Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/80303
Title: New and updated stellar parameters for 90 transit hosts. The effect of the surface gravity
Authors: Mortier, A. 
Keywords: astro-ph.EP; astro-ph.EP; astro-ph.SR
Issue Date: 8-Sep-2013
Volume: 558
Abstract: Context. Precise stellar parameters are crucial in exoplanet research for correctly determining of the planetary parameters. For stars hosting a transiting planet, determining of the planetary mass and radius depends on the stellar mass and radius, which in turn depend on the atmospheric stellar parameters. Different methods can provide different results, which leads to different planet characteristics.}%Spectroscopic surface gravities have shown to be poorly constrained, but the photometry of the transiting planet can provide an independent measurement of the surface gravity. Aims. In this paper, we use a uniform method to spectroscopically derive stellar atmospheric parameters, chemical abundances, stellar masses, and stellar radii for a sample of 90 transit hosts. Surface gravities are also derived photometrically using the stellar density as derived from the light curve. We study the effect of using these different surface gravities on the determination of the chemical abundances and the stellar mass and radius. Methods. A spectroscopic analysis based on Kurucz models in LTE was performed through the MOOG code to derive the atmospheric parameters and the chemical abundances. The photometric surface gravity was determined through isochrone fitting and the use of the stellar density, directly determined from the light curve. Stellar masses and radii are determined through calibration formulae. Results. Spectroscopic and photometric surface gravities differ, but this has very little effect on the precise determination of the stellar mass in our spectroscopic analysis. The stellar radius, and hence the planetary radius, is most affected by the surface gravity discrepancies. For the chemical abundances, the difference is, as expected, only noticable for the abundances derived from analyzing of lines of ionized species.
URI: https://hdl.handle.net/10316/80303
DOI: 10.1051/0004-6361/201322240
Rights: openAccess
Appears in Collections:I&D CGUC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
aa22240-13.pdf1.04 MBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

75
checked on Nov 9, 2022

WEB OF SCIENCETM
Citations 1

74
checked on May 2, 2023

Page view(s)

245
checked on Apr 16, 2024

Download(s)

126
checked on Apr 16, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.