Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/8426
Title: Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide
Authors: Ferreiro, Elisabete 
Oliveira, Catarina R. 
Pereira, Cláudia 
Issue Date: 2004
Citation: Journal of Neuroscience Research. 76:6 (2004) 872-880
Abstract: Studies with in-vitro-cultured neurons treated with amyloid-beta (Abeta) peptides demonstrated neuronal loss by apoptosis that is due, at least in part, to the perturbation of intracellular Ca2+ homeostasis. In addition, it was shown that an endoplasmic reticulum (ER)-specific apoptotic pathway mediated by caspase-12, which is activated upon the perturbation of ER Ca2+ homeostasis, may contribute to Abeta toxicity. To elucidate the involvement of deregulation of ER Ca2+ homeostasis in neuronal death induced by Abeta peptides, we have performed a comparative study using the synthetic peptides Abeta25-35 or Abeta1-40 and thapsigargin, a selective inhibitor of Ca2+ uptake into the ER. Incubation of cortical neurons with thapsigargin (2.5 muM) increased the intracellular Ca2+ levels and activated caspase-3, leading to a significant increase in the number of apoptotic cells. Similarly, upon incubation of cortical cultures with the Abeta peptides (Abeta25-35, 25 muM; Abeta1-40, 0.5 muM), we observed a significant increase in [Ca2+]i, in caspase-3-like activity, and in number of neurons exhibiting apoptotic morphology. The role of ER Ca2+ release through ryanodine receptors (RyR) or inositol 1,4,5-trisphosphate receptors (IP3R) in Abeta neurotoxicity has been also investigated. Dantrolene and xestospongin C, inhibitors of ER Ca2+ release through RyR or IP3R, were able to prevent the increase in [Ca2+]i and the activation of caspase-3 and to protect partially against apoptosis induced by treatment with Abeta25-35 or Abeta1-40. In conclusion, our results demonstrate that the release of Ca2+ from the ER, mediated by both RyR and IP3R, is involved in Abeta toxicity and can contribute, together with the activation of other intracellular neurotoxic mechanisms, to Abeta-induced neuronal death. This study suggests that Abeta accumulation may have a key role in the pathogenesis of AD as a result of deregulation of ER Ca2+ homeostasis. © 2004 Wiley-Liss, Inc.
URI: https://hdl.handle.net/10316/8426
DOI: 10.1002/jnr.20135
Rights: openAccess
Appears in Collections:FMUC Medicina - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
obra.pdf133.28 kBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

142
checked on Apr 15, 2024

WEB OF SCIENCETM
Citations 1

119
checked on Apr 2, 2024

Page view(s) 50

491
checked on Apr 23, 2024

Download(s) 20

1,133
checked on Apr 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.