Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/3903
Title: Measurement of Hepatic Glucose Output, Krebs Cycle, and Gluconeogenic Fluxes by NMR Analysis of a Single Plasma Glucose Sample
Authors: Jones, John G. 
Carvalho, Rui A. 
Franco, Byron 
Sherry, A. Dean
Malloy, Craig R.
Issue Date: 1998
Citation: Analytical Biochemistry. 263:1 (1998) 39-45
Abstract: 13C and1H NMR spectroscopy of plasma glucose was used to resolve the isotopomer contributions from tracer levels of [1,6-13C2]glucose, a novel tracer of glucose carbon skeleton turnover, and [U-13C]propionate, a tracer of hepatic citric acid cycle metabolism. This allowed simultaneous measurements of hepatic glucose production and citric acid cycle fluxes from the NMR analysis of a single plasma glucose sample in fasted animals. Glucose carbon skeleton turnover, as reported by the dilution of [1,6-13C2]glucose, was 56 ± 2 [mu]mol/kg/min in the presence of labeling from [U-13C]propionate and 53 ± 4 [mu]mol/kg/min in its absence. Therefore, as expected, the labeling contributions from [U-13C]propionate metabolism did not have a significant effect on the measurement of glucose turnover. For the group infused with both tracers, citric acid cycle flux estimates from the analysis of glucose C2 isotopomer ratios were consistent with those from our recent experiments where only [U-13C]propionate was infused, verifying that the presence of [1,6-13C2]glucose did not interfere with these measurements. This integrated analysis of hepatic glucose output and citric acid cycle fluxes from plasma glucose isotopomers yielded a noninvasive estimate of hepatic citrate synthase flux of 74 ± 12 [mu]mol/kg/min for 24-h fasted rats.
URI: http://hdl.handle.net/10316/3903
Rights: openAccess
Appears in Collections:FCTUC Ciências da Vida - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
file936f9322b2a94ed7a9812b39b33d9930.pdf138.12 kBAdobe PDFView/Open
Show full item record

Page view(s)

91
checked on Oct 16, 2019

Download(s)

62
checked on Oct 16, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.