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Abstract 

In the Portuguese National Health Service (NHS) patients have to pay a co-payment of 2€ 

to visit a GP in the health centres. Therefore, the monetary price associated to each visit is 

low and, with a high probability, is not a factor that affects the utilization of consultations in 

health centres. On the other hand, in any health system in which the monetary cost to 

consume medical care is very low other kind of costs can emerge as determinants of medical 

care utilization. The Portuguese NHS suffers from several time-related inefficiencies and so, 

the non-monetary form of co-payment is a non negligible reality. With data in our database 

we have concluded that the average waiting time to visit a GP is approximately 9 days. 

Moreover, the average waiting time in the waiting room for a consultation is approximately 1 

hour. Therefore, this study aims at analysing the impact of non-monetary factors on the 

utilization of public GPs. This study can be useful for policy making, as well as for 

econometric reasons. 

In the other hand, sometimes the empirical researcher faces non-random samples. So, 

modelling based on the assumption that we have a simple random sample can be 

inappropriate and misleading. In this research we face this same situation. Our data resulted 

from the application of two endogenous sampling schemes: an sample collected on-site and a 

truncated sampie. Therefore each sampling scheme generates a selected sample. Thus, to 

make valid inference, adequate econometric modelling has to be used. To model our 

dependent variable, number of visits, and to take into account the unobserved heterogeneity, 

we relied on a semi-parametric specification through the use of finite mixture models. 

The data were obtained from the Europep questionnaire, a standardized questionnaire 

designed to measure primary patient satisfaction in European countries. 
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1. Introduction 

In the Portuguese National Health Service (NHS), as in other European NHS, the 

entry point to the health system is the Health Centre (HC) where the General 

Practitioners (GP) are generally paid on a salary basis. The visit to a public GP costs 

(monetary cost) approximately 2€ to the patient. However, some patients with 

special needs, (e.g., elderly, children under 14 years old, pregnant women and 

patients with some chronic diseases) are exempt from that payment. Therefore, the 

monetary price to visit a GP is small and, with a high probability, it is not a factor 

that affects the demand of health centres consultations. 

In a health system where the monetary cost to consume medical care is very 

low, at least at the moment of consumption, other kind of costs can emerge as 

determinants of medical care utilization. Medical care is a kind of service that 

requires time to be consumed (Folland, 2000). Therefore, as people tend to value 

their time, i t  is reasonable to assume that time comes out as an important factor to 

which people are sensible when making decisions regarding the utilization of medical 

care. It should be noted that the importance of the time as a determinant of the 

demand for activities requiring time to be consumed was already suggested by 

Becker (1965). Subsequently, Acton (1976) studied this issue empirically applying to 

the health care field and arguing that, in a setting where the monetary price of 

health care is null or near null, a mechanism involving time is quite likely to assume 

the task of demand shifter since consumption of health care usually entails a 

payment in travel time and waiting time. 

These non-monetary costs, or time related costs, may then be seen as a form of 

co-payment, and medical care demand/utilization has to be sensitive to them. This is 

an assumption for this paper. 

As it is referred in several publications, the Portuguese NHS suffers from 

several inefficiencies (Bentes et al, 2004) with consequences in the importance of 

the non-monetary form of co-payment. For example, Cabral et al. (2002) found that 

more than 54% of the people that demanded GP services in a public health centre 

had to wait more than two weeks to get an appointment. Our data led us to the 

conclusion that the average waiting time to visit a GP is approximately 9 days. 

Moreover, the average waiting time in the waiting room for a consultation is 

approximately 1 hour. These non-monetary or time related costs, are a source of 



disutility to the patients (Cullis and Jones, 2000; Folland, 2000; Serrano-del-Rosal et 

at., 2004). 

Even considering the large waiting time imposed by the NHS to patients to 

access to a public GP, nothing is known about how these non-monetary factors 

impact on the actual use of primary health care visits. Therefore, the knowledge 

about the reaction of the patients to the non-monetary related costs to see a GP is 

very important in every health system and, especially in the Portuguese NHS where 

the monetary effort that a patient makes to see a doctor is very low and almost null 

relatively to the non-monetary cost involved in the full utilization of health care. 

The first major argument to focus on how the Portuguese patient's decisions 

about the utilization of GPs are affected by the non-monetary factors - time needed 

to have an appointment and to wait for the doctor inside the health centre - are the 

changes proposed by the current government to better the organization of the 

Portuguese primary health care system. In a recent public interview the Minister of 

Health has announced that 2004 would be devoted to the full reorganization of the 

primary health care system. In the same interview, he also stated that, among other 

things, this reorganization would aim at reducing the waiting time to get a medical 

appointment and to increase the number of patients seen per hour by a GP. 

According to the health minister, the figure should increase from 3.8 to 4 patients 

assisted in one hour, in average. 

Meanwhile, little is known about the factors that influence the utilization of 

primary health care facilities in the Portuguese NHS. We lack knowledge about the 

response of the health centre's users to the non-monetary costs, especially the time 

costs, i.e., travel time, waiting time inside the health centre, and waiting time to 

get an appointment. This information would be crucial to assess the effects of 

policies aiming at improving the accessibility of primary health care. The success of 

such policies depends on the reaction of the patients to changes in the time-price. 

Therefore, one major goal of this paper is to measure the elasticity of primary 

health care utilization relatively to the time-price, and the elasticity of waiting time 

to get an appointment with the physician. 

Additionaliy, this study will allows us to better understand the importance of 

other determinants of health centre utilization, e.g., age, gender, education, health 

status as well as the impact of other socio-economics variables. This knowledge can 

be important to improve the financing system used to fund the primary health care 

at a regional level. 



In the Portuguese primary health care organization each GP, although paid on a 

salary basis, is responsible for a given number of patients varying from 1000 to 2000 

patients per GP. It is obvious that the size of the list, per se, is unimportant because 

its relevance varies upon the age and gender distribution as well as the burden of the 

disease; what is important to know is the expected amount of work that the doctor 

has to do with the patients in hislher Hst. Therefore, this paper can also be useful to 

build equivalent lists of patients in terms of amount of work. Moreover, in the area of 

policy making and health economics, this study may be Important as a contributor for the 

assessment of the equity at a regional level. In conclusion, the results obtained in this 

study can be very important because they can reveal relevant information to improve 

the organization of the Portuguese Primary Health care System. 

This study can still be important on the statistical econometric grounds. As far 

as we know, there are very little econometric models estimations on health taking 

into account the characteristics of an on-site sampling. Even in the international 

literature, is rare a description of models using truncated samples applied to health 

count data. Moreover, our econometric specification uses finite mixture models, a 

very recent econometric specification applied to data in the health field (Deb and 

Trivedi, 2002). 

To reach our goal to analyse the main factors that influence the individual 

behaviour in the decisions to visit a GP, we need to have some form of measuring the 

utilization of medical care at a HC. In this study, our medical care utilization 

indicator is the number of visits that the individual made to the GP in the twelve 

months prior to the filling of the survey. This generates a variable that is non- 

negative and integer. The econometric modelling of variables with these 

characteristics requires the use of count data models. However, due to the sampling 

scheme (our first sample was obtained choosing patients randomly on-site), we had 

to use modified count data models. To carry on with this investigation we have 

estimated finite mixture models, applied to samples obtained on-site. Our methods 

heavily rely on the econometric specification presented by Santos-Silva (2003). 

This paper contains 4 sections. In Section 2 we set up the methodological 

apparatus to respond to our research question. Section 3 describes the data source 

for the empirical results, presenting also some summary statistics. S t i l l  in this same 

section, we will briefly describe some aspects of the Portuguese Health System, and 

the mode of HC functioning. Empirical results are reported in section 4 with a 

discussion of the results. 



2. Econometric specification and estimation 

The behaviour of people in the health sector, more specifically, regarding the 

utilization of health care facilities, has been studied using continuous measures, such 

as individual expenditures, or discrete measures, such as the number of medical acts 

(e.g. visits to the physician) in a given period of time (Deb and Trivedi, 2002). In 

recent times the use of discrete measures has been more common than the use of 

continuous measures. Probably, the great use of discrete measures of health care 

utilization to analyse individual health care use is due to the greater availability and 

accuracy of this kind of discrete data relative to their continuous counterparts. We 

may refer Cameron et al. (1988), Barros (1999), Deb and Trivedi (1997, 2002), 

Gerdtham (1997), Gerdtham and Trivedi (2001), HernandCz (1999), Martin et al. 

(2004), Yen et al. (2001), among many others, as authors who have used discrete 

measures to explain individual medical care utilization. All of these papers used 

standard count data modeling to explain the count dependent variable and estimated 

the econometric models using data obtained by sampling at random from the 

underlying population of interest. 

The assumption of a random sample from the actual population is not always 

realistic (Wooldridge, 2002). In many projects that analyze economic data, the 

available data should be seen as a selected sample and not as a simple random 

sample. This is due to the sample design or to the behaviour of the individuals being 

sampled. So, it is crucial that sampling issues don't be ignored in empirical work. 

Modelling based on the assumption that we have a simple random sample can be 

inappropriate and misleading. 

However, it is when the selection mechanism depends on the endogenous 

variable (in this case, the sampling scheme is referred to as endogenous sampling) 

that i t  is fundamental to account for the non-random nature of the sample, because 

under endogenous sampling methods the data do not represent appropriately the 

population of interest, and in order to make valid inference correct econometric 

specifications should be used (Santos-Silva, 2003; Wooldridge, 2002). 

A truncated sample is a well know example of an endogenous sample. Notice 

that in a truncated sample the units included in the sample are chosen on the basis 

of the value of the dependent variable. Creel and Loomis (1990)' Grogger and Carson 

(1991) and Gurmu and Trivedi (1992) made some theoretical and empirical research 

on the econometrics applied to truncated samples. They treated the case when the 

dependent variable is a count. 



Both authors argued that one sampling scheme that generates a truncated 

sample is when the sampling units are selected on-site. Inclusion in the sample is 

only possible when the individual participates in the activity of interest (Gurmu and 

Trivedi, 1992). 

Nevertheless, with such sampling method, on-site sampling, i t  is easy to see 

that the probability of inclusion in the sample depends on the frequency of 

utilization of the "site" (Englin and Shonkwiler, 1995 Santos-Silva, 1997; 

Winkelmann, 2000). Thus, as more regular users are more likely to be included in the 

sample, the empirical distribution will have more weight in the right tail, relative to 

the "true" distribution of the actual population. As a result, samples collect on-site, 

being also examples of endogenous samples, although, are of a different nature than 

the truncated samples. According to Shaw (1988), an on-site sample generates data 

with 3 characteristics that the researcher has to be aware of: Non-negative variables 

integers, truncation and endogenous stratification. This last characteristic makes on- 

site samples different from truncated samples. Hence, the probability models used to 

analyze truncated samples are different from the probability models that should be 

applied to data collected on-site. 

In this paper we measure medical care utilization as the number of visits to the 

health centre in the year prior to the filling of the survey. However, due to the 

particular characteristics of our data resulting from the endogenous sampling 

scheme, we cannot straightforwardly apply count data models; the parameter 

estimates would be biased and inconsistent (Santos-Silva, 1997; Shaw, 1988; 

Wooldridge, 2002). 

Using Santos-Silva's (2003) framework, i f  f(yl 1 x,) is the density function of the 

ith person in the underlying population, then the density of the same person in the 

sample (on-site or truncated), fs(yi 1 xi) is given by, 

where, in the case of sampling on-site, 

and, in the case of truncated, at zero, sample, 

h ( ~ i  l x , ) = 1 - ~ ( 0 1 x , )  f y ,  >O 



where F(0 I xl) is the distribution function, conditional on x,, corresponding to the 

probability function f, evaluated at value zero 

Combining equations 1 and 2, we obtain the probability model that corrects the 

problems generated for on-site samples, and is given by 

This equation 4 was firstly developed by Shaw (1988) and, subsequently, 

Santos-Silva (1997) arrived at the same expression using endogenous stratified 

samples ideas. Englin and Shonkwiler (1995 applied this model to an on-site sample 

to study the demand of recreational sites. In their paper, they assumed that the 

underlying population was distributed according to, on one hand, a Poisson 

distribution and on the other hand, a negative binomial distribution. 

On the other hand, using equations 1 and 3, the probability model to correct 

for the problems created by truncated at zero samples is, 

where expression (5) is the well known probability function of a truncated, at zero, 

random variable, as is presented in most count data econometrics textbooks 

(Cameron and Trivedi, 1998; Grogger and Carson, 1991; Gurmu and Trivedi, 1992; 

Winkelmann, 2000; Wolldridge, 2002). 

In the regression analysis of non-negative integer valued dependent variables it 

is frequent to assume that the conditional probability function of the dependent 

variable is Poisson with exponential mean functionA, =exp(x :b ) ,  where xl is a 

column vector of regressors, and b is a vector containing the model parameters to be 

estimated. The exponential specification for the conditional mean ensures that Ai is 

non-negative, as is required by the Poisson probability model. 

In the general framework of count data modelling, i.e., count data models 

applied to random samples, a common criticism that is made to the use of the 

Poisson probability model, usually the starting point to analyse count data, is the 

conditional mean-variance equality feature that is imposed by the model, property 

that is known as equidispersion (Cameron and Trivedi, 1988; Jones, 2000). This 

conditional mean variance equality is often violated in real world as overdispersion, a 

situation where the conditional mean is Lower than the conditional variance, is the 



more common feature of empirical data (Jones, 2000). As Mullahy (1997) argues, 

what is causing overdispersion is the presence unobserved heterogeneity in the data. 

This specification error, equidispersion, continues to be relevant in the case of 

endogenous sampling, both for on-site sampling (Englin and Shonkwiler, 1995; 

Santos-Silva, 1997), as well as for truncated samples (Grogger and Carson, 1991). To 

get consistent estimates with truncated and on-site data, the researcher has to 

correctly specify the first two moments of the distribution of the dependent variable 

(Grogger and Carson, 1991 ; Santos-Silva, 1997). 

Thus, to estimate the parameters of the population of interest we have to 

explicitly take into account the unobserved heterogeneity. One way to proceed is to 

specify the probability model of the dependent variable as a mixture models. 

The formal specification of a mixture model is easily done, but estimation of 

this kind of models is more complex because this estimation requires the distribution 

of the unobserved random variable which represents the unobserved heterogeneity, 

E ,to be specified; justify one explicit density is difficult. Usually, the independence 

of the individual unobserved heterogeneity and the regressors are assumed 

(Santos-Silva, 2003). The unobserved heterogeneity E can be assumed to be a 

continuous or discrete random variable. If the error term is assumed to be 

represented by a discrete random variable, we are using a semi-parametric model 

(Deb and Trivedi, 2002; Heckman and Singer, 1984). It consists in approximating the 

density of the error term using a discrete distribution with a finite number of support 

points. Deb and Trivedi (1997) pioneered the utilization of finite mixture models to 

explain the utilization of medical care, measured as a count. Afterwards, Martin et 

al. (2004) and Gerdtham, and Trivedi, (2001) applied this same type of models to 

health data. The application of finite mixture models to endogenous samples raises a 

number of important methodological issues that the researcher should be aware. 

Let us now briefly explain how the unobserved heterogeneity is integrated in 

the assumed probability model of the dependent variable through the use of finite 

mixture models. Assume that the unobserved heterogeneity, E, has a discrete 

probability distribution with m, support points of support, w,,w,, ..., wm and 

m 

associated probability masses p,, p2, ...., pm, with xpk = 1 and p, 20, k = 1 ,... m . 
,=I 

Further, assume that the distribution of the dependent variable, y~, conditional on a 



set of regressors and on o, is f, (yi ( x, ,8,), where 9, is a parameter vector to be 

estimated. 

Then, the probability distribution of y~, conditional on xi, is 

where 0 = [0,' ... 0; p, p , - , ]  represents a vector of parameters to be 

estimated. The mixing probabilities p , ,  k =l...m are estimated together with all 

other model parameters. In a finite mixture model the random variable yi can be 

viewed as being postulated as being drawn from a population that is an additive 

mixture of m distinct subpopulations (Deb and Trivedi, 2002). 

Finite mixture models can have a very interesting interpretation i f  we relate 

the finite mixture model with the Latent Class Analysis (Wedel et al., 1993). In the 

latent class, each observation may be considered as a member of a specific group (a 

latent class). Under this framework, it is assumed the existence of m (unknown) 

latent classes or group of individuals. It is also hypothesized that each group has its 

own distribution. Group k has f,(y, I xi,Bk) as its representing probability function. 

From the construction, the a priori probability of an individual belongs to group k is 

p, , that is, P(yi E Group k) = p, . 
To specify finite mixture models to endogenous samples, for example, 

truncated and on-site samples, care must be taken concerning the assumptions about 

the distribution of the unobserved heterogeneity. As Santos-Silva (2003) shows, 

model specification can be performed assuming the distribution of heterogeneity in 

the actual population or in the population induced by the sampling scheme, being 

the choice between the two alternatives not innocuous, as we will show now, relying 

heavily in the paper written by Santos-Silva, (2003). 

As we above referred, in the case of truncated samples, the probability 

function of the sample is f,(y, I xi)= ( ' y, > 0 . Assume now that the 
1- F(OIxi) 

correct model for the dependent variable in the actual population, is 
n8 

f (vi 1 xi,O) = xp,  f, ( y ,  I xi,9,), i.e., a finite mixture model. We are now taking 
k=l 

assumptions about the error term in the population of interest. 



Under this assumption, the denominator in (5) is 

and 

So, finite mixture models applied to truncated samples can be specified in two 

ways, namely (7) and (8). Equation (7) assumes that the unobserved heterogeneity is 

present in the population of interest, while equation (8) makes assumptions about 

the distribution of the unobserved heterogeneity in the population induced by the 

sampling scheme (Santos-Silva, 2003). This same author argues that the researcher 

should use (7) when the population of interest is the actual population. In contrast, 

specification (8) is the appropriate when the research intends to study the population 

induced by the sampling scheme. 

This reasoning also applies to on-site samples, by replacing 1 - F(0 1 xi) with 

E(yi Ixi) in (5). Under the assumption that the probability model of the dependent 
Yi 

variable in the actual population is a mixture model, 

E(V I x  ) gpk~(yi I x,,19~), where fbl I x i ,e)=~pkfk(y i  I xl,ek), thus -=- 
k=l Y I YI k=1 

E(yi I xi, 4 ) is the expected value of fk (y, (x,, 8, ). 
Given that the unobserved heterogeneity can be specified in the actual 

population, and the model (7) applies (or in the population induced by the sampling 

scheme, and the model (8) applies), we have to ask which finite mixture 



specification is the most appropriate to analyse our data? The response depends on 

the population that we are interested in, and on the assumptions that we do about 

the behaviour of the individuals excluded from the sample due to the sampling 

mechanism. 

If we believe that the probability model that describes the behaviour of the 

individuals excluded from the sample due to the sampling mechanism (individuals 

with zero visits) is different from the model that describes the behaviour that have a 

positive count, i.e., the utilization of the health centre is described by a Hurdle 

model (hurdle models are described in detail in Cameron and Trivedi, (1998)) Gurmu 

(1997), Mullahy (1986), Pohlmeier and Ulrich (1995)) then, we can only use 

specification (8) and make inference to the population induced by the sampling 

mechanism. On the contrary, i f  we assume that the utilisation of the health centre of 

both types of individuals, zeroes and positives, is described by the same stochastic 

model, then the choice between (7) and (8) depends only on the objectives of the 

study. 

In this study, we are interested in the actual population, so we will primarily 

use specification (7), that is, we assume that the unobserved heterogeneity is 

distributed in the actual population. 

To estimate finite mixture models, we have to identify the number of 

component distributions of the mixture, that is, the value of m. However, the 

empirical estimation of m is an unanswered question; so, it is common to estimate 

models with a given m and then use LR tests, when possible, or information criteria 

(AIC and BIC) to select between alternative models (Deb and Trivedi, 2000). 

The maximum likelihood estimation of a finite mixture model can be very 

thorny. The likelihood function of finite mixture models may have several local 

maxima hence there is always the chance to get convergence to one of these local 

extreme solutions which does not correspond to the maximum likelihood estimator 

(McLachlan and Peel, 2000). So, i t  is important to ensure that the algorithm 

converges to the global maximum, and this task is not easy to accomplish. 

We estimated all models using the STATA ML command. For solving the 

unconstrained maximization problem, STATA uses the Broyden-Fletcher-Goldfarb- 

Shanno, (bfgs) algorithm. To "almost" guarantee that the algorithm converges to a 

global maximum, we did as Deb and Trivedi (2002) and estimated each model using 

different starting values. In most cases, we got the same estimates, regardless of the 



starting values. Therefore, although we can not be a hundred per cent sure, there is 

a large probability that we have got the global maximum likelihood estimator. 

Other widely recommended method for estimating this type of models is the 

Expected Maximization algorithm (EM alsorithm). This procedure is described in 

McLachlan and Peel, (2000), Wedel et. al (1993). We didn't estimate our model using 

this procedure because it may be slow to converge (Deb and Trivedi, 1997). 

All the models were estimated using (pseudo) maximum likelihood, that is to 

say, the standard errors of the coefficients were estimated using the robust variance 

formula (Deb and Trivedi, 1997). This is a sound procedure due to the possibility of a 

misspecification of the unknown density. This estimation was performed without 

imposing constraints on the parameters of the composing distributions. 

Let is assume that our dependent variable y, (number of visits to the health 

centre in the year prior to application of the questionnaire) has is distributed 

m 

according to the finite mixture model f (y ,  1 x,, 0)  = pk f, ( y ,  ( x, ,Bk ) . Further, let 
,=I 

us assume that the m component distributions of the mixture are Poisson, like 

exp(-Alk 12; 
fkbl I ~ 1 7 ~ k ) =  [ I  I 1  

~ r !  

Therefore, i f  we want to make inference to the population of health centre 

users, and not only to the population of individuals that visited the health centre in 

September 2003, we should use specification 7, and assume that the unobserved 

heterogeneity is present in the population of interest. 

In this case, for the truncated sample, the probability model used is 

k=l  

If j, is Poisson distributed with mean parameter A(, = exp($ + x ; b k )  (XI is a 

column vector of independent variables without a column of ones), then 

F, (0 ) xi, 0, ) = exp(-A, ) and (1 2) becomes, 

m 

pk ex~(-alk la: 
f i i  (' 

~ r !  ~ - C P , ~ X P ( - A , )  
,=I 



For on-site samples, the probability model can be written as, 

Assuming that f ( y i  1 x , , O k )  is distributed according to a Poisson model with 

location parameter A, = exp(ak  + xib , ) ,  then j" (y, I x i )  is given by 

In this paper we estimated several finite mixture models based on (7) and (8) 

for both truncated data and data collected sampling individuals on-site. For instance, 

using (7)) we estimated 4 models, 

o Poisson truncated () 

o Finite mixture, with 2 component Poisson distributions with mean parameter 

Aik = exp(ak  + x ; b ) .  That is, the two component distributions are different only 

because the constant term of the mean parameter 

o Finite mixture, with 2 component Poisson distributions with mean parameter 

A, = exp(ak  + x;bk ) 
o Finite mixture, with 3 component Poisson distributions with mean parameter 

a, = e x p ( a k  + x ; b )  

Some of these models are nested, so we are able to use Likelihood ratio tests 

to choose between them. For example, the simple truncated Poisson is nested, both, 

in the finite mixture, with 2 component distributions (Poisson), with mean parameter 

A,k = e x p ( a k  + x ; b )  and in the finite mixture, with 2 component distributions 

(Poisson), with mean parameter Aik = exp(ak  + x;bk ). 
To choose between non-nested models we've used two traditional model 

selection criteria, specifically, the AIC - Akaike lnformation Criteria (-2log L + 2K) 

and BIC - Bayesian lnformation Criteria (-210g L+Keln(N)), where ln L is the maximized 

log-likelihood, K the number of parameters 



3. Institutional setting, variables and data 

In Portugal, primary health care is mainly provided through public health 

centres covering, each of them an average of 28000 people and employing in total 

30000 professionals, 25% GPs (Bentes et al., 2004). However, the system is a mix of 

both public and private health service providers. 

The questionnaire used to obtain the satisfaction scores from the health 

centre's users was based on the Europep questionnaire, created by an international 

task force on patient evaluation of general practice care (Grol et al., 2000), financed 

by the European Union, initially involving researchers from 7 countries (Denmark, 

Germany, The Netherland, Norway, Portugal, Sweden and United Kingdom). Lately, 

other countries entered in the group (Austria, Belgium, Finland, France, Iceland, 

Israel, Slovenia, Spain and Switzerland). This measurement instrument is currently 

assumed as a standard by WONCA-Europe, the European branch of the world 

association of general practitioners. 

It encompasses 23 outcome questions grouped into five major dimensions: (1) 

Patient-doctor interaction; (2) Medical care; (3) Information and support; (4) 

Continuity and cooperation; and (5) Organization of services. Other questions 

complete the underlying conceptual model of this questionnaire. They may be 

grouped into three different dimensions: (6) Consultation, accessibility and 

appointment; (7) Professionals; and (8) Health centre environment and services 

provided. The questionnaire also included socio-demographic questions, about 

patients' health status and the number of visits. 

The Portuguese version of the Europep was validated in a nationwide sample 

(Ferreira, 1999) and was firstly implemented in the Lisbon and Tagus Valley region as 

part of the tools used by the local Contracting Agency to monitor the activity of the 

health centres (Ferreira et al, 2001). A sample of 3964 answers from users from 86 

health centres was collected. 

In this research we use two samples obtained during two consecutive years: 

2001/2002 (50102) and 2003/2004 (50304). In the first round we obtained an on-site 

sample of 4714 answers from a universe of 194 health centres (54% of all health 

centres). The second round covered all health centres from the Portugal mainland 

and a population of almost 68000 users. 

The questionnaires of the first round were directly administered by the GP, 

having some of then not fully followed the premises given. In the second round the 

authors followed a new strategy. After obtaining the Hst of all users during the first 



six months of 2003 a random sample, proportionally to the distribution of age and 

gender within each health centre, was built. The questionnaires were directly sent 

by mail to user's residencies and we have received a total sample of 12000 answers. 

In this research we used the first 2563 questionnaires returned. 

In every round the questionnaire were filled by patients and sent back in a 

prepaid envelope. The anonymity was, in this way, granted. All the answers were 

optically read through a scanner by using Teleform software. 

In Table 1 we present the list of the dependent variables. Unfortunately the 

survey does not provide any information about the income of the respondents. 

However, we can use education as a proxy to income. 

Insert Table 1 about here 

The covariates used in our study are those usuatly used in other studies on the 

determinants of health care utilization. 

Table 2 presents the list of the dependent variables, as well as their 

definitions. 

4. Results 

In this section we present the results obtained in both on-site and truncated 

samples. For each one, we begin by the descriptive data of the sample and we 

analyze the results obtained from econometric models. 

On site sample 

Although the entire sample was formed by 4714 health centres users, our final 

workable database had only 3181 usable records. The large majority of the deleted 

records corresponded to individuals that missed to report the necessary information 

about important variables, generating a missing value. A couple of records were, in 

addition, deleted because the patient report strange values on some variables. For 

instance, some individuals reported more than 8 hours waiting in the health centre 

The empirical distribution of dependent variable, (visits), the number of visits 

in the last year, is shown in Figure 1. The sample mean for the dependent variable is 

5.52 visits. 



lnsert Table 2 about here 

Analysing this empirical distribution we were concern with a data measurement 

problem that can, in some way, contaminate our estimation results, and therefore 

our conclusions. Recall that the period over which we register the visits to the health 

centre is 12 months, a long period, that can induced response errors, mainly due to 

the lack of memory. This fact can be observed in the previous graphic. Above 4 visits, 

we see some kind of digit preference in the response to the question about the 

number of consultations. Note the percentage of people that answered 10, 11 and 

12. So, care must be taken in the analysis of the results. 

Table 2 presents the descriptive statistics of the independent variables (on-site 

sampling). 

lnsert table 3 about here 

Despite the fact that we have estimated more than a few alternative finite 

mixture specifications that correct for the on-site sampling potential bias, we will 

present the results of the model that assumes that the discrete unobserved 

heterogeneity is represented by a discrete probability function with 3 points of 

support. The unobserved heterogeneity is assumed to be distributed in the actual 

population, according to specification (7). We choose this specification on the basis 

of LR tests and Information criteria, as it was referred at the end of section 2. 

Table 3 reports the estimates, robust standard errors, p-value and statistical 

significance levels for the parameters of the 3 points of support mixture model 

estimated, where the component distributions are assumed to be Poisson. The 

interpretation of the figures shown in the table is as follows: a negative coefficient 

means that as the dependent variable increases the mean utilization decreases, and 

vice-versa. 

lnsert table 4 about here 

Next we will describe the impact of each variable on the mean utilization of 

the primary health care centres. 



Socio-demographic variables 

Male individuals tend to use the health care provided by health centres less 

than the female (-0.01""). Individuab with higher education have a tendency to go 

less often to the health centre; contrarily lower educated people are more willing to 

receive health care in the health centre. This result maybe a consequence of higher 

income, i.e., people with more purchase power can more frequently use the private 

substitutes, in this case, the private health sector. Or are more willing to have 

special access to hospital (emergency and ambulatory) care. In this specification, we 

assumed that age has a quadratic effect. The coefficient of the quadratic term has a 

near zero value, and the other term has a negative sign. 

Health status variables 

The health status variables, both objective (chronic disease) and self-assessed, 

have the expected impact on the dependent variable, even taken into account other 

characteristics as gender and age. People who perceive their health status as 

excellent, go less regularly to the health centre. The opposite happens with people 

rating their health status as bad. Regarding the chronic disease for all of them, 

people with a chronic disease go more often to the consultation. 

Price-Time cost 

For this group of variables, we have considered the time (days) waiting for a 

consultation as well as the time (minutes) waftfng in the waiting room of the health 

centre. Both failed to be statistically significant. This means that, at least for the 

population of health centre's users, they do not respond to price-time. This may be 

explained because Portuguese patients are, In general, protected by welfare state, 

meaning that few of them do not feel an immediate impact (e.g., in day-off salary) 

of being absent from work so many hours. 
I '  

How to reach the heath centre 

All the 4 variables (on foot, car, public transportation and others) that we 

hypothesized to have an impact in the mean utilization of the health centre failed to 

be statistically significant. These variables may also be irrelevant for patients. Even 

when they have to pay by themselves to go to a health centre (e.g., there is no 

public transportation available and they have to go by taxi), their need and the lack 



of citizenship experience force them to do whatever has to be done to maximize 

their expectations, i.e., to be seen by a doctor. 

Characteristics of the health centre 

Under this group we included location of the health centre (in a costal region, 

or not) and the perception of adequacy of the time spent the doctor during the 

interview. To begin this analysis, patients living in a costat region are less willing to 

.#use the health centres. These regions are those, in Portugal, where people have a 

better access to other health care providers, namely, emergency care and private 

providers, thus more alternatives to the health centres. 

The enough time variable shows that patients who perceive not having spent 

enough time with their GP are less willing to go to the health centre. Dissatisfaction 

may be a reason for this behaviour. This result is interesting and can be used to 

forecast the effect of an intended reduction in duration of the visits. For a 

substantial reduction on the time each patient spend with hisfher GP, it 1s Hkely that 

the number of users unsatisfied with the visit's duration will increase. Therefore, the 

demand of public GP would be reduced. So, we foresee that the effect of an increase 

in the number of visits per hour will decrease the demand for public heakh care 

visits. 

Truncated sample 

The empirical distribution of dependent variable for the truncated sample, 

(VISITS), is presented in table 5. The sample mean for the dependent variabte is 5.6 

visits. 

Insert table 5 about here 

The total sample was formed by 2957 health centres users, but, as happened in 

the case o f  the other sample, our final workable database has only 16 18 utNizable 

records. The deleted records corresponded to individuals that missed to report the 

necessary information about important variables, consequently generating a missing 

value. 

It is interesting to analyse this empirical distribution comparatively with the 

distribution presented in Table 2. 



As was argued in Section 2, in the on-site samples, the high counts would be 

overrepresented. This can be evidenced in Figure 1. 

Insert Figure 1 about here 

Replicating what has been done for the on-site sample, we have estimated 

several alternative finite mixture specifications that correct for truncation. We will 

present the results of the model that assumes that the discrete unobserved 

heterogeneity is represented by a discrete probability function with 2 points of 

support. The unobserved heterogeneity is assumed to be distributed in the actual 

population, according to specification (7). We choose this specification on the basis 

of LR tests. We also chose this specification in order to interpret the model in terms 

of latent classes. 

Table 6 reports the estimates, robust standard errors, p-value and statistical 

significance levels for the parameters of the 2 points of support mixture model 

estimated, where the component distributions are assumed to be Poisson, and with 

location parameter described by a different set of parameters. The interpretation of 

the figures shown in the table is as follows: a negative coefficient means that as the 

dependent variable increases the mean utilization decreases, and vice-versa. 

lnsert table 6 about here 

Assuming the representativeness of our sample, the mixture model suggested 

that the population be split into two sub-populations. The first one contains about 

84% of individuals and corresponds to the sub-sample of users who visit less often the 

health centre. In average, individuals from this (latent) sub population make 3.98 

visits a year. The remaining 16% of individuals are more frequent users with an , 
average of visits of about 13.49 per year. The population estimated mean of visits 

after the split was 5,59, being the original empirical mean equal 5.62. 

The following analysis will be split into the two latent classes previously 

obtained. 



Less frequent users 

For individuals in this class, the average number of visits to the health centre is 

dependent upon gender, education, place of living, self-assessed health, time to 

reach the health centre, difficult to book an appointment and satisfaction. In fact, 

male, high educated and healthier individuals, living in the coast and spending less 

time to reach the health centre tend to visit it less often. These individuals also 

have, in general their consuitation booked and are less satisfied with the time they 

6pend with their GP as well as with the location of the health centre. 

More frequent users 

For individuals from this class, the average number of visits to the health 

centre is dependent upon their occupation, sickness, health status and satisfaction. 

In fact, individuals with lower social strata, sicker and with bad self assessed health 

are more willing to visit their GP in the health centre. These individuals are more 

satisfies with the location of the health centre. 

It is worth to emphasize that the only variables that are statistically significant 

across both latent classes are the logarithm of the total time to reach the health 

centre and the satisfaction with its location. The coefficient of the first variable, 

measuring the elasticity of average utilization relatively to total time to reach the 

health centre, is greater than zero in both latent classes. This means that, as total 

time to reach the health centre increases, the average utilization also increases, 

which seems to contradict the theory that, in systems where the financial cost to 

consume the service is low, the time becomes more relevant as a cost . 
This apparent contradiction may be explained because the places associated 

to a more difficult access to health centres (e.g., places in rural areas) are also 

locations where there are few alternatives. Therefore their inhabitants are "forced" 

to go more often to the health centres. 

Regarding the offer of care, measured by the number of inhabitants per doctor 

and per GP, table 6 also shows significant values for the more frequent users. 

However the magnitude of the coefficients is economically insignificant. 

After estimating our model, we were able to compute the posterior probability 

that individual i belongs to the class k. With these figures we could assign each 

individual to a latent class. We followed McLachlan and Peel (2000). Table 7 presents 

the descritives of the variables for each latent class. As we can see from it, the 



latent classes have almost identical characteristics. What distinguish them the most 

is the number of  chronic disease. In fact, users from latent class 1 (less frequent 

users) have less chronic diseases then individuals from latent class 2 (more frequent 

users). A t  the same time, the percentage of  individual who have lower self assessed 

health is greater i n  this latter class. 

'I 

Insert table 7 about here 

5. Bibliographic references 

Acton, J.P., 1976 Non-Monetary factors in the demand for medical services: Some empirical 
evidence. The Journal of Political Economy 83, 595-614. 

Barros, P.P., 1999. 0s sistemas privados de sabde e a reforma do sistema de saGde, in: 
Associag3o Nacional de Sistemas de Sabde (Eds), 0 papel dos sistemas privados de saude 
num sistema em mudanqa, pp. 90-1 15. 

Becker, G.,1965. A theory of the allocation of time, Economics Journal 75,493-517. 
Bentes M., Dias C.M., Sakellarides C., Bankauskaite, V., 2004. Health care systems in 

transition: Portugal. Copenhagen, WHO Regional Office for Europe on behalf of the 
European Observatory on Health Systems and PoUcies, 2004. 

Cabral, M.V., Silva, P.A., Mendes, H., 2002. Salide e Doenqa em Portugal, lmprensa de 
CiCncias Sociais, Lisboa. 

Cameron, A.C., Trivedi, P.K., 1998, Regression Analysis of Count Data. Econometric Society 
Monograph 30, Cambridge University Press, New York. 

Cameron, A.C., Trivedi, P.K., Milne, F., Piggot, J., 1988. A Microeconometric model of the 
demand for health care and health hsurance in Australia. Review of Economic Studies 55, 
85-106 

Creel, M.D., Loomis, J.B., 1990. Theoretical and empirical advantages of truncated count 
data estimators for analysis of deer hunting in California, American Journal Agricultural 
Economics 72, 434-441. 

Cullis, J., Jones, P., 2000. Waiting lists and medical treatment: analisys and policies,in: A. J. 
Culyer and J.P. Newhouse (Eds), Handbook of Health Economics, volume 1, Elsevier 
Science, pp. 1201 -1249. 

Deb, P., Trivedi, P.K., 1997. Demand for medical care by the elderly in the United States: a 
finite mixture approach. Journal of Applied Econometrics 12, 313-336. 

Deb, P., Trivedi, P.K., 2002. The structure of demand for health care: latent class versus two- ,. 
part models. Journal of Health Economics 21, 601-625. 

EnqUn, J., Shonkwiler, J.S., 1995. Estimating social welfare using count data models: an 
application to long-run recreation demand under conditions of endogenous stratification 
and truncation. The review of Economics and Statistics 77, 104-12. 

Ferreira, P.L., 1999. A voz dos doentes: satisfagio com a medicina gera[ e familiar, in: 
DirecgBo-Geral da Saude (Eds), lnstrumentos para a melhoria continua da qualidade. 

Ferreira, P.L, Luz A, Valente S, Raposo V, Godlnho P, Felicio ED., 2001. Determinantes da 
satisfagiio dos utentes dos cuidados primhrlos: o caso de Lisboa e Vale do Tejo. Revista 
Portuguesa de Sabde Pbblica, Volume Temitico 2: 53-61. 



Folland, S., Goodman, A., Stano, M., 1997. Economics of Health and Health Care, Prentice- 
Hall. 

Gerdtham, U.D.,1997. Equity in health care utilization: further evidence based on hurdle 
models and Swedish micro data. Health Economics 6; 303-319. 

Gerdtham, U.D., Trivedi, P., 2001. Equity in Swedish Health Care Reconsidered: New results 
Based on the Finite Mixture Model. Health economic Letters. 

Grogger, J.T., Carson, R.T., 1991. Models for truncated counts. Journal of Applied 
Econometrics 6, 225-238. 

Grol, R., Wensing, M., Mainz, J., Jung, H.P., Ferreira, P., Hearnshaw, H., Hjortdahl, P., 
Olesen, F., Reis, S., Ribacke, M., et al., 2000. Patients in Europe evaluate general practice 
care: an international comparision. British Journal of General Practice 50:882-7. 

Gurmu, S., 1997. Semi-parametric estimation of hurdle regression models with an application 
to medicaid utilization, Journal of Applied Econometrics 12, 225-242. 

Gurmu S., Trivedi P., 1992. Overdispersion tests for truncated Poisson models. Journal of 
Econometrics 54: 347-370. 

Heckman, J.J., Singer, B., 1984. A method for minimizing the impact of distributional 
assumptions in econometric models for duration data, Econometrica 52, 271 -320. 

Hernindez, A.M., 1999. Duplicate coverage and demand for health care. The case of 
catatonia, Health Economics 8, 579-598. 

Jones, A., 2000. Health Econometrics, in: A.J. Culyer, J.P. Newhouse (Eds), Handbook of 
Health Economics, vol 1, Elsevier Science, pp. 264-343. 

Martin, S.J., Labeaga, J.M., Granado, M.M., 2004. An empirical analyses of the demand for 
physician services across the European Union, European Journal of Health Economics 5: 
150-165. 

Mansky, S., 1995. Identification problems In the social sciences, Harvard University Press, 
London. 

McLachlan, G., Peel, D., 2000. Finite Mixture Models, New York: John Wiley 8 Sons. 
Mullahy, J., 1986. Specification and testing of some modified count data models, Journal of 

Econometrics 33, 341-365. 
MulLahy, J., 1997. Heterogeneity, excess zeros and the structure of count data models, 

Journal of Applied Econometrics 12, 337-350. 
Pohlmeier, W., Ulrlch, V., 1995. An econometric Model of the two-part decision process in the 

demand for health, Journal of Human resources 30, 339-361. 
Serrano-del-Rosal, R., Vera-Toscano, V., Ateca-Amestoy, V., 2004. The disutility of waiting 

time: evidence from the Public Primary Health Care Service in Andalucia. Working Paper 
IESA 06-04, lnstituto de Estudios Sociales de Andalucia, Cordoba. 

Santos-Silva, J.M.C., 1997. Unobservable in count data models for on-site samples, Economics 
Letters 54, 217-220. 

Santos-Slva, J.M.C., 2003. A note on the estimation of mixture models under endogenous 
sampling, Econometrics Journal 6, 46-52. 

Shaw, D., 1988. On-site's samples regression. Problems of non-negative integers, truncation 
and endogenous stratification. Journal of Econometrics 37, 21 1-33. 

Wedel, M., Desarbo, W., Bult, J., Ramaswami, V., 1993. A latent class Poisson regression 
model for heterogeneous count data, Journal of Applied Econometrics 8, 397-41 1. 

Winkelmann, R., 2000. Econometric Analysis of Count Data.Berlin: Springer. 
Wooldridge, J., 2002. Econometric analysis of cross section and panel data. Cambridge, 

Mass.: MIT Press. 
Yen, S.T., Tang, C.H., Su, S.J., 2001. Demand for traditional medicine in Taiwan: A mixed 

Gaussian-Poisson model approach, Health Economics 10, 221-232. 



Table 1 - Definitions of dependent variable and explanatory variables 

Variable Name 
Visits 

Gender - Two dummy variables. Female is the excluded category 
Age - in tenths of years, and its square 
Education - Three dummy variables representing the maximum level of 
formal education of the individual: Educl (low education), Educ2 
(medium education) and Educ3 (high education). High education is the 
excluded category 
Occupation - Three dummy variables representing the profession of the 
individual: Profl (high level profession), Prof2 (medium level profession), 
Prof3 (low level profession) 
Marital Status - Two dummy variables representing the marital status of 
the individual: Live alone (widow or divorced), married. 
Living region - One dummy variable: individual Lives h a costal region 
Health status - Five dummy variables representing long run and short run 
health status. 
Long run health: Bad health (Self assesses Health - SAH- is bad), good 
health (SAH is good) and Excellent health (SAH Is excellent). Excellent 
health is the excluded category. Number of chronicle diseases (max = 10. 
Short run health: Sick ( individual feels sick in the days prior to the GP 
visit and, urgent (sudden disease) 
Time cost - Total Time spent in the travel to the health centre and total 
time spent in the health centre, both in minutes. We took the logarithms 
of both variables 
Access - Three dummy variables representing the mean used to travel to 
the health centre in the last visit. On foot (individual went to the HC on 
foot), Car (car used), Pub-transp (public transportation used). 
Dific-access (had difficulties In accessing the health centre, booked-visit 
(last visit booked in advance). 
Satisfaction - Two dummy variable: Not enough time (Individual felt that 
the GP doesn't give him enough time) and HC-location (individual 
satisfied with the location of the health centre). 
Health supply (macro Level) - Two variables representing the number of 
doctors at regional level: number of inhabitants-per-doctor (all 
physicians included) and number of inhabitants per GP 
Interaction variables - Inactive is a dummy variable representing the 
occupational (active or not) status of the individual. The re 

Used In  regression 
Number of visits to the GP 
in the previous year 
male 
Age and sqage 
Educl, Educ2 

Profl, Prof2 

Live-alone, married 

coastal 
Bad-h, good-h, sick and 
urgent, n-chronic 

Logtravel-time, 
Loghc-time 

On-foot, car, pub-transp, 
dific-access, booked visit 

Not enough time, 
HC-location 

Inhabitants-per-doctor, 
Inhabitants-per-GP 

inactive* Loghc-time, 
age' Loghc-time 



Table 2 - Distribution of the variable VISITS (on-site sample) 

visits Freq. Percent 
I 214 6.73 
2 470 14.78 
3 491 15.44 
4 471 14.81 
5 321 10.09 
6 378 11.88 
7 126 3.96 
8 165 5.19 
9 41 1.29 

10 194 6.1 
I I I 0.35 
12 165 5.19 
13 4 0.13 

>=I4 130 4.08 



Table 3 - Descriptive statistics for the on-site sample 

Variable 
male 
age 
sqage 
Live alone 
Married 
Educl 
Educ2 
Coastal 
Sick 
urgent 
bad-h 
good-h 
num-chronic 
Loghc-time 
On-foot 
car 
Pub-transp 
Not enough 
time 
booked visit 
age* 
Log-hc-time 

Mean 
0.33 
4.82 
26.21 
0.12 
0.73 
0.40 
0.44 
0.35 
0.35 
0.13 
0.1 1 
0.79 
1.81 
4.41 
0.31 
0.49 
0.12 

Std. Dev. 
0.47 
1.73 
17.32 
0.32 
0.44 
0.49 
0.50 
0.48 
0.48 
0.34 
0.31 
0.41 
1.69 
0.77 
0.46 
0.50 
0.32 

Min 
0 

1.8 
3.24 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.69 
0 
0 
0 

Max 
1 

9.9 
98.01 

1 
1 
1 
1 
1 
1 
1 
1 
1 
10 

6.17 
1 
1 
1 



Table 4 - Parameter estimates of the finite mixture model (Model 2) with 3 Poisson 

component distributions with means with equal slopes and different fntercepts. Robust 

standard errors. 

numcons 
male 
age 
sqage 
Live alone 
Married 
Educl 
Educ2 
Coastal 
Sick 
urgent 
bad-h 
good-h 
num-chronic 
Loghc-time 
On-foot 
car 
Pub-transp 
Not enough time 
booked visit 
age* Log-hc-time 

Robust 
Coef. Std. Err. 

-0.099 0.066 
-0.227 0.120 
0.020 0.006 
0.185 0.083 
0.209 0.066 
0.335 0.067 
0.194 0.066 

-0.102 0.070 
-0.058 0.089 
-0.211 0.042 
0.539 0.089 
0.229 0.071 
0.088 0.024 

-0.097 0.079 
0.025 0.367 

-0.018 0.368 
0.073 0.406 

-0.169 0.085 
-0.022 0.059 
0.010 0.016 



Table 5 - Distribution of the variable VISITS (Truncated sample) 

Visits Freq. Percent 
1 242 14.96 
2 261 16.13 
3 189 11.68 
4 238 14.71 
5 104 6.43 
6 165 10.2 
7 51 3.15 
8 76 4.7 
9 16 0.99 

10 83 5.13 
11 4 0.25 
12 77 4.76 
13 12 0.74 

>=I4 100 6.16 



Figure 1 - Comparison of the distribution of visits from both samples 

Dlstrlbutlon of VISITS (Truncated 
Sample) I 



Figure 6 - Truncated model for both latent classes 



Table 7 - Descriptive of both latent classes of the truncated sample 

Satisf w l  Loc hc 

Inhabitants per doctor 

Inhabitants per GP 

0,89 

581 

1383 

0,31 

400 

206 

0 

106 

1019 

1 

1727 

1973 

0,89 

561 

1387 

0 

106 

1019 

0,31 

365 

206 

1 

1727 

1973 
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