
University of Coimbra

Faculty of Sciences and Technology

Department of Electrical and Computer Engineering

Visual recognition for localization purposes

using omnidirectional images maps

Vı́tor Manuel Castela Pedro

Coimbra, 2011





Visual recognition for localization purposes using
omnidirectional images maps

Advisor: Prof. João Pedro Barreto

Committee:

Prof. Dr. Jorge Dias

Prof. Dr. Gabriel Falcão

Prof. Dr. Joao P. Barreto

A Thesis submitted for obtaining the degree of Integrated Master

in Electrical and Computer Engineering

Department of Electrical and Computer Engineering

Faculty of Sciences and Technology,

University of Coimbra

September 2011





Acknowledgements

During this semester many people contributed to this work.

In first place i want to thank my parents and my brother for the unconditional support

all these years and for always believing in me.

Thanks to my advisor Prof. João Pedro Barreto, for all the good advices and for

keeping me in the right way. Thanks for the great research environment and for always

being available.

For my lab colleagues: Miguel, Michel, Melo, Pinto, África, João and Aniana a big
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Abstract

This thesis is an exploratory work with the objective of developing techniques for recog-

nition using visual maps constituted by paracatadioptric images. This kind of images

contain a more complete description of the scene, covering a wider area than e.g. per-

spective images. However, the radial distortion they present is high which difficult their

usage. The main challenge of the thesis is establishing correspondences between a query

image captured by a standard camera and the paracatadioptric images.

Different types of rectification strategies are studied in order to correct the radial dis-

tortion present in the paracatadioptric images. Matching between perspective images and

rectified images from the paracatadioptric images is performed, using SIFT algorithm [18].

Also, a simple procedure to roughly estimate the calibration matrix of the system is ex-

plained. Additionally, several modifications to the original SIFT algorithm are proposed,

including a change in the initial scale for the Gaussian blurring and a novel approach for

feature detection and description of stable local features, directly over the paracatadiop-

tric images (based on [17]). With this approach, the detection is carried in a scale-space

image representation built using an adaptive Gaussian filter that takes into account the

geometry of the paracatadioptric system. As an additional result, a brief study of feature

detection and matching between paracatadioptric images is performed. A new mapping

function for the adaptive filtering is tested, outperforming the other approaches.

Another important topic of the thesis is to perform image based localization using a

database of omnidirectional images. A recognition scheme using an hierarchical vocabu-

lary tree is built, based on [25]. Different visual vocabularies and training data are used.

Additionally, several methods for feature extraction in the database images are analyzed,

including the original SIFT algorithm and SIFT with implicit filtering. Finally, methods

to improve the retrieval performance are studied. To encode more spatial information in

the searching step, the concept of geometry-preserving visual phrases is used [33]. Addi-

tionally, to provide a more precise ranking of the retrieved images, a geometric consistency

check (using RANSAC) is performed on the top-ranked images.



Chapter 1

Introduction

Localization plays an important role in a wide range of robotic applications, e.g. au-

tonomous navigation and obstacle avoidance, and also in people’s life. A possible ap-

proach to achieve localization is to use visual recognition. Localization based on visual

information has benefits in terms of cost and flexibility, e.g. localization systems like GPS

have limitations when used indoors. The principal component of image based localization

is the search for the most similar view in an image database representing the environment.

Visual recognition can be used for localization purposes by establishing correspondences

between a query image and a database of geo-referenced images constituting a topological

visual map. This approach has, however, several difficulties:

(i) The query image and the corresponding image in the database, although repre-

senting the same visual contents, can differ substantially in appearance (e.g. different

lightning, substantial change in viewpoint, etc).

(ii) Perceptual aliasing [13]. If the environment contains symmetric and/or repetitive

structures, e.g. doors, walls or corridors, then it leads to perceptual ambiguities.

(iii) Building the database of large scale environments can be troublesome, specially

if we want an exhaustive visual coverage of the environment.

Omnidirectional images became widespread in the last years and are often used in

1



robotics and surveillance enabling panoramic imaging. This kind of images have one

major advantage when compared to traditional imaging modalities: one image contains

a more complete description of the scene, since it is able to cover a wider area than

e.g. perspective images. This decreases the number of images in the database, ergo,

memory requirements and time to construct the database. Therefore, we propose to use

omnidirectional images to overcome problem (iii). Unfortunately, this option aggravates

the issue (i) due to the radial distortion present in these kind of images, which considerably

difficult their usage.

The objective of the thesis is to develop techniques for localization through visual

recognition using visual maps constituted by geo-referenced omnidirectional images. Given

a query image, acquired with a standard camera (e.g. cellphone), the localization is ob-

tained by searching and retrieving the most similar view in the database of images (see

Figure 1.1). The retrieval issue will be addressed, either by improving keypoint matching

between perspective and omnidirectional images, and working with a searching scheme

based on visual words.

Figure 1.1: Illustration of the visual recognition scheme.

1.1 Related Work

There are previous works on localization using omnidirectional images, for instance, A.

C. Murillo et al. [2] proposed to use SURF (Speeded-Up Robust Features) features [7]

integrated with a vision-based algorithm that allows both topological and metric local-

ization using omnidirectional images in a hierarchical approach. Also, in [3], Murillo et

al. studied the efficiency and potential of global gist descriptor [26] adapted to cata-

dioptric systems, and presented a new hierarchical approach for topological mapping and
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localization using omnidirectional images. The gist descriptor is a global descriptor of

an image representing the dominant spatial structures of the scene captured. The use

of global descriptors has disadvantages like lower invariant properties and less robustness

to occlusions, and advantages like more compactness in the representation of the image

allowing enhancements in storage and computation efficiency. In [3], they segment the

omnidirectional image in 4 symmetric parts, rotating them to a canonical orientation and

computing the gist descriptor in each part. In [16], it is described a method for spatial

representation, place recognition and self-localization using omnidirectional images. The

spatial representation is built up invariant signatures using an adaptation of Haar in-

variant integrals to the particular geometry of catadioptric omnidirectional sensors. It is

important to refer that all these works concern retrieval where both query and database

images are omnidirectional. However, this thesis is focused in retrieval where the query

is a perspective image.

When dealing with a large database of images, the problem of efficiently search for

a matching image can become difficult. In the literature, very good results were shown

demonstrating content based image retrieval using local scale-invariant features with var-

ious techniques of indexing and quantization (e.g. vocabulary trees) [25, 29]. In [25],

the local features are hierarchically quantized in a vocabulary tree, allowing a larger and

more discriminatory vocabulary to be used efficiently. The main objective is to build an

indexing mechanism that enables extremely efficient retrieval. In [28], a place recogni-

tion scheme based on omnidirectional images is employed for loop detection. The scheme

works with a visual word based approach. Once again, this work concerns retrieval using

omnidirectional images as query and in the database.

In order to search and retrieve the most similar image in the database, correspon-

dences between the query and the database images must be established. Image features

(also called keypoints) are points of interest that can be extracted from images, and are

well suited to be matched with features from other images of the same visual content.

Therefore, feature matching is relevant for the retrieval problem. There is a large vari-

ety of methods and algorithms for keypoint detection and matching. SIFT algorithm,

originally proposed by David Lowe [18], is one of the most robust approaches in the lit-

erature in terms of scale, rotation and minimal viewpoint invariance. Additionally, SIFT
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features are highly distinctive, which is appropriate for exact matching against a large

collection of features. Unfortunately, SIFT do not take into account the implicit geometry

of the mirrors in catadioptric systems, penalizing the performance of the image analysis

applications that directly use the omnidirectional images [10, 20] (SIFT framework was

designed to be used in images that obey the standard pin-hole model). Hansen et al. [11]

proposed an approach to extend SIFT for the case of wide angle images. They suggest

back-projecting the image on an unitary sphere and building a scale-space representation

that is the solution of the heat diffusion equation over the sphere, which is implemented

in the frequency domain using spherical harmonics. Such transformation corrects the

radial distortion and enables extra invariance to rotation. However, the approach re-

quires perfect camera calibration and is complex and computationally expensive. In [17],

Lourenço et al. showed that building the scale-space representation using an adaptive

Gaussian filter can do better for images with radial distortion. In this thesis, we will try

to extend this approach for paracatadioptric images. In [15], Luis Puig et al. present

an hybrid matching system, mixing images coming from central catadioptric systems and

conventional cameras. First, they unwarp the catadioptric images to polar coordinates

in order to obtain an initial matching. Then, a robust estimation gives an estimation of

the hybrid fundamental matrix and allows to detect wrong matches. Recently, Z. Arican

and P. Frossard proposed a method to compute scale invariant features in omnidirectional

images [4]. They developed a novel scale-invariant feature detection framework for omni-

directional images that can be mapped on the sphere. They also present a new descriptor

and feature matching solution for this kind of images. Additionally, is showed that the

proposed framework also permits to match features in images with different geometries.

1.2 Contributions

This thesis is an exploratory work with the objective of developing techniques for recogni-

tion using visual maps constituted by geo-referenced paracatadioptric images (topological

maps). The main challenge is to develop techniques for establishing correspondences be-

tween the query image taken with a standard camera (described by the pin-hole model)

and the paracatadioptric images. Therefore, different approaches for feature matching
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between perspective and paracatadioptric images are studied, including a new method for

detection and description of interest points that takes into account the geometry of these

images. Also, a searching scheme based on a vocabulary tree structure is implemented, to

efficiently search the visual map. The use of a vocabulary tree is important to improve the

efficiency when handling a database containing a large number of images. This approach

is complemented by using the spatial information of the features in the searching scheme,

based on the concept of geomerty-preserving visual phrases.

1.3 Organization of the Thesis

This thesis is organized as follows:

• In the next Chapter, feature detection and matching, using SIFT algorithm, is

performed under different conditions. Matching between perspective images and

rectified images from the catadioptric images is performed (the radial distortion is

corrected and the catadioptric images are approximated by a pin-hole projection).

Different types of rectification strategies will be used and compared in order to select

the most appropriate one.

• In Chapter 3, methods to improve the matching between standard images and cata-

dioptric/rectified images are explained, including an algorithm for feature detection

and description in paracatadioptric images. The objective is to build the scale-

space representation using an adaptive Gaussian filter following [17]. The algorithm

is compared against: (i) applying the original SIFT directly in catadioptric images,

(ii) in rectified images after radial distortion correction, (iii) with the unwarping

method proposed by Luis Puig et al. [15], where points in the catadioptric image

are converted to polar coordinates.

Finally, several methods for feature detection and matching between paracatadiop-

tric images will be studied and analyzed.

• In Chapter 4, the concept of vocabulary tree is studied. The main objective is to

develop a recognition scheme that scales efficiently to large databases of images. The

approach of David Nistér and Henrik Stewénius [25], where local region descriptors
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are hierarchically quantized in a vocabulary tree will be implemented and tested.

Different visual vocabularies and training data is used and compared in order to

find the most suitable searching scheme.

Additionally, an approach that can encode more spatial information in the searching

step and that is efficient to be applied in large databases is studied. This approach

[33] uses geometry-preserving visual phrases (GVP). A GVP is constituted by a

group of visual words in a particular spatial layout. This method can provide a

better initial ranking with more spatial information.

Finally, a post-processing step is added providing a more precise ranking of the

retrieved images through a geometric consistency check.

• In chapter 5, conclusions and an outlook about this work are reported.
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Chapter 2

Feature Matching in Mixtures of

Perspective and Paracatadioptric

Images (Hybrid)

Image features, henceforth called keypoints, are points of interest that can be identified

and described in images, and are well suitable to be matched with keypoints from other

images of the same scene/object captured under different acquisition conditions. There-

fore, these keypoints (ideally) need to be invariant to changes in illumination, scaling,

view point and rotation. Image features have a wide range of applications in Computer

Vision, like object or scene recognition, stereo correspondence, and motion tracking.

Matching between images from conventional cameras (perspective images) and central

catadioptric systems1 (e.g. paracatadioptric images) is problematic because the latter

have strong radial distortion. Other problems that can occur are great differences in

viewpoint and rotation between the images. Additionally, most keypoints detectors and

descriptors are designed for images that obey to the pin-hole model, which is not the case of

catadioptric images. Therefore, and because features play a major role in recognition, one

of the main objectives of this thesis is to explore techniques to improve feature matching

between perspective and catadioptric images.
1Central catadioptric systems provide a wide field of view (FOV) while keeping an unique projection

center.
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2.1 SIFT features

There is a large variety of different methods and algorithms for detecting and matching

keypoints across views [18,19,22]. Scale Invariant Features Transform (SIFT) algorithm,

proposed by David Lowe [18], is a well known method for identification and description of

distinctive invariant features that was designed to be stable and efficient. These features

are invariant to image scaling and rotation of the image plane, and partially invariant

to changes in illumination and camera viewpoint. Several studies showed that SIFT

algorithm is one of the most robust techniques for keypoint detection and description

[23, 24]. Due to this, SIFT is used in this thesis for the task of feature extraction and

description.

2.1.1 SIFT Pipeline

The SIFT algorithm can be divided in two main steps:

• Scale-space extrema detection:

The first step for feature detection is to identify keypoint locations and scales that

can be repeatably extracted under different views of an object. To be able to detect

keypoints invariant to scale changes and with high repeatability rates, a multi-scale

approach is needed. Therefore, in order to efficiently detect stable keypoint loca-

tions in scale-space, Lowe performs extrema detection in the difference-of-Gaussian

function, D(x, y, σ). The scale-space representation L(x, y, σ), with σ denoting the

scale, is obtained from the convolution of a variable-scale Gaussian, G(x, y, σ), with

an image, I(x, y):

L(x, y, σ) = I(x, y) ∗ G(x, y, σ) (2.1)

where ∗ is the convolution operation in x and y, and

G(x, y, σ) = 1
2πσ2 e

−x
2+y2

2σ2 (2.2)

Difference-of-Gaussian images can be computed as:
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D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (2.3)

where k is a multiplicative constant. The keypoints are detected by looking for

extrema, both in space and scale, in D(x, y, σ). The scale σ of detection is kept for

subsequent normalization of the description patch in order to assure scale invariance.

• Keypoint description:

The description is performed by considering a local image neighborhood around

the detected point. To each keypoint is assigned one or more orientations based on

local image gradient directions. Representing the keypoint descriptor relative to this

orientation allows to achieve invariance to image rotation. Then, a set of orientation

histograms are created on 4x4 pixel neighbors with 8 bins each. These histograms

are computed from gradient magnitude and orientation values of samples in a 16x16

region around the keypoint. The magnitudes are further weighted by a Gaussian

function.

2.1.2 Difficulties in establishing matches between perspective

images and paracatadioptric images

In order to evaluate the ability of the SIFT algorithm in matching perspective images with

catadioptric views we ran the standard Lowe implementation in Figure 2.1(a) and Figure

2.1(b). It can be observed that there are very few correct matches. This is not surprising

because a careful observation shows that, due to the specific image formation process in

the catadioptric system, the local patches around keypoints are reflected when compared

to the perspective. In order to solve the above issue we reflected the omnidirectional

view before applying standard SIFT. The improvements can be observed in Figure 2.1(c)

and Figure 2.1(d). The reflection improved the results, but further improvements can

be achieved by taking into account the image geometry. When using omnidirectional

images, their particular geometry causes partial scale changes in different regions of the

image (e.g. paracatadioptric images are sampled more densely in the outer parts than

in the center). Classical scale-invariant feature detection algorithms like SIFT do not
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take into account these particular characteristics of the images. In order to overcome this

problem, alternative approaches are presented.

(a) (b)

(c) (d)

Figure 2.1: Examples of feature matching between perspective and catadioptric images
using SIFT algorithm. In Figure 2.1(a) and Figure 2.1(b) we ran the standard Lowe
implementation. Figure 2.1(c) and Figure 2.1(d) show the improvements when the cata-
dioptric images are reflected before applying standard SIFT. The green lines represent
correct matches.

2.2 Data Set for evaluating matching performance

As stated above, this and the next chapter will discuss improvements in the SIFT match-

ing performance in the case of mixtures of images. The design must be driven by a careful

experimental evaluation. For this purpose, we collected 13 paracatadioptric images taken

in different places of the campus (indoor and outdoor), using the camera of Figure 2.2(a)

with a resolution of 2272x1704. Some of these images are shown in Figure 2.3(a). Per-

spectives of the same scene were acquired as shown in Figure 2.2(b). In order to test the

different types of invariance we divided them in 4 sets:

• Set A: Taken from the same position as the paracatadioptric image and with an

angle of approximately 45 degrees between the optical axis and the vertical plane

(Figure 2.3(b)).
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• Set B: Taken from the same position as the paracatadioptric image and with the

optical axis perpendicular to the vertical plane (Figure 2.3(c)).

• Set C: Taken from a position closer to the scene, to test strong differences in scale

(Figure 2.3(d)).

• Set D: Taken from different positions and view points relatively to the paracata-

dioptric images, to test strong viewpoint changes (Figure 2.3(e)).

The resolution of the perspective images is 1600x1200. All the images were acquired

with the auto-exposure and the auto-focus modes turned on. The camera settings were

maintained for the entire procedure.

(a) (b)

Figure 2.2: In 2.2(a) is shown the paracatadioptric system, constituted by a standard
camera (Sony Cyber-Shot DSC-S85 ) coupled with an orthographic lens and a parabolic
mirror. 2.2(b) shows a representative scheme for the construction of the sets of perspective
images.

2.2.1 Selection of correct matches based on geometric criteria

In order to do matching between a pair of images of the same scene, SIFT features are

first extracted from both images. Each feature of an image is individually compared to

the features of the other image. Correspondences are obtained based on the Euclidean

distance of their feature vectors. These correspondences are identified using a typical

11



(a) Omnidirec-
tional images

(b) Set A (c) Set B (d) Set C (e) Set D

Figure 2.3: Examples of paracatadioptric images and the corresponding perspective
images.

nearest neighbor algorithm that considers that a match is correct if the distance to the

first (d1) and the second (d2) nearest neighbors verifies the following:

d1

d2
≤ λ (2.4)

with λ a pre-defined threshold. It is important to refer that the initial feature correspon-

dence set have incorrect matches. In order to eliminate automatically the mismatches,

the Random Sample Consensus (RANSAC2) algorithm is applied. The maximum num-

ber of inliers (correct matches) is estimated using the code provided by Peter Kovesi [14].

RANSAC allows to perform the fitting of the fundamental matrix or the homography
2RANSAC is an iterative method to estimate parameters of a mathematical model from a set of

observed data which contains outliers.
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from an initial set of correspondences between images, in a robust manner. This allows to

analyze the total number of correct matches between views. The fundamental matrix and

homography describe the projective relation between two views of the same scene: the

first, through the epipolar geometry - a point in one view determines a line in the other,

which is the image of the ray through that point; and the second, through homography -

a point in one view determines a point in the other which is the image of the intersection

of the ray with a plane. The homography is used when the scene is planar, or there are

very small depth changes. The fundamental matrix is applied in the remaining cases.

2.3 Geometric Considerations for Image Warping

A possible solution to correct the radial distortion is to warp the paracatadioptric images,

approximating them by a pin-hole projection. In order to understand how to do the

warping, the catadioptric image formation process will be explained based on [5,6].

As referred in [5], the mapping between points in the 3D world and points in the

paracatadioptric image plane can be divided in three steps:

1. Visible points in the scene Xh (points in the world reference frame) are mapped

into projective rays/points x in the catadioptric system reference frame (the mirror

reference frame) centered in the effective view point (these projective rays join the

world point with the effective view point of the paracatadioptric system). The

transformation is linear and can be described by a 3 x 4 matrix P such that

x = PXh (2.5)

where P = Rc [ I | − C ] transforms points in the world reference frame to projective

rays in the catadioptric system reference frame (C represents the world origin co-

ordinates in the mirror reference frame, Rc is the rotation matrix between the two

coordinate systems and I is a 3 x 3 identity matrix).

2. The non-linear function h maps points x into points x̄ in a second oriented projective

plane.

h(x) = (x, y, z +
√
x2 + y2 + z2) (2.6)
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3. Projective points x̂ in the catadioptric image plane are obtained after a transforma-

tion described by Hc

x̂ = Kc


2p 0 0

0 2p 0

0 0 1


︸ ︷︷ ︸

Hc

x̄ (2.7)

where Hc depends on the mirror parameters (lactus rectum of the parabolic mirror

p) and camera intrinsic parameters Kc.

Figure 2.4 presents a schematic to understand this model with more detail. The

coordinate system with origin O in the effective view point is the mirror reference frame

and the sphere is centered in O and has unit radius. The oriented projective ray x

intersects the unit sphere in the point Xc. Considering a point Oc with coordinates

(0,0,−ξ) in the mirror reference frame, to each x corresponds an oriented projective ray

x̄ joining Oc with Xc. The non-linear mapping h() corresponds to projecting the scene

in the unit sphere surface and then re-projecting the points on the sphere into a plane

from a novel projection center (Oc). Points in the image plane x̂ are obtained after a

transformation Hc of 2D projective points x̄. For the parabolic case, ξ = 1.

Figure 2.4: The sphere model for central catadioptric imaging [5].
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2.3.1 Virtual Camera Planes

As explained before, to each point x̂ in the catadioptric image plane corresponds one

projective ray x. This projective ray can be obtained by x = h−1(H−1
c x̂), with

h−1(x) = (2xz, 2yz, z2 − x2 − y2)T (2.8)

Supposing that the projection center of a virtual perspective camera is coincident with

the effective viewpoint of the paracatadioptric system, the mathematical relation between

a point in the perspective image xp (rectified image) and a projective ray x is xp = K R x

where K is the matrix of intrinsic parameters, and R is the rotation matrix between the

reference frame attached to the virtual camera and the sensor coordinate system [5].

Considering R = I, the mapping between the virtual perspective image and the cata-

dioptric image can be described by

xp = Kh−1(H−1
c x̂) (2.9)

Points x̂ in the catadioptric image are mapped into points xp in the rectified image.

In practice, the rectified image is generated using the inverse of the mapping provided

in Equation 2.9. All points in the perspective image are mapped into points in the

catadioptric image, and the brightness of the points in the perspective image is computed

using bilinear interpolation. The equation used is then

x̂ = Hc h(K−1 xp) (2.10)

which corresponds to the inverse of Equation 2.9. This approach was also taken in the

other rectification methods tested in the thesis. In Figure 2.5(b) an example of a rectified

image using this method is showed. As it can be seen, the rectified images obtained using

this mapping have great differences in viewpoint and rotation in relation to the perspective

images of Figure 2.3. Therefore, to obtain rectified views close to the perspective images,

matrix R must also be considered:

xp = K Rh−1(H−1
c x̂) (2.11)

15



where R is the rotation matrix that allows for different ”rectified views”. Four different

rotation matrices corresponding to the orientations 0◦, 90◦, 180◦ and 270◦ were chosen,

obtaining four different perspective images from the paracatdioptric image. Figure 2.5(c)

shows the perspective images obtained from the paracatadioptric image of Figure 2.5(a)

using this method.

(a) Original image (b) Perspective (down view)

(c) Perspective (lateral views)

(d) Cylinder

Figure 2.5: Images obtained from the warping of paracatadioptric image of Figure 2.5(a).
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2.3.2 Cylindrical coordinates

Instead of back-projecting the omnidirectional images into planes to obtain virtual per-

spectives, we can map the original image into a cylinder and unfold it to obtain a

panorama. If x is the back-projected point

x = (x, y, z)T = h−1(H−1
c x̂) (2.12)

then the cylindrical coordinates are


θ = s · arctg

(
x

y

)
h = s · z√

x2 + y2

(2.13)

where s is a scaling factor (the radius of the cylinder) and has been set to s = f to minimize

the distortion (scaling) near the center of the image, where f is the focal length [30]. In

Figure 2.5(d) is showed the paracatadioptric image of Figure 2.5(a) after unwarping to

cylindrical coordinates.

2.3.3 Calibration Matrix

As seen before, in order to unwarp the catadioptric images, the calibration matrix Hc

(Equation 2.14) must be known. One way to obtain Hc is to use the CatPack toolbox [1]

developed by João Pedro Barreto which is a Matlab software package for the calibration

of Central Catadioptric Cameras using line images.

The matrix Hc can also be roughly estimated when the vertical FOV is known. As

explained before, to a point x̂ in the catadioptric image plane corresponds one projective

ray x, obtained with x = h−1(H−1
c x̂).

Hc =


fx 0 Cx

0 fy Cy

0 0 1

 (2.14)

If we assume unitary aspect ratio f = fx = fy, and the center (Cx, Cy) coincident with
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the center of the circular image region, it comes that

Hc =


f 0 0

0 f 0

0 0 1

 (2.15)

Replacing in the inverse function yields

x =


2x̂
f

2ŷ
f

1− 1
f2 (x̂2 + ŷ2)

 (2.16)

where x̂ and ŷ are the non-homogeneous coordinates of the points x̂ in the catadioptric

image. Considering now the point with coordinates (r, 0) in the image reference frame

(Figure 2.6(a)) where r corresponds to the maximum radius of the useful area of the

image, its corresponding projective ray can be described by:

x =


2r
f

0

1− r2

f2

 =


2rf
f2−r2

0

1


Therefore, from Figure 2.6(b), if the projective ray x corresponds to the point with coor-

dinates (r, 0), and θ corresponds to the vertical FOV, it follows

tg(θ) = 2rf
f 2 − r2

Assuming that θ is known and is such that π
2 < θ < π, we are able to estimate the focal

length:

f = r

tg(θ)
(
1−

√
1 + tg(θ)2

)
(2.17)

Using this expression, Hc can be computed assuming the field of view is known.

One simple practical procedure to estimate the vertical FOV θ of the paracatadioptric

system is shown in Figure 2.7 and it can be obtained from Equation 2.18 (this value

corresponds to half the real vertical FOV of the paracatadiotric image).
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(a)
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o

x

mirror

(b)

Figure 2.6: (a) Schematic of a catadioptric image with a point with coordinates (r, 0)
marked in red. (b) Representation of a projective ray x in the mirror reference frame.

d1

d2

d3

Paracatadioptric

system

P

Figure 2.7: Schematic of the procedure to estimate the vertical FOV of the paracata-
dioptric system. Suppose that the horizontal plane where the paracatadioptric system is
laying is a table and the vertical plane (where distances d2 and d3 are measured) is a wall.
d1 is the distance between the wall and the paracatadioptric system and d2 is the height of
the paracatadioptric system. Distance d3 can be measured by locating the highest point
P of the wall that is visible in the paracatadioptric image.

θ = 90o + arctan
(
d3

d1

)
= 90o + α (2.18)

2.3.4 Dealing with the Resolution

In order to coherently compare the different rectification methods, the resolutions of the

warped images must be consistent. Considering a catadioptric image, its useful area can

be limited by two circumferences with radius ri and re as represented in Figure 2.8. ri

and re are the minimum and maximum radius of the catadioptric image, respectively.
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re

ri

Figure 2.8: Maximum (re) and minimum (ri) radius of the catadioptric image, limiting
the useful area.

In this thesis, the values of ri and re were obtained using the Boundary Detector

developed in [21]. The resolution for the cylindrical images (Section 2.3.2) was computed

using Equations 2.19. These equations allow to obtain approximately the same number

of pixels in the areas with useful information for both catadioptric and cylindrical images.

The resolution obtained was 3890x1489. In the virtual camera planes method (Section

2.3.1), the rectified images have a FOV in the horizontal plane of 108o. Therefore, a

consistent resolution for this case can be obtained by dividing the horizontal resolution

of the cylindrical image by 3.33 (360o ÷ 108o) obtaining 1168x1489.

width = 2 (re − ri) height = 2π (re + re/2 )
2 (2.19)

2.4 Experimental Results

This section analyses feature matching between the different unwarped images (Section

2.3) from a set of 13 paracatadioptric images and the corresponding perspective images

(see Appendix A). For the case described in Section 2.3.1, the image corresponding to the

scene of the perspective image (same orientation) is used. Matching using a rectified image

with an offset of 45o to the correct orientation is also tested. Additionally, matching using

the original SIFT algorithm on the reflected paracatadioptric images was done (Sift). The

results are summarized in Table 2.1 and in Figure 2.9 (extensive results are reported in

Appendix B). Figure 2.10 shows the results of feature detection and matching between
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the rectified views from paracatadioptric image of Figure A.1(c) and the corresponding

perspective image of Set B.

Inliers/Matches
Sift VCP with offset VCP aligned Cylinder

Set A 97.31/305.23 (29.47%) 53/276 (19.03%) 93.77/319.15 (27.91%) 118.69/334.08 (31.70%)

Set B 131.77/389.77 (32.00%) 61.85/345.23 (17.33%) 122/393 (29.96%) 146.31/407.31 (34.43%)

Set C 62.62/463.38 (10.81%) 29/453.23 (6.08%) 52.23/478.92 (9.77%) 71.08/549.77 (11.64%)

Set D 43.23/260.85 (15.93%) 26.69/263.23 (9.83%) 45.92/273 (17.05%) 58.15/277.69 (19.55%)

Table 2.1: Results of feature matching between the rectified views (virtual camera planes
(VCP) with offset, VCP aligned and cylindrical images) from a set of 13 paracatadioptric
images and the corresponding perspective images. Matching results using the original
SIFT algorithm on the reflected paracatadioptric images are also presented (Sift). For
each case, the average values for the number of inliers (correct matches), total number of
matches and inliers percentage are represented. These values were computed from Table
B.1.
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Figure 2.9: Average values for the number of matches (a) and percentage of correct
matches (b) in the different cases obtained from Table B.1. In (a), the fraction of the
bars with lighter color correspond to the average number of correct matches.

From the results obtained, it can be concluded that the most suitable method is

rectifying the paracatadioptric images to cylindrical coordinates. It offers good results,

outperforming VCP aligned and VCP with offset in 73.1% and 92.3% of the cases, re-

spectively. Also, it outperforms Sift in 75% of the cases. The criteria for comparing the

different methods is the number of correct matches (inliers). The higher the number of

inliers the better the performance of a given method. In cases where the same number of
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(a) Sift

(b) VCP with offset (c) VCP aligned

(d) Cylinder

Figure 2.10: Results of feature matching between the rectified views (virtual camera
planes (VCP) with offset (2.10(b)), VCP aligned (2.10(c)) and cylindrical images (2.10(d))
from paracatadioptric image of Figure A.1(c) and the corresponding perspective image of
Set B. Results using the original SIFT algorithm on the reflected paracatadioptric images
are also presented (2.10(a)). The green lines represent correct matches.

inliers is obtained, the inliers percentage is used as performance measure. As it can be

seen, when the rotation of the rectified image does not match with the perspective image

(VCP with offset) the results are poor. Also, it is quite intriguing that SIFT applied over

the catadioptric images outperforms VCP aligned (with the exception of set D). This fact

is explained by the lower resolution obtained in the VCP images, when compared with

the cylinder and the catadioptric images. It was assumed a field-of-view of 108 degrees

for the perspectives, which resulted in a loss of detail in the useful region of the image.
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Additionally, analyzing Table B.1, the results obtained with Set C were inferior to

Set B in all cases. This occurred because the differences in scale between images from

Set C and the paracatadioptric/rectified images are greater than with Set B. The poorest

results occurred with set D. This is due to the great differences in viewpoint between

the perspective images from this set and the paracatadioptric/rectified images. Finally,

Figure 2.9 shows that both the average number of matches and percentage of correct

matches are higher in the cylinder method for all perspective images sets.
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Chapter 3

Improving Hybrid Image Matching

This chapter proposes several modifications to the original SIFT algorithm in order to

obtain better results of matching between perspective and paracatadioptric images (or

rectified views from the paracatadioptric images). Based on the experimental results,

a change in the initial scale for the Gaussian blurring in SIFT algorithm is proposed,

in order to eliminate higher frequency features in the perspective images, which were

generating false matches. As an additional unwarping alternative, the transformation to

polar coordinates used by Luis Puig et al. [15] is also explained and tested. Finally, a

new approach for image adaptive blurring that takes into account the geometry of the

paracatadioptric images is introduced based on [17]. This approach adds low complexity

to original SIFT and processes the images directly in the plane.

3.1 Resolution issues

SIFT algorithm detects features in the scale-space obtained by low-pass filtering using

a variable-scale Gaussian function. This allows to detect features at different scales.

It was observed that SIFT gives many false matches when matching perspective with

omnidirectional images. Most errors are due to matching a high resolution feature in the

perspective image with a low resolution feature in the omnidirectional image. Therefore,

a solution to overcome this problem is increasing the initial scale in the construction of

the scale-space of the SIFT algorithm for the perspective images. The initial octaves

are no longer considered (higher frequencies), leading to an improving of the matching.
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The number of octaves to neglect can be obtained experimentally. Latter in this chapter

results will be presented showing the improvements in feature matching due to this change

in the initial scale of the SIFT algorithm.

3.2 Transformation to Polar Coordinates (Polar)

Another approach to do matching between images coming from central catadioptric sys-

tems and conventional cameras was developed by Luis Puig et al. [15]. As showed before, if

SIFT features extracted in an omnidirectional image are matched to features extracted in

a perspective image, the results are poor. In [15], the omnidirectional images are warped

using a transformation to polar coordinates (see Equations 3.1). While in Section 2.3.2

(transformation to cylindrical coordinates), the calibration matrix must be known, this

transformation does not require camera calibration. For image matching, they first ex-

tract SIFT features from the perspective and warped images to establish pairs of putative

corresponding points between the views.

θ = arctg
(
ŷ

x̂

)
ρ =
√
x̂2 + ŷ2 (3.1)

3.3 Implicit filtering (CylSIFT)

This section introduces a new approach for image adaptive blurring that takes into account

the geometry of the paracatadioptric images.

3.3.1 Keypoint Detection

The objective here is to generate a scale-space representation equivalent to the one that

would be obtained by filtering the paracatadioptric image in the absence of distortion.

To achieve such goal and based on [17], the distortion correction will be performed in

an implicit manner, by adapting the convolution kernel that is used directly over the

paracatadioptric image.

Equations 2.12 and 2.13 describe the mapping from the paracatadioptric image to a
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”rectified view” in cylindrical coordinates. Considering the mapping function described

by Equation 2.16, Equations 2.13 become:

fu(x, y) = f · arctg
(
x

y

)
(3.2)

fv(x, y) = f

2 ·
(

f√
x2 + y2 −

√
x2 + y2

f

)
(3.3)

Let Gσ be a bi-dimensional Gaussian function with standard deviation σ, Î the undis-

torted image, and I the distorted image. The value of the blurred undistorted image L̂σ

at pixel (s, t) is given by

L̂σ(s, t) =
+∞∑

u=−∞

+∞∑
v=−∞

Î(u, v) Gσ(s− u, t− v) (3.4)

This is the convolution that SIFT performs for the case of the image being rectified for

correcting the distortion. However, and since the objective is to work directly with the

distorted image I, the undistorted image Î can be replaced by its distorted counterpart,

taking into account the mapping functions 3.2 and 3.3. Considering that

Î(u, v) = I(fu(x, y), fv(x, y)), (3.5)

and changing the variables (u, v) by (x, y) in Equation (3.4), it arises:

L̂σ(s, t) =

1√
−ξ∑

x=− 1√
−ξ

1√
−ξ∑

y=− 1√
−ξ

I(x, y) Gσ(s− fu (x, y),

t− fv (x, y))

(3.6)

Since Lσ is the distorted version of the smoothed image L̂σ, same reasoning is applied
changing the undistorted coordinates (s, t) by their distorted counterparts (h, k). It follows
that

Lσ(h, k) =

1√
−ξ∑

x=− 1√
−ξ

1√
−ξ∑

y=− 1√
−ξ

I(x, y) Gσ(fu (h, k)− fu (x, y),

fv (h, k)− fv (x, y)),

(3.7)
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Then, using Equation 3.2 and Equation 3.3 in Equation 3.7 and after some algebraic
manipulation one can obtain:

Lσ(h, k) =

1√
−ξ∑

x=− 1√
−ξ

1√
−ξ∑

y=− 1√
−ξ

I(x, y) Gσ
(
f · arctan

(h− cx
k − cy

)
− f · arctan

(x− cx
y − cy

)
,

f

2
( f
√
rhk
−
√
rhk
f
− f
√
rxy

+
√
rxy

f

)) (3.8)

where rhk = (h− cx)2 + (k − cy)2 and rxy = (x− cx)2 + (y − cy)2. The focal length f is

obtained with Equation 2.17. Note that now the smoothing kernel depends on (x, y) and

(h, k) and it is no longer a straightforward Gaussian convolution. For each radius, the

adaptive blurring kernel has the same shape, but with different orientations (see Figure

3.1).

The standard two-dimensional Gaussian G(·;σ) is a rank 1 matrix that can be written

as the outer product of two one-dimensional Gaussian of the the same standard deviation

σ:

G(·;σ) = gy(·;σ)gx(·;σ)

where gx(·;σ) a row vector and gy(·;σ) is a column vector. Due to the separability

property of the Gaussian filter, the standard scale-space image representation can be

computed in a computation affordable manner by:

I ∗ G(·;σ) = gx(·;σ) ∗ (I ∗ gy(·;σ))

Instead of computing the cylindrical Gaussian for each image pixel position, we approxi-

mate the Equation 3.8 by the best rank 1 Gaussian filter obtained through Singular Value

Decomposition. [
U S V

]
= SVD(Gσ) (3.9)

Now we get the horizontal and vertical vectors from the first columns of U and V,

gv = U(:, 1)× S(1, 1) gh = VT(:, 1)× S(1, 1) (3.10)

that permit to obtain the rank 1 Gaussian filter that better approximates Equation 3.8
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Figure 3.1: Cylindrical Gaussian filters decomposition. The filters support region in-
creases from the center towards the periphery to adapt to the non-uniform sampling of
the catadioptric images. For each image radius, the gaussian filters have the same shape,
but different orientations.

by:

Gσ,rank=1 = gv ∗ gh; (3.11)

The computational advantages of this decomposition are twofold:

• For every image radius the Gaussian filter is separable, which permits a considerable

speedup of the convolution process;

• A filter bank is computed off-line and then is loaded into memory. The same filter

bank is used for all images of the dataset.

3.3.2 Keypoint Description

In order to minimize the radial distortion effect, the Gaussian weighting function used

to assign the gradient magnitudes to the descriptor, is changed. In the standard SIFT

descriptor the gradient weighting is proportional to the scale of selection of the keypoints.

However, the distortion effect becomes more pronounced near the keypoint patch pe-

riphery, precluding successful matches to be established. To compensate this effect, we

propose a simple yet effective way of dealing with the non-linear changes on the gradient

magnitudes. Instead of using the scale of selection of the keypoints, we change the Gaus-

sian weighting function to be 1
2σ, being sigma the scale of selection of the keypoints. This

factor was experimentally selected and provides the best results.
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3.4 Performance evaluation

In this section, different methods for feature extraction and description for paracatadiop-

tric images are evaluated. In this hybrid matching comparison, SIFT is used to extract

features in the perspective images. For all methods, the initial scale for the construction of

the scale-space in SIFT algorithm is doubled (from 1.6 to 3.2) for the perspective images.

The difference relies on the method used to extract features in the catadioptric/rectified

views. The following approaches are considered:

• Application of SIFT over paracatadioptric images with the reflection of the para-

catadioptric images (Sift-LF).

• Application of SIFT over the rectified paracatadioptric images to polar coordinates,

as explained in Section 3.2 (Polar).

• Application of SIFT over the rectified paracatadioptric images to cylindrical coor-

dinates (Cylinder-LF).

• Application of SIFT with implicit filtering (CylSIFT ) over the paracatadioptric

images, as explained in Section 3.3.

The same sets of images as in Chapter 2 are used. Matching results are summarized

in Table 3.1 and in Figure 3.2 (extensive results are reported in Appendix B). Figure

3.3 shows the results of feature matching between the paracatadioptric/rectified image of

Figure A.1(k) and the corresponding perspective image of set B.

Inliers/Matches
Sift-LF Polar Cylinder-LF CylSIFT

Set A 105.46/202.54 (50.09%) 108.54/197.38 (52.08%) 128.38/217.31 (56.45%) 138.15/203.77 (65.68%)

Set B 141/253.31 (54.24%) 138.54/248.54 (54.42%) 158.08/262.46 (59.35%) 188.62/271.92 (70.55%)

Set C 89.62/247.92 (34.22%) 90/242 (35.63%) 105.23/260 (38.53%) 126.92/229.62 (51.68%)

Set D 42.31/145.69 (27.63%) 47.77/172.62 (29.70%) 56.46/174.23 (34.32%) 65.69/123.08 (48.22%)

Table 3.1: Results of feature matching between the perspective and the paracatadiop-
tric/rectified images using different approaches (Sift-LF, Polar, Cylinder-LF and Cyl-
SIFT ). For each case, the average values for the number of inliers (correct matches), total
number of matches and inliers percentage are represented. Detailed results are reported
in Appendix B.

From the results obtained the following conclusions can be taken:
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Figure 3.2: Average values for the number of matches (a), percentage of correct matches
(b) and number of detections (c) in the different cases obtained from Tables B.3 and B.4.
In (a), the fraction of the bars with lighter color correspond to the average number of
correct matches.

• Doubling the initial scale in the construction of the scale-space for the perspective

images, leaded to an improvement of the performance of SIFT algorithm. It can be

seen that in 80.8% of the cases, Cylinder-LF outperformed Cylinder, and Sift was

outperformed in 88.5% of the cases by Sift-LF. Additionally, there was a significant

increase in the inliers percentage.

• Cylinder-LF outperformed Polar in 88.5% of the cases. The Polar method has the

advantage of not requiring camera calibration at all. As the rectification to cylindri-

cal coordinates uses the calibration matrix and the non-linear function characteristic
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(a) Sift-LF (b) CylSIFT

(c) Polar

(d) Cylinder-LF

Figure 3.3: Results of feature matching between the paracatadioptric/rectified image of
Figure A.1(k) and the corresponding perspective image of set B using different approaches
(Sift-LF, Polar, Cylinder-LF and CylSIFT ). The green lines represent correct matches.

of the mirror, the mapping is better justifying the results obtained.

• Finally, CylSIFT provided the best results outperforming Sift-LF, Polar and Cylinder-

LF in 100%, 96.2% and 84.6% of the cases, respectively. Using CylSIFT, the scale-

space representation of the image is obtained using adaptive filtering that com-

pensates the distortion. This approach avoids the artifacts arising from the signal

reconstruction process [9]. Additionally, it can be seen from Figure 3.2 that CylSIFT

has the best results in terms of average number of correct matches and percentage

of correct matches.
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3.5 Matching Between Paracatadioptric Images

Up to now, a new method for feature detection and matching in hybrid systems was

explained and compared with other competing approaches, outperforming them. As an

additional result, a brief study of feature detection and matching between paracatadioptric

images is performed. Once again, a set of approaches is analyzed and compared:

• Application of SIFT over the paracatadioptric images (Sift).

• Application of SIFT over the rectified paracatadioptric images to polar coordinates

(Polar).

• Application of SIFT over the rectified paracatadioptric images to cylindrical coor-

dinates (Cylinder).

• Application of SIFT with implicit filtering (CylSIFT ) over the paracatadioptric

images, as described in Section 3.3.

• Application of SIFT with implicit filtering over the paracatadioptric images, but

in this case with a different mapping function (cataSIFT ) as described in Section

3.5.1.

3.5.1 cataSIFT

As in Section 3.3, the objective is also to generate a scale-space representation equivalent

to the one that would be obtained by filtering the paracatadioptric image in the absence of

distortion. Instead of using the mapping from the paracatadioptric image to cylindrical

coordinates, the mapping function described by Equation 2.9 (mapping to a ”rectified

view” similar to Figure 2.5(b)) is used to implicitly adapt the Gaussian filters. After

some manipulation one can obtain:

xp =


2x

2y

1− 1
f2 (x2 + y2)

 (3.12)

and, following the same philosophy as in Section 3.3:
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Lσ(h, k) =

1√
−ξ∑

x=− 1√
−ξ

1√
−ξ∑

y=− 1√
−ξ

I(x, y) Gσ
( 2

1− γr2 (h− x) ,

2
1− γr2 (k − y)

) (3.13)

where γ = 1
f2 and r = √rhk.

3.5.2 Results obtained

In order to compare the different methods, a set of 6 pairs of paracatadioptric images

is used (see Appendix A). The results of matching between the paracatadioptric images

are shown in Table 3.2 and in Figure 3.4. In Figure 3.5 are depicted the results of using

Sift and cataSIFT in 2 pairs of paracatadioptric images. From the results it can be seen

that cataSIFT outperforms all the other approaches (highest number and percentage of

correct matches), being the best solution for matching paracatadioptric images.

Inliers/Matches
Sift Polar Cylinder CylSIFT cataSIFT

Par 1 133/420 (31.67%) 171/643 (26.59%) 175/676 (25.89%) 215/469 (45.84%) 286/622 (45.98%)

Par 2 147/528 (27.84%) 153/707 (21.64%) 151/841 (17.95%) 258/590 (43.73%) 413/861 (47.97%)

Par 3 196/539 (36.36%) 250/953 (26.23%) 259/1063 (24.37%) 300/630 (47.62%) 328/672 (48.81%)

Par 4 128/494 (25.91%) 137/574 (23.87%) 142/617 (23.01%) 167/399 (41.85%) 255/508 (50.20%)

Par 5 41/386 (10.62%) 85/507 (16.77%) 78/528 (14.77%) 72/354 (20.34%) 94/414 (22.71%)

Par 6 163/458 (35.59%) 113/673 (16.79%) 159/684 (23.25%) 199/500 (39.80%) 297/590 (50.34%)

Table 3.2: Results of feature matching in a set of pairs of paracatadioptric images (see
Appendix A) using different approaches (Sift, Polar, Cylinder, CylSIFT and cataSIFT ).
For each case, the number of inliers (correct matches), total number of matches and inliers
percentage is represented. The values in bold correspond to the best results for each case.
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Figure 3.4: Average values for the number of matches (a) and percentage of correct
matches (b) in the different cases obtained from Table 3.2. In (a), the fraction of the bars
with lighter color correspond to the average number of correct matches.

(a) Par 2 - Sift (b) Par 2 - cataSIFT

(c) Par 4 - Sift (d) Par 4 - cataSIFT

Figure 3.5: Examples of feature matching between paracatadioptric images. The results
of Sift and cataSIFT in pairs 2 and 4 are shown. The green lines represent correct matches.
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Chapter 4

Visual Place Recognition

Visual place recognition has been an active topic of research in the computer vision com-

munity [2, 3, 8, 16, 28]. It is a hard problem due to appearance variabilities arising from

common image transformations, like viewpoint and scale changes. The main objective

of the thesis is to perform image based localization using a database of omnidirectional

images. Given an image taken from a standard camera (e.g. mobile phone), the goal is

to retrieve the most similar image in the database. In the literature, very good results

were shown demonstrating content based image retrieval using local scale-invariant fea-

tures (e.g. SIFT) with various techniques of indexing and quantization (e.g. vocabulary

trees) [25, 29]. In this chapter, the concept of vocabulary tree [25, 29] is explained, and a

recognition scheme that scales efficiently to large databases of images is implemented and

tested.

4.1 Recognition Using a Vocabulary of Visual Words

Sivic and Zisserman [29] perform retrieval of frames from videos using a text retrieval

approach. The descriptors extracted from a set of images (e.g. using SIFT) are quan-

tized into clusters, also called visual words. These clusters are computed using k-means

algorithm performed on the descriptor vectors defining a vocabulary tree. k-means is a

method of cluster analysis which aims to partition the observations into a pre-defined

number of k clusters in which each observation is assigned to the cluster with the nearest

mean.
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4.1.1 Hierarchical k-means Clustering

In [25], a vocabulary tree is built using hierarchical k-means clustering. For this case, k

defines the branch factor of the tree. The construction of the tree initiates by applying

the k-means algorithm on the training data (image descriptors). This initial step defines k

clusters where to each cluster are associated the corresponding descriptor vectors closest

to its center. Then, the same process is applied recursively to each cluster, splitting it into

k new groups. The vocabulary tree is built with a number of levels L, and each division

into k new clusters is only defined by the distribution of the descriptor vectors that belong

to the parent cluster (see Figure 4.1). The number of visual words in the vocabulary tree

is then kL. As explained in [25], building the visual vocabulary hierarchically allows to

have a more efficient searching procedure and to reduce the computational cost when

increasing the size of the vocabulary. In the on-line phase, at each level of the tree, the

descriptor vectors are compared to the k cluster centers to choose the closest one. This

is a matter of performing kL dot products (using only k-means, it would be necessary to

perform kL dot products).

Usually, increasing the size of the vocabulary lead to retrieval improvements. Al-

though, there is always a trade-off between distinctiveness (small quantization cells and

a larger vocabulary tree) and repeatability (large quantization cells).

Figure 4.1: Illustration of the process of building an hierarchical vocabulary tree. The
quantization is defined at each level by k centers (in this case k = 3) and their Voronoi
regions [25].

4.1.2 Recognition Scheme

Based on this visual vocabulary, the main idea of the recognition scheme is to measure the

similarity between the visual words in a query image and in the database images. This is
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achieved by establishing a score for each database image, retrieving the ones with higher

scores. In first place, local features are extracted from the database images. Then, each

feature is quantized in the vocabulary tree, where is assigned the corresponding visual

word. Therefore, each image is represented by a list of visual words instead of a set of

128-dimensional descriptor vectors which is a much more compact representation. The

list of visual words from each image form a document vector whose dimension correspond

to the number of visual words in the vocabulary tree (see Figure 4.2). Additionally, a

weight is assigned to each visual word based on a Term Frequency - Inverse Document

Frequency (TF-IDF) scheme [25],

wi = ln N

Ni

(4.1)

where N is the total number of images in the database and Ni the number of images in

the database that contain word i. With this weighting scheme, visual words that occur

in many images of the database are less discriminative and, therefore, have a low weight

while visual words that occur more rarely have an higher weight. Ergo, the document

vectors can be constructed by stacking the following entries

qi = niwi (4.2)

di = miwi (4.3)

where ni and mi are the number of keypoints in the query and database images, respec-

tively, corresponding to word i. Finally, a scoring system is built based on the normalized

difference between the query and the database vectors [25]:

s(q, d) = ‖ q

‖q‖
− d

‖d‖
‖ (4.4)

4.1.3 Scoring System

In order to have an efficient scoring system, an inverted file is used. The inverted file

has one entry for each word of the visual vocabulary. Each entry has the ids of the

database images that contain the word and the corresponding term frequency. The scoring
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Figure 4.2: Illustration of the process of building the histograms of visual words for the
database images [32].

scheme using the inverted file can be interpreted as follows [12]: Initially the scores of the

database images are initialized to 0. For each visual word i in the query image, the ids of

the database images containing that word are retrieved from the inverted file. For each

image id j retrieved, its score is incremented using Equation 4.5, where mi(j) is the term

frequency of word i in image j. After processing all the visual words in the query image,

the scores are normalized in order to obtain the final ranking. This scoring system gives

the dot products between the document vectors of the query and database images.

score(j) + = mi(j) · wi (4.5)
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4.2 Experimental Results

The searching scheme was tested by performing queries on a database of 118 paracata-

dioptric images (CATAset). Perspective images divided in sets A, B, C and D as described

in Section 2.2, were used as query images (451 query images). The retrieval performance

was evaluated for varying amounts of training data (for the visual vocabulary construc-

tion), and for different vocabulary sizes. The keypoint extraction in the query images is

done using SIFT algorithm with the initial scale doubled (see Section 3.1).

Figure 4.3 shows the retrieval results obtained (extensive results are reported in Table

4.1). The global retrieval performance is measured through the percentage of cases where

the correct database image is retrieved in first place (Figure 4.3(a)), in the TOP 3 (Figure

4.3(b)) and in the TOP 5 (Figure 4.3(c)) of the retrieved images. Two different data

sets for building the visual vocabulary were used: PER10200 with 10200 perspective

images (used in [25]) and MIX900 with 591 perspective images from PER10200 and 309

paracatadioptric images, different from the database images. The vocabulary sizes tested

were: 105, 106 and 116. Also, for keypoint extraction in the database images, the SIFT

(MIX900-SIFT and PER10200-SIFT) and CylSIFT (MIX900-CylSIFT and PER10200-

CylSIFT) algorithms are compared.

From Figure 4.3 it can be oberserved that the most suitable vocabulary size is 106.

Figure 4.3(a), in some cases shows a small improvement of the correct retrieval percent-

age when using 116 visual words relatively to 106. However, in addition to a greater

computational effort, there is a reduction in the TOP 3 and TOP 5 retrieval for all the

cases. In general, the retrieval performance increases with the number of visual words.

Although, by using a vocabulary too large, the variability and noise in the descriptor

vectors frequently move them between different quantization cells. There is a trade-off

between distinctiveness (larger vocabulary) and repeatability (smaller vocabulary).

About the training data, it seems that by using mixtures of perspective and omnidi-

rectional images we are able to create vocabularies from less images that are almost as

efficient as vocabularies from a larger number of perspective images. However, to be sure

about this, we should perform further experiments.

As it can be seen, the best retrieval percentage was 57.2% (PER10200-SIFT, 106
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Figure 4.3: Retrieval results using different visual vocabularies and keypoints extraction
algorithms.

visual words, TOP 5). Obviously, these retrieval percentages depend on the query images

used. In the tests, 239 of the 451 query images are from sets C and D, which originate

few matched visual words due to their high difficulty level, resulting in lower retrieval

percentages.

To further conclusions, it is important to understand in which circumstances a correct

match between two images can, or cannot, lead to a common visual word. In the retrieval

tests performed, it was observed that the number of visual words in common between a

query image and the corresponding database image is lower than the number of correct

matches between these images. Therefore, there are correct matches that give raise to

different visual words. This fact is due to the euclidean distance between the descriptor

vectors. While in the previous chapters, two descriptors were considered as a correct
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Retrieval Results
Voc. size 1 3 5

105 25.3 38.8 47.7
MIX900-SIFT 106 35.3 52.1 57.2

116 36.4 46.8 53.0
105 27.3 41.5 48.6

PER10200-SIFT 106 38.4 52.6 57.2
116 38.8 52.6 57.0
105 17.3 32.4 41.2

MIX900-CylSIFT 106 29.9 45.7 51.9
116 31.0 45.2 51.7
105 21.3 37.3 43.9

PER10200-CylSIFT 106 34.4 49.7 55.9
116 31.7 46.3 53.9

Table 4.1: Retrieval results using different visual vocabularies and keypoints extraction
algorithms. The columns indicate: Voc. size - number of visual words; 1 - percentage of
cases with correct retrieval; 3 - percentage of cases where the correct database image was
retrieved in the TOP 3 of the retrieved images; 5 - percentage of cases where the correct
database image was retrieved in the TOP 5 of the retrieved images.

match using the ratio between the distances to the first and second nearest neighbor, in

the vocabulary tree, two descriptors belong to the same visual word if they are close to

the same centroid. Therefore, the smaller the euclidean distance between two descriptors,

the greater the probability of belonging to the same visual word. Several cases were

carefully studied and, as expected, in general the euclidean distance between matches

corresponding to the same visual word is lower than the distance between matches with

different visual words.

The results of Figure 4.3 show that the scoring methods using SIFT are slightly better

than the ones using CylSIFT. To understand these results, the cases where the correct

database image is retrieved in first place were analyzed when both methods retrieved

correctly, and when one of them did not. Figure 4.4 shows the results obtained. As

it can be seen, there is a relevant number of cases where the retrieval scheme using

CylSIFT fails and the one using SIFT does not (second bar). Therefore, these cases

were carefully analyzed and it was observed (see Table 4.2) that, the average number

of common words between the query and the correct database image was higher when

using SIFT, which explain the results obtained. However, the number of correct matches
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Figure 4.4: Number of cases where the correct database image is retrieved in first
place by: both PER10200-SIFT and PER10200-CylSIFT; only PER10200-SIFT; and only
PER10200-CylSIFT.

was higher when using CylSIFT, which was the expected due to the results obtained in

Chapter 3. Therefore, for these cases, an higher number of correct matches did not led to

an higher number of common visual words. This occurred because the average distances

between the correct matches using SIFT were lower than the ones using CylSIFT.

Sift CylSIFT
Correct matches VW Correct matches VW-correct VW-retrieved

47.9 9.9 60.1 7.8 12.2

Table 4.2: Average number of correct matches and common visual words between the
query and the correct database image, for the cases where the retrieval scheme using
CylSIFT fails and the one using SIFT does not. For CylSIFT, the average number of
common visual words between the query and the retrieved image, is also presented (VW-
retrieved).

4.3 Improving Retrieval Performance:

Geometry-Preserving Visual Phrases

In most state-of-the-art retrieval technologies, the database images are represented as

histograms of visual words. As explained in the previous sections, in the searching step

similar images are retrieved from the database and a ranking is generated. To establish
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this ranking, an inverted file structure is used in order to facilitate fast access to images

with common words. Unfortunately, this model does not take into account spatial in-

formation. In [33], Yimeng Zhang et al. propose to encode spatial information in the

searching step by using geometry-preserving visual phrases (GVP). A GVP is constituted

by a group of visual words in a particular spatial layout. This method can provide an

initial ranking with more spatial information.

The objective of using GVP is to take into account the spatial relations between visual

words. As referred in [33], a set of k visual words in a certain spatial layout define a GVP

of length k. Figure 4.5 illustrates how the co-occurring GVP in two images are identified.

For each pair of the same word in the images, the offset is computed by subtracting their

corresponding locations. As it can be seen, the image space is quantized into cells to

tolerate shape deformation and to build an efficient voting scheme. After computing the

offset, a vote is generated on the offset space. k votes in the same offset cell correspond

to a co-occurring GVP of length k. In Figure 4.5, words A,B and C correspond to a

co-occurring GVP of length 3.

Therefore, rather than keep one entry for each image to accumulate the scores, M cells

are kept for each image, where M is the number of possible offsets. The voting procedure

to obtain the similarity scores of length k-GVP is described as follows:

1. M cells for each database image are initialized to 0. Each cell represents an offset

value.

2. For each word j in the query image, the ids and locations of the occurrences of j

in the database images are retrieved through the inverted file. For each retrieved

word occurrence d in image i, the offset between j and d is computed and the

corresponding offset cell of image i is incremented [33]:

Si,xd−xj ,yd−yj + = 1 (4.6)

where (xd, yd) and (xj, yj) are the locations, in the offset space, of the words d and

j, respectively. Si are the scores of the database image i. As mentioned in [33], in

addition to the number of words Si,m in each offset cell m, it is necessary to keep

the sum of the weights of these words Di,m:
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Di,xd−xj ,yd−yj + = wj (4.7)

3. The final scores for the database images are computed, considering just the offset

cells m with value equal or greater than k (number of co-occurring GVP of length

k, with weighting):

Ŝi =
∑
m>=k

Di,m

Si,m − 1

k − 1

 (4.8)

4. Finally, the scores for the database images are normalized:

Ŝ∗i = Ŝi∑
i Ŝi

(4.9)

Figure 4.5: Identification of the co-occurring GVP in a pair of images [33].

It is important to refer that in [33], Yimeng Zhang et al. work with perspective

images only. In order to maintain coherence between the coordinates of the query and the

database images, the locations of the words in the paracatadioptric images are converted

to polar coordinates (see Equation 3.1). This is done before the computation of the spatial

offsets. It was observed experimentally that using this conversion improves the retrieval
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results.

4.3.1 Experimental results

This approach is evaluated using the retrieval schemes PER10200-SIFT and PER10200-

CylSIFT with 106 visual words. As in [33], the image space is quantized by a 10x10 matrix

constituting the offset space. Using an higher dimension leads to a more rigorous spatial

modeling, although, more memory and computational effort would be necessary. For the

voting procedure, GVP of length 2 (k = 2) are used. As showed in [33], length 2 is the

best among the lengths from 1 to 5.

The results of Table 4.3 show an improvement in the retrieval scheme using CylSIFT

relatively to the results obtained in Section 4.2. This means that the words in the database

are spatially consistent when compared with SIFT (SIFT had improvements only in the

correct retrieval percentage). It can be concluded that by using the spatial information of

the words when using CylSIFT, the results are improved. Analyzing Table 4.3, the best

retrieval results are obtained when using CylSIFT with GVP.

BoV GVP Variation
1 3 5 1 3 5 1 3 5

SIFT 38.4 52.6 57.2 41.0 51.9 55.7 +2.6 -0.7 -1.5
CylSIFT 34.4 49.7 55.9 41.5 57.4 61.4 +7.1 +7.7 +5.5

Table 4.3: Retrieval results using GVP in the retrieval schemes PER10200-SIFT and
PER10200-CylSIFT with 106 visual words. BoV corresponds to the results obtained in
Section 4.2. The columns indicate: 1 - percentage of cases with correct retrieval; 3 -
percentage of cases where the correct database image was retrieved in the TOP 3 of the
retrieved images; 5 - percentage of cases where the correct database image was retrieved
in the TOP 5 of the retrieved images.

4.4 Geometric Consistency Check

In order to provide a more precise ranking of the retrieved images, a re-ranking of the

top-retrieved images can be made [27]. This post-processing step, consists on a geometric

consistency check performed with RANSAC. Using the extracted keypoint descriptors,

matches between the query and the top-retrieved images are established. Then, RANSAC
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is used to robustly fit an homography between the views. The re-ranking is done based

on the number of correct matches obtained. This final geometric consistency check was

performed over the top 5 and top 10 retrieved images. Table 4.4 and Table 4.5 show the

results obtained.

Re-ranking Results
No. images 1 3 5

5 58.5 61.4 61.4
10 63.2 66.7 67.6

Table 4.4: Retrieval results after the final consistency check in the best retrieval scheme.
From left to right, the columns indicate: No. images - Number of top-ranked images
used for re-ranking; 1 - percentage of cases with correct retrieval; 3 - percentage of cases
where the correct database image was retrieved in the TOP 3 of the retrieved images; 5 -
percentage of cases where the correct database image was retrieved in the TOP 5 of the
retrieved images.

Retrieval % - Best Searching Scheme
1 3 5

Set A 72.6 76.4 76.4
Set B 82.1 84.0 84.0
Set C 61.3 62.3 63.2
Set D 42.1 48.9 51.1

Table 4.5: Retrieval results after the final consistency check for the top 10 retrieved
images, by the best retrieval scheme. This table shows the individual retrieval percentage
for the different perspective images sets. From left to right, the columns indicate: 1
- percentage of cases with correct retrieval; 3 - percentage of cases where the correct
database image was retrieved in the TOP 3 of the retrieved images; 5 - percentage of
cases where the correct database image was retrieved in the TOP 5 of the retrieved
images.

It was observed that using the geometric consistency check leads to a boost of perfor-

mance. To resume, in this scheme, the visual vocabulary is built by feature extraction

using SIFT algorithm, over 10200 perspective images (data set PER10200). The vocab-

ulary is based on a hierarchical tree structure and is constituted by 106 visual words.

For feature extraction on the database images, CylSIFT algorithm is used. The scoring

system is based on geometry-preserving visual phrases. Figure 4.6 shows the retrieval

performance of this scheme, comparing the typical bag of visual words scoring system
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(Section 4.1.3), GVP and also GVP with re-ranking of the top 5 and top 10 retrieved im-

ages. Figure 4.7 shows examples of cases where there is retrieval of the correct database

image.
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Figure 4.6: Retrieval performance of the best searching scheme. The red, blue and black
curves show the percentage of cases with correct retrieval, percentage of cases where the
correct database image was retrieved in the TOP 3, and in the TOP 5 of the retrieved
images, respectively. Different methods are compared: the typical bag of visual words
scoring system (Section 4.1.3), GVP and also GVP with re-ranking of the top 5 and top
10 retrieved images.

Figure 4.7: Examples of queries where there is retrieval of the correct database image.

The main factors that affect the retrieval performance are:
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• Low number of matches between the query and the corresponding database image

(see Figure 4.8(a)).

• Perceptual aliasing. Similar structures/scenes in the environment affect the recog-

nition scheme by confusing it (see Figure 4.8(b)).

• Scale invariant feature detection and description that cannot cope with strong view-

point and/or scale changes (see Figure 4.8(c)).

(a) (b)

(c)

Figure 4.8: Examples of queries where there is retrieval of the incorrect database image.
The main reasons for incorrect retrieval are: low number of matches (a); perceptual
aliasing (b); and strong viewpoint/scale changes (c).

Additionally, Table 4.5 shows that the percentage of correct retrieval for images from

sets C and D are much lower than with sets A and B. As referred before, sets C and D,
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in general, originate few matched visual words due to their high difficulty level, resulting

in lower retrieval percentages.
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Chapter 5

Conclusions and Outlook

This thesis conducts an exploratory work with the objective of developing techniques

for visual recognition in panoramic images using perspectives for the query. The main

challenge was the establishment of correspondences between a query image taken with a

standard camera (described by the pin-hole model) and a database of paracatadioptric

images.

Two images corresponding to the same scene/object can be matched by establishing

correspondences between their points of interest, also called keypoints. SIFT algorithm,

originally proposed by David Lowe, is one of the most robust approaches for keypoint

extraction in terms of scale, rotation and viewpoint invariance. However, SIFT takes

into account neither the geometry, nor the radial distortion of paracatadioptric images,

penalizing the performance of the image analysis applications that use these images.

Therefore, different types of rectification strategies were studied in order to correct the

radial distortion present in the paracatadioptric images. Matching between perspective

images and rectified images from the paracatadioptric images was performed. From the

results obtained it was verified that the best rectification method was to transform the

paracatadioptric images to cylindrical coordinates.

In order to improve the results of matching between perspective and paracatadioptric

images, several modifications to the original SIFT algorithm were proposed:

• A change in the initial scale for the Gaussian blurring (from 1.6 to 3.2). The

objective is to eliminate higher frequency features in the perspective images, which

generate many false matches.
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• Construction of the scale-space using adaptive filtering that takes into account the

geometry of the paracatadioptric images and compensates the radial distortion (the

values for the Gaussian filter are computed using a mapping to cylindrical coordi-

nates - CylSIFT ). This approach outperformed the competing methods showing the

best results in terms of average number and percentage of correct matches.

As an additional result, a brief study of feature detection and matching between paracata-

dioptric images was performed. SIFT algorithm was used, along with different rectification

methods. Also, a new mapping function for the adaptive filtering (mapping to a rectified

perspective view) was tested, outperforming the other approaches.

To efficiently search the database of paracatadioptric images, a recognition scheme

using an hierarchical vocabulary tree was built, based on [25]. Different visual vocabularies

and training data were used. Additionally, several methods for feature extraction in the

database images were analyzed, including the original SIFT algorithm and SIFT with

implicit filtering. The results obtained showed that CylSIFT did not outperform original

SIFT. There are two main reasons that can explain these results:

• The quantization of the descriptors vectors is based on the Euclidean distance to

the clusters centers of the vocabulary tree. In Chapter 3, a pair of descriptors was

considered a correct match based on the ratio between the distances to the first and

second nearest neighbor, which is a different approach. Therefore, a correct match

may not correspond to common cluster centers.

• When using a vocabulary tree, the spatial information is discarded, which is prej-

udicing CylSIFT because the words obtained with this method are more spatially

consistent than with SIFT.

Finally, methods to improve the retrieval performance were studied. To encode more

spatial information in the searching step, the new concept of geometry-preserving visual

phrases was used [33]. The results showed an improvement in the retrieval scheme using

CylSIFT as feature extraction algorithm for the database images. This means that the

CylSIFT words are spatially more consistent than those of SIFT. Additionally, to provide

a more precise ranking of the retrieved images, a geometric consistency check (using
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RANSAC) was performed on the top-ranked images. This post-processing step gives a

significant boost in the retrieval performance.
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Appendix A

Images used in the tests

This appendix shows all the images used in the tests of Chapters 2 and 3.
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(a) cata1 (b) cata2 (c) cata3

(d) cata4 (e) cata5 (f) cata6

(g) cata7 (h) cata8 (i) cata9

(j) cata10 (k) cata11 (l) cata12

(m) cata13

Figure A.1: Set of paracatadioptric images used for feature detection and matching in
Sections 2.4 and 3.4.
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(a) Par 1

(b) Par 2

(c) Par 3

(d) Par 4

(e) Par 5

(f) Par 6

Figure A.2: Pairs of paracatadioptric images used for feature detection and matching
in Section 3.5.
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Appendix B

Full Tables of Results

This appendix shows the full tables with the results of feature detection and matching

(Chapters 2 and 3).
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Inliers/Matches
Sift VCP with offset VCP aligned Cylinder

ca
ta

1

Set A 128/230 (55.65%) 49/168 (29.17%) 110/229 (48.03%) 120/270 (44.44%)

Set B 213/455 (46.81%) 45/396 (11.36%) 199/429 (46.39%) 198/478 (41.42%)

Set C 163/464 (35.13%) 31/384 (8.07%) 140/417 (33.57%) 144/431 (33.41%)

Set D 9/68 (13.24%) 2/53 (3.77%) 8/64 (12.50%) 15/63 (23.81%)

ca
ta

2

Set A 107/359 (29.81%) 90/303 (29.70%) 144/349 (41.26%) 146/329 (44.38%)

Set B 95/255 (37.25%) 44/212 (20.75%) 103/254 (40.55%) 130/266 (48.87%)

Set C 4/492 (0.81%) 0/508 (0%) 11/498 (2.21%) 3/469 (0.64%)

Set D 78/308 (25.32%) 64/299 (21.40%) 81/319 (25.39%) 82/298 (27.52%)

ca
ta

3

Set A 359/899 (39.93%) 182/816 (22.30%) 303/804 (37.69%) 491/1053 (46.63%)

Set B 500/1264 (39.56%) 244/1061 (23.00%) 395/1047 (37.73%) 583/1382 (42.19%)

Set C 332/1152 (28.82%) 136/1094 (12.43%) 241/987 (24.42%) 408/1247 (32.72%)

Set D 139/656 (21.19%) 102/614 (16.61%) 125/598 (20.90%) 232/791 (29.33%)

ca
ta

4

Set A 85/230 (36.96%) 18/196 (9.18%) 83/248 (33.47%) 95/261 (36.40%)

Set B 89/257 (34.63%) 20/212 (9.43%) 95/267 (35.58%) 115/279 (41.22%)

Set C 4/314 (1.27%) 0/339 (0%) 35/350 (10%) 38/1290 (2.95%)

Set D 14/186 (7.53%) 13/187 (6.95%) 18/203 (8.87%) 20/166 (12.05%)

ca
ta

5

Set A 26/271 (9.59%) 25/220 (11.36%) 2/327 (0.61%) 42/266 (15.79%)

Set B 94/377 (24.93%) 40/278 (14.39%) 74/431 (17.17%) 105/415 (25.30%)

Set C 65/604 (10.76%) 24/484 (4.96%) 41/733 (5.59%) 49/664 (7.38%)

Set D 82/300 (27.33%) 30/232 (12.93%) 61/358 (17.04%) 91/322 (28.26%)

ca
ta

6

Set A 19/164 (11.59%) 15/171 (8.77%) 24/162 (14.81%) 21/169 (12.43%)

Set B 88/322 (27.33%) 57/305 (18.69%) 76/307 (24.76%) 78/298 (26.17%)

Set C 66/395 (16.71%) 44/381 (11.55%) 55/413 (13.32%) 36/373 (9.65%)

Set D 46/254 (18.11%) 26/214 (12.15%) 52/249 (20.88%) 49/238 (20.59%)

ca
ta

7

Set A 11/117 (9.40%) 11/122 (9.02%) 24/129 (18.60%) 16/125 (12.80%)

Set B 61/204 (29.90%) 55/221 (24.89%) 67/261 (25.67%) 73/231 (31.60%)

Set C 19/409 (4.65%) 14/446 (3.14%) 24/489 (4.91%) 12/424 (2.83%)

Set D 11/84 (13.10%) 14/95 (14.74%) 25/102 (24.51%) 12/101 (11.88%)

ca
ta

8

Set A 113/393 (28.75%) 9/402 (2.24%) 110/487 (22.59%) 128/429 (29.84%)

Set B 116/410 (28.29%) 23/383 (6.01%) 115/462 (24.89%) 109/407 (26.78%)

Set C 2/463 (0.43%) 2/581 (0.34%) 0/607 (0%) 0/527 (0%)

Set D 55/395 (13.92%) 48/468 (10.26%) 58/434 (13.36%) 100/456 (21.93%)

ca
ta

9

Set A 59/198 (29.80%) 40/187 (21.39%) 48/199 (24.12%) 58/187 (31.02%)

Set B 54/201 (26.87%) 35/218 (16.06%) 57/231 (24.68%) 63/199 (31.66%)

Set C 0/399 (0%) 0/379 (0%) 0/355 (0%) 10/368 (2.72%)

Set D 48/137 (35.04%) 31/133 (23.31%) 37/146 (25.34%) 48/132 (36.36%)

ca
ta

10

Set A 56/169 (33.14%) 52/156 (33.33%) 55/234 (23.50%) 69/199 (34.67%)

Set B 61/237 (25.74%) 50/211 (23.70%) 53/266 (19.92%) 71/262 (27.10%)

Set C 4/215 (1.86%) 24/174 (13.79%) 2/255 (0.78%) 26/236 (11.02%)

Set D 34/251 (13.55%) 12/309 (3.88%) 44/253 (17.39%) 32/259 (12.36%)

ca
ta

11

Set A 88/292 (30.14%) 68/275 (24.73%) 86/289 (29.76%) 109/401 (27.18%)

Set B 127/408 (31.13%) 83/363 (22.87%) 126/405 (31.11%) 137/401 (34.16%)

Set C 83/448 (18.53%) 73/453 (16.11%) 86/450 (19.11%) 126/453 (27.81%)

Set D 15/224 (6.70%) 0/262 (0.00%) 19/241 (7.88%) 33/254 (12.99%)

ca
ta

12

Set A 100/256 (39.06%) 62/242 (25.62%) 101/264 (38.26%) 107/267 (40.07%)

Set B 104/324 (32.10%) 33/308 (10.71%) 111/331 (33.53%) 117/315 (37.14%)

Set C 21/335 (6.27%) 0/331 (0%) 20/323 (6.19%) 11/295 (3.73%)

Set D 15/213 (7.04%) 2/218 (0.92%) 44/212 (20.75%) 26/217 (11.98%)

ca
ta

13

Set A 114/390 (29.23%) 68/330 (20.61%) 129/428 (30.14%) 141/387 (36.43%)

Set B 111/353 (31.44%) 75/320 (23.44%) 115/418 (27.51%) 123/362 (33.98%)

Set C 51/334 (15.27%) 29/338 (8.58%) 24/349 (6.88%) 61/370 (16.49%)

Set D 16/315 (5.08%) 3/338 (0.89%) 25/370 (6.76%) 16/313 (5.11%)

Table B.1: Results of feature matching between the rectified views (virtual camera planes
(VCP) with offset, VCP aligned and cylindrical images) from a set of 13 paracatadiop-
tric images and the corresponding perspective images, using SIFT algorithm. Matching
results using the original SIFT algorithm on the reflected paracatadioptric images is also
presented (Sift). For each case, the number of inliers (correct matches), total number of
matches and inliers percentage is represented. The values in bold correspond to the best
results for each case. 57



Detections (rectified images)
Sift VCP with offset VCP aligned Cylinder

cata1 637 370 420 809
cata2 2188 1344 817 3635
cata3 2649 779 939 3280
cata4 1266 303 249 1290
cata5 469 230 101 422
cata6 1524 800 563 2176
cata7 770 128 96 777
cata8 1525 218 390 1801
cata9 1663 519 115 1841
cata10 887 300 272 920
cata11 1611 369 385 1900
cata12 1556 394 425 2283
cata13 1608 332 432 2504

Table B.2: Results of feature matching between the rectified views (VCP with offset,
VCP aligned and cylindrical images) from a set of 13 paracatadioptric images and the
corresponding perspective images, using SIFT algorithm. Matching results using the
original SIFT algorithm on the reflected paracatadioptric images is also presented (Sift).
For each case, the number of detections is represented.
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Inliers/Matches
Sift-LF Polar Cylinder-LF CylSIFT

ca
ta

1
Set A 136/219 (62.10%) 92/168 (54.76%) 131/234 (55.98%) 141/203 (69.46%)

Set B 210/349 (60.17%) 156/289 (53.98%) 183/312 (58.65%) 235/319 (73.67%)

Set C 182/346 (52.60%) 140/323 (43.34%) 164/359 (45.68%) 195/308 (63.31%)

Set D 14/70 (20.00%) 14/54 (25.93%) 16/55 (29.09%) 14/50 (28.00%)

ca
ta

2

Set A 139/270 (51.48%) 143/247 (57.89%) 185/269 (68.77%) 154/203 (75.86%)

Set B 129/193 (66.84%) 135/196 (68.88%) 173/231 (74.89%) 147/196 (75.00%)

Set C 31/106 (29.25%) 40/108 (37.04%) 40/91 (43.96%) 41/91 (45.05%)

Set D 66/187 (35.29%) 80/195 (41.03%) 85/174 (48.85%) 85/136 (62.50%)

ca
ta

3

Set A 320/597 (53.60%) 363/611 (59.41%) 432/692 (62.43%) 435/650 (66.92%)

Set B 499/855 (58.36%) 509/845 (60.24%) 573/914 (62.69%) 600/949 (63.22%)

Set C 351/763 (46.00%) 354/697 (50.79%) 458/838 (54.65%) 508/811 (62.64%)

Set D 156/423 (36.88%) 166/406 (40.89%) 238/513 (46.39%) 242/392 (61.73%)

ca
ta

4

Set A 66/164 (40.24%) 90/146 (61.64%) 104/172 (60.47%) 149/205 (72.68%)

Set B 103/173 (59.54%) 105/156 (67.31%) 119/180 (66.11%) 167/220 (75.91%)

Set C 43/136 (31.62%) 43/128 (33.59%) 52/145 (35.86%) 58/131 (44.27%)

Set D 16/102 (15.69%) 25/423 (5.91%) 25/423 (5.91%) 28/63 (44.44%)

ca
ta

5

Set A 47/125 (37.60%) 40/118 (33.90%) 52/130 (40.00%) 100/156 (64.10%)

Set B 89/193 (46.11%) 90/191 (47.12%) 99/204 (48.53%) 183/243 (75.31%)

Set C 65/393 (16.54%) 83/401 (20.70%) 98/437 (22.43%) 169/342 (49.42%)

Set D 77/133 (57.89%) 77/140 (55.00%) 85/141 (60.28%) 129/164 (78.66%)

ca
ta

6

Set A 41/106 (38.68%) 41/96 (42.71%) 40/101 (39.60%) 51/91 (56.04%)

Set B 89/196 (45.41%) 89/184 (48.37%) 89/186 (47.85%) 161/204 (78.92%)

Set C 77/219 (35.16%) 74/196 (37.76%) 62/192 (32.29%) 124/182 (68.13%)

Set D 39/146 (26.71%) 42/140 (30.00%) 42/127 (33.07%) 74/123 (60.16%)

ca
ta

7

Set A 20/61 (32.79%) 27/68 (39.71%) 31/70 (44.29%) 22/61 (36.07%)

Set B 65/127 (51.18%) 70/134 (52.24%) 87/145 (60.00%) 92/148 (62.16%)

Set C 51/193 (26.42%) 56/224 (25.00%) 60/219 (27.40%) 60/164 (36.59%)

Set D 11/56 (19.64%) 15/59 (25.42%) 16/67 (23.88%) 17/56 (30.36%)

ca
ta

8

Set A 120/241 (49.79%) 127/241 (52.70%) 139/271 (51.29%) 140/228 (61.40%)

Set B 115/235 (48.94%) 112/249 (44.98%) 130/237 (54.85%) 151/211 (71.56%)

Set C 47/220 (21.36%) 47/209 (22.49%) 52/241 (21.58%) 52/120 (43.33%)

Set D 46/186 (24.73%) 42/199 (21.11%) 65/207 (31.40%) 69/138 (50.00%)

ca
ta

9

Set A 66/111 (59.46%) 53/110 (48.18%) 68/112 (60.71%) 96/145 (66.21%)

Set B 62/134 (46.27%) 55/131 (41.98%) 73/131 (55.73%) 117/165 (70.91%)

Set C 46/145 (31.72%) 41/149 (27.52%) 51/131 (38.93%) 79/152 (51.97%)

Set D 28/67 (41.79%) 28/72 (38.89%) 33/59 (55.93%) 33/65 (50.77%)

ca
ta

10

Set A 73/140 (52.14%) 74/147 (50.34%) 83/136 (61.03%) 101/152 (66.45%)

Set B 71/152 (46.71%) 71/162 (43.83%) 87/149 (58.39%) 113/177 (63.84%)

Set C 51/135 (37.78%) 51/144 (35.42%) 68/159 (42.77%) 73/159 (45.91%)

Set D 21/86 (24.42%) 26/81 (32.10%) 27/76 (35.53%) 40/87 (45.98%)

ca
ta

11

Set A 92/185 (49.73%) 99/188 (52.66%) 107/198 (54.04%) 110/158 (69.62%)

Set B 129/242 (53.31%) 135/265 (50.94%) 151/261 (57.85%) 188/263 (71.48%)

Set C 108/270 (40.00%) 116/268 (43.28%) 141/281 (50.18%) 157/255 (61.57%)

Set D 12/153 (7.84%) 32/167 (19.16%) 33/152 (21.71%) 32/101 (31.68%)

ca
ta

12

Set A 123/177 (69.49%) 128/203 (63.05%) 150/211 (71.09%) 126/176 (71.59%)

Set B 123/210 (58.57%) 124/210 (59.05%) 140/220 (63.64%) 135/205 (65.85%)

Set C 38/98 (38.78%) 50/105 (47.62%) 44/103 (42.72%) 51/101 (50.50%)

Set D 38/115 (33.04%) 52/138 (37.68%) 43/115 (37.39%) 53/103 (51.46%)

ca
ta

13

Set A 128/237 (54.01%) 134/223 (60.09%) 147/229 (64.19%) 171/221 (77.38%)

Set B 149/234 (63.68%) 150/219 (68.49%) 151/242 (62.40%) 163/235 (69.36%)

Set C 75/199 (37.69%) 75/194 (38.66%) 78/184 (42.39%) 83/169 (49.11%)

Set D 26/170 (15.29%) 22/170 (12.94%) 26/156 (16.67%) 38/122 (31.15%)

Table B.3: Results of feature matching between the perspective and the paracatadiop-
tric/rectified images using different approaches (Sift-LF, Polar, Cylinder-LF and Cyl-
SIFT ). For each case, the number of inliers (correct matches), total number of matches
and inliers percentage is represented. The values in bold correspond to the best results for
each case. The initial scale used on the construction of the scale-space for SIFT algorithm
was doubled (1.6 to 3.2) for the perspective images.
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Detections (rectified image)
Sift-LF Polar Cylinder-LF CylSIFT

cata1 632 642 809 793
cata2 2194 2441 3635 3089
cata3 2661 2592 3280 3809
cata4 1256 1218 1290 1722
cata5 475 424 422 659
cata6 1495 1534 2176 2100
cata7 773 738 777 897
cata8 1517 1537 1801 1860
cata9 1663 1676 1841 2182
cata10 884 867 920 1255
cata11 1637 1574 1900 2225
cata12 1550 1683 2283 2112
cata13 1612 1746 2504 2069

Table B.4: Results of feature matching between the perspective and the paracatadiop-
tric/rectified images using different approaches (Sift-LF, Polar, Cylinder-LF and Cyl-
SIFT ). For each case, the number of detections is represented. The initial scale used on
the construction of the scale-space for SIFT algorithm was doubled (1.6 to 3.2) for the
perspective images.
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