Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/28015
Title: Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography
Authors: Gamelas, José A. F. 
Pedrosa, Jorge 
Lourenço, Ana F. 
Ferreira, Paulo J. 
Keywords: Composites; Inverse gas chromatography; Nanocellulose; Surface energy; Lewis acid-base character
Issue Date: 30-Dec-2014
Publisher: Elsevier
Citation: GAMELAS, J.A.F.; PEDROSA, J.; LOURENÇO, A.F.; FERREIRA, P.J. - Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography.[Em linha]. "Colloids and Surfaces A : Physicochemical and Engineering Aspects". ISSN: 0927-7757. 469 (2015), 36-41. Disponivel na WWW: http://dx.doi.org/10.1016/j.colsurfa.2014.12.058
Serial title, monograph or event: Colloids and Surfaces A : Physicochemical and Engineering Aspects : An International Journal Devoted to the Principles and Applications of Colloid and Interface Science
Abstract: The adhesion and surface properties of nanocelluloses are an important issue to consider when using this material for composites production, in food packaging or coatings, as well as for determining the influence of added functional groups. In the present work, the surface properties of two nanofibrillated celluloses obtained by mild 2,2,6,6-tetramethylpiperidine-1- oxyl radical (TEMPO)-mediated oxidation with distinct mechanical treatment intensity in a homogenizer (5 and 15 passes), and one nanofibrillated cellulose obtained by enzymatic process, were thoroughly assessed by inverse chromatography, at infinite dilution conditions. The dispersion component of the surface energy ( s d) was 42-46 mJ m-2 at 40 ºC for the TEMPO nanofibres and 52 mJ m-2 for the enzymatic nanocellulose. It was confirmed, based on the determination of the specific components of the works of adhesion and enthalpies of adsorption with polar probes, that the surfaces of the materials have a more Lewis acidic than Lewis basic character. Regarding TEMPO nanofibres, a slight increase of Lewis acidity/basicity ratio seemed to occur for the more nanofibrillated material (15-passes). Higher specific interactions with polar probes were found for enzymatic nanocellulose. The higher values of s d and specific interactions observed for the enzymatic nanocellulose could partly be due to the higher crystallinity of this sample. On the other hand, the increase of the acidity/basicity ratio (as well as of the s d value) for the 15-passes vs. 5-passes TEMPO nanofibres was attributed to a higher exposition of the hydroxyl groups of cellulose at the surface of the former material.
URI: http://hdl.handle.net/10316/28015
ISSN: 0927-7757
DOI: 10.1016/j.colsurfa.2014.12.058
Rights: openAccess
Appears in Collections:FCTUC Eng.Química - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
Surface properties of distinct nanofibrillated celluloses.pdf1.18 MBAdobe PDFView/Open
Show full item record

WEB OF SCIENCETM
Citations

13
checked on Jun 2, 2021

Page view(s)

278
checked on Jun 10, 2021

Download(s)

238
checked on Jun 10, 2021

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.