

Patrícia Gaspar Ferreira

MACHINE LEARNING FOR REAL TIME

DETECTION OF ANOMALOUS EVENTS AT

THE ATLAS EXPERIMENT AT THE LHC

Dissertação no âmbito do Mestrado em Engenharia Física

orientada pelo Professor Doutor José Ricardo Morais Silva
Gonçalo e pelo Doutor Miguel Correia dos Santos Crispim Romão

e apresentada ao Departamento de Física da Faculdade de
Ciências e Tecnologia.

Fevereiro de 2023

Patŕıcia Gaspar Ferreira

Machine Learning for real time

detection of anomalous events at the

ATLAS experiment at the LHC

Thesis submitted to the

University of Coimbra for the degree of

Master in Engineering Physics

Supervisors:

Prof. Dr. José Ricardo Morais Silva Gonçalo

Dr. Miguel Correia dos Santos Crispim Romão

Coimbra, 2023

ii

Abstract

It is not possible to save in real time the huge quantity of data generated at the

ATLAS experiment, which is why the trigger exists. The trigger is responsible for

selecting the events to be saved for later analysis. However, there is the concern

that not all interesting events are being saved. Anomaly detection methods could

be a way to improve the trigger to make sure these events are selected for storage.

In this work, autoencoders were used for semi-supervised anomaly detection and

their ability to discriminate between background and signal events was studied.

Multiple autoencoders with different latent space dimensions were trained just with

background events. The performance of the best autoencoder was compared with

a supervised neural network trained for each signal and the use of just one feature

for discriminating background and signal events. Simulated Trigger-Level Analysis

events were used as background events and simulated HH → bbbb, ZH → bbνν,

B+ → J/Ψ, B− → J/Ψ events were used as signal events.

It was observed that the autoencoders that performed better were the ones with

lower and higher dimensions of the latent space. The best autoencoder performed

worse than the supervised neural network, for all the signals. However, for the

HH → bbbb signal, the best autoencoder had a better performance than the use of

just one feature to discriminate between background and signal events. It was also

found a negative correlation between the quality of the background reconstruction

by the autoencoder and the performance of the autoencoder for two of the considered

signals. When put together, these facts provide an indication that anomaly detection

techniques may prove a useful technique to improve the robustness of the trigger

event selection.

Keywords: machine learning, anomaly detection, autoencoder, trigger, ATLAS

iii

Abstract

iv

Resumo

Não é posśıvel guardar em tempo real a enorme quantidade de dados gerada

na experiência ATLAS, motivo pelo qual existe o trigger. O trigger é responsável

por selecionar os eventos que são guardados para análise. No entanto, existe a

preocupação de não estarem a ser guardados todos os eventos interessantes. A

utilização de métodos de deteção de anomalias pode ser uma forma de melhorar o

trigger, de forma a assegurar que estes eventos são guardados.

Neste trabalho, foram usados autoencoders para deteção de anomalias semi-

supervisionada e o seu desempenho a separar eventos de fundo e de sinal foi es-

tudado. Vários autoencoders com diferentes dimensões do espaço latente foram

treinados apenas com eventos de fundo. O desempenho do melhor autoencoder

para cada sinal foi comparado com uma rede neuronal supervisionada treinada para

cada sinal e a utilização de apenas uma variável para distinguir entre eventos de sinal

e fundo. Eventos simulados de Trigger-Level Analysis foram usados como fundo e

eventos simulados de HH → bbbb, ZH → bbνν, B+ → J/Ψ, B− → J/Ψ foram

usados como sinais.

Observou-se que os autoencoders com dimensões do espaço latente mais baixas e

mais altas tiveram melhor desempenho. O melhor autoencoder teve pior desempenho

que a rede neuronal supervisionada, para todos os sinais. No entanto, para o sinal

HH → bbbb, o melhor autoencoder foi melhor do que a utilização de apenas uma

variável para distinguir entre eventos de fundo e sinal. Observou-se também a

existência de uma correlação negativa entre a qualidade da reconstrução do fundo

pelo autoencoder e o desempenho do autoencoder para dois dos sinais considerados.

Juntas, estas observações dão uma indicação inicial de que as técnicas de deteção de

anomalias têm o potencial para ser muito úteis, melhorando a robustez da seleção

de eventos em tempo real feita pelo trigger.

Palavras-chave: aprendizagem automática, deteção de anomalias, autoencoder,

trigger, ATLAS

v

Resumo

vi

Acknowledgments

I would like to thank my supervisors Ricardo Gonçalo and Miguel Romão for all

their help, guidance and encouragement throughout this project.

I would also like to thank Filipe Veloso and Nuno Castro for their help and advice.

I am thankful to Ricardo Barrué for the generation of the samples used in this

work. I am also thankful to my colleague Céu for her availability to help.

Finally, I am grateful to my family for all their support, specially to my father

for believing in me.

vii

Acknowledgments

viii

Contents

Abstract iii

Resumo v

Acknowledgements vii

List of Figures xi

List of Tables xiii

List of Acronyms xvi

1 Introduction 1

2 ATLAS 3

2.1 Detector . 3

2.1.1 Inner Detector . 5

2.1.2 Calorimeter . 5

2.1.3 Muon Spectrometer . 6

2.2 Trigger . 6

2.2.1 Trigger-Level Analysis . 9

2.3 Data Analysis . 9

3 Machine Learning 11

3.1 Neural Networks . 12

3.1.1 Training . 13

3.1.2 Data Preparation . 14

3.1.3 Hyperparameter optimization 15

3.1.4 Regularization . 15

3.1.5 ROC . 15

3.2 Anomaly Detection . 17

ix

Contents

3.2.1 Autoencoder . 17

3.3 Implementation and Software Tools 18

4 Data 21

4.1 Features . 21

5 Benchmarks for Anomaly Detection 27

5.1 AUC Features . 27

5.2 Neural Network . 28

5.2.1 Results . 29

6 Semi-supervised Anomaly Detection 31

6.1 Autoencoder building and training 31

6.2 Results . 32

6.3 Comparison with supervised method and features 34

7 Conclusions 37

References 39

x

List of Figures

2.1 ATLAS detector [1]. 4

2.2 Correspondence between pseudorapidity (η) and the polar angle (θ)

[2]. 4

2.3 Trigger and Data Acquisition (TDAQ) system [3]. 7

3.1 Neural network with input layer, two hidden layers and output layer

[4]. 12

3.2 Example of two ROC curves. The dashed line corresponds to a ran-

dom classifier [5]. 16

3.3 Autoencoder [6] . 18

4.1 Histograms of the transverse momentum for the events of TLA,HH −→
bbbb, B+ −→ J/ψ, B− −→ J/ψ and ZH → bbνν and pseudorapidity

of the jet with the highest momentum of the TLA events. 22

4.2 Histograms of the pseudorapidity of the jet with the highest trans-

verse momentum of the events from HH −→ bbbb, B+ −→ J/ψ,

B− −→ J/ψ and ZH → bbνν and azimuthal angle of the same jet of

events from TLA and HH −→ bbbb. 23

4.3 Histograms of the azimuthal angle of the jet with higher pT of the

events from B− −→ J/ψ, B+ −→ J/ψ, ZH → bbνν and number of

jets, electrons and muons. 24

4.4 Histograms of the transverse momentum of the electron and muon

with the highest transverse momentum for the events of TLA,HH −→
bbbb, B+ −→ J/ψ, B− −→ J/ψ and ZH → bbνν. 25

5.1 ROC curves of the neural networks trained for each of the signals. . . 30

6.1 R2 calculated with the background test set and its reconstruction

of the autoencoder for each of the latent space dimensions of the

autoencoder. 32

xi

List of Figures

6.2 AUC of the ROC for each of the signals as a function of the latent

space dimension of the autoencoder. 33

6.3 Correlation between the R2 of the background and the AUC of the

ROC of each of the signals. 34

xii

List of Tables

5.1 Values of the AUC of the ROC of the features for each of the signals.

The highest values of the AUC for each signal are marked in bold. . . 28

5.2 Possible values of the hyperparameters of the neural network optimised. 29

5.3 Best hyperparameters and AUC of the ROC of the neural network

for each signal. 29

6.1 Hyperparameters optimized for each of the autoencoders and their

possibles values. Number of layers is the number of layers in each of

the encoder and the decoder. When batch normalization was used,

after each hidden layer, a batch normalization layer was added to the

model. 32

6.2 Feature with the higher AUC and the value of its AUC, AUC of the

Neural Network (NN), dimension of the latent space (zdim) of the

autoencoder (AE) with the highest AUC and its AUC for each of the

signals. The highest values of the AUC for each signal are marked in

bold. 34

xiii

List of Tables

xiv

List of Acronyms

AE Autoencoder

ALICE A Large Ion Collider Experiment

ATLAS A Toroidal LHC Apparatus

AUC Area Under the Curve

CERN European Organization for Nuclear Research

CMS Compact Muon Solenoid

CP Cluster Processor

CTP Central Trigger Processor

FE Front-End

FN False Negative

FP False Positive

FPR False Positive Rate

HLT High-Level Trigger

JEP Jet/Energy-sum Processor

L1 Level-1

L1Calo Level-1 Calorimeter

L1Muon Level-1 Muon

L1Topo Level-1 Topological

L2 Level-2

LAr Liquid Argon

xv

List of Acronyms

LHC Large Hadron Collider

LHCb Large Hadron Collider beauty

MUCTPI Muon Central Trigger Processor Interface

NN Neural Network

ROC Receiver Operator Characteristic

ReLU Rectified Linear Unit

ROB Readout Buffers

ROS Readout Systems

RoI Regions of Interest

TDAQ Trigger and Data Acquisition

TLA Trigger-Level Analysis

TN True Negative

TP True Positive

TPR True Positive Rate

xvi

Chapter 1

Introduction

Particle physics is the area that studies the subatomic world in order to have

a better understanting of the universe. To do that, colliders are built. The Large

Hadron Collider (LHC) collides particles at high energies to expand our knowledge

of subatomic particles.

The ATLAS experiment at the LHC generates a high amount of data as a result

of the proton collisions. This data can not be all saved and the decision of which

events are saved is made by the trigger.

It is important that the events saved are chosen well, since events not selected

are lost forever. There might be interesting events occurring, but if the trigger does

not select them to be saved, we will never know they are happening.

Anomaly detection methods trained only with known events can be used for

the search of interesting events without depending on a theory. And using these

methods at the trigger level is a way to maybe find interesting events directly at the

the trigger level and assure they are being saved.

In this work, autoencoders, a method used for anomaly detection, trained only

with background events, are used to separate background and signal events and their

performance is studied.

This thesis is organized as follows. In Chapter 2 a brief description of the AT-

LAS detector and the trigger system is given. Chapter 3 presents a review of ma-

chine learning concepts needed for the understanding of this work and chapter 4

presents the data used. Chapter 5 contains the benchmarks used to compare with

the anomaly detection method presented in chapter 6 and chapter 7 presents the

conclusions of this work.

1

1. Introduction

2

Chapter 2

ATLAS

The Large Hadron Collider (LHC) of the European Organization for Nuclear

Research (CERN) is the most powerful particle accelerator in the world. It collides

bunches of protons at a rate of 40 million per second with a center of mass energy

of 13 TeV.

Along the LHC, there are four larger detectors designed to detect new physics

events. A Toroidal LHC Apparatus (ATLAS) and Compact Muon Solenoid (CMS)

are two general purpose detectors. The other two detectors, A Large Ion Collider

Experiment (ALICE) and Large Hadron Collider beauty (LHCb), are specialized

detectors [7].

2.1 Detector

The ATLAS detector, represented in figure 2.1, has a height of 25 m and a length

of 44 m, and weights approximately 7000 tonnes. It is constituted by the magnet

system, the inner detector, the calorimeter and the muon spectrometer.

3

2. ATLAS

Figure 2.1: ATLAS detector [1].

The ATLAS coordinate system is a right-handed coordinate system, where the

x-axis points from the collision point to the center of the LHC, the y-axis points

upwards and the z-axis points in the direction of the beam. The angle θ is mea-

sured from the z-axis and the angle ϕ is measured around the beam axis. The

pseudorapidity η is defined as

η = −ln tan
(
θ

2

)
(2.1)

Figure 2.2 shows the correspondence between a few values of the pseudorapidity

and the polar angle.

y

z

η = 0

θ = 90◦

η = 0.55

θ = 60◦

η = 0.88

θ = 45◦
η = 1.32

θ = 30◦

η = 2.44
θ = 10◦

η =∞θ = 0◦

Figure 2.2: Correspondence between pseudorapidity (η) and the polar angle (θ)
[2].

4

2. ATLAS

2.1.1 Inner Detector

The inner detector includes, in order of increasing radius, the pixel detector, the

semiconductor tracker and the transition radiation tracker.

The pixel detector and the semiconductor tracker cover the region |η| < 2.5. The

pixel detector consists of three concentric cylinders in the barrel and four disks in

each end-cap. The semiconductor tracker consists of four concentric cylinders of

silicon microstrip detectors in the barrel and nine disks in the end-caps.

The transition radiation tracker contains straw tubes with a 4 mm diameter. In

the barrel, the straw tubes have a length of 144 cm and are positioned parallel to

the beam. In the end-caps, the straw tubes have a length of 37 cm and are arranged

in wheels. The transition radiation tracker covers the region |η| < 2 [1].

The inner detector is surrounded by a thin solenoid magnet (0.66 radiation

lengths), which provides a 2 T magnetic field. This magnetic field changes the

trajectory of the charged particles, allowing to measure their momentum.

2.1.2 Calorimeter

Calorimeters stop particles and measure their energy. They are constituted by

an absorbing high-density material and an active material.

The ATLAS calorimeter includes the electromagnetic calorimeter and the hadronic

calorimeter. The electromagnetic calorimeter measures the energy of electrons,

positrons and photons. It uses lead as the absorber material and Liquid Argon (LAr)

as the active material, where the ionisation charge left by charged particle cascades

is measured. It includes a barrel (|η| < 1.475) and two end-cap (1.375 < |η| < 3.2)

components, with each end-cap component consisting of two wheels with a common

axis.

The hadronic calorimeter is responsible for the measurement of the energy of

hadrons. It includes the tile calorimeter, the LAr hadronic end-cap calorimeter

and the LAr forward calorimeter. The tile calorimeter is placed right after the

electromagnetic calorimeter and is constituted by one barrel (|η| < 1.0) and two

extended barrels (0.8 < |η| < 1.7). It uses steel as the absorber and scintillating tiles

as the active material. The LAr hadronic end-cap calorimeter consists of two wheels

in each end-cap. Each wheel is formed by 32 modules. Its η range overlaps with

the LAr forward calorimeter and the tile calorimeter. The LAr forward calorimeter

has three modules in each end-cap, covering the range 3.1 < |η| < 4.9. One of the

5

2. ATLAS

modules is made of copper, for the measurement of charged particles and the other

two modules are made of tungsten, for the measurement of the energy of hadronic

interactions. The three modules have liquid argon has the sensitive medium [1].

2.1.3 Muon Spectrometer

The muon spectrometer surrounds the calorimeter. It is designed to detect muons

and measure their momentum, since they are not stopped in the calorimeter. The

muon spectrometer includes precision-measurement tracking chambers (monitored

drift tube chambers and cathode-strip chambers) and trigger chambers (resistive

plate chambers and thin gap chambers). These chambers are arranged in three

layers parallel to the beam in the barrel region and perpendicular to the beam in

the end-caps.

The monitored drift tube chambers cover the region |η| < 2.7, except in the

innermost layer, in which they cover |η| < 2. The region 2 < |η| < 2.7 is covered by

the cathode strip chambers.

The trigger chambers cover the region |η| < 2.4, with resistive plate chambers in

the barrel and thin gap chambers in the end-caps. They provide fast signals that

are used in the ATLAS trigger system to select events containing high-momentum

muons in real time.

The muon tracks are bent by one barrel toroid and two end-cap toroids. In the

region |η| < 1.4, the magnetic field is provided by the barrel toroid, in 1.4 < |η| < 1.6

(transition region) by the combination of the barrel and end-cap toroids and in

1.6 < |η| < 2.7 by the end-cap toroids [1].

2.2 Trigger

The trigger selects the events to be saved for offline analysis. It has three levels,

the Level-1 (L1) trigger, Level-2 (L2) trigger and the event filter. The L2 trigger and

the event filter form the High-Level Trigger (HLT). The L1 trigger is implemented

in hardware and the HLT in software running on the trigger/DAQ CPU farm located

in service cavern USA15 near the detector.

The trigger is configured through a trigger menu, in which trigger chains are

defined. A chain consists of a L1 trigger item and HLT reconstruction and kinematic

selection algorithms [3, 8]. Each chain is built to select a specific signature, like the

existence of leptons, photons, jets, missing transverse momentum, total energy and

6

2. ATLAS

B-meson candidates [3].

Figure 2.3 represents the schematic of the trigger and data acquisition system.

Figure 2.3: Trigger and Data Acquisition (TDAQ) system [3].

The L1 trigger reduces the event rate to a maximum of 100 kHz in 25 µs [3]. It

uses information from the trigger chambers to search for muons with high transverse

momentum, and information from the calorimeter to search for jets, τ -leptons and

events with high missing transverse energy and total transverse energy [1]. Hadronic

τ -lepton decays are identified by tracks in the inner detector matching a cluster in

the electromagnetic and hadronic calorimeter; electrons by a deposit in the electro-

magnetic calorimeter combined with a track in the inner detector.

The L1 trigger is composed by the Level-1 Calorimeter trigger (L1Calo), the

Level-1 Muon (L1Muon) trigger, the Level-1 Topological (L1Topo) trigger and the

Central Trigger Processor (CTP). The L1Calo receives input from the calorimeter.

The input signals are digitised and calibrated by the Preprocessor, which then sends

them to the Cluster Processor (CP) and Jet/Energy-sum Processor (JEP). The CP

identifies possible electrons, photons and τ -leptons that pass a defined transverse

momentum threshold and the JEP identifies possible jets and determines sums of

7

2. ATLAS

total and missing transverse energy [3].

The L1Topo receives objects from the L1Muon or L1Calo and makes selections

using combined geometric or kinematic information from the objects received, such

as angular distances [9, 3].

The CTP combines information from the L1Calo, L1Muon (passed through the

Muon Central Trigger Processor Interface (MUCTPI)) and the L1Topo. The CTP

uses this information to make the decision to accept or reject each event [9]. The

CTP is also responsible for limiting the minimum time between two events being

accepted and number of events accepted in a certain period of time (to stay within

the available data transfer rate capability) [3].

If an event is accepted, the L1 trigger selects Regions of Interest (RoI), which

are defined by coordinates in ϕ and η. These are areas where interesting features

were found. These RoI are then used by the high-level trigger to refine the event

selection.

After being accepted by the L1, the Front-End (FE) detector electronics read out

the event data for all detectors and the event data is transferred to the detector-

specific Readout Buffers (ROB), where the data is stored in fragments [3, 8]. The

ROBs are grouped into Readout Systems (ROS) that are connected to the HLT [8].

The HLT, formed by the L2 trigger and the event filter, reduces the event rate

to 1000 Hz [9].

The Fast TracKer (FTK) is a system based in hardware planned to reconstruct

the inner detector tracks and make them available to the HLT at the same rate the

events are accepted by the L1 trigger [3].

The L2 trigger uses part of the information in the RoI to accept or reject an event.

If an event is accepted by the L2, the event builder assembles the data fragments

from the ROBs, to be used by the event filter in a more precise event reconstruction

and selection [8].

After being accepted by the HLT, the events are stored locally at the experimental

site and then transferred to the tier-0 facility at CERN’s computing centre for offline

reconstruction [9].

In 2018, the average number of collisions per bunch crossing was 36, which gives

around 1.4 billion events per second [10]. With an event size of around 1.6 MB, it

would not be possible to save all the events, which is why the trigger exists, to select

the 1000 events per second that can be saved.

8

2. ATLAS

Using anomaly detection methods at the trigger level might be a more efficient

way of filtering events than the way the current trigger filters them. The purpose of

this thesis is to investigate the use of machine learning to identify anomalous events

at the trigger level with potential interest in the search of new physics.

2.2.1 Trigger-Level Analysis

Trigger-Level Analysis (TLA) is a method used to save events not selected by the

trigger. Not all events can be saved, but Trigger-Level Analysis is a way of saving

a higher number of events by saving only part of the information of each event. It

saves HLT objects from events which are not fully reconstructed [11]. As the TLA

has access to events before they are filtered by the HLT, it can also do a rudimentary

(but fast) analysis of a larger ser of data than is available offline.

2.3 Data Analysis

The simulation of the data obtained by the ATLAS detector is performed and is

compared with real data. First, the proton collisions are simulated and the events

are generated using an event generator which uses the Monte Carlo method. Then,

the resulting particles pass through a simulation of the detector, to simulate their

interaction with the detector, using also Monte Carlo. After the detector simulation,

a simulation of the trigger is done, to see which events are selected. Next, comes the

full reconstruction of the physics objects, which the real events saved by the trigger

also pass through. After the reconstruction, the obtained data are analised.

The Monte Carlo method is based on the generation of random numbers. Random

numbers are generated following a uniform distribution, and are then transformed

to follow a probability density function we are interested in. The resulting values

can be treated as simulated measurements [12].

9

2. ATLAS

10

Chapter 3

Machine Learning

Machine Learning is an area of Artificial Intelligence in which the computer learns

from ”experience”, which can be data. The goal is to find relations in the data and

then use those to make predictions. Machine learning can be divided by the type of

learning: supervised learning, unsupervised learning, semi-supervised learning and

reinforcement learning.

Supervised learning uses labelled data. The dataset used is made up of feature

vectors and their labels. Each instance of a feature vector contains the values of

several features (variables) which characterize a given object or event. Labels may

be discrete or continuous and classify events or objects into one of several classes, or

quantify some property of these objects or events. The goal of supervised learning

is to use the labelled examples to create a model that, given a new feature vector,

can predict its label [13].

Supervised learning can be divided into regression and classification. In regres-

sion, the goal is to predict the labels which are continuous. One example of regression

is the prediction of the price of a car [14]. In this case, the model would be trained

with characteristics of multiple cars (feature vectors) and their prices (labels).

In classification, the labels are discrete. The goal is to determine to which class a

new event or object belongs to. There is a defined number of classes. One example

of classification is the spam filter, in which emails are classified as spam or not spam.

By moving or not moving the emails to the spam folder, they are being classified as

spam or not spam, allowing the filter to learn how to recognize whether new emails

are spam or not [14].

Unsupervised learning uses unlabelled data. The goal is to find relations in the

11

3. Machine Learning

data without labels. For example, clustering, an unsupervised learning algorithm,

can be used to find groups of similar people in the visitors of a blog [14].

Semi-supervised learning uses labelled and unlabelled examples. The goal is to

build a model to predict the label of new examples. By using unlabelled examples,

we are providing more data and it is expected that the resulting model will be better

[13].

In reinforcement learning, the machine is in an environment and can perform

actions in that environment. By performing actions, the machine gets rewards. The

goal is to learn a policy, that indicates which action to perform in order to maximize

the rewards [13, 14].

3.1 Neural Networks

A neural network is a machine learning method inspired by the human brain [14].

It is composed of a number of computational objects called artificial neurons, which

are organized into an input layer, a set of hidden layers and an output layer, each

containing one or several neurons, as represented in figure 3.1.

Figure 3.1: Neural network with input layer, two hidden layers and output layer
[4].

The neurons of each layer are connected to neurons in the next layer. Each

connection between neurons has a weight associated. Each neuron has also a bias

term associated. The output of each neuron is the result of the combination of its

inputs.

12

3. Machine Learning

In fully connected layers or dense layers, all the neurons in a layer contribute to

the input of each of the neurons in the next layer [15, 13].

The output of a neural network layer is given by

fl = gl (Wlz + bl) (3.1)

where l is the number of the layer, gl is the activation function, Wl is the weight

matrix and bl is the bias vector [13].

The activation function is a non-linear function, whose purpose is to allow the

neural network to approximate non-linear functions [13].

The Rectified Linear Unit (ReLU) activation function, defined by

ReLU(x) =

0, if x < 0

x, otherwise
(3.2)

is commonly used in the hidden layers of a neural network [13].

The sigmoid function is used as the activation function for the output layer of

the neural network in binary classification. It has an output between 0 and 1 and

is defined as [13]

σ(x) =
1

1 + e−x
(3.3)

3.1.1 Training

Training is the process by which the weights of each connection between neurons

are defined. Neural networks are trained by minimizing a loss function. The loss is

a differentiable measure of how close the predicted labels are to the real labels. It

is calculated using the predicted labels and the real labels.

The binary cross-entropy is used as the loss function for binary classification and

is defined by

L = − 1

N

N∑
i=1

yilog(p(yi)) + (1− yi)log(1− p(yi)) (3.4)

where yi is the label and p(yi) is the probability of the sample belonging to the class

1.

In order to find the minimum loss, stochastic gradient descent is used. In this

method, a batch of the dataset is chosen randomly and the data used for training

13

3. Machine Learning

are passed through the network, in order to obtain the predictions. The loss is

calculated using these predictions and then the gradient of the loss with respect

to the training parameters (weights and bias) is calculated using backpropagation.

Backpropagation starts from the loss and works from the last layer to the first to

calculate the gradient using the chain rule [15]. The gradient indicates whether the

loss is decreasing or increasing in that point. Since the goal is to find a minimum of

the loss, we want to go in the opposite direction of the direction in which the loss is

increasing. So, the weights are updated by subtracting a quantity proportional to

the gradient of the loss [15, 13]:

W ←−W − η∇WL (3.5)

where η is the learning rate which controls the size of the update of the weights.

One iteration of this process over the whole training set is called an epoch.

Gradient descent has the possibility of getting stuck on a local minimum and not

finding the global minimum. To solve this, gradient descent with momentum can be

used [15]. Momentum takes into account previous gradient values in the update of

the weights, which prevents the algorithm from getting stuck in a local minimum.

The Adam optimizer [16] is an optimizer which implements stochastic gradient

descent with momentum.

3.1.2 Data Preparation

Neural networks perform better if the features do not have very different ranges.

Standardization can be used to rescale features so they have more similar ranges

[14]. Standardization rescales features so they have a mean of 0 and a standard

deviation of 1, which can be done by performing the following calculation

x̂(j) =
x(j) − µ(j)

σ(j)
(3.6)

where x(j) is the vector with the values of the feature, µ(j) is the mean and σ(j) the

standard deviation of that feature [13].

Before starting training, the dataset used should be divided into three subsets:

training, validation and test sets. The training set is used to train the model,

the validation set is used to choose the best hyperparameters (defined in the next

section), and monitor the performance during training, to check if the model is

overfitting to the training data, and the test set is used to test the final model.

14

3. Machine Learning

3.1.3 Hyperparameter optimization

Hyperparameters are properties of the algorithm that influence how it works, like

the number of layers and neurons in a neural network [13]. Hyperparameters are

not learned during training, they have to be defined before starting training by the

user.

In order to find the best combination of hyperparameters, hyperparameter op-

timization is used. It consists of repeating the process of training multiple times

with different combinations of hyperparameters. The performance of each model is

evaluated on the validation set and the combination of hyperparameters with the

best performance is chosen.

3.1.4 Regularization

One problem that can occur while training neural networks is overfitting. Over-

fitting occurs when the model predicts the labels of data it was trained on very well,

but performs badly on data it has never seen. Regularization techniques can be used

to prevent overfitting.

Early stopping is used to stop training once the loss on the validation set has

stopped decreasing for a certain number of epochs (patience). The model is saved

after each epoch and the best model is restored when training is stopped. Alterna-

tively, the model can be trained for a determined number of epochs and in the end

restored the best model.

Dropout layers are also used as a regularization technique. A dropout layer sets

a certain percentage of the neurons to zero. The percentage of neurons set to zero

is the dropout rate. Using dropout stops neurons from coadapting with the neurons

close to them and makes it so that each neuron does not depend too much on just a

few input neurons. This makes the neurons less susceptible to small changes in the

inputs, resulting in a network that generalizes better [14].

Batch normalization is the process of standardizing the output of each layer

before it is used as input to the next layer, for each batch. Batch normalization

makes training faster and has some regularization effect [13].

3.1.5 ROC

In order to evaluate the performance of a neural network, the ROC curve can

be used. The Receiver Operator Characteristic (ROC) curve is a plot of the true

15

3. Machine Learning

positive rate as a function of the false positive rate, as represented in figure 3.2.

Figure 3.2: Example of two ROC curves. The dashed line corresponds to a random
classifier [5].

The True Positive Rate (TPR) and the False Positive Rate (FPR) are defined as:

TPR =
TP

TP + FN
(3.7)

FPR =
FP

FP + TN
(3.8)

In a binary classification problem, we can consider one of the classes as negative

and the other one as positive. Then, True Negative (TN) is the number of points

classified correctly as negative and False Negative (FN) is the number of points

falsely classified as negative, that are in fact positive. True Positive (TP) is the

number of points classified correctly as positive and False Positive (FP) is the number

of points falsely classified as positive.

In order to obtain the values of the TPR and FPR necessary to plot the ROC

curve, a number of thresholds are defined between the minimum and the maximum

of the output values of the classifier. For each threshold, points over the threshold

are taken to be positive and points under the threshold are taken to be negative.

Comparing with the true labels, the TPR and FPR are computed.

The Area Under the Curve (AUC) of the ROC can be used as a performance

16

3. Machine Learning

metric of a model. The higher the AUC, the better the model is. In figure 3.2, curve

A corresponds to a better classifier than curve B, since it has a higher AUC.

3.2 Anomaly Detection

Anomaly detection is an area of machine learning. Anomaly detection methods

are used to find anomalies in a dataset constituted mostly by normal events.

Anomaly detection methods can be supervised, semi-supervised and unsuper-

vised. In supervised anomaly detection, normal events and anomalous events are

used to train the model. Unsupervised anomaly detection methods find anomalies

in an unlabelled dataset [17]. In semi-supervised anomaly detection, methods can

be trained with only normal events in order to identify different events not seen

during training. Autoencoders are a method that can be used for semi-supervised

anomaly detection.

3.2.1 Autoencoder

An autoencoder is a machine learning algorithm that learns to compress data

into a space with a smaller dimensionality than the dataset and then decompress it

to reconstruct the input data as accurately as possible. An autoencoder is made up

of two neural networks, the encoder and the decoder, as represented in figure 3.3.

The encoder compresses the input data into a latent space representation and the

decoder decompresses it, trying to reconstruct the inputs.

The autoencoder is trained to minimize the loss, which is the difference between

its outputs and inputs, called the reconstruction error. The mean squared error can

be used as the loss in the training of autoencoders and is calculated by:

L =
1

N

N∑
i

(yi − xi)
2 (3.9)

where xi is the input vector and yi is the output of the autoencoder and N is the

number of instances [13].

The reconstruction error can be used as an anomaly score. An anomalous event

is expected to be more difficult to reconstruct and have a higher reconstruction error

than the normal events used to train the autoencoder.

17

3. Machine Learning

Figure 3.3: Autoencoder [6]

The R2 can be used as a measure of how well the autoencoder reconstructs its

inputs. It is defined as

R2 = 1−
∑N

i (yi − ŷi)2∑N
i (yi − y)2

(3.10)

where yi is the real value, ŷi is the predicted value and y is the mean of the true

values [18]. The closer the R2 is to 1, the better the reconstruction of the input data

by the autoencoder.

3.3 Implementation and Software Tools

Several software tools were used during this project. The following gives a short

description of their functions

Uproot

Uproot [19] is a Python library for reading and writing ROOT files. Uproot

version 4.1.8 was used to read the data in ROOT files and pass it to files in HDF

format.

18

3. Machine Learning

NumPy and Pandas

Pandas [20, 21, 22] is a Python library for data manipulation and analysis.

NumPy [23, 24] is Python library to work with arrays and matrices. NumPy version

1.22.0 and Pandas version 1.3.5 were used to manipulate data.

Scikit-learn

Scikit-learn [25, 26] is a Python library for machine learning. Scikit-learn version

1.0.2 was used for the standardization of the data, for the division of the dataset

into training, validation and test sets and for the determination of the ROC AUC

and the R2.

Matplotlib,Seaborn

Matplotlib [27, 28] and Seaborn [29, 30] are Python libraries for data visual-

ization. Matplotlib version 3.5.1 and Seaborn version 0.11.2 were used to create

plots.

Keras

Keras [31] version 2.5.0 was used for building and training the neural networks

and the autoencoders. Keras is a Python library for the implementation of neu-

ral networks. The Sequential API which builds models made of layers connected

sequentially, was used to build the neural networks.

Optuna

Optuna [32, 33] version 2.10.0 was used for the hyperparameter optimization.

Optuna is an hyperparameter optimization framework for machine learning. The

Optuna sampler used for the sampling of parameters to test uses the Tree-structured

Parzen Estimator [34]. The median pruner was used to stop unpromising trials. The

median pruner stops a trial if the best intermediate result is worse than the median

of intermediate results of the previous trials at the same step.

19

3. Machine Learning

20

Chapter 4

Data

The dataset used is composed by simulated data by Monte Carlo.

The dataset is composed of 10,000 events from Trigger-Level Analysis, 50,000

events from the decay of 2 Higgs bosons into 2 bottom quarks and 2 antiquarks

(HH −→ bbbb), 10,000 events from B+ meson decaying to J/ψ (B+ −→ J/ψ),

10,000 from a B− meson to J/ψ (B− −→ J/ψ) and 9,000 events from a Z boson

and a Higgs boson decaying into one bottom quark and antiquark and one neutrino

and antineutrino (ZH → bbνν).

The TLA events were considered to be the background and the other were con-

sidered to be the signal.

4.1 Features

From the information of each event, the 4 jets, 2 muons and 2 electrons with

higher transverse momentum were selected. The transverse momentum (pT), pseu-

dorapidity (η) and ϕ angle of each of the jets, muons and electrons, and the number

of jets, muons and electrons were used as features. Only jets with pT > 20 GeV

and |η| < 4 were used. When there were not 4 jets which met these conditions, the

values of the pT , η and ϕ of those were set to 0.

The jets used were reconstructed with the anti-kT algorithm, which is a sequen-

tial clustering algorithm. In this algorithm, the distance between two entities (for

example reconstructed energy deposits in the calorimeter, but also charged particle

21

4. Data

tracks or true particle 4-momenta) is calculated by

dij = min

(
1

k2T i

,
1

k2Tj

)
R2

ij

R2
(4.1)

where

Rij =

√
(yi − yj)2 − (ϕi − ϕj)

2 (4.2)

and kT i and kTj are the transverse momentum of the entities i and j and yi and yj are

the rapidity (often replaced with pseudorapidity η in experimental data analysis).

The distance between an entity and the beam is calculated by

diB =
1

k2T i

(4.3)

All the distances dij and diB are calculated. If the smallest distance is the distance

between two entities, the two entities are combined and the process repeats. If the

smallest distance is the distance of the entity to the beam, the entity is called a jet

[35].

Figures 4.1, 4.2, 4.3 and 4.4 represent the histograms of some of the features

used. The histograms were normalized to have unit area and in the case of the

pseudorapidity and azimuthal angle, the 0 values are not shown.

Figure 4.1: Histograms of the transverse momentum for the events of TLA,
HH −→ bbbb, B+ −→ J/ψ, B− −→ J/ψ and ZH → bbνν and pseudorapidity
of the jet with the highest momentum of the TLA events.

22

4. Data

Figure 4.2: Histograms of the pseudorapidity of the jet with the highest transverse
momentum of the events from HH −→ bbbb, B+ −→ J/ψ, B− −→ J/ψ and ZH →
bbνν and azimuthal angle of the same jet of events from TLA and HH −→ bbbb.

23

4. Data

Figure 4.3: Histograms of the azimuthal angle of the jet with higher pT of the
events from B− −→ J/ψ, B+ −→ J/ψ, ZH → bbνν and number of jets, electrons
and muons.

24

4. Data

Figure 4.4: Histograms of the transverse momentum of the electron and muon with
the highest transverse momentum for the events of TLA,HH −→ bbbb, B+ −→ J/ψ,
B− −→ J/ψ and ZH → bbνν.

Looking at the distribution of the transverse momentum of the jet with the

higher transverse momentum, the TLA and HH −→ bbbb events follow a similar

distribution. B+ −→ J/ψ and B− −→ J/ψ events also have a similar distribution.

TLA and HH −→ bbbb events have higher pT , followed by the ZH → bbνν events,

and then by B+ −→ J/ψ and B− −→ J/ψ events.

Regarding the pseudorapidity of the jet with higher pT . TLA and HH −→ bbbb

events have a distribution of the pseudorapidity with the same shape, both with a

maximum around η = 0. The pseudorapidity distribution for the ZH → bbνν seems

to have a shape close to the TLA and HH −→ bbbb, but with more variation. The

pseudorapidity distribution of the B+ −→ J/ψ events is similar to the distributions

of the B− −→ J/ψ events, with both distributions having two big maxima around

η = −3 and η = 3, and two smaller ones to the left and right of these, respectively.

The distribution of the ϕ angle of the jet with the higher pT , looks similar for

all samples, with some having more variation than others, but it is mostly evenly

distributed for all values of ϕ.

Looking at the distribution of the number of electrons, TLA events have a higher

number of electrons, followed by the HH −→ bbbb events, then by the ZH → bbνν

events and then by both B+ −→ J/ψ and B− −→ J/ψ events.

Relatively to the distribution of the number of muons, B+ −→ J/ψ and B− −→
J/ψ events have a similar distribution. The distribution of the ZH → bbνν events

is close too the distribution of the TLA events.

Looking at the distribution of the pT of the electron with higher pT , we can see

25

4. Data

that B+ −→ J/ψ, and B− −→ J/ψ events have lower values of pT of electrons, with

the TLA and HH −→ bbbb events having higher values of pT .

26

Chapter 5

Benchmarks for Anomaly

Detection

In order to compare the performance of the autoencoder at discriminating be-

tween background and signal events, it was determined the AUC of the ROC of each

feature and trained a supervised classifier for each signal.

The events with negative weights were removed and the dataset was randomly

divided into training, validation and test sets, each with one third of the events.

5.1 AUC Features

For each feature, the area under the curve (AUC) of the ROC was determined

on the test set. The ROC is obtained by applying thresholds on the values of each

feature and determining the true positive rate and the false positive rate. The AUC

of the ROC is a measure of how separable the distributions of signal and background

are.

The determined values of the AUC of the ROC for each feature are presented in

table 5.1.

27

5. Benchmarks for Anomaly Detection

Table 5.1: Values of the AUC of the ROC of the features for each of the signals.
The highest values of the AUC for each signal are marked in bold.

Feature HH → bbbb B+ → J/Ψ B− → J/Ψ ZH → bbνν

pT Jet 1 0.5485 0.9947 0.9944 0.8216
pT Jet 2 0.5643 0.9953 0.9951 0.9133
pT Jet 3 0.5684 0.9939 0.9937 0.9428
pT Jet 4 0.5824 0.9844 0.9842 0.9456
ϕ Jet 1 0.5128 0.5184 0.5151 0.5127
ϕ Jet 2 0.5066 0.5079 0.5085 0.5058
ϕ Jet 3 0.5040 0.5066 0.5109 0.5089
ϕ Jet 4 0.5007 0.5063 0.5051 0.5079
η Jet 1 0.5015 0.5132 0.5048 0.5099
η Jet 2 0.5013 0.5032 0.5059 0.5108
η Jet 3 0.5013 0.5033 0.5035 0.5039
η Jet 4 0.5028 0.5048 0.5099 0.5018
Number of Jets 0.5200 0.6956 0.6886 0.6498
pT Electron 1 0.5327 0.6430 0.6481 0.5156
pT Electron 2 0.5097 0.5725 0.5780 0.5095
ϕ Electron 1 0.5012 0.5000 0.5031 0.5048
ϕ Electron 2 0.5007 0.5038 0.5050 0.5005
η Electron 1 0.5037 0.5083 0.5011 0.5028
η Electron 2 0.5002 0.5042 0.5033 0.5012
Number of Electrons 0.5314 0.6498 0.6556 0.5162
pT Muon 1 0.5480 0.9176 0.9179 0.7297
pT Muon 2 0.5587 0.8891 0.8887 0.7479
ϕ Muon 1 0.5322 0.6914 0.6921 0.6120
ϕ Muon 2 0.5268 0.5961 0.5954 0.5737
η Muon 1 0.5018 0.5297 0.5286 0.5254
η Muon 2 0.5019 0.5005 0.5004 0.5026
Number of Muons 0.5922 0.9299 0.9293 0.7938

For the HH → bbbb, the feature with the higher AUC is the number of muons,

while for the other signals it is the pT of jets. For the B+ → J/Ψ and B− → J/Ψ,

it is the pT of the second jet with the highest pT and for the ZH → bbνν, it is the

fourth.

5.2 Neural Network

For each of the signals, a neural network was trained to classify events into

background or signal.

The data was standardized and the event weights were normalized so that the

28

5. Benchmarks for Anomaly Detection

sum of the weights of background events was equal to the sum of the weights of

signal events and the sum of all the weights was equal to the number of events.

The models were built using the Sequential API from Keras. Each model had

an input layer with 27 neurons and the hidden layers were dense layers with the

activation function ReLU. After each hidden layer, a dropout layer was placed and

for the output a dense layer with 1 neuron and the sigmoid activation function was

used.

The model was compiled with the Adam optimizer and the binary cross-entropy

loss and the number of epochs was defined as 400. Early stopping with 20 epochs

of patience was used to stop training once the loss on the validation set started

increasing and to restore the best model.

The hyperparameters were optimized and their possible values are presented in

table 5.2.

Table 5.2: Possible values of the hyperparameters of the neural network optimised.

Hyperparameter Possible Values

Number of hidden layers between 2 and 10
Number of neurons between 30 and 256
Dropout rate 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9

100 combinations of these hyperparameters were used and the best combination

was determined by maximizing the AUC of the ROC on the validation set.

5.2.1 Results

The best combination of hyperparameters which resulted from the optimization

and the AUC of the ROC determined on the test set are presented in table 5.3.

Figure 5.1 contains the ROC curves of the neural networks of each of the signals.

Table 5.3: Best hyperparameters and AUC of the ROC of the neural network for
each signal.

Signal Number of Neurons Number of Layers Dropout rate AUC

HH → bbbb 132 2 0.6 0.7858
B+ → J/Ψ 251 2 0.4 0.9983
B− → J/Ψ 201 6 0.6 0.9982

ZH → bbνν 192 2 0.6 0.9611

29

5. Benchmarks for Anomaly Detection

Figure 5.1: ROC curves of the neural networks trained for each of the signals.

The HH → bbbb signal is the hardest to separate from background out of the

four signals considered. The B+ → J/Ψ and B− → J/Ψ are the signals easier to

discriminate from background.

Comparing the AUC of the neural network with the AUC of the best feature,

for all 4 signals the neural network provides better discrimination than the best

feature. The difference between the AUC of the best feature and the AUC of the

neural network is bigger for the HH → bbbb signal. The B+ → J/Ψ and the

B− → J/Ψ signals are the ones with the least variation between the AUC of the

neural network and the feature, and are also the ones with the highest AUC in both

cases.

30

Chapter 6

Semi-supervised Anomaly

Detection

Autoencoders trained only with normal events can be used for anomaly detection.

This can be used for finding new physics. The autoencoder finds relations between

the features in the training set, composed only by background events. Interesting

events different than the ones the autoencoder was trained on will have a higher

reconstruction error.

In this work, autoencoders were trained to reconstruct the background. The

latent space dimension of the autoencoder was varied from 1 to the dimension of

the dataset, 27.

6.1 Autoencoder building and training

The data was standardized so that the features have a mean of 0 and a standard

deviation of 1, as explained in section 3.1.2.

Then, the model for each autoencoder was built. Each autoencoder was built

with an input layer and output layer each with 27 neurons. For the hidden layers,

dense layers with the ReLU activation function were used. The output layer had

no activation function. The model was trained with the Adam optimizer and the

mean squared error loss for 600 epochs. In the end of training the best weights were

restored.

100 combinations of the hyperparameters presented in table 6.1 were tested.

The hyperparameters were optimized by maximizing the R2 determined on the

31

6. Semi-supervised Anomaly Detection

validation set and the ”median pruner” from Optuna was used with 10 startup trials

and 10 warm up steps to stop unpromising trials.

Table 6.1: Hyperparameters optimized for each of the autoencoders and their
possibles values. Number of layers is the number of layers in each of the encoder
and the decoder. When batch normalization was used, after each hidden layer, a
batch normalization layer was added to the model.

Hyperparameter Possible Values

Number of layers between 1 and 5
Number of neurons between 30 and 256
Batch normalization true or false

Each trial corresponds to one combination of hyperparameters. The number of

warm up steps is the number of epochs after which the pruner starts to see if it

should prune the trial and the number of startup trials is the initial number of trials

that are carried out to the end, without being pruned. The pruner checks the loss

on the validation set at each epoch and prunes the trial if the loss is worse than the

median of the loss values of the previous trials at the same epoch.

6.2 Results

The R2 was calculated using the background and its reconstruction by the au-

toencoder on the test set for each value of the latent space dimension and it is

represented in figure 6.1.

Figure 6.1: R2 calculated with the background test set and its reconstruction of
the autoencoder for each of the latent space dimensions of the autoencoder.

32

6. Semi-supervised Anomaly Detection

In order to evaluate the performance of the autoencoder in discriminating between

background and signal, the AUC of the ROC was determined using the reconstruc-

tion error of the test set, constituted by background and signal events. The variation

of the AUC of the ROC with the dimension of the latent space of the autoencoder

is represented in figure 6.2.

Figure 6.2: AUC of the ROC for each of the signals as a function of the latent
space dimension of the autoencoder.

For each signal, the AUC is lower for the intermediate dimensions. The HH →
bbbb signal has the least variation in the values of the AUC. All the signals follow a

similar variation of the AUC of the ROC with the dimension of the latent space.

The correlation between the R2 calculated with the background and the back-

ground reconstruction and the AUC of the ROC of each of the signals was determined

and is represented in figure 6.3.

33

6. Semi-supervised Anomaly Detection

Figure 6.3: Correlation between the R2 of the background and the AUC of the
ROC of each of the signals.

From figure 6.3, we see that all signals have a negative correlation between their

AUC and the R2 and the highest correlation occurs for the HH → bbbb, with the

ZH → bbνν also having some correlation.

6.3 Comparison with supervised method and fea-

tures

In order to compare the performance of the autoencoder, table 6.2 presents the

values of the AUC of the best feature and of the neural network trained for each

signal from chapter 5 and the AUC of the best autoencoder.

Table 6.2: Feature with the higher AUC and the value of its AUC, AUC of the
Neural Network (NN), dimension of the latent space (zdim) of the autoencoder (AE)
with the highest AUC and its AUC for each of the signals. The highest values of
the AUC for each signal are marked in bold.

Signal Best Feature AUC Feature AUC NN AUC AE Best zdim

HH → bbbb Number of Muons 0.5922 0.7858 0.6891 6
B+ → J/Ψ pT Jet 2 0.9953 0.9983 0.8885 22
B− → J/Ψ pT Jet 2 0.9951 0.9982 0.8914 22

ZH → bbνν pT Jet 4 0.9456 0.9611 0.7747 22

For all the considered signals, the supervised neural network performs better at

34

6. Semi-supervised Anomaly Detection

separating background and signal than the best autoencoder. The bigger difference

between the AUC of the neural network and the autoencoder occurs for the ZH →
bbνν signal.

Comparing the AUC of the best feature with the AUC of the best autoencoder,

only for the HH → bbbb signal the autoencoder provides better discrimination than

the best feature. For the other signals, using just one feature to separate signal and

background is better.

35

6. Semi-supervised Anomaly Detection

36

Chapter 7

Conclusions

In this work, autoencoders trained only with background events were used to dis-

criminate between background and signal events. Simulated Trigger-Level Analysis

events were used as background and simulated events fromHH → bbbb, ZH → bbνν,

B+ → J/Ψ, B− → J/Ψ were used as signal.

Autoencoders with different latent space dimensions were trained and their per-

formance at discriminating between signal and background events was compared

with the the best feature and a supervised neural network trained for each signal.

It was observed that the autoencoder had a better performance for lower and

higher dimensions of the latent space. It was also observed that for all signals,

the autoencoder performed worse at separating background from signal than the

supervised neural network trained for each signal. Out of the considered signals,

only for the HH → bbbb, the best autoencoder had a better performance than just

using the best feature for separating background and signal events. A negative

correlation was found between the quality of the background reconstruction by the

autoencoder and the autoencoder’s ability to discriminate between background and

signal events for the HH → bbbb and ZH → bbνν signals.

Possible future work includes trying to understand why the autoencoder has a

better performance for lower and higher dimensions of the latent space and using

more data statistics. Also using real Trigger-Level Analysis events and considering

different signals and other features.

37

7. Conclusions

38

References

[1] ATLAS Collaboration, “The ATLAS Experiment at the CERN Large Hadron

Collider,” JINST, vol. 3, no. 08, 2008.

[2] I. Neutelings, “Pseudorapidity.” https://tikz.net/axis2d_

pseudorapidity/. Accessed: 2022-11-29.

[3] ATLAS collaboration, “Operation of the ATLAS trigger system in Run 2,”

JINST, vol. 15, no. 10, p. P10004, 2020.

[4] Ksenia Sorokina, “Image classification with convolu-

tional neural networks.” https://medium.com/@ksusorokina/

image-classification-with-convolutional-neural-networks-496815db12a8.

Accessed: 2022-08-12.

[5] M. E. Cross and E. V. E. Plunkett, Physics, Pharmacology and Physiology

for Anaesthetists: Key Concepts for the FRCA. Cambridge University Press,

2nd ed., 2014.

[6] Steven Flores, “Variational autoencoders are beautiful.” https://www.

compthree.com/blog/autoencoder/. Accessed: 2022-07-27.

[7] “Experiments.” https://home.cern/science/experiments. Accessed: 2023-

01-11.

[8] ATLAS Collaboration, “Performance of the ATLAS trigger system in 2010,”

Eur. Phys. J. C, vol. 72, jan 2012.

[9] ATLAS Collaboration, “Performance of the ATLAS trigger system in 2015,”

Eur. Phys. J. C, 2017.

[10] ATLAS Collaboration, “Public atlas luminosity results for run-2 of

the lhc.” https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

LuminosityPublicResultsRun2#Publications_and_Conference_Resu.

Accessed: 2023-01-21.

39

https://tikz.net/axis2d_pseudorapidity/
https://tikz.net/axis2d_pseudorapidity/
https://medium.com/@ksusorokina/image-classification-with-convolutional-neural-networks-496815db12a8
https://medium.com/@ksusorokina/image-classification-with-convolutional-neural-networks-496815db12a8
https://www.compthree.com/blog/autoencoder/
https://www.compthree.com/blog/autoencoder/
https://home.cern/science/experiments
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2#Publications_and_Conference_Resu
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2#Publications_and_Conference_Resu

References

[11] A. Boveia, “Trigger level analysis technique in atlas for run 2 and be-

yond.” https://indico.cern.ch/event/773049/contributions/3474303/

attachments/1938074/3212450/20191105-tla.pdf, 2019. Accessed: 2022-

12-21.

[12] G. Cowan, Statistical Data Analysis. Clarendon Press, 1998.

[13] A. Burkov, The Hundred-Page Machine Learning Book. 2019.

[14] A. Géron, Hands-on machine learning with Scikit-Learn, Keras and Tensor-

Flow: concepts, tools, and techniques to build intelligent systems. O’Reilly

Media, Inc., 2nd ed., 2019.

[15] F. Chollet, Deep Learning with Python. Manning, 2nd ed., 2021.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014.

[17] P. Zyla et al., “Review of Particle Physics,” PTEP, vol. 2020, no. 8, p. 083C01,

2020. and 2021 update.

[18] M. J. W. Davide Chicco and G. Jurman, “The coefficient of determination r-

squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in

regression analysis evaluation,” PeerJ. Computer science, 2021.

[19] “Uproot.” https://uproot.readthedocs.io/en/latest/.

[20] The pandas development team, “pandas-dev/pandas: Pandas 1.3.5,” Dec 2021.

[21] Wes McKinney, “Data Structures for Statistical Computing in Python,” in

Proceedings of the 9th Python in Science Conference (Stéfan van der Walt and

Jarrod Millman, eds.), pp. 56 – 61, 2010.

[22] “pandas.” https://pandas.pydata.org/.

[23] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virta-

nen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,

M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del

Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,

W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array program-

ming with NumPy,” Nature, vol. 585, pp. 357–362, Sept. 2020.

[24] “Numpy.” https://numpy.org/.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:

40

https://indico.cern.ch/event/773049/contributions/3474303/attachments/1938074/3212450/20191105-tla.pdf
https://indico.cern.ch/event/773049/contributions/3474303/attachments/1938074/3212450/20191105-tla.pdf
https://uproot.readthedocs.io/en/latest/
https://pandas.pydata.org/
https://numpy.org/

References

Machine learning in Python,” Journal of Machine Learning Research, vol. 12,

pp. 2825–2830, 2011.

[26] “scikit-learn.” https://scikit-learn.org/stable/.

[27] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science

& Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[28] “matplotlib.” https://matplotlib.org/stable/index.html.

[29] M. L. Waskom, “seaborn: statistical data visualization,” Journal of Open

Source Software, vol. 6, no. 60, p. 3021, 2021.

[30] “seaborn.” https://seaborn.pydata.org/.

[31] F. Chollet et al., “Keras.” https://keras.io, 2015.

[32] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-

generation hyperparameter optimization framework,” in Proceedings of the 25rd

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2019.

[33] “Optuna.” https://optuna.org/.

[34] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-

parameter optimization,” in Advances in Neural Information Processing Sys-

tems, vol. 24, 2011.

[35] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kt jet clustering algorithm,”

JHEP, vol. 04, p. 063, 2008.

41

https://scikit-learn.org/stable/
https://matplotlib.org/stable/index.html
 https://seaborn.pydata.org/
https://keras.io
https://optuna.org/

	Abstract
	Resumo
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	ATLAS
	Detector
	Inner Detector
	Calorimeter
	Muon Spectrometer

	Trigger
	Trigger-Level Analysis

	Data Analysis

	Machine Learning
	Neural Networks
	Training
	Data Preparation
	Hyperparameter optimization
	Regularization
	ROC

	Anomaly Detection
	Autoencoder

	Implementation and Software Tools

	Data
	Features

	Benchmarks for Anomaly Detection
	AUC Features
	Neural Network
	Results

	Semi-supervised Anomaly Detection
	Autoencoder building and training
	Results
	Comparison with supervised method and features

	Conclusions
	References

