

Nuno Marques da Silva

DESIGN AND DEVELOPMENT OF A

BLOCKCHAIN-BASED PLATFORM FOR

LOYALTY PROGRAMS

Dissertation in the context of the Master in Informatics Engineering,

specialization in Software Engineering, advised by Professor Jacinto Estima

and by Engineers Raul Fonseca and Tiago Ferreira and presented to the

Department of Informatics Engineering of the Faculty of Sciences and

Technology of the University of Coimbra.

July of 2023

DEPARTMENT OF INFORMATICS ENGINEERING

Nuno Marques da Silva

Design and Development of a
Blockchain-Based Platform for

Loyalty Programs

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Professor Jacinto Estima and
by Engineers Raul Fonseca and Tiago Ferreira and presented to the Department

of Informatics Engineering of the Faculty of Sciences and Technology of the
University of Coimbra.

July of 2023

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

Nuno Marques da Silva

Design e Desenvolvimento de uma
Plataforma baseada em

Blockchain para Programas de
Fidelização

Dissertação no âmbito do Mestrado em Engenharia Informática, especialização
em Engenharia de Software, orientada pelo Professor Doutor Jacinto Estima e

pelos Engenheiros Raul Fonseca e Tiago Ferreira e apresentada ao Departamento
de Engenharia Informática da Faculdade de Ciências e Tecnologia da

Universidade de Coimbra.

Julho de 2023

Acknowledgements

I want to express my gratitude to my parents for all the support they have given
me along the way and for the many sacrifices they have made so I can concentrate
on my work as a student.

I want to thank my friends who accompanied me on this journey and made each
day funnier and more enjoyable.

To WIT, I want to thank you for the trust and opportunity. I’d like to thank my
advisor Raul Fonseca, tutor Tiago Ferreira, and business analyst Ane Polito for
all of their assistance and guidance.

To Professor Jacinto Estima, I want to thank you for all the advice and sugges-
tions, and for the guidance.

Thank you!

vii

Abstract

Loyalty programs are one of the most effective and successful strategies for re-
taining customers. It is also noticeable that traditional loyalty programs can
sometimes lack transparency and support for new partners, potentially making
the customers lose their trust and interest. Therefore, it is important for these
programs to prioritize transparency and security in transactions, while also facil-
itating partnerships between businesses in order to accommodate a larger set of
benefits.

This dissertation aims to address these challenges by leveraging blockchain tech-
nology to enhance security and transparency in loyalty program transactions.
The traditional currency (points, stamps, etc.) and rewards are replaced with
blockchain tokens, while maintaining the same concept of collecting currency to
then redeem a reward. The reward tokens are unique as they can be customized
by the business who created them to have different real-world values, ranging
from digital discounts or coupons to physical items.

Additionally, a RESTful API was developed to manage these loyalty programs
and aims to facilitate partnerships between businesses, enabling loyalty programs
to offer a wider range of benefits and attract more customers. Furthermore, this
dissertation analyses the throughput of the developed platform to assess its per-
formance and determine its suitability for real-world implementation. The results
show that this idea is applicable in the real-world context, despite the limitation
found in the throughput tests.

Overall, this research contributes to the improvement of loyalty programs by har-
nessing blockchain technology and developing an innovative management sys-
tem. The findings and insights obtained from this work have the potential to
enhance the effectiveness and trustworthiness of loyalty programs in various in-
dustries.

Keywords

Loyalty Programs, Blockchain, Transparency, REST API

ix

Resumo

Os programas de fidelização são uma das estratégias mais eficazes e bem sucedi-
das para reter clientes. É também evidente que os programas de fidelização tradi-
cionais por vezes possuem falta de transparência e suporte para novos parceiros,
o que pode resultar na perda de confiança e interesse por parte dos clientes. As-
sim, é importante dar prioridade aos aspetos de transparência e segurança nas
transações, e ao mesmo tempo promover a facilidade de desenvolver parcerias
entre empresas, para que estas consigam oferecer um maior conjunto de benefí-
cios nos seus programas.

Esta dissertação tem como objetivo abordar estes desafios baseando-se na tec-
nologia blockchain. Aproveitando o mesmo conceito de acumular moeda (pontos,
selos, etc..) dos programas tradicionais para eventualmente redimir uma recom-
pensa, podemos substituir a moeda e a recompensa por tokens da blockchain. Os
tokens de recompensa podem ser personalizados pela empresa que os criou para
poder ter diferentes valores no mundo real, o que permite fazer com que possam
representar desde cupões ou descontos em formato digital até bens físicos.

Além disso, foi desenvolvida uma API RESTful para gerir estes programas de fi-
delização em blockchain e facilitar as parcerias entre empresas, dando-lhes a opor-
tunidade de oferecer uma maior variedade de recompensas e, consequentemente,
atrair mais clientes. A plataforma desenvolvida teve também a sua capacidade
de throughput testada e analisada para determinar se o desempenho é suficiente
para que possa ser implementada em contexto real. Os resultados mostram que
esta ideia é aplicável no contexto do mundo real, apesar da limitação encontrada
nos testes de throughput.

Em suma, esta pesquisa contribui para a melhoria dos programas de fidelização
fazendo proveito da tecnologia da blockchain e ao ser desenvolvido um sistema
inovador. As descobertas obtidas têm o potencial para aumentar a eficácia e a
credibilidade dos programas de fidelização em várias indústrias.

Palavras-Chave

Programa de Fidelização, Blockchain, Transparência, REST API

xi

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation and Objectives . 1
1.3 Methodology . 2
1.4 Document Outline . 3

2 Background and State of the art 5
2.1 Loyalty Programs . 5

2.1.1 Point System . 6
2.1.2 Tier System . 6
2.1.3 Subscription System . 7
2.1.4 Value-based System . 8

2.2 Blockchain . 9
2.2.1 Consensus Mechanisms . 11
2.2.2 Smart Contracts . 13
2.2.3 Tokens . 14
2.2.4 Token Storage . 15
2.2.5 Blockchain Platforms . 15

2.3 Blockchain based Loyalty Programs 19

3 The Proposed Blockahin-based Loyalty Platform 21
3.1 Loyalty Program . 21
3.2 The Platform . 23

4 Requirements Analysis 25
4.1 Functional Requirements . 25
4.2 User Stories . 28

4.2.1 Vendor . 28
4.2.2 Client . 31

4.3 Non-functional Requirements . 34
4.4 Success Criteria . 37

5 System Design 39
5.1 System Architecture . 39
5.2 Technologies . 40
5.3 Risks . 42

6 Development Methodology and Planning 45
6.1 Development Methodology . 45

xiii

6.2 Planning . 46
6.2.1 First Semester . 46
6.2.2 Second Semester . 47

7 Development 49
7.1 Development Environment . 49
7.2 Smart Contracts . 49
7.3 Database . 51
7.4 Platform Backend . 55
7.5 Platform Frontend . 59

8 Testing and Validation 61
8.1 Testing . 61

8.1.1 Testing Environment . 61
8.1.2 Unit Testing . 61
8.1.3 Throughput Testing . 63

8.2 Validation . 63
8.2.1 Functional Requirements Validation 63
8.2.2 Non-functional Requirements Validation 66

9 Conclusion 71

xiv

Acronyms

ABI Application Binary Interface.

API Application Programming Interface.

CU Compute Unit.

dApps Decentralized Applications.

DPoS Delegated Proof of Stake.

IPFS InterPlanetary File System.

JWT JSON Web Token.

LPoS Liquid Proof of Stake.

NFT Non-Fungible Token.

PoET Proof of Elapsed Time.

PoS Proof of Stake.

PoW Proof of Work.

SDK Software Development Kit.

TPS Transactions per Second.

xv

List of Figures

2.1 Schematic representation of Vodafone Clube Viva loyalty program. 6
2.2 Schematic representation of Nespresso’s loyalty program. 7
2.3 Schematic representation of Amazon Smile. 8
2.4 Representation of the ledger. 9
2.5 Representation of centralized and decentralized networks. 9
2.6 Types of Blockchain. 10
2.7 Typical customer journey with blockchain-based loyalty programs. 19

3.1 Token balance calculation. 21
3.2 Token transmission in a point blockchain-based loyalty program. . 22
3.3 Subscription and tier privilege access. 22
3.4 Token transmission in a subscription and tier blockchain-based loy-

alty program. 23

5.1 System architecture. 39
5.2 Risk Matrix. 43

6.1 Gantt chart with the estimated planning for the first semester. . . . 47
6.2 Gantt chart with the real timeline of the first semester. 47
6.3 Gantt chart with the estimated planning for the second semester. . 48
6.4 Gantt chart with the real timeline of the second semester. 48

7.1 LoyaltyPrograms.sol code snippet. 50
7.2 Comparison between ERC-20, ERC-721, and ERC-1155 token stan-

dards. 51
7.3 Representation of the relationship between collections. 52
7.4 Representation of the User and Vendor Whitelist collections, and

their relationship. 52
7.5 Representation of the Programs collection. 53
7.6 Representation of the Tokens collection. 54
7.7 Representation of the Reward and Reward Contract collections, and

their relationship. 54
7.8 Representation of the Transaction collection. 55
7.9 Authentication Controller. 56
7.10 Program Controller. 57
7.11 Token Controller. 57
7.12 Reward Controller. 58
7.13 Transaction Controller. 59
7.14 Mockup of token details page. 60

xvii

8.1 Jest Report - Code Coverage. 62
8.2 Graphical representation of the virtual users created along the span

of an Artillery script run. 67
8.3 Graphical representation of the sent requests along the span of an

Artillery script run. 67
8.4 Graphical representation of the received responses along the span

of an Artillery script run. 68
8.5 Graphical representation of the response times of the endpoints

that access the blockchain. 69
8.6 Graphical representation of the response times of the endpoints

that do not access the blockchain. 69

xviii

List of Tables

1.1 Blockchain solutions to traditional loyalty program problems. . . . 2

2.1 Blockchain types: advantages and disadvantages. 11
2.2 Most Common ERC Token Standards. 15
2.3 Hyperledger Fabric and Hyperledger Sawtooth’s smart contract

programming languages. 16

4.1 Functional Requirements. 27
4.2 Non-functional Requirements. 34
4.3 Scenario 1: Unauthenticated access - Security (NFR1). 34
4.4 Scenario 2: Unauthorized access - Security (NFR1). 35
4.5 Scenario 3: Requests with access to Blockchain - Throughput (NFR2). 35
4.6 Scenario 4: Requests without access to Blockchain - Throughput

(NFR2). 36
4.7 Scenario 5: Exception Handling - Fault Tolerance (NFR3). 36
4.8 Scenario 6: Blockchain or InterPlanetary File System (IPFS) Failure

- Fault Tolerance (NFR3). 37
4.9 Scenario 7: Database Failure - Fault Tolerance (NFR3). 37

5.1 Comparison between different blockchain platforms. 40
5.2 Comparison between node providers’ services. 41

8.1 Functional Requirements Validation. 66

xix

Chapter 1

Introduction

1.1 Context

Client retention is crucial for any business to maintain sustainability, as acquir-
ing new customers is often more expensive than retaining existing ones. Brands
prioritize building solid relationships with their customers to ensure long-term
success. Loyalty programs are among the most successful strategies for retaining
customers [1]. Research shows that approximately 78% of consumers are more
likely to continue doing business with a company if it offers a loyalty program.
Additionally, around 65% of customers claim that their spending is influenced to
maximize the benefits received from these programs [2].

On average, customers participate in 16.6 loyalty programs but only actively use
7.6 of them, indicating that they are truly loyal to only 46% of the programs they
participate in. This leaves 9 programs that a customer could easily leave and
switch to a competitor if a better offer comes along [2].

1.2 Motivation and Objectives

The high proportion of inactive customers can be attributed to loyalty programs
whose benefits and rewards are not appealing to clients. Furthermore, the abun-
dance of available programs can overwhelm customers, potentially causing them
to become confused and forgetful about how a particular program functions or
their own membership status.

To tackle the issue of unappealing rewards, companies often try to increase the
variety of rewards and benefits by forming partnerships with other businesses.
However, sharing personal information with intermediaries can raise concerns
around customer privacy and increase risks [3]. Traditional loyalty programs can
also lack transparency [4], with issues like fake stamps and tampering with point
systems, to name just a few examples. Such problems occur when only one party
has direct access to the records.

1

Chapter 1

The prototype developed in this project aims to address every issue listed above
by leveragin the advantages of blockchain technology. Firstly, all loyalty pro-
grams are centralized in a single platform, allowing users to easily manage and
utilize them. Additionally, blockchain technology provides the security and trans-
parency sought by customers, preventing transaction forgery and unauthorized
access to their assets, and eliminates the need for businesses to share customers’
personal information - as customers are represented by public addresses - and
minimizes the risk of information leakage while reducing the costs due to the ab-
sence of intermediaries [3, 4]. Table 1.1 summarizes the problems encountered in
traditional loyalty programs and the Blockchain approach to tackle them.

Problems Blockchain’s approach

Customers’ personal
information exchange Each customer is represented by a public address

Intermediary
necessity No intermediaries: no risk of leakage, and low costs

Table 1.1: Blockchain solutions to traditional loyalty program problems.

On a high level, the platform allow companies to deploy and manage their cus-
tomized loyalty programs, and trade with their clients. On the other hand, cus-
tomers are able to sign up for different loyalty programs, and trade with the rel-
evant company or companies (in the case of a multiple company program), or
even with other clients.

The end result was achieved through the development of the following compo-
nents:

• Smart Contracts to handle programs, tokens and rewards;

• Token metadata storage;

• Application Programming Interface (API) to allow interaction with the de-
scribed platform.

1.3 Methodology

This project follows the Design Science Research (DSR) methodology, which aims
to address practical problems through the creation and evaluation of innovative
artifacts. The methodology encompasses a series of iterative cycles that include
problem identification, solution design, artifact development, evaluation, and re-
flection.

For instance, each feature in the project followed this iterative process. Firstly, the
problem was identified - the absence of a specific feature. Then, a solution was
designed and carefully planned for implementation. Subsequently, the feature

2

Introduction

was developed and prepared for testing and evaluation. Afterward, a critical
analysis and reflection were conducted to assess the design decisions, address
any implementation challenges, and evaluate the outcomes of the feature.

The DSR methodology provides a structured and systematic approach to address-
ing practical problems by combining scientific rigor with design principles. It
allows for the creation of valuable knowledge and practical solutions with real-
world impact [5].

1.4 Document Outline

This document consists of nine chapters, each addressing different stages of the
project.

In the first chapter, an introduction is provided, presenting the a contextualiza-
tion, problem statement, and objectives to be achieved by the end of the intern-
ship.

The second chapter dives into the background and state of the art information
about loyalty programs, blockchain, and explores how these two concepts can be
combined.

Moving on to the third chapter, the proposed solution and its underlying idea are
presented.

The fourth chapter focuses on the requirements analysis, describing the specific
requirements for the platform and defining the success criteria.

In the fifth chapter, the system design and architecture are discussed, along with
an examination of the identified risks.

The sixth chapter explains the adopted development methodology and analyzes
the project planning, including both first and second semester plans.

Chapter seven delves into the development process, covering topics such as the
development environment, smart contract implementation, the structure of the
database, and backend and frontend development.

In the eighth chapter, the testing and validation phases take place, where the
developed platform is tested and verified for validation of the requirements.

Finally, in the ninth chapter, a conclusion is provided, summarizing the intern-
ship experience and highlighting future work, including suggestions for further
development of the platform.

3

Chapter 2

Background and State of the art

The present chapter aims to provide an overview of the concepts of loyalty pro-
grams and blockchain technology. By exploring these topics, readers will gain a
better understanding of the context surrounding the theme of this project. This
chapter commences by examining loyalty programs, their nature, how they op-
erate, and providing real-world examples. Following that, the blockchain is in-
troduced, what it is, it’s mechanics and advantages, and various blockchain tech-
nologies are explored. Lastly, an explanation on how loyalty programs are lever-
aging blockchain technology in the present is discussed, along with some more
noteworthy examples.

2.1 Loyalty Programs

Loyalty programs are an important instrument to improve brand loyalty by creat-
ing stronger economic and habitual relationships [6]. These programs offer bene-
fits, prizes, and discounts to customers in exchange for their loyalty and ongoing
purchases. The companies promote these programs as they show great success in
retaining customers [1].

The type of loyalty programs is determined by the nature of interactions between
the company and the customers. This leads to a wide variety of structures [7–9]
that can be classified into four main categories:

• Point System (Section 2.1.1);

• Tier System (Section 2.1.2);

• Subscription System (Section 2.1.3);

• Value-based System (Section 2.1.4).

5

Chapter 2

2.1.1 Point System

This is the most traditional and simple system, where a currency such as points,
collectibles, or stamps is used and traded for the final reward. The more money
customers spend, the more points they receive in return. Customers earn points
by making purchases, and as soon as these points are available for them to spend,
they can get discounts, vouchers, free rewards, or even some form of cashback.

Example: Vodafone Clube Viva [10]

Vodafone, a telecommunications company, gives their customers two points for
every euro they spend on a subscription for one or more of their services. These
points can then be redeemed for discounts on communication devices (e.g., cell-
phones, tablets, hotspots, SIM cards) and accessories. A schematic representation
of this loyalty program is shown in Figure 2.1.

Figure 2.1: Schematic representation of Vodafone Clube Viva loyalty program.

2.1.2 Tier System

Tier systems are structured as a ranking system where customers begin at the
base-level and gain access to initial benefits upon joining. As customers continue
to engage with the company and make purchases, they have the opportunity
to progress through the tiers, unlocking increasingly valuable rewards. These
rewards often include discounts, exclusive deals, and complimentary products
or services.

6

Background and State of the art

Example: Nespresso [11]

The Nespresso Company uses a tiered loyalty program with 3 levels named Con-
noisseur, Expert and Ambassador (Figure 2.2). As the clients enlist themselves in
the program, they are given the Connoisseur tier, where they receive the follow-
ing basic benefits: free deliveries, a decalcification kit, and the ability to schedule
future orders.

Then, after purchasing every year the equivalent of approximately 2 or 3 capsules
per day, on average, and being in the program for more than 5 years, they rank
up to the Expert tier. At this level, they continue to receive all the Connoisseur
benefits, a 20€ discount on accessories, and a free product.

Reaching the mark of 10 consecutive years of purchasing from Nespresso and
maintaining an average of 3 or more capsules per day throughout each year, cus-
tomers ascend to the highest Ambassador tier. As Ambassadors, they unlock a host
of exclusive benefits, including all the perks from previous tiers, access to person-
alized deals, and a brand new coffee machine.

Figure 2.2: Schematic representation of Nespresso’s loyalty program.

2.1.3 Subscription System

The subscription program allows clients to enroll and enjoy a range of exclusive
services, discounts, and access to exclusive content. As the name suggests, clients
pay a regular fee, which can be monthly, quarterly, semiannual, or even annual,
to maintain their subscription and continue receiving these exclusive benefits.

Example: Amazon Prime [12]

Amazon has a subscription-based loyalty program that benefits customers who
frequently use products from the Amazon ecosystem. For a monthly or annual
fee, a Portuguese client will get:

7

Chapter 2

• Free shipping and faster deliveries on Amazon purchases;

• Access to Prime Video, where he can watch movies and series for free;

• Prime Gaming, which gives him a free Twitch subscription and access to
exclusive content for a number of games;

• Prime Priority Access provides access to Flash Offers 30 minutes prior to
launch;

• Amazon Photos, offers unlimited storage capacity for photos in the Amazon
Drive.

2.1.4 Value-based System

Value-based loyalty programs are implemented by businesses to build a string
emotional bond with their customers. Unlike traditional loyalty programs where
the vendor gives something back to the client, value-based programs focus on
fostering a deeper connection by allowing customers to contribute to charitable
organizations that align with their values and interests.

Example: Amazon Smile [13]

Amazon also includes a value-based program in their portfolio called Amazon
Smile where customers can select one organization from a list of charities to sup-
port. Then, as shown in Figure 2.3, Amazon donates 0.5% of the total purchase
price to the designated charity, assisting those who are most in need.

Figure 2.3: Schematic representation of Amazon Smile.

8

Background and State of the art

2.2 Blockchain

In 2008, an individual or group known as Satoshi Nakamoto introduced the con-
cept of a decentralized blockchain. One year later, this concept was materialized
in the creation of Bitcoin [14].

A blockchain, as its name suggests, is a series of interconnected blocks called
ledger, each of which contains the information that needs to be recorded along
with the hash of the preceding block, as depicted in Figure 2.4 [15]. This inherent
structure makes the blockchain immutable, because changing a block in the mid-
dle of the ledger would cause the entire chain to break, with everyone noticing it
[15].

Figure 2.4: Representation of the ledger.

Periodically, depending on the blockchain technology, a new block is added to
the chain after its transactions are verified and validated by a node or a partici-
pant called validator that in return receives some reward. In order to validate a
new block on the ledger, validators rely on a synchronizing mechanism to han-
dle concurrency and maintain consistency across all nodes. This enables them to
verify and finalize transactions effectively (Section 2.2.1).

To achieve decentralization (Figure 2.5b) and overcome the challenges associated
with centralization, wit is essential to establish a network of interconnected peers
that each maintain a copy of the ledger [14].

(a) Centralized (b) Decentralized

Figure 2.5: Representation of centralized and decentralized networks.

9

Chapter 2

And since there are no intermediaries among transactions, how can anyone trust
that the other entity will uphold their end of the deal? Well, thanks to smart con-
tracts (Section 2.2.2), the entire transaction commits as a single act, safeguarding
both the buyer and the seller [16].

In terms of control and governance, blockchains can be categorized into four main
types: (i) public, (ii) private, (iii) hybrid, or (iv) consortium, as depicted in Figure
2.6 [17, 18].

Figure 2.6: Types of Blockchain.

Public blockchains have no central authority, which means nobody owns them.
Due to their decentralized nature, anyone with access to the internet can join
and take part in the network. Additionally, given their permissionless nature,
everyone can see and follow every transaction.

As opposed to public blockchains, private blockchains are centralized, meaning
that one authority — which could be one person or entity — controls the entire
network. The authority has the power to choose the participants of the network
(permissioned), completely concealing the transactions from the general public.

Consortium blockchains, which are also permissioned, allow a group of author-
ities (i.e., two or more people or entities) to determine who can access their net-
work. In this scenario, the network’s architecture is no longer centralized, and
the more decentralized it is, the more authorities it has and the more secure it is
against corruption of an authority.

Hybrid blockchains combine both public and private blockchain features. A pub-
lic permissionless network is set up alongside a private permissioned one, allow-
ing them to hide transactions from the general public. An authority can invite
users to the private network but cannot change any transactions.

Each has advantages and disadvantages, which explains why they are used in

10

Background and State of the art

different ways. Table 2.1 lists the benefits and drawbacks of the different types of
blockchains [19].

Public Private Hybrid Consortium

Advantages

Independence Access control Access control Access control

Transparency Performance Performance Scalability

Trust Scalability Security

Disadvantages

Performance Trust Tranparency Transparency

Scalability Auditability Upgrading

Security

Use Cases

Cryptocurrency Supply chain Medical records Banking

Document validation Asset ownership Real estate Research

Supply chain

Table 2.1: Blockchain types: advantages and disadvantages.

2.2.1 Consensus Mechanisms

Consensus occurs when all the peers, or nodes, in a network reach an agreement
on the current state of the ledger, ensuring that there is only one authoritative ver-
sion. Following are a few of the numerous mechanisms or algorithms available
to reach consensus:

Proof of Work (PoW)

Nodes compete with one another in order to solve extremely difficult puzzles,
and the first to do so earns the right to produce the new block and verify its
transactions. Once produced, the node is rewarded for his efforts (block rewards -
newly generated coins). This process, also known as mining, although secure and
completely decentralized, requires large amounts of computational resources for
a node to beat his competition and, consequently, energy. The costs of maintain-
ing a node are notoriously high, pushing away new miners or nodes, leading to
concerns about centralization (fewer nodes) and scalability (too expensive) [20].

Proof of Stake (PoS)

To resolve the previously mentioned PoW problems, a more recent algorithm was
created. The action is known as staking, and the nodes are required to pledge a
stake of a currency in exchange for the opportunity to be selected at random as a

11

Chapter 2

validator. A node has a better chance of being chosen if he stakes more coins. The
chosen validator will go on to verify and validate the block’s transactions, insert
the new block into the ledger, and collect a reward (i.e., the transaction fees paid
by the actors involved in those transactions).

PoS is viewed as a more sustainable and environmentally-friendly alternative to
PoW, and more secure against 51% attack. However, because nodes with larger
stakes are favored and nodes with smaller stakes have a very slim chance of being
rewarded, there is a tendency toward centralization [20].

Delegated Proof of Stake (DPoS)

This algorithm forks from PoS and achieves consensus through a reputation-
based voting system. Users of the network stake their coins to be able to vote
in witnesses (also known as block producers). The votes are then weighted ac-
cording to the size of each voter’s stake, and a list of the top witnesses is elected
(the size of the list varies from platform to platform). The responsibility of val-
idating and producing a new block circles through the elected block producers.
A block producer can also be voted out and replaced if an attempt to validate a
fraudulent transaction is made. Despite being less popular than PoS, DPoS is a
more effective, democratic, and financially inclusive alternative [20].

RAFT

The RAFT algorithm was designed for better understandability of how consen-
sus can be achieved considering its predecessor PAXOS (another consensus al-
gorithm, but very complex, thus not being explored here). To begin with, RAFT
acknowledges that each node can be in one of three states: leader, candidate, or
follower. The leader is elected through an election process and leader node serves
as the central coordinator, receiving client requests and logging them to the fol-
lower nodes. Once the majority of followers have registered and processed the
logs provided by the leader, they can be considered committed and be applied.
A new leader is elected if the current one fails or becomes unavailable [21].

Proof of Elapsed Time (PoET)

The PoET algorithm aims to achieve consensus in a distributed network by uti-
lizing a fair and efficient lottery-based selection process. Each node participant is
assigned a random wait time for it to "sleep", and the first "waking up" wins the
permission to propose and produce a new block. Then, the new information is
broadcasted throughout the whole network and this process repeats.

This algorithm promotes efficiency by reducing the need for resource-intensive
tasks like PoW mining. Instead of expending computational power, participants
in PoET simply wait for their assigned time period to pass, significantly reduc-
ing energy consumption and computational requirements, while maintaining a
fairness in the "leader" selection process [22].

12

Background and State of the art

Liquid Proof of Stake (LPoS)

The LPoS algorithm was designed to address the limitations of traditional PoS
algorithms, such as the lack of liquidity and the concentration of power among
a few stakeholders. The key concept of LPoS is the delegation of stake which al-
lows stakeholders to delegate their tokens to a trusted validator in the network.
By delegating their stake, stakeholders can participate in the transactoin valida-
tion process and earn rewards without the need to actively run a validator node
themselves. Another important advantage of LPoS is its liquidity. Unlike some
PoS algorithms where tokens are locked up for a certain period, LPoS allows
stakeholders to freely unstake their tokens whenever they choose while still re-
ceiving rewards for their participation [23].

Tendermint

At its core, Tendermint utilizes a Byzantine Fault Tolerant as it assumes that up to
one-third of the participating nodes can be faulty or malicious, and the algorithm
aims to achieve consensus among the non-faulty nodes. The key components
of the Tendermint algorithm include a round-based consensus process, a leader-
based block proposal mechanism, and a voting mechanism for block validation.

Every round, the "leader" role is assigned to a node, allowing him to propose a
block of transactions. Once this block is broadcasted to the network, other nodes
validate it by voting on its validity. The block is committed if at least two-thirds
of the nodes agree on its validity.

To prevent malicious behavior, Tendermint employs a punishment mechanism.
If a node behaves dishonestly, it can be detected by other nodes through its sig-
nature, and it may then face penalties, such as being temporarily or permanently
excluded from the consensus process [24].

2.2.2 Smart Contracts

A smart contract is an agreement between two or more parties over the inter-
net. It is self-executed and thus eliminates the need for intermediaries. It is
programmed and supports various currencies, tokens, or kinds of property in
addition to performing a number of different tasks like buying, selling, and trad-
ing those assets. To write a smart contract, we need to identify (i) the parties in-
volved in the transaction, (ii) the type of assets exchanged, and (iii) the conditions
of the transaction. Following deployment, the smart contract, like a transaction,
is stored on the blockchain, is immutable, ensuring security, and is accessible to
all users, ensuring transparency [25, 26]. The potential applications are endless,
for instance, if we assume that a Non-Fungible Token (NFT) can represent a phys-
ical document, such as a house deed, the holder could sell their home by simply
exchanging their NFT for cash.

13

Chapter 2

2.2.3 Tokens

A token is a representation of something in the blockchain: money, time, ser-
vices, shares in a company, anything [27]. There are native tokens and contract
tokens. The native tokens serve as the universal currency within that blockchain
platform, they are used to stake, pay transaction fees, and are rewarded to the
validators, while the contract tokens are tokens produced by a smart contract.
The smart contract links addresses that represent one person/entity (deeper ex-
planation in section 2.2.4) to their balance of that respective token, like a common
database, and has some methods to add to or subtract from those balances: "send-
ing tokens" actually means "calling a method on a smart contract that subtracts
and adds a certain value" [28].

There is a significant difference between having two shares of a company and
two deeds of ownership: each share is equal to all others, whereas houses are not
always equal - one deed of ownership is worth more than the other. This property
is called fungibility [28]:

• Fungible Tokens - goods are equivalent and interchangeable;

• NFTs - goods are unique and distinct.

Because of their non-fungible nature, NFTs require special attention: a block of
the ledger has a certain size, so storing large data like an image on the blockchain
is too expensive and not scalable. The solution is to save all that metadata (like
the image and its name and description) somewhere else and store an identifier
or link to that metadata on the blockchain.

The InterPlanetary File System (IPFS) is a decentralized peer-to-peer file sharing
and storage system. It aims to create a global, distributed network where users
can store and retrieve files in a more efficient and resilient manner compared
to traditional centralized systems. In IPFS, files are identified using a content-
addressable approach, where each file is assigned a unique cryptographic hash
based on its content. This ensures that identical files are always represented by
the same hash, enabling efficient deduplication and eliminating the need for mul-
tiple copies of the same file, and also allows files to remain accessible even if their
original hosting nodes go offline, since they are referenced by their content rather
their location [29, 30].

Overall, IPFS presents an approach to file storage and sharing, leveraging de-
centralization, content addressing, and peer-to-peer networking to create a more
efficient, resilient, and censorship-resistant file system, ideal to host the token
metadata mentioned earlier.

Token standards are the conditions, guidelines, and functions that define how a
token can be created, issued, and deployed on blockchain platforms that support
smart contracts. Table 2.2 displays the most prevalent contracts implemented on
the Ethereum blockchain [31]:

14

Background and State of the art

Standard Name Creation Date Description

ERC-20 19-11-2015 Supports fungible tokens.

ERC-721 24-01-2018 Supports NFTs.

ERC-1155 17-06-2018 Supports both fungible and non-fungible tokens.

Table 2.2: Most Common ERC Token Standards.

2.2.4 Token Storage

A user is represented by a pair of keys in the blockchain world: a public key that
serves as the address for other users to send tokens to and a private key used to
authenticate the user and authorize transactions. Such pairs of keys can be stored
in digital wallets.

Digital wallets allow a user to create and manage these pairs of public and private
keys. They can be of two natures: (i) custodial wallets, a user-friendly approach
in which both keys are held by a third party; (ii) non-custodial wallets, the more
advanced and secure way: both keys are fully controlled by the user, and he
cannot forget the private key.

2.2.5 Blockchain Platforms

This section examines several blockchain platforms that support smart contracts
because every platform has advantages and disadvantages, implying that each
was created with a specific purpose.

Ethereum [32]

It was launched in 2015 and is public and permissionless. Its native token is Ether
(ETH), and the consensus mechanism is PoS. Solidity is the main programming
language used in smart contracts. And Ethereum has the largest programming
community [33]. Interoperability is another key feature. Ethereum appears to
be the foundation for many scaling options, resulting in a large ecosystem with
many blockchains that can exchange information among them. The main dis-
advantage is the transaction speed. As demand exceeds supply, the network is
extremely congested, driving up transaction fees.

Hyperledger Fabric [34] and Hyperledger Sawtooth [35]

Both of these platforms belong to the same family and are quite similar. They
are neither public nor permissionless but can be configured to be either private,
hybrid, or consortium. Fabric uses RAFT for consensus, whereas Sawtooth can

15

Chapter 2

use RAFT and Practical Byzantine Fault Tolerance (PBFT) or switches to PoET in
real time in a running network.

Since these platforms are not public, companies have to deploy and maintain the
network, but on the other hand, transaction fees would be free and transaction
speeds would be maximized (such as 3500 Transactions per Second (TPS)). Both
support various programming languages for their smart contracts, as detailed in
Table 2.3.

Programming Language
Blockchain Platform

Hyperledger Fabric Hyperledger Sawtooth

Go X X

JavaScript X X

Java X X

Rust X

Python X

C++ X

Table 2.3: Hyperledger Fabric and Hyperledger Sawtooth’s smart contract pro-
gramming languages.

Corda [36]

Corda is a consortium blockchain developed by R3 with a main focus on perfor-
mance and instantaneous transactions. Conventional blockchains use a system
of blocks and block production with multiple transactions within them, while in
Corda, as soon as one transaction is submitted, and if consensus is achieved, the
transaction is deployed to the ledger in real-time. There is no need to wait for
transactions to come along to form an entire block or a "block interval". For val-
idators to achieve consensus, validity and uniqueness must be verified: validity
determines if a transaction is accepted by the smart contract it references, and
uniqueness prevents double-spending. The smart contract programming lan-
guages supported are Java, Kotlin, and any other Java Virtual Machine (JVM)
compatible language.

Tezos [37]

Tezos is a public blockchain platform, and its native token is Tez (XTZ). The
founders didn’t want it to be forked into another variation with another native
token with two distinct prizes, so it uses a system where anyone with XTZ cryp-
tocurrency can vote on possible changes to Tezos rules, and once decided, the
software would automatically update to ensure that changes are implemented
[38].

16

Background and State of the art

Another interesting fact is that the consensus mechanism, LPoS, is an evolution
of DPoS where the idea is to dilute even more the activity and increase inclusion
among users to participate in the network. Participants, in order to become block
producers, need to stake at least 6000 XTZ (a roll) in a process called baking; if
they don’t have that amount, they can delegate their tokens to other bakers with
the goal of winning some rewards (more tokens) [39].

The smart contract language is the Michelson language, a low-level language that
is similar to assembly language. Like assembly, there are a number of high-level
languages that compile into the Michelson language (e.g., SmartPy, Archetype, or
Ligo) [40].

EOSIO [41]

Founded in 2017 by Block.One [42], EOSIO is a permissioned hybrid blockchain
platform with EOS as the native token. The consensus mechanism is composed
of a two-layer mechanism: firstly, there is a DPoS layer to generate a list of 21
block producers and handle the voting system, and for block production and
validation, the asynchronous Byzantine Fault Tolerant (aBFT) layer enters into
action. These two processes are independent and can be executed in parallel.

There are no transaction fees. Developers need to buy CPU, memory, and net-
work bandwidth with EOS for their Decentralized Applications (dApps) to inter-
act with the network. Users can also delegate or rent such resources.

EOS tokens are limitless, which means they can be minted indefinitely, but they
can also be burned and deleted. Currently there is an inflation rate of 3% per
year, where 1% is distributed through the block producers and the remaining 2%
is headed into a savings account for future sponsorships, funding, and develop-
ment.

Officially, the smart contract programming language is C++, however there is an
award-winning community project that bridges the gap between Solidity and the
native language called "eosio.evm" [43].

It is possible to use JavaScript, Swift, and Java to interact with the blockchain.
But there are also some issues: (i) Windows Operating System is not officially
supported, and (ii) EOSIO Java Software Development Kit (SDK) [44] has not
been updated in over 2 years, meaning it is outdated.

Stellar [45]

Stellar is a public and permissionless blockchain, and its native token is called
Lumen (XLM). Stellar’s purpose is to facilitate fast, low-cost, and secure transac-
tions, with a focus on cross-border payments and financial services. It offers built-
in features that allow for seamless currency exchange, making it easier and more
cost-effective to send money across different currencies. Stellar’s native cryp-
tocurrency, XLM, serves as both a means of exchange and an anti-spam mecha-
nism to prevent network abuse.

17

Chapter 2

Another key feature of Stellar is its ability to facilitate the issuance and transfer
of digital assets, including cryptocurrencies and tokens. It provides users with
a platform to create and manage their own assets, which can represent various
types of value, such as currencies, commodities, or even real-world assets like
stocks or bonds.

Polygon [46]

Polygon is a layer-two scaling platform that aims to enhance the scalability of
Ethereum while retaining its core features. It achieves this by operating as an
Ethereum sidechain, which means it runs parallel to Ethereum’s main blockchain
and is connected to it. This connection enables seamless interoperability and the
exchange of information between the two networks.

Polygon’s main network, called Polygon POS, utilizes a PoS consensus mech-
anism. This means that users can stake their MATIC tokens (the native token
of Polygon) and potentially become validators, responsible for validating and
adding blocks to the blockchain. Alternatively, users have the option to delegate
their tokens to other validators, thereby participating in the consensus process
indirectly.

A few advantages of Polygon are its seamless integration with Ethereum, the
transaction speed, and the low costs per transaction. Because it is built as an
Ethereum sidechain, developers can utilize familiar tools and programming lan-
guages, particularly Solidity, which is Ethereum’s primary smart contract lan-
guage. This compatibility allows for easy migration of existing Ethereum projects
to Polygon and promotes developer adoption. Also, by leveraging its sidechain
architecture, Polygon offers faster transaction speeds and significantly reduced
fees compared to the Ethereum network. This improvement allows users to en-
joy a more efficient and cost-effective experience when interacting with dApps
and executing transactions.

Cosmos [47]

Cosmos, often referred as the "internet of blockchains" [47], aims to create a net-
work of interoperable networks, allowing transactions between them. Each new
blockchain created with Cosmos (referred to as a "zone") is then connected to the
Cosmos Hub, a PoS blockchain whose native token is ATOM.

The Cosmos Hub was the first blockchain to be launched within the Cosmos net-
work. Its primary role is to be the intermediary between all the zones. Each zone
is able to carry out its essential functions on its own and can communicate with
other zones via the Inter-Blockchain Communication Protocol (IBC) [48].

Since this process seems very complex, the Cosmos team developed the Cosmos
SDK that allows developers to build blockchains using the Tendermint consen-
sus mechanism. The SDK minimizes complexity by offering the most common
functionalities like staking, governance, and tokens [48].

18

Background and State of the art

2.3 Blockchain based Loyalty Programs

As already mentioned, blockchain-based loyalty programs enable user interac-
tion through a system without middlemen and without jeopardizing their pri-
vacy. Ideally, businesses don’t have to worry about scalability and can manage
and monitor their programs in real time, leaving great potential for partnerships
with other entities: "Blockchain is a system facilitator, not a replacement for an
existing system" [3, 6, 27].

After searching on the current market for these programs, it is possible to con-
clude that all follow some sort of a point system where the token is something
spendable, like a coin, a voucher, or a stamp — something that the customer
spends in exchange for those benefits [27] (a general example is represented by
Figure 2.7 [6]).

Figure 2.7: Typical customer journey with blockchain-based loyalty programs.

Amergent Hospitality Group [49] & Mobivity [50]

Amergent Hospitality Group, the former Chanticleer Holdings Group, are the
current owners of Jaybee’s Chicken Palace [51], PizzaRev [52], Little Big Burger
[53], Burgers Grilled Right [54], and American Burger Co. [55]. In January 2018,
they planned a partnership with Mobivity, a publicity and marketing company, to
create a blockchain-based loyalty program where their customers would receive
Mobivity Merit (the token name) that could be used in those restaurants to make
purchases or traded with other users: “Mobivity Merit is real cryptocurrency,
leveraging the same infrastructure and principles of Bitcoin, Ethereum, Ripple,
Litecoin, and more” - Michael D. Pruitt, Amergent Hospitality Group CEO [56].

19

Chapter 2

American Express [57] & Boxed [58]

In May 2019, American Express, an American bank, partnered with Boxed, a su-
permarket chain, to create a loyalty program. When Boxed customers bought
their groceries, if they paid with a certain special American Express card, they
would win points that could be exchanged for discounts in Boxed stores. Today,
this partnership has expanded, and many companies like Amazon [59], Best Buy
[60], Staples [61], Ticketmaster [62], and more have joined [63]. All transactions
are registered on a private Hyperledger blockchain.

Singapore Airlines [64]

In June 2018, Singapore Airlines (SIA) became the first company in the airline
sector with a blockchain-based loyalty program. Customers earn tokens called
miles by flying with SIA; those tokens can be used, via the application Kris+, to
redeem prizes and discounts at more than 1,000 different companies that have
partnered up. It is also possible to convert miles to other loyalty program curren-
cies (from other companies) that SIA allows [65]. All transactions are registered
on a SIA-owned private blockchain [66].

Etisalat [67]

In May 2017, Etisalat, a telecommunications company in the United Arab Emi-
rates (UAE), launched the Stisalat Smiles app [68]. When paying the monthly
bill for mobile, TV, and/or internet services, customers receive points that can be
redeemed throughout a pool of partners in the form of discounts and prizes [69].

The Etisalat Smiles program received an upgrade in December 2020, allowing
customers to add other loyalty programs to the Smiles app and convert points
from one program to others (if the loyalty program being added signs up for it)
[70].

20

Chapter 3

The Proposed Blockahin-based
Loyalty Platform

This chapter presents the idea and concept of our proposed solution for enhanc-
ing loyalty programs. The first part focuses on discussing potential improve-
ments to existing blockchain-based loyalty programs, while the second part pro-
vides an overview of the developed platform.

3.1 Loyalty Program

In a point system, tokens can function as currency, allowing customers to accu-
mulate a balance of tokens that can be exchanged for rewards at a later time.
These tokens are generated in batches and assigned unique IDs for storage in the
blockchain. Each batch can be associated with an expiration date, either indefi-
nite or for a specific period. Token owners can easily engage in transactions with
other users, as illustrated in Figure 3.2. When a token reaches its expiration date,
it remains in the customer’s possession but loses its value, as depicted in Fig-
ure 3.1. This approach enables flexible token usage while ensuring that expired
tokens cannot be redeemed.

Figure 3.1: Token balance calculation.

21

Chapter 3

Figure 3.2: Token transmission in a point blockchain-based loyalty program.

As previously discussed in Section 2.3, all the analysed blockchain-based pro-
grams revolved around some form of point system. This led us to explore the
concept of subscription and tier systems, which can be considered as essentially
a membership with an expiration date. The underlying idea is that when a user
possesses a NFT with a designated expiration date, it grants them the same priv-
ileges as a member of the corresponding tier or subscription (refer to Figure 3.3).
To ensure exclusive access, the token can only be transferred between the vendor
(the token’s issuer) and the consumer, thereby preventing unauthorized sharing
(as illustrated in Figure 3.4). Once a token expires, it can still be retained by the
customer, but it loses its value.

Figure 3.3: Subscription and tier privilege access.

22

The Proposed Blockahin-based Loyalty Platform

Figure 3.4: Token transmission in a subscription and tier blockchain-based loyalty
program.

3.2 The Platform

The developed platform provides a range of features for both vendors and clients.
Vendors enjoy the convenience of minting tokens, monitoring and transferring
their balances, as well as deploying and managing loyalty programs, including
the ability to edit and disable them. On the other hand, clients have the capability
to check and transfer their token balance, search for, join/leave, and interact with
any program, including the process of redeeming rewards. The platform strives
to be user-friendly and accessible, ensuring that even individuals without prior
knowledge of blockchain technology can navigate it easily.

Similar to the tokens used as currency within the programs, rewards are also
represented by tokens. Redeeming a reward involves exchanging tokens, it is
like purchasing a specific token with other tokens. However, the reward tokens
differ from the program tokens in that they are not stored within the program
tokens smart contract. Instead, they reside in a separate contract created and
maintained by the vendor, allowing the vendor to have control over the reward
handling in the "real world" (this allows vendors to use reward tokens as coupons
or discounts). To facilitate this, the vendor needs to deploy his rewards smart
contract and add it to the platform, enabling the platform to mint tokens based
on it. It’s worth noting that the platform aims to be as user-friendly and accessible
as possible, so a default rewards contract is already deployed and available for
use by every vendor.

23

Chapter 4

Requirements Analysis

The purpose of this chapter is to establish the requirements for the platform.
Defining these requirements helps describe the features of the platform and en-
ables the creation of a development plan and timeline. This process allows for
determining whether there is sufficient time to implement specific features.

The chapter begins by defining the functional requirements, accompanied by user
stories to enhance comprehension of each feature. Next, the non-functional re-
quirements are outlined. Finally, the success criteria are presented.

4.1 Functional Requirements

The functional requirements collect every feature associated with the product.
However, it is not implied that the final product will include all of them. To
provide a comprehensive overview, the requirements are grouped into five mod-
ules and listed in Table 4.1, with each feature assigned a priority label based on
the MoSCoW scale: (M) Must Have, (S) Should Have, (C) Could Have, and (W)
Won’t Have This Time [71]. For a more detailed understanding, user stories in
Section 4.2 can provide additional information and clarity.

ID Actor Feature Priority

Authentication

FR1 Vendor/Client Log in with email and password credentials M

FR2 Vendor/Client Register new account with email and
password credentials M

FR3 Vendor/Client Log in with MetaMask Wallet M

FR4 Vendor/Client Register new account with MetaMask
Wallet M

25

Chapter 4

Table 4.1 continued from previous page

ID Actor Feature Priority

Tokens

FR5 Vendor
Create a token template (only upload the
token metadata, including image, to the
IPFS network)

M

FR6 Vendor Soft delete a token template W

FR7 Vendor/Client Fetch all the details of a token by its ID M

FR8 Vendor/Client Fetch the list of token templates given a list
of IDs S

FR9 Vendor/Client Fetch the list of token templates created by
a certain Vendor M

FR10 Vendor/Client Fetch the list of token templates that a
certain user has balance of M

FR11 Vendor/Client Fetch the balance of a token owned by a
certain user M

Rewards

FR12 Vendor
Create a reward token template (only
upload the token metadata, including
image, to the IPFS network)

M

FR13 Vendor Soft delete a reward token template W

FR14 Vendor/Client Fetch all the details of a reward token by its
ID M

FR15 Vendor/Client Fetch the list of reward token templates
given a list of IDs S

FR16 Vendor/Client Fetch the list of reward token templates
given a certain reward smart contract ID S

FR17 Vendor/Client Fetch the list of reward token templates
created by a certain Vendor M

FR18 Vendor/Client Fetch the list of reward token templates
that a certain user has balance of M

FR19 Vendor/Client Fetch the balance of a reward token owned
by a certain user M

FR20 Vendor Insert the details of a reward smart contract S

FR21 Vendor Soft delete a reward smart contract W

FR22 Vendor/Client Fetch the details of a reward smart contract
by its ID S

26

Requirements Analysis

Table 4.1 continued from previous page

ID Actor Feature Priority

FR23 Vendor/Client Fetch the list of reward smart contracts
given a list of IDs S

FR24 Vendor/Client Fetch the list of reward smart contracts
inserted by a certain Vendor S

Programs

FR25 Vendor Create a new program M

FR26 Vendor Edit a program M

FR27 Vendor Soft delete a program W

FR28 Vendor/Client Fetch all the details of a program by its ID M

FR29 Vendor/Client Fetch the list of programs created by a
certain Vendor M

FR30 Vendor/Client Fetch the list of programs a certain user has
joined M

FR31 Vendor/Client Fetch the list of programs given a name M

FR32 Vendor/Client Fetch the list of programs given a location S

FR33 Vendor/Client Join/leave a certain program M

Transactions

FR34 Vendor Mint a new batch of a certain token to some
user M

FR35 Vendor/Client Transfer balance of a certain token to some
other user M

FR36 Vendor/Client Fetch the transaction history of a certain
token S

FR37 Vendor/Client Redeem a reward M

FR38 Vendor/Client
Send an email notification to a user when
he was enough token balance to redeem a
certain reward from a certain program

W

FR39 Vendor/Client Send an email notification to a user when
he was token balance about to expire W

Table 4.1: Functional Requirements.

27

Chapter 4

4.2 User Stories

To improve organization, User Stories (US) are grouped into five modules per
actor. Each user story follows the format "as an [actor], I want to [goal] so that
[reason]", providing a clear explanation of the feature.

4.2.1 Vendor

Authentication module

US1: Log in
As a vendor, I want to authenticate myself on the platform so that I can
use all my functionalities. I can do that by using any of the following
methods:

• Email and password credentials;
• MetaMask digital wallet.

US2: Registration
As a vendor who does not have a registered account on the platform, I
want to create a new account so that I can use the functionalities. I can
do that by:

• Contact the platform support to enter the vendor whitelist;
• Register with either email and password credentials, or my Meta-

Mask digital wallet.

Tokens module

US3: Create a token template
As an authenticated vendor, I want to create a new token template so
that it can be used in programs. And for that, I need to specify:

• The name of the token;
• The description of the token;
• The type of token (if it is Transactable between users, like points,

or not, like subscription memberships);
• The image of the token.

US4: Soft delete a token
As an authenticated vendor, I want to hide my token so that it does not
shown up when searching for it.

US5: Fetch all the details of a token
As an authenticated vendor, I want to fetch all the details, including
my balance (slows down the request), of a certain token so that I get all
the information about that token.

US6: Fetch a list of tokens
As an authenticated vendor, I want to fetch a list of tokens given a
certain filter so that I can list them. I can filter the tokens by:

28

Requirements Analysis

• An array of IDs (get all tokens in the given array);
• The creator of the token template (get all tokens created by a cer-

tain vendor);
• The client (get all tokens that a certain user has balance of).

Rewards module

US7: Create a reward token template
As an authenticated vendor, I want to create a new reward token tem-
plate so that it can be used in programs. And for that, I need to specify:

• The ID of the reward smart contract (relates to the smart contract
where the reward token is going to be minted);

• The name of the reward;
• The description of the reward;
• Extra information/attributes about the reward that needs to go to

the token metadata when minted;
• The image of the reward.

US8: Soft delete a reward
As an authenticated vendor, I want to hide my reward so that it does
not shown up when searching for it.

US9: Fetch all the details of a reward
As an authenticated vendor, I want to fetch all the details, including
my balance (slows down the request), of a certain reward so that I get
all the information about that reward.

US10: Fetch a list of rewards
As an authenticated vendor, I want to fetch a list of rewards given a
certain filter so that I can list them. I can filter the rewards by:

• An array of IDs (get all rewards in the given array);
• An array of IDs of the reward smart contract (get all rewards whose

smart contract ID is in the given array);
• The creator of the reward token template (get all rewards created

by a certain vendor);
• The client (get all rewards that a certain user has balance of).

US11: Insert the details of a reward smart contract
As an authenticated vendor, I want to add the details of an already
deployed smart contract so that the platform mints the rewards in the
smart contract deployed by me. And for that, I need to specify:

• The address of the smart contract;
• The standard of the smart contract (ERC-1155 or ERC-721);
• The ABI of the smart contract.

US12: Soft delete a reward smart contract
As an authenticated vendor, I want to hide my reward smart contract
so that no more reward templates can be associated to it.

29

Chapter 4

US13: Fetch a list of reward smart contracts
As an authenticated vendor, I want to fetch a list of reward smart con-
tracts given a certain filter so that I can list them. I can filter the con-
tracts by:

• An array of IDs (get all contracts in the given array);
• The creator of the contract (get all contracts inserted by a certain

vendor).

Programs module

US14: Create a new program
As an authenticated vendor, I want to create a new loyalty program so
that clients can use it. And for that, I need to specify:

• The name of the program;
• The type of program (if it is a Points or Subscriptions type of pro-

gram);
• The description of the program;
• The array of the IDs of the tokens supported by the program;
• The array of the IDs of the rewards with the respective the price

supported by the program;
• The array of locations (coordinates and city names) of the vendor’s

physical stores;
• The status of the program (if the program is Active or Deactivated);
• The terms of service file of the program.

US15: Edit a program
As an authenticated vendor, I want to edit information about my loy-
alty programs so that they can stay up to date. I can edit:

• The description of the program;
• The array of the IDs of the tokens supported by the program;
• The array of the IDs of the rewards with the respective the price

supported by the program;
• The array of locations (coordinates and city names) of the vendor’s

physical stores;
• The status of the program (if the program is Active or Deactivated);
• The terms of service file of the program.

US16: Soft delete a program
As an authenticated vendor, I want to hide my deactivated loyalty pro-
gram so that it does not shown up when searching for it.

US17: Fetch all the details of a program
As an authenticated vendor, I want to fetch all the details, including
the ones saved on the blockchain (slows down the request), of a certain
loyalty program so that I get all the information about that program.

US18: Fetch a list of programs
As an authenticated vendor, I want to fetch a list of loyalty programs
given a certain filter so that I can list them. I can filter the programs by:

30

Requirements Analysis

• The vendor (get all programs created by a certain vendor);
• The client (get all programs a certain user has joined);
• The name of the program (get all programs that match a certain

name);
• The location (get all programs that have a physical store inside a

certain radius of a certain location).

US19: Join/leave a certain program
As an authenticated vendor, I want to join a certain loyalty program so
that I get use it, or I want to leave a certain loyalty program because I
don’t want to use it anymore.

Transactions module

US20: Mint a new batch of a certain token to some user
As an authenticated vendor, I want to generate balance of a certain
token into another user’s account as a result of his loyalty so that he
can use it. Additionally, I can set an expiration date for the generated
balance or leave it indefinite.

US21: Transfer balance of a certain token to some other user
As an authenticated vendor, I want to transfer some balance of a certain
token from my account to another user so that he can use it.

US22: Fetch the transaction history of a certain token
As an authenticated vendor, I want to list all the transactions related to
a certain token so that I can track them.

US23: Redeem a reward
As an authenticated vendor, I want to use my balance of one or more
tokens to redeem a reward so that I use it.

US24: Send email notifications
As an authenticated vendor, I want to receive email notifications either
when I have enough token balance to redeem a reward in any program
I’ve joined, or if I have token balance about to expire, so that I’m aware
of it.

4.2.2 Client

Authentication module

US25: Log in
As a client, I want to authenticate myself on the platform so that I can
use all my functionalities. I can do that by using any of the following
methods:

• Email and password credentials;
• MetaMask digital wallet.

31

Chapter 4

US26: Registration
As a client who does not have a registered account on the platform, I
want to create a new account so that I can use the functionalities. I can
do that by using any of the following methods:

• Email and password credentials;
• MetaMask digital wallet.

Tokens module

US27: Fetch all the details of a token
As an authenticated client, I want to fetch all the details, including my
balance (slows down the request), of a certain token so that I get all the
information about that token.

US28: Fetch a list of tokens
As an authenticated client, I want to fetch a list of tokens given a certain
filter so that I can list them. I can filter the tokens by:

• An array of IDs (get all tokens in the given array);
• The creator of the token template (get all tokens created by a cer-

tain vendor);
• The client (get all tokens that a certain user has balance of).

Rewards module

US29: Fetch all the details of a reward
As an authenticated client, I want to fetch all the details, including my
balance (slows down the request), of a certain reward so that I get all
the information about that reward.

US30: Fetch a list of rewards
As an authenticated client, I want to fetch a list of rewards given a
certain filter so that I can list them. I can filter the rewards by:

• An array of IDs (get all rewards in the given array);
• An array of IDs of the reward smart contract (get all rewards whose

smart contract ID is in the given array);
• The creator of the reward token template (get all rewards created

by a certain vendor);
• The client (get all rewards that a certain user has balance of).

US31: Fetch a list of reward smart contracts
As an authenticated client, I want to fetch a list of reward smart con-
tracts given a certain filter so that I can list them. I can filter the con-
tracts by:

• An array of IDs (get all contracts in the given array);
• The creator of the contract (get all contracts inserted by a certain

vendor).

Programs module

32

Requirements Analysis

US32: Fetch all the details of a program
As an authenticated client, I want to fetch all the details, including the
ones saved on the blockchain (slows down the request), of a certain
loyalty program so that I get all the information about that program.

US33: Fetch a list of programs
As an authenticated client, I want to fetch a list of loyalty programs
given a certain filter so that I can list them. I can filter the programs by:

• The vendor (get all programs created by a certain vendor);
• The client (get all programs a certain user has joined);
• The name of the program (get all programs that match a certain

name);
• The location (get all programs that have a physical store inside a

certain radius of a certain location).

US34: Join/leave a certain program
As an authenticated client, I want to join a certain loyalty program so
that I get use it, or I want to leave a certain loyalty program because I
don’t want to use it anymore.

Transactions module

US35: Transfer balance of a certain token to some other user
As an authenticated client, I want to transfer some balance of a certain
token from my account to another user so that he can use it.

US36: Fetch the transaction history of a certain token
As an authenticated client, I want to list all the transactions related to
a certain token so that I can track them.

US37: Redeem a reward
As an authenticated client, I want to use my balance of one or more
tokens to redeem a reward so that I use it.

US38: Send email notifications
As an authenticated client, I want to receive email notifications either
when I have enough token balance to redeem a reward in any program
I’ve joined, or if I have token balance about to expire, so that I’m aware
of it.

33

Chapter 4

4.3 Non-functional Requirements

Non-functional requirements, also referred to as quality attributes, represent the
characteristics associated with the final product. Similar to functional require-
ments, each attribute is assigned a priority label based on the MoSCoW scale
[71]. To describe and evaluate these attributes, scenarios are formulated, and the
expected correct responses serve as evidence of the system possessing the desired
characteristics. The quality attributes for this platform are outlined in Table 4.2.

ID Quality Attribute Priority

NFR1 Security M

NFR2 Throughput M

NFR3 Fault Tolerance S

Table 4.2: Non-functional Requirements.

RNF1 - Security

In any modern software system, ensuring some sort of security is super important
to protect sensitive information, prevent unauthorized access, and make sure that
users have the appropriate privileges to perform specific actions. The scenarios
in Tables 4.3 and 4.4 relate to this requirement.

Source of Stimulus Unauthenticated user

Stimulus Unauthenticated user attempts to access restricted
resources or perform actions he is not authorized for

Artifact Application Programming Interface (API)

Environment Normal conditions

Response The server responds with an 401 status error message

Response Measure
The server should not allow unauthenticated users to
access restricted resources or perform actions that
they are not authorized for

Table 4.3: Scenario 1: Unauthenticated access - Security (NFR1).

34

Requirements Analysis

Source of Stimulus Authenticated user

Stimulus
Authenticated user attempts to access restricted
resources or perform actions he does not have
permission for

Artifact API

Environment Normal conditions

Response The server responds with an 401 status error message

Response Measure
The server should not allow authenticated users to
access restricted resources or perform actions that they
do not have permission for

Table 4.4: Scenario 2: Unauthorized access - Security (NFR1).

RNF2 - Throughput

When designing a platform that aims to centralize numerous loyalty programs
and accommodate a substantial user base, it becomes crucial to address the non-
functional requirement of throughput. Throughput refers to the system’s capac-
ity to handle a high volume of requests within a given time frame. Given the
potential exposure of this platform to the real world, it is anticipated that a mas-
sive influx of requests will be directed towards it. Therefore, ensuring sufficient
throughput is essential to maintain the platform’s performance and responsive-
ness, guaranteeing a seamless user experience. The scenarios in Tables 4.5 and
4.6 relate to this requirement.

Source of Stimulus Authenticated user

Stimulus Authenticated user sends a request that communicates
with the Blockchain

Artifact API

Environment Overloaded

Response The server sends a response

Response Measure The server should not take more than 15 seconds to send
a response

Table 4.5: Scenario 3: Requests with access to Blockchain - Throughput (NFR2).

35

Chapter 4

Source of Stimulus Authenticated user

Stimulus Authenticated user sends a request that does not
communicate with the Blockchain

Artifact API

Environment Overloaded

Response The server sends a response

Response Measure The server should not take more than 5 seconds to send a
response

Table 4.6: Scenario 4: Requests without access to Blockchain - Throughput
(NFR2).

RNF3 - Fault Tolerance

Fault tolerance refers to the system’s ability to remain operational and provide
its intended services even in the presence of faults or failures. Considering the
potential exposure of this platform to the real world, where it will encounter var-
ious challenges and potential points of failure, ensuring robust fault tolerance
mechanisms is crucial to maintain uninterrupted service and prevent disruption
to loyalty program operations. The scenarios in Tables 4.7, 4.8 and 4.9 relate to
this requirement.

Source of Stimulus Authenticated user

Stimulus Authenticated user sends a request with invalid inputs

Artifact API

Environment Normal conditions

Response The server responds with an 422 status error message
with information about the invalid inputs

Response Measure The server should catch and handle the exception and
give feedback about the error

Table 4.7: Scenario 5: Exception Handling - Fault Tolerance (NFR3).

36

Requirements Analysis

Source of Stimulus Authenticated user

Stimulus Authenticated user sends a request that accesses the
Blockchain or the IPFS

Artifact API

Environment The platform lost the connection to the Blockchain or to
the IPFS

Response The server responds with an 424 status error message
with the respective information

Response Measure The server should catch and handle the exception and
give feedback about the error

Table 4.8: Scenario 6: Blockchain or IPFS Failure - Fault Tolerance (NFR3).

Source of Stimulus Authenticated user

Stimulus Authenticated user sends a request that accesses the
database

Artifact API

Environment The platform lost the connection to the database

Response The server responds with an 500 status error message
and switches to redundant or backup database

Response Measure
The server should detect the lost connection and initiate
the recovery process of switching to a redundant or
backup database and keeping down time minimal

Table 4.9: Scenario 7: Database Failure - Fault Tolerance (NFR3).

4.4 Success Criteria

For a project to be described as successful, there are some criteria that need to be
achieved before the final delivery. In this case, the intern must meet the following
criteria:

• The project must be finished on time, with all "Must Have" requirements
met (both functional and non-functional);

• Every architecture and/or requirement decision must be approved by the
product owner;

• The documentation produced with the project is such that it will also be
helpful in the future.

37

Chapter 5

System Design

This chapter provides an overview of the system design for the platform. While
detailed information is available in Chapter 7, the present chapter offers a high-
level understanding of system architecture, its components, and the users who
interact with it. Additionally, it discusses the technologies chosen for each com-
ponent and presents a risk analysis.

5.1 System Architecture

A high-level view of the project’s architecture is shown in Figure 5.1 (the frontend
is out of the project’s scope). This enables us to comprehend how each element is
related to the others and how each serves a specific purpose.

Figure 5.1: System architecture.

The developed prototype acts as an interface between the user and the blockchain,
offering the functionalities explained in the requirements chapter (Chapter 4). To
accomplish this, it uses a database to store and retrieve data, a connection to the
blockchain network to interact with it, and integration with the IPFS network to

39

Chapter 5

facilitate the storage and retrieval of NFT metadata.

5.2 Technologies

Blockchain

Section 2.2.5 introduces a few blockchain platforms, but most of them are not
public, and the project would benefit from having a public blockchain. In light
of this, Table 5.1 consolidates the public blockchains that offer adequate NFT and
smart contract development support. It also includes information on their maxi-
mum TPS capacity and average cost per transaction.

Blockchain
Platform

Programming
Language

Maximum
TPS

Average Cost per
Transaction (USD)

Ethereum Solidity 20 $2.02

Tezos Michelson 40 -

Polygon Solidity 65,000 $0.003999

Cosmos Ethermint 10,000 -

Table 5.1: Comparison between different blockchain platforms 1.

When selecting a public blockchain for our project we prioritized characteristics
such as high TPS, strong community support, interoperability, and low transac-
tion costs to ensure maximum transparency. Upon reviewing Table 5.1, Polygon
was the chosen blockchain technology as it aligns best with these requirements.

Blockchain and IPFS networks access

There are two ways to connect to the blockchain and IPFS networks: (i) either
we host a blockchain and an IPFS nodes, which entails requiring the resources to
maintain the nodes constantly running, or (ii) we use an external node provider
who enables us to communicate with the networks via their API. So we chose
option two and compiled a comparison table (Table 5.2) featuring various node
providers that support connection to the Polygon POS network. This allows us
to evaluate and select the service that best aligns with the requirements of the
project.

Observing Table 5.2, it becomes evident that certain node providers present their
specifications in terms of requests, while others utilize Compute Units (CU). A
CU represents the basic unit of processing power and is used to quantify the com-
putational intensity of a request. For instance, a simple request such as "block-

1Values verified in December 2022 [72, 73]. Empty fields denote missing or outdated informa-
tion.

40

System Design

Characteristics
Node Providers

Infura [74] Moralis [75] Alchemy [76] Chainstack [77] GetBlock [78] QuickNode [79]

Plan
(CU/month)

3.000.000
requests 10.000.000 300.000.000 3.000.000 3.000.000

requests 10.000.000

Throughput
(CU/s) - 25 330 - 60

requests
25

requests

IPFS
Support ✓ ✓ ✗

✓

(Early Access) ✗ ✗

Table 5.2: Comparison between node providers’ services.

Number" consumes 10 CU, whereas a more complex "eth_call" request utilizes 26
CU [80].

Alchemy, GetBlock, QuickNode, and Chainstack were disqualified as potential
options due to their lack of, or early access, integration with the IPFS network,
and was excluded because its IPFS API is still in early access. As a result, Moralis
and Infura emerged as the only remaining choices. Infura was selected over
Moralis due to its utilization of both the web3.js [81] (blockchain connection)
and the ipfs-http-client [82] (IPFS connection) libraries, both open-sourced so-
lutions that offer significant advantages in terms of flexibility and migration op-
tions, while Moralis only support their own libraries. By leveraging web3.js and
ipfs-http-client, we can seamlessly transition from one node provider to another,
if necessary, or even transition from a node provider to hosting a local node. This
freedom of choice enables us to adapt and optimize our infrastructure based on
evolving needs, avoiding vendor lock-in and ensuring a more scalable and adapt-
able solution for the future.

Prototype Blockchain Loyalty Platform

After compiling information about node providers, we have decided to build the
platform using Node.js [83] instead of Python [84]. Node.js benefits from a larger
developer community, which increases the likelihood of finding online solutions
in case any issues arise during the development process.

Loyalty Program’s Database

A non-relational database, such as MongoDB [85], is a suitable choice for stor-
ing the specific details of each loyalty program. This is because the structure of
each loyalty program can vary, and a non-relational database offers the advan-
tage of faster performance compared to a relational database. The decision to use
MongoDB was made based on the preference of the author for this technology.

41

Chapter 5

5.3 Risks

By identifying the risks associated with the project, mitigation plans can be cre-
ated to lessen their effects in the event that the risk materializes in the middle
of the development phase. Each risk is identified by an ID, has a description,
and a mitigation plan, and is quantified by its probability and impact. The risks
identified are:

R1: Technical Dependencies

Description This platform relies on third-party services for the communication
with the Blockchain. This external component introduces the risk
of changes in API specifications or on the conditions of the free
plan used to have access to the services.

Probability Low
Impact High

Mitigation Plan An alternative solution that offers the same services can be used.

R2: Change of Requirements

Description The utilization of an agile development methodology introduces
the inherent risk of requirements changing as a result of client feed-
back. In the event of requirement changes, the development phase
can become longer.

Probability Medium
Impact Medium

Mitigation Plan Treat each change as a new feature during meetings and assign it
a new priority status. This approach prevents the development
phase from stagnating and ensures that evolving requirements are
appropriately acknowledged and prioritized.

R3: Inexperience with Technologies

Description The technologies this project works with are new to the intern and
the lack of knowledge can lead to delays, suboptimal solutions,
and potential errors in the system.

Probability High
Impact High

Mitigation Plan Adequate training, mentorship, and research can equip the intern
with the necessary expertise he needs.

As soon as the risks have been characterized, we can display them in the risk
matrix shown in Figure 5.2.

42

System Design

Figure 5.2: Risk Matrix.

43

Chapter 6

Development Methodology and
Planning

This chapter discusses the topics of development methodology and planning of
the project. The first section provides details about the methodology employed
during the development phase. The second section presents the planning for both
the first and second semesters, along with a discussion on the disparities between
planned and actual plans.

6.1 Development Methodology

Project management is essential for steering the project in the right direction and
setting the right pace during the development phase by establishing goals and
timelines. Therefore, deciding on the most effective methodology is crucial.

Scrum is the most widely used methodology at WIT Software, and it was selected
for the internship as it fits it better. It is regarded as a type of agile methodology
that is iterative and incremental and seeks to deliver functionalities frequently to
receive ongoing customer feedback, thereby minimizing bugs and errors. Each
iteration is called a Sprint and, typically, has a duration of 2 or 3 weeks. Dur-
ing each Sprint, the development team works through the tasks on the Sprint
Backlog. And in every other Sprint, the Product Owner transfers tasks from the
Product Backlog to the Sprint Backlog, updating it with new challenges and ob-
jectives.

Scrum Roles

The Scrum Methodology consists of 3 actors: (i) the Product Owner, (ii) the Scrum
Master, and (iii) the Development Team.

The Product Owner has the most authority and represents the client. Its principal
concern is to guarantee that the requirements are matched and achieved, and he
keeps the Product Backlog updated.

45

Chapter 6

The Scrum Master leads the whole team and is responsible for scheduling daily
meetings and promoting good team interaction and productivity.

The Development Team is the one who develops the project, works through the
Sprint Backlog and tests functionalities.

Scrum Artifacts

The Product Backlog is a list of all the features and requirements that have to be
present in the final product. The Sprint, as mentioned before, is an interval of
time, typically of 2 or 3 weeks, in which a smaller list of tasks designated Spring
Backlog have to be done. The Daily Scrum is a small meeting for the whole team
to discuss any doubts and challenges that may be facing, and the progress ac-
complished. It is worth noting that these meetings can actually be non-daily,
depending on the project set-up.

To best align scrum methodology with the development phase, we established
a 2-week interval for the Sprints, and the daily scrum meetings took place on
Mondays, Wednesdays, and Fridays. The intern actively participated in monthly
presentations within WIT, showcasing his progress and receiving valuable feed-
back from other advisors. Furthermore, we scheduled bi-monthly meetings with
the advisory team, with the frequency increased to weekly during the month of
June. This approach ensured regular progress updates, timely feedback, and ef-
fective collaboration throughout the project’s lifecycle.

6.2 Planning

This work spanned two semesters, and for each, a plan with a list of suggested
tasks was developed. A comparison of their estimated and real completion times
is also presented.

6.2.1 First Semester

Here are the tasks assigned to the first semester, along with their estimated and
actual durations, as shown in Figure 6.1 and Figure 6.2, respectively:

• Research - Build the state of the art of both blockchain-based and traditional
loyalty programs, and study the different types of blockchain and their ap-
plications in loyalty programs;

• Requirements - Create a detailed requirements list and corresponding user
stories;

• Solution Proposal - Propose a suitable solution, including its architecture
and development plan;

46

Development Methodology and Planning

• Intermediate Report - Compile all the previous tasks into an intermediate
report.

Figure 6.1: Gantt chart with the estimated planning for the first semester.

Figure 6.2: Gantt chart with the real timeline of the first semester.

Upon reviewing the timelines, it is evident that the actual progress did not devi-
ate significantly from the initially estimate. The most noticeable discrepancy lies
in the writing of the intermediate report, which started approximately one month
later than originally anticipated.

6.2.2 Second Semester

Here are the tasks assigned to the second semester, along with their estimated
and actual durations, as shown in Figure 6.3 and Figure 6.4, respectively:

• Project Setup - Elaborate the development plan, and learn how to interact
with the new technologies;

• Development - Implement and build the product;

• Testing - Conduct testing to ensure functionality and quality;

• Final Report - Prepare the final report documenting the project;

• Scientific Paper - Write an article for a conference on blockchain and loyalty
programs.

47

Chapter 6

Figure 6.3: Gantt chart with the estimated planning for the second semester.

Figure 6.4: Gantt chart with the real timeline of the second semester.

Upon comparing both charts, it is evident that there are minor extensions in the
durations of the Project Setup, Testing, and Scientific Paper phases. The longer
duration of the Project Setup phase can be attributed to the initial implementation
of the Moralis service as the node provider (refer to Section 5.2 for more details
on the "Blockchain and IPFS networks access" topic), which was subsequently
replaced with the Infura service. The prolonged testing phase allowed for the
identification of bugs and the establishment of a more robust testing environment
to assess throughput. As for the Scientific Paper, it was completed and submitted
for the ISD 2023 conference on May 1, 2023. Although it was not accepted, the
feedback received mainly highlighted the need for real-world data to substantiate
the theoretical claims made by the platform.

48

Chapter 7

Development

This chapter focuses on the development phase of the project, providing insights
into the development environment and the tools utilized. Next, it dives into the
smart contract development, highlighting its significance. The chapter also cov-
ers the database structure and the relationships between various collections. An
overview of the backend is provided, including detailed information about the
controllers. Lastly, a preview of the frontend, which was developed exclusively
for demonstration purposes, is presented.

7.1 Development Environment

At the start of the second semester, the project entered the setup phase, which
involved configuring and establishing various tools on the computer provided
by WIT. Microsoft Visual Studio Code [86] was selected as the primary code de-
velopment platform due to its extensive features and functionalities. For smart
contract development and deployment, the Remix Online IDE [87] was utilized
through the Google [88] browser, complemented by the MetaMask [89] extension
for establishing connectivity to the blockchain and enabling digital wallet func-
tionalities. The MongoDB [85] database was installed as a service, remaining op-
erational whenever the computer was powered on. Additionally, the MongoDB
Compass [90] app provided an intuitive interface for accessing and managing
stored data. To ensure code version control and backup, a private repository was
created on GitHub [91]. The sprint planning and task allocation was handled in
a Jira Software [92] project. Lastly, the developed frontend web app, designed to
showcase and demonstrate the platform, had its mockups created using Figma
[93].

7.2 Smart Contracts

During the development phase, the Polygon Mumbai network was chosen as a
replacement for the Polygon POS network due to its role as a testing network.

49

Chapter 7

Testnets are commonly used by blockchain developers to build and test their ap-
plications, as they offer free utilization and a controlled environment. As previ-
ously mentioned, the Remix Online IDE was utilized for smart contract devel-
opment and deployment. Prior to that, a pair of public and private keys was
generated within the MetaMask extension. These keys were used to establish the
account for the platform. To ensure the availability of funds for transactions and
interactions with the smart contracts on the Polygon Mumbai network, the ac-
count was then recharged with MATIC balance. This balance was obtained from
the Polygon Faucet [94], a tool designed to provide developers with test tokens
to facilitate their development and testing processes.

Loyalty Programs

In order to uphold the objective of promoting transparency in the realm of loy-
alty programs, it was decided that the platform should also store program-related
data on the blockchain. However, ensure cost-effectiveness, only critical infor-
mation would be stored in this manner. The essential details include the pro-
gram’s ID, the public address of the vendor responsible for creating the program,
the list of supported tokens, the available rewards (including their redemption
prices), and the program status (as illustrated in Figure 7.1). By limiting the data
stored on the blockchain to these essential elements, the platform can achieve its
transparency goals while minimizing the storage costs associated with blockchain
transactions.

contract LoyaltyPrograms {
struct Reward {

uint256 id;
uint256 price;

}
struct Program {

address creator;
uint256[] supportedTokens;
Reward[] rewardsCatalog;
bool isActive;

}
mapping(uint256 => Program)

private programTable;

...
}

Figure 7.1: LoyaltyPrograms.sol code snippet.

Tokens

As detailed in Section 3.1, each token within the platform consists of multiple
batches, each with a distinct expiration date and information about its ability to

50

Development

being transferred between clients. In this context, each batch serves as an individ-
ual token on the blockchain, whereby the batch ID corresponds to the token ID.
Considering this structure, the ERC-1155 token standard is deemed more suitable
for the platform’s requirements compared to the ERC-20 and ERC-721 standards,
as depicted in Figure 7.2. The ERC-1155 standard allows for the representation of
multiple fungible and non-fungible tokens within a single contract.

Figure 7.2: Comparison between ERC-20, ERC-721, and ERC-1155 token stan-
dards.

Rewards

The platform offers the flexibility for vendors to deploy their own smart contracts
to store their rewards, which are represented as blockchain tokens. This approach
opens up numerous possibilities for integrations with other projects, such as an
ongoing project at WIT, where these tokens can be utilized as coupons during the
checkout process for purchases made from a Shopify [95] store.

To facilitate this process, vendors are required to design their smart contract using
a customized ERC-721 or ERC-1155 template provided by the platform. Addi-
tionally, they must assign the platform with the "minter role" to enable it to mint
the reward tokens. For vendors with limited understanding of blockchain tech-
nology, the platform simplifies the process by deploying one of these templates
and allowing every vendor to use it. This way, vendors can skip the process of
deploying a smart contract at the cost of unlimited customization capabilities,
such as integration with other platforms.

7.3 Database

The database serves as a storage solution for storing data fields that are con-
sidered not suitable for blockchain storage. Two primary rules help determine
whether a field is appropriate for blockchain storage: (i) whether the changes
and updates to the field should be trackable, and (ii) whether the field will be
frequently searched or filtered. For instance, it is sensible to store the list of to-
kens supported by a program on the blockchain as it allows for easy tracking and
verification. On the other hand, storing the name of the program or the terms of

51

Chapter 7

service file on the blockchain may not be necessary as they do not require tracking
and are frequently accessed or retrieved.

Figure 7.3 illustrates the relationship between the various entities, followed by an
explanation of the purpose of each collection.

Figure 7.3: Representation of the relationship between collections.

Users

Figure 7.4 illustrates the user segment of the database, which consists of two col-
lections. The first collection, named "user," stores user-related data such as login
credentials, digital wallet details, role (client or vendor), the list of joined pro-
grams, and the balance of tokens and rewards they possess. Additionally, for
vendors, the collection also includes their API key. The second collection, called
"vendor whitelist," is responsible for storing the public addresses or emails of
users who will be granted the vendor role upon registering on the platform.

Figure 7.4: Representation of the User and Vendor Whitelist collections, and their
relationship.

52

Development

Loyalty Programs

The "programs" collection is responsible for storing data related to loyalty pro-
grams that are not stored on the blockchain. The fields stored in this collection
are specifically chosen as they do not require tracking changes and updates or are
frequently accessed or retrieved in queries. Figure 7.5 provides a visual represen-
tation of the stored fields, which include the name of the program, description,
type (points or subscriptions), terms of service file, public address of the user
who created the program, and an array of locations containing the geographical
coordinates of physical stores supporting the program.

Figure 7.5: Representation of the Programs collection.

MongoDB offers a notable feature, which is the capability to index geographical
coordinates. This feature allows for efficient retrieval of programs that have phys-
ical stores located within a specified distance from a given point. For instance, if
a user is at a shopping mall, he can fetch all the loyalty programs of the stores in
the area of the mall by conducting a search based on his location and a designated
radius. This capability allows for streamlined access to loyalty programs specifi-
cally tailored to the user’s current location, enhancing their browsing experience
and convenience.

Tokens

The "tokens" collection holds information related to tokens. It includes the token
template, as depicted in Figure 7.6. The token template contains fields such as
name, description, transferability between clients, public address of the vendor
who created it, image, and the smart contract address where it resides. Addition-
ally, it stores a batch ID that does not have an expiration date, as well as a list of
all remaining batch IDs associated with the token.

By storing the token template in the database, vendors have the ability to "cre-
ate a token" without actually minting anything on the blockchain. This concept
is referred to as the "token template" since it serves as a blueprint for creating
tokens.

53

Chapter 7

Figure 7.6: Representation of the Tokens collection.

Rewards

The rewards section encompasses two collections: "rewards" and "reward con-
tracts". In the "rewards" collection, as depicted in Figure 7.7, reward templates
are stored. Each reward template includes attributes such as the name of the re-
ward, description, image, and other relevant customized attributes by the reward
creator. The collection also contains information about the smart contract where
the reward is deployed and the associated batch IDs.

The "reward contracts" collection specifically stores information related to the
smart contracts associated with the previous rewards. It includes the smart con-
tract address, the token standard followed by the contract, and the Application
Binary Interface (ABI). The ABI describes the methods available in the smart con-
tract, enabling the platform to interact with it effectively.

Figure 7.7: Representation of the Reward and Reward Contract collections, and
their relationship.

54

Development

Transactions

The "transactions" collection serves as a caching system for transactions related to
tokens. Its main purpose is to facilitate faster retrieval of information regarding
token minting, transferring, and redeeming. By caching previous transactions,
the platform can focus solely on searching for new transactions, starting from
the largest block number saved up to the current block number. This approach
eliminates the need to search the entire blockchain, resulting in significant per-
formance improvements. Figure 7.8 provides an overview of the stored fields,
which include the block number where the transaction is saved, the addresses
of the sender and receiver, the token sent, and notably, the batch and amount
associated with each transaction.

Figure 7.8: Representation of the Transaction collection.

7.4 Platform Backend

The backend service is constructed using the Express module from Node.js, which
enables the creation of a RESTful API. The API consists of five controllers: Au-
thentication, Program, Token, Reward, and Transaction controllers. These con-
trollers facilitate the interaction between the frontend and backend by handling
HTTP requests sent to specific endpoints.

To facilitate easier integration with the API, a Swagger UI [96] documentation is
provided. This documentation describes all the endpoints available in the API,
including the request and response formats, enabling developers to understand
and interact with the API more efficiently.

Authentication

The Authentication controller (see Figure 7.9) is responsible for handling all reg-
istration and login requests to authenticate users accessing the backend service.
Two authentication methods are supported: API key authentication for vendors
and JSON Web Token (JWT) authentication for all users.

55

Chapter 7

Vendors are provided with an API key upon registration, which they use to au-
thenticate their requests. On the other hand, users can obtain a JWT through
either an email and password login or a MetaMask login. The MetaMask login
mechanism is based on the concept that a wallet consists of a pair of public and
private keys. By signing a specific nonce with their private key, users can verify
their ownership of the corresponding public key, thereby authenticating them-
selves.

Figure 7.9: Authentication Controller.

Program

The Program controller (see Figure 7.10) handles various functionalities related
to loyalty programs within the platform. It offers a range of features to enhance
the user experience and facilitate program management for vendors.

Users can search and filter programs based on specific criteria to find programs
that align with their preferences. Additionally, they can download the terms of
service document associated with a program to review the program’s terms and
conditions. Users also have the ability to join or leave programs as per their
preference. This allows them to participate in loyalty programs and, eventually,
redeem rewards.

For vendors, the Program controller enables them to create and update programs.
They can define essential program details such as the program name, description,
supported tokens, rewards catalog, list of locations, and program type. They can
also update program information as needed, ensuring the program stays relevant
and up to date.

56

Development

Figure 7.10: Program Controller.

Token

The Token controller (see Figure 7.11) is dedicated to handling various actions
related to tokens within the platform, excluding the minting process.

Vendors are granted the capability to create new token templates. They can in-
put specific details such as the token’s name, description, image, and determine
whether the token can be transferred between clients or not.

For all users, the Token controller enables them to search and filter tokens based
on specific criteria. Additionally, they can verify the balance of a particular token
for any user.

Figure 7.11: Token Controller.

57

Chapter 7

Reward

The Reward controller (see Figure 7.12) functions similarly to the Token con-
troller, enabling vendors to create reward token templates. However, in the case
of rewards, vendors are required to specify the smart contract where the rewards
can be minted. Vendors have the option to use an existing deployed contract or
insert a new one that they have deployed themselves. When creating a reward
token template, vendors must provide the contract address, the token standard,
and the ABI.

In addition to vendor functionalities, all users have access to features such as
searching and filtering for contracts and rewards. Users can also verify the bal-
ance of a specific reward for a particular user, enabling them to track their accu-
mulated rewards. This provides users with transparency and visibility into their
reward holdings.

Figure 7.12: Reward Controller.

Transaction

Finally, the Transaction controller (see Figure 7.13) holds all the functionalities
related with minting or transferring tokens. One of the key features of the Trans-
action controller is the minting process, which allows users to receive tokens as
they engage with a specific program. This enables them to accumulate a sufficient
balance of tokens to redeem for rewards. The minting process also includes mint-
ing the corresponding reward when a user redeems their accumulated tokens.

Additionally, users have the ability to transfer tokens to other users, as long as
the token allows for transfers, and the Transaction controller also allows for users
to access the transaction history of a specific token.

58

Development

Figure 7.13: Transaction Controller.

7.5 Platform Frontend

The frontend of the platform was developed using React [97], a popular JavaScript
library for building user interfaces. Its main purpose is to provide a visual repre-
sentation of the platform’s features and serve as a demonstration tool. To design
the user interface of the frontend, mockups were created using Figma. These
mockups outline the layout and visual elements of the platform’s various pages
and components. An example of a mockup is the token details page, as shown in
Figure 7.14.

The frontend interacts with the backend through the provided RESTful API. It
supports authentication methods such as MetaMask and email plus password
logins. It is worth mentioning that the frontend does not directly access the
blockchain. Instead, it relies on the backend API to interact with the blockchain
on behalf of the user.

Additionally, it’s important to note that the frontend primarily serves as a dash-
board for the platform. It focuses on showcasing the platform’s features. How-
ever, it doesn’t demonstrate the functionality of minting tokens since this process
is typically integrated into the vendor’s platform. The vendor would initiate the
token minting request after a customer makes a purchase.

59

Chapter 7

Figure 7.14: Mockup of token details page.

60

Chapter 8

Testing and Validation

This chapter focuses on testing and validating the platform’s requirements. It
begins by describing the testing environment and the specific tests conducted on
the platform. Subsequently, the results of these tests are analyzed to determine
whether the platform fulfills the initial requirements or not.

8.1 Testing

The testing phase is a crucial aspect of the project as it enables the evaluation of
the platform. During testing, the platform was subjected to various scenarios and
conditions to identify any existing bugs or issues. The primary objective was to
eliminate as many bugs as possible, prioritizing critical and high-priority issues,
while low-priority issues could be addressed at a later stage or deemed acceptable
within the project timeline.

8.1.1 Testing Environment

Two types of tests were conducted to assess the backend of the platform: unit
testing and throughput testing. Unit tests were executed in the development en-
vironment to ensure the correctness of individual components and functions. On
the other hand, throughput testing was carried out after compiling the source
code. For the throughput testing, a dual virtual machine setup was employed.
The backend and database were deployed on one virtual machine, while a sepa-
rate virtual machine was dedicated to running the throughput testing script.

8.1.2 Unit Testing

Unit testing focuses on testing individual units, or the smallest testable compo-
nents of a software system. The purpose of unit testing is to verify the correctness
of these units in isolation, ensuring that they behave as expected and produce the
desired outputs for a given set of inputs.

61

Chapter 8

With the combination of Jest [98] and SuperTest [99] frameworks, the backend
of the platform was tested by writing unit tests for each endpoint. These tests
involved sending mock HTTP requests to the endpoints and asserting that the
responses matched the expected outcomes. The unit tests covered different sce-
narios and error conditions to ensure that the backend functions correctly and
handles various situations appropriately.

During the unit testing process, a high level of code coverage was achieved, with
nearly 90% coverage as indicated by the Jest code coverage report presented in
Figure 8.1. This level of code coverage demonstrates that the majority of the back-
end code was exercised and tested during the unit testing phase, increasing con-
fidence in its overall reliability and stability.

Figure 8.1: Jest Report - Code Coverage.

62

Testing and Validation

8.1.3 Throughput Testing

Throughput testing is a crucial aspect of performance testing that evaluates a the
capability of a system to handle a significant number of transactions or requests
under high load conditions. To conduct throughput testing, the Artillery [100]
framework was utilized.

It’s worth noting that, in this particular test, the backend was modified to sim-
ulate the absence of connections to the blockchain and IPFS networks. Dummy
data was used in place of actual interactions with these external services. Also, to
maintain uniform testing conditions, the database data was reseted before each
test. This approach allowed for the evaluation of the platform without dependen-
cies on third-party services, focusing solely on the performance of the internal
components that can be controlled, and ensured all tests were conducted under
the same initial conditions.

During testing, a script consisting of four user journeys was executed to evalu-
ate the backend performance. These user journeys covered various actions such
as joining a program, receiving tokens or redeeming rewards, and checking the
corresponding balances. For vendors, the user journeys included creating new
program, token, and reward templates, as well as updating the program details.

The Artillery framework creates virtual users that represent regular users in a
real-world scenario. Upon creation, these virtual users randomly select one of
the four predefined journeys and follow it until completion. The framework also
provides feedback organized by each endpoint, enabling detailed analysis of per-
formance metrics.

8.2 Validation

This section assesses whether the developed platform meets the specified require-
ments and can be considered a success. This is achieved by analyzing the results
obtained from the testing phase and comparing them against the initial require-
ments.

8.2.1 Functional Requirements Validation

The functional requirements outlined in Section 4.1 were validated to ensure that
they were implemented correctly. Table 8.1 provides an overview of the require-
ments and whether they behave as expected. A feature is considered to behave
as expected if it passes all of the related unit tests.

63

Chapter 8

ID Feature Priority Expected
Behaviour

Authentication

FR1 Log in with email and password credentials M Yes

FR2 Register new account with email and
password credentials M Yes

FR3 Log in with MetaMask Wallet M Yes

FR4 Register new account with MetaMask
Wallet M Yes

Tokens

FR5
Create a token template (only upload the
token metadata, including image, to the
IPFS network)

M Yes

FR6 Soft delete a token template W -

FR7 Fetch all the details of a token by its ID M Yes

FR8 Fetch the list of token templates given a list
of IDs S Yes

FR9 Fetch the list of token templates created by
a certain Vendor M Yes

FR10 Fetch the list of token templates that a
certain user has balance of M Yes

FR11 Fetch the balance of a token owned by a
certain user M Yes

Rewards

FR12
Create a reward token template (only
upload the token metadata, including
image, to the IPFS network)

M Yes

FR13 Soft delete a reward token template W -

FR14 Fetch all the details of a reward token by its
ID M Yes

FR15 Fetch the list of reward token templates
given a list of IDs S Yes

FR16 Fetch the list of reward token templates
given a certain reward smart contract ID S Yes

FR17 Fetch the list of reward token templates
created by a certain Vendor M Yes

FR18 Fetch the list of reward token templates
that a certain user has balance of M Yes

64

Testing and Validation

Table 8.1 continued from previous page

ID Feature Priority Expected
Behaviour

FR19 Fetch the balance of a reward token owned
by a certain user M Yes

FR20 Insert the details of a reward smart contract S Yes

FR21 Soft delete a reward smart contract W -

FR22 Fetch the details of a reward smart contract
by its ID S Yes

FR23 Fetch the list of reward smart contracts
given a list of IDs S Yes

FR24 Fetch the list of reward smart contracts
inserted by a certain Vendor S Yes

Programs

FR25 Create a new program M Yes

FR26 Edit a program M Yes

FR27 Soft delete a program W -

FR28 Fetch all the details of a program by its ID M Yes

FR29 Fetch the list of programs created by a
certain Vendor M Yes

FR30 Fetch the list of programs a certain user has
joined M Yes

FR31 Fetch the list of programs given a name M Yes

FR32 Fetch the list of programs given a location S Yes

FR33 Join/leave a certain program M Yes

Transactions

FR34 Mint a new batch of a certain token to some
user M Yes

FR35 Transfer balance of a certain token to some
other user M Yes

FR36 Fetch the transaction history of a certain
token S Yes

FR37 Redeem a reward M Yes

65

Chapter 8

Table 8.1 continued from previous page

ID Feature Priority Expected
Behaviour

FR38
Send an email notification to a user when
he was enough token balance to redeem a
certain reward from a certain program

W -

FR39 Send an email notification to a user when
he was token balance about to expire W -

Table 8.1: Functional Requirements Validation.

Upon reviewing the table, it is evident that all the Must Have priority require-
ments were successfully implemented and behaved as expected. Similarly, all of
the Should Have requirements were addressed and implemented according to
their expected behavior.

It is important to note that none of the Won’t-Have requirements were developed
as they were intentionally excluded from the project scope. Therefore, the "Ex-
pected Behavior" column for the Won’t Have requirements is left blank, as there
were no specific expectations associated with them.

8.2.2 Non-functional Requirements Validation

The non-functional requirements presented in Section 4.3 were also evaluated.

RNF1 - Security

To validate the security requirement, the scenarios 4.3 and 4.4 were analysed. The
expected response in both cases should be "401 - Unauthorized". Based on the
information presented in Table 8.1, it is evident that these scenarios were included
in the tests for each feature, and they behaved as expected. Therefore, the security
requirement was successfully validated.

RNF2 - Throughput

The throughput requirement includes two specific scenarios: Scenario 4.5 and
Scenario 4.6. To simulate sufficient load on the platform, the Artillery script was
configured to create 6 virtual users per second and gradually increase this num-
ber to 12 over a span of 5 minutes (300 seconds), as depicted in Figure 8.2.

66

Testing and Validation

Figure 8.2: Graphical representation of the virtual users created along the span of
an Artillery script run.

Figure 8.3 displays the number of requests sent during a test run, while Figure 8.4
provides the corresponding responses. Both graphs show a consistent number of
requests and responses per second, except for a spike between seconds 330 and
340. During this time interval, the metrics reached approximately 90 requests per
second (900 requests in 10 seconds) and 140 responses per second (1400 responses
in 10 seconds).

Figure 8.3: Graphical representation of the sent requests along the span of an
Artillery script run.

67

Chapter 8

Figure 8.4: Graphical representation of the received responses along the span of
an Artillery script run.

The presence of this spike was unexpected, as we initially anticipated a linear
increase in both the number of requests per second and the corresponding re-
sponses, aligned with the increasing number of created virtual users. The sud-
den increase in requests and responses suggests that the virtual machine used for
testing may have experienced resource starvation. This resource limitation likely
hindered the process of sending requests until virtual users stopped being cre-
ated. However, further investigation is required to precisely determine the cause
of this anomaly and to address any potential resource limitations or networking
bottlenecks (connection between the virtual machines). Nonetheless, for the pur-
pose of the evaluation, we can proceed with the analysis of the results obtained
so far.

The first scenario focuses on the response time of the requests that access the
blockchain. According to the requirement, the platform should respond within
15 seconds in this scenario. Figure 8.5 displays the average response times of all
the endpoints that would access the blockchain if the platform was not modified.
To simulate the blockchain access, an offset of the average block time for the Poly-
gon POS network, which is 2.22 seconds as of July 4th [101], can be added to the
response times obtained in the tests. This calculation provides an estimate of the
overall response time, including the response time measured during the tests and
the average block time.

68

Testing and Validation

Figure 8.5: Graphical representation of the response times of the endpoints that
access the blockchain.

The second scenario addresses the response time of the requests that do not access
the blockchain. This scenario specifies that the platform should respond within
5 seconds when the platform is overloaded. Figure 8.6 exposes the average re-
sponse times of all the endpoints that do not access the blockchain.

Figure 8.6: Graphical representation of the response times of the endpoints that
do not access the blockchain.

Based on this analysis, the observed average load of 30 requests per second (ex-
cluding the spike at the end) does not exert sufficient load on the platform. More
significant load would be expected in a platform of this kind. Additionally, the ex-
istence of the spike in requests distorts the obtained results, as the spike contains

69

Chapter 8

a great amount of entries with inflated response times. In a real-world scenario,
a spike like this is typically more linear and gradual in its increase of requests.

RNF3 - Fault Tolerance

In order to validate the fault tolerance requirement the scenarios 4.7, 4.8, and
4.9, were analyzed. The first one involves testing the platform’s ability to handle
invalid inputs, and every endpoint performs input validation, and if an invalid
input is detected, the platform responds with a detailed message specifying the
validation failure. This scenario was included in the unit tests, ensuring that the
platform handles invalid inputs appropriately.

The second scenario revolves around handling the requests when the blockchain
or the IPFS connection breaks. Currently, the platform reports to the user with a
detailed message if the blockchain connection fails. However, in the case of the
IPFS network connection breaking, the platform simply returns a "500 - Internal
Server Error" message. Further enhancements could be made to provide more
informative responses in the case of IPFS connection failures.

As for the third scenario, it focus on how the platform handles requests when the
connection to the database breaks. Currently, on occurrence, the platform returns
a "500 - Internal Server Error" message. Improvements can be made to provide
more meaningful feedback to users in such cases.

Summary

After evaluating the various scenarios, it is evident that the security requirement
has been successfully validated. The fault tolerance requirement, on the other
hand, can be considered partially validated, as some scenarios demonstrated its
effectiveness while others did not. However, the throughput requirement cannot
be validated at this stage, as the test results lack credibility and do not provide
sufficient evidence to assess the performance of the platform in handling high
loads. Further investigation and testing are needed to accurately validate the
throughput requirement.

70

Chapter 9

Conclusion

This concluding chapter provides reflections and considerations on the project,
along with an exploration of future work. It serves as an opportunity to summa-
rize the key findings and experiences gained throughout the project journey.

The primary objective of this project was to explore the integration of blockchain
technology with loyalty programs and understand the potential benefits that can
be derived from this relationship. The initial phase involved conducting an in-
depth literature review and research on both blockchain and loyalty programs,
which provided the necessary background knowledge to come up with an ap-
proach for the problem presented by WIT Software. This led to the definition
of requirements and user stories. By the end of the first semester, the proposed
solution and its architecture were finalized, along with a preliminary selection of
technologies.

Starting the second semester, the intern and their advisors adopted an adapted
version of Scrum methodology, which proved effective in managing the project.
At the beginning of the development phase, a project setup phase allowed the
intern to familiarize himself with the initially selected technologies. However,
as the intern gained a deeper understanding of the pros and cons of various
technologies, adjustments and refinements were made in the technology selec-
tion. Throughout the development phase, minor requirement changes occurred,
but they were properly prioritized and did not significantly impacted the overall
project plan. Additionally, a scientific paper was submitted to the ISD 2023 Con-
ference, although it was rejected due to the lack of real-world results at the time
of submission.

Towards the end of the second semester, the developed platform underwent rig-
orous testing and evaluation to assess its compliance with the defined require-
ments. However, the results of the evaluation did not meet the success criteria,
primarily due to limitations in validating the throughput requirement, as the ob-
tained data lacked credibility.

Despite the testing limitations, the concept of a blockchain-based loyalty pro-
gram platform shows promise. However, further testing is necessary to validate
its throughput capacity and cost-effectiveness, which are crucial factors for real-

71

Chapter 9

world adoption.

This project allowed the intern with valuable opportunities to work and learn
from other professionals in the field, gaining hands-on experience. From re-
searching blockchain and working with smart contracts to developing a platform
in Node.js, the intern acquired important knowledge and skills.

Moving forward, there are several areas of future work that can be considered to
enhance the developed platform:

1. Throughput Testing:

The data obtained from previous tests did not provide sufficient evidence
to conclusively prove that the platform can meet the requirements. Further
testing should be conducted to obtain more reliable and credible data.

2. Bug Fixes:

During the throughput testing, it was observed that the platform encoun-
ters conflicts when concurrently creating programs. This is due to the cal-
culation of the "programID" field, which counts the number of entries in
the database. To address this issue, the database entities need to be restruc-
tured so that MongoDB utilizes the default "_id" field instead of the custom
"programID" field, which was created for readability purposes.

3. Expand Feature Set:

The platform can be further enhanced by implementing additional features
and functionalities. For example, when fetching a list of programs, tokens,
or rewards, the platform could allow multiple filters and calculate the in-
tersection between them. Additionally, integration with more blockchain
platforms in the rewards module could be explored, as the platform cur-
rently allows vendors to add their own reward smart contracts.

4. Cost Optimization:

An analysis of the cost to run the platform can be conducted to identify
potential optimizations. This includes evaluating transaction fees, resource
utilization, and different node provider plans. Additionally, considering
the possibility of hosting our own blockchain and IPFS nodes can further
reduce reliance on external services and their associated costs. By hosting
our own nodes, we can have more control over the infrastructure and po-
tentially achieve cost savings in the long run.

72

References

[1] Mark D. Uncles, Grahame R. Dowling, and Kathy Hammond. Customer
loyalty and customer loyalty programs. Journal of Consumer Marketing, 20
(4):294–316, Jan 2003. ISSN 0736-3761. doi: 10.1108/07363760310483676.
URL https://doi.org/10.1108/07363760310483676.

[2] Bond. Pathways to Growth Guide. https://info.bondbrandloyalty.com/
pathways-to-growth-guide, 2022. Accessed: 2022-12-12.

[3] Steve Fromhart and Lincy Therattil. Making blockchain real for customer
loyalty rewards programs. Deloitte center for financial services, 2016.

[4] Manuel Utz, Simon Johanning, Tamara Roth, Thomas Bruckner, and Jens
Strüker. From ambivalence to trust: Using blockchain in customer loy-
alty programs. International Journal of Information Management, 68:102496,
2023. ISSN 0268-4012. doi: https://doi.org/10.1016/j.ijinfomgt.2022.
102496. URL https://www.sciencedirect.com/science/article/pii/
S0268401222000275.

[5] Jan vom Brocke, Alan Hevner, and Alexander Maedche. Introduction to
Design Science Research, pages 1–13. 09 2020. ISBN 978-3-030-46780-7. doi:
10.1007/978-3-030-46781-4_1.

[6] Ioannis ANTONIADIS, Stamatis KONTSAS, and Konstantinos SPINTHI-
ROPOULOS. Blockchain and Brand Loyalty Programs: A Short Review
of Applications and Challenges. International Conference on Economic Sci-
ences and Business Administration, 5(1):8–16, November 2019. URL https:
//ideas.repec.org/a/icb/wpaper/v5y2019i18-16.html.

[7] Asnan Furinto, Teddy Pawitra, and Tengku E Balqiah. Designing com-
petitive loyalty programs: How types of program affect customer equity.
Journal of Targeting, Measurement and Analysis for Marketing, 17(4):307–319,
December 2009.

[8] E-satisfaction. 8 types of customer loyalty programs! https://
www.e-satisfaction.com/8-types-of-customer-loyalty-programs. Ac-
cessed: 2023-01-09.

[9] Jessica Huhn. Referralrock: 8 types of loyalty programs: Which is right
for you? https://referralrock.com/blog/types-of-loyalty-programs,
2022. Accessed: 2023-01-09.

73

https://doi.org/10.1108/07363760310483676
https://info.bondbrandloyalty.com/pathways-to-growth-guide
https://info.bondbrandloyalty.com/pathways-to-growth-guide
https://www.sciencedirect.com/science/article/pii/S0268401222000275
https://www.sciencedirect.com/science/article/pii/S0268401222000275
https://ideas.repec.org/a/icb/wpaper/v5y2019i18-16.html
https://ideas.repec.org/a/icb/wpaper/v5y2019i18-16.html
https://www.e-satisfaction.com/8-types-of-customer-loyalty-programs
https://www.e-satisfaction.com/8-types-of-customer-loyalty-programs
https://referralrock.com/blog/types-of-loyalty-programs

Chapter 9

[10] Vodafone. Vodafone clube viva. https://www.vodafone.pt/loja/
clube-viva.html. Accessed: 2022-12-15.

[11] Nespresso. Nespresso & more. https://www.nespresso.com/pt/pt/
beneficios#!/entrega-gratuita. Accessed: 2022-12-15.

[12] Amazon. Amazon prime. https://www.amazon.es/amazonprime?
language=pt, . Accessed: 2022-12-16.

[13] Amazon. Amazon smile. https://smile.amazon.com/, . Accessed: 2022-
12-16.

[14] Wikipedia. Blockchain. https://en.wikipedia.org/wiki/Blockchain, .
Accessed: 2022-12-16.

[15] Shubham Hapse. Velotio - blockchain 101: The simplest guide
you will ever read. https://www.velotio.com/engineering-blog/
introduction-to-blockchain-and-how-bitcoin-works. Accessed: 2022-
12-20.

[16] Arun Sekar Rajasekaran, Maria Azees, and Fadi Al-Turjman. A compre-
hensive survey on blockchain technology. Sustainable Energy Technologies
and Assessments, 52:102039, 2022. ISSN 2213-1388. doi: https://doi.org/10.
1016/j.seta.2022.102039. URL https://www.sciencedirect.com/science/
article/pii/S2213138822000911.

[17] Geeks for Geeks. Types of blockchain. https://www.geeksforgeeks.org/
types-of-blockchain, . Accessed: 2022-12-20.

[18] Bhabendu Kumar Mohanta, Debasish Jena, Soumyashree S. Panda, and
Srichandan Sobhanayak. Blockchain technology: A survey on applications
and security privacy challenges. Internet of Things, 8:100107, 2019. ISSN
2542-6605. doi: https://doi.org/10.1016/j.iot.2019.100107. URL https:
//www.sciencedirect.com/science/article/pii/S2542660518300702.

[19] Christine Campbell. Techtarget: What are
the 4 different types of blockchain technology?
https://www.techtarget.com/searchcio/feature/
What-are-the-4-different-types-of-blockchain-technology. Ac-
cessed: 2022-12-20.

[20] Crypto.com. Consensus mechanisms in blockchain. https://crypto.com/
university/consensus-mechanisms-in-blockchain, . Accessed: 2022-12-
21.

[21] Geeks for Geeks. Raft consensus algorithm. https://www.geeksforgeeks.
org/raft-consensus-algorithm/, . Accessed: 2023-07-03.

[22] Geeks for Geeks. Proof of elapsed time (poet) in blockchain. https://www.
geeksforgeeks.org/proof-of-elapsed-time-poet-in-blockchain/, .
Accessed: 2023-07-03.

74

https://www.vodafone.pt/loja/clube-viva.html
https://www.vodafone.pt/loja/clube-viva.html
https://www.nespresso.com/pt/pt/beneficios#!/entrega-gratuita
https://www.nespresso.com/pt/pt/beneficios#!/entrega-gratuita
https://www.amazon.es/amazonprime?language=pt
https://www.amazon.es/amazonprime?language=pt
https://smile.amazon.com/
https://en.wikipedia.org/wiki/Blockchain
https://www.velotio.com/engineering-blog/introduction-to-blockchain-and-how-bitcoin-works
https://www.velotio.com/engineering-blog/introduction-to-blockchain-and-how-bitcoin-works
https://www.sciencedirect.com/science/article/pii/S2213138822000911
https://www.sciencedirect.com/science/article/pii/S2213138822000911
https://www.geeksforgeeks.org/types-of-blockchain
https://www.geeksforgeeks.org/types-of-blockchain
https://www.sciencedirect.com/science/article/pii/S2542660518300702
https://www.sciencedirect.com/science/article/pii/S2542660518300702
https://www.techtarget.com/searchcio/feature/What-are-the-4-different-types-of-blockchain-technology
https://www.techtarget.com/searchcio/feature/What-are-the-4-different-types-of-blockchain-technology
https://crypto.com/university/consensus-mechanisms-in-blockchain
https://crypto.com/university/consensus-mechanisms-in-blockchain
https://www.geeksforgeeks.org/raft-consensus-algorithm/
https://www.geeksforgeeks.org/raft-consensus-algorithm/
https://www.geeksforgeeks.org/proof-of-elapsed-time-poet-in-blockchain/
https://www.geeksforgeeks.org/proof-of-elapsed-time-poet-in-blockchain/

References

[23] Bybit Learn. Liquid proof of stake (lpos). https://learn.bybit.com/
glossary/definition-liquid-proof-of-stake-lpos/. Accessed: 2023-
07-03.

[24] Tendermint Core. What is tendermint. https://docs.tendermint.com/v0.
34/introduction/what-is-tendermint.html. Accessed: 2023-07-03.

[25] Moralis. What are web3 contracts? exploring smart contracts. https://
moralis.io/what-are-web3-contracts-exploring-smart-contracts/, .
Accessed: 2022-12-21.

[26] Bhabendu Kumar Mohanta, Soumyashree S Panda, and Debasish Jena. An
overview of smart contract and use cases in blockchain technology. In
2018 9th International Conference on Computing, Communication and Network-
ing Technologies (ICCCNT), pages 1–4, 2018. doi: 10.1109/ICCCNT.2018.
8494045.

[27] Osman Sönmeztürk, Tolga Ayav, and Yusuf M. Erten. Loyalty program
using blockchain. In 2020 IEEE International Conference on Blockchain
(Blockchain), pages 509–516, 2020. doi: 10.1109/Blockchain50366.2020.
00074.

[28] OpenZeppelin. Tokens. https://docs.openzeppelin.com/contracts/2.
x/tokens. Accessed: 2022-12-21.

[29] Decrypt. How are nfts stored? on-chain, off-chain and
decentralized storage. https://decrypt.co/resources/
how-are-nfts-stored-on-chain-off-chain-and-decentralized-storage.
Accessed: 2022-12-21.

[30] Juan Benet. Ipfs - content addressed, versioned, p2p file system, 2014.

[31] Crypto.com. What are token standards? an overview. https://crypto.
com/university/what-are-token-standards, . Accessed: 2022-12-21.

[32] Ethereum. https://ethereum.org/en/. Accessed: 2022-12-22.

[33] ConsenSys. Ethereum has 4x more developers than any other
crypto ecosystem. https://consensys.net/blog/developers/
ethereum-has-4x-more-developers-than-any-other-crypto-ecosystem/.
Accessed: 2022-12-22.

[34] Hyperledger Fabric. https://www.hyperledger.org/use/fabric. Ac-
cessed: 2022-12-22.

[35] Hyperledger Sawtooth. https://www.hyperledger.org/use/sawtooth.
Accessed: 2022-12-22.

[36] Corda. https://corda.net/. Accessed: 2022-12-22.

[37] Tezos. https://tezos.com/, . Accessed: 2022-12-22.

[38] Kraken. What is tezos? (xtz). https://www.kraken.com/learn/
what-is-tezos-xtz, . Accessed: 2022-12-22.

75

https://learn.bybit.com/glossary/definition-liquid-proof-of-stake-lpos/
https://learn.bybit.com/glossary/definition-liquid-proof-of-stake-lpos/
https://docs.tendermint.com/v0.34/introduction/what-is-tendermint.html
https://docs.tendermint.com/v0.34/introduction/what-is-tendermint.html
https://moralis.io/what-are-web3-contracts-exploring-smart-contracts/
https://moralis.io/what-are-web3-contracts-exploring-smart-contracts/
https://docs.openzeppelin.com/contracts/2.x/tokens
https://docs.openzeppelin.com/contracts/2.x/tokens
https://decrypt.co/resources/how-are-nfts-stored-on-chain-off-chain-and-decentralized-storage
https://decrypt.co/resources/how-are-nfts-stored-on-chain-off-chain-and-decentralized-storage
https://crypto.com/university/what-are-token-standards
https://crypto.com/university/what-are-token-standards
https://ethereum.org/en/
https://consensys.net/blog/developers/ethereum-has-4x-more-developers-than-any-other-crypto-ecosystem/
https://consensys.net/blog/developers/ethereum-has-4x-more-developers-than-any-other-crypto-ecosystem/
https://www.hyperledger.org/use/fabric
https://www.hyperledger.org/use/sawtooth
https://corda.net/
https://tezos.com/
https://www.kraken.com/learn/what-is-tezos-xtz
https://www.kraken.com/learn/what-is-tezos-xtz

Chapter 9

[39] Open Tezos. Liquid proof-of-stake. https://opentezos.com/
tezos-basics/liquid-proof-of-stake/, . Accessed: 2022-12-23.

[40] Open Tezos. First contracts - nfts. https://opentezos.com/
smart-contracts/simple-nft-contract-1/, . Accessed: 2022-12-23.

[41] EOSIO. https://eos.io/, . Accessed: 2022-12-23.

[42] Block.one. https://b1.com/. Accessed: 2022-12-23.

[43] EOSIO. eosio.evm: Code in solidity while leveraging eosio speed and scal-
ability. https://eos.io/innovations/eosio-evm/, . Accessed: 2022-12-23.

[44] GitHub. Eosio sdk for java - api for integrating with eosio-based
blockchains. https://github.com/EOSIO/eosio-java, . Accessed: 2022-
12-23.

[45] Stellar. https://www.stellar.org/. Accessed: 2022-12-24.

[46] Polygon. https://polygon.technology/. Accessed: 2022-12-24.

[47] Cosmos. https://cosmos.network/. Accessed: 2022-12-24.

[48] Kraken. What is cosmos? (atom). https://www.kraken.com/learn/
what-is-cosmos-atom, . Accessed: 2022-12-24.

[49] Amergent Hospitality Group. https://amergenthg.com/. Accessed: 2022-
12-27.

[50] Mobivity. https://www.mobivity.com/. Accessed: 2022-12-27.

[51] Jaybee’s Chicken Palace. https://jaybeeschicken.com/. Accessed: 2022-
12-27.

[52] PizzaRev. https://pizzarev.com/. Accessed: 2022-12-27.

[53] Little Big Burger. https://littlebigburger.com/. Accessed: 2022-12-27.

[54] Burgers Grilled Right. https://bgrtheburgerjoint.com/. Accessed: 2022-
12-27.

[55] American Burger Co. https://americanburgerco.com/. Accessed: 2022-
12-27.

[56] Hospitality Technology. How this restaurant operator uses
blockchain to reimagine loyalty. https://hospitalitytech.com/
how-restaurant-operator-uses-blockchain-reimagine-loyalty. Ac-
cessed: 2022-12-27.

[57] American Express. https://www.americanexpress.com/, . Accessed: 2022-
12-27.

[58] Boxed. https://www.boxed.com/. Accessed: 2022-12-27.

[59] Amazon. https://www.amazon.com/, . Accessed: 2022-12-27.

76

https://opentezos.com/tezos-basics/liquid-proof-of-stake/
https://opentezos.com/tezos-basics/liquid-proof-of-stake/
https://opentezos.com/smart-contracts/simple-nft-contract-1/
https://opentezos.com/smart-contracts/simple-nft-contract-1/
https://eos.io/
https://b1.com/
https://eos.io/innovations/eosio-evm/
https://github.com/EOSIO/eosio-java
https://www.stellar.org/
https://polygon.technology/
https://cosmos.network/
https://www.kraken.com/learn/what-is-cosmos-atom
https://www.kraken.com/learn/what-is-cosmos-atom
https://amergenthg.com/
https://www.mobivity.com/
https://jaybeeschicken.com/
https://pizzarev.com/
https://littlebigburger.com/
https://bgrtheburgerjoint.com/
https://americanburgerco.com/
https://hospitalitytech.com/how-restaurant-operator-uses-blockchain-reimagine-loyalty
https://hospitalitytech.com/how-restaurant-operator-uses-blockchain-reimagine-loyalty
https://www.americanexpress.com/
https://www.boxed.com/
https://www.amazon.com/

References

[60] Best Buy. https://www.bestbuy.com/. Accessed: 2022-12-27.

[61] Staples. https://www.staples.com/. Accessed: 2022-12-27.

[62] Ticketmaster. https://www.ticketmaster.com/. Accessed: 2022-12-27.

[63] American Express. Membership rewards. https://www.ticketmaster.
com/, . Accessed: 2022-12-27.

[64] Singapore Airlines. https://www.singaporeair.com/, . Accessed: 2022-
12-27.

[65] Singapore Airlines. Kris+. https://www.singaporeair.com/en_UK/us/
ppsclub-krisflyer/use-miles/krisplus/, . Accessed: 2022-12-27.

[66] Singapore Airlines. Krisflyer to launch world’s first blockchain-based
airline loyalty digital wallet. https://www.singaporeair.com/en_UK/es/
media-centre/press-release/article/?q=en_UK/2018/January-March/
ne0518-180205, . Accessed: 2022-12-27.

[67] Etisalat. https://www.etisalat.ae/, . Accessed: 2022-12-27.

[68] Etisalat. Etisalat smiles. https://www.etisalat.ae/en/c/mobile/smiles.
html, . Accessed: 2022-12-27.

[69] Khaleej Times. Etisalat launches ’smiles’ customer engage-
ment programme. https://www.khaleejtimes.com/article/
etisalat-launches-smiles-customer-engagement-programme. Accessed:
2022-12-27.

[70] Telecom Review. Etisalat’s smiles unveils uae’s first
blockchain-powered rewards exchange. https://www.
telecomreview.com/index.php/articles/telecom-operators/
4385-etisalat-s-smiles-unveils-uae-s-first-blockchain-powered-rewards-exchange.
Accessed: 2022-12-27.

[71] Wikipedia. Moscow method. https://en.wikipedia.org/wiki/MoSCoW_
method, . Accessed: 2023-07-04.

[72] PolygonScan. Polygon (matic) blockchain explorer. https://polygonscan.
com/, . Accessed: 2022-12-24.

[73] Messari. Ethereum (eth) average transaction fees. https://messari.io/
charts/ethereum/txn-fee-avg. Accessed: 2022-12-24.

[74] Infura. https://www.infura.io/. Accessed: 2023-01-14.

[75] Moralis. https://www.moralis.io/, . Accessed: 2023-01-14.

[76] Alchemy. https://www.alchemy.com/. Accessed: 2023-01-14.

[77] Chainstack. https://chainstack.com/. Accessed: 2023-01-14.

[78] GetBlock. https://getblock.io/. Accessed: 2023-01-14.

77

https://www.bestbuy.com/
https://www.staples.com/
https://www.ticketmaster.com/
https://www.ticketmaster.com/
https://www.ticketmaster.com/
https://www.singaporeair.com/
https://www.singaporeair.com/en_UK/us/ppsclub-krisflyer/use-miles/krisplus/
https://www.singaporeair.com/en_UK/us/ppsclub-krisflyer/use-miles/krisplus/
https://www.singaporeair.com/en_UK/es/media-centre/press-release/article/?q=en_UK/2018/January-March/ne0518-180205
https://www.singaporeair.com/en_UK/es/media-centre/press-release/article/?q=en_UK/2018/January-March/ne0518-180205
https://www.singaporeair.com/en_UK/es/media-centre/press-release/article/?q=en_UK/2018/January-March/ne0518-180205
https://www.etisalat.ae/
https://www.etisalat.ae/en/c/mobile/smiles.html
https://www.etisalat.ae/en/c/mobile/smiles.html
https://www.khaleejtimes.com/article/etisalat-launches-smiles-customer-engagement-programme
https://www.khaleejtimes.com/article/etisalat-launches-smiles-customer-engagement-programme
https://www.telecomreview.com/index.php/articles/telecom-operators/4385-etisalat-s-smiles-unveils-uae-s-first-blockchain-powered-rewards-exchange
https://www.telecomreview.com/index.php/articles/telecom-operators/4385-etisalat-s-smiles-unveils-uae-s-first-blockchain-powered-rewards-exchange
https://www.telecomreview.com/index.php/articles/telecom-operators/4385-etisalat-s-smiles-unveils-uae-s-first-blockchain-powered-rewards-exchange
https://en.wikipedia.org/wiki/MoSCoW_method
https://en.wikipedia.org/wiki/MoSCoW_method
https://polygonscan.com/
https://polygonscan.com/
https://messari.io/charts/ethereum/txn-fee-avg
https://messari.io/charts/ethereum/txn-fee-avg
https://www.infura.io/
https://www.moralis.io/
https://www.alchemy.com/
https://chainstack.com/
https://getblock.io/

Chapter 9

[79] QuickNode. https://www.quicknode.com/. Accessed: 2023-01-14.

[80] Alchemy Docs. Compute units. https://docs.alchemy.com/reference/
compute-units. Accessed: 2023-01-14.

[81] Web3.js. https://web3js.readthedocs.io/en/v1.9.0/. Accessed: 2023-
06-15.

[82] IPFS in JavaScript. https://docs.ipfs.tech/reference/js/api/
#javascript-libraries. Accessed: 2023-06-15.

[83] Node.js. https://nodejs.org/en. Accessed: 2023-01-15.

[84] Python. https://www.python.org/. Accessed: 2023-01-15.

[85] MongoDB. https://www.mongodb.com/. Accessed: 2023-01-15.

[86] Microsoft Visual Studio Code. https://code.visualstudio.com/. Ac-
cessed: 2023-06-22.

[87] Remix Online IDE. https://remix.ethereum.org/. Accessed: 2023-06-22.

[88] Google Chrome. https://www.google.com/intl/en/chrome/. Accessed:
2023-06-22.

[89] MetaMask. https://metamask.io/. Accessed: 2023-06-22.

[90] MongoDB Compass. https://www.mongodb.com/products/compass. Ac-
cessed: 2023-06-22.

[91] GitHub. https://github.com/, . Accessed: 2023-06-22.

[92] Atlassian. Jira software. https://www.atlassian.com/software/jira. Ac-
cessed: 2023-06-23.

[93] Figma. https://www.figma.com/. Accessed: 2023-06-23.

[94] Polygon Faucet. https://faucet.polygon.technology/. Accessed: 2023-
06-22.

[95] Shopify. https://www.shopify.com/. Accessed: 2023-06-22.

[96] Swagger UI. https://swagger.io/tools/swagger-ui/. Accessed: 2023-
06-26.

[97] React. https://react.dev/. Accessed: 2023-06-26.

[98] Jest. https://jestjs.io/. Accessed: 2023-06-29.

[99] GitHub. Supertest. https://github.com/ladjs/supertest#readme, . Ac-
cessed: 2023-06-29.

[100] Artillery. https://www.artillery.io/. Accessed: 2023-06-29.

[101] PolygonScan. Polygon pos chain average block time chart. https://
polygonscan.com/chart/blocktime, . Accessed: 2023-07-05.

78

https://www.quicknode.com/
https://docs.alchemy.com/reference/compute-units
https://docs.alchemy.com/reference/compute-units
https://web3js.readthedocs.io/en/v1.9.0/
https://docs.ipfs.tech/reference/js/api/#javascript-libraries
https://docs.ipfs.tech/reference/js/api/#javascript-libraries
https://nodejs.org/en
https://www.python.org/
https://www.mongodb.com/
https://code.visualstudio.com/
https://remix.ethereum.org/
https://www.google.com/intl/en/chrome/
https://metamask.io/
https://www.mongodb.com/products/compass
https://github.com/
https://www.atlassian.com/software/jira
https://www.figma.com/
https://faucet.polygon.technology/
https://www.shopify.com/
https://swagger.io/tools/swagger-ui/
https://react.dev/
https://jestjs.io/
https://github.com/ladjs/supertest#readme
https://www.artillery.io/
https://polygonscan.com/chart/blocktime
https://polygonscan.com/chart/blocktime

	Introduction
	Context
	Motivation and Objectives
	Methodology
	Document Outline

	Background and State of the art
	Loyalty Programs
	Point System
	Tier System
	Subscription System
	Value-based System

	Blockchain
	Consensus Mechanisms
	Smart Contracts
	Tokens
	Token Storage
	Blockchain Platforms

	Blockchain based Loyalty Programs

	The Proposed Blockahin-based Loyalty Platform
	Loyalty Program
	The Platform

	Requirements Analysis
	Functional Requirements
	User Stories
	Vendor
	Client

	Non-functional Requirements
	Success Criteria

	System Design
	System Architecture
	Technologies
	Risks

	Development Methodology and Planning
	Development Methodology
	Planning
	First Semester
	Second Semester

	Development
	Development Environment
	Smart Contracts
	Database
	Platform Backend
	Platform Frontend

	Testing and Validation
	Testing
	Testing Environment
	Unit Testing
	Throughput Testing

	Validation
	Functional Requirements Validation
	Non-functional Requirements Validation

	Conclusion

