Please use this identifier to cite or link to this item:
http://hdl.handle.net/10316/100062
Title: | An approach to the unified management of heterogeneous IoT environments | Authors: | Armando, Ngombo | Orientador: | Silva, Jorge Sá Boavida, Fernando |
Keywords: | IoT; Management; Heterogeneity; FIWIRE; LwM2M; ISABELA; 5GOpenclasses; Heterogeneidade; Gestão | Issue Date: | 3-Nov-2020 | Project: | info:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC/EEI-SCR/2072/2014/PT/SOCIALITE – Social-Oriented Internet of Things Architecture, Solutions and Environment info:eu-repo/grantAgreement/POCI/01/0247/FEDER/024539/5G Project UID/CEC/00326/2020 |
Place of publication or event: | Coimbra | Abstract: | The Internet of Things (IoT) can be defined as an extension of computer
networks and the Internet, to a myriad of both smart and connected
devices labelled "things". Traditionally, wireless sensors/actuators form
the founding block of the IoT’s perception layer, which core functions are sensing
the environment and actuate on it. Thus, IoT systems were initially developed
upon hardware electronic components for data acquisition and interaction with
the target environment. Later, virtual sensors (also known as Software-Based
Sensors (SBSs)) entered into play, consisting of software modules that offer highlevel Application Programming Interfaces (APIs) that could be easily integrated
into IoT products and services. A more recent trend in literature for massive
data acquisition considers "social sensing", a type of sensing in which people
are regarded as data producers, or Human-Based Sensors (HBSs), via their
activities in Online Social Networks (OSNs).
Having a variety of new ways of collecting data may not be effective if we cannot
ensure essential and specific management capabilities of the heterogeneity, in
types and forms, of the entities in the perception layer. Our definition of Device
Management (DM) relies on the Y.2060 recommendation by the International
Telecommunication Union - Telecommunication Standardization Sector (ITUT). DM covers all the set of operations that an Information Technologies (IT)
system needs to monitor and interact with the managed entities. The aim of
DM is to make sure that the applications running on a given device operate
well. Hence, DM must also be extended to all types of "resources" that can be
explored in the perception layer, either physical, virtual or social.
It is, therefore, crucial to develop management platforms that consider such
heterogeneity in "devices", in a unified way and, additionally, that are based on
open standards. On the one hand, such platforms have the potential to explore
the breadth in the definition of the devices that interact with both physical and
virtual worlds. On the other hand, such a solution guarantees interoperability of
the management solutions. Typically, the management of IoT devices mainly
focuses on well-established electronic-based entities. Well, one may want to
change the algorithm of a virtual sensor, on-the-fly, or prevent a social sensor
from feeding the backend for a while.
In our research, we tried to overcome the challenge of a unified managed for both
traditional and new "devices" in the IoT. We leveraged an IoT middleware as
the central component to provide the flexibility and scalability of our proposed
architecture. Based on a comprehensive survey, we adopted the Future Internet
- Ware (FIWARE) and Lightweight Machine-To-Machine (LwM2M), as the
middleware and management protocol, respectively, for the applied case studies
of the generic architecture we proposed.
We also developed two use-cases, namely IoT Student Advisor and Best Lifestyle
Analyzer (ISABELA) and 5GOpenclasses, through which we have shown that
the management of the referred three types of sensing is feasible from both
functional and performance points of view.
With the help of our research team, I actively conducted the design and implementation phases of both use-cases to test the models proposed in this thesis.
Thus, I will present the degree of success in achieving such a goal and will
mention the research opportunities that we opened for future work. Podemos definir a Internet das Coisas (IoT) como sendo uma extensão da Internet em geral, a um conjunto de objetos inteligentes e conectados, conhecidos genericamente por "coisas". A IoT apoia-se fundamentalmente numa camada dita de deteção/perceção, cujas funções centrais são: detetar os fenómenos no ambiente em que são aplicados e atuar no mesmo. Tradicionalmente, esta camada consiste em um conjunto de redes de sensores/atuadores sem fios. Assim sendo, os sistemas IoT foram inicialmente desenvolvidos sobre componentes eletrónicos físicos para aquisição de dados e interação com o ambiente alvo. Mais tarde, surgiram sensores virtuais (também conhecidos como Sensores Baseados em Software (SBSs)). Estes, são programas informáticos, compostos por módulos que ofereciam interfaces de programação de aplicações (API) de alto nível, e de fácil integração em produtos e serviços IoT. A tendência mais recente para aquisição massiva de dados em ambientes IoT considera o paradigma dos "sensores sociais". Trata-se de um tipo de deteção em que as seres humanos, ou Sensores Sociais Humanos (HBSs), são considerados como produtores de dados contextualizados, através das suas atividades em Redes Sociais (OSN). O aproveitamento desta variedade de formas de se recolher dados em massa não pode ser eficiente, sem a garantia de uma gestão ampla de todas as entidades que compõem esta camada de deteção. O objetivo final da gestão dos dispositivos IoT (DM) é garantir que a execução dos aplicativos e productos funcionem conforme ela foi projetada. Baseando-se na recomendação Y.2060 da União Internacional das Telecomunicações (ITU-T), a DM refere-se ao conjunto de técnicas para a monitorização tanto das atividades como do estado das entidades sob controlo, e para a interação com as mesmas. Por conseguinte, a DM deve ser alargada a todos os "recursos" da camada de perceção na "nova" IoT, sejam eles físicos, virtuais ou sociais. Neste contexto, é crucial desenvolverem-se soluções de gestão, que considerem a heterogeneidade de "recursos", de forma unificada e, adicionalmente, baseadas em padrões abertos. Estas plataformas teriam o potencial de explorar a nova definição dos dispositivos que interagem com os ambientes físicos e virtuais na IoT. Por outro lado, uma tal abordagem garante uma interoperabilidade entre as soluções de gestão. Tipicamente, a gestão de dispositivos em IoT foca-se principalmente numa visão eletrónica dos "recursos" na camada de perceção. Ora, pode haver necessidade de se alterar o algoritmo de um sensor virtual ou de se decidir, momentaneamente, que um sensor social cesse de enviar dados ao sistema de informação. Na nossa pesquisa, tentámos ultrapassar estes desafios de gestão unificada dos dispositivos na nova IoT, propondo uma arquitetura aberta e flexível, centrada em um middleware. Com base numa revisão exaustiva do estado da arte, adotámos o FIWARE e o LwM2M, como middleware e protocolo de gestão, respetivamente, nos casos de usos aplicados a nossa arquitetura genérica. O conjunto de implementações em provas de conceito, com realce as que serviram para os casos de estudos por nós denominados ISABELA e 5GOpenclasses, demonstrou que a gestão unificada dos três tipos de entidades na camada de perceção IoT, é viável, tanto do ponto de vista funcional como do ponto de vista do desempenho. Com a ajuda da nossa equipa de investigação, conduzi ativamente as fases de concepção e de implementação dos casos de uso, onde testámos os modelos propostos nesta tese. Na presente monografia, apresentarei o grau de sucesso em alcançar este objetivo de gestão unificada, e por fim, mencionarei as oportunidades de investigação que identificámos para trabalhos futuros. |
Description: | Tese de Doutoramento em Ciências e Tecnologias da Informação, apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra | URI: | http://hdl.handle.net/10316/100062 | Rights: | openAccess |
Appears in Collections: | UC - Teses de Doutoramento FCTUC Eng.Informática - Teses de Doutoramento |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tese1.0.pdf | 6.55 MB | Adobe PDF | View/Open |
Page view(s)
92
checked on Mar 27, 2023
Download(s)
102
checked on Mar 27, 2023
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.