Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/11175
Title: Limits as p(x) of p(x)-harmonic functions
Authors: Manfredi, Juan J. 
Rossi, Julio D. 
Urbano, José Miguel 
Keywords: p(x)-Laplacian; Infinity-Laplacian; Variable exponents; Viscosity solutions
Issue Date: 2009
Publisher: Centro de Matemática da Universidade de Coimbra
Citation: Pré-Publicações DMUC. 09-13 (2009)
Abstract: In this note we study the limit as p(x) ! 1of solutions to − p(x)u = 0 in a domain , with Dirichlet boundary conditions. Our approach consists in considering sequences of variable exponents converging uniformly to +1 and analyzing how the corresponding solutions of the problem converge and what equation is satisfied by the limit.
URI: http://hdl.handle.net/10316/11175
Rights: openAccess
Appears in Collections:FCTUC Matemática - Vários

Files in This Item:
File Description SizeFormat 
Limits as p(x) of p(x)-harmonic functions.pdf166.74 kBAdobe PDFView/Open
Show full item record

Page view(s) 50

260
checked on Jun 12, 2019

Download(s)

20
checked on Jun 12, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.