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Abstract

The usage of cloud-native applications has been growing in the last few years,
despite this they still have some challenges, with security being one of them.
In order to diminish this problem, Artificial Intelligence-based security solutions
have been recently proposed and taken more into consideration since it shows
notable results in identifying and responding to threats released in a network.
Network anomaly detection being the process of monitoring network data and
detecting abnormal events that may occur, it is the main technique we used in
our work

This work has the goal of researching, designing and building an AI model for
network anomaly detection as part of the development of a Holistic Security and
Privacy Framework in the context of the CHARITY and 5G-EPICENTRE EU-
funded research projects. This framework is intended to automate, detect and
mitigate anomalies, such as cyber-attacks, in cloud-based environments. In this
report, we provide a review of several research topics, such as Cloud-based en-
vironments, network security and the state of the art of Machine Learning for
Network Anomaly Detection, where we present and discuss various different
Machine Learning, and Deep Learning approaches.

Using the Supervised Learning algorithm, Random Forest, as a baseline model
that achieved a good performance in detecting attacks, we compared the perfor-
mance of the same algorithm with a Conventional and Convolutional Autoen-
coder in detecting unknown attacks and reached the conclusion that the Random
Forest had a worse performance, showing that an Unsupervised Learning ap-
proach, achieving an F1-Score in the order of 80%, was better than a Supervised
Learning approach as the latter one cannot identify well enough attacks that were
unknown to the model, achieving an F1-Score of 27%.

The Conventional Autoencoder presented an F1-Score value above 69% in all dif-
ferent types of data except for the Email, which the performance was bad com-
pared to the other types of data. The Convolutional Autoencoder presented and
F1-Score value above 59% in all of the models trained for each type of data. Com-
paring the Conventional Autoencoder with the Convolutional, we could con-
clude that both algorithms have a very similar performance overall, achieving
similar AUC scores, as well as the classification time. Since the objective of the
framework was to periodically train the model we were using with new data, in
order for it to keep improving, the training time of the model was a really im-
portant aspect, and in this case the Convolutional Autoencoder took much more
time than the Conventional Autoencoder.

Keywords

Machine Learning (ML), Network Anomaly Detection, Privacy, Autoencoders,
Unsupervised Learning.
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Resumo

A utilização de aplicações Cloud-native tem vindo a crescer nos últimos anos,
ainda assim estes têm os seus problemas, um deles a segurança. De maneira
a diminuir este problema, foram recentemente propostas e tidas mais em con-
sideração soluções baseadas em Inteligência Artificial para segurança, visto que
mostram resultados notáveis na identificação e resposta a ameaças presentes numa
rede.

Este trabalho tem o objetivo de pesquisar, conceber e construir um modelo de IA
para a detecção de anomalias de rede como parte do desenvolvimento de uma
Framework de Segurança e Privacidade Holística no contexto dos projectos de
investigação financiados pela UE, CHARITY e 5G-EPICENTRE. Esta framework
destina-se a automatizar, detectar e mitigar anomalias, tais como ciberataques,
em ambientes Cloud-Native. Neste relatório, fornecemos ainda uma análise de
vários tópicos de investigação, tais como ambientes Cloud-native, segurança de
redes e o estado da arte de Machine Learning para deteção de anomalias em re-
des, onde apresentamos e discutimos várias abordagens baseadas em Machine
Learning e Deep Learning.

Utilizando o algoritmo de Supervised Learning, Random Forest, como modelo
de referência, que obteve um bom desempenho na deteção de ataques, compara-
mos o desempenho deste algoritmo com um Conventional Autoencoder e um
Convolutional Autoencoder e chegámos assim à conclusão que o Random Forest
demonstrou um desempenho pior em comparação com os Autoencoders, o que
mostra que as abordagens Unsupervised Learning, que atingiram um F1-Score na
ordem dos 80%, foi melhor do que uma abordagem Supervised Learning, uma
vez que esta última não conseguiu identificar adequadamente ataques descon-
hecidos ao modelo, alcançando um F1-Score de 27%.

O Conventional Autoencoder apresentou um F1-Score acima de 69% em todos os
diferentes tipos de dados, exceto no Email, cuja performance foi má em compara-
ção com os outros tipos de dados. O Convolutional Autoencoder apresentou um
F1-Score acima de 59% em todos os models treinados para cada tipo de dados. Ao
comparar o Conventional Autoencoder com o Convolutional Autoencoder, pode-
mos concluir que ambos os algoritmos têm um desempenho muito semelhante,
conseguindo valores de AUC semelhantes, assim como tempos de classificação.
Sendo que o objetivo da framework era treinar periodicamente o modelo com
novos dados, para que ele continuasse a melhorar, o tempo de treino do modelo
era um aspeto realmente importante, e, nesse caso, o Convolutional Autoencoder
levou muito mais tempo do que o Conventional Autoencoder.

Palavras-Chave

Machine Learning(ML), Deteção de anomalias em redes, Segurança, Autoencoders,
Unsupervised Learning.
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Chapter 1

Introduction

In the context of the thesis "Artificial Intelligence and Machine Learning for secu-
rity and privacy in Cloud-Native environments" and the dissertation of Master in
Data Science and Engineering (MECD), by the Department of Informatics Engi-
neering (DEI), Faculty of Sciences and Technology of the University of Coimbra
(FCTUC) in the school year 2022/2023.

This work was developed at OneSource [1], with the objective of analysing and
developing approaches in the area of Machine Learning with the purpose of im-
proving the security and privacy of Cloud-Native environments.

1.1 Background

Maintaining the privacy and security when it comes to online communication
is one of the most critical aspects in the context of professional and day-to-day
life, so it is important that all applications used have a good and reliable security
framework. Artificial Intelligence (AI) has been used, in recent years, as a tool in
the assurance of the security of these applications, by detecting possible threats
as well as giving feedback on the causes and possible solutions to these attack
attempts. The research that will be conducted in this report will be integrated in
two projects, the ExPerimentation Infrastructure hosting Cloud-nativE Netapps
for public proTection and disaster RElief (5G-EPICENTRE) project [2] and the
Cloud for Holographic and Augmented RealITY (CHARITY) project [3].

Due to the increasing number of interactions in Cloud-Native environments and
the growing capacity of existing breaches and attacks in these environments, it is
urgent to have a reliable tool to assist with the problem, deciding if an instance is
normal activity or an anomaly or an attempt of an attack to the network, so we
will address in our work network anomaly detection. ML has a crucial role in
this problem, create a model capable of automating and improving the process of
attacks detection, due to its capability of processing big loads of data and provide
precise real-time alerts.

5G-EPICENTRE is an EU-funded project which its objective is to create a plat-
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Chapter 1

form that aims to lower the difficulty of small and medium enterprises (SMEs) in
entering 5G markets, enabling them to build and test their solutions without high
costs. The platform will be as an open source repository for PPDR 5G Network
Applications (NetApps) which will provide open access to 5G networks resources
where enterpises can have access to those resources in a simple and cost effective
way [4].

CHARITY is another project funded by the European Union which the main goal
is to create a novel framework capable of integrating the benefits of network con-
tinuum autonomous orchestration of cloud, edge, and network resources in order
to handle simultaneously low and high latency infrastructures. This open-source
infrastructure is being designed to be able to deal and answer, in an effective way,
to the needs of emerging applications such as holographic events, virtual reality
training, and mixed reality entertainment. The framework relies on various tech-
nologies related to cloud in order to offer a complete environment capable of
delivering NextGen applications [5].

With the continuous growth of 5G technologies and the use of cloud-based tech-
nologies, there is a need to carefully adapt in terms of security so that there will
not be breaches, that is the task that OneSource is responsible for, be in charge of
the security aspects of the NetApps. The company is tasked with developing a
framework focused on the detecting and handling network attacks and intrusion
attempts that will then be integrated in the overall projects that are CHARITY
and 5G-EPICENTRE.

As the main technologies are cloud-based it is of maximum importance to pro-
vide safe and secure cloud end-to-end communications and service delivery. The
CHARITY project has a specific area where the security and privacy of the frame-
work is the focal point, security and privacy-aware orchestration. In this context,
the work being developed by OneSource, and the one that we will detail in my
report will be integrated in this project with the finality of securing a safe end-to-
end communication.

Under the context of the problem and these two projects, OneSource is develop-
ing a framework, with the intent of improving the security and privacy of Cloud-
Native environments in order to find a reliable solution for network anomaly
detection.

1.2 Motivation

The fast growing development of cloud-based environments has created a vast
surface for cybercriminals to potentially deploy more destructive cyber-attacks.
As a result of this, it has been noted an exponential increase in cyber-attacks.
Many of these attacks have been fulfilling their malicious purpose effectively be-
cause the attacks created have been taking novel and innovative techniques.

According to a survey highlighted in [6], the human attack surface was to reach
6 billion people by 2022 and Cyber-crime damage costs were expected to hit 6
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Introduction

trillion dollars annually by 2021. In order to decrease this numbers, AI has been
regarded as an important tool in Cybersecurity, it is expected to grow 23.6% from
2020 to 2027.

The cloud-native approach seeks projecting, build and execute virtual vital func-
tions in the Cloud model, where applications are developed with aid of tools
which will maximize their benefits. This benefits include bigger development
agility, integration and installation which are built with continuous integration,
containers and orchestrators, with Kubernetes being the focal technology of this
approach. Nowadays large distributed applications require an intelligent and
automated management, because there is even more necessity of taking into ac-
count applications and infrastructure security and privacy. One of the most im-
portant methods to keep the security of an application or infrastructure is net-
work anomaly detection, which its focal point is to detect out of the ordinary
instances in a network, such as cyber attacks.

Machine learning suits the problem of anomaly detection because there is a need
of handling large amounts of data, which ML performs well on, in comparison
with other methods, it has good efficiency too when it comes to dealing with
unstructured data, information that it is not arranged in any specific way and is
able to process most types of data. Finally ML-based anomaly detection is the fact
that it works well in real time scenarios, which is an aspect of great importance
in the research we are conducting.

The main motivation of this study is to tackle the attempts of environment in-
trusion in order to increase the privacy and security of systems as preserving
privacy of cloud-based interactions is key, taking into consideration the direction
and growth this technologies have been taking in the past years. To do that we
evaluated ML models focused on classifying network intrusions and attacks and
integrated one of them in the framework that is being developed.

1.3 Problem Statement

The main problem, to be solved in our work, is how can machine learning make
a trustworthy classification of the intrusion attempts on these cloud-based envi-
ronments? So that the ML approach could be considered a feasible one it had
to classify correctly the biggest number of instances possible, either normal ac-
tivity or anomalies so that whenever there was an attempt of an attack to the
cloud environment, it could be taken down. Another important, but more spe-
cific, problem is how could we detect accurately unknown attacks, that may be
zero-day attacks which are new attacks unidentified and unknown to the detec-
tion system, or common attacks but the model was never exposed to them. The
classification model used, had to be able to detect new anomalies never before
seen by it. One final important problem is how could we make the classification
fast enough so that it was viable with real-time data?

The main challenges we found in our work were:
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• Correctly Classify Unknown Attacks: One of the most important problems
is classifying attacks unknown to the model, it may become difficult to catch
these intrusions, since the algorithm never had contact with them it does not
have a pattern to guide itself by and may have a pattern similar to instances
considered as normal, making the classification of these attacks tricky.

• Imbalanced Datasets: In this type of problem, network anomaly detection,
the datasets usually are very imbalanced, due to the fact that intrusions are
not as common as normal activity.

• Feature Extraction: A common problem in every ML based tasks is Feature
Extraction, in our study it is as well. Since the datasets we will use have lots
of different features, this may be an issue, as the model created can overfit
and the computational and time complexity may be too high.

• Performance Evaluation: In order to evaluate the models that we will use,
the correct selection of metrics that we want to maximize and minimize is
key.

1.4 Objectives

The main objectives of this work were the following:

1. Analyse the existing studies on the topic of network anomaly detection and
select a few candidate approaches to assess and evaluate.

2. Integrate at least one of the assessed approaches developed by us in the
project framework.

3. Evaluate the performance of the approach, comparing it with existing state
of the art algorithms with the help of the datasets for network intrusion
detection and suggest improvements.

1.5 Document outline

The document was divided into seven main chapters. The structure of the re-
maining ones is the following.

In Chapter 2 we provide a literature review of the state of the art of network in-
trusion detection, we go through multiple existing machine learning approaches
and the pipeline since the data gathering to the reliability and accuracy of each
model.

In Chapter 3 we present the projects in which our work will be integrated, the
candidate approaches implemented in the our study, as well as the datasets that
were used.
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In Chapter 4 we present the preprocessing made in the datasets, the implementa-
tion of each model as well as the tests performed in each one.

Chapter 5 presents the results achieved by each model and a deep analysis and
discussion of thoses results in order for us to select the best approach to use in
our platform.

In Chapter 6 we present a brief introduction of how our models will be integrated
in the platform and how will the handling of the attacks will be made.

Finally chapter 7 presents the conclusions we took from our work as well as brief
summary of the results we achieved.
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State of the Art

This chapter focuses on the state of the art of the Machine Learning concepts,
approaches and techniques used in network anomaly detection. Section 2.1 ad-
dresses, in a general way the context of network security, and gives an overview
on how this work integrates itself in the security part of a cloud-based envi-
ronment. Section 2.2 addresses the two main types of approaches in Network
Anomaly Detection, signature-based and anomaly-based.

The section 2.4 focuses on the most common techniques for the data preprocess-
ing and section 2.3 in the algorithms used in different anomaly detection ap-
proaches, analysing in detail Random Forest (RF), Artificial Neural Networks
(ANN), Isolation Forest (IF), Clustering techniques, Neural Networks (NN), such
as Conventional Autoencoders and Generative Adversarial Networks (GAN).
Section 2.5 addresses the evaluation metrics used to check the reliability of the
strategies and the final section, 2.6, presents a brief summary of the chapter.

2.1 Network Security and the role of AI

Taking into consideration the objective of the thesis and as this work will be in-
tegrated in the security of a framework, it is important to have a good under-
standing of what is a cloud environment and the security context in networks. In
this section, we first introduce what is a cloud-based environment (section 2.1.1),
after that, the most common attacks (section 2.1.2) and finally the role of AI in the
security of this environments (section 2.1.3).

2.1.1 Cloud-based Environments

A cloud-based environment is a type of computing environment that relies on
shared resources, software and information that are accessed via the internet in-
stead of being stored locally on a computer or server. The work we will develop
will be based, as mentioned before, in security in cloud-based environments, so
we will present a brief explanation of each one of the technologies we are going
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to use, to have an overall knowledge so that is easier to understand what can be
done after identifying a threat in this systems.

Microservice applications and orchestrations

Kubernetes is an open source platform for managing containers, capable of con-
figuring, maintaining and automating them. As it containerises applications, it
facilitates the distribution of applications in scalable microservices [7].

In Kubernetes, containerized applications are grouped into units called pods.
Pods can be deployed onto nodes, which are physical or virtual machines that
are used to run the applications. Kubernetes provides an API based on declara-
tive object configuration, for managing the state of the applications, and it adjusts,
automatically, the actual state of this applications to match the desired state. This
procedure makes sure the applications are always running as planned, even in
the situation of an hardware or software failure occurs.

Service Mesh

Service mesh is an infrastructure layer for handling communications between
microservices in a distributed application. It provides the possibility of adding
features as service discovery, fault tolerance, traffic management and security,
without the need of focusing on these aspects when building your code [8].

There are several tools to deploy a service mesh architecture. One of the most
common ones is Istio [8]. Istio is an open source service mesh that runs over Ku-
bernetes and focuses on achieving an efficient way to secure connect and monitor
services.

This work is important in this infrastructure as it has the goal of improving the
security of communications by detecting any possible threat that can compromise
the communications.

Policy Enforcement

Policy enforcement is the process of ensuring that a set of rules or policies are
followed by a system. In a service mesh architecture, this set of policies is used
in order to control the communications inside and outside a cluster. This poli-
cies can be defined prior to the deployment but also during run-time, this allows
services to create, delete and apply policies while the service is running which is
something important for the security of it since these must keep monitoring the
state of the network and take action when an attacks is detected.

Open Policy Agent (OPA) [9] is an open source, general-purpose policy engine
that unifies policy enforcement across environments, such as Cloud-based ones
and is used for handling policies in Service Mesh architectures. This engine pro-
vides a high-level declarative language that let’s you specify policies as code and
simple API’s to enforce policies in microservices, Kubernetes and more. OPA
can be used, as well, to supervise authorization, admission and other policies in
Cloud-based environments. This process will apply the policies needed to handle
a threat in the possibility of existing one that is detected.
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2.1.2 Common Attacks

In this work are considering two types of attacks: active and passive. A pas-
sive attack is when an intruder intercepts data being communicated through the
network without the intent of interfering and an active one is when an intruder
executes commands with the finality of disrupting the normal functioning of the
network [10].

Next we will detail a brief explanation of the active type of attacks that exist [10]:

• Spoofing: When something miss-presents its identity, so that it can have
access to information it should not have access to.

• Modification: When something performs some kind of modification in the
routine route, so that the message goes through a long way route.

• Wormhole: This attack is also called the tunnelling attack. The attacker
receives a packet at one point in the network and replays it into the network
from that point on, making the attacker be in control of the routes shared in
the network.

• Fabrication: Here, a malicious node generates the false routing message.
This means it generate the incorrect information about the route between
devices.

• Denial of Service (DoS): A malicious attempt to deny access to shared net-
work resources or service, by busying the network.

• Sinkhole: An attack that prevents the base station from receiving the com-
plete and correct information. A node tries to deviate the data to it from a
neighbouring node.

• Sybil: This attack creates multiple copies of malicious nodes, in order to
increase the number of malicious nodes so that the attacks are easier to hap-
pen.

As we did for the active attacks, we will present a list with a brief description of
passive attacks [10]:

• Traffic Analysis: In this attack, the attacker tries to find the communication
path between the sender and the receiver.

• Eavesdropping: The attacker finds out some confidential information from
the communication between the sender and the receiver.

• Monitoring: In the following attack, it has access to secret information, but
can only read it, not modify it.
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2.1.3 AI in Network Security

According to [6], the three key AI applications for cybersecurity are:

1. Network Vulnerability Surveillance and Threat Detection: AI can provide
a faster detection and identification of cyber-threats. It can perform a real-
time monitoring of networks by scanning data with the finality of recog-
nizing unauthorized communication attempts, connections and abnormal
or malicious credential use, unusual data movement as well as other attack
attempts.

Threat hunting using AI tools can cover cloud, data center, enterprise net-
works and IoT devices and provide automatic updating and threat investi-
gation of defense framework layers as well as diagnostic and forensic anal-
ysis for cybersecurity, answering to the question "What happened?".

2. Incident Diagnosis and Response: Incident diagnosis can answer to the
question "Why and how it happened?". AI has tools capable of examining
past datasets to find the root causes of the incidents by finding changes
and anomaly indicators in the network activities. If the analysis discovers
a vulnerability, predictive analysis can provide insights on consequences of
such exposure.

After the causes of the abnormality are identified, prescriptive analytics can
be used to respond to the incident in an effective way based on recomenda-
tions to contain and eliminate the causes of the abnormality.

3. Cyber Threat Intelligence Reports: AI solutions have been deployed with
the objective of supporting cyber threat analysts and address the problem
of information overload. This information can be compiled and summa-
rized, as well as be a report fully written with the help of Natural Language
Processing (NLP). This reports provide the indicators and early warnings to
improve the monitoring of anomalies inside of a network and detect more
rapidly and efficiently cyber attacks.

In our work we will focus on the first point, network vulnerability and
threat detection. The main goal will be to develop a framework capable
of monitoring networks in real-time, detect any possible threat, handle it
fast and take it down before it spreads and does any damage.

2.2 Intrusion Detection Systems

Intrusion Detection Systems (IDS) are automated defense and security systems
which it’s main task is monitoring network traffic with the objective of detecting
and analyzing hostile activities within a network or a host, as well as issuing an
alert. This systems actually do not detect attacks but are capable of identifying
evidence of intrusions, either during or after the occurrence [11].
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Figure 2.1: Intrusion Detection Systems - Overview [13]

In our research, the approaches we present, are based, mainly, in the most two,
most common, types of IDS techniques, signature-based and anomaly-based (Fig-
ure 2.1).

Signature-based Detector, also known as misuse-based, sets on the focal point
that the anomalies are already well known [12]. The detector tries to find patterns
or signatures of already studied anomalies in the provided dataset. In order to
use this approach, a database consisting of well known attacks, is needed and
must be updated every time a new attack is discovered. This methodology has
really good results in the detection of familiar attacks, although if there is a new
anomaly, zero-day attack, the approach lacks information, making it unreliable in
our study.

Anomaly-based Detector approach learns the patterns of "normal" activity, in
order to detect an anomaly every time a given observation deviates from the the
expected behaviour [12]. The idea of this method is focus on normal activity in
order to create an activity profile of what characteristics normal data has and
whenever the IDS catches an instance that does not follow the profile created it is
classified as an anomaly. It usually performs well identifying new threats, zero-
day attacks, which is why we consider it to be the best detector for our research,
but it has a setback, causes quite a few False Positives.

Our work focuses on the Anomaly-based Detector because the method of detect-
ing anomalies is more flexible to different types of threats and it overcomes the
issue of not being able to detect anomalies that have not been recognized, previ-
ously, by the detector.
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2.3 Network Anomaly Detection using Machine Learn-
ing Approaches

Network Anomaly Detection is a technique for identification of unusual or sus-
picious behaviours and events, in computer networks, that deviate from already
known and expected patterns. This technique involves monitoring network traf-
fic and other network-related data with the finality of detecting security threats
or breaches and performance issues.

Machine learning has a broad area of research, with numerous possible applica-
tions, such as medicine, email filtering, speech recognition and computer vision,
just to name a few. AI models are used as a way of assisting people in everyday
tasks, business projects and it is a fast growing area in the recent years. Network
anomaly detection is a field of study that has been getting more importance in the
last few years due to the fact that cloud-based environments have been getting
more popular in enterprises, and as a consequence of this the number of cyber at-
tacks to this environments has been growing too and getting more sophisticated.
ML plays a key role in the combat to this growth, by being used in order to im-
prove the methods of Network Anomaly Detection (NAD) that exist, to the extent
of detecting all possible attacks to an environment so it can be as safe as possible.

The pipeline for building a machine learning model for NAD, normally are the
following ones:

• Data preparation: This step focuses on collecting and preprocessing the data
gathered that will be used to train the model. Preprocessing may include
cleaning the data, normalizing or scaling the features and handling missing
or incomplete values.

• Feature selection or reduction: This involves selecting the most relevant
features in the data that will be used in the model or reducing the existing
features of the data. This step is important because the usage of too many
features may increase the complexity of the model and make it difficult to
interpret and train, while having too few features may not provide enough
information for the model to perform well.

• Model selection: This step involves choosing the machine learning algo-
rithm that will be used to train the model. These algorithms will be speci-
fied in this chapter.

• Model training: This step focuses on using the selected algorithm to train
the model on the prepared data. The model will learn to recognize patterns
in the data that are indicative of normal behavior and to identify observa-
tions that deviate from these patterns as anomalies.

• Model evaluation: This focuses on evaluating the performance of the trained
model to determine its overall performance in identifying anomalies.
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Figure 2.2: Taxonomy anomaly detection techniques [14]

Network Anomaly Detection has been increasing in the last few years. Figure 2.2
represents a high level taxonomy of the most common techniques in NAD.

Machine Learning can be divided into four types of algorithms: supervised, un-
supervised, semi-supervised and Reinforcement Learning (RL). Supervised learn-
ing algorithms focal point is learning a mapping between input and output based
on labeled input-output pairs, mainly used for classification or regression prob-
lems. Unsupervised learning focuses on discovering patterns based on unlabeled
datasets, most common in clustering problems. Semi-supervised combines the
two approaches talked previously and Reinforcement Learning perceives and in-
terprets the environment that surrounds him, attributing rewards to desired ac-
tions and punishments to undesired ones to train the model. Another recent type
of ML that has been discussed and being implemented in this research is Feder-
ated Learning, it focuses on several clients training it’s own model based on it’s
local data and in each iteration each client communicates it’s updates to a central
server, where all the client-side models are aggregated to compute a new global
model [15]. The different techniques that exist will be detailed further on this
section.

Depending on what type of anomaly detection we are focusing on, there are 3
different types of nature of data: data stream, time series and evolving. There
are, as well, three different kinds of anomaly types: point anomaly, contextual
anomaly and collective anomaly. Point anomaly refers to a point in a data flow
that differs significantly from the pattern. Contextual anomaly is characterized
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Figure 2.3: Supervised ML [16]

by being usual in a certain context but in a different context is not normal and so
considered an anomaly. Collective anomaly refers to the frequent occurrence of a
series of continuous anomalies, in a time period. The windowing techniques can
be helpful in this type of research for processing of data, there exist 3 different
types: sliding window, damped window and landmark window.

To evaluate the performance of models we may use 3 different kinds of datasets:
real data, synthetic data and altered real data. Real data, which is the most com-
mon type used in the researches we found, is a dataset which has real operational
data collected from real life environments. Synthetic data contains artificially
generated data with the use of programming. Altered real data comes from a
real data dateset but has suffered transformations. There are numerous possible
evaluation criterias, that we will detail further in the state of the art in 2.5.

The remainder of this section, mainly, centres on the multiple machine learn-
ing approaches, gathered from the research papers, used for NAD. We will dive
deeper in unsupervised and reinforcement learning techniques, based on prior
investigation and tests made, these types of algorithms are the more suited for
our study.

2.3.1 Supervised Learning Algorithms

Supervised learning, creates a set of distinction rules to predict the classification
results while having their data labeled. This type of algorithms performs well
when we are trying to achieve high accuracy, but can be slow compared to other
algorithms and when a new kind of attack appears it has to be trained to identify
it. In this chapter we will present and analyze some approaches using supervised
learning.

2.3.1.1 Random Forest (RF)

Random Forest is a classification supervised algorithm. It consists of multiple
predictors, individual decision trees, that operate as an ensemble. The idea is
when building a decision tree, it searches for the best feature among a random
subset of features to perform a split. Each decision tree outputs a classification
and the one with most votes becomes the model’s prediction.

In [17] the authors focus on a uniform detection system based on a Random For-
est classifier to detect attacks as DoS, Probe, U2R and R2L. It only uses the 10 best
classified features, of the NSL-KDD and KDDCUP99 datasets, selected with the
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help of a feature classifier, not specified. Other classifiers (K-Nearest Neighbours
(KNN), Naive Bayes (NB), Decision Tree (DT), Random Forest (RF), Logistic Re-
gression (LR)) were used as a way of comparison to check the accuracy of the
proposed method. It achieved an accuracy of 99.9% in the KDDCUP99 dataset
and 98.1% in the NSL-KDD, both superior to the other classifiers, affirming the
approach as the better one.

The authors in [18] propose a system based on Random Forest algorithm for
anomaly detection in IoT devices to be used in smart cities. To evaluate this ap-
proach it is used the UNSW-NB15 dataset, and the metrics accuracy and false
positive rate. The approach firstly uses the RF model to classify the instances as
normal or attack and the maximum value for training is used for training the Ex-
tra Tree. Finally performed feature selection using the ExtraTreesClassifier. The
model presented good results 99,34% in accuracy and 0,02% FPR.

In [19], the authors revisited the Random Forest algorithm, as it already had been
intensively studied, they performed a random forest classification with 10 differ-
ent values for number of decision trees (10, 20, 40, 50, 80, 100, 200, 400, 500 and
800), using majority voting and no feature selection or reduction and compared,
the best of all the random forests created, 800 in their case, with various state of
the art algorithms.

It used 3 datasets NSL-KDD and UNSW-NB15 as well as the metrics accuracy
and False Alarm Rate (FAR) to judge the reliability of algorithm. The results
were really promising with accuracy of 99,57% and FAR of 0.34% for the NSL-
KDD dataset and accuracy of 95.5% and FAR of 7.2% in the UNSW-NB15 dataset,
outperforming all of the algorithms used as comparison.

In order to evaluate and compare the performance of the approaches it was used
the dataset NSL-KDD in [19] and [17], taking into consideration the accuracy
results achieved in each one, both had notable results with the first one being
slightly better. [18] and [19] used the same dataset, with the first one being better
since it reached 99,4% of accuracy and the second one 95,5%

2.3.1.2 Supervised Deep Learning

Deep Learning is a ML subset that tries to simulate the behaviour of the human
brain, it basically is a neural network with three or more layers that learns from
large amounts of data. In recent years, this type of algorithms has been getting
more attention in the anomaly detection study, it has lots of upsides comparing
with other approaches talked in this report. It shows great results when learning
representations of complex data such as high-dimensional data.

ANN, RNN and CNN are the most common supervised DL types, the first two
have been studied previously and presented good results when it comes to NAD
and have shown room for improvement, on the other hand CNN have not been
thoroughly studied in this type of problem and by knowing the specifications
of the algorithm we came to the conclusion that it would not benefit our work
since it is an algorithm that better suits problems that revolve around images and
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Figure 2.4: General Artificial Neural Network Architecture [20]

videos instead of data flows and so we did not studied it.

2.3.1.3 Artificial Neural Networks (ANN)

The paper, [20] proposes an anomaly detection mechanism based on a supervised
deep neural network and using mutual information. The neural network, if the
feature set is only numerical has 4 hidden layers with a ‘ReLU’ activation function
and the output layer, using a ’sigmoid’ function as activation, only possesses 2
outputs, one for benign traffic and another for anomaly traffic, if the feature set
has both numerical and categorical features the it only is furnished with 2 hidden
layers and 2 outputs as the previous one. This methodology and the others used
for comparison, 0.01 learning rate, Adam optimizer and binary crossentropy as
the Loss function.

The dataset used to evaluate the performance of the DL methodology is the IoT-
Botnet 2020, with attacks such as Denial of Service, Distributed Denial of Service
, Reconnaissance and information theft attacks. For feature selection it experi-
ments with the 80, 32, 16 and 8 best numerical features and 5 best categorical-
numerical features which are calculated using mutual information. The metrics
used to conduct the performance assessment showed a much better performance
than the state of the art and common algorithms, achieving the following re-
sults Accuracy, 99,01%, Precision, 99,30%, Recall, 98,02%, F1-Score, 98,64%, False
Alarm Rate, 3.91%, True Negative Rate, 96.08%, and False Negative Rate, 0.04%.

Another approach using ANN is [21], where it is proposed a multiclass classifica-
tion network composed of 4 hidden layers to classify the data sets NSL-KDD and
KDDCUP99. The structure was a input layer with 41 neurons, 4 hidden layers
with "ReLU" as activation function, 1 fully connected layer in the output layer
and 5 neurons in the output, using a softmax activation function. The results
were extremely satisfactory as it achieved accuracy above 98% in all the types of
attacks except U2R that the authors claimed it was because of shortage of records.

The article [22], proposes a simple type of Artificial Neural Network, Feed For-
ward Neural Network, adopting a Multilayer Perceptron, with the finality of
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achieving a high scalable framework for real-time classification, capable to deal
with the problem of scalability. The number of hidden layers is selected with the
help of hyper parameter selection method, testing 5 different numbers of hidden
layers and selecting the one with best performance, with that being 5 hidden lay-
ers using “ReLU” activation function, it also used 1 neuron in the output layer.
The testing segment used multiple datasets, KDDCUP99, NSL-KDD, where both
had 41 neurons in the input layer, UNSW-NB15 with 43 neurons, WSN-DS with
17 neurons and CICIDS2017 with 77 neurons. All the datasets were tested with
a binary classification, with only 1 neuron and sigmoid activation funcion, as it
outputs 0 or 1, as well as multiclass classification, in which the number of neu-
rons used was defined by the number of attacks each data set had and softmax
activation function. In terms of results, the authors pointed that the proposed
framework showed superiority in comparison with the other ML algorithms.

For the activation function, in the hidden layers it was always used the "ReLU",
as it helps reduce the issues of vanishing and error gradient, it is faster than
other non-linear activation functions and facilitates training the MLP model with
a large number of hidden layers. For the output layer, sigmoid activation func-
tion is best in binary classification because it outputs 0 or 1 depending on if it is
classified as an anomaly or not, and if it is a multi class classifier, where it distin-
guishes the type of attack, usually it is used the softmax activation function. Both
are valid options depending on what the authors want to achieve.

2.3.1.4 Recurrent Neural Network (RNN)

Recurrent Neural Network is a type of Supervised Deep Learning where the out-
put of the previous step is fed as input to the current step. RNN have a memory
which saves the previous outputs already calculated and uses the same parame-
ters for each input as it performs the same task on all inputs and hidden layers,
reducing the complexity of the parameters.

In the paper, [23], it proposed three multi-class classification approaches based
on RNN, one using Long-Short Term Memory (LSTM), Bidirecitonal LSTM (BiL-
STM) and Gated Recurrent Unit (GRU) [24]. LSTM is a sub-type of RNN allows
to decide whether to retain previous information or discard it, being capable of
never losing previous information that might be relevant. BiLSTM is and exten-
sion of the conventional LSTM that enhances the performance of the model by
learning in both directions simultaneously, it considers forward and backward
activation to calculate the output. The models were tested using NSL-KDD, BoT-
IoT, IoT-NI, IoT-23 and MQTT datasets and all of the models achieved accuracies
above 98% and recall above 90% in all datasets.

In [25], the authors propose an IDS approach based on RNN, studying it’s perfor-
mance in binary and multiclass classification, using different numbers of neurons
and different learning rates in order to check each ones impact on the perfor-
mance of the model. The algorithm has a sigmoid activation function in the hid-
den layers and a SoftMax activation function in the output layer. The proposed
approach is evaluated using the well-known dataset NSL-KDD and compared
with known algorithms as J48, ANN, RF and SVM. In terms of results the model
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Figure 2.5: Unsupervised ML [16]

performed well with an accuracy of 83.28% with 80 hidden nodes and 0.1 learn-
ing rate for the binary classification and 81.29% with 80 hidden nodes and 0.5
learning rate for multiclass classification. Comparing with the other algorithms
used in the research the RNN had the best performance in Accuracy of all in both
types of classification and had a low FPR in all kinds of attacks, all below 2.2%,
which makes this algorithm an interesting approach with promising results.

We can see that the first approach has better results, in the NSL-KDD dataset,
when it comes to accuracy than the second one, and this may have to do with
the fact that [25] uses 3 approaches that are an upgrade of the conventional RNN
which in our case proves that they have benefits in our research.

2.3.2 Unsupervised Algorithms

Unsupervised learning tries to discover hidden patterns based only on the input,
unlabelled data, without he interference of the human. This sort of algorithms
tends to be faster than the other ones, although the accuracy can be lower but it
can identify zero day attacks without the need of being trained again and usually
perform well in unbalanced datasets. This chapter describes some approaches
based on this type of algorithms.

2.3.2.1 Isolation Forest (IF)

Isolation Forest is a unsupervised approach, first introduced in 2009, [26] as a
solution to the high dimensionality problem with large number of irrelevant at-
tributes, with linear time complexity and low memory requirement.The main
idea is that it uses multiple decision trees and focuses on the outliers rather than
the normal points. It sets on the premise that the outliers, on average, are closer
to the root of the tree compared to normal points, so the algorithm creates multi-
ple decision trees and randomly selects some feature value and performs feature
value splits. Finally when all the trees are created it calculates the score of each
point,the closer the score of the point is to 1 the more probable it is to be an outlier.
The score is calculated with the following formula:

s(x, n) = 2−
E(h(x))

c(n) (2.1)

In [27], the author tests the robustness of using the IF algorithm in anomaly de-
tection. It used the NSL-KDD dataset and the main metric used to classify the
model was the AUC score. The results were very satisfatory as it performed well
for all the kinds of attacks, AUC of 98,3%, but for lesser known attacks a decrease
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in accuracy was observed, as for the false positive and false negative rates, they
were both very small too which is something important to point out, since it’s
one of the main drawbacks of unsupervised learning.

The next paper, [28], proposes an approach based on Isolation Forest with a twist,
since this algorithm is time-consuming and cannot adapt to anomaly detection
on large-scale traffic data, the authors proposed an algorithm, called SPIF, that
computes the construction of multiple isolation trees simultaneously and the cal-
culation of the anomaly score as well, since each tree is independent and has no
influence on the others.

Using the UNSW-NB15 dataset and the AUC and Accuracy metrics as well as the
running time of the algorithm to evaluate the performance of the algorithm, the
results were satisfatory with an Accuracy of 87% and AUC of 89%, comparing it
with the normal IF algorithm it performed better in all the metrics, specially in
the running time, taking 2 minutes, the proposed approach, while the IF took 14,5
min.

2.3.2.2 Clustering (based)

Clustering based algorithms, an unsupervised method, are one of the most com-
monly used algorithms in network anomaly detection. It receives an unlabeled
input dataset, as it is an unsupervised approach, and the goal is to group the
various intances based on certain similarities, clusters, with the finality of en-
countering patterns and also, in our study, outliers.

In [29], the authors propose a new framework for real-time anomaly detection,
called SSWLOFCC, which consists on combining big data technologies, for per-
formance improvement, not only on a computational level but time consuming,
with composite clustering. The algorithms used are first Local Outlier Factor, in
order to detect the outliers and then Agglomerative Clustering.

The efficiency of the approach was tested using 3 different datasets, DARPA,
MACCDC, and DEFCON21. The performance of the framework was then tested
using the accuracy, execution time and memory consumption. It concludes that
on the accuracy level the algorithm has very positive results and on time and
memory consumption it gains a lot.

The study [30], proposes an unsupervised clustering-based method, combines
Sub-Space Clustering (SSC) and One Class Support Vector Machine (OCSVM).
In order to evaluate the performance of the proposed method, since one of the
algorithms is a binary classifier, the dataset was split into multiple ones, each one
being composed of the normal activity and a specific type of attack and one more
mixed with normal activity and a mixture of the multiple attacks. To preprocess-
ing the dataset it used F-test for feature Selection and normalized each feature by
removing the mean and scaling to unit variance.

Uses the public dataset NSL-KDD and metrics Recall and False Positive Rate to
evaluate the trustworthiness of the model. The method was also compared to K-
means, DBSCAN and SSC-EA algorithms. Comparing with this algorithms the

19



Chapter 2

algorithm behaved good with Recall superior to 84% except R2L attacks but it
still had a better recall than the other algorithms, and False Positive Rate always
below 10%, which it is not great but is a point to improve on.

In [31], the authors propose an unsupervised clustering approach with 3 steps,
first create the clusters maintaining only the core points and the features that best
represent them, then each cluster is represented by a Gaussian Mixture Model
(GMM), after that the clusters are updated based on the GMM using the Kullback-
Liebler distance as measure. The testing was performed only with normal data
acquired from multiple datasets such as KDDCUP99, NSL-KDD and Darpa98.
The metrics used were the ROC curve based on the detection rate and the false
alarm rate, being very close to 1, compared to other algorithms tested such as
OCSVM, SPAI, LOF it performed much better than all of them, the false alarme
rate decreased 15% to 5% in multiple datasets and the detection rate increased
from 5% to 10%.

The study [32], also uses clustering as base algorithm for the classification, it is
divided into two parts, feature selection and density peak-based clustering. In
the first part the least relevant features are removed, based on the calculation
of the Maximal Information Coefficient (MIC), which outputs the relationship of
two features for continuous features and the relevancy, that measures the features
symmetric uncertainty, for discrete ones. After that it uses the density peak-based
clustering, each center of the cluster have the higher densities and the neighbours
have lower ones, the cluster that they belong to depend on the density of its
neighbours. In terms of results it performed well, the accuracy was always high,
above 92%, using the KDDCup99 dataset.

2.3.2.3 Unsupervised Deep Learning

In this section we will talk about two of the most familiar unsupervised deep
learning algorithms, Autoencoders and Generative Adversarial Networks. Au-
toencoders is the one most studied, in NAD, between these two and has proven
to be very useful, while GAN has had some more attention in the last few years
without any breakthroughs, but has showed promising results and can fit, the
problem we are dealing with, well.

In [33], it is presented a solution for IoT anomalies detection set on an unsuper-
vised deep learning technique. The authors tested their approach using an unbal-
anced dataset and a balanced one, which was obtained from the first unbalanced
dataset, extracting a similar amount of normal traffic as abnormal. The approach
splits the dataset into Train-Validation-Test and focuses on a Autoencoder that
is trained only with the normal activity with the finality of it learning the nor-
mal pattern with minimum error, so that a out of the ordinary instance exceeds
a certain threshold. It uses a ReLU activation function for the hidden layers and
a sigmoid for the output layer. The predictor takes into consideration the Mean
Squared Error of the reconstruction in the Autoencoder and makes a binary clas-
sification. The dataset used was Bot-IoT and it add threats such as probing, DoS
and information theft. .
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The results were extremely promising, it was tested with a threshold of one stan-
dard deviation above the mean loss and after it was increased to three. The re-
sults were better when the threshold was three standard deviations, achieving
lower FP and low FN although it was higher when the dataset was unbalanced,
but 0 when the dataset was balanced. Recall always above 96% is something to
pay attention at. The approach was also compared to GMM with LFO, being the
approach presented, always lower in FP and higher in Recall, proving that it is
better.

In this paper, [34], it was used another autoencoder unsupervised learning that
focuses only on DDOS attacks in order to demonstrate the predictability of TCP
traffic can be exploited to detect this type of attacks in real-time, using a small
set of features. It uses PCA for feature reduction and only benign data for the
training phase and ReLU activation function. The results are satisfactory with
precision, recall and F1-score, all above 90%.

The following paper, [35], also uses a similar approach as the ones before based on
autoencoders, more specifically a conventional autoencoder and a convolutional
autoencoder. The approach uses Autoencoders as a dimensionality reduction and
is interesting because instead of using simply a conventional autoencoder to per-
form the classification, it adds an autoencoder with a convolutional layer in the
encoding part and a deconvolutional layer in the decoding part with the objec-
tive of reducing training time. Taking the NSL-KDD dataset into account and
testing with different types of data, TCP, UDP, ICMP and a mixture of all of them,
the method performed well in the tests with AUC constantly above 95%, being
always superior to the conventional Autoencoder.

In [36], the authors propose a different unsupervised deep learning approach,
based on a Generative Adversarial Network, introduced in [37], is an unsuper-
vised algorithm divided into two parts, a generator and a discriminator, the first
one generates fake data with the objective of deceiving the second one and the
discriminator has the task of distinguishing between the real and fake data, both
are Neural Networks and work as a competition in the training phase, each one
improves the other one.

The paper makes use of two different types of GAN, AnoGAN [38], which works
as a standard GAN, focused on likelihood estimation with sampling and ALAD
[39], which sets in a somewhat different approach, adversarially learned infer-
ence.

To demonstrate the performance of the algorithms, 3 datasets were used, UNSW-
NB15, CICIDS2017 and Stratosphere IPS as well as 4 different algorithms for
performance comparison, Deep Structured Energy-Based Models, taking into ac-
count the reconstruction error and the energy error, Deep Autoencoding Gaus-
sian Mixture Model and Autoencoder. As for the results, they were really promis-
ing for the ALAD, it achieved above 90% in all the datasets for the AUROC and
above 75% for the AUPRC, reaching higher performance compared with all the
other algorithms except Autoencoder but by a small margin, although AnoGAN
performed poorly compared with the other algorithms.

Same as the previous article, the following one, [40], focuses on a GAN approach,
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this time a more simple one, with a standard GAN algorithm. The paper has
two parts, one to try and use the algorithm to invade the IDS, GAN-based at-
tack methodology and another to make the IDS more robust, GAN-based de-
fense methodology, according to the finality of our research we will focus only
on the second part. Here the model uses multiple classification algorithms and
compares the results in each of them with a simple adversarial training and GAN-
based adversarial training with the use of KDD99 dataset. The results were no-
toriously better than the simple adversarial training achieving accuracies above
the 79% mark, the results were not perfect but very satisfactory with space for
improvement.

2.3.3 Hybrid Approaches

Hybrid approach is a combination of simple algorithms, both supervised or un-
supervised, with the intent of complementing and augmenting each other. This
type of approaches can be helpful in our study because some algorithms alone
can perform badly in a certain problem but combined with other algorithms, it
will perform much better and attain good results.

The study, [41], proposes a semi-supervised detection framework based on an
Unsupervised Deep learning algorithm, Autoencoder, and a clustering algorithm,
K-means and mean-shift. The framework consists in, first, applying an autoen-
coder and classify abnormal samples, the samples with more reconstruction error
are considered anomalies, and second use either K-means or mean-shift with the
finality of clustering the reconstruction error to validate the the results of the au-
toencoder.

It used the KDD99 dataset and the training phase was performed using 3 dif-
ferent number of samples, 1300, 800 and 400, to perform the validation of the
framework, and the main metrics used to evaluate the model were the accuracy
and F1 score. The approach had really notable results, showing the approach is
robust, with accuracy always above 98.5% and F1 score above 98.4%, being the
best overall Autoencoder with K-means, 99%. One interesting conclusion is that
the accuracy decreased when the number of samples was greater.

In [42], the authors propose 3 unsupervised learning, it guarantees the detection
of anomalies regardless of their prior knowledge, approaches with the finality of
maximizes the accuracy even if the recall is sometimes penalized based on Deep
Autoencoders using Isolation Forest, one is Deep Autoencoding with Gaussian
Mixture Model and Extended Isolation Forest, Deep autoencoder with Extended
Isolation Forest and Memory Augmented Deep Autoencoder with Extended Iso-
lation Forest. In order to evaluate the models, it was taken the KDD99, NSL-
KDD and CIC-IDS2017 datasets into consideration, using only normal data for
the training and the features used were selected using an explainable AI method-
ology called Shappley Additive Explanations (SHAP), it is simply estimates the
importance of each feature in the prediction process, if the feature makes the pre-
diction more reliable than its SHAP value will be greater and vice versa. The
metrics used is a weighted average of each Recall, Precision, F1-Score and Accu-
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racy.

The main idea of the algorithms is, first it is calculated the anomaly score of the
instance after the reconstruction part of the Autoencoder and check if the score is
superior to a certain threshold, if it is the it passes to the extended IF algorithm
to calculate the final anomaly score with the main purpose of checking if there is
any false positives and increase the accuracy. If the score after the Autoencoder
is less than the threshold the instance is considered normal.

In terms of results for the KDD99 the accuracy was always above 92%, NSL-KDD
above 90% and CIC-IDS2017 above 81%.

An hybrid two-level classifier is proposed in [43], the algorithm, as it conveys
in the name, has two classifiers, the level one performs real-time classification
in incoming traffic data and in the case it cannot classify with high probability,
the classification is delayed until the data flow terminates. After the data stream
stops, the second level classifier performs the classification with a higher accu-
racy. In the first level it is needed a rapid classifier algorithm, without much
regard to the level of accuracy, which they chose DT and RF and the second level,
it is needed a high accuracy classifier, also opting by a DT and a RF.

The datasets used were UNSW-NB15 and CICIDS2017 achieving accuracy above
95.8% in the first one and 99.8% in the second one, being regarded as better than
all the ones compared with, HAST-I, DT and RF.

2.3.4 Reinforcement Learning Algorithms

Reinforcement learning, as pointed before, is a machine learning method based
on a agent which is inserted in an environment and is fed inputs from it. The
agent will perform actions that will be rewarded accordingly to how correct they
are and punished corresponding to how incorrect they are. With this learning
method, after training, the agent will try to understand the changes on the envi-
ronment in order to act in the way that will maximize its reward. The purpose of
the ML algorithm is to find the optimal policy that will maximize the reward.

The following study, [44], proposes a binary classification Deep-Reinforcement
Learning approach, it is based on using a Deep Neural Network as the classifier
and after the classification, the RL algorithm gives or takes points depending on
the classification made, if it was correct receives one if it was incorrect takes 1.

The evaluation of the model was done using NSL-KDD and UNSW-NB15 datasets
and the tests were done modifying the number of hidden layers of the DNN and
different number of testing iterations performing better with a high number. Us-
ing the metrics F1-score as main performance metric, the model performed well
achieving a score of over 96% in both datasets, with it being the best compared
to the other algorithms already known such as SVM, Random Forest, MLP and
Autoencoder.

In the article [45], the authors propose an IDS based in deep reinforcement learn-
ing with the finality of maintaining the balance between accuracy and False Pos-
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itive Rate. The method is evaluated using the datasets NSL-KDD, UNSW-NB15
and AWID, the classifiers Random Forest, Adaboost, Gaussian Naive Bayes, KNN
and QDA. The method used was as follows, first using 5 different classifiers,
checked the performance of each one in each dataset in terms of accuracy and
false positive rate. After this selected which one of the classifiers performed bet-
ter in accuracy and in false positive rate and integrated them in the model with a
combination of three or four classifiers, two or three best performers in accuracy
and one in false positive rate in order to have a good performance in accuracy as
well as in false positive rate.

The model has two parts, one is the composed of many agents that will make
their classification from the feature extraction to the classification itself and the
other is the IDS central which will give the real classification to the agent so that
it can create the reward vector in order to improve.

The IDS performed well achieving accuracy above 81% in all the datasets, not
particularly high but with good results with space to evolve and FPR below 3.3%,
significantly lower compared to all the other models.

In the following paper, [46], it is presented a reinforcement-learning based ap-
proach focused on finding the best anomaly score threshold. The model called
ADRL, uses prior domain knowledge to label known anomalies, it uses, both, en-
tropy, for the categorical features, and autoencoders, for the numerical features,
to obtain anomaly scores. After that is when the reinforcement learning appears,
the method uses it to achieve the best threshold, until it becomes stable, in order
to have the most accurate model possible.

The study uses multiple datasets, such as IDS2012, IDS2017, IDS2018 and DDoS2019
and the metrics ROC-AUC and PR-AUC curves to analyze the performance of the
model. The results were really promising with ROC and PR above 97% in all the
cases, having better results in almost all of the situations comparing with other
state of the art algorithms.

2.4 Feature Selection and Reduction

Feature selection and reduction (Figure 2.6), usually, are used in large datasets,
with a great amount of features. The methods are used with the purpose of re-
ducing the number of features in a dataset, to lower the computational power
needed and the time it takes to train the models.

Feature selection consists of selecting a set of features from an original dataset,
without any kind of transformation. There are three different types: filter-based,
wrapper-based and embedded-based. Filter-based selects a subset of features in-
dependent of the classifier that will be used, wrapper-based trains the algorithm
iteratively using subset of features with the best performance and embedded-
based is a part of the algorithm used as classifier.

A very common feature selection technique used is the Information Gain, [47],
[48], where the features with the most gain are selected, based on a threshold.
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Figure 2.6: Feature Extraction and Feature Selection [52]

Some other ones are Chi-Squared [47], that determines the independence of two
features, ReliefF [47], that determines the influence of features in determinating
the target class and Pearson Correlation [49], which computes the statistical cor-
relation between two features. In addition there are some methods which use
Decision Trees as a process of feature selection, [50].

Feature reduction focuses on transforming the feature set of the original dataset
in a new set with less number of features, performing a dimensionality reduction.

In [51], it is tested the performance of three feature reduction methods, Principal
Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Autoen-
coder, in anomaly detection. PCA is one of the most commonly used processes
for feature reduction, it consists in using an orthogonal transformation to convert
a set of correlated features into a set of uncorrelated ones, taking into considera-
tion the largest variance. LDA is used to project the features in a lower dimension
space (use less features to separate them). Autoencoders we will adress it further
in the study.

2.5 Evaluation Metrics

Evaluation metrics are an important part in our study since it is with their aid
that we will evaluate the performance of the approaches. All the metrics have as
base a confusion matrix.

Actual Positive Actual Negative
Predicted Positive True Positive False Positive
Predicted Negative False Negative True Negative

Table 2.1: Confusion Matrix
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The evaluation metrics that will be used to evaluate the performance of the mod-
els are Accuracy, F1 Score, False Negative Rate (FNR) and Recall, Receiver Oper-
ating Characteristic (ROC) curve and Area Under the Curve (AUC).

The first four metrics take into account the number of True Positive (TP), False
Positive (FP), True Negative (TN) and False Negative (FN), while the last two
metrics take only into account the number of TP and FP. In addition we will still
take the FP and FN in consideration to analyse the performance of the models.

• Accuracy = TP+TN
TP+TN+FP+FN

• Recall = TP
TP+FN

• Precision = TP
TP+FP

• F1Score = TP
TP+0.5(FP+FN)

• FNR = FN
TP+FN

The ROC curve shows in the x-axis 1 - Specificity, with this metric being the FP
divided by the sum FP and TN while the y-axis shows the Recall. The AUC shows
a value of between 0 and 1 that represents the area under the ROC curve.

Our study focuses, as pointed previously, on obtaining a reliable classification of
the data instances, whether they are normal or anomalies, so the metrics used to
evaluate the classifier need to focus on the number of well classified instances as
well as the misclassified ones.

Accuracy is the more common metric, to check the general classification, it sees
if all the instances were classified correctly, in order to know if the classification
is solid, it needs to be as high as possible, it also is the very biased and at times
it must be avoided, specially in unbalanced datasets such as the ones we will
be working with. Recall will tell us if the instances classified as anomalies cor-
respond to all the instances that are actually anomalies, this metric is expected
to be the highest possible, as our classifier is supposed to detect all the attempts
of intrusion. Precision is also an important metric as it tells us, from all the in-
stances we classified as attacks, how many of them are actually attacks, which is
important because classifying normal activity as an anomaly is not as bad as the
opposite but it will affect the user experience and may be costly in computational
use to take down. False Negative Rate is the opposite of the Recall, it tells us
how many anomalies we classified as normal activity, this one has to be as low as
possible, otherwise our classifier is not trustworthy. The ROC curve, shows the
capability of the model to make the separation between TP and FP and its AUC
shows the performance of the model in an overall and unbiased way which the
metrics cannot show since it depends on the testing dataset used, so we will make
the comparison between algorithms based on these metrics.

Other metric that will be taken into consideration is the training time of the algo-
rithms and the time it takes to classify, because of the relevant importance of the
time complexity for our problem.
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The metrics we will optimize are the F1-Score, as it is an harmonic mean between
Precision and Recall, it shows how precise (how many instances it correctly clas-
sifies) and robust (how many instances did it miss) the model is, so we want
to maximize it, the false negative rate with the intent of getting the minimum
number of instances classified as not an anomaly when it actually is one and the
final one the training and classification time of the algorithm, since we want the
approach to perform well in real-time classification it has to have a low time com-
plexity.

2.6 Summary

This chapter gives a wide view of how machine learning is used for network
anomaly detection and make a comparison of multiple approaches. To construct
this chapter, we researched various papers which proposed approaches for the
problem of network intrusion detection and selected the most relevant ones, sum-
marised them and organised them, taking into account what kind of ML algo-
rithm it used.

It was noticed that the most common approaches in the recent years tend to use
an unsupervised approach instead of supervised and DL approaches are get-
ting more and more attention from the community presenting really notable re-
sults. We could also notice that the hybrid and reinforcement learning approaches
mainly used DL algorithms and usually got good results so we believe DL may
be best combined with other algorithms. Following this approaches, it was dis-
cussed in meetings that the route that made more sense to follow was prioritiz-
ing unsupervised learning approaches and DL approaches since they show lots
of good results and still lack investigation, so we will focus, the remainder of our
research, in this two types of algorithms.

An interesting method used in several approaches is the use of only normal data
in the training of the dataset which we think makes a lot of sense since we want
to learn the normal behaviour of the network so we will test this method in our
future work.

The most frequently used datasets were KDDCUP99 and NSL-KDD. KDDCUP99
and NSL-KDD are very similar as the second one is an upgrade of the first one, as
KDDCUP99 was considered a really good dataset to evaluate the models but had
some problems that had to be fixed so it could be even better, such as the high
number of redundant records and in many occasions, random parts of the train
set are used as test sets which makes the performance of the algorithm not viable,
so the NSL-KDD came in order to overcome these problems. Another dataset
that is very common in NAD and has proven very complete is CIC-IDS2017. This
dataset is the newest of the three presented here and as so is more up to date with
existing attacks and has more traffic diversity. Since NSL-KDD is an improved
KDDCUP99 it can be considered out of date, even though it is one of the most
used datasets. After learning the specifications of these datasets and analysing
the approaches that used feature selection in the state of the art approaches we
concluded that feature selection or reduction will play an important part in our
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work because the datasets usually have lots of different features and this may
be an issue, as the model created can overfit and the computational and time
complexities may be too high, so in order to tackle this we will need to shorten
the number of features with the help of this techniques.

The comparison of algorithms is difficult since the features used in each data
set are very diverse and the approaches do not always use the same algorithms
for evaluation performance so we focused our decision on the algorithms that
showed more promising results and could help optimize the metrics we would
use. The metrics which we will take more into consideration are the F1-Score,
Recall, FNR and AUC.
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Proposed Approach

This chapter focuses on the projects where our work was integrated, the algo-
rithms that were used to create the models and the dataset selected to train and
validate our approach. In 3.1 we present a little more context on the projects
where this work was integrated, presenting the objectives and the final product
it is supposed to achieve, in 3.3 we introduce in a deeper level the datasets that
were used to train and evaluate our approaches and in 3.2 it is presented the al-
gorithms that were implemented and how they were used for the classification
problem.

3.1 Projects

3.1.1 5G-EPICENTRE

5G-EPICENTRE, as introduced before, is a European project funded by the Eu-
ropean Union, that aims to create a NetApps, to facilitate the management and
deployment of existing 5G solutions. The platform will house and provide open
access to 5G network resources where companies may find solutions already im-
plemented and ready to deploy that take advantage of the 5G enhancement on
communications.

The objectives of the project are the following ones:

• Build an end-to-end 5G experimentation platform, built to the needs of the
public safety and emergency response market players.

• Pilot 5G systems in PPDR-based trials, with the objective of demonstrating
5G-EPICENTRE onboarded apps as important accompaniment to commu-
nications to public safety mission critical communications technologies.

• Develop a ’5G Experiments as a Service’ model, that will facilitate devel-
opers and SMEs to experiment with PPDR applications in easily repeatable
and shareable environments.
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• Facilitate the automation, continuous deployment and multi-access edge
computing supported by containerized network functions, as well as to re-
duce the time it takes to create a service and the time to market for 5G solu-
tions

• Take advantage of Artificial Intelligence for achieving cognitive experiment
coordination and lifecycle management including application awareness
and insightful analytics provided by ML.

• Implement impact-driven dissemination standardisation and exploitation.

The platform will be deployed on a shared cloud infrastructure and will accom-
modate microservices orchestration tools. The project seeks to configure secure
network policies to deal with the increased attacks and, in order to achieve that,
it plans to impose per-program restricted access profiles at container-level to re-
inforce isolated execution, while employing a service mesh concept to more effi-
ciently address the security issue.

The advancements in AI have allowed it to become increasingly useful in IT in-
frastructure management, monitoring, scaling and security. It enables automa-
tion of application-level traffic routing, make accurate predictions on resource
demand, monitor continuously the condition of applications, identify anomalies
and patterns as well as analyse with ease and quickness huge amounts of data in
anticipation of future events. Therefore AI can have a role in 5G infrastructures
management, deployed in support of critical functions, like network slicing and
application awareness in order to achieve ’cognitive network management’.

The proposed security framework is composed of three key elements, a policy
engine, a security engine and an AI engine. The policy engine centralizes the
configuration of the policies at the network and container levels, the security en-
gine contains the protection to the underlying host OS, where the containers run,
access control and authentication mechanisms and the AI engine will be used to
aid in security and policy enforcement, in helping to identify anomalies based on
the observability of the traffic of the network as well as support the enforcement
of the response policies [53].

3.1.2 CHARITY

CHARITY, as introduced in section 1.1, is a European project funded by the Euro-
pean Union, that is set to create a framework, that relies on different enablers and
technologies related to cloud and edge, capable of supporting next generation
Extended Reality (XR) applications such as holographic events, virtual reality
training and mixed reality entertainment.

The objectives of the project are:

• Automate the orchestrating network, compute and storage of resources in
hybrid edge/cloud infrastructures.

30



Proposed Approach

• Provide holistic support for the orchestration of advanced media solutions.

• End-to-end management of applications lifecycle.

• Develop highly interactive and collaborative services and applications.

• Augment project visibility, outreach and business sustainability.

This work will integrate the security and privacy-aware part of the cloud infras-
tructure orchestration, by taking advantage of the approach we create for NAD
to identify possible network threats and find a way to shut them down in order
to keep the cloud infrastructure secure.

3.2 Proposed Approach Algorithms

The developed approach was integrated in a framework, which its objective is to
detect network anomalies in real-time scenarios. Our approach starts by using
Mobitrust, an application developed by OneSource that is constituted by various
microservices for PPDR scenarios. It was used as Use Case in this project, as a
reference to collect traffic to test the framework.

We started by idealizing possible scenarios, including traffic without any type of
threat as well as traffic with attacks in order to assess if our framework is capable
of distinguishing these attacks from the normal traffic.

After that we began collecting dataset scenarios with the usage of Mobitrust. The
datasets we collected to train our models were free of threats, it only presented
normal traffic, since our approach is based in Unsupervised Learning (train the
dataset only with normal data and test it with attacks to see if it can detect them).

After that we developed, trained and validated our models. The development
approaches followed were focused in Unsupervised Learning approaches and
Unsupervised Deep Learning approaches. Supervised Learning achieves an high
accuracy but are slower in the classification task, an aspect not favourable to us,
since rapid classification is an important aspect that we want to achieve and su-
pervised learning in NAD has already been studied in great depth, so we thought
that there was not much we could add to the research already made. Unsuper-
vised Learning has been getting more importance in NAD, since the algorithms
are faster in the classification part and detect effectively attacks unknown to the
network without the need of being trained again, an aspect that makes them a lot
more interesting to study. Deep Learning approaches have been proving to be a
great method to follow in NAD based on the great results it presents and its ease
in dealing with high-dimensional data.

For the training and validation of our dataset, the algorithms we used in our
approaches were Conventional Autoencoder and Convolutional Autoencoder,
both of them Unsupervised Learning and Deep Learning algorithms. In order
to provide a deeper understanding of the approaches we developed, we provide
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a description of the algorithms we used and the architectures we built and its
pipeline.

The first algorithm we tested was the Random Forest. This algorithm was used
as a baseline model. It was the algorithm that presented best results in previous
studies conducted for this work and we used the results from it as comparison
for the other algorithms tested.

The next algorithm we implemented, tested and analyzed was the Conventional
Autoencoder. This decision was made taking into consideration the results this
algorithm showed in the state of the art approaches, and by according with the
team that is responsible for this project that it may be an algorithm that would
perform well in detecting with accuracy the threats in real-time scenarios.

The final algorithm we implemented, tested and analyzed was the Convolutional
Autoencoder. The choice of this algorithm was based on the fact that network
attacks are always a set of multiple anomalies in a row, so a the thought process
was that if we give a window of instances to the model, it would detect an attack
more easily if a window has multiple anomalous instances than just detecting
isolated instances as anomalous.

Finally, after training our models and validating them, we selected the ones that
performed best and began the integration in the framework, where we trained
these models and tested them by analyzing their performance in classifying real-
time traffic and assess if they were ready to be used in real scenarios.

3.2.1 Conventional Autoencoder

The Conventional Autoencoder is not an algorithm of classification but of com-
pression and decompression. With this in mind and our problem being a clas-
sification problem, the more usual approach to perform a classification using a
Conventional Autoencoder was by assessing the quality of the instances recon-
struction.

The steps to the classification with this algorithm follows the next architecture, as
shown in Figure 3.1, each input instance goes through the encoder and next goes
through the decoder, following an architecture similar to the one of an ANN. Fol-
lowing a formula previously accorded it is calculated the error of the instance
decoded based on the original instance. Taking into consideration a threshold
previously agreed upon, we check if the error is higher or lower than that thresh-
old. If it is lower the instance is considered as normal, if it is higher then it is
considered as an anomaly. By learning to replicate the most salient features in the
training data, the model is taught how to precisely reproduce the most frequently
observed characteristics. When facing anomalies, the model should worsen its re-
construction performance as it has not learnt how to reconstruct them.

Since it does not exist an already implemented Python function in a library, we
needed to implement our own Autoencoder, taking advantage of the TensorFlow
library.
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Figure 3.1: Autoencoder Architecture [54]

In the different tests that were performed in this algorithm we assessed the results
with different parameters values, such as the learning rate, the number of hidden
layers, the activation functions, the optimizer and the threshold that determines
if an instance is normal or anomalous.

3.2.2 Convolutional Autoencoder

The decision to test the Convolutional Autoencoder was taken based on the fact
that it was noticed in the dataset, that when a cyber attack appears it does not
create only one flow, it creates multiple consecutive flows, so we used this type of
Autoencoder to keep track of the order of the instances. The objective is that this
type of algorithm would reconstruct a window of a certain number of instances
so it could learn patterns of combinations of instances.

The implementation of the Convolutional Autoencoder is very similar to the one
done with the Conventional Autoencoder, with its architecture presented in Fig-
ure 3.2. In the case of this algorithm the input is composed of a window of flows
instead of a single flow, each windowed input goes through an encoder and then
through a decoder same as in the Conventional Autoencoder.

The reduction of dimensions is performed by a Convolutional layer which hash a
kernel window that goes through the input and shrinks the dimension according
to the window. Following a formula previously accorded it is calculated the error
of the instance decoded based on the original instance. Taking into consideration
a threshold previously agreed upon, we check if the error is higher or lower than
that threshold. If it is lower the instance is considered as normal, if it is higher
then it is considered as an anomaly.

As there is not an implemented Python function for this algorithm, we imple-
mented it on our own.

In the different tests that were performed in this algorithm we assessed the results
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Figure 3.2: Convolutional Autoencoder Architecture [55]

with different parameters values, such as the learning rate, the kernel sizes, the
number of filters, the activation functions, the optimizer and the threshold that
determines if an instance is normal or anomalous.

3.3 Dataset

The dataset used to evaluate the performance of our approaches was the CIC-
IDS2017 [56]. We chose this dataset first because it was the one that had, previ-
ously, been used by the people that started this research,before me, at OneSource,
so they already had done an assessment of the best datasets they could use and
decided this one was the best. Besides that point, this dataset was a really recent
one, compared to the ones usually used, it contained latest threats and features,
which were not addressed by older datasets and fulfilled the criteria of real-world
attacks [57].

The CIC-IDS2017 dataset is composed of eight different files one for each day of
the week (excluding weekends), two for Thursday and three for Friday, each one
with different types of attacks, composed of data gathered from the time span
of the working hours of these days. The whole dataset is composed of 3119345
instances, 81 features and contains 15 class labels (1 normal and 14 attack labels),
it is constituted by network traffic captured over a period of 3 weeks. The dataset
has 1338 NaN and 4126 infinte values. Thursday afternoon and Friday data are
really fit for binary classification since they only have bening data and 1 kind of
attack, the rest of the files, on the other hand are best for multiclass classification
since they are composed of benign data and various other attacks.

Table 3.1 illustrates the distribution of instances by class.

As for the features, all of them are numerical, except the label column, which is
categorical. Before we talk about the feature set it is important to detail some
aspects. Forward packets refer to packets that are being sent from one device to
another along the path to its destination, while backward packets refer to packets
that are being sent in the opposite direction, usually as a response to a forward
packet, it acknowledges the receipt of forward packets.
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Class Labels Number of instances
Benign 2359087
DoS Hulk 231072
PortScan 158930
DDoS 41835
DoS GoldenEye 10293
FTP-Patator 7938
SSH-Patator 5897
DoS slowloris 5796
Dos Slowhttptest 5499
Bot 1966
Web Attack - Brute Force 1507
Web Attack - XSS 652
Infiltration 36
Web Attack - SQL Injection 21
Heartbleed 11

Table 3.1: Number of instances by class of CIC-IDS2017 dataset

Flow Inter-arrival Time (IAT) is the measure of the time elapsed between the ar-
rival of consecutive packets of a flow in a network. Push (PSH) Flag used to indi-
cate that the receiving device should pass the data to the application immediately
upon receipt, rather than buffering it. Its values are either 0 or 1. Urgent-Pointer
(URG) Flag used to indicate that the data in the packet has urgent priority and
should be passed to the application as soon as possible. Its values are either 0 or
1.

A bulk transfer, also known as a bulk data transfer, is a method of transferring
large amounts of data between devices or systems. A Subflow is a logical or
physical connection within a larger network flow that allows for the transfer of
data between two devices.

The features that the dataset presents are the following(some may be in the same
point because they are similar):

• Destination Port: TCP or UDP port that receives the data.

• Flow Duration: Amount of time that a connection remains open between
two devices.

• Total Forward Packets and Total Backward Packets: Number of packets
that are being sent in one direction or the other in a network connection.

• Total Length of Forward Packets and Total Length of Backward Packets:
Amount of data each packet contains.

• Forward Packet Length Max, Min, Mean and Std: Minimum and maximum
average and standard deviation of the size of the forward packets of data
that are being transmitted.

• Backward Packet Length Max, Min, Mean and Std: Minimum and maxi-
mum average and standard deviation of the size of the backwards packets
of data that are being transmitted.
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• Flow Bytes/s: Known as flow rate, it is the measure of the amount of data
that is being transferred over a network in a second.

• Flow Packets/s: Known as packet rate, it is measure of the number of pack-
ets that are being transmitted over a network in a second.

• Flow IAT Max, Min, Mean and Std: Maximum, minimum, average time of
the flow inter-arrival time of all packets and also the standard deviation.

• Forward IAT Total, Max, Min, Mean and Std: Total, maximum, minimum,
average time of the flow inter-arrival time of forward packets and also the
standard deviation.

• Backward IAT Total, Max, Min, Mean, Std: Total, maximum, minimum,
average time of the flow inter-arrival time of backward packets and also the
standard deviation.

• Forward PSH Flags and Backward PSH Flags: Indicates the number of PSH
flags there are in the forward and in the backward packets.

• Forward URG Flags and Backward URG Flags: Indicates the number of
URG flags there are in the forward and in the backward packets.

• Forward Header Length and Backward Header Length: Indicates the size of
the header in bytes.

• Forward Packets/s and Backward Packets/s: Is a measure of the number of
packets that are being transmitted over a network in a second.

• Packet Length Min, Max, Mean, Std and Variance: Indicates the minimum
and maximum length, the mean and the standard deviation of the length of
the packets.

• FIN, SYN, RST, PSH, ACK, URG, CWE, ECE Flag Count: Indicates the num-
ber of flags there were, each one is a different feature and a different count.

• Down/Up Ratio: Indicates the ratio of data being downloaded (received) to
data being uploaded (sent) in a network.

• Average Packet Size: Indicates the Average size of the packets.

• Average Forward Segment Size and Backward Segment Size: Indicates the
Average size of the segments.

• Forward Header Length: Indicates the Length of the Forward header.

• Forward Average Bytes/Bulk and Backward Average Bytes/Bulk: Indicates
the measure of the amount of data that is being transmitted in a single bulk
transfer in forward or backwards packets. It is typically used to measure
the performance of data transfer operations

• Forward Average Packets/Bulk and Backward Average Packets/Bulk: In-
dicates the average of the measure of the number of packets that are being
transmitted in a single bulk transfer of the forward or backwards packets.
It is typically used to measure the efficiency of data transfer operations
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• Forward Average Bulk Rate and Backward Average Bulk Rate: Indicates
average of the rate at which bulk transfers are occurring on a network either
in forward or backwards packets.

• Subflow Forward Packets and Subflow Backward Packets: refers to the
number of packets that are being sent from one device to another along the
path to its destination within a specific subflow.

• Subflow Forward Bytes and Subflow Backward Bytes: refers to the number
of bytes that are being sent from one device to another along the path to its
destination within a specific subflow.

• Active Mean, Std, Max and Min: Mean, standard deviation, maximum and
minimum time a network connection was active.

• Idle Mean, Std, Max and Min: Mean, standard deviation, maximum and
minimum time a network connection was idle.

3.4 Summary

This chapter gives a deeper view of the projects where our work was integrated in
and in what capacity it added something to them, as well as, what algorithms we
used in our approaches, how they were used as classifiers and how our approach
was trained and validated. We also presented the dataset we used to evaluate
and train the models.

The algorithms we addressed, Conventional Autoencoder, Convolutional Au-
toencoder, all are based on Unsupervised Learning. This decision was made
based on the fact that this type of algorithms is able to detect threats unknown to
the system and are faster in the classification. Both algorithms that were used are
based on Deep Learning, another approach that has potential, taking into consid-
eration the good performances it produces in classification and how they can deal
with high-dimensional data with quite ease compared with other algorithms.
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Implementation

The following chapter presents the techonologies and implementation processes
used to implement the algorithms used, the preprocessing done in each dataset
and the tests performed for each algorithm before we settled on the best one to
analyze more in depth.

The first section, 4.1 presents the preprocessing done in each dataset as well as
a simple exploratory data analysis, the following section, 4.2 presents, how each
algorithm was implemented as well as the various architectures tested for each
algorithm. In 4.3, we presents the division made on the datasets and how was the
process of training and validating the models.

4.1 Datasets Preprocessing

4.1.1 CIC-IDS2017

The dataset used, as mentioned before, was the CIC-IDS2017, composed of 81
features. The dataset was divided into multiple files for each day of the week, so
we started by joining them all and making a simple preprocessing of the entire
dataset. Since it was decided that we would be performing a binary classification,
the label column was altered so the benign instances had the value 0 and all the
instances considered anomalies had the value 1.

After that we looked for NaN values and infinite values, so that we could elimi-
nate those rows, as they would be prejudicial to our models. The preprocessing of
the dataset was finished by eliminating all the features that were constant, mean-
ing they had the same value in the entire dataset, as they would not be beneficial
in any way to our work, since they are redundant. Finally the dataset ended up
with 70 features.

In the Figure 4.1 it is presented the values of each feature for a normal instance
and an anomalous instance. As we can see the values of the errors of each feature
in the normal flow have a maximum of less than 2, while in the anomalous flow
the maximum is higher than 17.5.
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Figure 4.1: Example of a Normal and Abnormal flow values per feature
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After dealing with the preprocessing of the dataset, the next step was to divide
it into a training, a validation and a testing datasets. The training and valida-
tion datasets, both, had only normal data and the testing set normal as well as
anomalous instances.

As the main focus of this work was to create a model capable of detecting anoma-
lies in real time scenarios and it was not possible to assume a range of values
with certainty, instead of normalizing the data as most of the implementations
presented in the state of the art, the data was standardized using the Standard
Scaler, which subtracts the values of each instance (x) by the mean of the data (µ)
and divides it by its standard deviation (σ).

z =
x − µ

σ
(4.1)

For this models, it was decided that performing any kind of feature reduction
would not make as much sense, since Autoencoders already perform a dimen-
sionality reduction and it would not increase the performance of the model.

4.1.1.1 Windowed Datasets

One of the algorithms tested were the Convolutional Autoencoders. This type of
algorithm required a different kind of dataset, the datasets we presented previ-
ously had 2 dimensions, (samples x features), while the ones that a Convolutional
Autoencoder received were 3 dimensional, (samples x time x features). In order
for us to be able to use this algorithm we converted the original dataset as a win-
dowed one, achieving the 3 dimensions.

At first, the initial idea was to create a windowed dataset for each day of the week,
and use the Monday dataset as training, since it was constituted of only normal
data, and the following ones as testing. To reach a conclusion if it was possible
to make this separation or not, a simple analysis was performed. We wanted to
check if the number of samples in the Monday dataset was big enough and if its
features values were similar to the features values of the other datasets.

In order for us to perform this analysis we checked the length of each dataset
with the purpose of assessing if the Monday dataset was big enough, Figure 4.2.

We can conclude that the Monday dataset was the largest one with exception for
the Wednesday one, but this one was mainly composed of anomalous data.

It was also used the Man-Whitney test to compare the statisitical similarity of the
features of the Monday dataset with the remaining, Figure 4.3. It was possible to
notice that from the 80 existing features only 13 have a pvalue higher than 0.05,
[Bwd PSH Flags, Fwd URG Flags, Bwd URG Flags, Bwd Packets/s, RST Flag Count,
CWE Flag Count, ECE Flag Count, Fwd Avg Bytes/Bulk, Fwd Avg Packets/Bulk, Fwd
Avg Bulk Rate, Bwd Avg Bytes/Bulk, Bwd Avg Packets/Bulk, Bwd Avg Bulk Rate]. So
we could not affirm that the Monday dataset could be used as training because
the Monday dataset compared to the other ones did not have a high similarity
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Figure 4.2: Datasets Length

Figure 4.3: Features pvalues
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Figure 4.4: Number of windows with the different lengths

between features which was what we were trying to prove in order to use the
dataset as training set.

The next step was to assess the best value for the window size. After careful
consideration, it was decided that the best strategy to find this length was to find
the mean and the standard deviation of the length of the windows composed,
only, of anomalous flows.

So our strategy was, first to check the number of anomalous flows in a row there
were and save those as window lengths. After having all of the possible lenghts
we checked the number of windows with each length, presented in Figure 4.4.

It was possible to notice that most of the attacks in the datasets were composed of
only one anomalous flow, a conclusion that we were not expecting. We wanted
the minimum possible number for the length of the windows because the major-
ity of the sizes were low and if the size of the window was too high the anomalous
flows inside of the window could be overshadowed.

So we selected the value as the sum between the mean and the standard deviation
of the lengths of the windows, 2 and 2 respectively, so the selected value for the
size of the window was fixed on 4 but we wanted to test with different sizes to
see how it influenced the performance of the models, so we chose a bigger size as
well, 8.

All the datasets were concatenated and create a windowed dataset. The windows
with at least one attack were considered anomalous windows.

Finally it was additionally checked how many windows there were considered as
normal and anomalous, for length 4 (Figure 4.5), as well as length 8 (Figure 4.6).

We could see that in both situations there was more or less the same number
of normal and abnormal windows, but when the length was 8 there were more
abnormal windows contrarily to when the length was 4.
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Figure 4.5: Number of normal and abnormal windows with length 4

Figure 4.6: Number of normal and abnormal windows with length 8
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Figure 4.7: Number of instances for each type of traffic

4.1.1.2 Different types of traffic datasets

Based on a different analysis we intended on performing, create a model for each
different type of traffic, it was necessary to implement a different preprocessing
method for the datasets.

In terms of cleansing and standardization, it was the exact same methods as
before. What had to change was the type of data inside of the datasets. The
CIC-IDS2017 dataset has 5 different, known, types of traffic, which can be distin-
guished by checking the feature Destination Port. Those kinds of traffic and its
corresponding Destination Port are:

• HTTP: 80

• HTTPS: 443

• SSH: 22

• FTP: 21

• Mail: 110, 995, 143, 993, 25, 26, 465

The datasets creation was performed by searching for these destination ports and
creating subsets of the dataset for each type of traffic, HTTP and HTTPS were
joined as one, since the type of traffic was very similar.

4.1.2 Custom Datasets

The custom datasets used were extracted from the platform Mobitrust. These
datasets were similar to the CIC-IDS2017 since this dataset served as influence to
create the datasets this platform provides.

The datasets were extracted from different applications, since each application
had different types of traffic with different values in each feature. We had four
different datasets each with different types of traffic:
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Figure 4.8: Length of each custom dataset

• Message Broker: Composed of messages exchanged through multiple de-
vices and uses TCP protocol.

• Mt Monitor: Composed of Video and Sound and uses both TCP as well as
UDP protocols.

• Mt Orchestrator: Composed of communications performed between differ-
ent components and uses TCP protocol.

• Tick Telegraf: Composed of Time Series and uses TCP protocol.

The data present in each dataset was extracted from multiple simulations of dif-
ferent applications. All the datasets were composed of 80 features initially, also
none of them had attacks.

In the custom datasets, the preprocessement that was done, was exactly the same
as the one done in the CIC-IDS2017. First we turned the Label column from a
string to a integer column with 0 for normal instances. After that the Nan and the
infinite values were identified and the rows in which those values were present,
were eliminated. Since it was defined earlier that the best approach was to cre-
ate a model for each type traffic data, we skipped the concatenation of all of the
datasets and trained a model for each application and gathered the results it pre-
sented.

After this we eliminated the features that were constant, the values were always
the same, exactly the same way as we did in the previous dataset.

The next step was to standardize the data using a Standard Scaler the same way
as it was done in dataset from the State of the Art and it was decided as well
that it would not be done any kind of preprocessing of the dataset, since Autoen-
coders already perform a reduction of dimensionality and it would not benefit
our results in any way.

In Figure 4.8 it is presented the lengths of each custom dataset provided by the
platform Mobitrust. As we could see the Message Broker had considerably more
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data than the rest of the datasets and this was an important aspect for the training
of the data, low data could lead to bad training of the models.

4.2 Models Architectures

4.2.1 Conventional Autoencoder

Autoencoders are a ML algorithm based on Unsupervised Deep Learning. This
type of algorithms, as it was shown, usually show some really good results in
identifying anomalies and still have some space for improvement. Another as-
pect is the fact that it shows a fast classification of instances compared to other
algorithms, something that is really important in our study as it will be used in
real time scenarios.

The problem using an Autoencoder was divided into two parts, the first one be-
ing the training of the model in order for it to learn how to reconstruct the nor-
mal instances with the lowest possible error and the second part finding the best
threshold value, for the reconstruction errors, to make the separation between the
normal instances and the anomalous ones.

The implementation of the Autoencoder started by performing a simple grid
search in order to understand and select the best hyperparameters to train our
model. The selected hyperparameters were:

• Number of layers: [7 (dimensions of each layer 70, 35, 18, [7, 5, 3], 18, 35,
70), 9 (dimensions of each layer 70, 50, 30, 10, [7, 5, 3], 10, 30, 50, 70), 11
(dimensions of each layer 70, 55, 40, 25, 10, [7, 5, 3], 10, 25, 40, 55, 70)]

• Hidden layers activation function: [ReLU, eLU, LeakyReLU]

• Optimizers: [Adam, Nadam]

• Bottleneck layer dimensions: [3, 5, 7]

• Learning Rate: [0.001, 0.0001, 0.00001]

The values for the number of layers chosen were these ones because we wanted
to test how different number of layers as well as different decays in layers dimen-
sions would impact the reconstruction learning step. The activation functions
and the optimizers were selected taking into account a previous investigation on
the matter and by some preliminary tests made and these were the ones that pre-
sented bests results in learning how to reconstruct the instances.

The bottleneck layer dimensions were selected taking small values in order to
be more difficult for the anomalous instances to be reconstructed, meaning if the
bottleneck layer was higher the anomalous instances would probably be easier
to reconstruct without being trained and with the finality of understanding how
different values would influence the performance of the Autoencoder.
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Figure 4.9: Reconstruction Errors

The activation function of the output layer was fixed as Linear because of the fact
that we used standardization instead of normalization, so the output data ranged
between 2 values different from 0 and 1, positive or negative, so the activation
function that made more sense in this situation since it could output such values
was the linear one because of the type of function it was.

The best hyperparameters combination was selected based on the validation loss,
the lowest ones were selected to check the performance in classifying the in-
stances.

As for the second part, the classification, what was meant to do was, reach the
optimal threshold value so it would be possible to make a separation between
the normal and the anomalous instances based on that value. In order to find that
threshold value it was gathered all the reconstruction errors of the training and
validation sets and calculated the Mean Squared Error of the original instance and
the reconstructed instance, after this it was calculated the mean and the standard
deviation of the reconstruction errors.

We reached the conclusion that there was a large number of normal instances
that presented a great reconstruction error, some higher than 1000, as we can see
in Figure 4.9. Considering this instances as outliers, they were eliminated, as they
increased the mean and the standard deviation, which gave a bad threshold.

The detection of this outliers was performed using a Interquartile Range based
outlier detection. First it was calculated the upper bound which was the 75% per-
centile summed to the 1.5 times the interquartile range, which is the difference

48



Implementation

Figure 4.10: Conventional Autoencoder Approach Process

between the 75% percentile and the 25% percentile of the data. After that all the
errors that were above that upper bound were eliminated. After this preprocess-
ing the threshold produced a value much more acceptable.

So we could achieve the threshold that gave us the best performance possible in
classifying, we used the F1-Score metric to select which threshold had the best
performance. The metric selected to check the best results was F1-Score because,
the most important features for our problem are Recall and Precision and the met-
ric we selected was an harmonic mean between the two latter. The threshold was
calculated by summing the mean (µ) and the standard deviation (σ) multiplied
by a certain value, x, which was the only parameter we changed.

threshold = µ + (x ∗ σ) (4.2)

The calculation of the error of each instance was performed by calculating the
Mean Squared Error of the original instance with the reconstructed one, as it is
presented in the next formula, 4.3

error = ∑n
i=1(xi − yi)

2

n
(4.3)

The formula calculates the error of every feature in the instance and outputs its
mean, i is the feature, x is the original instance, y is the reconstructed instance and
n is the number of features.

The overall process of the approach is presented in the Figure 4.10.
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4.2.2 Convolutional Autoencoder

Convolutional Autoencoders are similar to Conventional Autoencoders but have
some differences. This type of algorithm is based on Unsupervised Deep Learn-
ing, as well, and merges the paradigm of the conventional Autoencoders and the
Convolutional Neural Networks.

The anomaly detection using Convolutional Autoencoders was still divided into
two parts as well, the first one being the reconstruction of the instances, in this
case the windows, with the minimum error and only after that the classification
of the windows.

The implementation of this algorithm started by performing a hyperparameter
tuning with the help of the framework Optuna, which executes a Bayesian op-
timization, skipping some trials that are not promising, saving us time. The se-
lected hyperparameters were:

• Optimizers: [Adam, Nadam]

• Hidden layers activation function: [ReLU, eLU, leakyReLU]

• Learning Rate: [0.001, 0.0005, 0.0001]

• Number of Filters: [1, 4, 8]

• Kernel size (Features): [4, 12, 20]

• Kernel size (Flows): [2, 4, 8]

One important hyperparameter we decided to not test more values was the stride.
It was decided that this hyperparameter would have its value fixated at 2 in order
for the dimensionality reduction to be significant from layer to layer. If it was 1
the reduction of dimensionality would be slow and take much more time to train
and to make the predictions, because it would need more layers to reach a low
bottleneck dimension, while 3 would be too rapid and most of the times reach the
bottleneck dimension in the second layer which was not optimal. Finally it was
concluded that 2 was the best value to use as stride.

The activation functions and the optimizers were selected by the same way they
were selected for the Conventional Autoencoders, conducting some preliminary
tests and reading some examples from previous papers.

The values selected for the number of filters were selected based on the knowl-
edge that we would want a small number of filters since our datasets were not
that complex, so we decided to go with smaller number for the number of filters.

The dimensionality reduction calculations are performed taking into considera-
tion the kernel size. The values selected had to be checked before using them
because of the math, as some sizes would give errors, most of the times negative
dimensions. The kernel size corresponding to the features is horizontal while the
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one corresponding to the flows is vertical. The values that were selected, are jus-
tified by our need of catching a low number of blocks as well as a high number
of blocks.

The training was performed with 100 epochs and a batch size of 32, early stop
with patience of 10 and the loss was calculated using the Mean Squared Error.

After the training of the model we passed to the classification part. The prediction
of the values in this algorithm gave an error for each flow inside of the window,
which was not what we wanted, so in order for us to get the error of the entire
window, we calculated the mean of the error inside of each window in order for
it to give the reconstruction error of the window. The equations used to calculate
the threshold and the errors were the same ones that were used in the Conven-
tional Autoencoder.

The same way as it was done in the Conventional Autoencoder it first had to be
found an optimal threshold to use as the value that would separate the windows
considered normal from the anomalous ones. To find that value we proceeded to
use the trained model to reconstruct the instances present in the training set and
gather all these reconstruction errors. After that it was calculated the mean and
the standard deviation of the errors.

Since there is a quite large number of normal instances with great errors, which
were considered outliers, these errors were eliminated, as they increased quite a
bit the mean and greatly the standard deviation, which gave a bad threshold.

The detection of this outliers was executed the same way as in the Conventional
Autoencoder. Contrarily to what was seen in the Conventional Autoencoder, the
best value to multiply so we could get to the optimal threshold always had the
best results when it was 1 so we fixated this value.

The overall process of the approach is presented in the Figure 4.11.

4.3 Training and Validation of the models

This section provides an overview on what were the techniques used to imple-
ment the algorithms and its architectures as well as the tests conducted for each
Machine Learning algorithm.

The programming language used during the implementation process was Python,
more precisely, Python 3.9.2. We also used Python’s library scikitlearn as well as
the frameworks Tensorflow, Pandas and Optuna.

After completing the datasets preprocessing and the division in windowed dataset
or division in subsets, explained in detail in the previous section 4.1. The follow-
ing step was to divide the dataset into a training set, a validation set and a testing
set, for training and validation purposes.

The division of the datasets and the training that was performed are shown in
Figure 4.12, the entire datasets were divided into a training set which was com-
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Figure 4.11: Convolutional Autoencoder Approach Process

Figure 4.12: Training and Validation of the models
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posed of only normal data, so we got only the normal data and divided it 70%
and 30% with these 30% being data that would be used in the testing set. The
training set would also be divided in 70% for training and 30% for a validation
set, as we were building Deep Learning models there was a need to have a vali-
dation set to keep validating the training of our model in every iteration. Finally
the 30% of only normal data that would be used for the testing set would be con-
catenated with all the anomalous data, to give us the testing set that would be
used to check the performance of the model.

The training of the models was performed with 300 epochs and a batch size of 64,
early stop with patience of 20 and the loss was calculated using Mean Squared
Error, for the Conventional Autoencoder. The batch size was quite high for the
training to be quicker and because of some preliminary tests we concluded that it
made not difference on training with other values of batch size, the patience was
the value that seemed best for us to see if the model had stopped learning or not.
While for the Convolutional Autoencoder it was performed with 100 epochs and
a batch size of 32, early stop with patience of 10 and the loss was calculated using
Mean Squared Error. The number of epochs and patience was lower because
the model needs less epochs to stop learning, the batch size was lower as well
because of constraints in the Virtual Machine resources, we needed the model to
consume less RAM so the Machine would not crash in training.

4.4 Summary

This chapter covered two important aspects: the pre-processing of the the datasets
and the implementation of the candidate models. As part of the datasets pre-
processing, a description of each step performed in the pre-processing of the
datasets, both CIC-IDS2017 and custom datasets, as well as how the windowed
datasets were created and how it was decided on the best size for the windows.

Afterwards, it was described the split performed in the datasets and which ones
were used for the training and which ones used for the validation of the models.

Finally, it was presented the implementation of all the algorithms tested, Conven-
tional Autoencoder and Convolutional Autoencoder. Additionally to the imple-
mentation it was also presented all the tests performed in order for us to get to
the best parameters combination to achieve the best model possible, as well as a
description on why we selected the values for each model’s hyperparameters.
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Results and Discussion

The following chapter presents the results attained from the different approaches
implemented and a deeper discussion and comparison of the various algorithms
and models tested.

The chapter is divided in 5 sections. In the first one, 5.1, we present the results
of the Random Forest as a baseline model, in order for us to justify the usage
of Unsupervised Learning. In section 5.2 and 5.3 we present the performance
results of the Conventional Autoencoder and Convolutional Autoencoder in var-
ious datasets.

Finally in 5.4 it is performed a deeper analysis of the performance results of each
algorithm as well as a comparison between them with the intent of selecting the
best one.

5.1 Random Forest

First it is presented a baseline model used in previous studies for this work, [58].
This model was used as base for comparison with the work we developed, mainly
to show that Unsupervised Learning was better than Supervised Learning in this
work in particular. All the parameters used in the algorithm were the default
ones, as it was the same way as it was done in the previous studies.

As we could see in Table 5.3 and Table 5.4 the model presented a very good per-
formance, almost perfect, something that had been already concluded in the pre-
vious studies made.

Metric Score
Precision 1.0
Recall 1.0
F1-Score 1.0
FNR 0.00

Table 5.1: Random Forest Classification results
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Actually Positive Actually Negative
Predicted Positive 13% 0%
Predicted Negative 0% 87%

Table 5.2: Random Forest Confusion Matrix

Metric Score
Precision 1.0
Recall 0.15
F1-Score 0.27
FNR 0.85

Table 5.3: Random Forest (DoS) Classification results

The main problem with using Supervised Learning approaches was the fact that
it could not detect new anomalies, that were unknown to the model, known as
zero day attacks. Having this aspect in mind we trained a model using the entire
dataset except the DoS attacks, to check how well the model could detect this type
of attacks without being trained to do so.

As it was possible to notice by the results presented in Table 5.3, the results were
worse than before. The test set, used for analysis of the model’s performance was
composed of DoS attacks only and as we could see the False Negative Rate was
extremely high, the model was only capable of detecting 15% of attacks. The Pre-
cision was 100% because as the data was only attacks all the instances classified
as attacks were actually attacks so it had to give 100%, but this metric was not
important for this analysis.

We can conclude by this analysis that, when the model was fed new attacks that
it was not trained to identify it would not be able to classify this attacks correctly.
This constituted a problem to our solution as new attacks are constantly being
discovered.

5.2 Conventional Autoencoder

This section presents the training and prediction results achieved with the Con-
ventional Autoencoder. The results that are presented are correspondent to the
entire dataset and to subsets of the dataset corresponding to the different types of
known traffic, in this subsets it was also evaluated the performance of the model
with a parameterization using the entire dataset and a parameterization using
only the subset in question.

Actually Positive Actually Negative
Predicted Positive 15% 0%
Predicted Negative 85% 0%

Table 5.4: Random Forest (DoS) Confusion Matrix
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Figure 5.1: Conventional Autoencoder Architecture

5.2.1 Entire Dataset

5.2.1.1 CIC-IDS2017 Dataset

The first tests performed were done using the CIC-IDS2017 dataset to check which
models had a better performance to transpose them to the datasets provided by
the Mobitrust platform.

First we performed an hyperparameter tuning to conclude which parameters
combination was the best one. The most relevant results of the hyperparameter
tuning are presented in Table 5.5.

Number of layers Hidden layers activation functions Optimizer Bottleneck layer dimension Learning rate Validation loss
11 elu nadam 7 0.0001 0.0182
11 leakyrelu adam 7 0.0001 0.0184
11 elu adam 7 0.0001 0.0187
9 leakyrelu nadam 7 0.0001 0.0196
9 elu nadam 7 0.0001 0.0201
9 elu adam 7 0.0001 0.0207
11 elu adam 5 0.0001 0.0210
11 leakyrelu nadam 7 0.0001 0.0217

Table 5.5: Autoencoder parameter tuning best results

As we could conclude by analyzing the data from the hyperparameter tuning, the
models with more hidden layers produced less error, which made sense, as the
encoding and decoding was more gradual, the dimensions of the bottleneck layer
was usually best when it was higher, 7, because the encoding was not so high and
was simpler for the model to decode having a bigger dimension to begin with.
The learning rate was the middle value of the ones we tested.

The best ones were the combinations of 11 layers, activation function eLU, opti-
mizer Nadam as well as Adam, bottleneck layer dimension 7 and learning rate
0.0001, with its architecture presented in Figure 5.1. Its training performance is
presented in Figure 5.2.
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Figure 5.2: Train and Validation losses in the training of the model

x F1-Score
1 0.649
10 0.714
20 0.741
30 0.755
40 0.759
50 0.753

Table 5.6: F1-Score based on the value x

In order for us to find the best threshold we needed to find the value, x that
maximized the F1-Score, as it was specified in section 4.2.1. The values that the
standard deviation was multiplied by, x were [1, 10, 20, 30, 40, 50] and the F1-
Scores of each one are the ones presented in Table 5.6 As we could see the value
that maximized the F1-Score was 40 so we used this one to calculate the threshold.

By combining the best model in terms of reconstruction and the best threshold
attained previously we used the test set to analyze the performance of the model
in reconstructing the instances and in classifying them. In terms of reconstruc-
tion it is presented two instances with the input values of each feature and the
reconstruction values of each feature as well as the error in each one, Figure 5.3.

The classification results it achieved were the ones presented in Table 5.7 and
Table 5.8

The model was not achieving as good results as we were expecting, the Recall was
expected to be higher as well as the precision. The reasons found for such type
of results were the fact that there was a quite large number of normal instances
with values in some features that were way different from the expected values in

Metric Score
Precision 0.92
Recall 0.64
F1-Score 0.76
FNR 0.36

Table 5.7: Classification results
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Figure 5.3: Normal and Anomalous Flows Feature Errors

Actually Positive Actually Negative
Predicted Positive 21% 2%
Predicted Negative 12% 65%

Table 5.8: Classification Confusion Matrix
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those features, this made the Autoencoder perform a bad reconstruction in these
instances that would later be considered anomalies, even though they were not.
Another reason found was the fact that there was a high number of anomalous
instances which had values that were similar or even equal to the ones of the
normal instances, this made the Autoencoder perform a good reconstruction of
the instances which made the reconstruction error low and these instances were
considered False Negatives by the classifier.

Even though the results were not the best ones we were expecting, using, for
comparison, a paper described in the State of the Art where it was used also used
a Conventional Autoencoder, [42], we could see that our model outperformed
theirs, as it presented a Precision, Recall and F1-Score of 0.6774 each.

5.2.2 Different traffic Datasets

5.2.2.1 CIC-IDS2017

The next section presents the results of each model implemented for each type
of known traffic present in the CIC-IDS2017 dataset. The results shown are from
the general parameterization and from a parameterization made for the subset in
question.

HTTP and HTTPS

First it was performed an hyperparameter tuning using only the subset, using
the same values used in section 4.2.1 and the best result was 11 layers, activation
function eLU, the bottleneck layer dimensions equals 7, the optimizer is Adam
and its learning rate equals to 0.001.

As we could see by looking at the best hyperparameters, they were not very dif-
ferent from the ones we achieved from the parameterization of the entire dataset,
this may be because of the fact that most of the data that belongs to the HTTP and
HTTPS was way larger than the other types so the general parameterization had
more HTTP and HTTPS data than the other ones.

The training of the model was performed with batch size of 64, early stop with
patience of 10 and the loss was calculated using Mean Squared Error, training
presented in Figure 5.4.

The number of epochs to train the model was much lower than before, previously
achieving the 140 epochs and now only needing 40 epochs to reach the early
stoppage, this happened because of the fact that the dataset was smaller.

In terms of the classification, in order for us to get the best threshold we used
the same strategy as before being the best value to multiply 5 and the results the
model presented are reflected in Table 5.9

It was possible to notice that the model had an overall performance quite good
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Figure 5.4: Training and Validation losses throughout the training of the HTTP
and HTTPS model

Metric Score
Precision 0.91
Recall 0.76
F1-Score 0.83
FNR 0.24

Table 5.9: HTTP and HTTPS specific parameterization classification results

with the Precision being 91%, which is high, and a relatively low false negative
rate, 24%, although it could be lower.

After that we used the parameterization we consider general and trained the
model with the same number of epochs, batch size and patience in the Early Stop-
ping as before.

The model achieved the performance presented in Table 5.10.

It was possible to notice that the performance of the model was very good, the
Precision was slightly lower than the one in Table 5.9, but the FNR was lower as
well which was a positive aspect and, finally, the F1-Score was equal in both of
them so the model was considered fit to use.

SSH

Metric Score
Precision 0.81
Recall 0.85
F1-Score 0.83
FNR 0.15

Table 5.10: HTTP and HTTPS general parameterization classification results
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Figure 5.5: Training and Validation losses throughout the training of the SSH
model

Metric Score
Precision 0.99
Recall 0.53
F1-Score 0.69
FNR 0.47

Table 5.11: SSH specific parameterization classification results

The combination of parameters that achieved the best validation loss was 9
layers, activation function eLU, bottleneck layer dimensions 5, optimizer Adam
and its learning rate was 0.0001.

In this hyperparameter optimization we could see that the parameters used were
slightly different which shows how the change of the dataset had influence in the
best combination of parameters to use to achieve the best trained model possible.

The training of the model was presented in Figure 5.5, it was possible to notice
that the number of epochs that it took to converge to the best validation loss was
much higher than the one needed in HTTP/HTTPS but the value achieved was
almost the same.

As for the classification, the threshold used, the value multiplied was 50, a much
higher number than in the previous situations, and the results of the model are
presented in the Table 5.11.

Looking at the results we could see that the model had a very similar performance
to the one with a specific parameterization, which made us conclude that it did
not have a good performance. 47% False Negative Rate was a bad value for the
metric, although the precision was almost perfect, 99%, with the FNR being so
high the model was not possible to apply.

Taking into consideration the general parameterization, the model was trained
exactly the same way as before and the performance it presented is displayed in
Table 5.12

The model, in terms of Precision, had a really good result, which meant in all the
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Metric Score
Precision 0.95
Recall 0.53
F1-Score 0.68
FNR 0.46

Table 5.12: SSH general parameterization classification results

Figure 5.6: Training and Validation losses throughout the training of the FTP
model

flows it considered an anomaly 95% of them were correct, but the FNR was too
high, almost 50%.

FTP

For FTP the parameters used were not very different from the previous ones, 9
layers, activation function eLU, bottleneck layer dimensions 7, optimizer Nadam
and learning rate of 0.001.

The training of the model is presented in the Figure 5.6, we could notice that
the validation loss was always quite low comparing to the training loss and the
lowest value was similar to the one achieved in the previous models.

The value multiplied, x, to get the threshold was 2, and the results of the model
are presented in Table 5.13

This model as we could conclude had a really good performance with high values

Metric Score
Precision 0.97
Recall 0.99
F1-Score 0.98
FNR 0.00

Table 5.13: FTP specific parameterization classification results
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Metric Score
Precision 0.96
Recall 0.99
F1-Score 0.98
FNR 0.00

Table 5.14: FTP general parameterization classification results

Metric Score
Precision 0.84
Recall 0.99
F1-Score 0.91
FNR 0.01

Table 5.15: MAIL specific parameterization classification results

in all the relevant metrics, but the results had to be taken with some care since the
dataset was small and may have had a low variance in data.

Focusing on the general parameterization, the results are presented in Table 5.14

The model had a performance quite similar to the previous one with a specific pa-
rameterization, achieving optimal results in all of the metrics, still the dataset was
quite low in terms of variance and data so it could have had a different outcome
when using more data.

MAIL

The hyperparameter tuning for the Mail subset returned the following param-
eters, 9 layer, activation function eLU, bottleneck layer dimensions 7, optimizer
Nadam and learning rate 0.001. The parameters, as we could see were always
quite similar in all of the subsets.

The results of the model were presented in Table 5.15, and it was possible to con-
clude that the model had a good performance, capable of achieving a relatively
high Precision as well as a low FNR.

Taking into consideration the general parameterization, the results the model pre-
sented were the ones in Table 5.16.

The values of each metric were below satisfactory which shows that the parame-

Metric Score
Precision 0.08
Recall 0.02
F1-Score 0.03
FNR 0.98

Table 5.16: MAIL general parameterization classification results
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terization used was not the best, making this model impossible to use.

5.3 Convolutional Autoencoder

The following section shows the performance results the models using the Con-
volutional Autoencoder algorithm. The results that are presented are correspon-
dent to the entire dataset and to subsets of the dataset corresponding to the differ-
ent types of known traffic, in this subsets it was also evaluated the performance
of the model with a parameterization using the entire dataset and a parameteriza-
tion using only the subset in question. It also presents the results of two different
window sizes, 4 and 8.

5.3.1 Entire Dataset

5.3.1.1 CIC-IDS2017

Window Length 4 Starting with the hyperparameter tuning using a window
length of value 4, the combination of parameters that showed a better were the
following ones:

• Hidden Layers activation function: eLU

• Number of filters: 8

• Kernel: 4

• Kernel X: 2

• Learning Rate: 0.0005

• Optimizer: Nadam

The training of the model achieved a validation loss value of 0.070. It was pos-
sible to notice that the learning rate that was needed was still quite low and the
activation function still needed to be eLU. The number of filters was high, and
the dimensions of the kernel were 4 features per kernel window, a low value, this
meant that the model, using lower kernel sizes, its reduction of dimensions was
more gradual and more specific.

The classification results are presented in Table 5.17 as the confusion matrix in
Table 5.18.

It was possible to conclude that the results the model achieved were not the best,
far from it. The Precision was very low and the FNR was too high for it to be
considered a good model to use.
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Metric Score
Precision 0.68
Recall 0.51
F1-Score 0.58
FNR 0.49

Table 5.17: Convolutional Autoencoder (window length 4) Classification results

Actually Positive Actually Negative
Predicted Positive 25% 11%
Predicted Negative 24% 40%

Table 5.18: Convolutional Autoencoder (window length 4) Confusion Matrix

Window Length 8 Starting with the hyperparameter tuning using a window
length of value 8, the combination of parameters that showed a better perfor-
mance were the following ones:

• Hidden Layers activation function: LeakyReLU

• Number of filters: 8

• Kernel: 4

• Kernel X: 4

• Learning Rate: 0.001

• Optimizer: Nadam

The training of the model achieved a validation loss value of 0.018. As we could
see the hyperparameters used were all very similar especially the number of fil-
ters and the kernel sizes.

The values of each metric are shown in Table 5.19 and the confusion matrix in
Table 5.20.

The results using a length of 8 were slightly worse than the ones achieved using 4
as window length, it showed a high FNR, above 60% although the Precision was
the same.

In summary we could conclude that the best model to use was the one achieved
with the window length of 4. It’s architecture is presented in Figure 5.7, and as

Metric Score
Precision 0.64
Recall 0.37
F1-Score 0.47
FNR 0.63

Table 5.19: Convolutional Autoencoder (window length 8) Classification results
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Actually Positive Actually Negative
Predicted Positive 19% 11%
Predicted Negative 33% 37%

Table 5.20: Convolutional Autoencoder (window length 8) Confusion Matrix

Figure 5.7: Convolutional Autoencoder Architecture

we could see the architecture was much smaller than the one presented in Figure
5.1 since the reduction of the dimensions was much faster.

5.3.2 Different traffic Datasets

5.3.2.1 CIC-IDS2017

The following section reveals the performance of the Convolutional Autoencoder
for the different types of known traffic contained in the CIC-IDS2017 dataset.
Taking the results of the different window lengths into consideration, we only
used a window length of 4 and the original parameterization instead of trying a
parameterization for each dataset.

HTTP and HTTPS

Focusing, first, on the HTTP and HTTPS subset, the Table 5.21 presents the
performance of the model.

The results of the model were satisfactory, it had a Precision with a relatively high
value, 84% although the False Negative Rate was too high at 38% a value that we
already gotten way lower.

Metric Score
Precision 0.84
Recall 0.62
F1-Score 0.71
FNR 0.38

Table 5.21: HTTP and HTTPS Convolutional Autoencoder Classification results
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Metric Score
Precision 0.89
Recall 0.90
F1-Score 0.90
FNR 0.10

Table 5.22: SSH Convolutional Autoencoder Classification results

Metric Score
Precision 0.95
Recall 0.84
F1-Score 0.90
FNR 0.16

Table 5.23: FTP Convolutional Autoencoder Classification results

SSH

Looking at the SSH subset, we could observe, in the Table 5.22, the metrics
results.

The following model, as the results in the table show, had a very good perfor-
mance with a very high Precision and a relatively low FNR which made the
model quite good.

FTP

The results the FTP set achieved are presented in the following Table 5.23.

The model, as we could notice, achieved very satisfactory results, a high Precision
as well as a low FNR.

MAIL

Finally, focusing on the Mail subset, the metrics scores are presented in the
Table 5.24.

Metric Score
Precision 0.67
Recall 0.52
F1-Score 0.59
FNR 0.48

Table 5.24: MAIL Convolutional Autoencoder Classification results
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Metric Score
Precision 1.0
Recall 0.67
F1-Score 0.80
FNR 0.33

Table 5.25: Conventional Autoencoder (DoS) Classification results

The performance of the model was way worse than we were expecting, achieving
a very low Precision score and an abruptly high False Negative Rate, this may be
caused by the fact that the data is quite different from each type o mail protocol.

5.4 Discussion

This section presents a deeper analysis and discussion of the results each model
achieved as well as a comparison between models in order for us to select the best
model to integrate in our platform. We divided the analysis, first, by algorithms
and then a comparison of the best results of each algorithm.

5.4.1 Conventional Autoencoder

First we compared the Conventional Autoencoder with the Random Forest, in
order for us to show why we intended to use this algorithm over the one that
was previously considered the best. In Table 5.3 it is shown the results of the
metrics using the Random Forest trained without instances with the DoS attack
type and tested in identifying only DoS attacks.

In Table 5.25 we show the results of the Conventional Autoencoder in detecting
only the DoS attacks.

As we could see the performance of the Autoencoder in detecting attacks that
were unknown to the model was much better than the one achieved by the Ran-
dom Forest, which showed that this Unsupervised Learning algorithm was better
for our solution.

The performance of the Conventional Autoencoder, overall, had an undesirable
behaviour, in terms of precision it presented some good results, achieving high
values, but the False Negative Rate was the metric that surprised us a little bit
since it had quite high values in most situations.

We alredy displayed the values of the metrics, so we present the ROC curves of
each model, as well as its AUC.

In the Figure 5.8 is displayed the ROC as well as the AUC value of the model
used for the entire dataset.

We can conclude that the model has a relatively good performance achieving
0.087 AUC.
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Figure 5.8: ROC curve and AUC for the General Conventional Autoencoder

Figure 5.9: HTTP/HTTPS specific vs general parameterization

Now focusing on the models for each type of traffic, we presented the ROC curves
and the correspondig AUC of each type of traffic.

First in the AUC of the HTTP and HTTPS subset, Figure 5.9, we could see that
both had a high value and its ROC curves showed quite a good performance in
all the possible predictive situations, the good preformance of the model could
be corroborated by the metrics shown previously where the model achieved an
F1-Score of 83% in both parameterizations which was a high value.

Looking at the models used in the SSH subset, Figure 5.10, it was possible to con-
clude that one model had a way better performance than the other. The model
that used a parameterization specific to the dataset had a quite good AUC value,
0.85, while the one that used the parameterization used for the entire dataset
lacked a lot in performance, achieving only 0.53 AUC and in the ROC curve the
True Positives Rate stayed constant in almost all of the time, while the False Pos-
itive Rate increased. This behaviour made sense since the parameterization was
an important aspect of the models implementation and a parameterization that
was not specific to a dataset may have presented a bad performance.

Considering the models implemented for the FTP subset, as we could notice
by looking at the Figure 5.11, both models had an almost perfect performance,
achieving almost a perfect True Positive Rate right in the beginning and both had
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Figure 5.10: SSH specific vs general parameterization

Figure 5.11: FTP specific vs general parameterization
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Figure 5.12: MAIL specific vs general parameterization

an AUC above 0.98. This showed that both models in this situation were fit to
implement and that both parameterizations were able to achieve a good perfor-
mance.

The final models, corresponding to the MAIL models had very different behaviours
and performances. The model that used a parameterization made for the subset
had a really good performance, achieving an AUC of 0.94, while the one that used
the parameterization performed with the entire dataset had a bad performance,
achieving an AUC of 0.34.

The most correct way to develop our study was by always performing an hyper-
parameter tuning whenever we had a different dataset, since it could modify a
lot the performance of the model. The reason why we checked the performance
of the model using a general parameterization was because of the final objective
of our study. The model that would be implemented had to be scalable, since it
would be used in multiple machines at the same time with different datasets and
be able to classify instances of different types of traffic and different types of pro-
tocol, so the development of a hyperparameter tuning for each model depending
on the dataset it used was not possible because of the scalability.

Although as we could see in the performance of all the models, there were times
where the general parameterization had bad results and showed really bad per-
formances, which may show that it may not have been the best approach to focus
on, since a parameterization made for each dataset showed that the model would
always have a somewhat good performance and achieve good results in the clas-
sification of instances.

As we could see, by comparing the results, these were not very different and
not the best results as well. This may have been because the datasets were quite
small so the training of the model was not the best and lacked some diversity and
samples, as we were using Deep Learning, the models needed a lot of samples
and way more variation in order for them to learn to reconstruct the instances.

Taking the ROC curves and the AUC of the each model, we could see that HTTP/HTTPS
and FTP had similar results comparing to when we used the original parameter-
ization and the parameterization for each type of data, although in the SSH and
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Metric Score
Precision 1.0
Recall 0.72
F1-Score 0.84
FNR 0.27

Table 5.26: Convolutional Autoencoder (DoS) Classification results

MAIL traffics, the AUC and ROC curve had significantly worse performances,
when using the original parameterization, than when using the parameterization
for each type of traffic.

This may be because the parameterization was quite different from the original
one so the results tended to be a little bit different. Since we wanted to use these
models in a real time situation, the parameterization for each model may have
been difficult, so we wanted to use a more general one that could perform well in
all of the models, but we could not assume that this was a good approach based
on the results presented. In the HTTP/HTTPS the results were very similar be-
cause the parameters used were almost the same as the ones used in the original
one.

5.4.2 Convolutional Autoencoder

First we made the comparison between the Convolutional Autoencoder with the
Random Forest in terms of detecting unknown attacks to the model. In the Ta-
ble 5.3 it was shown the results of the metrics using the Random Forest trained
without instances with the DoS attack type and tested in identifying only DoS
attacks.

In Table 5.26 we showed the results of the Conventional Autoencoder in detecting
only the DoS attacks. The windows that had at least one instance as DoS were
considered to be this type of attack.

As we could see the performance of the Convolutional Autoencoder in detecting
attacks that were unknown to the model were much better than the one achieved
by the Random Forest, which showed that this Unsupervised Learning algorithm
was better for our solution.

The next analysis we intended to perform was assessing if the number of in-
stances a window had to have to be considered an anomaly had any relevance in
the performance of the model. To make this assessment we analyzed the perfor-
mance of a Convolutional Autoencoder, using a window of 4, and considered a
window anomalous when the number of anomalous instances it had was first 1,
then 2, 3 and 4 and assessed the results of the performance metrics to conclude if
it had any influence. The results are presented in Figure 5.13.

Looking at the graphs we could conclude that by considering a larger number
of anomalous instances inside a window for it to be considered anomalous, the
performance of the model decreased, the Precision decreased quite a lot while the

73



Chapter 5

Figure 5.13: Convolutional Autoencoder’s Precision and Recall for different
anomalous windows

Recall stayed practically the same in all, this could be explained by the fact that
the dataset would have less and less anomalous windows, and because of that
the model would detect more instances as false that were, in fact, true but would
compensate in the instances that were actually false. So it made more sense to
consider that whenever a window had at least 1 anomalous instance it would be
considered an anomaly.

The performance of the Convolutional Autoencoder, overall, was less satisfying
than the one achieved by the Conventional Autoencoder. As specified earlier in
the document, the idea behind testing this algorithm was the fact that the attacks
normally appear as multiple anomalous flows in a row, so by classifying win-
dows of flows, instead of individual flows, would be beneficial.

We could see, by analysing the ROC curves and the AUC, as well as the values
of the Precision and FNR of the Convolutional Autoencoder of the entire dataset
both window length 4 as well as 8 that the performance was very similar achiev-
ing AUC values of 0.61 and 0.59 respectively.

As we could conclude by looking at the graphs the performances of the models
using Convolutional Autoencoders, Figure 5.14, this model was not close to being
the one we had envisioned. We tested using 2 different window lengths, 4 and 8,
even though the more usual value for the number of anomalous flows inside of a
window was 1 and not 2 or more as we expected. This already had downgraded
our expectations for the usage of the algorithm.

Comparing these two algorithms with the Conventional Autoencoder we could
see that the two Convolutional presented a worse performance.

The results using a length of 4 were slightly better than the ones achieved us-
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Figure 5.14: ROC curves and AUC for Convolutinal Autoencoders using the en-
tire dataset

ing 8 as window length, although it showed a very high percentage of FN and a
very low percentage in precision and the AUC was really low as well. This be-
haviour may be explained by the fact that since the attacks mainly produce only
1 anomalous flow instead of multiple ones the model was not capable of making
this association and as it could reconstruct most of the flow inside of the window,
the error would be low, as most of the times, the windows would have only 1
anomalous flow.

The bigger the window got the worst the performance would be as we can see by
analyzing the performance of the Convolutional Autoencoder using a window
length of 8.

Focusing on the performance for each type of traffic, Figure 5.15. As we could see
by analyzing the figure, the AUC value of the SSH and FTP were relatively high
and their curves showed that the model had a pretty good performance, being
able to make the separation between True Positives and False Positives quite well,
the HTTP and Mail were a bit lower achieving a value that was quite low which
was proven by the values it showed in the metrics Precision and False Negative
Rate.

The models shown in this picture were all implemented using the hyperparame-
ter tuning performed in the entire dataset and were all using a window length of
4, so we could affirm that the performance was quite better than the one showed
in the Conventional Autoencoder, where the AUC presented values of 0.87, 0.54,
0.99 and 0.34. This showed that overall the Convolutional Autoencoder for each
type of traffic would have had a better performance if we used a more general
parameterization, which was what we were aiming for, because of the scalability
of our solution, as it was mentioned before.

5.4.3 Classification Time

Now we focused on another important aspect of our analysis, the time it takes
each algorithm to classify each instance, presented in Table 5.27.
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Figure 5.15: ROC curves and AUC Convolutinal Autoencoder different traffic
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Algorithm Time(milliseconds)
Random Forest 0.12
Conventional Autoencoder 1.02
Convolutional Autoencoder (window length 4) 1.08
Convolutional Autoencoder (window length 8) 1.09

Table 5.27: Time each algorithm takes to classify one instance

Figure 5.16: ROC curves and AUC of Conventional and Convolutional Autoen-
coders for HTTP and HTTPS

The machine where we ran our tests was a Virtual Machine running a Ubuntu
OS, with 96 GB of RAM, a CPU with 12 cores, without dedicated GPU.

It was possible to notice that both kinds of Autoencoders took, almost, the same
amount of time to classify each instance, the difference was almost none so we
could conclude that this aspect would not help much in the decision of which
model to choose. Comparing them to the Random Forest time we could notice
that it took 10 times less the amount of time to classify each instance which was a
lot of time and made quite a difference in a real time situation, so we agreed that
in terms of time the Random Forest algorithm was best.

5.4.4 Comparison of Results

This section had the objective of making a more direct comparison between the
performances of the models.

Both in Figure 5.16 as well as in Figure 5.18, it was possible to observe that both
models that referred to the Conventional Autoencoder had a better AUC than
the one that referred to the Convolutional. The AUC value in the first situation
was quite high in all the situations while in the second one the value was almost
1 in the Conventional Autoencoders but a little bit lower for the Convolutional
Autoencoder.
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Figure 5.17: ROC curves and AUC of Conventional and Convolutional Autoen-
coders for SSH

In Figure 5.17, on the other hand, it was possible to observe that the model re-
ferring to the Convolutional Autoencoder had a quite higher AUC than the ones
achieved by the Conventional AE models, with the AUC achieved by the Con-
ventional Auteoncoder using the general parameterization being quite low.

Finally in Figure 5.19, the AUC of the Conventional Autoencoder with a param-
eterization made specifically for the dataset had a good AUC value, better than
the one achieved by the other ones. The Convolutional Autoencoder on the other
hand had a way better performance than the Conventional Autoencoder with the
general parameterization.

We could conclude that in almost all situations the Conventional Autoencoder
with a parameterization performed for the dataset in question had the best perfor-
mance, achieving values of the order of 0.9 which was very positive, this showed
that the Conventional Autoencoder was best in most situations. Although the
Convolutional still had a better performance than the Conventional in the gen-
eral parameterization we assumed that the cost of time was not worth for us to
implement the Convolutional.

Finally we concluded that the Conventional Autoencoder and the Convolutional
Autoencoder, both, presented a quite similar performance overall, in mutliple
situations, sometimes one overtaking the other. With this in mind we had to turn
to other aspects to compare the two. It was defined that the best approach was
to train a model for each type of data, because the training would be much better
and directed and the parameterization that would be used needed to be a more
general one because of the scalability of the models as we mentioned before. With
this in mind, we concluded that the Conventional Autoencoder was be the best
algorithm to test in our platform as the training of the Conventional Autoencoder
was much faster, each epoch of the Conventional Autoencoder took 30 seconds to
train while in the Convolutional Autoencoder it took 150 seconds, as the models
would be trained in time fixed intervals.
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Figure 5.18: ROC curves and AUC of Conventional and Convolutional Autoen-
coders for FTP

Figure 5.19: ROC curves and AUC of Conventional and Convolutional Autoen-
coders for MAIL
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5.5 Summary

This chapter presented the results of each algorithm tested as well as a deep anal-
ysis on the results each model tested achieved in order for us to make an informed
and factual based choice on which model was best to integrate in our final plat-
form.

The analysis performed in this chapter allowed us to conclude that Supervised
Learning is far from being the best technique since it cannot classify unknown
anomalous instances correctly, which Unsupervised Learning is able to. The best
window size for the Convolutional Autoencoder is the lower value, 4, with the
justification being that if a window of 4 has only one anomalous instance it would
have more influence in the reconstruction error than in a window of 8.

Both Conventional and Convolutional Autoencoders presented a quite similar
performance overall, with the prediction time being almost exactly the same and
the AUC as well as the performance metrics, being quite similar throughout all
the tests performed. The one that seemed more suitable for our problem was the
Conventional Autoencoder since it presented really good results with space to
improve and since we would train the model in real time, we needed the training
time to be as low as possible and the Convolutional Autoencoder took too much
time to train.
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Integration

In the following chapter it is presented the algorithm implemented in the plat-
form as well as how the implementation was performed.

The chapter is divided into two parts, the first one, 6.1, where we present how
the algorithm will be trained depending on the type of data, as well as the perfor-
mance results it achieved. The second and last section, 6.2, we present how the
integration in the platform was achieved and how the framework will work.

6.1 Models Training

This section presents an overview of the models we tested for the platform and
their integration in the platform that is being built.

We trained one model for each type of application that the platform was aware
of, Message Broker, Mt Monitor, Mt Orchestrator and Tick Telegraf.

Because of time constraints, there was not enough time to perform hyperparam-
eter tuning on the following datasets, therefore it was used the parameterization
that had been being used throughout all the experiments, the best one achieved
in section 5.2.1.1.

Since the datasets took more time than expected to be made available it was not
possible to provide attacks for the datasets so we had to train the models and an-
alyze the validation losses that they achieved and compare it to the ones achieved
by the models trained with the CIC-IDS2017 dataset.

The only difference there was from the CIC-IDS2017 dataset to the custom datasets
was that the dimensions of each layer was different since the number of constant
features was larger in the custom datasets. We kept the changing factor the same
(+15 and -15) but the dimensions were 50, 35, 20, 5.

Message Broker
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Figure 6.1: Training and Validation losses throughout the training of the Message
Broker model

Figure 6.2: Classification Results with Message Broker model

In the Figure 6.1, we can see the training and validation loss of the model, we
can notice that both losses stagnate in a very low value, almost 0, in the first 50
epochs.

Analyzing the Figure 6.2, we could see how many instances the model classified
correctly. As it was already mentioned we were only using normal data, so the
data used to make this prediction was all normal, corresponding to the label 0.
Looking at the Figure we could conclude that the model was classifying most
of the instances as normal, which may mean that it will have a somewhat good
performance, although it classifies quite a lot of instances as anomalous.

Mt Monitor

In the Figure 6.3, it was possible to notice that the training loss takes a little
more time to converge to a point, while the validation loss was quicker, in 25
epochs.

Focusing on the Figure 6.4, we could conclude that the model classified the in-
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Figure 6.3: Training and Validation losses throughout the training of the Mt Mon-
itor model

Figure 6.4: Classification Results with Mt Monitor model

stances quite well, classifying more than 60000 instances correctly, but still classi-
fied a large number of instances as attacks which was not ideal. It was possible to
find a possible explanation for this fact and it was because of the low number of
instances the dataset had, less than 100 thousand, so the training may not be the
best.

Mt Orchestrator

In Figure 6.5, it was possible to notice that the training loss and validation loss
took much more time than the rest of the models to converge to a value, almost
200 epochs, even though that loss was still low.

The Figure 6.6 showed that the model was able to correctly predict more than
12000 normal instances correctly but more than 4000 incorrectly, the ratio was
still good , and the fact that the dataset was small, having only 16000 instances.

Tick Telegraf

83



Chapter 6

Figure 6.5: Training and Validation losses throughout the training of the Mt Or-
chestrator model

Figure 6.6: Classification Results with Mt Orchestrator model
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Figure 6.7: Training and Validation losses throughout the training of the Tick
Telegraf model

Figure 6.8: Classification Results with Tick Telegraf model

The Figure 6.7 presented the losses of the model throughout the training pro-
cess, showing that the model reached the lowest value in the epoch 50, quite fast.

In Figure 6.8 we could see that the model was able to correctly predict almost
25000 normal instances correctly but more than 7000 incorrectly, one more time
this can be explained by the fact that the dataset was quite small.

6.2 Integration

The normal flow of the platform will be the following one, first the information
is collected by a Collector and stores that information locally, this process is exe-
cuted in intervals of 2 minutes. When the information is collected it is performed
a data preprocessing same as it was done in the training and evaluation of the
models, remove outliers and infinites and standardization of the data.

Following this procedure, each instance of the data is classified the same way we
classify the instances previously, we alreafy have a predefined threshold and as
we calculate the reconstruction error of each instance, if it is below the threshold it
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is considered normal, if it is above a certain threshold it is considered an anomaly.

The platform is divided into multiple sidecars that each one will perform its tasks
such as collecting traffic and performing the classification of the traffic flows.

The platform is centered in the idea of Federated Learning, described earlier and
in the paper [15]. The idea behind it is that the platform is divided into microser-
vices each one collects its own data and stores it internally and have an assigned
model which performs the classification of the data. The microservices are di-
vided by application, for example, the microservices that are using musical data
from a certain application only communicate with the microservices that are us-
ing the same data from the same application.

The instances that are considered normal of each microservice are saved in a new
"dataset" so that they can be used for training and keep improving the perfor-
mance of our model. Every 8 hours it is performed a new training round using
the dataset collected by the microservices. After the training is completed the
new model is passed on to each microservice so that it can perform the classifi-
cation now using a supposedly better and improved model than the one being
used before.

In terms of what is done with the instances that are considered anomalies, the
plan idea is, each instance has an identifier IP, whenever an instance is considered
anomalous, the IP is added to a gray list. This graylist will store all the IPs of the
anomalous instances and will be emptied every 5 minutes. If in those 5 minutes
there is an IP which has 10 or more entries inside the gray list it will be considered
an attempt of attack to the network and that IP will be blocked.

6.3 Summary

This chapter presented the training of the models that will be used in the platform
that is being built, presenting how the training was done as well as how the model
is behaving initially, trying to classify only normal data. There were four different
models created one for each type of data and was presented how many normal
instances it classified correctly.

The analysis of this models was difficult to perform since we did not have anoma-
lous instances to classify so we focused on the normal instances and how well
they were classified. Overall the models could detect more than 70% of the nor-
mal instances, not the best ratio but a good one to start since the training datasets
were considerably small.

It also presented an overview of how the platform will work, since the extraction
of data to the classification of the instances and its handling.
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Conclusion and Future work

Network Anomaly Detection based on AI techniques has been getting more at-
tention from the community in recent years. Namely, Deep Learning and Unsu-
pervised Learning approaches have been achieving promising results and overall
improving the accuracy of detecting anomalies while reducing the computation
and time complexity of it. Nevertheless, there are still some open challenges and
room for improvement.

This work started with a review of the projects this work integrates. Then, a liter-
ature review of the role of AI in network security and a review of the state of the
art AI and ML for Network Anomaly Detection, including a discussion of the can-
didate algorithms to further explore in this research work and the rationale that
makes them more suitable for our problem. Later, we detailed the proposed ap-
proaches, steps and methods we planned on implementing and what kind of tests
we were going to perform as well as how we would evaluate our approaches.

We leveraged the information about AI models for this purpose, concluding that,
Deep Learning and Unsupervised Learning algorithms were the ones that pre-
sented better performances overall and were able to detect unknown attacks. On
the other hand, it was also observed that they require more investigation when
applicable to the problem of NAD.

The finality of our study was to get a solid model, that could be integrated in the
platform being developed by OneSource. In terms of preprocessing it was quite
simple.

Comparing Supervised with Unsupervised learning it was possible to conclude
that Unsupervised Learning is much more useful in our study since it could de-
tect unknown instances with much more precision than the approaches using
Supervised Learning although this kinds of approaches usually performed really
well in instances that they already known.

Focusing on the results we could conclude that the Conventional Autoencoder
and the Convolutional Autoencoder had similar results, although the first one
had a slight leverage over the second one. In the Convolutional Autoencoder, the
bigger the size of the window the worse the performance of the model.
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As both models presented a very similar performance, the selection of the ap-
proach to integrate on the platform came down to certain details, such as the
training time, since the framework will have recurrent trainings, in intervals of 8
hours, the training of the models is quite important so we needed a training time
that was not too long, and the training time of the Conventional Autoencoder
was 5 times lower.

The objectives set for this study were all achieved. The first one, analyse the ex-
isting studies was done in the State of the Art, and selected the Autoencoders as
the best algorithms to explore and assess its performance. Next one, integrate at
least one of the approaches was successful, as we implemented a Conventional
Autoencoder into the framework and it is currently working and is able to detect
anomalies in real time. The last one, evaluating the performance of the candidate
approaches and comparing it to the ones presented in the State of the Art was
semi achieved as we evaluated the performance of the Conventional and Con-
volutional Autoencoders and showed that the Unsupervised Learning approach
was better than the Supervised approach in detecting attacks unknown to the
network, an important aspect in our work, but a direct comparison with more
algorithms presented in the State of the Art was not concluded, but the main
objectives of our work were achieved successfully.

Finally for future work, it would be beneficial for the framework to be able to in-
crease its scalability with the objective of performing an hyperparameter tuning
for each model that is created, because as we concluded in our study, the Conven-
tional Autoencoder performs very good in detecting anomalous instances when
it has a specific parameterization. If this could be achieved it would increase the
precision of the model and it would be more reliable.
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