Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/95930
Título: Bioenergy Production through Mono and Co-Digestion of Tomato Residues
Autor: Almeida, Patrícia V.
Rodrigues, Rafaela P.
Teixeira, Leonor M.
Santos, Andreia F.
Martins, Rui C. 
Quina, Margarida J. 
Palavras-chave: Agro-industrial residues; Anaerobic digestion; Biochemical methane potential; Co-digestion; Design of experiments
Data: 2021
Editora: MDPI
Projeto: SFRH/BD/145694/2019 
CENTRO-01-0145-FEDER-000014 
Título da revista, periódico, livro ou evento: Energies
Volume: 14
Número: 17
Resumo: The agro-industry of tomato generates three types of residues: ripe rotten tomato (unfit for consumption) (RT), green (unripe) tomato (GT), and tomato branches including leaves and stems (TB). These materials are commonly wasted or used as feed for livestock. Energy production through anaerobic digestion is an alternative way to manage and simultaneously valorise these materials. Initially, the operating conditions of mono anaerobic digestion were investigated using RT. Thus, a design of experiments based on a two-level fractional factorial design with resolution V was performed to determine the factors that affect biochemical methane potential (BMP). The substrate to inoculum ratio (SIR), total volatile solids concentration (VSt ), working volume (WV), presence of nutrients (Nu), and the pre-incubation of the inoculum (Inc) were investigated. The results showed that SIR is the most important factor. The maximum BMP for RT was 297 NmLCH4/gVS with SIR = 0.5; tVS = 20 g/L; WV = 20%; no pre-incubation and the presence of nutrients. Using these optimum operating conditions, co-digestion was investigated through a mixture design approach. The substrates RT and GT presented similar BMP values, whereas TB led to a significantly lower BMP. Indeed, when high concentrations of TB were used, a significant decrease in methane production was observed. Nonetheless, the highest BMP was achieved with a mixture of 63% RT + 20% GT + 17% TB, with a production of 324 NmLCH4/gVS, corresponding to a synergetic co-digestion performance index of about 1.20. In general, although the substrate RT generates the highest BMP, the mixture with GT did not impair the methane yield. Overall, the co-digestion of tomato residues must be conducted with SIR close to 0.5 and the content of tomato branches in the reaction mixture should be kept low (up to 20%). © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
URI: https://hdl.handle.net/10316/95930
ISSN: 1996-1073
DOI: 10.3390/en14175563
Direitos: openAccess
Aparece nas coleções:I&D CERES - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato
energies-14-05563.pdf1.99 MBAdobe PDFVer/Abrir
Mostrar registo em formato completo

Citações SCOPUSTM   

8
Visto em 26/ago/2024

Citações WEB OF SCIENCETM

7
Visto em 2/ago/2024

Visualizações de página

152
Visto em 27/ago/2024

Downloads

113
Visto em 27/ago/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons