Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/11223
Title: Growth conditions and uniqueness of the Cauchy problem for the evolutionary infinity Laplacian
Authors: Leonori, Tommaso 
Urbano, José Miguel 
Keywords: Infinity Laplacian; Cauchy problem; Uniqueness; Growth at infinity
Issue Date: 2008
Publisher: Centro de Matemática da Universidade de Coimbra
Citation: Pré-Publicações DMUC. 08-45 (2008)
Abstract: We study the Cauchy problem for the parabolic infinity Laplace equation. We prove a new comparison principle and obtain uniqueness of viscosity solutions in the class of functions with a polinomial growth at infinity, improving previous results obtained assuming a linear growth.
URI: http://hdl.handle.net/10316/11223
Rights: openAccess
Appears in Collections:FCTUC Matemática - Vários

Files in This Item:
File Description SizeFormat
Growth conditions and uniqueness of the Cauchy problem.pdf166.59 kBAdobe PDFView/Open
Show full item record

Page view(s) 50

254
checked on Dec 2, 2019

Download(s) 20

533
checked on Dec 2, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.