As the name says,
inject-on-read means injecting a fault immediately before reading the respective
data-item. This technique has two variants: unweighted inject-on-read, where
all faults targeting the same location are considered equivalent. The problem with
this technique is the possibility of unrealistic results since it is probable that some
locations are more likely to be targeted by a fault than others because some loca-
tions contain more instructions, thus being more vulnerable to faults. Therefore,
another used variant is weighted inject-on-read, where weight is attributed to
each location according to the probability of the occurrence of a fault so that a
fault that occurs less often is not as significant in the analysis as one that has a
higher probability of occurring.

Inject-on-write means injecting a fault when the data-item is updated and writ-
ten back into a register or a memory word [22]. In this technique, generate a block
of instruction where it is known that any fault that targets one of that instructions
will only produce some effect after the first write of the respective register. There-
fore, we can avoid the injection of faults on those instructions set.

Another experimental acceleration technique is the FI with failure models [21].
The injection of failure models means that instead of injecting faults that can crash
a process or corrupt a memory location, we directly inject these effects to study
the system’s behavior. For example, a process crash, since it is a common failure
model in single bit-flips injection. P. Almeida et al. [21] performed an experience
in order to compare FI with fault and failure models. This experimentation was
conducted in the ucXception framework due to its ability to integrate new tech-
niques. They used a cloud environment as setup where the target system was
a cloud operating system called Openstack, and the workload was some typical
operations of an Openstack administrator. The failure model was a crash of a
random process. They concluded that failure models generate more failures than
FI with fault models and that the generated failures may differ from those when
fault models are used [21]. However, this experimentation had some drawbacks,
like the failure model was too restricted since they only crashed random pro-
cesses, they made only a few experiments, and the used setup was limited thus,
the results may not be so exact.

Alfredo Benso et al. presented a set of collapsing rules that aims to reduce the
fault list size and time by analyzing the assembly code and the behavior of a
free fault system run. These rules aim to avoid the injection of faults where their
behavior can be predicted. Therefore, the rules for the reduction of the fault list
are based on three criteria: 1) the fault will be detected by at least one detection
mechanism, 2) the fault is from a fault equivalence class, and the fault list already
contains another one from that class and 3) the fault will not produce any effect
on system’s behavior and therefore can be removed [23]. With the reduction of
the fault list size, the time needed for the experiment will be less since there are

24

State of the Art

fewer faults to inject.

3.2.2 FI Acceleration Techniques of Software Faults

Erik van der Kouwe et al. propose a new approach called Hybrid Software FI
(HSFI) [24] that uses the source-level context information for the FI, enabling
and disabling the introduced faults without needing to rebuild the system. It
injects all the faults at once but in disabled mode. They are activated later one-
by-one by modifying the machine code. Also, it generates two versions of the
code for each injected fault, a pristine version containing the original operations
without the fault and a faulty version containing the mutated operations. Then,
to identify the pristine and faulty versions, it generates a marker in order to the
binary level identify each version. In short, the idea of HSFI is to have all the
faults in the executable file and thus avoid the recompilation of the code multiple
times (which is a time-consuming process) [24]. However, the representativeness
of the system drops drastically since the system is run with a large number of
faults embedded.

Another approach was presented by Robert Natella et al. [12], who studied the
representativeness of more than 3.8 million faults and test cases in three real sys-
tems (two Data Base Management Systems and one Real-Time Operating System)
with the help of the G-SWFIT [19] approach. The goal was to understand how
many of them can be defined as residual faults, i.e., faults not revealed by test
cases performed during development. The results show that for the DBMS, the
percentage of representative faults, i.e., residual faults, varies from 14.57% and
23.13%, and in the case of an RTOS is 72.23%. Then they propose two artificial
intelligence (AI) classification algorithms to inject only the most representative
faults. The first one is based on decision trees, a supervised classifier trained by
providing examples of components. The second one is k-means clustering, an
unsupervised classifier that depends on observing the component less exposed
to testing [12].

Stefan Winter et al. present a technique to reduce the time needed to perform a
FI campaign, which consists of the parallelization of FI experiments called Par-
allel Fault Injection (PAIN). Due to hardware technological developments that
led to multi-core systems, the parallelization of experiments can be a method to
increase its efficiency. However, this technique has a crucial point: relying on the
assumption that the execution of multiple experiments in parallel does not affect
the validity of results. In [25], a study is conducted to validate the accuracy of a
FI campaign and the importance of the degree of parallelization to the efficiency
and consistency of a campaign. They concluded that the PAIN technique signif-
icantly improves time efficiency. However, it degrades the representativeness of
the results because of the degree of parallelism [25], thus being a crucial point of
this approach.

Artificial Intelligence has been one of the most promising areas to FI optimization.
Ali Sedaghatbad et al. propose a deep learning method for fault space exploration
called DELFASE [11]. It consists of Generative Adversarial Networks for the

25

Chapter 3

identification of critical faults (faults that reveal system vulnerabilities leading to
the violation of safety requirements). A GAN model is composed of a generator
and a discriminator. The goal is to make the generator capable of generating
dummy data that the discriminator cannot distinguish from the real one. This
technique has two modes: an active, where a ranked batch-mode sampling is
used to select faults for the GAN model training, and a passive, where the faults
are selected randomly [11].

Table 3.1 presents the FI Acceleration techniques mentioned above and the arti-
cles where we can find more details.

Fault Type Acceleration Technique

Hardware Faults

Instruction-Based
Data Type Identification [1]

Location-Based
Data Type Identification [1]

Fault Space Optimization [1]

Unweighted Inject-on-Read [22]

Weighted Inject-on-Read [22]

Inject-on-write [22]

Fault Injection
with Failure Models [21]

Fault List
Collapsing Rules [23]

Software Faults

Hybrid Software
Fault Injection [24]

Fault Representativeness
Selection [12]

Parallelization
Fault Injection [25]

Fault Space Exploration:
DELFASE [11]

Table 3.1: FI Acceleration Techniques

We can conclude that multiple techniques for FI acceleration exist, and each has
its vantages and characteristics. However, it is an area that presents much po-
tential where there are currently numerous types of research to optimize FI cam-
paigns.

3.2.3 Failure Injection

Our approach is based on failure model injection. However, there are already
some works regarding this injection type that use the injection of failures in mul-
tiple contexts to evaluate systems. However, there is no validation and compar-
ison of how accurate the failure model can be compared with FI. Therefore our

26

State of the Art

work aims to analyze the relations and differences between these two injection
types.

Pallavi Joshi et al. proposed PreFail [26], a programmable failure-injection tool
with the goal of avoiding the combinatorial explosion of experiments. This tool
allows writing policies to define the set of possible failures. Their research de-
fined pruning policies for distributed systems and evaluated the speed-ups with
the respective policies in three cloud software systems. The policies are code-
based rules with specific goals, such as filtering, clustering failures, or some prob-
abilistic criteria. Their experimental evaluation compares their multiple policies
technique with exhaustive testing.

Francisco Gortázar et al. introduced ElasTest [27], a platform for injecting failures
intending to simplify the testing of distributed applications. This tool allows the
users to test the application in every development phase of the lifecycle. With
this open-source project, we can inject failures like packet loss, and node fail-
ure, among others. Their research demonstrates two different executions where
a packet loss was simulated.

Big companies worldwide use failure injection to test their services in failure sce-
narios to ensure the system’s availability. This concept is called Chaos Engineer-
ing [28], and it is the discipline of experimenting on a system in order to build
confidence in the system’s capability to withstand turbulent conditions in pro-
duction. Netflix’s first approach, Chaos Monkey, consists of testing its systems
by randomly terminating a virtual machine hosting the production services. This
technique was a success for Netflix, and therefore it was improved for testing
other components and ensuring their reliability. Such success led other compa-
nies to create their testing programs, like Google and Amazon, which created
GameDay [29] intending to ensure the resilience of their systems by injecting ma-
jor failures in critical systems. In a retest, Amazon noticed that severe failures
from two to three years ago now require less effort to solve than before Game-
Day was created [29]. Microsoft, inspired by Netflix Chaos Monkey, uses Azure
Search Chaos for the controlled inject controlled disruptions and to simulate fail-
ures in a test environment in order to identify the weaknesses and defects. For
Azure Search developers, this chaos engineering has been beneficial for develop-
ing reliable and fault tolerant cloud services [30].

As presented, the injection of failures has been used to validate the availability
and resilience of systems. In our approach, we will inject failures and verify the
potential of failure injection as a FI acceleration technique, i.e., in which situations
can failure injection replace traditional FI.

27

Chapter 4

Approach

FI is a lengthy process that may take considerable time and even become infea-
sible since the injection of a fault in a system may have such a huge number of
possible combinations (e.g., among fault location, timing, or types of faults) that
the fault injection campaign would last for several years. Therefore, research on
how to accelerate fault injection campaigns is essential. There are already multi-
ple FI acceleration techniques, most of which are based around pruning useless
fault locations that are never executed during execution or the parallelization of
experiments. Although the goal is always to accelerate the FI experiments, it is
possible to distinguish FI acceleration techniques according to their specific ac-
celeration objective:

1. Reducing the time needed for FI while maintaining the representativeness
of the results (e.g., the same failure modes and percentages);

2. Maximize the number of failures with the same number of FI experiments
in a FI campaign.

The first acceleration type seeks to reduce the time spent in FI without losing
the percentage of failures found before the acceleration since if the technique is
capable of accelerating the FI but also reduces the failures found, then the FI
campaign will not be reliable. Techniques like inject-on-read and inject-on-write
[22], HSFI [24] or PAIN [25] are included in this acceleration type.

The other acceleration type aims to maximize the number of failures found with
the same amount of FI experiments. This goal can be seen as an acceleration type
because the more failures found in a fault injection campaign, the more effec-
tive it is for evaluating and analyzing the target system. This acceleration type is
particularly useful for testing fault tolerance mechanisms, error detection mecha-
nisms, or for producing failure data (e.g., to train failure prediction models). This
category comprises techniques like DELFASE [11] or failure model Injection [21].

29

Chapter 4

4.1 Failure Model Injection

Our research primarily focuses on the injection of failure models. The injection of
failure models is an acceleration technique that has already been evaluated by P.
Almeida et .al [21]. However, this research was brief due to time limitations.

The injection of failure models consists of, instead of injecting faults that might
generate a failure in the target system, it is immediately injected the possible fail-
ures of a fault. Thus, skipping the FI and avoiding the injection of faults that
are never activated and thus do not affect the target system. Furthermore, this
technique is suitable for the evaluation of fault tolerance mechanisms because,
with the immediate injection of the effects, we can realize and study the impact
of failures and how well the mechanism is capable of tolerating them.

Although the FI acceleration technique is not dependent on a specific setup, the
existence of a setup is helpful for the validation of the approach since it allows
a comparison of the results obtained with our approach and without it. There-
fore, we have decided to evaluate our FI acceleration approach using an existing
setup that has been used in previous FI studies [19] and where we will measure
the improvement associated to our approach. The setup is composed of two hy-
pervisors containing multiple Virtual Machines (VMs) that migrate from one to
another when a failure occurs through a technique called Romulus, which was
designed to tolerate hypervisor failures. In this setup, FI is used for the valida-
tion of the fault tolerance mechanism that performs the VM’s migration process
[20]. The idea of the usage of a setup is for the comparison of FI outcomes with
the results obtained with our approach in the same scenario.

4.2 Validation and Comparison to Fault Injection

This section defines all the aspects regarding the experiments for the validation
and comparison of the failure model injection with FI.

4.2.1 Setup

The setup comprises two hypervisors, one active that holds VMs doing a spe-
cific workload and another idle, where VMs migrate when a failure occurs in
the active one [20]. The hypervisor is a software system for the execution and
management of VMs.

The hypervisors are hosted by a microvisor, which can be defined as a software
layer that is vital to the migration process of VMs from one hypervisor to the
other and also for the host of the two hypervisors in the same physical hardware
machine [20].

For realistic experiments, the target system must be executing a workload. In
this setup, the used workload emulates a Solr server, an open-source platform

30

Approach

used for text-based searches, which will be exercised during the workload. Our
VMs host a Solr server, and multiple clients can make requests to them. Our
workload profile consists of one client making a request each second to the Solr
servers in each experiment [20]. The workload is set to last 600 seconds when
the experiments are hardware faults or failure models and 1200 seconds when
it is software faults. This difference is because the software fault typically has a
longer manifestation latency than hardware and failure models [20].

Figure 4.1 presents the described setup architecture [20]. In this scenario, the
active hypervisor contains three VMs, when a failure occurs, it is expected that
all of them migrate to the idle hypervisor. However, our setup will be composed
of four VMs.

Figure 4.1: Virtualized system setup architecture [20]

For the detection of a hypervisor failure, it is necessary to have a detection mech-
anism capable of monitoring the active hypervisor so that the recovery process
may start when a failure occurs. The selected mechanism consists on a continu-
ous stream of ping requests to the hypervisor, and after some pings timed out,
the trigger is activated. Thus, it is assumed that a hypervisor failure has occurred
[20].

4.2.2 Recovery Mechanism

The recovery process consists on the migration of VMs held by the active hypervi-
sor for the idle hypervisor, which will become the active one after the migration.
This process is accomplished by Romulus, a tolerance mechanism used for hy-
pervisors. Its goal is to migrate the VMs from the failed hypervisor to the idle
hypervisor while avoiding the failure of the hypervisor from propagating to the
VMs and corrupting their state.

For the migration, Romulus extracts the state of each VM running on the failed
hypervisor and then resumes the respective VM’s states in another hypervisor.
This mechanism achieves a low downtime where the majority of time is spent on

31

Chapter 4

the state migration. Thus, the VMs can resume operation immediately after the
migration and without a reboot requirement [20].

According to Frederico Cerveira et al. [20], Romulus is generic enough to be im-
plemented on any hardware architecture (e.g., x86, Intel, AMD CPUs) hypervisor
or any other considered software [20]. However, there are some specific basic
requirements: A microvisor for failure detection and migration process manage-
ment must support nested virtualization and virtual machine introspection (VMI)
to allow the migration between hypervisors. It must be instantiated two hyper-
visors above the microvisor. The hardware where the setup is built must support
hardware-assisted virtualization. Moreover, the VMs must be virtualized using
hardware-assisted virtualization. Most of these requirements are usually present
in real deployments. Thus, Romulus can easily be used for these systems [20].

4.2.3 Fault Injection

For the original evaluation of Romulus performance, FI of transient hardware
faults in CPU registers and software faults in the hypervisor’s code was used.
These experiments lasted eight months. In this FI campaign it was injected more
than 2000 hardware faults, which generated 774 failures, and more than 400 soft-
ware, which resulted in 117 failures [20].

To inject hardware faults, the single bit-flip fault model was used, targeting the
CPU registers of the hypervisor, namely, the registers RIP RSP, RBP, RAX, RBX,
RCX, RDX, and R8 to R15. While for the software faults, the fault model proposed
by Durães et al. [18] was used. Fault injection generates patch files that are sub-
sequently applied to the source code of the active hypervisor. There is already an
FI acceleration before the experiments are started an analysis of the source code
of the hypervisor is performed to calculate which lines are never executed by the
workload and then all the faults that do not affect those lines are drawn from the
experiences [20].

4.2.4 Failure Model Injection Validation

Our main goal is to validate that our technique accelerates FI experiments. There-
fore, we will compare our approach with the FI mechanism already implemented
in the virtualized system.

To achieve that goal, we must define the targets and metrics that we use to eval-
uate and compare the performed experiments. Therefore, the possible targets
where faults and failures will be injected are:

• Hypervisor

• Domain-0 VM

• Virtual Machines

32

Approach

Figure 4.2 shows a more detailed setup architecture and the possible injection
points mentioned above.

Figure 4.2: System detailed architecture [31]

The first target we considered for the experiments is the hypervisor as a whole,
i.e., the injection of failures is executed in the hypervisor component without con-
sidering the specific components that compose it. This choice is based on the fact
that the hypervisor is the critical point since its failure leads to the VMs not being
able to function correctly. Moreover, the hypervisor is the single point of failure.
Thus, all VMs are affected if it fails. Therefore, the final client (the person or com-
ponent performing actions in VMs) notices that anomaly and cannot execute its
tasks. Furthermore, the Romulus fault tolerance technique covers against hyper-
visor failures, and the original evaluation injected faults in this component [20],
hence our choice.

Another possible target is the Domain-0 VM, this VM is responsible for managing
the other virtual machines that run on the same hypervisor (Xen) and for provid-
ing the device drivers that will be used by the other VMs. Thus, it is a possible
target for the failure model injection since it is essential for the system’s proper
functioning. We can inject failures in a specific part of the Domain-0 VM like Xen
processes or in the VM as a whole system.

The other component where it is possible to inject failures is the VMs running
the Solr server, where the client performs routine tasks. So the possible injection
points are the Solr server and the VM as a whole system and its processes.

It is worth noting that the VMs where the client is using the service are our ob-
servation point since the goal of the fault tolerance mechanism is to keep the
service’s correctness and availability to the end user.

Figure 4.3 presents the experimental setup used for the experiments [20], where
we can see two nodes, the compute node that represents the setup already de-
tailed and the orchestrator node where the FI process is triggered by a FI man-
ager, and later, Experiments Manager is responsible for saving the results of the
experiments. There is also the Solr Client, our observation point, which performs

33

Chapter 4

Figure 4.3: Experimental Setup [20]

the routine workload tasks by making HTTP requests to the multiple Vms. The
NFS is a network file system in the orchestrator node and is used to take disk
images to the VMs.

4.2.5 Failure Model

For the injection experiments, a failure model must be defined, which means the
multiple failures type possible to be injected into the target system. Our failure
model consists of three failures type:

1. Crash

2. Hang

3. Timeouts or failed hypercalls

They are ordered by their importance to the experiments. We considered the
crash the main and the first that we evaluated. This failure can be performed in
the hypervisor or VMs. A crash can be made in various forms, like a process kill
or a kernel panic. The reason for being the principal failure is that it is the most
common way of failure of a cloud system [31] [32] [33].

The second failure type is the hang, which is not as common as the crash but can
also occur in the system. This condition can occur due to infinite loops, making
the system unresponsive and failing.

The last failure type is the timeouts or failed hypercalls. This failure occurs when
a request made by a VM to the hypervisor is not completed within a specific pe-
riod, or the request is never completed, and therefore it is unsuccessful. Initially,
we had considered this type of failure in our tool. However, we did not imple-
ment the respective approach due to time constraints, leaving it for future work.

34

Approach

For the crash failure injection, we forced a kernel panic in the respective machine
that can be a hypervisor or a random L2 VMs [34]. This is a typically used ap-
proach for testing approaches.

While for the hang failure, we have created a loadable kernel module, which will
stop all CPUs in the machine, thus making the system becomes unresponsive
since the CPUs are occupied in an infinite loop and cannot process any further
instructions or handle other tasks [35]. As the crash, the hang failure can be in-
jected in the hypervisor or an L2 VMs.

As mentioned before, our failure model injection tool was also integrated into the
ucXception tool, making it available for other researchers and testers.

4.2.6 Metrics

For a rigorous comparison, some metrics must be specified, aiming for the val-
idation and comparison of the impact and the obtained results. We define four
possible metrics:

• Manifestation Latency

• Percentage of recovered VMs

• Downtime

• Failure percentage with the same number of injections

The first metric is the manifestation latency. This latency refers to the time be-
tween the injection and the moment that the effect is perceptible in the target
system. Since, in our experiments, the observation point is the Solr Client (the
point where we detect the failure), then, our manifestation latency is calculated
from the client’s viewpoint. This time may be significant in the traditional FI ex-
periments since we inject faults that may lead to effects and may never raise an
effect. However, the injection of failure models bypasses this latency since we
inject the effects of a fault immediately. Figure 4.4 schematizes the manifestation
latency of a FI.

Another metric that we use is the percentage of recovered VMs. When a failure
occurs in the active hypervisor, the Romulus mechanism performs the migration
process. However, the process may not always successfully recover all VMs that
the failed hypervisor contained. Therefore, we aim to keep this value in our fail-
ure model approach the same or similar to the same value at FI so that there is no
loss of representativeness in our approach.

The third metric to be used is the downtime, which is the time that the system
is down and unable to perform routine tasks in the VMs. This time value can
be used as a metric since it must be equivalent to the time value obtained in FI.
If the values are similar, then our technique provides good representativeness.
However, if it is too different, that means that our approach is not reliable, and
the results may be inaccurate.

35

Chapter 4

Figure 4.4: Manifestation Latency Scheme

Last, we can analyze the failure percentage with the same number of injections.
We aim to maximize this value since the objective is to discover failures in the
target system. If we find more failures in the same number of experiments with
our approach compared with FI, then we are improving the experiments.

These four characteristics are the possible metrics for the comparison and, thus,
validation of our approach

4.2.7 Fault and Failure Model Injection Flow

Each FI experiment is a complex process that involves multiple components.
Hence, it is essential to present the flow of a typical experiment.

First, the user initiates a campaign, where he should indicate the injection type
(hardware, software, crash, or hang), the number of VMs, and the number of
experiments. In case of a failure model injection, the user also has to indicate the
target, which can be the hypervisor (L1) or VMs (L2)

The campaign is initiated in our orchestrator node machine, responsible for man-
aging FI experiments. Next, if it is hardware FI, the fault is generated, which
means it generates an injection time sleep, and the target register and bit are cho-
sen for the injection. The choice of register and bit is random within the defined
fault model. While if it is a software fault, the patch file is chosen.

Then, the launch process of hypervisors is started, meaning, first, it is killed the
hypervisors that might exist from the past experiments (in case the experiment
ended incorrectly). The active hypervisor snapshots are mounted via a network
file system where the snapshots are located. Finally, both hypervisors (active and
idle) are created, and it is called a function that tries to make an ssh connection
for both hypervisors to ensure that they have started correctly.

If we are injecting software faults, then the next step is to patch the active hyper-
visor XEN with the fault. This stage involves the compilation, build, and instal-
lation of the XEN hypervisor, which is a more time-consuming process, although
necessary. If it is successful, the offsets are extracted, which can help further
analyze and manipulate the fault injection process. Finally, the hypervisors are

36

Approach

relaunched with the patched fault in the active one, and the experiment may con-
tinue.

When hypervisors are ready, the domain ID of both hypervisors is extracted. This
ID will be needed for the injection of the fault or failure and the launch of moni-
tors. Next, it starts the spawn of VMs in this process, like in the launch of hyper-
visors, it is necessary to mount the snapshots, and then the VMs are created.

With the hypervisors and VMs ready, the Solr service may start and save files
created. The save files are where it is the necessary information for the migration
process. This step is followed by the launch of the probes to detect failures in the
VMs, and after a warmup phase, the fault or failure is injected. The workload is
left to execute until the end. The recovery process is triggered if the monitoring
probes detect that at least 1 of the VMs has failed.

After the ending of the workload process, the VMs state and correctness are ver-
ified through some tests. All the ping processes are killed, and if it is hardware
FI, then the extraction of DMESG is performed. This log has the values of the
registers after the injection. While if it is software FI, it extracts information about
the fault activation.

Finally, the results are extracted and stored, and the physical machine is rebooted
to avoid carrying over anything that may interfere with the following experiment
run.

It is possible to analyze the diagrams of the different injection types flow in Ap-
pendix A.

37

Chapter 5

Results

In this chapter, we verify the capabilities of failure model injection in comparison
with the traditional FI. Thus, we will start by characterizing the datasets of the
results retrieved from the experiments explained in Chapter 4. Next, we analyze
the four defined metrics, starting with the failure percentage, then manifestation
latency, recovered VMs, and lastly, the downtime.

5.1 Dataset Characterization

From our experiments runs of fault and failure model injection, we obtained dif-
ferent datasets. These experiments took about three months to be completed, and
each dataset can be seen as a cluster of experiments that use the same fault or fail-
ure model. We define six datasets: HW, SW, CRASH_L1, CRASH_L2, HANG_L1,
and HANG_L2. This datasets are detailed in Table 5.1.

The HW dataset comprises experiments where hardware faults were injected into
the active hypervisor according to the defined fault model. There are 300 experi-
ments in this dataset.

The SW dataset is composed of 246 software FI experiments where the code of
the active hypervisor was modified with faulty patches.

CRASH_L1 and CRASH_L2 datasets contain 297 and 300 experiments, respec-
tively, where it was injected crashes. In CRASH_L1, the failure was injected in
the active hypervisor like in HW and SW, while in CRASH_L2, the failure was
injected in one of the possible L2 VMs.

The hang failure is represented in the datasets HANG_L1 and HANG_L2. Their
differences are in the target component as in the crash datasets. HANG_L1 com-
prises 297 experiments, while HANG_L2 contains 299 experiments.

In order to understand the registers where hardware faults were injected, we
show in Figure 5.1 the distribution of the different possible target registers. As ex-
pected, we see a relatively uniform distribution resulting from the random choice
of target register.

39

Chapter 5

Dataset Experiments
HW 300
SW 246

CRASH_L1 297
CRASH_L2 300
HANG_L1 297
HANG_L2 299

Table 5.1: Datasets Characterization

rip rsp rbp rax rbx rcx rdx r8 r9 r10 r11 r12 r13 r14 r15
Register

0

2

4

6

8

Pe
rc

en
ta

ge
 (%

)

Figure 5.1: Register distribution in the HW dataset

40

Results

A similar analysis was made for the distribution of the operators injected in each
software fault. We can see that the patches MFC, MIA, and MIFS were the most
injected ones. The distribution was not uniform, although it was expected since
some patches are most likely to occur due to the pre-conditions necessary for the
patch activation.

MFC MIA
MIEB MIFS

MLA
C

MVAE
MVAV

WAEP
WLEC WPFV WVAV

Operator

0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 (%

)

Figure 5.2: Operator Distribution

5.2 Failure Percentage

The first metric we are going to analyze is the failure percentage. This value
represents the percentage of experiments that generated a failure in the system.
Thus, a higher percentage of failures means that fewer experiments are needed
to obtain results of the occurrence of failures. Table 5.2 shows all datasets, their
number of failures, and the respective failure percentage.

As we can see, HW presents a failure percentage of 29%, while SW has 88.62%.
Finally, the failure model injection datasets have 100% of failure injection. This
percentage is expected since we directly inject the failure, i.e., the possible conse-
quence of a fault, for example, the crash.

HW dataset has a lower percentage since the register and bit of injection are ran-
domly chosen from within the defined fault model, and there are register and
bits less significant for the injection. Unlike the SW dataset that presents higher
values of failure percentage, this can be explained by the fact, as mentioned in
Section 4.2.3, the software FI mechanism is already optimized, e.g., we do not
inject faults in lines of code that are not exercised by the workload.

41

Chapter 5

Dataset Num.
Failures

Failure
Percentage (%)

HW 87 29
SW 218 88.62

CRASH_L1 297 100
CRASH_L2 300 100
HANG_L1 297 100
HANG_L2 299 100

Table 5.2: Failure Statistics per Dataset

From these results, we conclude that experiments where failures were injected
had perfect effectiveness, representing an improvement close to 3x compared to
hardware FI (29% to 100%). While compared with software, it is 11% over the
already optimized injection of software faults.

5.3 Manifestation Latency Analysis

The second metric we analyzed was the manifestation latency, i.e., the time be-
tween the actual moment of injection and the first perceptible sign of failure. For
this analysis we filter out experiment runs where no failure was detected.

We started by calculating the manifestation latency using the failure detection
times, which are calculated through pings (after 40 failed pings requests, we con-
sidered that there was a failure), which consists of performing multiple pings to
L2 VMs. Figure 5.3 shows the distribution of the time of the manifestation for
each dataset.

This figure shows that the SW dataset has the most significant difference among
all datasets. SW’s average manifestation latency time is 176.98s, whereas the me-
dian is 99.23s. This difference means the distribution is asymmetric, meaning
there is a high deviation between the results. Therefore, the software experiments
regarding the manifestation latency are less consistent than the others. However,
software failures tend to have a longer manifestation time than hardware failures
and contain more outliers than hardware failures with very long time values [36].

CRASH_L2 and HANG_L2 present the shortest times, where CRASH_L2 has an
average of 53.72s and a median of 53.61s, while HANG_L2 has 53.12s and 53.70s,
respectively. These times indicate that when a failure is injected in L2 VMs, the
time between the injection and the failure is shorter. This behaviour is expected
since when we inject a failure in the L1 hypervisor, it has to suffer propagation
to reach an L2 VM. In contrast, if we inject directly in an L2 VM, propagation is
unnecessary.

For a better analysis of the other datasets, we generated Figure 5.4, where the rest
of the manifestation latency times can be seen in more detail. The timing mea-
surements from the three datasets (HW, CRASH_L1, HANG_L1) display striking

42

Results

HW SW

CRASH
_L1

CRASH
_L2

HANG_L1

HANG_L2

Dataset

20
70

120
170
220
270
320
370
420
470
520
570
620
670
720
770
820

Re
al

 D
et

ec
tio

n
La

te
nc

y
(s

)

Figure 5.3: Manifestation Latency - Ping

43

Chapter 5

similarities. The HW dataset shows an average time of 96.87s and a median time
of 98.60s, while the CRASH_L1 dataset exhibits an average time of 99.06s and a
median time of 98.94s. Similarly, the HANG_L1 dataset indicates an average time
of 99.60s, closely aligned with its median time of 99.67s.

HW

CRASH
_L1

HANG_L1

Dataset

35
40
45
50
55
60
65
70
75
80
85
90
95

100
105

Re
al

 D
et

ec
tio

n
La

te
nc

y
(s

)

Figure 5.4: Manifestation Latency - Ping (subset of datasets)

However, as in the SW dataset, we can detect some outliers in the HW. This is
to be expected since fault injection can be done according to various parameters
(e.g., register and bit, software fault operator and code location), and thus their
behaviour can vary. In failure model injection, on the other hand, the behaviour
should be almost identical since the same type of failure is injected into the same
component, resulting in minimal differences. However, it is necessary to consider
the parameter of injection timing, as it can potentially impact the outcome.

The consistency of manifestation latency is a vital factor influencing the duration
of an experiment run. If the manifestation latency is inconsistent, the person
designing the campaign must consider the highest possible value when defining
the amount of time the workload should run. Otherwise, if the workload is too
short, some faults that would cause a late failure are cut abruptly and incorrectly
labeled as having had no effect.

We expected the manifestation latency of failure injection to be very low (due to

44

Results

skipping the fault to error and then to failure chain), however, the earliest results
did not confirm this assumption. Thus, we decided to calculate the manifestation
latency from a different viewpoint, in this case, the workload clients themselves.
In other words, we measured the latency between the injection moment and the
failed first request. The results are shown in Figure 5.5.

HW SW

CRASH
_L1

CRASH
_L2

HANG_L1

HANG_L2

Dataset

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750

M
an

ife
st

at
io

n
La

te
nc

y
(s

)

Figure 5.5: Manifestation Latency - Solr (Workload)

These results are most expected when we look at CRASH_L1 and HANG_L1,
where the times are close to 0s. This difference between these results and the man-
ifestation latency calculated through the failure detection mechanism can possi-
bly be explained by the effect of a network timeout mechanism that affected the
obtained latencies when looking only at the ping mechanism. As future work we
aim to confirm this suspicion.

The SW dataset still has the longest manifestation latency time, as expected, with
an average of 85.41s and a median of 1.10s, meaning that most experiments took
about 1 second. Hence, the median is low, but some took a long time to generate
a failure, so the average manifestation time is very long.

The CRASH_L2 and HANG_L2 datasets have longer manifestation latencies. On
average, the crash of L2 VMs occurs after 12.40s with a median of 12.23s, whereas
the hang has an average manifestation time of 11.15s and a median of 12.06s.

45

Chapter 5

The manifestation of hardware failures in the HW dataset is similar to the times
measured in CRASH_L1 and HANG_L1 datasets, as we can verify in Figure 5.6.
The average manifestation time for hardware failures is 2.04s, with a median
of 0.42s. Specifically, for CRASH_L1, the times are 1.63s and 1.71s, while for
HANG_L1, they are 1.23s and a median of 1.29s.

HW

CRASH
_L1

HANG_L1

Dataset

5
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

M
an

ife
st

at
io

n
La

te
nc

y
(s

)

Figure 5.6: Manifestation Latency - Solr (Workload) (subset of datasets)

It is also possible to verify that there are some negative times in each dataset.
Small measurement errors can explain these outliers since our environment is a
distributed system, which is more susceptible to clock synchronization problems
across different machines. The timestamps used for calculating this manifestation
time are retrieved from the Orchestrator node and from the hypervisor, and both
can present slight variations between them.

From these results, we can state that the injection of crashes and hangs in the hy-
pervisor (L1) is a valid and faster alternative to injecting hardware faults since
their since the obtained manifestation latencies are similar. However, the results
from injection in L2 VMs have a significant difference, and thus we cannot con-
clude the same when the target is the L2 VMs. The same is valid for software
fault injection, as its manifestation latency differs significantly from all the other
datasets in the comparison.

46

Results

Also, the ping mechanism used is not a reliable way of analyzing the actual man-
ifestation latency since the ping mechanism can present delays in the measure-
ment of manifestation time.

5.4 Percentage of recovered VMs Analysis

The recovery percentage of L2 VMs is an important metric to analyze since when
the goal is to inject failure models to evaluate fault tolerance mechanisms, such as
Romulus, we must guarantee that the result of the injections will be identical to
the one produced by the fault models when there is a failure. Therefore we study
the recovery percentage of L2 VMs by Romulus when we inject fault and failure
models. We can analyze the recovery performance of Romulus from two points
of view:

• Solr service

• Operating System (OS)

If we look at it from the Solr point of view, we see if the Solr service running on
each L2 VM before the migration was recovered after the process was completed.
From the operating system point-of-view, we check if the operative system kept
working after the migration even if the Solr service did not. We make this distinc-
tion because there are some situations where Romulus can recover the operating
systems but not the Solr service.

Regarding the Solr point-of-view, it is possible to observe the bar chart of the
distribution of recovered VMs in Figure 5.7. The recovery of two VMs is the
most common scenario, where CRASH_L2 and HANG_L2 have the highest prob-
abilities with 42.33% and 47.16% respectively followed by HW with 37.93% and
CRASH_L1 with 34.34%. SW and HANG_L1 have the lowest values, 27.98%, and
23.75%.

SW is the dataset with the highest probability of not recovering any VM with
21.10%. This value is significant when compared with the other datasets since
HW and CRASH_L1 are the next ones with higher probability are 8.05% and
7.74%.

Injecting a failure into an L2 VM makes it impossible to recover in the migration
process, as can be seen from the bar chart where CRASH_L2 and HANG_L2 have
no probability of full recovery of the VMs. This observation is expected since the
fault tolerance mechanism was not designed to recover from failures in L2 VMs,
only from the faults and failures from the hypervisor.

From the OS point of view, Figure 5.8 shows the probabilities of L2 VMs opera-
tive system recovery. From the bar chart, we can see, as expected, the failure of L2
VM does not affect the other VMs OS performance. This is verified by the proba-
bilities of recovery in CRASH_L2 and HANG_L2, which are 69.33% and 71.57%,

47

Chapter 5

0 1 2 3 4
Count of Recovered VMs (solr)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

Pr
ob

ab
ilit

y
(%

)
HW
SW
CRASH_L1
CRASH_L2
HANG_L1
HANG_L2

Figure 5.7: Recovered VMs (Solr)

respectively. The injection of a hang failure in L1 has a minor effect on the recov-
ery of all VMs since the probability of a full recovery is 61.95%. This value is very
high when compared with SW, which is the second injection type where the total
recovery is more common, with 38.99%. Thus, it is worth noting that the hang
failures present a higher percentage of recovered VMs than crashes.

As in the Solr service point-of-view, we can observe that HW and CRASH_L1
have the most similar probabilities of recovering VMs.

To better comprehend the results, we create a cumulative histogram of the prob-
abilities of VM recovery, which can be seen in Figure 5.9 and Figure 5.10. From
these histograms, we conclude that CRASH_L2, HANG_L1, and HANG_L2 are
where the recovery is most successful. Interestingly, SW presents the lowest re-
covery capacity for one or two VMs, but for three or more, it has reasonable prob-
ability compared with HW and CRASH_L1.

These two histograms further highlight the similarity of results between the HW
and CRASH_L1 datasets. As evidenced earlier, injecting crashes into the hyper-
visor (L1) can be a valid alternative instead of injecting hardware faults.

In summary, from these recovery results, we infer that HW and CRASH_L1 have
similar probabilities of VM recovery. This conclusion reinforces the idea that us-
ing crashes as a failure model is a valid alternative to injecting hardware faults
when the target is the hypervisor. Thus, if the goal is to study the efficiency and
success of recovery from a fault tolerance mechanism, we can consider the crash
model injection.

48

Results

0 1 2 3 4
Count of Recovered VMs (OS)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

Pr
ob

ab
ilit

y
(%

)
HW
SW
CRASH_L1
CRASH_L2
HANG_L1
HANG_L2

Figure 5.8: Recovered VMs (OS)

0 1 2 3 4
Count of Recovered VMs (solr)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 [0

:1
]

HW
SW
CRASH_L1
CRASH_L2
HANG_L1
HANG_L2

Figure 5.9: Cumulative Histogram Recovered VMs (solr)

49

Chapter 5

0 1 2 3 4
Count of Recovered VMs (OS)

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

 [0
:1

]
HW
SW
CRASH_L1
CRASH_L2
HANG_L1
HANG_L2

Figure 5.10: Cumulative Histogram Recovered VMs (OS)

5.5 Downtime Analysis

The last metric that we study is the downtime in the Romulus recovery process.
The downtime is the time taken from migrating from the active hypervisor to
the idle one. We study whether different fault and failure models impact VM
downtime.

Figure 5.11 presents a box plot with each dataset’s L2 VMs downtimes. The
median values of HW and SW are 253.25s and 262.68s, while the CRASH_L1
and CRASH_L2 are 250.75s and 268.05s, respectively. Finally, HANG_L1 and
HANG_L2 are 253.05s and 270.51s.

These results suggest that the downtime does not vary when failure model injec-
tion is used. Therefore, if the goal is to study the downtime of the VMs, both the
failure model and fault injection can be considered since their results are identi-
cal. Thus, the type of injection does not significantly influence downtime.

5.6 Limitations

In every experimental work, there are always some limitations and improve-
ments that could be made. The main limitation was the fact that we only per-
formed the validation in one setup and one workload. Furthermore, this is a
particular setup application: a node of a cloud computing deployment that hosts
VMs that support a read-heavy Solr based workload.

50

Results

HW SW

CRASH
_L1

CRASH
_L2

HANG_L1

HANG_L2

Dataset

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

Do
wn

tim
e

(s
)

Figure 5.11: Recovery Downtime

51

Chapter 5

Another limitation is the defined failure models. We had considered the two most
commonly failures in virtualized systems (crash and hangs) however, there are
other failure that could be considered such as disk error or memory. The failure
model injection could also target more injection points such as critical processes
running on hypervisor or L2 VMs or the Domain-0 VM.

5.7 Summary

We performed a study of the four different metrics by comparing six fault and
failure model injection datasets and obtained interesting observations, which we
summarize in this section. The first observation is that the crash failure in the
L1 hypervisor produces similar behaviors to those resulting from the injection
of hardware faults. This dataset’s similarity is also notable in the recovery per-
centage VMs. At the same time, the downtime is similar for every injection type.
Thus, we can conclude that the injection of a crash in L1 is a valid alternative to
the injection of hardware faults since it produces similar results in all analyzed
metrics: manifestation latency, percentage of recovery, and downtime. Hence,
it can produce similar results at a much quicker pace (about 3x quicker). For
the study of manifestation latency, the injection hangs in the hypervisor is also a
valid alternative since it is similar to the times from hardware FI. Therefore when
the goal is to evaluate a fault tolerance mechanism through hardware FI, we can
replace this injection with the injection of crashes.

However, certain injection points, such as L2, and specific failure models, like
hang, exhibited different behavior than traditional FI techniques. Therefore, they
do not represent a valid alternative to injecting faults such as the L1 crash. Fur-
thermore, none of the failure models injection could reproduce the results ob-
tained from the software FI.

Injecting failures to evaluate the dependability of a system or design failure pre-
diction mechanism is not a valid technique since dependability encompasses var-
ious concepts beyond fault tolerance, such as availability and reliability, and the
injection of failures cannot evaluate these properties. And for the prediction of
failures, failure injection is not valid since it does not provide patterns of failures
like FI can reveal.

52

Chapter 6

Planning and Methodology

This chapter presents the planning work of this dissertation and the detailed
work stages of each semester with the respective Gantt charts. It also presents
the main risks associated with the planned second semester work.

6.1 First Semester

The first semester lasted 19 work weeks and contemplated a more theoretical side
of the research. The Gantt chart (Figure 6.1) illustrates the first semester work that
was divided into four stages:

1. State-of-the-art research: We started with readings about dependability,
then the research about fault injection, and finally, fault injection acceler-
ation.

2. Approaches Planning: In this work stage, we considered multiple acceler-
ation techniques for implementation

3. ucXception Study: Since one of the goals of this dissertation is to integrate
our approach to ucXception, it was required to make an introductory study
about the framework.

4. Intermediate Report Writing: This was the last stage of the first semester,
where all the knowledge gained during the semester was written.

During the semester, we had weekly meetings where articles were presented and
discussed. Also, if there was any doubt, it could be discussed via e-mail on the
other days of the week. At first, the supervisor, Frederico Cerveira, suggested
reading articles that fit into the dissertation’s scope and would be helpful in its
development. Later in the semester, I started looking for new ones independently.
All articles were noted in Excel with the name, author, and subject in order to
simplify the process of writing the dissertation. All the planned work for the first
semester was achieved.

53

Chapter 6

Figure 6.1: First Semester Work

6.2 Second Semester

The second semester work lasted 24 weeks and was spent preparing the setup,
developing our failure model injection approach, and validating the results. The
work stages of the second semester were as follows:

1. Setup Preparation: This was the first stage of the second semester, and it
refers to preparing the setup for the experiments that will be used to vali-
date our approach. This setup is based on a setup that has been developed
and used in previous works. Hence, we had to check the hardware setup,
then we checked and adapted the code of FI since we should strive to repli-
cate it as closely as possible.

2. Fault Injection Experiments: After the preparation of the setup we per-
formed some FI experiments using traditional FI (i.e., using fault models)
in order to collect data to validate that the setup was correctly replicated
and to compare with our approach.

3. Failure Model Injection Tool Development: While the experiments men-
tioned above are being performed, we started the development of our fail-
ure model injection technique for accelerating fault injection.

4. Failure Model Injection Experiments: This stage comprises the campaigns
of failure model injection. For this phase, it was necessary to have our tech-
nique fully developed.

5. Paper Writing While the failure injection experiments were running, we
started writing the paper based on our dissertation work, where we vali-
dated the failure model injection compared to traditional FI.

54

Planning and Methodology

6. ucXception Integration: We integrated our approach into the ucXception
framework for future use.

7. Dissertation Writing: This was the dissertation’s final step, which describes
all the work and conclusions of the work developed during the year.

In the second semester, we kept the weekly meetings in order to discuss the prob-
lems that arose during the various work stages, such as error codes or the Romu-
lus. Furthermore, we followed an experimental method, i.e., we collected fault
and failure injection results to validate our approach and its reliability through
defined metrics.

The following Gantt chart (Figure 6.2) presents the work stages we had foreseen
in the first semester.

Figure 6.2: Second Semester Work

However, the actual work stages suffered some modification due to some prob-
lems, such as defects in experiments or new tasks like paper writing. The actual
Gantt chart with all the task and their durations can be seen in Figure 6.3.

Since there were some risks associated with the research in the first semester, we
defined the main risks that could be raised in the second semester of work and
their mitigation plans. Table 6.1 defines the main risks associated with the work
stages.

In the table, there are two attributes:

• The probability of occurring: low (<40%), medium (between 40% and 70%),
or high (>70%).

• The impact of the risk: low (no significant difficulties), medium (may com-
promise a part of the work), and high (May compromises the work).

55

Chapter 6

Figure 6.3: Actual Second Semester Work

ID Risk Impact
(Severity) Probability Mitigation plan

R1
The build of the setup phase
may be longer than expected

because of the system’s complexity.
Medium High

Since it was designed and implemented
initially by the advisor Frederico Cerveira,

it is possible to ask him for help.

R2
FI experiments may take longer

than anticipated because
they can produce unreliable results.

Medium Medium
Test initially the FI experiments
process with a small number of

experiments to check if the results are consistent.

R3
Delay in the development of our
technique due to unfamiliarity

with technologies or environments.
High Medium Ask for the help of advisor

Frederico Cerveira.

R4 Detailed unawareness
of the ucXception framework. Low Low Ask for the help of advisor Frederico Cerveira

since he was one of the framework’s developers.

Table 6.1: Risks Table

For a complete analysis of the risks, a risk matrix is presented that can help pri-
oritize and understand the different levels of severity of one risk. Furthermore,
it allows us to analyze which risks are the most severe and that we should try
to prevent from occurring. The risk matrix comprises five categories: Very Low,
Low, Medium, High, and Critical.

6.2.1 Limitations

During the second semester, we had some problems related to the risk R2. Our ex-
periment took longer than we expected since our L0 machine sometimes crashed
during the experiments, thus making it necessary to stop the campaign, save the
data so far, restart L0, and resume the campaign. Making the campaigns take
more time due to the time lost between the crash detection and the resuming of
the campaign. This problem only affected the time needed for the experiments
and did not affect the results obtained.

Another problem we faced was that the first FI experiments had a defect at the

56

Planning and Methodology

Figure 6.4: Risks matrix

start of the Solr service in VMs. Thus, those experiments had to be discarded.
Therefore, as mentioned, we ran new experiments of hardware and software FI
where this defect was fixed. This issue is also related to risk R2, and the risk
mitigation plan has been applied, leading to its resolution.

These two problems were the main limitation of our study. Since the experiments
took longer than we expected, we decided to reduce our failure model to only
the crash and hang, which are the main failures of virtualized systems, and thus
make the comparison with the traditional hardware and software FI so that we
could have enough data for a reliable and consistent comparison.

57

Chapter 7

Conclusion

The validation of software and hardware systems is becoming indispensable since
systems are evolving, i.e., being more complex and involving multiple compo-
nents. Dependability implies that service failures are less frequent than what is
acceptable, and it defines multiple attributes that should exist in a system, such
as availability, reliability, safety, integrity, and maintainability. Multiple threats
can affect the correct service of a system. A threat can be a fault, for example, a
bug in the software code or a defect in the hardware component that composes a
system. When a fault is activated, it turns into an error in a component that may
propagate to other dependent components and lead to the system’s failure, which
means that the service affected where the users or other systems that depend on
that service are unable to use it.

There are multiple techniques to evaluate the dependability of a system. One
of the approaches is fault injection which consists of the injection of faults in a
system in order to study its behavior and mechanisms. FI can be used for soft-
ware and hardware faults, and there are already multiple tools that provide FI
techniques, such as ucXception.

FI accelerates the process of failures compared to their natural occurrence during
system execution. Even so, one of the problems with FI is its efficiency since it
can last months and be excessively intrusive to the system. Therefore, there are
techniques aiming to improve FI efficiency and accelerate FI experiments. We
presented multiple techniques that accelerate experiments in different manners
and with different goals, such as time reduction or maximization of discovered
failures.

In this dissertation, we aimed to develop a technique for FI acceleration. More
specifically, we developed a FI acceleration technique that injects failure models
instead of faults. Our approach accelerates experiments that aim to evaluate the
dependability of a system and its fault tolerance mechanisms since it injects the
effect of the faults directly. We experimentally validated our approach in a vir-
tualized system that uses a fault tolerance mechanism (Romulus). We compared
the results obtained from the failure model injection with those obtained from the
traditional FI.

59

Chapter 7

From this work, the failure model injection can be a valid alternative for the eval-
uation of a fault tolerance mechanism in some scenarios. Our main result is that
the injection of crashes in L1 Hypervisor had similar results to hardware FI in all
the metrics of comparison, and the injection of crashes produces results failures
approximately 3x faster than hardware FI where failure percentage was about
29%. The downtime metric does not vary with the injection, thus being possible
to use the failure model as an alternative to obtaining failure results. Our compar-
ison also indicated that software FI does not produce similar times to any failure
model injection. Therefore, we cannot state that the failure model injection can
replace it.

FI are becoming an essential tool for the evaluation of systems and their mech-
anisms. The acceleration of FI experiments has been relatively underexplored
so far. However, it becomes essential as systems become more and more com-
plex, which implies the need for new techniques that are efficient and valid for
their evaluation. Thus, our work intended to validate the failure model injection,
which is a possible and used technique for the acceleration of FI experiments.

7.1 Future Work

This dissertation raises some questions leading to possible future work. Our com-
parison should be extended to other types of setups and fault tolerance mecha-
nisms to obtain more complete results on the effectiveness and performance of
failure model injection. Another possible work is exploring other types of fail-
ures that can occur in a system. Finally, the validation could encompass more
experiments of both FI and failure model injection, although we have a reason-
able amount of experiments for a robust comparison.

60

References

[1] Behrooz Sangchoolie, Roger Johansson, and Johan Karlsson. Light-weight
techniques for improving the controllability and efficiency of isa-level fault
injection tools. In 2017 IEEE 22nd Pacific Rim International Symposium on De-
pendable Computing (PRDC), pages 68–77. IEEE, 2017.

[2] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic con-
cepts and taxonomy of dependable and secure computing. IEEE transactions
on dependable and secure computing, 1(1):11–33, 2004.

[3] Jim Gray. Why do computers stop and what can be done about it? In
Symposium on reliability in distributed software and database systems, pages 3–
12. Los Angeles, CA, USA, 1986.

[4] Robert Arno, Addam Friedl, Peter Gross, and Robert J Schuerger. Reliability
of data centers by tier classification. IEEE Transactions on Industry Applica-
tions, 48(2):777–783, 2011.

[5] Shubhendu S Mukherjee, Joel Emer, and Steven K Reinhardt. The soft error
problem: An architectural perspective. In 11th International Symposium on
High-Performance Computer Architecture, pages 243–247. IEEE, 2005.

[6] Haissam Ziade, Rafic A Ayoubi, Raoul Velazco, et al. A survey on fault
injection techniques. Int. Arab J. Inf. Technol., 1(2):171–186, 2004.

[7] David Oppenheimer, Archana Ganapathi, and David A Patterson. Why do
internet services fail, and what can be done about it? In 4th Usenix Sympo-
sium on Internet Technologies and Systems (USITS 03), 2003.

[8] Liming Chen and Algirdas Avizienis. N-version programming: A fault-
tolerance approach to reliability of software operation. In Proc. 8th IEEE Int.
Symp. on Fault-Tolerant Computing (FTCS-8), volume 1, pages 3–9, 1978.

[9] Raul Barbosa, Johan Karlsson, Henrique Madeira, and Marco Vieira. Fault
injection. In Resilience Assessment and Evaluation of Computing Systems, pages
263–281. Springer, 2012.

[10] Daniel Skarin, Raul Barbosa, and Johan Karlsson. Goofi-2: A tool for experi-
mental dependability assessment. In 2010 IEEE/IFIP International Conference
on Dependable Systems & Networks (DSN), pages 557–562. IEEE, 2010.

[11] Ali Sedaghatbaf, Mehrdad Moradi, Jaafar Almasizadeh, Behrooz Sang-
choolie, Bert Van Acker, and Joachim Denil. Delfase: A deep learning

61

Chapter 7

method for fault space exploration. In 2022 18th European Dependable Com-
puting Conference (EDCC), pages 57–64. IEEE, 2022.

[12] Roberto Natella, Domenico Cotroneo, Joao A Duraes, and Henrique S
Madeira. On fault representativeness of software fault injection. IEEE Trans-
actions on Software Engineering, 39(1):80–96, 2012.

[13] Roberto Natella, Domenico Cotroneo, and Henrique S Madeira. Assessing
dependability with software fault injection: A survey. ACM Computing Sur-
veys (CSUR), 48(3):1–55, 2016.

[14] Rickard Svenningsson, Henrik Eriksson, Jonny Vinter, and Martin Törngren.
Model-implemented fault injection for hardware fault simulation. In 2010
Workshop on Model-Driven Engineering, Verification, and Validation, pages 31–
36. IEEE, 2010.

[15] Seungjae Han, Kang G Shin, and Harold A Rosenberg. Doctor: An inte-
grated software fault injection environment for distributed real-time sys-
tems. In Proceedings of 1995 IEEE International Computer Performance and De-
pendability Symposium, pages 204–213. IEEE, 1995.

[16] Maha Kooli and Giorgio Di Natale. A survey on simulation-based fault in-
jection tools for complex systems. In 2014 9th IEEE International Conference on
Design & Technology of Integrated Systems in Nanoscale Era (DTIS), pages 1–6.
IEEE, 2014.

[17] Jonny Vinter. An overview of goofi-a generic object-oriented fault injection
framework. 2005.

[18] Joao Carreira, Henrique Madeira, João Gabriel Silva, et al. Xception: Soft-
ware fault injection and monitoring in processor functional units. Dependable
Computing and Fault Tolerant Systems, 10:245–266, 1998.

[19] Joao A Duraes and Henrique S Madeira. Emulation of software faults: A
field data study and a practical approach. Ieee transactions on software engi-
neering, 32(11):849–867, 2006.

[20] Frederico Cerveira, Raul Barbosa, and Henrique Madeira. Mitigating virtu-
alization failures through migration to a co-located hypervisor. IEEE Access,
9:105255–105269, 2021.

[21] Pedro David Almeida, Frederico Cerveira, Raul Barbosa, and Henrique
Madeira. ucxception: A framework for evaluating dependability of soft-
ware systems. In 2022 IEEE 22nd International Conference on Software Quality,
Reliability and Security (QRS), pages 561–570. IEEE, 2022.

[22] Behrooz Sangchoolie, Fatemeh Ayatolahi, Roger Johansson, and Johan
Karlsson. A comparison of inject-on-read and inject-on-write in isa-level
fault injection. In 2015 11th European Dependable Computing Conference
(EDCC), pages 178–189. IEEE, 2015.

62

References

[23] Alfredo Benso, Maurizio Rebaudengo, Leonardo Impagliazzo, and Pietro
Marmo. Fault-list collapsing for fault-injection experiments. In Annual Re-
liability and Maintainability Symposium. 1998 Proceedings. International Sympo-
sium on Product Quality and Integrity, pages 383–388. IEEE, 1998.

[24] Erik Van Der Kouwe and Andrew S Tanenbaum. Hsfi: Accurate fault injec-
tion scalable to large code bases. In 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 144–155. IEEE,
2016.

[25] Stefan Winter, Oliver Schwahn, Roberto Natella, Neeraj Suri, and Domenico
Cotroneo. No pain, no gain? the utility of parallel fault injections. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, vol-
ume 1, pages 494–505. IEEE, 2015.

[26] Pallavi Joshi, Haryadi S Gunawi, and Koushik Sen. Prefail: A programmable
tool for multiple-failure injection. In Proceedings of the 2011 ACM international
conference on Object oriented programming systems languages and applications,
pages 171–188, 2011.

[27] Francisco Gortazár, Micael Gallego, Boni García, Giuseppe Antonio Carella,
Michael Pauls, and Ilie-Daniel Gheorghe-Pop. Elastest—an open source
project for testing distributed applications with failure injection. In 2017
IEEE Conference on Network Function Virtualization and Software Defined Net-
works (NFV-SDN), pages 1–2. IEEE, 2017.

[28] Ali Basiri, Niosha Behnam, Ruud de Rooij, Lorin Hochstein, Luke Kosewski,
Justin Reynolds, and Casey Rosenthal. Chaos engineering. IEEE Software,
33(3):35–41, 2016.

[29] Jesse Robbins, Kripa Krishnan, John Allspaw, and Thomas A Limoncelli.
Resilience engineering: Learning to embrace failure: A discussion with jesse
robbins, kripa krishnan, john allspaw, and tom limoncelli. Queue, 10(9):20–
28, 2012.

[30] H. Nakama. Inside azure search: Chaos engineering. Blog, July 2015. Mi-
crosoft.

[31] Frederico Cerveira, Raul Barbosa, and Henrique Madeira. Experience report:
On the impact of software faults in the privileged virtual machine. In 2017
IEEE 28th International Symposium on Software Reliability Engineering (ISSRE),
pages 136–145. IEEE, 2017.

[32] Frederico Cerveira, Raul Barbosa, Henrique Madeira, and Filipe Araújo. The
effects of soft errors and mitigation strategies for virtualization servers. IEEE
Transactions on Cloud Computing, 2020.

[33] Xin Xu and H Howie Huang. On soft error reliability of virtualization in-
frastructure. IEEE Transactions on Computers, 65(12):3727–3739, 2016.

[34] IBM Support. Forcing a fake kernel panic for testing, 2021. Accessed: June
22, 2023.

63

Appendix

[35] Stack Overflow. An alternative for tasklistlockinamodule, 2012. Accessed :
June22, 2023.

[36] Frederico Cerveira, Jomar Domingos, Raul Barbosa, and Henrique Madeira. Mea-
suring lead times for failure prediction. In 2021 IEEE 26th Pacific Rim International
Symposium on Dependable Computing (PRDC), pages 1–5. IEEE, 2021.

64

Appendices

65

Appendix A

Fault and Failure Model Injection
Flow

Appendix A contains diagrams illustrating a typical hardware and software FI
experiment flow, as well as the flow for injecting failure models.

67

Appendix A

Figure A.1: Hardware FI Flow
68

Fault and Failure Model Injection Flow

Figure A.2: Software FI Flow
69

Appendix A

Figure A.3: Failure Model Injection Flow
70

Appendix B

ISSRE 2023 - Paper Submission

Appendix D contains the paper submitted to the ISSRE conference about the val-
idation work performed in this dissertation.

71

On fault injection acceleration with failure models
(PER)

Abstract—Fault Injection (FI) is an experimental technique
used to evaluate system behavior under faults. It produces a
significant speed-up over natural fault occurrence, condensing
years of real-world operation into a few weeks. Nevertheless, FI
is still time-consuming as there is a large number of parameters
to test, e.g., injection location, time, and fault model, and the
combination of all parameters creates a large domain space.
Injecting failures instead of faults, i.e., directly inject the outcome
of the fault and not just the fault or the error, is an interesting
possibility to accelerate FI. This approach reduces the time
required to carry out campaigns and is often used by companies
to test their error detection and recovery mechanisms, however
there is little hard-data about its representativeness. This paper
conducts a comparison between FI using fault models and using
failure models over a virtualized setup equipped with a fault
tolerance mechanism. The results show that injecting failures
can be an effective approach to evaluate the performance of fault
tolerance mechanisms, however it is not a good alternative for
evaluating the dependability of a system or for designing fault
tolerance and failure prediction mechanisms.

Index Terms—Fault Injection, Failure Injection, Chaos Engi-
neering, Failure Model, Dependability, Hardware Faults, Soft-
ware Faults, Fault Tolerance, Virtualization, Cloud Computing

I. INTRODUCTION

The proliferation of computer systems in supporting roles
essential to everyday life, such as transportation, healthcare or
communications, requires that their correct and safe operation
is ensured in every situation. Although it may be relatively
straightforward to verify correct behaviour when the system
is operating under normal and expected conditions, it is sig-
nificantly harder to verify system behaviour when in adverse
conditions.

Hardware and the software that executes on it face a range of
challenges that represent a threat to their dependable, safe and
correct operation. Hardware can be affected by adverse phys-
ical conditions (e.g., high temperatures, vibrations, corrosion,
electromagnetic interference) and aging-related problems [1].
A commonly studied problem are cosmic rays and other types
of terrestrial factors, which cause transient hardware faults
that appear as bit-flips in the state holding components of
a computer system (e.g., the CPU registers, the cache or the
memory) [2]–[4]. Software also has its problems. These are the
software faults, commonly known as software bugs, of which
no software component is immune, despite decades of intense
research into the areas of software testing and similar [5], [6].

Fault injection (FI) is a technique for experimentally ver-
ifying the behaviour of systems when under the effect of
faults [7]. It consists in the emulation of the effect of these
faults, thus bringing a significant speed-up when compared to

natural fault activation (i.e., operating the system as normally
and waiting for faults to naturally occur).

Although FI greatly reduces the time needed to obtain
failure data, it is nevertheless a time-consuming process. There
is a modest amount of parameters that need to be covered
during a FI campaign (i.e., a collection of FI runs planned
with a common goal), which can often lead to domain space
explosion. For example, in a campaign that has the objective
of studying how a system behaves when affected by a cosmic
ray that hits the CPU, there is the need to cover all the possible
CPU registers, plus their bits and also the temporal moment
when the cosmic ray hits the CPU.

Several works have strived to optimize the FI process in
order to reduce the time required to conduct campaigns or to
maximize the amount of failure data that is collected [8]–[11].
Many approaches are based around pruning the domain space
by discarding parameter combinations that are redundant (e.g.,
their outcome is known a priori) [8].

Another approach for reducing the cost of FI consists in
directly injecting the outcome of faults instead of emulating
the fault itself. To this practice, we will refer to as fault
injection using failure models, in opposition to ‘traditional’
fault injection, which we will refer to as fault injection
using fault models. Many companies use fault injection using
failure models (or failure injection) to test the error detection,
recovery and handling mechanisms of their production sys-
tems. This practice was popularized by Netflix and its Chaos
Monkey, which was then incorporated into the concept of
chaos engineering [12] and adopted by the industry.

The rationale behind using failure models as an optimizer of
fault injection is twofold. Firstly, it becomes guaranteed that all
injections will cause a failure. In ‘traditional’ fault injection, a
large part of the injected faults do not cause failures (i.e., they
are masked), which means that it will take longer to collect
failure data. Secondly, the time taken for a fault to propagate
into a failure (i.e., the manifestation latency) is removed. The
big disadvantage of using failure models is that the accuracy
of the results is hard to assess.

This paper aims to understand whether fault injection using
failure models is a valid replacement to fault injection using
fault models, particularly when the objective of using fault in-
jection is to evaluate a fault tolerance or error recovery mech-
anism. We perform a comparison between the two techniques
using an experimental approach. Campaigns are carried out in
a virtualized system using a workload that can be commonly
found in cloud computing deployments. Furthermore, a fault
tolerance mechanism that recovers VMs after an hypervisor
failure has been installed in the system and is used to provide

data about the impact that using the two different techniques
can have on its performance.

The novelty of this work resides in being one of the first to
verify whether the results generated by FI using failure models
are comparable to those produced by fault injection using
fault models. In this work, fault injection using fault models
is treated as the oracle for correctness (i.e., the baseline),
since plenty of works have already focused on the comparison
between fault injection and natural faults [13], [14].

The results show that the injection of failures, specifically
crash failures, is a valid alternative to the injection of hardware
faults when the purpose of the evaluation is to measure the
performance of a fault tolerance mechanism. In this scenario,
the usage of failure injection can provide a speed-up close to
3x, while producing similar results. However, failure injection
should not be used when the evaluation has a different objec-
tive (e.g., to collect failure data for creating failure prediction
models) or to obtain results similar to those generated by the
injection of software faults.

This document is structured as follows. In Section II a
brief introduction to the topics of fault and failure injection
is provided. Section III describes the setup used in our
experimental evaluation. Section IV contains the results of our
work. Section V addresses the limitations of our work. Finally,
Section VI contains the conclusion and future work.

II. RELATED WORK

This section addresses the existing approaches for acceler-
ating the process of FI and the related work on injection of
failure models. It is divided into approaches that can be applied
to the injection of hardware faults and approaches aimed at
the injection of software faults. At the end of this section, an
overview of FI using failure models is provided.

A. Accelerating injection of hardware faults

Knowledge about the system and workload that will be
targeted by FI is an important source of information whenever
attempting to optimize FI. Pre-injection techniques consist
of a group of techniques that analyze the target system and
its characteristics before commencing the injection process.
Sangchoolie et al. [8] presented two pre-injection techniques
for improving controllability and efficiency in Instruction Set
Architecture (ISA) level FI (i.e., injection in CPU registers
and memory locations reachable from software). The first
technique is Data Type Identification (DTI), used to improve
the control of the time and location of the injection by
identifying the data-items (the register or memory content,
which can be a memory address, control information, or a
data variable). The identification can be made by Instruction-
Based DTI, where the machine instruction used to access some
location is used to identify the data-items type, or by Location-
Based DTI, where the location of the data is sued to assert
the data-item type (because certain locations always hold a
specific data-item type). The second pre-injection technique
is Fault Space Optimization, which is employed to enhance
the efficiency of a FI campaign, and it involves eliminating

the bits of data-items that consistently result in an exception
during system execution thus, we can remove some of the
possible locations for the injection. This approach depends on
intimate knowledge about the target system and the behaviour
that certain bit locations have, thus it may not always be
feasible to use.

Two other types of optimizations for ISA-level FI are inject-
on-read and inject-on-write [9]. Inject-on-read performs the
injection immediately before the reading of the respective
data-item. This technique has two variants: unweighted inject-
on-read and weighted inject-on-read. In unweighted inject-
on-read, all faults targeting the same location are considered
equally significant. However, this approach may yield unreal-
istic results as specific locations may be more vulnerable to
faults due to containing more instructions or being more ac-
tivated during the execution. Weighted inject-on-read handles
this issue by assigning a weight to each location based on
the probability of a fault occurrence. This weight ensures that
faults with higher chances have a more significant impact on
the analysis. In contrast, inject-on-write performs the injection
only when the data-item is updated into a register or a memory
word. The optimization that both of these techniques cause,
when compared to a blind fault injection, is that faults only
need to be injected in operations and locations that are used. In
other words, if a certain location (e.g., a certain CPU register,
a specific bit of a certain register, some memory location) is
never accessed, then there is no need to inject faults in it.

Alfredo Benso et al. [10] defined a set of collapsing rules
that aims to reduce the fault list size and time by analyzing
the assembly code and evaluating the behavior of a system run
with no faults.

Injection using failure models as an approach for acceler-
ating FI was previously researched by P. Almeida et al. [15].
Almeida’s work injected crashes of a certain type of processes
of OpenStack (a famous cloud management platform) and
compared the outcome against experiments that use the well-
know single bit-flip in a CPU register fault model. However,
their experimentation had some drawbacks, such as only
evaluating one failure model (process crash), limited amount
of experiment runs, and a limited setup, thus the results may
not be very representative.

B. Accelerating injection of software faults

In the field of the acceleration of software fault injection,
Erik van der Kouwe et al. [16] suggest a new approach
called Hybrid Software FI (HSFI). This technique consists of
introducing all the faults in the system in a disabled mode.
Then, it uses the source-level context information to enable
and disable the introduced faults. In this way, the rebuilding
of the system is not necessary. Instead, two versions of the
code for each injected fault are generated, a pristine version
without the fault and a faulty version. In short, the idea is
to have all the faults in an executable file and thus avoid the
recompilation of the code multiple times, which is a very time-
consuming process. Although this technique may accelerate
the experiments, the representativeness of the system drops

drastically because the system is heavily modified and far from
the original one, as now it has all the faults embedded.

Robert Natella et al. [11] argue that the most important
type of software faults are residual faults, i.e., those faults
that escape testing. To this end, they suggest executing a test
suite after applying a software fault but before executing the
workload. If the test suite detects the injected software fault,
then it is not a residual fault (it would have been caught during
the normal development process) and thus should be discarded,
otherwise the workload should be executed. They also propose
two artificial intelligence (AI) classification algorithms aiming
to inject the most representative faults selectively. The first one
is based on decision trees, a supervised classifier trained using
examples of components. The second algorithm employs k-
means clustering, an unsupervised classifier that identifies that
depends on observing the component less exposed to testing.
By prioritizing the most representative faults first, it is possible
to obtain more failure data and converge faster towards the
correct result in a fewer number of runs.

Stefan Winter et al. [17] proposed an approach called ”Par-
allel Fault Injection” (PAIN), which is based around the idea
of parallelizing the execution of experiments, thus maximizing
the available computing resources. However, this technique
depends on a crucial assumption, which is that the execution
of multiple experiments at the same time will not affect the
results. Unfortunately, their own experiments concluded that
their approach leads to a degradation of the representativeness
of the results, depending on the degree of parallelism that is
used.

The field of artificial intelligence has also been explored to
accelerate FI campaigns. Ali Sedaghatbad et al. [18] proposed
a deep learning method for fault space exploration called
DELFASE. It consists of Generative Adversarial Networks
(GAN) for the identification of critical faults (faults that
reveal system vulnerabilities leading to the violation of safety
requirements). The goal is to make the generator capable of
generating dummy data that the discriminator cannot distin-
guish from the real one to be able to predict the behavior
of a failure. This technique has two modes: an active, where
a ranked batch-mode sampling is used to select faults for
the GAN model training, and a passive, where the faults
are selected randomly. Thus, DELFASE accelerates the FI
experiments by selecting the critical faults through the use of
active learning and GAN resulting in a higher fault coverage.

C. FI using failure models

Failure injection is already used in various companies to test
their systems and recovery mechanism behavior when a failure
occurs. These techniques are named Chaos of Engineering.
Netflix uses Chaos Monkey to test the availability of its
video stream services for the client [12]. After Netflix and
due to the increased need to ensure service resilience, several
companies have also adopted Chaos Engineering techniques,
such as Google and Amazon, which designed a program
called GameDay to find bugs and defects in their system.
This program consisted in injecting failures in the critical

systems [19]. Microsoft, inspired by Netflix Chaos Monkey,
uses Azure Search Chaos for the controlled inject controlled
disruptions and to simulate failures in a test environment in
order to identify the weaknesses and defects [20].

There is also some research on failure injection, Pallavi
Joshi et al. proposed PreFail, a programmable failure-injection
tool with the goal of avoiding the combinatorial explosion of
experiments. PreFail enables the user to set a range of policies
to reduce the vast space of multiple failures, thus reducing
the number of needed experiments [21]. Also, Francisco
Gortázar et al. introduced ElasTest, a platform that performs
failure injection intending to simplify the testing of distributed
applications. This open-source project allows the injection
failures like packet loss, CPU bursting, and node failure,
among others [22].

These tools already make use of the failure injection in
order not just to accelerate the experiments but also to test the
systems in the occurrence of specific types of malfunctions.

III. EXPERIMENTAL SETUP

The experimental setup is a key piece in our study between
the injection of fault and failure models. The chosen setup
is based on a virtualized system hosting multiple Virtual
Machines (VMs) that migrate from one hypervisor to another
co-located hypervisor whenever one fails through a technique
called Romulus, designed to tolerate hypervisor failures. The
inclusion of a fault tolerance mechanism means that we can
evaluate the impact that injecting failure models can have on
its performance. This section describes the used experimental
setup, workload, fault and failure models and the metrics
chosen to measure the results.

A. Physical Setup

The physical setup comprises two nodes: i) a Compute Node
hosting the hypervisors and the VMs; and ii) the Orchestrator
Node, responsible for the experiments management and the
provisioning of disk images to the VMs through a network
file systems (NFS). Figure 1 systematizes the two nodes and
their composition.

Fig. 1. Experimental Setup

The Compute node is composed of two Intel Xeon Silver
4114 with ten physical cores each, 32 Gb of RAM and a

network interface that can support a maximum speed of 1
GbE. The Orchestrator node has a single Intel Xeon E5620
processor with four physical cores, 12 Gb of RAM, and a
network interface supporting a maximum speed of 1 GbE.

B. Virtualized Setup

In the Compute node, the first layer (or L0) contains a
microvisor, i.e., a small hypervisor, that is a requirement of the
installed fault tolerance mechanism. The microvisor enables
running two hypervisors on the same physical hardware,
through a technique known as nested virtualization. Thus, in
the second layer (L1), we have two Xen hypervisors. One of
the two hypervisors is active and supporting the VMs (we call
it L1A), while the other is idle and plays the role of a ‘backup’
hypervisor (we call this hypervisor L1B). Finally, in the last
layer (L2), we find the VMs that support the workload. For
these experiments, we configured the system with a total of 4
L2 VMs. Figure 2 presents the different software layers and
the composition of the virtualized system.

Fig. 2. Virtualized System Layers

C. Romulus

The fault tolerance mechanism that is installed in the system
has the objective of protecting the L2 VMs from failures
of the hypervisor (L1A) through their migration from the
active hypervisor (L1A) to the backup hypervisor (L1B). Of
course, after the migration process is finished, the backup
hypervisor becomes the new active hypervisor. This fault
tolerance mechanism is called Romulus.

The approach used by Romulus is versatile and adaptable to
multiple hardware architectures and to different hypervisors.
However, it has some requirements. First of all, a microvisor
has to be added to the virtualization system in order to manage
the migration process. Furthermore, nested virtualization has
to be used to support executing two L1 hypervisors side-
by-side and virtual machine introspection (VMI) has to be
supported. The final requirement is that hardware-assisted

virtualization is supported by the system and used by the L2
VMs.

Before VM migration can take place, several actions must
be taken. First, it is necessary to pre-allocate memory space
for holding the VMs on the backup hypervisor (L1B). Then,
a template save file containing the information about each L2
VM is created. Finally, the VMCS data structure of each L2
VM is monitored and kept up-to-date by the microvisor.

After all the above steps have been taken, a failure detection
mechanism is launched. This mechanism is independent of
Romulus, thereby giving freedom to the user to choose the
mechanism that best fits a scenario. In our experiments, we
used a simple mechanism, which consists of monitoring the
active hypervisor and the L2 VMs with ping requests. After a
certain amount of ping requests fail, we consider that a failure
has occurred and Romulus is triggered, thus beginning the
migration process.

In the migration process, firstly, the L1A is paused to extract
the CPU and I/O state of the L2 VMs. Then the template save
files are updated with the latest state. The memory state of
every L2 VM is migrated from the active hypervisor (L1A) to
the other hypervisor (L1B). Finally, the L2 VMs are restored
using their save files in the L1B.

D. Workload

In our experiments, we defined a workload that emulates
a typical Solr client-server scenario. Solr is an open-source
platform used for text-based searches. Each L2 VM hosts a
Solr server that is filled with a part (9Gb) of Wikipedia’s index,
while multiple clients can be emulated in the Orchestrator
node. Our workload is set to have one client making a request
each second to the Solr servers in each experiment.

We configured the workload to last either 600 seconds or
1200 seconds, depending on the type of fault that is being
injected. The difference in length of the workload arises
because certain types of faults (namely, software faults) have
a longer manifestation latency.

The correctness of the provided responses is verified by
comparing the obtained output against a pre-calculated ex-
pected value. In this manner it is possible to detect both re-
quests that were not answered and requests that were answered
incorrectly (i.e., silent data corruption).

E. Fault Models

Two different types of faults were considered in our ex-
periments: transient hardware faults (soft errors) and software
faults.

To emulate transient hardware faults, we used the single
bit-flip fault model. In each experiment run, a random register
and bit was flipped. The considered registers were RIP, RSP,
RBP, RAX, RBX, RCX, RDX and R8 to R15. Faults affecting
memory were not considered for two main reasons. Firstly, the
memory of server-grade deployments is usually protected with
effective error-correcting codes [23]. Secondly, faults affecting
memory can be emulated using bit-flips in CPU registers. This
approach can be considered a naive approach because we do

not perform any steps to optimize the FI process (i.e., we are
not using knowledge about the system or workload to filter
the domain space).

To emulate software faults, the chosen fault model was the
one proposed by Durães et al. [24]. Out of the 13 operators
in the short-list, we inject 10: WVAV, WPFV, WAEP, MVAV,
MVAE, MLAC, MIFS, MIEB, MIA, and MFC. Another two
operators (WLEC and WALR) are used and obtained from
[25]. At the beginning of each experiment run, the software
fault is introduced in the code of the hypervisor in a disabled
state. During the experiment run, after a certain amount
of time has been elapsed, the fault is enabled. After the
fault is enabled, it may then be activated (i.e., executed).
Faults were injected in 4 specific source-code files, which
are “arch/x86/hvm/vmx/vmx.c”, “arch/x86/hvm/vmx/vmcs.c”,
“arch/x86/msr.c”, and “arch/x86/mm.c”. These files were cho-
sen because they have important yet different roles in the
hypervisor and the code lines that they contain are executed
by the workload (which was verified before conducting the
experiments). In this case, we used an optimized FI process
because we filtered out software faults that affected lines that
we knew were not executed by the workload and only injected
faults in lines that were executed.

F. Failure Models

The failure models that were evaluated are crash and hang.
These two failure models were chosen because they have been
often used in the literature and because in cloud systems,
the most common failure mode is a crash [26]. A hang is
not as common as a crash but can occur, making the system
unresponsive and subsequently failing.

G. Injection Points

Given a relatively complex system with various layers like
the one used for our experiments, it becomes feasible and even
desirable to inject faults and, specially, failures in different
points of the system. For that purpose we define two injection
points, which are depicted in Figure 3. These injection points
are in the hypervisor (more specifically, the active hypervisor)
and in a L2 VM.

Fig. 3. System Detailed Architecture

For the injection of hardware and software faults, the used
injection point was the hypervisor. This makes sense given
that Romulus aims to protect against hypervisor failures, thus
injecting faults in the L2 VM would be outside the coverage
provided by Romulus. On the other hand, failures were in-
jected both in the hypervisor (e.g., crashing the hypervisor)
and in the L2 VMs (e.g., crashing a VM). Injecting failures
in the VM is justifiable because previous studies have shown
that faults in the hypervisor often cause crash and hangs of
one or more VMs [26], [27].

H. Experiment Flow

Each experiment consists of a set of tasks. The first task
is launching the L1A and L1B from snapshots. Then, the L2
VMs are launched and the steps required to prepare Romulus
are taken (e.g., pre-allocating memory in L1B). After these
preparatory steps are finished, monitoring probes are launched
to detect failures in the VMs. The workload is initiated, and
after a specific time (i.e., when the warmup phase has ended),
a single fault or failure is injected. The workload is left to
execute until the end. If the monitoring probes detect that at
least 1 of the VMs had failed, the recovery process is triggered.
After the workload finishes, tests are carried out to verify the
state of the VMs, then the VMs are turned off, their state
restored back to a pristine state and the physical machine is
rebooted to avoid carrying over anything that may interfere
with the next experiment run.

I. Metrics

The comparison presented in this work will focus on four
different metrics. If the results obtained using FI using failure
models are similar to the results of FI using fault models,
then we can state that both techniques are interchangeable.
The metrics are:

1) Failure percentage - The amount of failures divided by
the total number of injections;

2) Manifestation latency - The time elapsed between the
moment of injection and the moment when a failure is
detected in a VM;

3) Recovery success - The percentage of VMs that were
successfully recovered after Romulus was triggered;

4) VM downtime - The amount of time that the VM was
unavailable while recovery took place.

The two first metrics focus only on the behaviour exhibited
by the system after an injection is performed, whereas the
other two metrics focus on the behaviour of the fault tolerance
mechanism. Failure percentage is the most straightforward
metric and symbolizes the speed-up in the occurrence of fail-
ures. Naive techniques usually show lower failure percentages
than optimized techniques. This is not a problem when the
purpose of fault injection is failure data collection (e.g., to
train machine learning models), but it becomes a problem
when fault injection is used to characterize the dependability
of the system, since the failure percentage obtained using an
optimized technique will not reflect the real failure percentage
of the system.

Manifestation Latency refers to the time between the fault
injection and the earliest manifestation of the effects caused by
it. This metric is very important when designing fault tolerance
mechanisms and failure prediction models, because it governs
the amount of time that is available for these mechanisms
to act. It has been shown that manifestation latency naturally
varies depending on the complexity of the system and even on
the type of fault [28]. Thus, for collecting failure data to be
used in two aforementioned applications, it would be important
for FI using failure models to produce similar manifestation
latency as FI using fault models. On the other hand, high
manifestation latencies can significantly reduce the amount
of injections that can be performed in a certain amount of
time, thus slowing down the FI campaigns. In our experiments,
the observation point is the Solr Client (the point where
we will detect the failure), thus our manifestation latency is
calculated from the client’s viewpoint. Figure 4 exemplifies
the manifestation latency time in a typical fault injection.

Fig. 4. Manifestation latency

Recovery success, i.e., the percentage of recovered VMs,
is a key metric used for the evaluation of fault tolerance
mechanisms. When a failure occurs, Romulus is triggered
but it may not always successfully recover all VMs that the
failed hypervisor hosted. For FI using failure models to be
interchangeable with FI using fault models wrt. evaluating
fault tolerance mechanisms, then it should produce similar
results in this metric.

The final metric is also important for the evaluation of fault
tolerance mechanisms. The VM downtime refers to how much
time the VMs are unavailable as a result of the recovery
process. This metric should show similar values between
traditional FI and FI using failure models, otherwise FI using
failure models cannot be trusted to accurately evaluate fault
tolerance mechanisms.

IV. RESULTS & DISCUSSION

This section begins with a characterization of the various
datasets that were used for this comparison, followed by a
presentation and discussion of the results grouped according
to each of the metrics.

A. Dataset characterization

In our comparison, we use eight datasets, which are detailed
in Table I. Each dataset represents a cluster of experiments

grouped in time and multiple datasets may use the same fault
or failure model. In total we analyze 2809 runs where tran-
sient hardware faults are injected (HW A and HW B), 1200
runs where software faults are injected (SW A and SW B),
597 runs where crash failures are injected (CRASH L1 and
CRASH L2) and 299 runs where hang failures are injected
(HANG L1 and HANG L2). Hardware and software faults,
as well as the crashes of CRASH L1 and hangs of HANG L1,
were injected on the active hypervisor (L1 A), whereas
crashes and hangs of CRASH L2 and HANG L2 were in-
jected in a VM chosen at random.

TABLE I
DATASETS CHARACTERIZATION

Dataset Experiments
HW A 2409
HW B 400
SW A 832
SW B 368

CRASH L1 297
CRASH L2 300
HANG L1 100
HANG L2 199

For a better understanding of the datasets where transient
hardware faults were injected, we look into the distribution
of injected faults across CPU registers. Ideally each register
would have a similar amount of runs, however, as can be
seen in Figure 5, in dataset HW A, the rip and rsp registers
are overly represented, followed by rax, rbp, rcx, and rdx.
While in HW B, the different registers show a more balanced
distribution.

r8 r9 r10 r11 r12 r13 r14 r15 rax rbp rbx rcx rdx rip rsp
Register

0

5

10

15

20

25

Pe
rc

en
ta

ge
 (%

)

HW_A
HW_B

Fig. 5. Registers Distribution

A similar analysis was performed for the datasets where
software faults were injected as to study which operators were
more often injected. As can be seen from Figure 6, the most
common operator were, by far, MFC and MIA, followed by
MIFS. This is uneven distribution among operators is to be
expected because operators have pre-conditions that must be
true for them to be applied (e.g., the MFC operator has to

be applied wherever a function call is being done) and some
pre-conditions are more likely to occur than others.

MFC MIA
MIEB MIFS

MLA
C

MVAE
MVAV

WAEP
WLEC WPFV WVAV

Operator

0

5

10

15

20

25

30

35

40

Pe
rc

en
ta

ge
 (%

)

SW_A
SW_B

Fig. 6. Operators Distribution

B. Analysis wrt. failure percentage

Our first analysis focuses on the the failure percentage met-
ric. Higher failure percentages mean that fewer experiments
are required to obtain a certain amount of failures, because
there are fewer runs where the injected fault was masked and
did not cause a failure. Table II shows the results.

TABLE II
FAILURE STATISTICS PER DATASET

Dataset Num.
Failures

Failure
Percentage (%)

Weighted Failure
Percentage (%)

HW A 1467 60.9 27.17
HW B 124 31.00 27.86
SW A 767 92.19 ***
SW B 328 89.13 ***

CRASH L1 297 100 ***
CRASH L2 300 100 ***
HANG L1 100 100 ***
HANG L2 199 100 ***

Since the HW A dataset has an unbalanced distribution
among registers, we decided to calculate the weighted failure
percentage for datasets HW A and HW B. This percentage is
calculated by looking at the register with the highest number of
injections, then extrapolating the number of injections of every
other register until all registers have the same amount of injec-
tions. The number of new failures is calculated by multiplying
the failure percentage of the register before extrapolation by
the new number of injections. After this extrapolation process,
the normal average is calculated. This process was effective
because the obtained weighted failure percentage is similar for
HW A and HW B, whereas the original failure percentage of
both datasets is quite different.

SW A and SW B showed a relatively high failure per-
centage because the used fault injection process was already
optimized (as stated in Section III-E). For example, we only

inject software faults in lines of code that the workload
executes, therefore we prune the domain space from many
faults that would never lead to a failure. Since the fault
injection process used for transient hardware faults was not
optimized (we solely injected in a randomly chosen register
and bit), there is a significant difference in failure probabilities
between them.

As expected, experiments where failures were injected had
perfect effectiveness. We can conclude from these results that
injecting failures represents an improvement of almost 3x over
naive injection of hardware faults and about 11% over an
already optimized injection of software faults.

C. Analysis wrt. manifestation latency

The second metric that we analyze is manifestation latency,
which is the time between the actual moment of injection and
the first perceptible sign of failure. Manifestation latency is a
key metric for designing certain fault tolerance mechanisms
(e.g., rollback-based mechanisms) and failure prediction mod-
els. In this analysis, the datasets were filtered to contain only
the experiences that resulted in a failure.

Figure 7 shows the manifestation latency distribution for
each dataset. This time was measured using the same mech-
anism used to detect failures and trigger Romulus, which
consists in various pings to the L2 VMs.

HW_A
HW_B

CRASH
_L1

CRASH
_L2 SW

_B
SW

_A

HANG_L1

HANG_L2

Dataset

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115

Re
al

 D
et

ec
tio

n
La

te
nc

y
(s

)

Fig. 7. Manifestation Latency - Ping

We can observe that the HW A dataset presents the smallest
values with an average of 36.75s and a median of 36.54s. The
average manifestation latency of the SW A is 63.27s. Still, the
median is 32s, indicating that the experiments do not behave
similarly in various situations, which explains the presence
of multiple outliers. Thus the SW A experiments are less
consistent than the HW A experiments. The consistency of the
manifestation latency is also an important factor contributing
to the length of an experiment run. If the manifestation
latency is very inconsistent, the person designing the campaign
must take the highest possible value into consideration when

defining the amount of time that the workload should run. If
the workload is too short, then some faults that would cause a
late failure are cut abruptly and incorrectly labeled as having
had no effect.

As we can observe, the HW B and SW B have similar
values, with an average of 97.49s and 94.78s, respectively. Our
results show that the CRASH L1 and HANG L1 experiments
have a manifestation latency similar to HW B and SW B too,
while CRASH L2 and HANG L2 have a lower manifestation
latency. These observations were unexpected because the la-
tency of injecting a crash failure should be very low. For that
reason, we decided to calculate the manifestation latency as
seen from a different source, the workload clients themselves.
In other words, we measured the latency between the moment
of injection and the first request that failed. The results are
shown in Figure 8.

HW_A
HW_B

SW
_A

SW
_B

CRASH
_L1

CRASH
_L2

HANG_L1

HANG_L2

Dataset

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000

M
an

ife
st

at
io

n
La

te
nc

y
(s

)

Fig. 8. Manifestation Latency - Solr (Workload)

The manifestation latencies looking at the Solr requests
agree much more with our expectations for the datasets
CRASH L1 and HANG L1. A possible explanation for the
discrepancy in latencies when using ping and Solr is the effect
of a network timeout mechanism, however no further inquiries
were performed to confirm this suspicion.

It can be understood that the manifestation latency times
of SW A and SW B datasets are much longer, thus software
failures may take significantly longer to produce effects on
the target system. To visualize in more detail the values
of hardware datasets compared to the crashes and hangs,
we generated a boxplot with only the failures and hardware
datasets, which is depicted in Figure 9.

The median of HW A and HW B is 0.18s and 0.32s, re-
spectively. These hardware datasets are similar to CRASH L1
and HANG L1, where the medians are 1.71s and 1.29s.
HW A, HW B, CRASH L1, and HANG L1 have some neg-
ative outliers that small measurement errors can explain since
our environment is a distributed system, then there are always
synchronization problems associated with the different ma-

HW_A
HW_B

CRASH
_L1

CRASH
_L2

HANG_L1

HANG_L2

Dataset

12
10

8
6
4
2
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

M
an

ife
st

at
io

n
La

te
nc

y
(s

)

Fig. 9. Manifestation Latency (subset of datasets)

chines. The timestamps used for this calculation are retrieved
from the Orchestrator node and the hypervisor, and both can
present small variations. Looking at the manifestation latency
times, the crash and hang of L1 produce identical times to
those produced by hardware faults in both hardware datasets
compared to CRASH L2 and HANG L2, where the median
is much higher, 12.28s and 12.06s. These results allow us to
conclude that injecting crash and hang failures in the L1 is
a valid (and quicker) alternative to injecting hardware faults
regarding manifestation latency. However, the same cannot be
said of injecting these types of failures in the L2.

D. Analysis wrt. VM recovery percentage

Using a failure model in an experimental evaluation of a
fault tolerance mechanism should only be done if the resulting
behaviour of the mechanism is similar to when fault models
are used. To verify this, we look into how effective Romulus
was at recovering VMs when different faults and failures
are injected. For this evaluation, we focus on the HW A,
SW A, CRASH L1, CRASH L2, HANG L1 and HANG L2
datasets, because these had the highest amount of usable runs.

We analyze the performance of Romulus from two points
of view, 1) Solr, i.e., whether there has been a recovery of the
Solr service in the VMs, and 2) the operating system (OS),
i.e., whether the operating system kept working correctly even
if Solr did not. This differentiation exists because Romulus,
in certain occasions, may be able to recover the O.S but not
the Solr service. If this occurs, a simple mechanism to restart
Solr could provide service continuity with low downtime and
cost.

Regarding the Solr point-of-view, Figure 10 contains the
bar chart of the distribution of recovered VMs. In general, the
most common outcome is the recovery of two VMs, where
HANG L2 and CRASHŁ2 have the highest values (44.72%
and 42.33%) followed by HW A (36.22%), CRASH L1
(34.45%), SW A (24.71%) and HANG L1 (24%). The SW A

is the only dataset where the probability of recovery of no
VM is the highest, with 27.82%. CRASH L2 and HANG L2
cannot recover the four VMs in any experiment. This is
expected because the failure involves crashing one of the L2’s
VMs, making its recovery always impossible.

Regarding the OS point-of-view, Figure 11 shows the prob-
abilities of recovery of the operative system of L2 VMs.
As expected, the crash of one L2 VM does not affect the
other VMs performance, and therefore, the L2 CRASH has
a probability of 69.3% recovery of three VMs. SW A has
a high probability of recovering all the VMs, with 44.68%.
However, it also has a probability of 22.91% of not recovering
any VM. It is worth noting that the hang failures present
a higher percentage of recovered VMs in comparison with
crashes. HANG L1 has a 62.0% probability of recovering
the four VMs, and HANG L2 has a 72.36% probability of
recovering three VMs which is the maximum when injecting
a hang on an L2 VM.

0 1 2 3 4
Count of Recovered VMs (solr)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

Pr
ob

ab
ilit

y
(%

)

HW_A
SW_A
CRASH_L1
CRASH_L2
HANG_L2
HANG_L1

Fig. 10. Recovered VMs (Solr)

0 1 2 3 4
Count of Recovered VMs (OS)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

Pr
ob

ab
ilit

y
(%

)

HW_A
SW_A
CRASH_L1
CRASH_L2
HANG_L2
HANG_L1

Fig. 11. Recovered VMs (OS)

To better express the results, we created a cumulative his-
togram of the probabilities of VM recovery. These histograms
conclude that HANG L1, CRASH L2 and HANG L2 are
where the recovery is most successful. SW A is where the

recovery capacity is lower, although it has a reasonable
probability for three or more VMs compared with the other
datasets. The two histograms also show the similarity between
the HW A and CRASH L1, causing the failure injection to
be a valid way to study the recovery, as concluded above.

0 1 2 3 4
Count of Recovered VMs (solr)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 [0

:1
]

HW_A
SW_A
CRASH_L1
CRASH_L2
HANG_L1
HANG_L2

Fig. 12. Cumulative Histogram Recovered VMs (solr)

0 1 2 3 4
Count of Recovered VMs (OS)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 [0

:1
]

HW_A
SW_A
CRASH_L1
CRASH_L2
HANG_L1
HANG_L2

Fig. 13. Cumulative Histogram Recovered VMs (OS)

From the results, we infer that HW A and CRASH L1
have similar probabilities of VM recovery. This observation
supports the use of the crash failure model as a valid alternative
to traditional hardware FI, when the goal is to study the
success of recovery of a fault tolerance mechanism. However,
the user should expect the results using injection of crashes
to be slightly more optimistic (i.e., better VM recovery) than
when injecting hardware faults.

E. Analysis wrt. VM recovery downtime

The other metric associated to the performance of the recov-
ery mechanism is the VM downtime. The recovery process as
provided by Romulus always incurs downtime, which accounts
for the time taken to migrate from one hypervisor to the other.
We study whether different fault and failures models have an
impact in the VM downtime.

Figure 14 presents the downtime of the multiple L2 VMs.
HW A and SW A have a median of 285.48s and 301.21s,
while CRASH L1 and CRASH L2 are 250.75s and 268.04s,
and last HANG L1 and HANG L2 have a median of 270.50s

HW_A
SW

_A

CRASH
_L1

CRASH
_L2

HANG_L1

HANG_L2

Dataset

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

Do
wn

tim
e

(s
)

Fig. 14. Recovery Downtime

and 258.65s respectively. However, HW A and SW A contain
more outliers, which can be explained by the unpredictability
of the injection of a fault compared to the crash, which behaves
almost the same way.

These results suggest that downtime does not vary with
failure injection. Therefore, for the study of the downtime
of VMs, both fault injection and failure injection can be
considered since they produce similar values, thus not having
much influence on the experiments and do not limit the
analysis of it.

F. Summary

From the results, the main observations to extract are that
certain failure models (namely, crash failures in L1) can
produce manifestation latencies similar to those generated
by fault injection of hardware faults. The same can be said
regarding the VM recovery percentage of CRASH L1 and
hardware failures. At the same time, the downtime of VM
recovery is widely similar between all the studied fault and
failure models. From here we can conclude that the crash
failure model applied to the L1 is a good alternative to fault
injection of hardware faults, because it can produce similar
results at a much quicker pace (about 3x quicker). However,
it should be noted that CRASH L1 appears to produce slightly
more optimistic results regarding VM recovery percentage
than hardware faults.

On the other hand, certain injection points (L2) and some
failure models (hang) produced results that deviated more than
desired and are less useful as an alternative to fault injection.
Furthermore, no failure model was able to accurately emulate
the results of software fault injection.

V. LIMITATIONS

As with any experimental evaluation there are factors that
limit the applicability and ability to generalize the results. The
first limitation that we identify in this work is the fact that only

a single setup was evaluated. Furthermore this setup represents
a very specific application: a node of a cloud computing
deployment which hosts VMs that support a read-heavy Solr-
based workload. It is possible that conducting the same kind
of experiments on a different setup, or even on a different
workload, can lead to different results. As future work we
plan to study more setups as to reduce this limitation of our
work.

The second limitation is the evaluated fault tolerance mech-
anism, which is not a production-ready and widely deployed
mechanism. As such, it is possible that the mechanism itself
can affect the results. For example, if a more mature mecha-
nism, or even just a different mechanism, had been evaluated,
the results might have been different. This limitation can only
be solved by performing similar campaigns using different
fault tolerance mechanisms.

The third limitation is the considered failure models. Al-
though the two considered models are the most commonly
used (crashes and hangs), various works have used different
failure models, such as disk errors or memory and CPU usage.
As future work we plan to consider a wider range of failure
models. Furthermore, we plan to inject crashes and hangs in
other injection points, e.g., inside processes of the VM.

The fourth and last limitation that we identified is the
amount of experiment runs. Although we believe that we have
enough runs to justifiably support our observations, a higher
number of runs would always provide more certainty and trust
in the results. This limitation requires time to be solved, but
we are continuously conducting more experiment runs towards
that objective.

VI. CONCLUSION

Many systems nowadays need to avoid and tolerate failures
because they are used in safety-critical and highly-dependable
scenarios. As such, it is necessary to study how systems behave
under specific conditions, such as when affected by faults.
Fault injection is an experimental approach which is very
useful for evaluating the dependability of systems and validat-
ing fault tolerance and error detection mechanisms. Through
the intentional injection of faults, the natural fault occurrence
process is accelerated. However, fault injection techniques can
be time-consuming, thus, there is interest in accelerating the
process to get results faster and more efficiently. This work
studies the potential of failure injection as a fault injection
acceleration technique.

The results show that, in a virtualized setup with a fault
tolerance mechanism (Romulus), failure injection can be an
alternative to traditional fault injection when the goal is to an-
alyze the fault tolerance mechanism’s performance or to study
the downtime of VMs. However, for different applications,
failure injection is not an adequate replacement, and fault
injection remains the right tool. In the future, we will consider
more failure models and conduct more experiment runs to
reinforce the confidence in our results. Different environments,
workloads and fault tolerance mechanisms will also be studied.

REFERENCES

[1] V. Narayanan and Y. Xie, “Reliability concerns in embedded system
designs,” Computer, vol. 39, no. 1, pp. 118–120, 2006.

[2] R. C. Baumann, “Radiation-induced soft errors in advanced
semiconductor technologies,” IEEE Transactions on Device and
Materials Reliability, vol. 5, no. 3, pp. 305–316, Sept 2005. [Online].
Available: http://dx.doi.org/10.1109/TDMR.2005.853449

[3] J. W. McPherson, “Reliability Challenges for 45Nm and Beyond,” in
Proceedings of the 43rd Annual Design Automation Conference, ser.
DAC ’06. New York, NY, USA: ACM, 2006, pp. 176–181.

[4] S. Borkar, “Design Perspectives on 22Nm CMOS and Beyond,” in
Proceedings of the 46th Annual Design Automation Conference, ser.
DAC ’09. New York, NY, USA: ACM, 2009, pp. 93–94.

[5] R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira, “On fault
representativeness of software fault injection,” IEEE Transactions on
Software Engineering, vol. 39, no. 1, pp. 80–96, Jan 2013.

[6] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and
failures in a complex software system,” IEEE Transactions on Software
Engineering, vol. 26, no. 8, pp. 797–814, Aug 2000.

[7] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques
and tools,” Computer, vol. 30, no. 4, pp. 75–82, Apr 1997. [Online].
Available: http://dx.doi.org/10.1109/2.585157

[8] B. Sangchoolie, R. Johansson, and J. Karlsson, “Light-weight techniques
for improving the controllability and efficiency of isa-level fault injection
tools,” in 2017 IEEE 22nd Pacific Rim International Symposium on
Dependable Computing (PRDC), 2017, pp. 68–77.

[9] B. Sangchoolie, F. Ayatolahi, R. Johansson, and J. Karlsson, “A compar-
ison of inject-on-read and inject-on-write in isa-level fault injection,” in
2015 11th European Dependable Computing Conference (EDCC), 2015,
pp. 178–189.

[10] A. Benso, M. Rebaudengo, L. Impagliazzo, and P. Marmo, “Fault-list
collapsing for fault-injection experiments,” in Annual Reliability and
Maintainability Symposium. 1998 Proceedings. International Sympo-
sium on Product Quality and Integrity, 1998, pp. 383–388.

[11] R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira, “On fault
representativeness of software fault injection,” IEEE Transactions on
Software Engineering, vol. 39, no. 1, pp. 80–96, 2013.

[12] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, “Chaos engineering,” IEEE Software,
vol. 33, no. 3, pp. 35–41, 2016.

[13] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. Leber,
“Comparison of physical and software-implemented fault injection tech-
niques,” IEEE Transactions on Computers, vol. 52, no. 9, pp. 1115–
1133, 2003.

[14] H. Schirmeier and M. Breddemann, “Quantitative cross-layer evaluation
of transient-fault injection techniques for algorithm comparison,” in 2019
15th European Dependable Computing Conference (EDCC), 2019, pp.
15–22.

[15] P. David Almeida, F. Cerveira, R. Barbosa, and H. Madeira, “ucxception:
A framework for evaluating dependability of software systems,” in 2022
IEEE 22nd International Conference on Software Quality, Reliability
and Security (QRS), 2022, pp. 561–570.

[16] E. Van Der Kouwe and A. S. Tanenbaum, “Hsfi: Accurate fault injection
scalable to large code bases,” in 2016 46th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN), 2016,
pp. 144–155.

[17] S. Winter, O. Schwahn, R. Natella, N. Suri, and D. Cotroneo, “No pain,
no gain? the utility of parallel fault injections,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 1, 2015,
pp. 494–505.

[18] A. Sedaghatbaf, M. Moradi, J. Almasizadeh, B. Sangchoolie,
B. Van Acker, and J. Denil, “Delfase: A deep learning method for
fault space exploration,” in 2022 18th European Dependable Computing
Conference (EDCC), 2022, pp. 57–64.

[19] J. Robbins, K. Krishnan, J. Allspaw, and T. A. Limoncelli, “Resilience
engineering: Learning to embrace failure: A discussion with jesse
robbins, kripa krishnan, john allspaw, and tom limoncelli,” Queue,
vol. 10, no. 9, pp. 20–28, 2012.

[20] H. Nakama, “Inside azure search: Chaos engineering,” Blog, July
2015, microsoft. [Online]. Available: https://azure.microsoft.com/en-
us/blog/inside-azure-search-chaos-engineering

[21] P. Joshi, H. S. Gunawi, and K. Sen, “Prefail: A programmable tool for
multiple-failure injection,” in Proceedings of the 2011 ACM interna-
tional conference on Object oriented programming systems languages
and applications, 2011, pp. 171–188.

[22] F. Gortazár, M. Gallego, B. Garcı́a, G. A. Carella, M. Pauls, and I.-
D. Gheorghe-Pop, “Elastest—an open source project for testing dis-
tributed applications with failure injection,” in 2017 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-
SDN). IEEE, 2017, pp. 1–2.

[23] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the wild:
A large-scale field study,” SIGMETRICS Perform. Eval. Rev., vol. 37,
no. 1, pp. 193–204, Jun. 2009.

[24] J. A. Duraes and H. S. Madeira, “Emulation of software faults: A field
data study and a practical approach,” IEEE Transactions on Software
Engineering, vol. 32, no. 11, pp. 849–867, 2006.

[25] R. Barbosa, F. Cerveira, L. Gonçalo, and H. Madeira, “Emulating
representative software vulnerabilities using field data,” Computing, vol.
101, pp. 119–138, 2019.

[26] F. Cerveira, R. Barbosa, H. Madeira, and F. Araujo, “The effects of
soft errors and mitigation strategies for virtualization servers,” IEEE
Transactions on Cloud Computing, vol. 10, no. 2, pp. 1065–1081, 2022.

[27] X. Xu and H. H. Huang, “On soft error reliability of virtualization
infrastructure,” IEEE Transactions on Computers, vol. 65, no. 12, pp.
3727–3739, 2016.

[28] F. Cerveira, J. Domingos, R. Barbosa, and H. Madeira, “Measuring
lead times for failure prediction,” in 2021 IEEE 26th Pacific Rim
International Symposium on Dependable Computing (PRDC), 2021, pp.
1–5.

	Introduction
	Motivation
	Goals
	Contributions
	Document Structure

	Background
	Dependability
	Dependability Attributes
	Fault
	Error
	Failure
	The Chain of a System Failure
	Dependability Means

	Fault Injection
	Fault Injection Properties
	Hardware Fault Injection
	Software Fault Injection
	Fault Injection Tools

	State of the Art
	ucXception Tool
	ucXception Architecture
	ucXception Components
	ucXception Fault Injectors

	Fault Injection Acceleration
	fi Acceleration Techniques of Hardware Faults
	fi Acceleration Techniques of Software Faults
	Failure Injection

	Approach
	Failure Model Injection
	Validation and Comparison to Fault Injection
	Setup
	Recovery Mechanism
	Fault Injection
	Failure Model Injection Validation
	Failure Model
	Metrics
	Fault and Failure Model Injection Flow

	Results
	Dataset Characterization
	Failure Percentage
	Manifestation Latency Analysis
	Percentage of recovered VMs Analysis
	Downtime Analysis
	Limitations
	Summary

	Planning and Methodology
	First Semester
	Second Semester
	Limitations

	Conclusion
	Future Work

	Appendix Fault and Failure Model Injection Flow
	Appendix ISSRE 2023 - Paper Submission

