Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/43770
DC FieldValueLanguage
dc.contributor.authorFerreira, José Augusto-
dc.contributor.authorPena, Gonçalo-
dc.contributor.authorRomanazzi, Giuseppe-
dc.date.accessioned2017-10-06T16:55:10Z-
dc.date.issued2016-
dc.identifier.urihttp://hdl.handle.net/10316/43770-
dc.description.abstractIn this paper, an incompressible single phase and single component flow in a porous media presenting a non-Fickian behaviour is studied. The model is composed by a parabolic equation for the pressure, with homogeneous Dirichlet or Neumann boundary conditions, coupled with a mass conservation equation for the concentration, a transport equation for the mass flux and by Darcy’s law for the velocity. The transport equation for the mass flux is established assuming that this quantity at a certain point and at a certain time, depend on the concentration gradient in neighbour points (both in time and space). In order to numerical validate this approach, an IMEX finite element method is proposed to solve the coupled system of equations. The qualitative behaviour of the physical unknowns is illustrated and its dependence on the memory effect is discussed.por
dc.language.isoengpor
dc.publisherElsevierpor
dc.relationPEst-C/MAT/UI0324/2013por
dc.rightsembargoedAccess-
dc.titleAnomalous diffusion in porous mediapor
dc.typearticle-
degois.publication.firstPage1850por
degois.publication.lastPage1862por
degois.publication.issue3por
degois.publication.titleApplied Mathematical Modellingpor
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0307904X15005685?via%3Dihubpor
dc.peerreviewedyespor
dc.identifier.doi10.1016/j.apm.2015.09.034por
dc.identifier.doi10.1016/j.apm.2015.09.034-
degois.publication.volume40por
dc.date.embargo2019-10-06T16:55:10Z-
uc.controloAutoridadeSim-
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.languageiso639-1en-
crisitem.author.deptFaculty of Sciences and Technology-
crisitem.author.deptFaculty of Sciences and Technology-
crisitem.author.parentdeptUniversity of Coimbra-
crisitem.author.parentdeptUniversity of Coimbra-
crisitem.author.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.author.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.author.orcid0000-0002-5226-2905-
crisitem.author.orcid0000-0003-0552-8069-
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
2016_ferreira_pena_romanazzi.pdf962.9 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

10
checked on May 29, 2020

WEB OF SCIENCETM
Citations 5

11
checked on Sep 2, 2021

Page view(s) 20

620
checked on Sep 17, 2021

Download(s)

123
checked on Sep 17, 2021

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.