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Resumo

A utilização do rosto como forma de identificar e verificar a identidade de um dado

indiv́ıduo tem impactado significativamente a expansão dos sistemas biométricos,

em particular sistemas de reconhecimento facial, como medida de segurança. A face

humana é por outro lado, extremamente suscet́ıvel a manipulações, tornando estes

sistemas vulneráveis a ameaças e tentativas de ataque.

O morphing facial é um dos ataques mais preocupantes, na medida em que permite

obter uma imagem de um indiv́ıduo que aparenta ser real, mas que na verdade, não

existe. Além disso, a imagem resultante é confund́ıvel com a face de dois ou mais

indiv́ıduos já que incorpora uma combinação das caracteŕısticas faciais dos mesmos.

Isto permite, por exemplo, que um atacante se faça passar por outra pessoa obtendo

acesso não autorizado a informações ou sistemas senśıveis.

Por todos estes motivos a capacidade de detetar estes ataques é fundamental e tem

sido alvo intensivo de estudo por parte de investigadores. Atualmente, a maioria

das abordagens envolve o uso de algoritmos de aprendizagem profunda, que se têm

mostrado eficazes em cenários mais realistas.

Nesta dissertação o objetivo principal passa por investigar a influência do contexto

da imagem na deteção de ataques demorphing facial no caso particular de algoritmos

de aprendizagem profunda. Para isso, propôe-se analisar o impacto das configurações

de alinhamento da imagem na deteção. Isto é motivado pelo facto de o procedimento

de alinhamento facial influenciar diretamente as interconexões entre o contorno do

rosto e o contexto da imagem. Nesse sentido, a deteção eficaz pode ser alcançada

através da obtenção de condições de alinhamento ótimas.

Palavras-chave: Reconhecimento facial, sistemas biométricos, ataque de morphing

facial, algoritmos de aprendizagem profunda, alinhamento facial, deteção de ataques

de morphing facial.
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Abstract

The use of the face as a way to identify and verify an individual’s identity has signif-

icantly impacted the expansion of biometric systems, particularly face recognition

systems, as a security measure. However, the human face is extremely susceptible to

manipulation, making the systems highly vulnerable to threats and attack attempts.

Face morphing is one of the most concerning attacks since it allows to obtain an

image of an individual that appears to be real but, in fact, does not exist. Fur-

thermore, the resulting image can be easily confused with the faces of two or more

individuals, as it incorporates a combination of their facial characteristics. This al-

lows, for instance, an attacker to impersonate another person and gain unauthorized

access to sensitive information or systems.

For all these reasons, the ability to detect these attacks is crucial and has been

the subject of intensive study by researchers. Currently, most of these techniques

use deep learning algorithms, which have demonstrated effectiveness in realistic

scenarios.

In this dissertation, the main goal is to investigate the influence of image context on

the detection of face morphing attacks in the particular case of deep learning algo-

rithms. In that regard, it is proposed to analyze the impact of the image alignment

settings on the detection of these attacks. This is motivated by the fact that the

face alignment procedure directly influences the interconnections between the face

contour and image context. Thus, effective detection can be achieved by obtaining

optimal alignment conditions.

Keywords: Face recognition, biometric systems, face morphing attack, deep learn-

ing algorithms, face alignment, face morphing detection.
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1

Introduction

This chapter provides an introduction to this dissertation. In sections 1.1 and

1.2 an overview of the context and motivation that underlie the proposed dissertation

are presented. The goals and contributions are defined in sections 1.4 and 1.5.

Finally, in section 1.6, the structure of the dissertation is outlined.

1.1 Context

Modern society’s security concerns have been on the rise due to technological

advancements. Most security systems used today still rely on the use of passwords,

usernames, and signatures. These traditional identification techniques have become

less reliable due to their vulnerability to being forgotten, misplaced, duplicated, or

stolen, thus compromising their intended security function.

The solution to this problem seems to be biometric approaches, which use

physiological or behavioral characteristics to enhance the recognition process [8].

In greater detail, biometric image modalities such as fingerprints, iris patterns,

and facial features are used as input in image processing algorithms, thereby im-

proving the robustness and reliability of the recognition process when compared to

previous methods.

Biometric systems typically involve two general steps: enrollment and veri-

fication [9]. During the enrollment stage, biometric information is captured and

processed to generate a representative template of the unique biometric features of

a given individual. In some cases, the template can be stored in a database for

further comparison during the verification stage. However, there are also scenarios

without persistent storage where the template is only used for real-time comparison.

During the verification stage, new biometric information is compared to this

reference template to determine whether or not a match exists. The outcome is a

similarity score, which indicates the degree of resemblance between the two tem-

plates.
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Result
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Figure 1.1: Schematic representation of the overall architecture of a biometric
system.

The human face serves as a unique link to an individual’s identity. Therefore,

motivated by the simplicity of face image acquisition, recent advances in computer

vision techniques, the non-invasive nature of the process, and the fact that it does

not require contact, which is a critical factor after the recent pandemic, the use of the

face as a biometric modality has been dominant in modern biometric applications.

One of the most notable examples of its application is the Face Recognition

System (FRS), which utilizes facial traits for identification or verification purposes

[10].

Currently, FRSs are used in a variety of applications, such as document security,

border control systems, and policies such as Know Your Customer (KYC) in banks

and financial institutions. This extensive usage was something unexpected during

the period of initial work on automatic FRSs in the early 1990s.

Motivated by all this growth, many European countries include a face image

in their civil Identity Documents (IDs) to use it as the main form of identification.

Additionally, the International Civil Aviation Organization (ICAO) proposed to

add a reference face image in the Electronic Machine Readable Travel Document

(eMRTD) used in travel documents for the same purpose [11]. The face image must

be ICAO-compliant, which means that it must meet specific standards and guidelines

to ensure the interoperability and global acceptance of electronic passports and the

biometric data contained in them.

Despite all of these advances, knowing how to deal with the high variability of

the face (such as face expression, aging, lighting conditions, and head rotation) is

still a challenge.
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Nowadays, with the development of machine learning techniques, namely deep

learning techniques, FRSs are becoming more sophisticated, thereby addressing

some of these challenges. However, the general imperfection of FRSs and their

probabilistic nature make them targets for threats, raising serious concerns about

the use of face in biometric approaches [12].

From a general standpoint, the human face can undergo several modifications,

including age or gender changes, face merging, and the introduction of perturbations,

among others [13]. Such modifications significantly increase the vulnerability of

FRSs since their primary purpose is to deceive and potentially expose them to fraud

attempts and criminal attacks. Certain types of attacks allow falsifying data to

achieve an illicit advantage, such as efficiently identifying one individual as another,

i.e., disguising the real identity (spoofing attack) [14].

Currently, one of the most powerful types of threats is the face morphing attack.

The goal of this kind of attack is to combine the facial features of two (or more)

images so that the resulting synthetic reference image incorporates characteristics

from both faces [15]. Figure 1.2 depicts a morphed image created using two faces

from different individuals.

Subject 1 Subject 2Morph Image

Figure 1.2: Schematic representation of face morphing between two subjects face
images. Images from IMM dataset [1].

This smooth transition between the two faces causes great challenges for both

humans and FRSs since the resulting image is simultaneously similar to the images

of faces that gave rise to it, making it difficult to tell “where one face ends and the

other begins”.

One of the most popular face morphing applications happens during the pass-

port application process. In this scenario, although live enrollment is preferred, it

is not always possible, and in some countries (in Portugal, this is not the case),

applicants often have to provide their images, either printed or via e-mail, or even

use specialized state photographers for this service [16]. All these forms make the
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submitted image highly susceptible to falsification, allowing morphing attacks to go

unnoticed, i.e., one individual can impersonate another, thus violating the principle

of exclusive ownership. Summing up, it makes it possible to obtain a legitimate ID

using false information.

As a consequence, during border control scenarios, both control agents and

Automatic Border Control (ABC) gates become vulnerable to attack attempts since

they are based on comparing a live image with an image stored in a ID or eMRTD

that may be modified.

A real example was the case of an Albanian individual who attempted to pass

through border control using a Slovenian passport [17]. The incident is depicted in

figure 1.3, where the left side shows the accomplice of the individual, the right side

shows the person attempting to pass through border control, and the center displays

the transformed image that was presented on the document.

Figure 1.3: Real case example of a face morphing attack.

The challenges posed by face morphing attacks have made the detection of

such attacks an important area of research. In consequence, significant efforts have

been made to investigate and develop techniques that can detect and counteract the

effects of these attacks.

1.2 Motivation

The ability to accurately recognize a person’s face makes face recognition tech-

nology a predominant form of personal identification. Nevertheless, the susceptibil-

ity of FRS to attacks, specifically face morphing attacks, requires the development

of effective detection techniques.

The main strength of a face morphing attack lies in its capability to obtain a

face image of a subject that appears to be real but, in fact, does not exist. This

opens up the potential for the creation of “multiple identities”, where two (or more)

different subjects can use the same ID to impersonate the same person.
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ID Image

?
Subject 2

Subject 1

Figure 1.4: Schematic representation of face morphing problem.

For all these reasons, the ability to detect face morphing attacks is crucial to

guaranteeing the secure operation of FRS.

In order to deal with that and following the FACING project [18] that ran from

2019 to 2021, the Computer Vision Team from the Instituto de Sistemas e Robótica

(ISR) within the University of Coimbra, in partnership with the Imprensa Nacional-

Casa da Moeda (INCM), is developing the FACING2 project. The main goal is

to create an automatic system for authenticating people through Face Recognition

(FR) of photographs.

The FACING2 project aims to study and develop methods to improve facial

biometric technology while respecting privacy and security standards. In a more

detailed view, the FACING2 project intends to act in six areas:

• Improve the present implementations of the algorithms for evaluating ICAO-

compliant [11] and image quality.

• Improve the face identification and verification algorithms, which will subse-

quently be tested against the National Institute of Standards and Technology

(NIST) benchmark [19].

• Improve liveness detection (check whether a human being facing a camera is,

in fact, real) algorithms to protect against presentation attacks.

• Implement a Morphing Attack Detection (MAD) system that can be incorpo-

rated into the FACING2 project’s overall system.

• Implement new protection algorithms for biometric templates, which now in-

clude features such as irreversibility, recognition quality, renewability, and non-
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correlation.

• Improve the current FACING application to increase the security of the tech-

nology.

Taking into account the current scenario of FR and the specific context of

face morphing and its detection, this dissertation aims to contribute to advances in

the study of MAD more specifically by investigating whether or not image context

influences the detection. Throughout this dissertation, the term “image context”

refers to the background and surrounding elements.

This motivation arises from the understanding that the performance of face

morphing detection can be influenced by several factors, including the alignment and

pre-processing techniques applied to the input images. In the particular case of face

alignment, the alignment settings can have an impact on the amount of contextual

information captured in the input image. Consequently, this can hypothetically

affect the performance of the detection algorithm.

1.3 Ethical Concerns

The development of face morphing technology raises serious ethical concerns,

particularly when the use of morphed images is not limited to specific purposes, i.e.,

closed environments.

As presented in the previous sections, the creation of manipulated images

through face morphing has the potential to deceive both FR systems and people,

requiring research.

In this sense, there is clearly a need to create morph images to train systems

and improve models, making them more robust and able to detect these types of

images and, consequently, prevent attacks. However, this also raises ethical issues

since, in order to achieve this goal, it is necessary to improve or even create methods

to generate these morphed images. The open publication of these approaches poses

significant risks as it allows for their unrestricted and uncontrolled utilization.

To ensure a responsible and ethical use of face morphing technology, it is crucial

to establish guidelines and restrict its application to the scope of research institu-

tions, official state organizations, and their unions.

1.4 Goals

The overall objective of this dissertation, as stated in the section 1.2, is to

relate image context to the detection of face morphing attacks, trying to verify its
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influence, in particular:

• Finding the best context properties for detection, i.e., defining optimal align-

ment settings for face morphing detection.

• Exploring how different face image alignment settings can impact the amount

of context captured in the input image.

1.5 Contributions

To achieve the aforementioned goal, the following specific contributions are

outlined below:

• Creation of a large dataset that adheres to the ICAO standards through the

combination and pre-processing of multiple datasets.

• Generation of a morphed dataset using both landmark-based and StyleGAN-

based approaches.

• Investigation of the relationship between image context and MAD to identify

the most effective context properties for detection.

• Formulation and implementing several strategies for MAD.

• Development of more robust and reliable face morphing detection algorithms

that are less susceptible to manipulation and errors, ultimately contributing to

the creation of more secure systems for identifying individuals and preventing

identity fraud.

The work developed in this dissertation also allowed the development and re-

spective submission of a paper titled “Impact of Image Context for Single Deep

Learning Face Morphing Detection” in the BIOSIG 2023 conference that will be

included in the Appendix.

1.6 Outline of the Dissertation

This document contains five chapters beyond the introduction that are orga-

nized as follows:

• Chapter 2: presents background information related to FRS, face morphing,

and its detection, as well as some other important concepts.

• Chapter 3: presents a review of the state of the art in FR, as well as face

morphing techniques and the different approaches for detecting these attacks.

• Chapter 4: presents an overview of the methodology.

• Chapter 5: depicts the experimental results of the tests conducted during the
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development of this dissertation.

• Chapter 6: presents the conclusions of the work performed.
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2

Theoretical Background

Throughout this chapter, essential aspects and concepts concerning Face Recog-

nition System (FRS), face morphing, and Morphing Attack Detection (MAD) will

be presented.

2.1 Face Recognition System

Face Recognition (FR) is a complex area of study within the domains of Com-

puter Vision and Biometrics that focuses on theoretical approaches and software

tools enabling machines to recognize people based on their facial features, which are

strongly linked to each individual’s unique identity [10].

Despite the challenges presented by variations in many factors, such as illumi-

nation, pose, facial expressions, and aging, significant progress has been made in

developing accurate and reliable face recognition algorithms.

Currently, FR approaches rely on deep learning methods [2], in which deep

networks of several layers learn data representations with different feature extraction

levels. The standard pipeline for these approaches is depicted in figure 2.1.

Face Detection Face Alignment
Face Extraction/

Representation

Face Matching/

Discrimination

Figure 2.1: Standard pipeline for a deep-learning approach in FR [2].

In sequence, the first stage involves detecting the presence of a face in the image

or video, followed by the alignment of that face.

There are several methods that can be employed for the alignment procedure.

One commonly utilized approach is to define a bounding box around the face and

utilize a predetermined set of facial landmarks, such as the eyes, the tip of the

nose, and the mouth’s corners, to determine the position and orientation of the

face. Subsequently, the image can be transformed in accordance with predefined
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coordinates and positions using rotation, scaling, and translation approaches.

In an ideal scenario, this alignment procedure should be able to handle face

fluctuations, including variations in position, illumination, expression, and occlusion,

that turn out to be frequent conditions in real-world contexts.

Subsequently, the aligned image is used as input to the system, resulting in a

feature vector that represents it. This phase is also known as “Face Representation”,

since it involves the transformation of a face image into a learned feature space in a

structured manner, simplifying the recognition task.

The features can be divided into: Low-level features, that represent the infor-

mation extracted from the pixels using algorithms such as color histograms, gradient

orientation, or texture descriptors; High-level features, that represent the interpre-

tation and understanding of the image content from a more realistic perspective. In

general, higher layers learn higher-level abstractions and are often more discrimina-

tive than lower-level features.

In the FR task, each distinctive feature vector can be used comparatively to

evaluate similarity against another face representation or it can be used in identity

classification tasks, depending on the scenario.

Figure 2.2: Diagram for a generic deep learning-approach FR for both scenarios.

2.2 Face Recognition Scenarios

From a general perspective, a FRS is usually used for two primary tasks [20]:

• Verification (One-to-One Matching)
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• Identification (One-to-Many Matching)

Face 

Verification 

System

Face 

Identification 

System

Subject 1

Not 

Subject 1

Subject 1

Subject 2

Haven't seen 

him before

Is this 

Subject 1?

Who is this 

Person?

Figure 2.3: Schematic representation of face verification and face identification
differences. Based on [3].

In both cases, the system starts with the common step of acquiring a face

descriptor in the form of a feature vector and subsequently diverges into different

paths, according to the scenario (figure 2.2).

2.2.1 Verification Scenario

Also known as one-to-one matching, the verification scenario process involves

determining whether or not an individual is who he/she claims to be. In the con-

text of FR, the main challenge is to verify whether two images depict the same

person. This is a binary decision problem, with the outcome being a determination

of whether the images match or do not match.

One of the most evident real-life scenarios of its application happens at Auto-

matic Border Control (ABC) gates, where a live captured image is compared against

a photo from an Identity Document (ID) or passport.

In practical terms, the process of face verification can be executed through the

application of the following series of steps (figure 2.2):

• Obtain the face descriptor, which is a set of distinctive features.

• Match the face descriptor against a pre-existing representation of the individ-

ual’s face, which may be stored in a database or extracted from an ID, to

generate a similarity score.
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• Based on a predetermined threshold value for the similarity score, the system

can then verify or reject the individual’s claimed identity.

2.2.2 Identification Scenario

Also known as one-to-many matching, the task of face identification is based

on determining an individual’s identity from a system database. The primary goal

of this process is to answer the question: who is the person? or is the person in the

database?

In real-world applications, this scenario is commonly seen in enterprises that

conduct identification checks as part of the authorization process (Automated Bio-

metric Identification System (ABIS)).

In the context of the identification scenario, it is possible to specify two partic-

ular cases: open-set and close-set.

The close-set case pertains to situations where the test identity corresponds

to one of the pre-existing identities stored in the database. These cases can be ap-

proached as multi-class classification problems, being executed through the following

series of steps (figure 2.2).

• Obtain the face descriptor, which is composed of a set of unique features.

• Process the face descriptor through fully connected layers.

• Perform classification on the extracted features to identify the individual in

the input image (the closest matching identity).

In opposition, the case open-set denotes situations where the test identity may

or may not correspond to one of the pre-existing identities stored in the database.

This scenario is more representative of real-world authentication systems, which

often have to reject unidentified subjects who are not registered in the system.

In this particular case, face identification can be approached as a face verification

problem, comparing the test face against all the identities stored in the database.
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Face Recognition

Face Verification Face Identification

Open-Set Close-Set

1-N

 Matching

1-1

 Matching

Figure 2.4: Summary diagram of FR scenarios.

2.3 Performance Evaluation in FRS

To evaluate the effectiveness and efficiency of a system, it is essential to compute

performance metrics. In the case of FRSs these metrics differ based on recognition

scenarios: identification and verification. All of the metrics are defined based on the

concepts outlined in ISO/IEC 19795-1 2006 [21].

2.3.1 ROC and DET Curves

Receiver Operating Characteristic (ROC) and Detection Error Trade-off (DET)

curves are graphical representations that describe the trade-off between the False

Positive Rate (FPR) and the False Negative Rate (FNR) of a binary classifier at

different decision threshold levels [22].

Figure 2.5: Schematic representation of the DET (left) and ROC (right) curves.

More specifically, ROC curves plot the FPR on the x-axis and the True Positive

Rate (TPR) (1 - FNR) on the y-axis for different decision thresholds. In an ideal

scenario, the ROC curve should be close to the upper left corner of the graph,

reaching high TPR values while maintaining a low FPR across a range of decision
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thresholds.

In the DET curves, it is common to represent both FPR and FNR in logarithmic

scales. An optimal classifier will have a DET curve that is situated near the bottom

left corner of the plot, which indicates low values for both the FNR and FPR across

a range of decision thresholds.

Some other relevant metrics can be extracted from these curves, for instance:

Equal Error Rate (EER), which represents the point on the curve where FPR +

TPR = 1, i.e., where FPR is equal to FNR. It can be used to compare the perfor-

mance of different systems, where a lower value is indicative of better performance.

2.3.2 Verification Scenario

In the verification scenario, two common metrics are used to evaluate the per-

formance [22]:

• False Match Rate (FMR) - Represents the proportion of non-matching

identities falsely identified as matching (security level).

• False Non Match Rate (FNMR) - Represents the proportion of matching

identities falsely identified as non-matching (convenience measure).

Regarding the ROC and DET curves, it is possible to make the assumption

that FMR is analogous to FPR, while FNMR is equivalent to FNR. The accuracy

of a system’s verification is usually presented as the value of FNMR fixing the FMR

at certain thresholds (e.g. FNMR@FMR=0.01%).

2.3.3 Identification Scenario

In the context of identification, the choice of metrics depends on whether it is

a closed-set or an open-set problem. Despite this difference, both approaches use

a common metric known as the identification rate at rank r. This metric represents

the probability within the list of top r matched identities during an identification

attempt.

The identification rate at a particular rank level is an useful metric for evaluating

the performance of a biometric system, as it provides an indication of the system’s

ability to accurately identify users. In general, the higher the value, the better the

performance of the system.

In the specific case of open-set problem, another two metrics can be computed

[22]:

• False Positive Identification Rate (FPIR) - Represents the proportion
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of non-registered identities successfully attempted to be identified.

• False Negative Identification Rate (FNIR) - Represents the proportion

of registered identities for which identification attempts failed.

A common way to report these metrics is by presenting the FNIR for a fixed

FPIR at a specific rank r.

2.4 Face Morphing Generation

This section provides a detailed explanation of different methodologies for gen-

erating morphed images.

Revisiting the concept, face morphing occurs when the facial features of one

or more individuals are blended into a single image. As a result, the resulting face

image resembles the faces of the contributing individuals.

In the literature, two well-established ways of generating morphed face images

are known:

• Landmark-based

• Deep-learning based

Landmark-based

The most common way to generate a face morphed image is through the use

of landmark-based morphing methods. In this case, the face morphing procedure

is performed by warping the two contributing images using a collection of related

points (facial landmarks) defined on each image. The usual pipeline is shown in

figure 2.6.
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Input Image 2
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Figure 2.6: Landmark face morphing generation pipeline. Based on [4].

In the first step, a detector is used to locate and extract the facial landmarks of

both faces. In most cases, a common approach is used, where 68 facial landmarks

are selected [23]. These landmarks correspond to important facial points that define

the face, such as the eyes, nose, mouth, and others (as shown in figure 2.7).

Next, the average of these two sets of landmarks is interpolated, and the result is

used as a reference for aligning the facial features of the two images being morphed.

Figure 2.7: Representation of the 68 facial landmarks in each subject’s face.

The images are warped in a process that relies on geometric transformations

to modify those facial landmarks in the images in order to achieve correspondence

between them.

The next step is blending, where the resulting image is obtained by calculating

a weighted average of the warped images. Each image has an associated α factor

(which goes from 0 to 1) that indicates the individual contribution of each subject

to the resulting morph. In this sense, an α value of 0.5 makes the contributions of

both faces comparable.

Finally, it is important to restore the context information/background, which

is done using one of the original images.
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Deep Learning-based

Currently, deep learning-based techniques have also been used in morph gener-

ation, namely Generative Adversarial Networks (GANs) [24]. The main underlying

motivation is due to the increased resolution and quality of the resulting images.

From a broad perspective, the GAN approach consists of an “opposition game”

between a generator and a discriminator in order to achieve dynamic balance. Con-

sidering an image-based domain, the discriminator learns to separate the input im-

ages into two outputs (real or fake), and at the same time, the generator is trained

to trick the discriminator by creating fake inputs. Once trained, the discriminator

is discarded, and the generator is used to generate realistic fake images.

Some of the approaches, such as StyleGAN [25] in order to improve the quality

of generated images, also introduce a perceptual model. The goal is to evaluate

the similarity between generated and authentic images based on their perceptual

characteristics (color, texture, and structure), i.e., minimize perceptual loss between

reference and generated images in feature space. In short, this means that the

network is trained to generate images that are not only visually similar to real

images but also have similar perceptual characteristics.

In the particular face morphing context, the common pipeline is presented in

figure 2.8.

Input Image 1

Input Image 2

Optimal Latent 

Embeddings

Embedding 

Blending

Context Restoring

{ 0.2, 0.6, 0.25, 

(...) }

{ 0.1, 0.5, 0.81, 

(...) }

Figure 2.8: GAN face morphing generation pipeline.

Following the order, after aligning and resizing the input image accordingly

to the discriminator network’s requirements, the optimal latent face embeddings

are extracted for both images. The term “latent face embedding” refers to the

representation of the human face that encodes an individual’s facial features into a
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compact representation.

These embeddings are then used to generate the latent embedding of the mor-

phed face through an interpolation process. Finally, the morph image is generated

based on this embedding, and the context is restored given one of the original images.

2.5 Morphing Attack Detection

So far, techniques to generate morphed images have been covered, but the big

challenge is being able to detect them. Throughout this section, some detection

methodologies will be discussed.

Based on the processing scenario, MAD can be divided into two main ap-

proaches:

• Single Morphing Attack Detection (S-MAD)

• Differential Morphing Attack Detection (D-MAD)

Face Morphing Attack 

Detection Methods

Single image based 

MAD

Differential image based 

MAD

Handcrafted 

features-based

Deep Learning - 

based 

Feature comparison-

based

Demorphing

Figure 2.9: Summary diagram of MAD methods for the different processing
scenarios. Based on [5].

Single Morphing Attack Detection

The S-MAD case relies on situations where the algorithm uses a single image for

the purpose of detecting face morphing attacks. Specifically, determining whether

an image has been modified (face morphing) without the need to use a reference

(authentic) image as a comparison. Due to this, it is also referred to as the no-

reference method.
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Figure 2.10: No-Reference morphing detection scheme. Image based on [6].

In real-life scenarios, this type of detection is visible, for instance, at the time

of the initial passport application, when the applicant presents the photo in digital

or physical format but there is no previous reference photo to use as a comparison.

Regarding the approaches, they can be divided into two major groups [5]: 1)

Those that use handcrafted features, which are a set of manually designed and

engineered features that represent and describe the characteristics of an image, such

as texture-based, quality-based, and residual noise-based; 2) Those that are based

on deep learning approaches. Examples of each case will be discussed separately in

chapter 3.

Differential Morphing Attack Detection

Conceptually, D-MAD algorithms have an advantage over S-MAD due to their

access to additional information. The method involves comparing the input image

to a reference image (typically captured in a trusted environment) and looking for

inconsistencies that may indicate an attempted attack. Due to this, it is also referred

to as the reference-based method.
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Figure 2.11: Reference-based morphing detection scheme. Image based on [6].

In real-life scenarios, this type of detection is commonly seen in border crossing

control situations where the suspicious morph image (taken from the passport) can

be compared with a trusted image, namely captured live at the ABC gates [5].

Regarding the approaches, they can be divided into two major groups [5]: 1)

Those that use feature comparison-based approaches; 2) Those that use demorphing

approaches. Examples of each case will be discussed separately in chapter 3.

Performance Evaluation

According to ISO/IEC 30107-1:2016 [26] the performance evaluation can be

measured with the metrics below.

• Attack Presentation Classification Error Rate (APCER)

Represents the proportion of fake samples mistakenly identified as genuine (system

insecurity). In the particular case of face morphing, it represents the ratio of incor-

rectly classified morphed images (M) to the total number of morphed images (Nm)

- morph miss rate.

APCER =
M

Nm

(2.1)

• BonaFide Presentation Classification Error Rate (BPCER)

Represents the proportion of genuine samples that were misidentified as fake (user

inconvenience). In the particular case of face morphing, represents the ratio of

incorrectly classified bonafide images (B) to the total number of bonafide images

(Nb) - false detection rate.

BPCER =
B

Nb

(2.2)
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These two metrics are typically presented as the value of the BPCER at a fixed

APCER threshold (BPCER@APCER). The goal is to strike a balance between

minimizing the BPCER while ensuring that the system maintains an acceptable

APCER. In an ideal scenario, the false detection rate should be as low as possible

(minimize BPCER values), since in most real attempts, bonafide photographs are

often presented.
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State of the art

The current state of the art in Face Recognition (FR) is briefly explained in

section 3.1. Sections 3.2 and 3.3 describe current developments in face morphing

as well as techniques for detecting corresponding attacks. Section 3.4 presents the

available datasets used in training and benchmarking procedures. Finally, in section

3.5, a summary of the key state-of-the-art concepts along with a short discussion is

provided.

3.1 Face Recognition

The dynamic nature of the human face poses significant challenges in the FR

field. To address these challenges, several solutions have been suggested to enhance

the robustness and accuracy of Face Recognition System (FRS).

Looking at early works, in the 1960s, Bledsoe [27] proposed the first semi-

automatic FR approach, which focused on manually extracting elements from the

face and using them to establish proper identification.

From a general standpoint, as described in section 2.1, the main purpose of a

FRS is to accurately identify or verify a person’s identity. To achieve this, a sequence

of steps must be taken.

3.1.1 Face Detection

Face detection is usually the first stage in the FR task. As the name suggests,

it relies on the detection of the face in an image or video.

One of the most seminal works was proposed by Viola and Jones [28]. Based on

the research of Papageorgiou et al. [29], the researchers proposed an efficient real-

time face detection system utilizing a set of features based on Haar-Basis functions.

Furthermore, they made a simple modification to improve the system’s performance

by proposing the use of AdaBoost’s learning cascade structure [30].

The simplicity of Haar’s features proved to be a significant obstacle in achieving
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meaningful performance, leading to the development of several techniques to improve

its performance [31].

In recent times, most face detection approaches have been based on the use

of deep learning techniques. These approaches outperform the traditional ones,

especially in unconstrained scenarios with a wide range of face poses, viewing angles,

occlusions, and lighting conditions.

Zhang et al. [32] proposed the Multi-Task Cascaded Convolutional Neural Net-

work (MTCNN) approach for the detection and simultaneous alignment of the face.

The use of a cascading algorithm makes it possible to quickly detect the face with

more accuracy and simultaneously handle those unconstrained scenarios.

Once the face is detected, the subsequent stages involve obtaining a face descrip-

tor/representation, highlighting the use of traditional and deep learning methods.

3.1.2 Traditional Approaches

From a broader perspective, traditional face recognition algorithms can be cat-

egorized into two main types: holistic and feature-based methods.

In holistic approaches, the whole face is mapped into a lower-dimensional sub-

space using linear or non-linear methods, such as Independent Component Analysis

(ICA), and Linear Discriminate Analysis (LDA), while retaining the most relevant

information. In other words, this approach involves treating the entire face as a

single unit for recognition purposes.

Sirovich and Kirby [33] proposed one of the most popular approaches with

holistic-based methods called Eigenface. Later, Turk and Pentland [34] improved

the method specifically for the FR task by automating the process to perform eigen-

decomposition on multiple images.

In a nutshell, using Principal Component Analysis (PCA) the face images are

projected into a lower-dimensional space called the eigenface subspace, which cap-

tures the most significant fluctuations in the data. To identify faces, the technique

compares the weights of a new face, obtained through projection, with the weights

of the training set, and the closest match is considered the recognized face.

On the other hand, feature-based methods involve identifying and extracting

specific facial features from an image. In this method, descriptors play a crucial role

in representing the characteristics of the extracted features, providing a compact

representation of the appearance, texture, or geometric properties.

Ouarda et al. [35] explored the use of geometric features extracted from face

images, including the positions and distances between significant facial landmarks,
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to create a representation for each face.

Ahonen et al. [36] proposed a technique that uses shape and texture information

to describe face images. Initially, the face image was segmented into smaller sections,

from which Local Binary Patterns (LBP) [37] histograms were extracted. Next, the

k-Nearest Neighbor (k-NN) classifier was used to quantify the disparity between the

two facial descriptors.

The simplicity of computing LBP features and their independence from prior

knowledge of face geometry make them a practical and convenient approach for

real-world FR applications, as underlined by the authors.

Dalal and Triggs [38] suggested the use of locally normalized Histogram Of

Gradient Orientations (HOG). The HOG method enables the extraction of discrim-

inative feature vectors from images by counting the occurrences of specific gradi-

ent orientations. by proposing the use of AdaBoost’s learning cascade structure

[30][39, 40].

In recent years, the Gabor transformation has gained significant prominence as

an effective element in image processing and pattern recognition tasks. Zhang et

al. [41] proposed a feature descriptor called Histogram of Gabor Phase Patterns

(HGPP), which combines the spatial histogram and Gabor Phase Pattern (GPP)

to capture both local texture and shape information of the face. In the approach,

Gabor filters were utilized to extract the phase information from the facial images,

and the resulting descriptor was obtained by encoding this information based on the

use of histograms.

Despite some of these works performing well in constrained scenarios, the same

is not so evident in more realistic scenarios. As a result, at that time, FRSs had an

unstable performance in such scenarios.

3.1.3 Deep-learning Approaches

Recent advancements in the FR domain have been driven by the integration of

deep learning techniques. The motivation arises from the limitations that traditional

FRS face in more realistic scenarios. As a solution, the use of features that can

handle complex intra-personal variations has become more prevalent.

In 2012, AlexNet [42] won the ImageNet ILSVRC competition, highlighting the

potential of deep learning approaches in solving complex image recognition prob-

lems. One of the key innovations of AlexNet was the use of Rectified Linear Units

(ReLU) as activation functions, allowing faster training and better generalization

when compared to traditional activation functions such as sigmoid.
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Since then, there has been a remarkable growth in Convolutional Neural Net-

works (CNNs) based approaches, with several deeper and sophisticated architectures

emerging, including: VGGNet [43], GoogLeNet [44], ResNet [45], MobileNet with

three versions [46–48], DeepFace [49], among others.

Furthermore, in an attempt to achieve high performance while minimizing the

number of parameters, innovative architectures like DenseNet [50] and EfficientNet

[51] have also been developed.

Over time, the primary research focus of FRSs has undergone a shift. Presently,

the emphasis is no longer on exploring novel architectures but rather on utilizing

established architectures that produce optimal outcomes, simplifying the training

and benchmarking procedures.

To achieve optimal performances, classification methods that use softmax are

typically employed. The softmax function transforms the output of a neural network

into a probability distribution over the predicted classes. The truth class labels are

then compared to the predicted class probabilities obtained from the model using

a cost function. The goal is to minimize the error, which in turn maximizes the

probability of correctly identifying the truth class.

Sun et al. [52] implemented one of the classical FR approaches using softmax.

The authors proposed the adoption of deep learning techniques to obtain a set of

high-level feature representations called Deep Hidden IDentity features (DeepID).

The model was trained on a large dataset, removing the softmax function, and

utilized the output of the penultimate layer as the face representation.

In recent investigations, there has been an increasing interest in modifying or

improving the loss functions used in deep learning pipelines in order to improve the

discriminatory power of the extracted features. The loss function plays a crucial role

in quantifying the dissimilarity between the predicted output of a model and the

true output, thus allowing adjustment of the model parameters or weights during

the training process.

Classification-based Approaches

The vast majority of classification-based approaches focus on the use of softmax

loss function, whose main goal is to distinguish features, maximizing the posterior

probability of the correct class.

Overall, it can be defined as the combination of the softmax activation function

and the cross-entropy loss, resulting in the following equation:
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Lsoftmax =
1

N

N∑

i=1

− log(
efyi∑C
j=1 e

fyj
) (3.1)

where C is the number of classes of the classification problem, N is the number

of training samples, and yi is the corresponding label from the feature vector xi.

Considering a weight vector Wj and a bias Bj = 0, the activation of the last Fully

Connected (FC) layer fj can be defined as follows:

fj = W T
j x = ∥W T

j ∥ ∥x∥ cos(θj) (3.2)

Despite its effectiveness in various classification tasks, the original softmax func-

tion has been found to be insufficiently discriminative for the practical FR task,

resulting in lower performances when dealing with significant intra-class variations.

Initially, the modifications focused on redefining the softmax loss by incorpo-

rating margin-based alternatives. As a common starting point and based on the

equation 3.2, both feature and weight vectors are normalized using L2 normal-

ization, which ensures that the learned embedding features are distributed on a

s-hypersphere, where s is a scale parameter.

In this case, the dot product is equivalent to the distance cosine, which strictly

depends on the cosine of the angle between the two vectors, so that:

fj = W T
j x = s cos(θj) (3.3)

Based on this similar formulation, the loss function was modified in different

ways. In 2018, Liu et al. [53] introduced a deep hypersphere embedding for faces

called SphereFace. Based on the idea that softmax loss has an intrinsic angular

distribution, a parameter m was established on a hypersphere manifold to control

the angular margin and improve the decision margin between the classes. This

modification of the original softmax loss function is known as Angular softmax or

A-softmax and ensures that the margin is appropriately adjusted, improving classi-

fication accuracy.

Considering equation 3.2 and the specific scenario of a binary problem, the

decision boundary presented in figure 3.1 (for the particular case of class 1) can be

described as follows:

s(cos(mθ1)− cos(θ2)) = 0 (3.4)

The m factor makes the decision boundary more strict compared to the softmax

original approach. It should be noted that scale s is not a constant in this case and
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represents the L2-norm of the feature vector. The reformulated equation 3.1 is then

defined as:

LSphereFace =
1

N

N∑

i=1

− log(
es cos(mθyi )

es cos(mθyi ) +
∑

j ̸=i e
s cos(θyj )

) (3.5)

In the same year, to overcome the limitations of existing methods in effectively

distinguishing similar faces, Wang et al. [54] introduced the CosFace approach. To

this end, the authors proposed the use of a loss function known as Large Cosine

Margin Loss (LMCL), which incorporates the cosine margin penalty directly into

the target logit, resulting in highly discriminative facial features. The objective of

this approach is to maximize inter-class variation by reducing the angle between

them while minimizing intra-class variance.

Considering equation 3.2 and the specific scenario of a binary problem, the

decision boundary presented in figure 3.1 (for the particular case of class 1) can be

described as follows:

s(cos(θ1)−m− cos(θ2)) = 0 (3.6)

Unlike the SphereFace approach, in this case, the scale s value represents a

constant. The reformulated 3.1 equation can be defined as follows:

LCosFace =
1

N

N∑

i=1

− log(
es(cos(θyi )−m)

e s(cos(θyi )−m) +
∑

j ̸=i e
s cos(θyj )

) (3.7)

One year later, Deng et al. [55] introduced the ArcFace approach, which utilizes

an additive angular margin loss. Similarly to the previously mentioned approaches,

ArcFace also takes advantage of the inherent angular distribution of the softmax

function. However, it uses a different angular margin technique, where the penalty

m is directly added to the angle.

Considering equation 3.2 and the specific scenario of a binary problem, the

decision boundary presented in figure 3.1 (for the particular case of class 1) can be

described as follows:

s(cos(θ1 +m)− cos(θ2)) = 0 (3.8)

The scale s value, like in the CosFace approach, represents a constant. The

reformulated 3.1 equation can be defined as follows:

LArcFace =
1

N

N∑

i=1

− log(
es cos(θyi+m)

e s(cos(θyi+m)) +
∑

j ̸=yi
es cos θj

) (3.9)
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Figure 3.1: Decision boundaries across the different loss function approaches for
the particular binary case. The grey areas represents the decision margins. Image

from [7].

Despite the evolution and intensive use of margin-based loss functions, there has

been a growing interest in adaptive loss functions. These techniques aim to incorpo-

rate adaptiveness into the margin to address the limitations of existing margin-based

loss functions. That is, instead of using a fixed margin, adaptive loss functions allow

for dynamic adjustment against the problem context.

Meng et al. [56] proposed the MagFace approach. This method optimizes

the feature embedding using an adaptive margin and regularization based on the

magnitude of the embedding. In general, the metric follows the ArcFace approach

based on the cosine margin while reinforcing its direction and magnitude.

Another promising technique is AdaFace, proposed by Kim et al. [57]. The

idea is to adapt the margin-based functions by using the feature embedding norm

(an indicator of image quality) in order to control the gradient scale assigned to

different image qualities.

Metric-based Approaches

Metric learning methods aim to optimize feature embeddings, i.e., increase

their discriminative power. To this end, the methods rely on learning a repre-

sentation space that efficiently approximates similar samples while maintaining a

clear separation between different samples. One of the drawbacks associated with

these approaches is the need for extensive datasets and sophisticated sample mining

strategies to provide consistent convergence.

One of the main examples was introduced by Schroff et al. [58] in FaceNet.

The authors proposed a framework in which face images were mapped to a compact

Euclidean space, where the L2 distances between those embeddings represent the

face similarity measure.

In the approach, three sets of images are used during training: an anchor im-
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age, a positive image, and a negative image. The objective is to reduce the distance

between the anchor and the positive image while simultaneously increasing the dis-

tance between the anchor and the negative image (triplet loss function).

Shi and Jain [59] introduced a novel face recognition approach called DocFace,

inspired by the FaceNet framework. The DocFace approach uses the Max-margin

Pairwise Score (MPS) loss function, which aims to optimize the model by comparing

pairs of instances.

All the papers cited in this section are summarized in table 3.1.

Table 3.1: Summary of the papers cited in section 3.1 regarding face recognition.

Approach Reference Methodology

Face Detection

Viola and Jones [28] Real-time system based on

Haar-Basis functions

Tieu and Viola [30] AdaBoost learning cascade

structure

Zhang et al. [32] Deep cascaded multi-task

framework (MTCNN)

Tradicional Approaches

(Face Recognition)

Sirovich and Kirby

[33]

EigenFace method

Turk and Pentland

[34]

EigenFace improvement

Ahonen et al. [36] LBP feature descriptor

Zhang et al. [41] HGPP feature descriptor

Dalal and Triggs [38] Normalized HOG feature

descriptor

Ouarda et al. [35] Geometric facial features

Deep learning

Approaches (Face

Recognition)

Krizhevsky et al. [42]

[60]

AlexNet architecture

Simonyan and Zisser-

man [43]

VGGNet Architecture

Szege et al. [44] GoogLeNet architecture

He et al. [45] ResNet architectures

Howard et al. [46–48] MobileNet architecture

Taigman et al. [49] DeepFace architecture

Huang et al. [50] DenseNet architecture

Tan and Le et al. [51] EfficientNet architecture
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Classification-based

approaches

Sun et al. [52] DeepID - softmax classifica-

tion

Liu et al. [53] SphereFace: Margin-based

loss function

Wang et al. [54] CosFace: Margin-based loss

function

Weng et al. [55] ArcFace: Margin-based loss

function

Meng et al. [56] MagFace: Adaptive loss

function

Kim et al. [57] AdaFace: Adaptive loss

function

Metric-learning

approaches

Schroff et al. [58] FaceNet: Triplet loss

Shi and Jain [59] DocFace: Max-margin Pair-

wise Score loss

3.2 Face Morphing Generation

Ferrara et al. [61] introduced the concept of generating a morphed face image

by combining images of two (or more) subjects. The paper addresses the main prob-

lem of using machine-assisted identity confirmation in Electronic Machine Readable

Travel Document (eMRTD) through face-to-face morphing attacks.

Currently, obtaining a morphed image is easily accessible to anyone through

the use of tools such as MorphThing [62], FaceMorpher [63] and MagicMorph [64].

These user-friendly interfaces are developed using various methodologies that are

continuously being researched and studied.

In the scope of research, landmark-based techniques are the most widely used

for generating morphs [65, 66]. The general procedure is based on getting the fa-

cial landmarks of both faces, warping them in such a way that the corresponding

landmarks are aligned, and finally performing blending.

During the warping stage, a triangulation procedure [67] is used to align the

corresponding triangles of both images through a geometric transformation. One of

the commonly used triangulation approaches is the Delaunay triangulation, which

was introduced by Delaunay [68]. The technique is used to triangulate points on a

surface, maximizing the minimum angle between adjacent triangles.

One of the main challenges faced by landmark morphing approaches is the
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presence of visible artifacts in the resulting images. Seibold et al. [69] observed that

morphed images often suffer from blurring and suboptimal image quality. To address

this issue, the authors proposed the use of a conventional style transfer algorithm

using a pre-trained CNN network to improve the quality of morphed images.

Motivated by the aforementioned challenges, the adoption of deep learning tech-

niques has gained significance, leading to the emergence of approaches such as Gen-

erative Adversarial Networks (GANs). In these approaches, morphed images are

generated by sampling two face images from the latent space rather than the pixel

space, which means that in the end, the morphed images are generated at the rep-

resentation level instead of the image level.

The concept of GAN was first introduced by Goodfellow et al. [70] in a method

that involved training two multilayer perceptrons simultaneously in order to mini-

mize the loss function of the generator and maximize the loss function of the dis-

criminator.

Damer et al. [71] inspired by the work of Dumoulin et al. [72] proposed one

of the most emblematic GAN approaches for generating morphed faces, called Mor-

GAN. In this approach, the authors transformed the images into latent representa-

tions via a variational autoencoder, averaged these latent domain representations,

and finally fed the generator with the resulting morph latent representation.

Later, building upon the MorGAN approach, Damer et al. [73] introduced a

novel method to improve the realism of the generated images using cascading multi-

ple GAN models. The motivation behind this approach arises from the observation

that existing GAN models can generate realistic images but often lack fine detail and

high-frequency components. By employing this approach, the authors demonstrate

a significant improvement in the realism of the morphed images, making them more

difficult to detect.

Venkatesh et al. [74] performed a comparison between two main approaches

for face morphing: GAN and landmark-based methods. The authors observed that

morphed faces generated by GAN did not exhibit blending artifacts, which was a

limitation of landmark-based methods. However, the morphed faces generated by

GAN were easier to detect due to the presence of characteristic noise. As a result,

the authors concluded that, at that time, conventional methods had an advantage

over GAN approaches.

In 2019, Karras et al. [25] introduced the StyleGAN architecture, which aimed

to improve the quality and diversity of generated images by expanding the original

GAN framework. The key idea of the StyleGAN approach is the utilization of a

latent intermediate space, enabling controlled modifications in the image generation
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process. In a more detailed manner, instead of generating images based on a fixed

set of features, as in traditional GANs, StyleGAN generates images based on a set

of learned styles, resulting in the generation of images that exhibit a wide range of

styles and features.

Several new approaches have been inspired by the StyleGAN architecture. Ab-

dal et al. [75] proposed the Image2StyleGAN approach, to map a given image into

the latent space of StyleGAN. In the specific case of morphing purposes, Zhang et

al. [76] introduced the MIPGAN approach. In this approach, morphed images were

obtained using an architecture with a modified loss function. The main idea was the

introduction of identity priors and perceptual quality information. These identity

priors were learned through a pre-trained FR task.

Recently, Damer et al. [77] suggested the utilization of diffusion autoencoders

to generate morphed images in a project called MorDIFF. The paper compares the

proposed technique with a wide range of existing image-level and representation-level

morphing methods. The motivation for the use of diffusion autoencoders arises from

the limited reconstruction fidelity of GAN architectures during the interpolation

process in the latent space.

All the papers cited in this section are summarized in table 3.2.

Table 3.2: Summary of the papers related to face morphing generation approaches
cited in section 3.2

Approach Reference Methodology

Landmark-based

Approach

Ferrara et al. [61] Face morphing operation in

a semiautomatic way

Seibold et al. [69] Improvement in landmark

morph quality using using

Style-transfer techniques

GAN-based Approach

Damer et al. [71] MorGAN approach

Damer et al. [73] Enhancing the realism of

GAN images using cascad-

ing models

Venkatesh et al. [74] Landmark vs GAN-based

approaches

Karras et al. [25] StyleGAN approach

Abdal et al. [75] Image2StyleGAN approach

Zhang et al. [76] MIPGAN approach
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Damer et al. [77] MorDIFF approach to over-

come GAN limitations

3.3 Face Morphing Attack Detection

Several research projects relating to Morphing Attack Detection (MAD) have

been supported by the European Union and National Research Council [5], such

as Integrated Monitoring, Analysis and Response System (iMARS) [78], in which

Imprensa Nacional-Casa da Moeda (INCM) is a partner, and Securing Online Trans-

actions against MitM Fraud (SOTAMD) [79]. These programs emphasize the signif-

icance of researching and developing approaches for the detection of face morphing

attacks, which can significantly impact the FRS’s security.

Depending on the processing scenario, two methodologies can be distinguished:

non-reference or reference-based, as presented in section 2.5.

3.3.1 Single Morphing Attack Detection

The Single Morphing Attack Detection (S-MAD) or non-reference based refers

to techniques that can detect a morphed image without requiring a direct compar-

ison with an authentic reference image. Instead, detection is based solely on the

inherent characteristics of the transformed image itself, such as visual artifacts or

inconsistencies.

Handcrafted Feature-based Approaches

One of the earlier approaches to dealing with S-MAD was proposed by Raghaven-

dra et al. [80]. The goal was to utilize a descriptor based on Binarized Statistical

Image Features (BSIF) and determine whether a face was morphed or bonafide using

linear Support Vector Machine (SVM). Several other techniques based on texture

features have been proposed using LBP [81] and Local Phase Quantization (LPQ)

[82] image descriptors.

The quality of the image can also influence the detection, and in this sense,

the quantification of image degradation can be performed. Scherhag et al. [83]

explored the potential of utilizing Photo Response Non-Uniformity (PRNU) sensor

noise for detecting morphed images. The method involves an analysis in both the

spatial and frequency domains. The authors observed that in the spatial domain,

the distribution of sensor noise in morphed images was compressed compared to
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genuine images. Additionally, in the frequency domain, morphed images exhibited

a reduced coverage of large magnitudes when compared to genuine images.

Zhang et al. [84] proposed a method motivated by image source identification

using Fourier Spectrum Of Sensor Pattern Noise (FS-SPN). The idea behind this

approach was based on the fact that bonafide and morphed face images were gener-

ated from different image acquisition pipelines. Therefore, by finding the difference

in Sensor Pattern Noise (SPN), it was possible to detect the face morph image.

Venkatesh et al. [85] proposed the identification of morphed face images using

residual color noise. In the method, the authors employed a deep CNN-based denois-

ing network to obtain the residual noise and effectively quantify the noise patterns.

Then the Pyramidal Local Binary Pattern (P-LBP) descriptor was used to extract

distinctive features.

Deep Learning-based Approaches

In recent works, deep learning has been extensively utilized in the MAD field.

Raghavendra et al. [86] proposed one of the pioneering approaches that used fea-

tures extracted by pre-trained Deep Convolutional Neural Network (DCNN) in FR

contexts, such as VGG-19 and AlexNet architectures [42]. Those features were sub-

sequently employed for classification using the Probabilistic Collaborative Repre-

sentation (P-CRC) method. The paper also reported successful results in detecting

morphed face images, including digital and print-scanned samples.

Seibold et al. [87] proposed a deep learning morphing attack detection approach

using morphed faces during the training in a different manner. The core of the

approach was the adaptation of existing deep learning classification approaches to

solve the specific problem of face morphing detection. The authors concluded from

the work that the features learned for object classification were effective in detecting

morphing attacks.

Neto et al. [88] proposed the OrthoMAD approach. The approach uses a

new regularization term to incorporate the identity information existing in both

contributing images and, in addition, proposes the creation of two orthogonal latent

vectors.

Recently, Medvedev et al. [89] introduced the MorDeephy method, which em-

ploys a fused classification approach to generalize morphing detection to unseen

attacks. The proposed methods reached the second position worldwide in the Face

Recognition Vendor Test (FRVT) MORPH National Institute of Standards and

Technology (NIST) benchmark test [90], and inspired by that, this dissertation will
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follow the authors’ methodology.

3.3.2 Differential Morphing Attack Detection

The Differential Morphing Attack Detection (D-MAD) or reference-based refers

to techniques that involve a direct comparison between the suspicious face morphed

image and a reference face image.

Feature Comparison-based Approaches

The basis of feature comparison-based approaches is to compare feature vectors

generated from reliable live captures with vectors extracted from possible morphs.

Scherhag et al. [91] proposed a method that involves extracting facial landmarks

from the input image and computing a similarity score between the landmarks of

the input image and the landmarks of a reference/genuine image.

Damer et al. [92] proposed a method that by analyzing the directed distances

of face landmark displacements attempts to detect face morphing attacks.

Overall, the extraction of the features can also be performed using deep learning

approaches. Scherhag et al. [93] extracted feature embeddings from the ArcFace

model trained for a FR task and then classified them as bonafide or morphed.

Soleymani et al. [94] explored the use of a deep Siamese network to obtain

feature embeddings. The objective was to compute the distance between embeddings

using contrastive loss, which tends to group similar images closer into a common

latent subspace, while pushing dissimilar images further apart.

Demorphing Approaches

The face demorphing technique is based on reversing the morphing process.

Ferrara et al. [95] pioneered the introduction of the concept of face demorph-

ing. In this approach, a potentially morphed image stored within the document

is demorphed (reverted) as a way to determine the true identity of the document

owner by comparison with the live (genuine) image. Subsequent studies evaluated

the robustness of face demorphing by examining its effectiveness in the presence of

various facial appearance variations [96].

More recently, Peng et al. [97] introduced a method called Face Demorphing

GAN (FD-GAN) that utilizes GANs to demorph the accomplice’s facial image. This

approach employs an autoencoder architecture to effectively reverse the morphing

process and generate a facial image that closely resembles the original appearance.
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Ortega-Del-Campo et al. [98] also proposed a novel demorphing-based approach

using a CNN to detect morphing presentation attacks in a real Automatic Border

Control (ABC) system.

All the papers cited in this section are summarized in table 3.3.

Table 3.3: Summary of the papers cited in section 3.3 regarding MAD.

Approach Reference Methodology

Handcrafted

feature-based

(S-MAD)

Raghavendra et al.

[80]

BSIF feature approach

Scherhag et al. [83] PRNU analysis

Zhang et al. [84] Image source identification using FS-

SPN

Venkatesh et al. [85] P-LBP image descriptors

Deep

learning-based

(S-MAD)

Raghavendra et al.

[86]

Deep features using a transfer CNN

learning approach

Seibold et al. [87] DNN based morphing detecting

Neto et al. [88] OrthoMAD approach

Medvedev et al. [89] MorDeephy approach

Feature

comparison-

based

(D-MAD)

Scherhag et al. [91] Facial landmarks comparison between

the genuine and morphed images

Damer et al. [92] Feature-based approach using dis-

tances between the landmarks.

Scherhag et al. [93] Feature-based approach using ArcFace

model feature embeddings

Soleymani et al. [94] Feature-based approach using a

Siamese network

Demorphing

(D-MAD)

Ferrara et al. [95, 96] Potential morph image reversion to

identify the true identity of the owner

of the document

Peng et al. [97] FD-GAN approach

Ortega-Del-Campo et

al. [98]

Demorphing using CNN

3.4 Available Datasets

Currently, a majority of state-of-the-art FR methods rely on data-driven ap-

proaches. In this sense, datasets are a critical factor in the development of new
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methodologies and are also used as benchmarks for system validation. Many of

them are accessible to the public and can be utilized for non-commercial research

purposes. However, the vast majority are restricted to use by large companies that

typically collect private datasets.

Table 3.4 schematically summarizes common datasets for FR training and

benchmarking.

Table 3.4: Sample datasets for face recognition training and benchmarking.

Dataset Name Description Is it pub-

lic ?

CASIA-

WebFace

[99]

494.4K images of 10.5K identities

The dataset exhibits a wide range of variations in

terms of age, gender, pose, expressions, and illu-

mination. The images have high quality, good res-

olution, and minimal artifacts.

Yes

Labelled Faces

in the Wild

(LFW)[100]

13.2K images of 5.7K identities

The dataset includes images with different lighting

conditions, poses, expressions, and ages, as well as

strong occlusions and low resolution.

Yes

YouTube faces

(YTF) [101]

3.4K images of 1.5K identities

The dataset includes images with a significant de-

gree of variability in terms of pose, expression, and

lighting. These images were extracted from videos

in which individuals performed several activities.

Yes

CelebA [102] 202.5K images of 10.1K identities

The dataset includes images taken from the web

with a wide range of poses, expressions, and back-

grounds.

Yes

VGGFace2

[103]

3.3M images of 9.1K identities

The dataset includes images with very low label

noise, high pose diversity, and age diversity. The

images exhibit high quality, with good resolution

and minimal artifacts.

Yes

Microsoft

Celeb (MS-

Celeb-1M)

[104]

10M images of 100K identities

The dataset contains a diverse set of different indi-

viduals, including people of different ages, genders,

and ethnicities.

No
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IMDB-Face

[105]

1.7M images of 59K identities

The dataset is noise controlled with variable reso-

lutions and aspect ratios.

No

Face Recog-

nition Grand

Challenge

(FRGC) [106]

50K recordings

The dataset contains 2 uncontrolled still images

and 4 controlled still images for each individual.

Yes

Extended

M2VTS

(XM2VTS)

[107]

13K images of 295 identities

The dataset includes images taken over a period

of four months from recordings with speaking and

a rotating head shot.

Yes

Notre Dame

(ND) Twins

[108]

15K images of 1500 pairs of twins

The dataset contains variations in pose, expres-

sion, lighting, and image quality, along with the

presence of glasses, hats, and other accessories.

No

Face Recogni-

tion Technol-

ogy (FERET)

[109, 110]

11K images of 994 identities

The dataset includes different head poses with

variations in lighting and facial expression.

Yes

AR Face [111] 4k images of 126 identities (70 male and 56

female)

The dataset includes images with various facial

expressions and facial occlusions caused by acces-

sories such as sunglasses and scarves.

Yes

Psychological

Image Collec-

tion of Stirling

(PICS) [112]

Collection of several datasets.

Aberdeen: 687 color faces of 90 individuals with

some variations in lighting, 8 have varied viewpoint

Utrecht: 131 images, 49 men, 20 women, usually

a neutral and smiling face for each.

Yes

FEI Face [113] 2.8K images of 200 identities

The dataset is gender balanced and presents a ho-

mogeneous white background where all subjects

assume a frontal position with variations in profile

rotation.

Yes
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IMM Face [1] 240 images of 40 identities (33 male and 7

female)

The dataset contains annotated monocular images

of different frontal faces.

Yes

Georgia Tech

Face (GTDB)

[60]

150 images of 50 identities

The dataset includes images with diverse, clut-

tered backgrounds, capturing subjects in vari-

ous frontal poses with different facial expressions,

lighting conditions, and scales.

Yes

Ethnic Fa-

cial Images

of Ecuado-

rian People

(EFIEP) [114]

5.4K images of 180 identities

The dataset contains frontal images without fa-

cial occlusions. The faces are associated with vari-

ous ethnic groups in Ecuador, and they have white

backgrounds.

Yes

MIT-CBCL

[115]

10K images of 500 identities

The dataset includes both indoor and outdoor im-

ages with variations in lighting conditions, facial

expressions, poses, and cluttered backgrounds.

Yes

Face Research

Lab London

(FRLL) Set

[116]

16K images of 102 identities

The dataset includes images of individuals of

different ages, ethnicities and genders captured

on white backgrounds with clearly visible frontal

faces.

Yes

Young La-

beled Faces

in the Wild

(YLFW) [117]

10K images of 3K identities

The dataset contains images of children between

the ages of 4 and 13, presenting a diverse repre-

sentation of races and ethnicities.

Yes

As mentioned in the previous sections, the face morphing approach leads to the

appearance of misleading images. For that reason, the creation of morphing-specific

datasets often raises ethical concerns, making most existing datasets private and not

accessible for non-commercial use.

Table 3.5: Sample morph datasets for face recognition training and benchmarking.

Dataset Name Description Is it pub-

lic?
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FRGC-MORPHS

[118]

Dataset of morphed faces selected from the

publicly available FRGC [106] dataset. The

morphs were generated with the OpenCV

[65], FaceMorpher [66], and StyleGAN2 [119]

tools.

No

FRLL-MORPHS

[120]

Dataset of morphed faces based on images

selected from the FRLL dataset [116]. The

morphs were generated using the following

morphing tools: OpenCV [65], FaceMor-

pher [66], StyleGAN2 [119] and WebMorpher

[121].

Yes

FERET-MORPHS

[122]

Dataset of morphed faces selected from the

FERET dataset [109, 110]. The morphs were

generated with the OpenCV [65], FaceMor-

pher [66], and StyleGAN2 [119] tools.

No

Dunstone [123] Dataset of standard morphed facial images

based on the well-known FERET dataset

[109, 110].

No

3.5 Discussion on the State of the Art

Over time, FR approaches have witnessed substantial advancements in terms of

performance and accuracy. From a general point of view, a FRS can be represented

in a generic pipeline that includes several essential steps, including face detection

and alignment, as well as face representation and classification tasks.

Regarding face representation, initial approaches relied on the geometry, seman-

tics, and texture of the faces (handcrafted features). However, the inherent variabil-

ity of faces, including factors such as facial expressions, aging, lighting conditions,

and head rotation, has resulted in an increased focus on developing technologies

that can effectively handle unconstrained scenarios, leading to the introduction of

deep learning approaches.

Currently, motivated by the need to address real-life situations, the vast ma-

jority of FRS have adopted the integration of CNN as part of their pipeline. The

main purpose is to obtain a face representation that can handle complex variations

within individuals, i.e., learn highly discriminative face embeddings. For some time,

the emphasis was on the search for optimal architectures, many of which are used

40



3. State of the art

in most current approaches.

Currently, modifying and improving the loss function formulation has also been

the focus in the development of FR techniques as a way to increase the discriminative

power of features extracted from the deep networks.

In the case of classification approaches, methods based on softmax-based loss

functions achieve the best results in terms of performance. However, margin-based

loss functions have been introduced to improve accuracy by increasing inter-class

variance and intra-class compactness. Additionally, adaptive loss functions have

been developed to incorporate adaptiveness into the margin based on the quality of

the input image.

From another perspective, the overall imperfection of FRS and their proba-

bilistic nature make them targets for various types of attacks, in particular face

morphing.

The morphing generation was introduced with the concept of landmark-based

approaches, which focus on manipulating the key facial points of each contributing

face. However, due to the presence of some imperfections, often associated with

blending artifacts, over time they have been replaced by approaches based on the

use of deep learning, in particular GAN. Despite the greater realism of the images,

the process of image generation inadvertently introduces specific characteristics into

the images, making them more susceptible to detection.

The problems associated with the typology of face morphing attacks reinforced

the need to adopt detection techniques in order to prevent criminal attacks and fraud

attempts on FRSs. As a result, there has been significant attention and interest in

the field of MAD.

Depending on the security application scenario, MAD methods can be classified

into two types: S-MAD and D-MAD, which generally differ by the presence of a

reference image.

In S-MAD, the fact that there is no reference image for comparison makes the

detection challenge greater. Algorithms typically rely on analyzing features of the

image itself, such as visual artifacts or inconsistencies, to determine whether or not

the image is morphed.

In the case of D-MAD, the approaches are based on comparing feature vectors

extracted from the suspect image and a reference image or using reverse morphing

(demorphing) techniques for detection purposes.

Despite the emergence of various approaches, MAD approaches still face several

challenges and unresolved questions.
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In general, during the training procedure, the majority of approaches utilize

small datasets of faces that do not incorporate a significant number of morphed

faces, which limits the performance of the models.

On the other hand, the testing phase is most often implemented in closed-

set scenarios, where the models tend to perform well because the test and the train

images share the same type of morphed data. However, such a scenario is unrealistic,

and it is essential to extend MAD approaches to open-set scenarios where unseen

data is used.

In the process of issuing identity credentials, such as passports or Identity Docu-

ment (ID) cards, printed or scanned (re-digitized) face images are often used. These

printed images can also be manipulated, i.e., can be morphed images, and in that

sense, investigating the performance of MAD algorithms in such cases is crucial.

All this highlights the need for further research and development to address

these limitations and improve the effectiveness of detection methods.
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Methodology

In this chapter, a detailed explanation of the procedures performed will be

presented.

4.1 Source Data Curating

The academic community is currently facing a challenge due to the limited

availability of large datasets that conform to the International Civil Aviation Orga-

nization (ICAO) guidelines. In response to this problem, a strategy was developed

based on the aggregation of several datasets, both public and private.

During the dataset selection process, priority was given to datasets with a larger

number of images per identity. As a result, the following datasets were chosen:

FRGC [106], XM2VTS [107], ND Twins [108], FERET [109, 110], AR Face [111],

PICS [112], FEI [113], IMMFD [1], and GTDB [60]. A summary of these datasets

can be found in table 3.4.

Before combining all the datasets, a pre-processing step was required, taking

into account the suitability criteria for application in face morphing. In other words,

images that were considered unsuitable for performing the face morphing task, such

as non-frontal images or images with evident face occlusions, were removed. In the

specific case of the ND Twins dataset, only one of the twins was considered due to

their striking resemblance, which remains an unsolved challenge in terms of Face

Recognition (FR).

As a result of combining and pre-processing all these datasets, the ICMD

dataset emerged, which contains over 50k images of more than 2500 individuals.

Figure 4.1 shows representative images of each of the datasets.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(a) FRGC | (b) FERET | (c) XM2VTS | (d) AR Face | (e) GTBD | 

(f) IMMFFD | (g) ND Twins | (h) PICS | (i) FEI

Legend:

Figure 4.1: Sample images from each of the datasets used to generate the ICMD
dataset.

4.2 Morphed Image Generation

In chapter 2, two methods for generating morphs were introduced: landmark-

based and deep learning-based approaches. The idea of this dissertation is to use

both. In the case of the deep learning approach, StyleGAN [25] is the chosen ap-

proach.

4.2.1 Landmark-based Approach

As presented in figure 2.7, the landmark-based approach involves using facial

landmarks to establish a correspondence between specific points on two or more

faces. These landmarks are then used to perform a triangulation process, creating

a mesh that connects these points.

One problem associated with the triangulation step is that it is performed not

only with the reference points, but also using the borders of the image. On images

with a large margin of edges indicating that the face is not centrally located in the

image, this inclusion of the edges can cause problems with context distortion, as

shown in figure 4.2.
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Consequently, a pre-processing step was performed on the images before gener-

ating the morphs.

Warping and Blending

Warping and Blending

Context Restoring

Figure 4.2: Distortion problem in landmark-based approach.

This pre-processing step consisted of cropping the original images, taking into

account a well-defined proportion given by the “face contour/image” area, and con-

sidering the tip of the nose as the center of the image. The value chosen for the

proportion was 1/8, which is used to correct the scale of the detected face region

in the image to a more meaningful value. To obtain the new image dimensions,

the square root of the resulting scaled area was applied. The face contour area is

associated with the detection of the 68 landmarks [23].

Finally, to handle cases where the extracted region (crop) exceeded the image

boundary, the image was padded using the reflection of the boundary pixels to ensure

that the output size matched the desired dimensions.

Resulting Image

Crop based on the 

proportion

Initial Image Facial Mask

1( A  represents the area)

Figure 4.3: Pre-processing pipeline to deal with the distortion problem.

In the morphing generation process, it was necessary to take into consideration
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the correct labeling of the classes (identities). The motivation comes from the fact

that the resulting morphed image belongs to both source identities, i.e., it simulta-

neously has two class labels associated with it. This would cause ambiguity about

the correct labeling of the classes in the models used in this dissertation, which in

turn will be described in the sections 4.4 and 4.5.

In that sense, and following the idea proposed by Medvedev et al. [89], the

pre-processed ICMD dataset was split into two halves, and pairs of images were

generated from each half. Then each generated image was labeled based on the

corresponding sub-list for further classification.

Morphed images were then generated for each pair, resulting in a final dataset

with about 49K images.

4.2.2 StyleGAN Approach

In the case of the StyleGAN approach, a similar split and pairing approach was

followed, maintaining the same identity separation performed in the landmark-based

approach but regenerating the paring to diversify the morphs. Morphed images were

then generated for each pair, resulting in a final dataset with about 49K images.

GeneratorEmbedding Blending

Handelling with 

Background

{ 0.2, 0.6, 0.25, (...) }

{ 0.1, 0.5, 0.81, (...) }

Resulting Image

{ 0.15, 0.55, 

0.53, (...) }

174.88   25.2126 

162.288  347.587

484.662  360.187

497.262   37.813

Quad

+

Figure 4.4: StyleGAN interpolation pipeline.

The process of generating a morphed image involved interpolating the embed-

dings into the latent domain, which represents a high-dimensional vector space where

each dimension corresponds to different features or attributes of the generated data.

These latent variables are commonly sampled from a probability distribution (Gaus-

46



4. Methodology

sian) and are then used as inputs to the Generative Adversarial Network (GAN)

generator.

During the interpolation procedure, a linear interpolation is calculated between

the two latent vectors, which ensures that the interpolated embeddings lie in a

straight line within the latent space. In this sense, the linearity of the latent domain

is crucial to allowing a smooth transition between faces during the face morphing

process.

After generating the image, a context restoring step was also performed, replac-

ing the background of the generated image with the original. This was done using a

mask to isolate the face region in the generated image and a vector known as quad

representing the coordinates of a quadrilateral surrounding the face in the original

image, which is used to preserve the original background region.

4.2.3 Selfmorph Approach

One of the drawbacks associated with landmark-based morphed images is the

presence of artifacts, including ghosting, noise, and blur. These artifacts can have

a significant impact on the quality and reliability of morph images, making them

easier to identify for both humans and FR algorithms.

On the other hand, the training procedure becomes unrealistic and biased by

focusing on learning these artifacts. Thus, to generalize the detection performance

and reduce overfitting due to artifact detection, selfmorphs [124] were generated.

As the name suggests, selfmorphs are generated using images of the same in-

dividual, resulting in a final image that still represents that original individual.

Therefore, the difference in the image is solely attributed to morphing artifacts and

not due to different identities, as would be the case in traditional morphing scenarios.

Given this context and following the idea proposed by Medvedev et al. [89],

in this dissertation selfmorphs were considered bonafide images. This allowed pri-

oritizing detection based on the behavior of deep features over artifact detection,

following the assumption that these discriminative features are maintained after the

selfmorphing procedure.

Figure 4.5 schematizes a practical example of a morph image in each of the

approaches mentioned above.
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Figure 4.5: Samples of morph images for each approach. Order:
StyleGAN-based, landmark-based (LDM), LDM selfmorph and finally StyleGAN

selfmorph approach.

Analyzing the images, it can be observed that there are visible artifacts in the

landmark approach, while the StyleGAN approach presents a more realistic image.

In the case of selfmorphs, the final identity is preserved.

4.3 Alignment Settings

The main purpose of this dissertation is to evaluate the influence of an image’s

context on the detection of morphing attacks. In this sense, different alignment

conditions were defined in order to vary the relationship between the face and the

background of the image.

Figure 4.6: Facial image aligned according to the different alignment settings.

Related to the alignment procedure, initially, face detection was accomplished

by utilizing the Multi-Task Cascaded Convolutional Neural Network (MTCNN) al-

gorithm [125] which as input receives a face image and provides a set of facial

landmarks ({left eye}, {right eye}, {nose}, {left mouth corner}, {right mouth cor-

ner}), a face bounding box, and a confidence score that reflects the level of certainty

regarding the validity of the identified face points.
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The face alignment was then performed by applying a rigid transformation to

minimize the coordinate distance between those five facial landmarks (red points

in figure 4.7) and a predefined set of target coordinates (blue points in figure 4.7),

which for the resulting image size 112×112 can be defined as {{38.2, 41.7}, {73.5,
41.5}, {56.0, 61.7}, {41.5, 82.4}, {70.7, 82.2}}) [55].

The specific settings used in the alignment procedure involved scaling this target

coordinate set using several scale factors, which are presented in table 4.1. It is

important to highlight that, as a final result, all images were set to 300 × 300

pixels.

On the other hand, it was also necessary to take into account possible prob-

lems in the face detection process, where two typical scenarios can appear: 1) Face

detection failure or 2) Multiple face detection.

In the first case, a crop was performed using the same scale factor in order to

replace the conventional alignment. In the second case, the central face was selected,

and the alignment followed the general procedure.

Final Landmarks

Transform and 

Resize

Initial Landmarks

Figure 4.7: Alignment procedure pipeline.

For each selected scale factor, in table 4.1 the respective indicative ratio of the

face’s occupancy area in the image under each alignment condition is presented. This

value represents the ratio of the face area, limited by a face contour (determined by

the detection of 68 landmarks [23]) to the full image area.

Table 4.1: Summary table of all alignment conditions with their respective scale
factors and ratios.

Alignments a b c d e f g h i j k
Scale Factor 1.65 1.40 1.10 1.00 0.90 0.85 0.80 0.75 0.70 0.65 0.60

Ratio 0.15 0.21 0.34 0.42 0.51 0.56 0.62 0.70 0.77 0.86 0.94
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4.4 Single Image MAD Approach

In this dissertation, the no-reference face morphing detection was approached

using two variations: the fused classification approach and the binary classification

approach.

4.4.1 Fused Classification Model

To implement this approach, the method proposed by Medvedev et al. [89] was

followed.

The pipeline involves training two networks simultaneously, which are specif-

ically designed to learn high-level identity discriminative features by performing

classification tasks. These features can then indicate the presence of face morphing.

In the section 4.2, a labeling strategy for morphs was described, which basically

involves paring images between two different sub-lists. In this setup, each network

labeled the morphs accordingly with that sub-list, i.e., First network considers the

first source image from each pair (first sub-list) and the Second network the second.

For bonafides images, the original label is duplicated.

Beyond that, the extracted features are compared using a similarity metric

(based on the dot product), which represents the morphing detection score. The

notations ˙value and ¨value are used to simplify the representation for the First and

Second networks, respectively.

The overall pipeline is depicted in figure 4.8.

Morphing

y=n00000002

y=n00000005

y=n00000002
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Batch 1
(morph)

y=n00000002
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Figure 4.8: Single Morphing Attack Detection (S-MAD) model schema for fused
classification approach. In order to simplify the visualization, a single image is

shown per batch.
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Revisiting the formula 3.1 the training process is regularized by the losses:

L1 = − 1

N

N∑

i

log(
eẆ

T
ẏi
ḟi+ḃẏi

∑C
j eḟẏj

) (4.1)

L2 = − 1

N

N∑

i

log(
eẄ

T
ÿi
f̈i+b̈ÿi

∑C
j ef̈ÿj

) (4.2)

where fi represents the deep features of the i-th sample, yi represents the class

index of the i-th sample, W represents the weights, b represents the biases of the

last Fully Connected (FC) layer, N represents the number of samples per batch, and

C represents the total number of classes (identities).

The morphing detection score is computed by taking the dot product of the

backbone outputs (ḟ · f̈) and is then activated using the sigmoid function. The loss

function is defined as binary cross entropy.

L3 = − 1

N

N∑

i

t log
1

1 + e−f̈ ·ḟ
+ (1− t) log

(
1− 1

1 + e−f̈ ·ḟ

)
(4.3)

where t represents the ground truth label, which is obtained by comparing the input

class labels (ẏi and ÿi).

t = 1− |sgn(ẏi − ÿi)| (4.4)

Note that, for simplicity, the index i relative to the i-th sample has been omitted

in (ḟ · f̈).
The optimization process involves combining the individual losses (L1, L2, L3)

as a weighted sum, resulting in an overall loss (denoted as L). By minimizing

this loss configuration, the model learns discriminative facial features for effective

morphing detection.

L = α1L1 + α2L2 + βL3 (4.5)

The values of α1, α2 and β control the weight of each loss function in the final

minimization.

4.4.2 Binary Classification Model

Assuming the mathematical formulation of the model described in subsection

4.4.1, a modification was implemented to perform binary classification (morph or

non-morph) using a single network. From a general standpoint, this modification
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involves removing the identity classification component present in the fused classi-

fication approach.

The training process is then regularized only by the binary cross-entropy loss

L = L3, depicted in the formula 4.3. However, in this particular case, the input for

this loss is not the dot product of the backbone outputs (ḟ · f̈) from both networks

but rather the output of the single network f .

The model pipeline is presented in figure 4.9.

Morphing

y=n00000002
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Alignment a
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Figure 4.9: S-MAD model schema for binary classification approach. In order to
simplify the visualization, a single image is shown per batch.

4.5 Differential MAD Approach

In a reference-based scenario, Morphing Attack Detection (MAD) was approa-

ched through a fused classification schema similar to the one presented in S-MAD

case. However, in this particular case, the First and Second networks do not receive

the same single image, and an image pair is used.

The First network receives the “enrolled image”, which may or may not be a

morphed image, while the Second network receives the “live capture image”, which

is always bonafide. The output of each backbone (feature vector) represents the

respective input image. In relation to the mathematical formulation, it is identical

to the one presented for the S-MAD case in subsection 4.4.1.

The model pipeline is presented in figure 4.10.
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Figure 4.10: Differential Morphing Attack Detection (D-MAD) fused
classification approach schema. In order to simplify the visualization, a single
image pair is shown per batch. Note that each image has two identity labels y1

and y2.

To obtain the Complementary Image (CI), that feeds the Second Network, a

list of matches was created based on label similarity and the requirement that only

non-morph images are accepted (“live capture image”). Then, the CI was selected

based on the first label, which should be identical to the first label of the image

processed by the First network. Although the formulation is identical to the S-

MAD fused classification case, it should be noted that the L1 loss computation is

done based on the first label of the image processed by the First network, and the

L2 loss is computed based on the second label of the image processed by the Second

network.

4.6 Benchmarking

Evaluation benchmarks have the function of providing valuable insights about

the performance of a particular model. However, the main problem in MAD field is

that for research purposes, the existence of public benchmarking protocols is limited.

For those that exist, such as the Face Recognition Vendor Test (FRVT) National

Institute of Standards and Technology (NIST) MORPH [90] and the FVC-onGoing

MAD [126], have a number of submission restrictions.
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The idea for this dissertation was to use a series of protocols using various

public datasets with the goal of performing robust benchmarking to evaluate and

compare the performance of different models with different parameters. For that

purpose, the open-source morphing benchmarking utilities 1 were employed with

some modifications.

The default suggested protocols involved sharing images with our training data.

Therefore, a modification was made by replacing the subset bonafide images with

FRLL-Set [127], PICS-Utrecht [112], EFIEP [114] and MIT-CBCL [115]. Related

to morphs FRLL-Morphs [120] and Dustone [123] were used.

The protocols are described schematically in table 4.2. It should be noted that

all the protocols share the same list of bonafide images.

Table 4.2: Benchmark protocols for both single and differential cases.

Name S-MAD D-MAD

protocol-asml ∼ 2k morphs (FRLL-

Morphs) ; <1k bonafides

(FRLL-Set + Utrecht +

MIT-CBCL + EFIEP)

∼ 4.3k (FRLL-Morphs

vs FRLL-Set) and ∼
60 (Utrecht vs Utrecht)

and ∼ 100 (FRLL-Set vs

FRLL-Set)

protocol-

opencv

∼ 1.3k morphs (FRLL-

Morphs) ; <1k bonafides

(FRLL-Set + Utrecht +

MIT-CBCL + EFIEP)

∼ 2.4k (FRLL-Morphs

vs FRLL-Set) and ∼
60 (Utrecht vs Utrecht)

and ∼ 100 (FRLL-Set vs

FRLL-Set)

protocol-real ∼ 3k morphs (Dustone

+ FRLL-Morphs) ; <1k

bonafides (FRLL-Set +

Utrecht + MIT-CBCL +

EFIEP)

protocol-

facemorpher

∼ 2k morphs (FRLL-

Morphs) ; <1k bonafides

(FRLL-Set + Utrecht +

MIT-CBCL + EFIEP)

∼ 2.4k morphs (FRLL-

Morphs) and ∼ 60 (Utrecht

vs Utrecht) and ∼ 100

(FRLL-Set vs FRLL-Set)

1https://github.com/iurii-m/MorDeephy.git

54



4. Methodology

protocol-

webmorph

∼ 1k morphs (FRLL-

Morphs) ; <1k bonafides

(FRLL-Set + Utrecht +

MIT-CBCL + EFIEP)

∼ 2.4k morphs (FRLL-

Morphs) and ∼ 60 (Utrecht

vs Utrecht) and ∼ 100

(FRLL-Set vs FRLL-Set)

protocol-

stylegan

∼ 2k morphs (FRLL-

Morphs) ; <1k bonafides

(FRLL-Set + Utrecht +

MIT-CBCL + EFIEP)

∼ 2.4k morphs (FRLL-

Morphs) and ∼ 60 (Utrecht

vs Utrecht) and ∼ 100

(FRLL-Set vs FRLL-Set)

In the case of D-MAD, the definition of image pairs was necessary. It was

determined that only the first image in each pair could be a morphed image.

The protocol names are based on how the morphs were generated, including

approaches like Style-GAN2 [119] (protocol-stylegan), WebMorph [121] (protocol-

webmorph), AMSL [128] (protocol-asml), FaceMorpher [66] (protocol-facemorpher)

and OpenCV [65] (protocol-opencv).

In terms of their characteristics, protocol-real and protocol-asml include morphs

that exhibit minimal visible blending artifacts, reflecting more realistic images for

human perception, protocol-facemorpher and protocol-opencv include simple morphs

that exhibit foreground and background artifacts. In protocol-webmorph, the arti-

facts are found dominantly in the background, which is possibly the most challeng-

ing.

Figure 4.11: Sample images from the benchmark protocols. The first row
contains morph images.
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4.7 Grad-CAM Approach

In addition to evaluating the model’s performance using the BPCER@APCER

metric, an analysis was also conducted to investigate the influence of different regions

of the input image on the final output prediction using the Gradient-weighted Class

Activation Mapping (Grad-CAM) technique [129].

Detailed modeling and explanation of this technique are out of scope for this

dissertation. However, from a general standpoint, Grad-CAM uses the feature maps

produced by the last convolutional layer of a Convolutional Neural Network (CNN).

Then, by projecting the weights of the output layer onto these feature maps, it is

possible to highlight the important regions in the input image.

4.7.1 Heatmaps Computation

Following the Grad-CAM approach, the main objective was to obtain a final

heatmap that highlights the important regions of the input image, providing valuable

insights into the decision-making process of the model.

Heatmap
Resulting Overlaid 

Image

Figure 4.12: Grad-CAM sample heatmap and its overlaid sample image.

In the models with two network backbones, the gradient for real binary classi-

fication (morph and non-morph) was computed by taking the dot product between

the feature embeddings with respect to the activations of the last convolutional

layers of both networks. On the other hand, in the case of a single network, the

model performs a regular classification task. In this case, the gradient was obtained

directly by tracking the activations of the predicted class.

In both cases, the gradients are separated into morph and bonafide cases. Thus,

in the end, for each benchmark protocol, two average heatmaps were obtained for

both morph and bonafide cases.

By visualizing each heatmap and overlaying it on the face image, the regions
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with more influence on the final result can be perceptually observed. However,

to provide a more rigorous analysis, the Average of the Gradient Intensity Ratio

(AGIR) (foreground/background) was computed in order to obtain a numerical value

instead of relying solely on the visual perception of activations. This procedure was

employed for all alignment conditions.

4.7.2 Average of the Gradient Intensity Ratio

The general idea was to overlay a mask on each heatmap, dividing it into

foreground and background regions. This way, it was possible to associate a certain

area of the heatmap with the respective part of the image and subsequently calculate

the average intensity of the gradient in that region. The pipeline is presented in

figure 4.13.

Estimate average 
intensity of gradient 
maps for foreground

Estimate average 
intensity of gradient 
maps for background

Average of the gradient 
intensity ratio 

(foreground/background)

Heatmap Facial Mask

Figure 4.13: Schematic representation of the methodology to obtain the average
intensity of gradient maps for the foreground and background and the respective

ratio.

To determine the facial contour for each image, 68 landmarks were used. Then

an average facial mask was computed for each benchmark protocol. It should be

noted that this was done for both bonafide and morph cases, i.e., as the final result

for each alignment condition and respective protocol, two binary average facial masks

were obtained.

After separating the gradient maps into two regions, the average gradient inten-

sity for each region was computed using only the non-zero pixels, which correspond

to the regions of interest defined by the respective masks. The final output is then

obtained by performing a simple ratio between the two average intensities.
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4.8 Architecture Choice

Given the objective of this dissertation, in training, an already well-defined

CNN architecture was used as the backbone. Following that, one of the first stages

was the choice of this architecture.

As depicted in chapter 3, ResNets are commonly used in most state-of-the-art

approaches. However, for this dissertation, the choice of architecture did not follow

the same path, since the one chosen was the EfficientNet [51], specifically version

B3, which achieves state-of-the-art 81.6% top-1 accuracy on ImageNet [130].

The motivation stems from the fact that EfficientNetB3 is an architecture that

exhibits higher accuracy than other neural network architectures while using fewer

computational resources. The superior performance of the network can be attributed

to its optimized use of parameters and the compound scaling method it employs.

Summing up, the EfficientNetB3 model enables increased network efficiency by op-

timizing its depth, width, and resolution.

4.9 Implementation Utils

Related to the code, the implementation was done in Python 3.8 using Tensor-

Flow 2.5. The training procedure was performed using NVIDIA RTX 3090 GPU.

Related to the model formulation, the EfficientNetB3 architecture was imported

from the Keras library, along with all of the activation functions used, namely sig-

moid and softmax.
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Experiments and Results

5.1 Training Settings

In the work developed, one of the crucial steps was the selection of the appro-

priate hyperparameters in order to optimize the model. To accomplish this, several

training sets were performed.

In all these experiments, as mentioned before, the backbone architecture used

was EfficientNetB3, initialized with weights pre-trained on the ImageNet dataset,

returning in the end 512 deep features. The batch size was set to 28 images. The

optimizer employed was stochastic gradient descent with a momentum parameter of

0.9.

It should be noted that these experiments were performed for only one of the

alignment settings and carried out specifically for the Single Morphing Attack De-

tection (S-MAD) fused classification approach. For the remaining models, the hy-

perparameters were set in a similar manner.

Revisiting equation 4.5, for effective convergence and further morphing detec-

tion, it was necessary to choose the appropriate balance among the components

of the loss function (α1, α2, and β). In that sense, different proportional settings

were tested. The performance evaluation was performed by analyzing the BonaFide

Presentation Classification Error Rate (BPCER) value by setting the Attack Pre-

sentation Classification Error Rate (APCER) value to 0.1 and 0.01.

It is important to highlight that in the context of S-MAD binary classification

approach, the weight loss parameters α and β are not relevant as they do not

contribute to the computation of the loss.
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Table 5.1: BPCER@APCER = (0.1, 0.01) of S-MAD fused model for various
weight loss proportions in different protocols. Considering α = α1= α2.

BPCER@APCER = δ

Weight Loss Protocol-asml Protocol-facemorpher Protocol-opencv Protocol-stylegan Protocol-webmorph Protocol-real

δ =0.1 δ =0.01 δ=0.1 δ=0.01 δ=0.1 δ =0.01 δ=0.1 δ =0.01 δ = 0.1 δ =0.0 δ = 0.1 δ = 0.01

α/β = 0.1 0.364 0.773 0.152 0.452 0.264 0.551 0.748 0.940 0.660 0.919 0.284 0.741

α/β =0.2 0.367 0.723 0.128 0.277 0.183 0.433 0.384 0.683 0.479 0.822 0.309 0.664

α/β =0.5 0.779 0.931 0.275 0.461 0.392 0.647 0.541 0.838 0.851 0.968 0.695 0.909

α/β =0.75 0.451 0.784 0.278 0.577 0.306 0.602 0.436 0.742 0.807 0.954 0.414 0.741

α/β =1 0.598 0.842 0.408 0.732 0.367 0.670 0.688 0.845 0.842 0.935 0.546 0.813

Figure 5.1: Detection Error Trade-off (DET) curves for various α/β values in the
different protocols.

Based on table 5.1, the value α/β=0.2 outperforms all others in the different

protocols, and is therefore the chosen value. The next step involved determining the

optimal number of epochs for the model. For that, the value α/β=0.2 was set, and

different epoch numbers were tested, with 5 being the chosen value (table 5.2).

Table 5.2: BPCER@APCER = (0.1, 0.01) of S-MAD fused model for various epoch
numbers in different protocols, fixing the value α/β= 0.2 for weight loss.

BPCER@APCER = δ

Epochs Number Protocol-asml Protocol-facemorpher Protocol-opencv Protocol-stylegan Protocol-webmorph Protocol-real

δ =0.1 δ =0.01 δ=0.1 δ=0.01 δ=0.1 δ =0.01 δ=0.1 δ =0.01 δ = 0.1 δ =0.0 δ = 0.1 δ = 0.01

5 0.446 0.798 0.106 0.297 0.200 0.464 0.592 0.887 0.633 0.906 0.355 0.736

10 0.695 0.926 0.174 0.541 0.297 0.658 0.817 0.922 0.837 0.979 0.594 0.915

15 0.421 0.811 0.122 0.414 0.208 0.577 0.577 0.817 0.834 0.972 0.324 0.763

60



5. Experiments and Results

Figure 5.2: DET curves for various epoch values in the different protocols, fixing
the value α/β= 0.2 for weight loss.

Similarly, after fixing both the previous values, different values for the initial

learning rate were also tested. Based on table 5.3 values, the best result was 0.075,

resulting in the choice of a learning rate that decays linearly from 0.075 to 1e-5.

Table 5.3: BPCER@APCER = (0.1, 0.01) of of S-MAD fused model for various
learning rate values in different protocols, fixing the value α/β= 0.2 for weight loss
and 5 for the number of epochs.

BPCER@APCER=δ

Protocol-asml Protocol-facemorpher Protocol-opencv Protocol-stylegan Protocol-webmorph Protocol-real

Learning Rate
δ =0.1 δ =0.01 δ=0.1 δ=0.01 δ=0.1 δ =0.01 δ=0.1 δ =0.01 δ = 0.1 δ =0.0 δ = 0.1 δ = 0.01

0.1 0.130 0.502 0.082 0.345 0.047 0.225 0.732 0.918 0.475 0.791 0.081 0.329

0.05 0.262 0.629 0.275 0.664 0.275 0.664 0.887 0.976 0.482 0.803 0.196 0.592

0.075 0.070 0.314 0.040 0.191 0.053 0.153 0.592 0.853 0.298 0.574 0.045 0.268

0.001 0.324 0.594 0.144 0.314 0.215 0.493 0.483 0.710 0.331 0.654 0.330 0.623

1eˆ-5 0.773 0.966 0.820 0.9779 0.835 0.993 0.920 0.994 0.716 0.972 0.820 0.984
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Figure 5.3: DET curves for various learning rate values in the different protocols,
fixing the value α/β= 0.2 for weight loss and 5 for the number of epochs.

Once the hyperparameters were defined, separate training experiments were

performed for each alignment setting (a to k) on the concatenated dataset, compris-

ing original images (ICMD dataset), landmark-based morphed images, StyleGAN

morphed images, and selfmorphs.

5.2 Benchmark Results

In this section, the performance results of both no-reference and reference mod-

els will be analyzed.

5.2.1 S-MAD Binary Classification Model

The S-MAD binary classification approach refers to the model where only a

single network was used in a straight binary classification task. The results related

to BPCER@APCER are presented in the following tables, as well as the respective

DET curves in figure 5.4.
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Table 5.4: BPCER@APCER = (0.1, 0.01) of S-MAD binary classification model
across all the alignment settings for each benchmark protocol.

BPCER@APCER=δ

Alignments

Protocol-asml Protocol-facemorpher Protocol-opencv Protocol-stylegan Protocol-webmorph Protocol-real

δ =0.1 δ =0.01 δ =0.1 δ =0.01 δ =0.1 δ =0.01 δ =0.1 δ =0.01 δ =0.1 δ =0.01 δ =0.1 δ =0.01

a 0.199 0.622 0.125 0.558 0.199 0.663 0.663 0.663 0.523 0.663 0.191 0.568

b 0.143 0.380 0.131 0.387 0.144 0.440 0.586 0.586 0.340 0.586 0.144 0.396

c 0.365 0.630 0.331 0.675 0.320 0.676 0.676 0.676 0.489 0.676 0.351 0.630

d 0.236 0.511 0.161 0.549 0.161 0.489 0.623 0.623 0.436 0.623 0.246 0.511

e 0.141 0.348 0.102 0.532 0.080 0.424 0.710 0.710 0.321 0.641 0.194 0.463

f 0.199 0.455 0.127 0.551 0.125 0.533 0.675 0.675 0.328 0.579 0.215 0.478

g 0.158 0.373 0.106 0.532 0.209 0.532 0.586 0.586 0.348 0.586 0.175 0.411

h 0.330 0.580 0.138 0.682 0.093 0.486 0.724 0.724 0.486 0.724 0.306 0.577

i 0.214 0.408 0.174 0.476 0.149 0.442 0.573 0.573 0.396 0.573 0.212 0.430

j 0.221 0.465 0.187 0.596 0.141 0.457 0.776 0.776 0.475 0.682 0.233 0.504

k 0.243 0.498 0.194 0.557 0.146 0.513 0.794 0.794 0.467 0.707 0.262 0.573

Table 5.5: Overall performance across all benchmark protocols for S-MAD binary
classification approach.

BPCER@APCER=δ a b c d e f g h i j k
δ=0.1 0.317 0.248 0.442 0.320 0.258 0.278 0.263 0.346 0.286 0.338 0.351
δ=0.01 0.623 0.463 0.660 0.551 0.520 0.545 0.503 0.629 0.484 0.580 0.607

Figure 5.4: DET curves across the different alignment settings (a to k) for
S-MAD binary classification approach. Each subplot represents one of the

benchmark protocols.

Based on the results presented, the alignment settings between e and g appear

to represent the optimal range of values across all the benchmark protocols, with

the e alignment setting being the potential optimal case.
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This optimal range of settings is reinforced based on the values presented in

table 5.5. It is important to note that these values were obtained by calculating

a simple average across all protocols, which is very simplistic in view of the com-

plexity of the problem since it does not take into account the characteristics of each

protocol or the differences and challenges that each one represents. In that sense,

the alignment settings b and i at first sight also seem to be possible optimal candi-

dates. However, analyzing the values presented in table 5.4, this final average value

is possibly influenced by the performance values obtained in the protocol-stylegan,

which are very discrepant (lower values, namely when compared to the optimal one

e value (0.710)) influencing the final average value.

It is important to highlight that we observed instability in the training process

across various alignment settings. Specifically, several cases, such as b, experienced

difficulties due to poor initial convergence and were retrained. This inconsistency

has affected the stability of our results. We believe that the trivial nature of the

binary classification task, combined with the complexity of differentiating face morph

features, may be contributing factors to this issue.

According to the explanation provided in section 4.7, the evaluation of the

impact of different regions of the input image on the final output prediction was

also performed. This was done by obtaining the Gradient-weighted Class Activation

Mapping (Grad-CAM) heatmaps and analyzing the behavior for each alignment

condition.

For the sake of compactness, we present those map results only for the protocol-

asml (figure 5.5).

Bonafide

Morph

a b c d e f g h i j k

Figure 5.5: Grad-CAM heatmaps across all the alignment settings for S-MAD
binary classification approach.

The face/foreground is mostly dominantly activated across all the alignment
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Table 5.6: Summary table for the values of Average of the Gradient Intensity
Ratio (AGIR) in the different protocols, as well as the average value for the morphs.
Note that for bonafide only one column is shown since the values are the same for all
protocols (bonafide set is similar). Values for S-MAD binary classification approach.

Alignments
AGIR morph values AGIR

value for bona
Average AGIR
value for morphsasml facemorpher opencv stylegan webmorph real

a 1.754 2.824 2.394 0.546 0.776 1.841 4.481 1.689
b 1.844 3.094 3.298 0.687 1.107 2.114 3.354 2.024
c 1.797 3.352 3.790 0.879 1.574 2.129 2.017 2.254
d 2.164 3.610 3.725 1.140 1.238 2.469 1.811 2.391
e 3.586 4.458 4.796 1.443 2.060 3.587 1.589 3.322
f 2.775 3.675 4.393 1.835 1.902 2.957 1.397 2.922
g 2.067 3.726 3.526 1.419 1.246 2.459 1.774 2.407
h 1.765 3.393 4.405 2.079 1.376 2.079 1.534 2.516
i 2.337 3.717 4.281 1.461 1.770 2.579 1.221 2.691
j 2.475 3.550 3.868 1.369 1.581 2.532 1.238 2.563
k 1.629 2.067 2.586 1.270 1.313 1.857 0.951 1.787

settings for both morph and bonafide cases. The values presented in the table 5.6

also confirm that.

5.2.2 S-MAD Fused Classification Model

In a similar way, the results related to BPCER@APCER are presented in the

following tables, as well as the respective DET curves, in figure 5.6.

Table 5.7: BPCER@APCER = (0.1, 0.01) of S-MAD fused classification model
across all the alignment settings for each benchmark protocol.

Alignments

BPCER@APCER=δ

Protocol-asml Protocol-facemorpher Protocol-opencv Protocol-stylegan Protocol-webmorph Protocol-real

δ=0.1 δ=0.01 δ =0.1 δ=0.01 δ =0.1 δ=0.01 δ =0.1 δ=0.01 δ=0.1 δ=0.01 δ=0.1 δ=0.01

a 0.159 0.689 0.187 0.517 0.239 0.599 0.842 0.946 0.606 0.885 0.137 0.608

b 0.063 0.495 0.072 0.646 0.099 0.658 0.671 0.946 0.702 0.964 0.081 0.427

c 0.125 0.467 0.215 0.588 0.240 0.566 0.694 0.884 0.541 0.859 0.167 0.455

d 0.040 0.374 0.102 0.558 0.103 0.568 0.574 0.835 0.305 0.781 0.113 0.421

e 0.162 0.580 0.149 0.582 0.177 0.602 0.566 0.767 0.605 0.870 0.138 0.549

f 0.184 0.530 0.180 0.488 0.175 0.451 0.582 0.788 0.517 0.785 0.158 0.479

g 0.034 0.233 0.025 0.701 0.037 0.701 0.487 0.875 0.216 0.788 0.072 0.322

h 0.168 0.642 0.168 0.535 0.165 0.599 0.536 0.850 0.542 0.854 0.138 0.594

i 0.046 0.255 0.036 0.365 0.044 0.390 0.305 0.583 0.246 0.554 0.094 0.365

j 0.287 0.630 0.268 0.585 0.262 0.564 0.844 0.959 0.697 0.907 0.228 0.574

k 0.193 0.652 0.253 0.745 0.262 0.792 0.825 0.953 0.674 0.915 0.178 0.611

Table 5.8: Overall performance across all benchmark protocols for S-MAD fused
classification approach.

BPCER@APCER=δ a b c d e f g h i j k
δ=0.1 0.361 0.281 0.330 0.206 0.299 0.299 0.145 0.286 0.129 0.431 0.398
δ=0.01 0.732 0.690 0.636 0.589 0.658 0.586 0.603 0.679 0.418 0.703 0.778
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Figure 5.6: DET curves across the different alignment settings (a to k) for
S-MAD fused classification approach. Each subplot represents one of the

benchmark protocols.

Looking at the values, it seems that the optimal range of values lies between

the alignment settings of d and i. Within this range, alignment setting g is still

possibly the optimal case.

Similarly, looking at the values presented in table 5.8, the alignment definition i

seems to be the potential optimal case rather than g. However, based on the values

depicted in table 5.7 in this case the alignment condition i values are influenced

by protocol-stylegan. On the other hand, condition g outperforms all the others

for protocol-asml and protocol-real, which give the most realistic images for human

perception out of the others.

At the same time, this detection technique allowed to achieve superior results

in comparison to the binary classification case, namely comparing e (optimal in

S-MAD binary) and g (optimal in S-MAD fused). This result is probably related to

the optional regularization effect imposed by the face recognition task.

Making a visual analysis of Grad-CAM heatmaps, it is possible to observe

that the detection focuses mainly on the face region and, in many cases, on the

intersection regions between foreground and background, as shown in figure 5.7.
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Bonafide

Morph

a b c d e f h i j k

Figure 5.7: Grad-CAM heatmaps across all the alignment settings for S-MAD
fused classification approach.

Table 5.9: Summary table for the values of AGIR in the different protocols, as
well as the average value for the morphs. Note that for bonafide only one column is
shown since the values are the same for all protocols (bonafide set is similar). Values
for S-MAD fused classification approach.

AGIR morph values
Alignments

asml facemorpher opencv stylegan webmorph real
AGIR value for bona

Average
AGIR value for morphs

a 1.125 1.120 1.123 1.985 2.083 1.209 2.348 1.441
b 0.970 0.861 0.892 2.354 2.077 1.088 1.934 1.374
c 1.403 1.516 1.545 2.687 2.555 1.565 2.671 1.879
d 0.853 0.786 0.798 1.644 1.219 0.954 1.385 1.042
e 1.001 0.920 0.943 1.413 1.394 0.992 1.055 1.111
f 1.184 1.200 1.243 2.064 1.816 1.245 1.836 1.458
g 0.679 0.625 0.617 1.012 1.000 0.729 1.094 0.777
h 1.208 1.127 1.181 1.782 1.772 1.175 1.509 1.374
i 0.640 0.580 0.599 1.267 0.906 0.692 1.331 0.781
j 0.910 0.843 0.906 1.203 1.246 0.962 1.433 1.011
k 0.500 0.516 0.542 0.934 0.700 0.549 0.824 0.624

Based on a direct comparison with the S-MAD binary classification approach

the background appears to have more influence on the results, especially in the

morph case where the AGIR values are overall lower than the binary ones. This is

also reinforced based on the visual observation of the maps, where the regions of

greatest activation are more dispersed when compared to the binary approach and

are often in the contour regions.

5.2.3 D-MAD Fused Classification Model

The BPCER@APCER values are presented in the following tables, as well as

the respective DET curves in figure 5.8.
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Table 5.10: BPCER@APCER = (0.1, 0.01) of Differential Morphing Attack Detec-
tion (D-MAD) fused classification model across all the alignment settings for each
benchmark protocol.

BPCER@APCER=δ

Protocol-asml Protocol-facemorpher Protocol-opencv Protocol-stylegan Protocol-webmorph

Alignments δ =0.1 δ =0.01 δ =0.1 δ =0.01 δ =0.1 δ =0.01 δ =0.1 δ =0.01 δ =0.1 δ =0.01

a 0.013 0.194 0.013 0.250 0.019 0.206 0.506 0.725 0.244 0.806

b 0.000 0.394 0.006 0.356 0.013 0.400 0.563 0.888 0.288 0.713

c 0.063 0.344 0.138 0.644 0.181 0.644 0.656 0.919 0.306 0.831

d 0.100 0.613 0.144 0.613 0.175 0.588 0.625 0.894 0.381 0.769

e 0.138 0.688 0.219 0.744 0.194 0.744 0.544 0.781 0.544 0.831

f 0.013 0.263 0.000 0.206 0.006 0.206 0.188 0.525 0.244 0.569

g 0.056 0.363 0.050 0.494 0.069 0.550 0.381 0.706 0.319 0.644

h 0.056 0.475 0.031 0.531 0.056 0.544 0.419 0.713 0.300 0.719

i 0.150 0.531 0.088 0.531 0.069 0.494 0.381 0.738 0.575 0.900

j 0.013 0.144 0.013 0.506 0.013 0.438 0.319 0.794 0.163 0.738

k 0.044 0.288 0.044 0.369 0.038 0.313 0.500 0.868 0.288 0.856

Table 5.11: Overall performance across all benchmark protocols for D-MAD fused
classification approach.

BPCER@APCER=δ a b c d e f g h i j k
δ=0.1 0.159 0.174 0.269 0.285 0.327 0.09 0.175 0.172 0.252 0.103 0.182
δ=0.01 0.436 0.550 0.676 0.695 0.757 0.350 0.551 0.596 0.639 0.524 0.538

Figure 5.8: DET curves across the different alignment settings (a to k) for
D-MAD fused classification approach. Each subplot represents one of the

benchmark protocols.

Looking at table 5.11 values, it seems that the optimal range of values can be

found between the alignment settings of f to h, and with alignment setting f being

the potential optimal case.
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Bonafide

Morph

a b c d e f g h i j k

Figure 5.9: Grad-CAM heatmaps for all alignment settings for D-MAD fused
classification approach.

Table 5.12: Summary table for the values of AGIR in the different protocols, as
well as the average value for the morphs. Note that for bonafide only one column is
shown since the values are the same for all protocols (bonafide set is similar). Values
for D-MAD fused classification approach.

AGIR morph value
Alignments

asml facemorpher opencv stylegan webmorph
AGIR value for bona

Average
AGIR value for morphs

a 1.604 1.331 1.446 2.064 2.719 1.865 1.833
b 1.061 1.070 1.085 2.321 2.012 2.306 1.509
c 0.975 0.950 0.952 1.127 1.179 1.127 1.037
d 1.192 1.148 1.123 1.828 1.807 1.811 1.420
e 1.275 1.135 1.149 2.183 1.967 2.231 1.542
f 1.018 0.965 1.029 1.504 1.274 1.080 1.158
g 1.056 0.975 1.967 1.808 1.575 1.967 1.476
h 0.789 0.747 0.791 0.863 1.030 0.865 0.844
i 1.249 1.148 1.110 1.405 1.398 1.423 1.262
j 0.733 0.664 0.656 1.315 1.179 1.196 0.909
k 0.842 0.867 0.896 0.699 0.746 0.688 0.810

Making a visual analysis of Grad-CAM heatmaps, it is possible to observe that

similar to S-MAD fused classification, the detection focuses primarily on the face re-

gion and, in many instances, on the intersections of the foreground and background,

as presented in figure 5.9. The AGIR values presented in table 5.12 seem to prove

it.

5.2.4 Discussion on the Results

In an overall analysis of the results, for all the trained models, there is possibly

a region or a certain alignment condition where the results are more effective. On

the other hand, in that range, there seems to be a correspondence throughout all

the models, which translates into a certain area of occupancy of a face in the im-

age. For instance, in the S-MAD binary classification approach, the optimal range

varies between about 50% and 60%, in S-MAD fused classification, the value ranges
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from about 42% and 77%, and finally, for D-MAD fused classification the optimal

condition seems to happen when the face takes up 56% to 70% of the whole image

area.

These conclusions are made based on the performance metrics of models. How-

ever, as stated in section 4.7, Grad-CAM heatmaps were used to get a more detailed

view of which regions of the image are actually responsible for the final prediction.

Thus, it is possible to assess the explainability of the training process in the final

output.

Looking at the values in table 5.13 the answer seems to be immediate, the face

is the predominant activated region regardless of the type of alignment used. Note

that these values are taken from previous tables.

Table 5.13: Summary table of Average of the Gradient Intensity Ratio (fore-
ground/background) (AGIR) values across all the alignment conditions for the dif-
ferent models used. In the case of the morphs, the average value across all the
protocols is presented.

Scenario Approach Alignments a b c d e f g h i j k

S-MAD

Binary
Classification

AGIR
value for bona

4.48 3.35 2.02 1.81 1.59 1.40 1.77 1.53 1.22 1.24 0.95

Average AGIR
value for morphs

1.69 2.02 2.25 2.39 3.32 2.92 2.41 2.52 2.69 2.56 1.79

Fused
Classification

AGIR
value for bona

2.35 1.93 2.67 1.39 1.06 1.84 1.09 1.51 1.33 1.43 0.82

Average AGIR
value for morphs

1.44 1.37 1.88 1.04 1.11 1.46 0.78 1.37 0.78 1.01 0.62

D-MAD
Fused

Classification

AGIR
value for bona

1.87 2.31 1.13 1.81 2.23 1.08 1.97 0.87 1.43 1.20 0.69

Average AGIR
value for morphs

1.83 1.51 1.04 1.42 1.54 1.16 1.48 0.84 1.26 0.91 0.81

However, it is possible to observe that in both fused classification cases (S-

MAD and D-MAD), the background seems to have more influence on detection when

compared to the S-MAD binary classification approach. This is concluded from the

fact that the values of AGIR values are in general lower, especially for morph cases

(recall that the set of bonafide images is the same across all the protocols). These

two fused classification approaches achieve the best performances, especially if we

look at the optimal alignment condition in each scenario, which may indicate that

the background of the image does influence the results to some extent.

5.3 FRVT MORPH Test Results

The Face Recognition Vendor Test (FRVT) is an ongoing series of evaluations

conducted by the National Institute of Standards and Technology (NIST) to assess

the performance of the Face Recognition (FR) algorithms. In the specific case of
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FRVT MORPH, the purpose is to assess the effectiveness of those algorithms in

detecting morphed images, providing insights into their potential and limitations in

various contexts [90].

In this regard, the top-performing models obtained for fused classification ap-

proaches (S-MAD and D-MAD) were submitted. The performances were subse-

quently evaluated by comparison with state-of-the-art Morphing Attack Detection

(MAD) approaches.

This test can be broadly categorized into single-image and differential cases,

and it encompasses multiple datasets created using a diversity of methodologies.

Table 5.14 provides a summary of some of these datasets.

Table 5.14: Summary table of some of the different datasets used in the FRVT
NIST MORPH benchmark.

Dataset Morphs Bonafides Tier
UNIBO Automatic Morphed Face Generation Tool v1.0 2464

1047389
2 - Automated Morphs

Visa-Border 25727
Twente 2464

MIPGAN-II 2464
Manual 323

3 - High Quality Morphs
Print + Scanned 3604 2739

UNIBO Visa-Border Twente MIPGAN-II Manual Print + Scanned

Figure 5.10: Morph Images samples for each dataset presented in table 5.14.

In order to evaluate the performance of morph detection, two commonly used

metrics, namely the morph miss rate (also known as APCER) and the false detection

rate (also known as BPCER), are computed, and the results will be presented in the

following subsections along with the corresponding DET curves. All these results

were taken from the updated FRVT MORPH report, published on June 20, 2023.

It should be noted that in all the following results, the name visteamicao-

000 (single-image) corresponds to the top-performing model discussed in sub-

section 5.2.2 and the name visteamicao-000 (differential) is related to the top-

performing model presented in subsection 5.2.3.

Regarding the remaining SOTA approaches, the results of wvusingle [131] by

West Virginia University, unibo by University of Bologna, wvudiff [132] by West
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Virginia University, Hochschule Darmstadt with hdaarcface [133], hdaprnu [134,

135] and hdabsif, ntnussl [136] by Norwegian University of Science and Technology

and finally visteam [89] by Universidade de Coimbra will be presented.

5.3.1 Tier 2 - Automated Morphs Analysis

Returning to table 5.14, the results for four distinct datasets will be presented.

These datasets consist of morphs created using automated morphing methods, en-

suring adherence to academic research standards.

Figure 5.11: DET plot for UNIBO Automatic Morphed Face Generation
Tool v1.0 Dataset. This chart plots BPCER as a function of APCER. The left
side displays the results for the single-image approach, while the right side displays

the results for the differential approach.

Table 5.15: APCER@BPCER =(0.1,0.01) for UNIBO Automatic Morphed
Face Generation Tool v1.0 Dataset across different algorithms.

APCER@BPCER=δ
Algorithm δ=0.1 δ=0.01 Algorithm δ=0.1 δ=0.01

wvusingle-002 0.000 0.075 visteamicao-000 0.014 0.079
unibo-000 0.000 0.087 secunet-002 0.003 0.087

visteamicao-000 0.027 0.095 visteam-003 0.171 0.668
visteam-003 0.091 0.356 wvudiff-001 0.257 0.733

Single-image

wvusingle-001 0.101 0.406

Differential

hdaarcface-001 0.089 1.000

Related to the UNIBO Automatic Morphed Face Generation Tool v1.0 dataset,

the results indicate that our model outperforms all others in the differential case. In

the case of single-image presentations, the results were also noteworthy. Although

our model did not achieve the lowest morph miss rates, it still performed competi-

tively compared to the other algorithms evaluated. The results are presented in table

5.15, and the DET curves depicted in figure 5.11 also reinforce those conclusions,

especially for the differential case (blue dashed line).
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Figure 5.12: DET plot for Visa-Border Dataset. This chart plots BPCER as
a function of APCER. The left side displays the results for the single-image

approach, while the right side displays the results for the differential approach.

Table 5.16: APCER@BPCER =(0.1,0.01) for Visa-Border Dataset across dif-
ferent algorithms.

APCER@BPCER=δ
Algorithm δ=0.1 δ=0.01 Algorithm δ =0.1 δ =0.01

visteamicao-000 0.089 0.291 secunet-002 0.013 0.212
wvusingle-002 0.037 0.542 visteamicao-000 0.105 0.388
visteam-003 0.232 0.555 visteam-003 0.271 0.682
hdaprnu-004 0.049 0.823 wvudiff-001 0.447 0.901

Single-image

ntnussl-002 0.375 0.990

Differential

unibo-002 0.966 0.999

On the Visa-Border dataset, the results from table 5.16 shows that our model

outperforms all other SOTA approaches in the single-image case, showing a morph

miss rate of 29% at a false detection rate of 0.01. In the case of a differential

approach, the results prove to be competitive as well. Overall, this is a very inter-

esting result, since the single-image case is known to be more challenging than the

differential case.

Figure 5.13: DET plot for Twente Dataset. This chart plots BPCER as a
function of APCER. The left side displays the results for the single-image

approach, while the right side displays the results for the differential approach.
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Table 5.17: APCER@BPCER =(0.1,0.01) for Twente Dataset across different
algorithms.

APCER@BPCER=δ
Algorithm δ=0.1 δ=0.01 Algorithm δ=0.1 δ=0.01

wvusingle-002 0.002 0.060 visteamicao-000 0.014 0.094
visteamicao-000 0.032 0.128 secunet-002 0.005 0.102

unibo-000 0.002 0.183 wvudiff-001 0.262 0.758
visteam-003 0.174 0.493 visteam-003 0.269 0.771

Single-image

hdafvdet-001 0.308 0.991

Differential

hdaaecface-001 0.090 1.000

Regarding the Twente dataset, when comparing with other approaches, the

results also turn out to be very positive, achieving, for instance, a morph error rate

of 9.4% at a false detection rate of 0.01 for the differential case.

Figure 5.14: DET plots for MIPGAN-II Dataset. This chart plots BPCER as
a function of APCER. The left side displays the results for the single-image

approach, while the right side displays the results for the differential approach.

Table 5.18: APCER@BPCER =(0.1,0.01) for MIPGAN-II Dataset across dif-
ferent algorithms

APCER@BPCER=δ
Algorithm δ=0.1 δ=0.01 Algorithm δ=0.1 δ=0.01

wvusingle-002 0.001 0.111 secunet-002 0.004 0.134
visteamicao-000 0.227 0.761 wvudiff-001 0.182 0.481

unibo-000 0.037 0.810 unibo-002 0.004 0.751
visteam-003 0.608 0.902 visteamicao-000 0.332 0.818

Single-image

hdafvdet-001 0.695 0.996

Differential

visteam-003 0.505 0.929

The results obtained with the MIPGAN-II dataset did not demonstrate the

same significant performances as seen in the previous examples. However, except

for the wvusingle-002 algorithm in the single case and secunet-002 algorithm in the

differential case, it turns out that these worst performances happen across all the

algorithms, which is possibly influenced by the type of morphed images used in the

dataset.
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5.3.2 Tier 3 - High Quality Morphs Analysis

This type of analysis holds great significance as these datasets closely resem-

ble real-life situations. The Manual dataset, specifically in the context of single-

image approaches, stands out as being the most realistic. On the other hand, the

Print+Scanned dataset provides a more comprehensive representation of differential

scenarios.

Figure 5.15: DET plot for Manual Dataset. This chart plots BPCER as a
function of APCER. The left side displays the results for the single-image

approach, while the right side displays the results for the differential approach.

Table 5.19: APCER@BPCER =(0.1,0.01) for Manual Dataset across different
algorithms.

APCER@BPCER=δ
Algorithm δ=0.1 δ=0.01 Algorithm δ=0.1 δ=0.01
visteam-003 0.641 0.926 secunet-002 0.055 0.357
visteamicao-000 0.802 0.975 visteam-003 0.531 0.872
wvusingle-002 0.879 0.975 unibo-002 0.689 0.969
ntnussl-002 0.938 0.985 visteamicao-000 0.853 0.981

Single-image

hdabsif-004 0.969 1.000

Differential

wvudiff-001 0.873 0.989
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Figure 5.16: DET plot for Print + Scanned Dataset. This chart plots
BPCER as a function of APCER. The left side displays the results for the

single-image approach, while the right side displays the results for the differential
approach.

Table 5.20: APCER@BPCER =(0.1,0.01) for Print + Scanned Dataset across
different algorithms.

APCER@BPCER=δ
Algorithm δ=0.1 δ=0.01 Algorithm δ=0.1 δ=0.01

wvusingle-001 0.271 0.721 secunet-002 0.012 0.176
unibo-000 0.420 0.777 unibo-002 0.070 0.280
visteam-003 0.424 0.788 visteamicao-000 0.426 0.751

visteamicao-000 0.453 0.819 visteam-003 0.680 0.926

Single-image

hdafvdet-001 0.879 0.992

Differential

wvudiff-001 0.756 0.953

When confronted with these more realistic datasets, it becomes evident that

the submitted models are not flawless, in particular when it comes to single-image

morph detection. In those cases, the results show that the algorithms do not exhibit

robust generalization across various unseen morphing techniques (tables 5.19 and

5.20).

On the other hand, the process of printing and scanning, or re-digitalization,

is widely recognized as one of the most significant challenges in morph detection,

and the values presented in table 5.20 reinforced that conclusion. Nevertheless,

considering that this dataset represents the most realistic for the differential case, the

results obtained for our model when compared to other SOTA approaches reached

a competitive position.
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Conclusion

In this dissertation, the main goal was to evaluate the influence of the image

context in the detection of face morphing attacks. In this sense, based on the

assumption that face alignment can have an influence on detection, we tried to

propose an optimal alignment condition.

To accomplish this objective, the initial step involved creating an Interna-

tional Civil Aviation Organization (ICAO) compliant dataset by combining and

pre-processing several datasets. As a final result, the ICMD dataset emerged. In

addition, to have a dataset specifically for morphed images to train the models,

morphs were generated using two main approaches: landmark-based and SyleGAN-

based.

The concatenated dataset was then aligned under various alignment conditions.

Throughout the different alignment conditions, the face’s occupancy area in the

image varies, and consequently, so does the context information.

For each one of these alignment settings, different models were trained in two

major groups: Single Morphing Attack Detection (S-MAD) case, where the detection

is performed based on a single image, and the Differential Morphing Attack Detec-

tion (D-MAD) case, where a genuine reference image serves as a comparative basis.

Regarding the S-MAD, two approaches were performed: the fused classification ap-

proach, where the morphing detection task is regularized with a Face Recognition

(FR) task and a simple binary classification approach (morph/non-morph).

Through extensive experiments, a possible alignment range has been determined

at which Morphing Attack Detection (MAD) is most effective. However, the overall

impact of image context on face morphing attack detection appears to be limited.

An interesting and encouraging result was obtained on the National Institute of

Standards and Technology (NIST) Face Recognition Vendor Test (FRVT) MORPH

benchmark, where a performance analysis was conducted comparing different state-

of-the-art (SOTA) MAD approaches. The results of the presented models demon-

strated high performance in several benchmarks. Reaching the SOTA level in some
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of them.

To further investigate the impact of image context on the detection of morphing

attacks, a potential future approach could involve removing the background from

the image. In this way, the study would focus exclusively on the relevant features

of the foreground (facial image), giving rise to different possible insights.

Alternatively, in the context of the D-MAD approach, it would also be inter-

esting to study the case for a strictly binary classification approach, i.e., without

imposing the identity classification part from the fused classification. To do so, a

potential approach could involve utilizing a Siamese network and, in a similar way,

evaluating the similarity between the two feature embeddings followed by a sigmoid

activation.

From the results presented, the greatest differentiating factor seems to be cen-

tered on the morph images. In that regard, and considering the common practice

of printing and re-scanning Identity Document (ID) documents during the issuance

process, it would also be important to generate a dataset that includes these morphs

in order to train and evaluate the models more realistically, potentially leading to

other outcomes.

Finally, it would also be interesting to explore other explainability tools or

attention mechanisms in order to provide more accurate and realistic insights about

the decision-making process.
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Impact of Image Context for Single Deep Learning Face
Morphing Attack Detection

Abstract: The increase in security concerns due to technological advancements has led to the pop-
ularity of biometric approaches that utilize physiological or behavioral characteristics for enhanced
recognition. Face recognition systems (FRSs) have become prevalent, but they are still vulnerable
to image manipulation techniques such as face morphing attacks. This study investigates the impact
of the alignment settings of input images on deep learning face morphing detection performance.
We analyze the interconnections between the face contour and image context and suggest optimal
alignment conditions for face morphing detection.

Keywords: Face morphing detection; face recognition, deep learning; convolutional neural net-
works; classification.

1 Introduction

The expansion of technological advancements in modern society has led to an increase
in security concerns. Traditional identification methods have become less reliable due to
their vulnerability to forgetfulness, loss, replication, or theft, thereby compromising their
intended security function. As a solution to this issue, biometric approaches are gaining
popularity as they utilize physiological or behavioral characteristics to enhance the recog-
nition process.

Face image modality took one of the most important roles in modern biometric appli-
cations due to the simplicity of face image acquisition and recent advances in computer
vision techniques. This led to the widespread use of Face Recognition Systems (FRSs)
which utilize facial traits for the purpose of identification or verification [Li20]. Despite
the fact that FRSs are currently used in various applications, they are still highly vulner-
able to attacks due to the extensive range of image manipulation techniques that can be
used to deceive the system.

One of the most important types of threats to FRSs is the face morphing attack. In this
attack, facial features from two or more images are merged to create a synthetic image
that incorporates features from both faces. The resulting image is similar to the images
that gave rise to it, which allows one person to impersonate another, thereby violating the
principle of self-ownership. That is why face morphing detection is a critical task in the era
of digital manipulation and deep learning techniques. However, the performance of face
morphing detection may depend on various factors, such as the alignment and preprocess-
ing of input images. Specifically, the face image alignment setting can impact the amount
of context included in the input image, which in turn can hypothetically affect the perfor-
mance of the detection algorithm. We conduct our research to define optimal alignment
settings for face morphing detection, exploring the possibility of using interconnections



between the face contour and image context to improve the performance of the detection
algorithm.

Essentially, our purpose is to investigate the relationship between image context and MAD,
with the aim of identifying the most effective context properties for detection. Throughout
this paper, the term ”image context” refers to the background and surrounding elements in
the image, i.e., the part of the image that does not contain the face.

As an additional contribution, we combined a dataset that adheres to the International Civil
Aviation Organization (ICAO) guidelines for detecting face morphing.

2 Related Work

Face Recognition. Current advances in face recognition methods use deep learning tech-
niques that employ deep neural networks, allowing the learning of deep facial features,
which have high discriminative power.

Face recognition deep networks are commonly trained using classification-based tasks,
employing softmax loss or its margin-based alternatives like ArcFace [De19]. The addition
of a margin to the softmax loss is crucial because it significantly improves the discrimina-
tive power of the learned features. More recently, there has been a focus on incorporating
adaptiveness into the margin based on the quality of the input image. For instance, Mag-
Face [Me21] optimizes the feature embedding using an adaptive margin and regularization
based on its magnitude. Another approach is AdaFace [KJL22], which proposes adapting
the margin function based on the norm of the feature embedding.

Face Morphing Generation. Face morphing can be performed using landmark-based or
deep learning-based approaches. Landmark-based methods employ a set of fiducial facial
points, which are detected on all contributing face images, to generate a morph image by
warping and bending procedures [FFM14].

Deep learning-based methods may employ encoder-decoder architectures, such as Gener-
ative Adversarial Networks (GANs) [Go14]. For example, the MorGAN [Da18] approach
aims to make the generated images look similar to the real images while also encouraging
the generators to produce diverse images that differ from each other. Karras et al. [KLA19]
proposed the StyleGAN approach, which can be used to generate high-quality morphs.
By projecting original images into the latent domain and interpolating latent embeddings,
StyleGAN enables face morphing without the blending artifacts commonly observed when
morphing is performed in the image domain.

The MIPGAN [H.21] approach revisits the StyleGAN by introducing an end-to-end op-
timization approach with a novel loss function that emphasizes preserving the identity of
the generated morphed face images by incorporating identity priors. MorDIFF [Da23] pro-
poses the use of diffusion autoencoders to generate high-fidelity and smooth face morphing
attacks, which are highly vulnerable to state-of-the-art face recognition models. ReGen-
Morph [Da21] approach proposes to eliminate blending artifacts by combining image-level
morphing and GAN-based generation, resulting in visibly realistic morphed images with
high appearance quality.
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Face Morphing Detection. Morphing attack detection (MAD) methods can be classified
into two types, depending on the security application scenario: Single Morphing Attack
Detection (S-MAD) and Differential Morphing Attack Detection (D-MAD).

S-MAD refers to techniques that can detect a morphed image without comparing it to
an authentic reference image (non-reference). They are therefore based on the analysis of
visual artifacts or inconsistencies in the morphed image itself. Many approaches rely on the
analysis of handcrafted features like Binarized Statistical image features (BSIF) [RRB16],
Local Binary Pattern (LBP) [OPH96], Local Phase Quantization (LPQ) [OH08] image
descriptors, and Photo Response Non-Uniformity (PRNU) known as sensor noise [Sc19].

Recent works intensively uses deep learning for face morphing detection. OrthoMAD
approach [Ne] proposes to use a regularization term for the creation of two orthogonal
latent vectors that disentangle identity information from morphing attacks. MorDeephy
method [MSG23] introduced fused classification to generalize morphing detection to un-
seen attacks. The formulation will be followed in this work. Tapia et al. [TB21] proposed
a framework using few-shot learning with siamese networks and domain generalization.
The framework includes a triplet-semi-hard loss function and clustering to assign classes
to image samples.

In this work, we focus only on the S-MAD case to perform the analysis of image alignment
settings.

3 Methodology

Source Data Curating. An initial challenge encountered in this research was the lack of
a suitably extensive dataset that conformed to ICAO compliance requirements. To address
this issue, we combined multiple datasets comprising compliant images, including both
publicly available and privately obtained data. When selecting the datasets, we prioritized
those that provided a larger number of images per identity and included the following ones:
FRGC [Ph05], XM2VTS [Me00], ND Twins [Ph11], FERET [Ph00, Ph98], AR [MB98],
PICS [Un99], FEI [Th06], IMMF [FS05] and GTDB [A.99].

Several selected components were filtered to remove non-compliant images, i.e., non-
frontal images or other images not suitable for morphing. In the specific case of the ND
twins dataset, only one twin from the pair was included due to their striking resemblance,
which will be confusing for the methodology of this research. Our result dataset, which
we call the ICMD dataset, comprises over 50k images of more than 2.5k individuals.

Morph Image Generation. To accompany our training data with face morph samples, we
employed landmark-based and deep learning-based (specifically GAN-based) face morph-
ing approaches. These samples are generated using the originals from the ICMD dataset,
where pairing is performed following the [MSG23]. Namely, the identity list of the dataset
is randomly split into two subsets, and the pairing is only made between identities from
those subsets.

To generalize the detection performance and reduce overfitting for artifact detection, we
have included selfmorphs for both LDM and StyleGAN approaches. Selfmorphs are gen-



erated using images of the same individual, resulting in morphed images that continue to
represent that same individual but contain merging artifacts of a different kind. As a result,
we can prioritize morphing detection based on the behavior of deep facial features.

Alignment settings Our search for the optimal amount of image context for morphing
detection is based on selecting several different alignment settings and running identical
experiments for each setting. The face alignment in academia is usually performed by
a rigid transformation, which minimizes the coordinate distance between the five facial
landmarks (detected by MTCNN [XZ17]) ({left eye}, {right eye}, {nose}, {left mouth
corner}, {right mouth corner}) and the definite target list of coordinates (for the resulting
image size of 112×112 - {{38.2, 41.7}, {73.5, 41.5}, {56.0, 61.7}, {41.5, 82.4}, {70.7,
82.2}}) [De19]. The particular list of settings that we used is based on the scaling of
this target set of coordinates. The Table 1 presents a schematic correspondence of each
alignment with the scale factor utilized, along with its respective indicative ratio of the
face’s occupancy area in the image. We estimate this face’s occupancy as the ratio of face
area (limited by a face contour detected using 68 landmarks [Ki09]) to the full image area.

Tab. 1: Summary table of all alignment conditions with their respective scale factors and ratios.

Alignments a b c d e f g h i j k
Scale Factor 1.65 1.40 1.10 1.00 0.90 0.85 0.80 0.75 0.70 0.65 0.60

Ratio 0.15 0.21 0.34 0.42 0.51 0.56 0.62 0.70 0.77 0.86 0.94

S-MAD - Fused Classification. In our work, we approach no-reference face morphing
detection in several ways. First, we follow the fused classification approach, where the
morphing detection task is regularized with face recognition to generalize the performance
to unseen attacks [MSG23]. The overall pipeline schematic is presented in Fig.1. Each
sample is assigned two class labels: morphs inherit them from source identities; bona fides
have a duplicated original label. The approach requires using two different networks for
face recognition classification with two different sets of labels. The main motivation is
learning high-level identity discriminative features, which can indicate the presence of
face morphing. Such classification is regulated by the explicit binary classification of a dot
product of those resulting high-level features.
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Fig. 1: S-MAD fused approach schematics. In order to simplify the visualization, a single image is
shown per batch.
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Mathematically, such a schematic is formulated as the weighted sum: L = α1L1 +α2L2 +
βL3, where L1 and L2 are face recognition components, and L3 is a morphing detection
component. Based on the common softmax formulation, each network is regularized by
the respective losses:

L1 =− 1
N

N

∑
i

log(
eẆ T

ẏi
ḟi+ḃẏi

∑C
j e ḟẏ j

), L2 =− 1
N

N

∑
i

log(
eẄ T

ÿi
f̈i+b̈ÿi

∑C
j e f̈ÿ j

), (1)

where fi are deep features of the ith sample, yi represents the class index of the ith sample,
and W and b denote the weights and biases of the last fully connected layer, respectively.
N represents the batch size, while C represents the total number of classes.

Finally, in order to determine the similarity metric based on the ground truth authenticity
label of the image, the morphing detection score is obtained by computing the dot product
of the backbone outputs ( ḟ · f̈ ). This score is then passed through the sigmoid function and
used to define the binary cross-entropy loss. As a final result, the corresponding loss is
defined by:

L3 =− 1
N

N

∑
i

t log
1

1+ e− f̈ · ḟ +(1− t) log
(

1− 1
1+ e− f̈ · ḟ

)
(2)

The optimization process involves combining the resulting losses as a weighted sum,
resulting in L, with the goal of minimizing it. This is done to learn facial features that are
discriminative and specifically regularized for the task of detecting morphing.

S-MAD - Binary Classification. Another approach for face morphing detection is indeed
similar to the straightforward binary classification (morph/non-morph). To implement it,
we removed the identity classification part from the fused approach and retained only a
single deep network in the entire pipeline. The model schema is presented in Fig.2.
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Fig. 2: S-MAD approach model schema for a single network. In order to simplify the visualization,
a single image is shown per batch.

Benchmarking. For performance estimation, we employ the open-source morphing bench-
marking utilities 4 and adopt them into our work. We replace the bona fide subset with the
images from FRLL-Set [DJ17], Utrecht [Un99], MIT-CBCL [He01] and EFIEP [Av19]
4 https://github.com/iurii-m/MorDeephy.git



(since the default suggested protocols share images with our training data). All protocols
share the same list of bona-fide images and are only different in the content of morphs,
which are taken from the FRLL-Morphs dataset [Sa22] (protocol names correspond to
the FRLL-Morph subset names): protocol-asml with ∼ 2k morphs, protocol-opencv with
∼ 1.3k morphs, protocol-facemorpher with ∼ 2k morphs, protocol-webmorph with ∼ 1k
morphs and protocol-stylegan with ∼ 2k morphs.

Heatmap Computation. We analyze the image context impact using the Gradient-Weighted
Class Activation Mapping (Grad-CAM) technique and generate a heatmap that highlights
the regions of the input image that have the most significant influence on the ground truth
binary prediction.

4 Experiments and Results

Training Settings. As a baseline model in our work, we use EfficientNetB3 [TL19], which
is pretrained on the ImageNet dataset. We trained our models for five epochs using a
stochastic gradient descent (SGD) optimizer with a momentum of 0.9 and a learning rate
linearly decaying from 0.075 to 1e-5 . The batch included 28 images. Separate training ex-
periments are performed for each alignment case on concatenated datasets: original, LDM,
StyleGAN morphs, and selfmorphs. Face morphs are generated with LDM and StyleGAN
approaches. The parameters for the fused approach, which determine the appropriate bal-
ance between the different components of the loss function, are taken from the original
work [MSG23]: α= α1= α2 and α/β=0.2.

Binary Classification. Based on the results presented in Table 2, the alignment range with
optimal performance is observed between e to g, with e being the possible optimal case.
Based on heatmaps, the face is the principal region for the detection decision, and the
regions, which are prompt to contain morphing artifacts, are mainly activated (see Fig. 3).

Tab. 2: BPCER@APCER = (0.1, 0.01) of our S-MAD binary approach for various alignment settings

Alignments
BPCER@APCER=δ

Protocol-asml Protocol-facemorpher Protocol-opencv Protocol-stylegan Protocol-webmorph
δ=0.1 δ=0.01 δ=0.1 δ=0.01 δ=0.1 δ=0.01 δ =0.1 δ=0.01 δ=0.1 δ=0.01

a 0.199 0.622 0.125 0.558 0.199 0.663 0.663 0.663 0.523 0.663
b 0.143 0.380 0.131 0.387 0.144 0.440 0.586 0.586 0.340 0.586
c 0.365 0.630 0.331 0.675 0.320 0.676 0.676 0.676 0.489 0.676
d 0.236 0.511 0.161 0.549 0.161 0.489 0.623 0.623 0.436 0.623
e 0.141 0.348 0.102 0.532 0.080 0.424 0.710 0.710 0.321 0.641
f 0.199 0.455 0.127 0.551 0.125 0.533 0.675 0.675 0.328 0.579
g 0.158 0.373 0.106 0.532 0.209 0.532 0.586 0.586 0.348 0.586
h 0.330 0.580 0.138 0.682 0.093 0.486 0.724 0.724 0.486 0.724
i 0.214 0.408 0.174 0.476 0.149 0.442 0.573 0.573 0.396 0.573
j 0.221 0.465 0.187 0.596 0.141 0.457 0.776 0.776 0.475 0.682
k 0.243 0.498 0.194 0.557 0.146 0.513 0.794 0.794 0.467 0.707

Fused Classification. For this approach, the optimal range is observed at alignment set-
tings from d to i, with g being possibly the optimal case. At the same time, this methodol-
ogy allows for superior results in comparison to the binary classification case, which may
be related to the regularization imposed by the face recognition task.
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a b c d e f g h i j k

Fig. 3: Grad-CAM morph heatmaps for the S-MAD binary approach under different alignment
conditions (Recall that bona-fide sets are equal across all the protocols).

Tab. 3: BPCER@APCER = (0.1, 0.01) of S-MAD fused approach for various alignment settings

Alignments
BPCER@APCER=δ

Protocol-asml Protocol-facemorpher Protocol-opencv Protocol-stylegan Protocol-webmorph
δ=0.1 δ=0.01 δ=0.1 δ=0.01 δ=0.1 δ=0.01 δ =0.1 δ=0.01 δ=0.1 δ=0.01

a 0.159 0.689 0.187 0.517 0.239 0.599 0.842 0.946 0.606 0.885
b 0.063 0.495 0.072 0.646 0.099 0.658 0.671 0.946 0.702 0.964
c 0.125 0.467 0.215 0.588 0.240 0.566 0.694 0.884 0.541 0.859
d 0.040 0.374 0.102 0.558 0.103 0.568 0.574 0.835 0.305 0.781
e 0.162 0.580 0.149 0.582 0.177 0.602 0.566 0.767 0.605 0.870
f 0.184 0.530 0.180 0.488 0.175 0.451 0.582 0.788 0.517 0.785
g 0.034 0.233 0.025 0.701 0.037 0.701 0.487 0.875 0.216 0.788
h 0.168 0.642 0.168 0.535 0.165 0.599 0.536 0.850 0.542 0.854
i 0.046 0.255 0.036 0.365 0.044 0.390 0.305 0.583 0.246 0.554
j 0.287 0.630 0.268 0.585 0.262 0.564 0.844 0.959 0.697 0.907
k 0.193 0.652 0.253 0.745 0.262 0.792 0.825 0.953 0.674 0.915

a b c d e f h i j kg

Fig. 4: Grad-CAM morph heatmaps for the S-MAD fused approach under different alignment con-
ditions (Recall that bona-fide sets are equal across all the protocols).

Based on the heatmaps, the detection is mainly focused on the face region and, in many
cases, on the regions of intersection between the foreground and background (see Figure
4).

NIST FRVT MORPH Results. We compare the results of our best model (fused case)
with several state-of-the-art (SOTA) MAD approaches, tested on the FRVT NIST MORPH
Benchmark [FR]. Each dataset from the benchmark has images generated through different
protocols, with distinctions made in tiers such as Tier 2 - Automated Morph Analysis and
Tier 3 - High-Quality Morph Analysis.

Regarding the Visa-Border dataset, our approach outperforms all other SOTA approaches,
with a morph miss rate of 0.29 at a false detection rate of 0.01. In the Twente dataset, when
comparing with other approaches, the results demonstrate a highly favorable outcome as
well, with a morph error rate of 0.128 at a false detection rate of 0.01 (See table 4).



Tab. 4: Comparison with the SOTA S-MAD approaches using APCER@BPCER = (0.1, 0.01).

Algorithm Visa-Border (Tier 2) Twente (Tier 2) Manual (Tier 3)
δ=0.1 δ=0.01 δ=0.1 δ=0.01 δ=0.1 δ=0.01

Our 0.089 0.291 0.032 0.128 0.802 0.975
Aghdaie et al. [Ag21] 0.037 0.542 0.002 0.060 0.879 0.975

Medvedev et al. [MSG23] 0.232 0.555 0.174 0.493 0.641 0.926
Ferrara et al. [FFM21] 0.477 0.999 0.002 0.183 0.938 0.985

Ramachandra et al. [Ra19] 0.375 0.990 0.304 0.998 0.938 0.985

Fig. 5: Detection Error Trade-off curves for different SOTA approaches in different datasets
(Visa-Border, Twente and Manual dataset).

Although not represented in the table, comparable results were achieved for other datasets,
such as the UNIBO Automatic Morphed Face Generation Tool v1.0 and even MIPGAN-II
with less dominant but still competitive performances.

It is important to take into consideration the influence of the dataset used, and this Tier
2 typology is generally less challenging. When faced with more realistic datasets (Man-
ual dataset), it becomes apparent that overall SOTA approaches show poor generalization
across various unseen morphing techniques. Even so, our model results achieved compet-
itive results when compared to those approaches.

5 Conclusions
In this work, we aim to identify the context properties that are most effective for S-MAD.
The extensive experiments allowed us to determine the alignment range where S-MAD
is more effective. Moreover, in this range, there seems to be a certain correspondence
between both fused and binary approaches, which translates into a similar area of face
occupancy in the image. Despite that, our results also show that face is the most dominant
activation region across all the alignment settings, and the impact of context on face mor-
phing detection is limited. Our method achieved state-of-the-art comparable performances
on some of the NIST FRVT MORPH benchmark protocols.

Our future work will be directed toward investigating similar properties in the differential
scenario.
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