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ABSTRACT 

Autonomous vehicles are the future of car mobility and the technology is already up and 

running presently. The era of self-driving cars is upon us and the transition from human drivers 

to robot drivers will happen sooner rather than later, and it is, therefore, important to prepare 

for it. This preparation comes in many forms and is done in many different areas. This work 

did not focus on vehicle technology nor on legislation and ethical questions, but rather on 

studying the mobility of a fleet of shared autonomous electric vehicles in a region and its 

respective road network. In particular, designing and simulating a hypothetical future transport 

service for the Region of Coimbra (NUTS III), in Portugal. The characteristics of this transport 

system are threefold: automation, ridesharing and electric power. An agent-based simulation 

model was developed to carry out this mobility study. Different maximum waiting times were 

tested, to verify how the vehicle fleet size varied. In addition, vehicle charging was studied in 

terms of quantity and location distribution. The obtained results show a logarithmic decrease in 

the vehicle fleet size, as maximum waiting time is increased. 

 

Keywords: Autonomous Vehicles, Ridesharing, Electric Vehicles, Shared Autonomous 

Electric Vehicles, Simulation, Agent-Based Model  
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RESUMO 

Os veículos autónomos são o futuro da mobilidade automóvel, com a tecnologia de mobilidade 

autónoma sendo já uma realidade. A era dos carros autónomos está a chegar e a transição de 

condutores humanos para condutores robôs irá se iniciar em breve, sendo, por isso, importante 

a preparação para essa transição. Esta preparação é feita de várias formas e em diversas áreas. 

Neste trabalho, o foco não foi na tecnologia automóvel, nem em legislação e questões éticas, 

mas sim, no estudo da mobilidade de uma frota de veículos autónomos elétricos partilhados 

(conhecidos popularmente em inglês como shared autonomous electric vehicles ou SAEV), 

numa região específica e na sua respectiva rede rodoviária. Mais especificamente, em conceber 

e simular um hipotético e futuro sistema de transporte para a Região de Coimbra (NUTS III), 

em Portugal. Há três características base para este sistema de transporte: automação, boleia 

partilhada (conhecido popularmente em inglês como ridesharing) e energia elétrica. Foi 

desenvolvido um modelo de simulação baseado em agentes (agent-based model simulation em 

inglês) para realizar este estudo de mobilidade. Foram testados diferentes tempos máximos de 

espera para verificar como variava o tamanho da frota de veículos. Adicionalmente, o 

carregamento dos veículos foi estudado em termos de quantidade e localização. Os resultados 

obtidos apresentam uma redução de curva logarítmica no tamanho da frota de veículos, à 

medida que o tempo máximo de espera aumenta. 

 

Palavras-chave: Veículos Autónomos, Boleia Partilhada, Veículos Elétricos, Veículos 

Autónomos Elétricos Partilhados, Simulação, Modelo Baseado em Agentes   
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1 INTRODUCTION 

Although the concept of self-driving cars has been present for almost a century now, for most 

of that time it was more fiction than reality. But in recent years, the development and study of 

autonomous vehicles have increased substantially, turning theory into practice. And even 

though these systems are far from being fully accepted within society, the era of autonomous 

driving is coming, and we should prepare for it. 

This preparation comes in many forms and needs to be done in many different areas. In this 

work we did not focus on vehicle technology per se, nor on legislation and ethical questions. 

The main focus of this work was simulating the environment and mobility of a fleet of shared 

autonomous vehicles in a region and its respective road network. More specifically, designing 

and simulating a hypothetical future transport service for the Region of Coimbra (NUTS III), 

in Portugal. The characteristics of this transport system are threefold: automation, ridesharing 

and electric power. Below, we will expose these characteristics individually. It should be noted 

that the developed work presented on this thesis is a small part of a wider project: 

“Driving2Driverless” (D2D). 

The vehicles are autonomous, particularly with automation level 5. So, by definition, and using 

the Society of Automotive Engineers (SAE) International taxonomy (which defines 6 levels of 

automation: 0 to 5), the vehicles are fully automated, requiring no human attention whatsoever. 

Ridesharing is a key component of the system. This means that vehicles providing connections 

from one point to another may pick up other passengers along the route, possibly making 

detours, and therefore having multiple non-related passengers in the vehicle. The last 

component of the vehicles of the fleet is electricity. In other words, the vehicles are 100% 

electric powered. This also means several charging posts are needed. These three concepts join 

as one, in the form of an SAEV (Shared Autonomous Electric Vehicle). The fleet consists of 

many SAEVs travelling and providing transport services within the Region of Coimbra (SAE, 

2018; Synopsys Automotive, n.d.-a). 

Notwithstanding, the main goal proposed for this work, was to answer the following questions. 

How many vehicles should comprise the fleet? How many charging stations are necessary, and 

where should they be located? To try to answer these questions, we laid out and followed certain 

guidelines. A methodology was elaborated to design an SAEV transport system. The 

methodology involves the simulation of an agent-based model with interacting agents, based 

on input data and defined parameters.  

This thesis is divided in 6 main chapters. The first chapter, Introduction, presents the main 

subject and explains the overall process of this work. In addition, it introduces, with further 
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detail, some important concepts regarding this work. The second chapter, Literature Review, 

includes a global introduction into the subject of autonomous vehicles and mentions some of 

the potential benefits and major issues. Also, an overview of the existing literature regarding 

agent-based models and a study example are presented. The third chapter, Methodology, 

presents the general procedure, model development and analysis method. The fourth chapter, 

Case Study, introduces the case study, describes the data processing and presents some general 

statistics. The fifth chapter, Results, describes the results obtained from the simulations, 

interprets them and their significance. Finally, the sixth chapter, Conclusion, summarizes what 

was done in this work and suggests future work. Next, we will introduce some notable topics 

regarding the subject of this work: autonomous vehicles (including some terminology nuances), 

ridesharing, electric vehicles, shared autonomous vehicles, simulation and agent-based models. 

Autonomous Vehicles 

An autonomous vehicle is any type of vehicle that has the capability of driving itself from point 

A to point B, transporting cargo or people with it. It can refer to anything from a small AV 

working in a warehouse organizing goods, to a gigantic truck working in the mines. Although 

the word “vehicle” can refer to any kind of machine that transports people or goods (bicycles, 

cars, buses, trucks, boats, trains, airplanes, etc.), the term “autonomous vehicle” is usually 

applied to cars, also known as automobiles (a wheeled motor vehicle used for transportation) 

that can drive autonomously. An autonomous vehicle (AV) can also be referred as a self-driving 

car, driverless car, robotic car, and an automated vehicle (Intel, 2017; National Highway Traffic 

Safety Administration & HHTSA, 2018). Fundamentally, and citing the American electronic 

design automation company, Synopsys (Synopsys Automotive, n.d.-b): “An autonomous car is 

a vehicle capable of sensing its environment and operating without human involvement. A 

human passenger is not required to take control of the vehicle at any time, nor is a human 

passenger required to be present in the vehicle at all. An autonomous car can go anywhere a 

traditional car goes and do everything that an experienced human driver does.”. 

As previously mentioned, the Society of Automotive Engineers (SAE) defines 6 levels of 

driving automation, extending from level 0 (fully manual) to level 5 (fully autonomous). We 

can see these levels specified in Figure 1.1 (SAE, 2018; Synopsys Automotive, n.d.-a). 
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Figure 1.1: Levels of driving automation defined by the Society of Automotive Engineers (Source: (Synopsys Automotive, 

n.d.-a)) 

 

Once again, citing from Synopsys’ website, we can get a good overall and basic idea of how an 

autonomous vehicle works: “Autonomous cars rely on sensors, actuators, complex algorithms, 

machine learning systems, and powerful processors to execute software. Autonomous cars 

create and maintain a map of their surroundings based on a variety of sensors situated in 

different parts of the vehicle. Radar sensors monitor the position of nearby vehicles. Video 

cameras detect traffic lights, read road signs, track other vehicles, and look for pedestrians. 

Lidar (light detection and ranging) sensors bounce pulses of light off the car’s surroundings to 

measure distances, detect road edges, and identify lane markings. Ultrasonic sensors in the 

wheels detect curbs and other vehicles when parking. Sophisticated software then processes all 

this sensory input, plots a path, and sends instructions to the car’s actuators, which control 

acceleration, braking, and steering. Hard-coded rules, obstacle avoidance algorithms, predictive 

modeling, and object recognition help the software follow traffic rules and navigate obstacles.” 

(Synopsys Automotive, n.d.-b). In later chapters, we will talk about some of the major benefits 

and challenges regarding autonomous vehicles. 

There are some discussions in terms of terminology, such as the difference between 

“autonomous”, “automated”, “self-driving” and “driverless”. Although these terms are used 

interchangeably by most people, there are some differences. The Society of Automotive 

Engineers uses the term “automated”, opposing to “autonomous”, since the term “autonomy” 

has a broader meaning, beyond the electromechanical. “Autonomy” comes from the Greek 

“autonomia”, meaning “independence”, with “auto” meaning “self” and “nomos” meaning 
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“law”, so something “autonomous” is something independent and that lives by its own laws. 

So, a fully autonomous vehicle would be self-aware and able to make decisions on its own. 

Thus, for example, you could command the vehicle to go to your home, but the vehicle may 

decide to go to the supermarket. On the other hand, a fully automated vehicle would obey your 

command and drive itself to the specified location (Autotrader, 2018; Levinson, 2017; Merriam-

Webster, n.d.; Online Etymology Dictionary, n.d.; Synopsys Automotive, n.d.-b). 

The term “self-driving” is usually referred to embody the whole idea of a car partially or fully 

driving itself from one place to another, so, it is a more general and broad term. Nonetheless, 

some people use this term to specify a vehicle that can drive itself, but that needs a human 

passenger always ready to override and take control. This falls into a level 3 (conditional 

automation) or level 4 (high automation) category, which means geofencing is required. In 

contrast, a level 5 vehicle, has full automation, can go anywhere and does not need human 

interaction. This is the type of vehicle that the term “driverless” usually refers to. These 

“driverless” or level 5 vehicles are expected to not have most type of controls, such as steering 

wheels and pedals (Autotrader, 2018; Levinson, 2017; Synopsys Automotive, n.d.-b). 

In summary, these four terms are mostly used indistinguishably, but have indeed some formal 

differences. Notwithstanding, these differences are faint and already hazy, as their definition 

can vary depending on whom you ask, and even specialists in the field may give you different 

answers. David Levinson, transportation analyst and professor at the University of Minnesota, 

states the following (Levinson, 2017): “(…) I do not believe these differences can be preserved 

linguistically, even within the profession; the broad misuse and confusion will drown small 

differences of meaning.”. This said, it should be noted that in this thesis, since the meaning and 

difference between the mentioned terms are already dubious, and in addition, the terms varied 

significantly within the research done, for practicality’s sake, they are used interchangeably. 

Ridesharing 

Ridesharing or Ride-sharing, mostly known as carpooling and also referred as car-sharing 

(although car-sharing is nowadays used to designate a service with a fleet of vehicles available 

to its users), or lift-sharing, is the practice of sharing vehicle trips so that more than one person 

may travel in the same vehicle and avoids the need for others to drive themselves to a 

destination. In the article “Ridesharing in North America: Past, Present, and Future” (Chan & 

Shaheen, 2012), the authors split ridesharing into two types: “Ridesharing typically includes 

carpooling and vanpooling. Carpooling involves grouping travelers into a private automobile, 

while vanpooling entails individuals sharing a ride in a van. Ridesharing also includes more 

unique forms, such as casual carpooling.”. The words ridesharing and ride-hailing are 

frequently used interchangeably nowadays, although some identify their differences. For a fee, 

a ride-hailing agreement is made between a car owner and a passenger who specifies a pickup 
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location and destination using an app or website. A third-party manages this app or website and 

charges a fee for connecting passengers and drivers. Ridesharing, on the other hand, occurs 

when passengers are paired with others traveling in the same direction and share a ride 

(Cambridge Dictionary, n.d.; Commercial Driver HQ, 2018). 

Ridesharing minimizes each person's travel expenses, such as fuel, toll fees, and the strain of 

driving, by having multiple people use one vehicle. Ridesharing is also a more ecologically 

beneficial and sustainable mode of transportation, since it mitigates pollutant emissions and 

road congestion, and reduces the parking requirements. Ridesharing is frequently promoted by 

authorities, particularly during periods of severe pollution or high fuel prices, since it optimizes 

occupancy rates (efficiency of mass passenger transport) by maximizing the vehicle’s seating 

usage (seats that would go unused if the car was just utilized by the driver), and thus increases 

the efficiency of the transportation system (Belz & Lee, 2012). 

During World War II, ridesharing became popular in the USA, as a rationing strategy, and "car 

clubs" or "car-sharing clubs" were formed to facilitate ridesharing. To save resources for the 

war effort, the US Office of Civilian Defense requested local councils to encourage four 

employees to share a ride in one vehicle. It also developed the Car Sharing Club Exchange and 

Self-Dispatching System, a ride-sharing software. Due to the 1973 and 1979 oil crisis, 

carpooling resurfaced in the mid-1970s. Employee vanpools were established at Chrysler and 

3M at the time (the first employer-sponsored vanpool program began April 1973, with the “3M 

Commute-A-Van”) (Chan & Shaheen, 2012; Oliphant & Amey, 2010).  

Ridesharing is used mostly among people whose job is located nearby and who live in high 

residential density areas. It is also linked with transportation expenses, such as fuel prices and 

commute duration, as well as social indicators (time spent socially, eating or drinking; social 

and marital status). But people who stay more time at work, homeowners and elderly people 

are far less likely to rideshare (DeLoach & Tiemann, 2012; EU Shift2Rail, 2020; Tiemann & 

DeLoach, 2010; Viechnicki, Khuperkar, et al., 2015). Nowadays, 77% of American’s drive to 

work alone and less than 1 in 10 commuters rideshare to work (Viechnicki, Fishman, et al., 

2015). In Europe, these values will vary a lot depending on country, region and ridesharing 

services available. 

Different ridesharing solutions have been proposed to incorporate in a multimodal 

transportation system. It is recommended that the public sector collaborates with private 

mobility providers, in order to serve different types of demand. By integrating public 

transportation with ride-sharing companies, users have an alternative to driving their own 

vehicle. We may witness a drop in the number of households acquiring automobiles if cities 

continue to implement multimodal transportation. Ridesharing can change the way we see 

mobility, making it more sustainable and creating a new culture of vehicle use. In addition, it 
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can help the transition to a multimodal Mobility Network in the near future, relying for this on 

new technology, social innovation, and autonomous vehicles (Bresciani et al., 2018). 

Electric Vehicles 

An electric vehicle is an automobile fully or partially powered by electricity, that uses one or 

multiple electric motors to generate propulsion, through power obtained via a collector system 

(where the electricity comes from extravehicular sources), or through an included battery.  

These cars can store energy in their batteries after being linked to a charging station or outlet, 

which is subsequently utilized by the electric engine (or engines). The amount of time it takes 

to charge an electric car is determined by its storage capacity, the amount of power it can 

receive, and the amount of power available from the charging station. The car's autonomy is 

determined by the capacity of the batteries, the engine's power, and the driving style (E-Redes, 

n.d.; EPA, n.d.; PC Magazine, n.d.). 

Electric cars are nothing new, they date back to the 1800s, and they actually predate the first 

gasoline powered car, by a significant amount of time. The first car that surpassed 100 km/h 

was the electric-powered car “La Jamais Contente” in 1899. It is hard to indicate the precise 

moment of the electric car’s invention, or even its origin country and inventor. So, its invention 

is usually described as a series of breakthroughs. These breakthroughs came from many 

countries such as Hungary, the Netherlands, France, England and the United States 

(Encyclopædia Britannica, n.d.-a; Matulka, 2014; Paléo-Energétique, 2019). 

In the early 1900s, there was no clear choice for which type of vehicle was better: electric, 

steam or gasoline. According to the Encyclopædia Britannica, in the USA, 40% of American 

automobiles were powered by steam, 38 percent by electricity, and 22 percent by gasoline. The 

electric automobile presented appealing selling advantages when compared to the gasoline car's 

unreliability, loudness, and vibration, as well as the steamer's difficulties and water 

requirements. The most noteworthy were its fast self-start (steam cars could take up to 45 

minutes in the cold), quiet operation (gasoline cars were particularly noisy), and low 

maintenance. In addition to that, other pros, such as being easy to drive (especially when 

compared to steam and gasoline vehicles) and not having any intoxicating pollutants, made the 

electric vehicle a very popular and ideal choice. They were perfect for small trips around town, 

and terrible road conditions outside of cities meant that few automobiles of any kind could 

travel much far. It became easier to recharge electric automobiles as more people obtained 

access to electricity in the 1910s. It was only in 1908, when Henry Ford started mass-producing 

the famous Ford Model T, that electric cars’ popularity decreased. The Model T was 

significantly cheaper than the average electric car (about 1/3 or 1/4 the price). This affordability, 

plus the emergence of many gas stations around the country (which was in part due to the 

discovery of Texas crude oil), meant that gasoline powered cars could be quickly refueled 



Designing a fleet of Shared Autonomous Electric Vehicles and its charging stations through simulation INTRODUCTION 

João Carlos Quintal Lopes  7 

(opposed to electric cars that took a long time to recharge) and thus allowed people to travel 

further, faster and cheaper than with electric cars. By the 1920s, further development of 

gasoline-powered cars (for example, the introduction of the electric starter, removing the need 

for a hand crank) and other advancements, such as road infrastructure (which incentivized 

people to travel more outside the city) lead to a critical decline in the use of electric vehicles, 

and by 1935, they were commercially obsolete (Encyclopædia Britannica, n.d.-a; Matulka, 

2014). 

For over a century, internal combustion engines have been the primary propulsion technology 

for automobiles and trucks, but electric power has still been commonly used in other vehicle 

types, such as railroads and smaller vehicles of all sorts. And although electric cars were first 

invented in the 1800s and several different vehicles were constructed in the 1900s, the Electric 

Vehicle industry did not take off until the turn of the 21st century. This new beginning for 

electric vehicles actually started in the 1990s, with environmental concerns becoming more 

relevant, especially between scientists and engineers, who backed by government departments, 

institutions and some companies, started working on more efficient cars and improving electric 

vehicle technology. In the present century, environmental concerns and conscious started to 

reach the general public, and the electric car’ popularity has been increasing since. Nowadays, 

the electric car is widely seen as the future of the automobile, and hundreds of electric vehicle 

types are projected to be available worldwide by 2025. Currently, Tesla is the top brand in this 

sector, but almost all car brands on the market already have at least one electric model, and 

many of them have already declared their intention to transition to electric vehicles. Multiple 

benefits are associated with the implementation and wide use of the electric car, including 

economic advantages, quieter and easier driving, no direct emissions, current financial 

incentives, charging convenience (since electric infrastructure is everywhere, you can charge 

your car whether you’re at home, at work, at supermarket, etc.), amongst many others. Most 

arguments against electric cars criticize their range and their charging time. But the truth is, in 

the last two decades, batteries have gotten significantly better (particularly due to the 

introduction of lithium-ion batteries) and astonishingly cheaper. Energy density has increased 

both per unit volume and per unit mass, while battery prices have plummeted, with lithium-ion 

batteries’ price dropping 97% since 1991 (Ritchie, 2021). Regarding charging time, there are 

already fast-charging stations that take a small amount of time to charge. The most powerful 

public charger in the U.S. can charge a 95 kilowatt-hour battery in 16 minutes (if the battery 

can accept that power) (Stone, 2021). Modern fast-charging stations can charge 80% of an 

electric vehicle battery in about 30 minutes (to prevent damage, after 80% charge, the charging 

speed slows down) (Stone, 2021). The Tesla supercharging station can add more than 300 km 

of range in 15 minutes (Stone, 2021). Nowadays, many commercial electric models already 

have more than 500 km of battery range, with some reaching almost 700 km, this is not far from 

current fossil fuel vehicles’ range (Electric Vehicle Database, n.d.-c). With new technological 
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developments and more efficient manufacturing, these prices will continue to drop, while better 

and more efficient batteries and chargers will keep appearing. Notwithstanding, the fact is, most 

of the population do not even need to worry about range or charging time on a daily basis. In 

2017, in the U.S., the majority (59.4%) of one-way household vehicle trips were less than 10 

km and a staggering 95% were less than 50 km (Energy Department, 2018; Federal Highway 

Administration, n.d.). This means that even the lowest range models in the market today would 

be enough to serve most of the population on a normal daily usage. People can use their car 

during the day and, when they get home, simply leave it charging during the night. In addition, 

electric vehicles’ production cost is expected to equal the one of fossil fuel vehicles in the next 

few years. Electric vehicles are an intrinsic part of the future of the automobile (Crabtree et al., 

2015; Encyclopædia Britannica, n.d.-a; König et al., 2021; Matulka, 2014; The American 

Society of Mechanical Engineers, 2021; Waymo, 2021; Ziegler & Trancik, 2021). 

Shared Autonomous Vehicles 

As the name implies, a Shared Autonomous Vehicle (SAV) is an autonomous vehicle, that is 

“shared”. So, it is a vehicle that can drive itself, but that is also designed to be shared between 

different users. These types of vehicles can be used both as time-shared vehicles, and time & 

space-shared vehicles. In the first case, only one person (client) travels at once, but after 

dropping that person at the destination, the vehicle is free to pick-up another client and transport 

him to its destination, and so forth. In the second case, the vehicle operates with ridesharing, 

which means more than one person can travel in the vehicle at the same time. While taking one 

passenger from point A to point B, the vehicle may pick-up other passengers along the route, 

or possibly do a small detour from the original route to pick-up the new passenger. There are 

different approaches used to optimize the vehicle’s trips, and they will depend on many factors 

such as the demand, the fleet size, the maximum waiting time, maximum detour time, etc. SAVs 

and SAEVs (Shared Autonomous Electric Vehicles), also known as robo-taxis, are considered 

a game changer in mobility. They have the potential to significantly alter mobility patterns and 

urban planning, with associated huge socio-economic impacts. From the urban mobility point 

of view, benefits include a decrease in traffic congestion, incentives in tourism, improve 

walkability and mobility for everyone, increase safety, reduce parking demand, eliminate the 

need for car ownership, and many more. They can also benefit suburban regions, whether as a 

first mile or last mile option, by linking transport stations or hubs to homes, offices and other 

places of interest. These benefits and other important points regarding SAVs will be discussed 

in future chapters (First Transit, n.d.; Kampshoff et al., 2019; Narayanan et al., 2020). 

Simulation and Agent-Based Models 

A simulation is an approximate replication, usually assisted by computers, of a real-world 

process operation or system, over a set of time. Simulation modeling is a method of resolving 
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real-world issues in a safe and effective manner. It gives a useful technique of analysis that is 

simple to verify, explain, and comprehend. Simulation modeling delivers important solutions 

across sectors and disciplines by providing clear insights into complicated systems (Anylogic, 

n.d.; Encyclopædia Britannica, n.d.-b). 

Agent-based modeling (ABM) is a powerful simulation modeling method, that in recent years, 

has been used in a variety of applications, including real-world business issues. In the Anylogic 

website, the following is stated: “Agent based modeling focuses on the individual active 

components of a system. This is in contrast to both the more abstract system dynamics 

approach, and the process-focused discrete event method. With agent-based modeling, active 

entities, known as agents, must be identified and their behavior defined. They may be people, 

households, vehicles, equipment, products, or companies, whatever is relevant to the system. 

Connections between them are established, environmental variables set, and simulations run. 

The global dynamics of the system then emerge from the interactions of the many individual 

behaviors.” (Anylogic, n.d.; Bonabeau, 2002). 

The simulation software used in this work was AnyLogic. It is a multimethod simulation 

modeling tool developed by The AnyLogic Company (former XJ Technologies), that works on 

Windows, macOS and Linux. The software allows the user to develop models using three 

simulation methods: agent-based, discrete event, and system dynamics, and they can be used in 

any combination. Anylogic includes various visual modeling languages: process flowcharts, 

statecharts, action charts, and stock & flow diagrams. The simulation software is designed and 

developed for business applications, and is used in industries such as supply chains, 

manufacturing, transportation, warehouse operations, rail logistics, oil and gas, ports and 

terminals, and mining. The AnyLogic Company is a multinational team operating from the US 

and Europe with a global network of partners. Some noteworthy clients include McDonald’s, 

British Airways, Coca-Cola, Facebook, IBM, NASA, Deloitte, Google, Nike, DHL, Intel, 

AIRBUS, BMW, Ford, and many others. Kyle Johnson, from IBM Global Business Services, 

Advanced Analytics and Optimization, states that “We chose AnyLogic to tackle our large 

complex problem because of the multimethod models you can use, the mix of agent based, 

discrete event and system dynamics is a very useful combination. My favorite part of AnyLogic 

is all the dashboard features, the great charts and business intelligence you can get from the 

agents that are working in the model.” (Anylogic, n.d.; Evgrafov, 2016). 
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2 RELATED LITERATURE 

2.1 Introduction 

In this chapter, we will introduce the subject of Autonomous Vehicles (AVs) by making an 

overview of some of the main topics associated with it. We will address many of the potential 

benefits of autonomous vehicles and some major issues to consider. For this purpose, we will 

base and guide ourselves on the analysis of the 2015 article “Preparing a nation for autonomous 

vehicles: Opportunities, barriers and policy recommendations” (Fagnant & Kockelman, 2015). 

In addition to that, we will complement the content of this chapter with other sources and more 

up to date information. 

2.1.1 Background 

The automotive and tech industries have made great strides in introducing computerization to 

a role that has been solely a human task for over a century: driving. The first efforts to develop 

autonomous vehicles focused on assisted-driving technologies. ADAS (Advanced Driver-

Assistance Systems), which are electronic systems in a vehicle that assist the driver, first arrived 

on top-tier vehicles, but ultimately started appearing as features for lower vehicle categories, 

being widely available nowadays. These systems include adaptive cruise control, parking-

assist/self-parking systems, emergency braking, backup cameras, amongst others. But a few 

companies have gone further on the matter, by creating self-driving cars (AVs). As mentioned 

in previous chapters, autonomous vehicles are vehicles that can drive themselves on multiple 

road environments, with non or little human involvement (the degree of human involvement 

depends on the level of automation). AVs have the capability to drastically alter the 

transportation network and its environment, as these technologies become successful and 

widely accessible (Fagnant & Kockelman, 2015; Heineke et al., 2017). 

By avoiding deadly accidents, granting crucial mobility to the aged and disabled, increasing 

road capacity, saving fuel (energy), and reducing pollution, autonomous vehicles have the 

ability to radically alter transportation systems. Parallel developments in ride-sharing could 

contribute to the transition from owned vehicles to on-demand services. Many impacts may 

result from this change. Infrastructure investment and upgrading, land use, parking 

requirements and travel preferences are some examples. In addition, the passenger environment 

may be transformed as well, from the seat layout to what activities are practiced by passengers 

during the trip. For example, passengers may be facing each other or in reclining seats, and 

activities as working on your laptop, watching shows and movies, reading, eating, etc., activities 

otherwise impracticable, may be done while remaining safe (Fagnant & Kockelman, 2015; Hirz 

& Rossbacher, 2019). 
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The market share for AVs has grown significantly in the past decade. As of 2020, the global 

market volume is estimated to be approximately 6,700 units, with North America dominating 

the autonomous vehicle industry with a market share of about 46.5%. This can be attributed to 

the fact that adjustments in traffic regulations have been made, aiming at the incorporation of 

autonomous vehicle operations on public roads. Nonetheless, the current AVs global market 

volume is shy to say the least, when compared to forecasted future volumes. The global AV 

market is projected to grow at a compound annual growth rate (CAGR) of 63.1% from 2021 to 

2030, achieving an estimated volume of more than 4.2 million units by 2030. Some of the major 

companies responsible for the development and presently operating in the market include Audi 

AG; BMW AG; Daimler AG (Mercedes Benz); Ford Motor Company; General Motors; Google 

LLC; Honda Motor Corporation; Nissan Motor Company; Tesla, Inc.; and Toyota Motor 

Corporation (Grand View Research, 2020). 

2.1.2 Potential Benefits 

There are some big and important differences between human driving and AV driving. Self-

driving cars can be designed and programmed to operate as we see fit, and thus, we can bypass 

many human weaknesses. AVs do not blink, do not get tired, do not text while driving, do not 

take unnecessary risks, do not drunk-drive and do not break traffic laws (as long as we design 

them that way). In addition, their reaction times are faster, and they can be adjusted to improve 

traffic flows, fuel saving and reduced emissions. Next, we will address these topics with further 

detail (Fagnant & Kockelman, 2015). 

Safety 

In terms of safety, the potential benefits are obvious since driver error (human driver error) is 

accounted to be responsible for over 90% of all crashes (Fagnant & Kockelman, 2015). Human 

factors such as distraction, negligence or driving with excess speed are usually associated with 

the crash, even when the main reason for the accident is ascribed to the vehicle. Each year, 1.35 

million deaths and up to 50 million injuries occur globally due to road traffic, with road traffic 

injuries being the leading killer of children and young adults (5-29 years of age) and the 8th 

leading cause of death for people of all ages (World Health Organization, 2018). The death 

rates in low-income countries are 3 times higher (27.5 deaths per 100,000 inhabitants) than in 

high-income countries (8.3 deaths per 100,000 inhabitants) (World Health Organization, 2018). 

In 2016, road traffic accidents were responsible for the loss of 25,600 lives and left more than 

1.4 million people injured in the member states of the European Union (European Commission, 

2018; Kovačević et al., 2020). A report from 2017 estimates that crashes in the EU have an 

annual economic cost of €270 billion (this includes lost productivity, medical costs, human 

costs, administrative costs, congestion costs, property damage), equivalent to 1.8% of the GDP 

(this value is believed to be an underestimation due to underreporting, the true cost is expected 
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to be at least 3% of the GDP) (Wijnen & et al., 2017). In 2010, in the United States alone, 

32,999 people died, 3.9 million were injured, and 24 million vehicles were damaged in motor 

vehicle crashes (Blincoe et al., 2015). These crashes had an economic cost of an estimated 

US$242 billion (this includes lost productivity, medical costs, legal and court costs, emergency 

service costs, insurance administration costs, congestion costs, property damage, and workplace 

losses), the equivalent of 1.6% of the U.S. GDP for 2010 (Blincoe et al., 2015). With AV 

technology getting better and better, and approaching a 100% AV penetration rate traffic 

scenario, the loss of lives and capital will predictably go down to reach very low values 

(scientist Bryan Hayes suggests that vehicle fatality rates per person-mile traveled could 

possibly reach those of aviation and railways, about 1% of current values) (Hayes Bryan, 2011). 

This being said, with the introduction of AVs, the potential benefits are considerable, both 

societal and economic (Fagnant & Kockelman, 2015; National Highway Traffic Safety 

Administration, 2008; World Health Organization, 2018). 

Congestion and Traffic 

Beside AV technology being developed to be safer, efforts have been made so that self-driving 

cars can also reduce congestion and fuel (energy) consumption, contributing to an enhanced 

traffic flow and lower emission rates. Through sensors and software, AVs can predict the 

leading vehicles’ actions, such as accelerating and braking. This prediction results in a smoother 

braking and velocity adjustment, which in turn contributes to less traffic disrupting, fuel 

(energy) savings and less brake and tyre wear. Moreover, AVs can use current lanes and 

intersections much more efficiently, resorting to platooning for example. The more self-driving 

cars at an intersection, the more efficient the intersection is, furthermore, a solid lane of AVs 

greatly improves how many cars will go through the intersection. While this idea is still 

speculative, some research suggests that sophisticated systems could essentially eliminate 

intersection delays while reducing fuel consumption. Several of the improvements in 

congestion, rely not just on automated driving capabilities but also on coordination and 

cooperation between vehicles, via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 

communication. The basis for connected transportation systems is a strong wireless 

communication network. Connected Vehicle Technology (CVT) applications depend crucially 

on reliable and continuous vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) data 

connectivity. Notwithstanding, since an appreciable portion of congestion is accredited to 

traffic incidents, a considerable congestion reduction may be achieved through safety benefits 

exclusively. AVs have been studied in a variety of scenarios to see how they can minimize 

traffic congestion. Congestion benefits from adaptive cruise control interventions and traffic 

monitoring systems could smooth traffic flows, at different levels of AV implementation, by 

attempting to decrease accelerations and braking in freeway traffic. Enabling vehicles to 

decrease the distance between them while travelling together, id est, platooning, improves fuel 
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saving and increases highway capacity, while decreasing congestion. If all the vehicles in the 

platoon are equipped with sensors, the increase in highway capacity is estimated to be about 

43%, whilst if they use both sensors and vehicle-to-vehicle communication, the increase is 

about 273% (Dey et al., 2016; Dresner & Stone, 2008; Fagnant & Kockelman, 2015; Milakis 

et al., 2017; Tientrakool et al., 2011). 

Travel-Behavior 

Travel behavior can also be substantially affected by the integration of AVs, since safety and 

congestion-saving impacts can induce shifts in travel behavior. New demands for roadway 

capacity may arise from different groups, such as individuals that do not have a driving license, 

the elderly and the disabled, for example. Ridesharing may become common as AV usage rises 

and lower fares are created. Since self-driving cars do not need a driver to park them, they can 

drop a passenger at its destination and then drive to a less-expensive parking location. 

Driverless drop-offs and pickups can become the predominant manner of travelling, with in-

vehicle systems communicating with parking infrastructure. This same system can allow for 

nearby real-time rentals on a per-mile or per-minute basis, inducing carsharing and ridesharing. 

In addition, many studies expect that the number of owned vehicles will go down. Maintaining 

mobility levels, shared automated vehicles could replace from around 67% up to more than 

90% of conventional vehicles (Milakis et al., 2017). This would mean a complete shift in urban 

design, as we would need less parking spots (particularly on city-center areas) and following 

this train of thought, projects become more feasible because we do not have to pay for all the 

extra land needed for parking, we could build more densely, housing becomes more affordable, 

and this cascade of effects goes on. So, the majority of these ideas draw towards an increase in 

vehicle miles traveled (VMT) and automobile-oriented development, although with less 

vehicles and parking spaces. We should note that despite the use of AVs possibly increasing 

VMT, the associated smoother travel should lead to reductions in fuel consumption and 

consequently less emissions (emissions per mile could be decreased). AVs’ smart parking will 

also allow to save time and fuel usually lost searching for parking. So, cruising for parking and 

the associated frustration, may well become a thing of the past (Boesch et al., 2016; Bullis, 

2011a; Fagnant & Kockelman, 2015, 2014; Larco, 2021; Milakis et al., 2017). 

Freight Transportation 

Regardless of whether we are right now, if we look around us, there is a good chance that most 

of the goods we see got to their destination by truck. In 2018, road transport accounted for about 

75% of the total inland freight transport in the EU (Eurostat, 2020). In 2017, in the US, about 

65% of freight shipments were done by truck (Bureau of Transportation Statistics, 2021). 

Notwithstanding, the freight transportation sector can potentially change drastically in the 

coming years. The autonomous vehicle technology that creates self-driving cars, can similarly 
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be applied to trucks, creating self-driving trucks. Just as this technology has the ability to 

revolutionize the transportation of people, it also has the ability to revolutionize the trucking 

industry, by increasing fuel savings (and reducing emissions) and most importantly, by 

reducing and eventually eliminating altogether the need for drivers. Freight companies could 

significantly reduce personnel, with the need for only warehouse workers for loading and 

unloading cargo, plus some office workers. A sector that employs millions worldwide, will 

probably face resistance to such change. In 2015, 3.2 million people were employed as 

professional truck drivers in Europe (although these numbers have been decreasing due to 

driver shortage in Europe: in 2008 there were 300,000 more) (ITF-OECD, 2017). As of 2017, 

more than 3.5 million people work as truck drivers in the U.S. (about 1% of the population) 

(Cheeseman & Hait, 2019). Added benefits can be achieved by recurring to platooning, 

including even higher fuel saving, with a reduction of about 10% to 15% (due to reduced air 

drag) or even more when considering adaptive braking, and lower travel times (due to shorter 

headways) (Fagnant & Kockelman, 2015). Platooning has been successfully tested multiple 

times in the last years and thanks to an EU-funded initiative known as ENSEMBLE, multi-

brand (Volvo Group, DAF, Daimler, Iveco, MAN and Scania) truck platooning has started 

taking place in Europe. Returning to the subject of AV technology, some companies are already 

using AV trucks. Waymo is a subsidiary of Alphabet Inc (Google’s parent company) focused 

on the development of autonomous driving technology. Since 2017, when Waymo’s trucking 

and local delivery program known as Waymo Via was launched, there autonomous Class 8 

trucks have been tested in a wide variety of cities and environments in California, Georgia, 

Arizona, New Mexico and Texas (Waymo Via, 2020). The metals and mining corporation Rio 

Tinto currently runs more than 130 autonomous trucks, and in 2018, each truck was estimated 

to have operated 700 hours more (on average) than a conventional truck, with a 15% lower cost, 

and in addition, the automated system makes the mining operations safer (Rio Tinto, n.d.). 

Recently, Volvo Trucks has made an agreement with Brønnøy Kalk AS in Norway to provide 

its first commercial autonomous solution transporting limestone from an open pit mine to a 

close port. Other companies involved in the development and testing of autonomous trucks, 

include Tesla, Daimler, TuSimple and Embark, amongst others (Ackerman, 2021; Bullis, 

2011b; Daimler, n.d.; Embark, n.d.; Fagnant & Kockelman, 2015; IRU, 2019; Kunze et al., 

2011; Tesla, n.d.; TuSimple, n.d.; Volvo Group, 2018, n.d.). 

Economic Impact 

AV technology could have a big economic impact and monetary benefits could be enormous. 

Some estimations have been made in this sense, depending on the AV market penetration rate 

and some values have been suggested on a variety of different arguments and basis. Fagnant 

and Kockelman made estimates for AVs’ annual economic benefits in the U.S. for three 

different penetration rate scenarios (10%, 50%, 90%). Their estimations for a 90% penetration 
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rate scenario, indicate economic benefits up to US$201 billion and can even go further up to 

US$447 billion, if comprehensive crash costs are accounted, these include indirect economic 

factors like the statistical value of life and willingness-to-pay to avoid pain and suffering. The 

economist Adam Ozimek suggests that even with conservative values, the economic benefits 

for a full autonomous vehicle environment, in the U.S. alone, should be about US$642 billion 

($317 billion from fatal crashes, $226 billion from non-fatal crashes, and $99 billion in time 

savings). Andreas Tschiesner, senior partner at McKinsey in the Automotive and Advanced 

Industries sector, states that every EU citizen spends about 40 min a day in a vehicle (usually a 

car). He also says that “If half of the time could be spent working, for example, dealing with 

mails, an extra one billion euro added value would be created every day”. Although precise 

values and levels of impact remain unsure, we can already perceive the potential that AVs have 

to offer, with many and significant possible benefits for the population (Adam Ozimek, 2014; 

Bosch, n.d.; Fagnant & Kockelman, 2015). 

2.1.3 Major Issues 

AVs offer a plethora of possibilities, advantages, and obstacles, as well as behavioral shifts that 

affect how people engage with transportation systems. The pace and extent of any change to an 

AV-based system are far from certain; they will be highly influenced by AV purchase prices, 

as well as governmental licensing and liability requirements. Furthermore, AVs pose some 

unique threats, especially in terms of security and privacy. Even assuming that AVs will have 

an easy and quick implementation, a future system that makes the most out of AV capabilities 

will require in-depth research and careful development. Next, we will discuss some of the major 

obstacles to AV deployment (Fagnant & Kockelman, 2015). 

Vehicle Costs 

Vehicle costs are an important factor for AV implementation, if not the most important one in 

terms of barriers. The installation of new sensors, communication and guidance technology, 

and software for each vehicle are all needed technology for the development of autonomous 

vehicles. One of the biggest contributors to overall AV vehicle prices has been the LIDAR 

(Light Detection and Ranging) systems. Although some self-driving car developers have 

developed their AV technology without relying on LIDAR, the majority of developers deem 

these systems to be key components. In the first half of the previous decade, these systems had 

prices around US$70,000, constituting a considerable part of the total budget, and raising AV 

vehicle prices to over US$100,000 (Davies, 2019; Fagnant & Kockelman, 2015). In light of 

this, many companies started developing their own systems (for example: Waymo) or acquired 

LIDAR developers (for example: Argo, Aurora and Cruise). In 2017, Waymo started 

manufacturing its own LIDAR sensors with the goal of substantially reducing their AV 

production costs, by dropping one order of magnitude in the unit cost, lowering the price from 
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US$75,000 to about US$7,500 (Hawkins, 2019). Waymo will also sell their LIDAR sensors, 

with the first being the “Laser Bear Honeycomb”, however, Waymo will only sell them to 

clients who will not compete with its autonomous taxi business. Some companies as Luminar 

Technologies and Velodyne Lidar developed LIDAR sensors with a price range of about 

US$500 to US$1000 (Davies, 2019; Forbes, 2021).  Notwithstanding that AV production costs 

are still a major barrier, the scenario has changed in recent years with the much cheaper LIDAR 

systems emerging. But despite the lowering costs of AV production and the agreed upon fact 

that technology has a trend of getting cheaper and more affordable with time, there is some 

disagreeing between specialists on how much time it will take for AV prices to reach the price 

range of conventional vehicles and on when will it be economically feasible to achieve 

widespread implementation. A survey released by the consulting firm Deloitte (Deloitte Global, 

2020) shows consumers worldwide are still unsure about spending extra on AV and EV 

(Electric Vehicles) technology, however, there are indications that over the last years, 

consumers have become more willing to pay more for these technologies (as we can see in 

Figure 2.1; note that in this figure, the percentages are for people unwilling to pay more). 

According to Hensley et al., electric vehicle prices have been falling at a rate of 6% to 8% per 

year, indicating that it could take, for example, 15 years at an annual cost decrease of 8% to go 

from a $10,000 AV mark-up to a $3,000 mark-up (Hensley et al., 2010). As AVs transition 

from personalized add-ons and top luxury models to mass-produced vehicles, these costs will 

predictably reduce further (Fagnant & Kockelman, 2015; Luminar, n.d.; Nunes & Hernandez, 

2019; Velodyne Lidar, n.d.). 

 

Figure 2.1: Percentage of consumers who are unwilling to pay more for AV and EV techonology (Source: (Deloitte Global, 

2020)) 
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Legislation and Regulations 

The automotive industry is collaborating with governments and research institutions to create 

and advance self-driving technology. Although self-driving developers are the ones responsible 

for creating and developing AV technology, lawmakers, local authorities and some institutions 

also have a crucial role in the implementation of AVs. At the moment, the United States is the 

country with most work done in this regard (mostly due to the presence of big tech companies 

and research institutions that started developing the technology early on). Notwithstanding, 

some countries such as China and Germany have been catching up (other countries whose 

governments or automotive and technology industries have been supportive and have produced 

new methods to assist the emergence of the autonomous vehicle industry include Australia, 

Canada, Hungary, Japan, Poland, South Korea and Turkey). Focusing on the first three 

mentioned countries and as stated in the “Global Guide to Autonomous Vehicles 2021”, 

published by Dentons (one of the world’s largest law firm) we have the following (Dentons, 

2021): 

• US – [“The United States does not have a federal regulatory framework currently in 

place to address autonomous vehicle testing and deployment. As a result, testing and 

deployment is regulated by a patchwork of state-centric laws. That patchwork is made 

up of 40 states and DC that have either passed autonomous vehicle legislation or are 

operating under executive orders. On Monday, January 11th (2021) the Department of 

Transportation released the Automated Vehicles Comprehensive Plan. (…) The 

document also lays out several steps the Department plans to take going forward. 

Additionally, The Department of Transportation and the National Highway Traffic 

Safety Administration issued an advanced notice of proposed rulemaking requesting 

comments on a new generation of safety standards for autonomous vehicles.”]; 

• China – [“On February 10, 2020, 11 national ministries including the National 

Development and Reform Commission, the Ministry of Industry and Information 

Technology etc., collectively promulgated “the Innovative Development Strategy of 

Intelligent Vehicle.” The strategy proposes that by 2025, the technology innovation, 

industrial ecology, infrastructure, regulations and standards, product supervision and 

network security system of China’s standard intelligent vehicles will be formed. By 

2035, China’s standard intelligent vehicle system will be fully completed. To this end, 

the state will issue policies to promote the development of road traffic automated 

driving, and support the R&D and industrialization of common key technologies of 

intelligent vehicle infrastructure, as well as the construction of major projects of 

intelligent transportation and smart city infrastructure.”]; 

• Germany – [“Overall, the German federal government welcomes further developments 

in the field of autonomous driving. Its aim is to strengthen the German economic 
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position in this sector. In its “Strategy for Automated and Connected Driving,” which 

was formulated in 2015, Germany has set the goal of ensuring that Germany remains 

the “lead supplier for automated and connected vehicles” and becomes the “lead 

market.” The introduction of autonomous vehicles into public road traffic is to be 

facilitated in particular, by adapting the legal situation. The effort to amend the legal 

structure began in earnest in November 2020 when Federal Minister Andreas Scheuer 

presented a draft bill to create a regulatory scheme for level 4 and level 5 autonomous 

driving.”]; 

We can see most of these government efforts are as recent as 2020 and 2021. These efforts have 

been increasing gradually, as new and better AV technology appears and, more and more people 

believe that the future of the automobile and transportation lies in automation. In the United 

States, the number of states that have introduced AV related legislation and/or issued executive 

orders related to autonomous vehicles has been increasing since the beginning of the past 

decade. China has enacted national regulations and road safety laws to encompass AVs 

(typically referred in China as “driverless vehicles”), with local regulations also being created. 

In Japan, the “Road Traffic Act” and “Road Transport Vehicle Act” were revised in 2019, with 

the operation of autonomous vehicles on public roads in mind. The legal issues regarding the 

operation of SAE level 3 autonomous vehicles have greatly decreased with these revisions, and 

there is developing work regarding the operation of SAE level 4 autonomous vehicles. Germany 

has benefited from being home to many major automotive companies (such as Audi, BMW, 

Mercedes, Porsche, Volkswagen, etc.), making it a leader in AV technology. In order to begin 

the regular operation of driverless vehicles, the German Federal Government adopted a draft 

law on autonomous driving in February 2021, with the goal of establishing an appropriate legal 

framework, by complementing current road traffic law regulations. In May 2021, the German 

Bundestag (German Federal Parliament) passed this draft law, intended “to amend the Road 

Traffic Act and the Compulsory Insurance Act – Act on Autonomous Driving” (19/27439). In 

Europe, besides the aforementioned Germany, multiple countries have permitted testing of 

automated vehicles on public roads, but most fall far behind the leading superpowers in many 

aspects. At an European Union level, some efforts have been made, especially with the 

“Regulation (EU) 2019/2144 of the European Parliament and of the Council of 27 November 

2019”, which specifies requirements relating to automated vehicles and fully automated 

vehicles (this regulation shall apply from 6 July 2022, with exception to some articles that are 

already applied since 5 January 2020).  (Dentons, 2021; e-gov (Japan), 1955; European 

Commission, 2019; Imai, 2019; National Conference of State Legistlature, 2018; National 

Police Agency (Japan), 2021; Nippon, 2021; Simmons & Simmons, n.d.). 

The 1968 Vienna Convention on Road Traffic is an international treaty intended to increase 

road safety and to facilitate international road traffic by establishing principles to regulate traffic 
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laws. One of the primary principles has been that a human driver is always in full control of the 

vehicle, and therefore is liable for its actions. For obvious reasons, this presented a legal 

problem for autonomous driving. But in 2016, an important regulatory milestone towards the 

deployment of AV technology was achieved, with the amendments to the 1968 Vienna 

Convention on Road Traffic. Automated driving technologies that delegate driving functions to 

the car will be explicitly permitted in traffic, provided that they are compliant with UN vehicle 

laws or may be bypassed or turned off by the driver. This will also involve eliminating UN 

Regulation No. 79's present restriction on automated steering functions (that limits driving 

speeds to below 10 km/h). (UNECE, 2016; United Nations, 1968). 

Despite emerging legislation and recent regulatory progress, there is still an enormous amount 

of work to be done. AV technology is developing and evolving rapidly, and in many cases, the 

establishment of regulations relative to automated vehicles are not keeping up, many countries 

have fallen behind. And although treaties like the “Geneva Convention on Road Traffic” 

(United Nations, 1949) and the “Vienna Convention on Road Traffic” (United Nations, 1968), 

and the creation of legislation at international level, like regulation created by the European 

Commission have brought some internationally standardized regulation, ultimately, it is up to 

each country to apply its own regulations. Although regulations in Europe share the same 

fundamental basis, they remain somewhat fragmented. In the United States, the disparities are 

even seen at the national level, with each state having their own legislation. Without a coherent 

licensing framework and, standard norms and regulations, carmakers and software developers 

will have to examine their responsibility and how to proceed, country by country (or state by 

state). This can lead to redundant work and unnecessary overlap, demotivating manufacturers 

and delaying AV implementation (Dentons, 2021; Fagnant & Kockelman, 2015; Lexology, 

n.d.; National Conference of State Legistlature, 2018). 

Liability and Ethics 

An autonomous vehicle driving on public roads brings issues regarding responsibility and 

insurance involvement. Even though AVs will, as already mentioned, predictably make the 

roads a safer place, having a significantly lower percentage of error than humans, there will 

always be a percentage of error, as small as it will be, it will still exist. Even with an almost 

perfect AV, there may be situations where a crash is inevitable. 

Regarding this subject, Fagnant and Kockelman give an example, with some interesting follow-

up questions: [“For example, if a deer jumps in front of the car, does the AV hit the deer or run 

off the road? How do actions change if the deer is another car, a heavy-duty truck, a 

motorcyclist, bicyclist, or pedestrian? Does the roadside environment and/or pavement wetness 

factor into the decision? What if the lane departure means striking another vehicle? With a split 

second for decision-making, human drivers typically are not held at fault when responding to 



Designing a fleet of Shared Autonomous Electric Vehicles and its charging stations through simulation RELATED LITERATURE 

João Carlos Quintal Lopes  20 

circumstances beyond their control, regardless of whether their decision was the best. In 

contrast, AVs have sensors, visual interpretation software, and algorithms that enable them to 

potentially make more informed decisions. Such decisions may be questioned in a court of law, 

even if the AV is technically not “at fault”. Other philosophical questions also arise, like to 

what degree should AVs prioritize minimizing injuries to their occupants, versus other crash-

involved parties? And should owners be allowed to adjust such settings?”] (Fagnant & 

Kockelman, 2015). These liability issues are directly associated with the already covered 

“Legislation and Regulations” issues. Once again, we can understand the importance of having 

thorough and explicit legislation and regulations, regarding both manufacturing and legal 

matters, so that manufacturers will have guides for the process of creation and so that authorities 

can handle legal incidents without ambiguity (Fagnant & Kockelman, 2015). 

Liability rules for product liability regarding self-driving cars remain far from internationally 

standardized, and legislators are lagging behind the quick moving world of AV. Product 

liability regulations in EU member states are based on the Product Liability Directive 

85/374/EEC. For example, in Germany and France allegations may be filed against the 

manufacturer of a faulty product or the manufacturer of a component part. Regarding 

autonomous vehicles, the definition of the "manufacturer" (producer of product) is yet to be 

tested to see whether it includes the vehicle’s software designer. Each case will depend on 

whether the autonomous system is considered a component part of the vehicle or as a whole 

single product by the courts. If the system is deemed a component part (as brakes are, for 

example), the system's manufacturer will be responsible for any damages to the vehicle as well 

as any injuries or property damage sustained by the car colliding due to a fault in the system 

(European Commission, 1985; Lexology, n.d.). 

The previously stated ethical questions are hard to answer and there is no universal morally 

right answer, but nonetheless, they have to be addressed. In 2018, the largest ever study on 

machine ethics was published in the popular scientific journal “Nature” (Awad et al., 2018). 

The Moral Machine, as is called the study, is an online platform developed in MIT 

(Massachusetts Institute of Technology), that creates moral dilemma problems and collects data 

about the decisions that people make between two outcomes (participants have to answer 13 

laid out scenarios with a mix of variables: young or old, rich or poor, more or less people, etc.), 

where someone’s death is inevitable. The study found that the moral values that assist the 

participants deciding, vary by country, revealing cultural differences that authorities and AV 

developers should consider in order to facilitate self-driving cars’ public approval. The results 

show that the 130 countries involved in the survey can be divided into three groups: the first 

contains North America and many European countries where Christianity has been historically 

predominant; the second is constituted by countries such as Japan, Indonesia and Pakistan, 

where Confucian or Islamic traditions are more prevalent; the third and last group includes 
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Central and South America, and France and its past colonies. Beside the three groups more or 

less agreeing (independent of age, gender, or place of residence) on saving humans over pets 

and groups of people over individuals, significant differences can be found in the moral 

compass (see Figure 2.2). For example, the third group indicates a higher preference for saving 

females than the first and second group did. Studies like the Moral Machine can help in the 

debate about what decisions should the autonomous vehicles make in the case of an unavoidable 

accident. In the future, our cars will have to decide what do in critical scenarios, with our lives 

in the balance, and possibly, even decide to sacrifice us, as occupants, for the “greater good” 

(Awad et al., 2018; Maxmen, 2018). 

 

Figure 2.2: Moral Compass, The Moral Machine (Source: (Awad et al., 2018)) 
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Security 

Electronic security is a major concern for transportation authorities, automotive producers, and 

future autonomous vehicle drivers. AVs and intelligent transportation networks in general can 

be targeted by computer hackers, dissatisfied employees, terrorist groups and hostile countries, 

resulting in crashes and traffic disruptions. Cars are getting progressively more sophisticated 

and connected, nowadays, even the average new vehicle depends on software that uses over 

100 million lines of code. This is leading to vehicles that are more and more exposed, due to 

not just the quantity of code, but also, to its quality. The rate of technology progress is getting 

faster and faster, and companies, with fear of falling behind, may sometimes compromise rigor, 

in order to keep up with schedules and stay in the competition. As new features come out, this 

lack of carefulness could raise the probability of system errors and security vulnerabilities 

(Deloitte, 2017; Fagnant & Kockelman, 2015; GELLES et al., 2015). 

To comprehend the scale of this threat, it is necessary to consider the issue in terms of effort-

and-impact, as well as applying mitigation approaches used in crucial infrastructure structures 

of national significance. Currently, cyber-attacks are more often acts of spying (gaining 

unauthorized access to a device with the goal of collecting information) than sabotage (actively 

disrupting a system's regular operation) (Fagnant & Kockelman, 2015; Johnson, 2021). 

For example, disrupting a vehicle's contact or sensors would involve a more complicated and 

sophisticated attack than merely gathering data, and disturbing the vehicle's control commands 

would be even more difficult. Plotting an attack to simultaneously compromise an entire fleet 

of vehicles, whether from a point source or from a system-wide broadcast over infected 

networks, would certainly present even more challenges to potential intruders. Large-scale 

attacks on AVs and associated networks should be especially difficult due to multiple security 

mechanisms, such as the seclusion of mission-critical and communication systems. Though 

experts agree that there is no such thing as a perfect defense, such procedures make attacks far 

more difficult to carry out while also reducing the amount of damage that can be done. In any 

case, the danger exists, and a security breach may have long-term consequences (Fagnant & 

Kockelman, 2015). 

Privacy 

Many advantages can come from vehicle communication systems, by benefiting from data 

obtained from other vehicles in the surrounding area, particularly information concerning traffic 

congestion and potential dangers. These systems use vehicles and fixed units as communication 

nodes in a useful data sharing P2P (peer-to-peer) network. As AVs and non-autonomous 

connected vehicles become more popular, and data sharing becomes more widespread, privacy 

issues are likely to increase. Some data-related questions emerge: “Who should own or control 
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the vehicle’s data? What types of data will be stored? With whom will these data sets be shared? 

In what ways will such data be made available? And, for what ends will they be used?” (Fagnant 

& Kockelman, 2015; Papadimitratos et al., 2009). 

Crash data is expected to be held or made available by AV technology providers, and they 

would most likely be liable for damages if the AV is at fault in the case of an accident. However, 

privacy concerns may appear if a person is driving a car with autonomous capability at the time 

of the collision. People will predictably want to avoid their vehicle's data recorder to be 

exploited against them in court. But in truth, this is simply an extension of an ongoing concern, 

since in many places, most new vehicles sold already have in-vehicle data recorders. Currently 

in the United States, about 96 percent of new passenger cars have identical incident data 

recorders that describe vehicle behavior in the seconds leading up to and after a collision, 

although less complete (Consumer Reports, 2014; Fagnant & Kockelman, 2015). In the 

European Union, these “black boxes” as they are popularly known, have been present in the 

market for many years, but their use is not as widespread as in the US. Notwithstanding, the 

use of these data recorders is usually considered beneficial, since accident investigators can use 

it to determine more precisely what happened and, to improve safety of future vehicles and 

accidents (European Commission, n.d.; Fagnant & Kockelman, 2015). 

Some more controversial concerns may arise with the providing and possibly storing of AV 

travel data (routes, destinations, schedules, etc.) to government agencies systems. Without 

adequate protection, this information may be used by government employees to trace people, 

or sent on to law enforcement authorities for unrestricted monitoring. People may also be 

concerned about the potential commercial uses of vehicle travel info, such as personalized ads, 

for example (Fagnant & Kockelman, 2015). 

Despite the well-placed concerns, AV data can have huge advantages, if disseminated and used 

responsibly. The information obtained can help transportation network administrators and 

developers with future planning and improvements, and assist with the transition from a gas tax 

to a VMT fee, as well as the implementation of congestion pricing systems based on place and 

time of day, and can be used to increase efficiency and trip quality for passengers. Such 

information could also be useful to law enforcement, and economic revenues from ads could 

bring down AV costs. We should also keep in mind that this kind of concerns, like personalized 

ads, are already a common thing in our everyday life. Through a method known as 

“retargeting”, companies track consumers’ shopping habits to then provide customized 

advertisement. Companies like Google build up an ad profile based on your searches, behaviors 

and estimated preferences, so that they can tailor ads for each person. And as a matter of fact, 

studies show that the majority of consumers actually prefer tailored ads, making this a minor 

issue in the subject of AV. Any decision to improve traveler privacy should be weighed against 
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the advantages of sharing data (Bleier & Eisenbeiss, 2015; Fagnant & Kockelman, 2015; 

Google, n.d.; Pauzer, 2016). 

Missing Research 

Although AVs are now a reality and already operating on public roads (mostly in limited and 

well-defined areas, and driving along specific routes), there is still much uncertainty regarding 

the impacts of a partial or full AV deployment. As stated, AVs are already driving among us 

(in very specific cases) and the number of operating AVs will predictably continue on rising, 

but it is still unsure when will self-driving cars constitute a significant portion of the vehicle 

fleet of the AV research leading countries, let alone the rest of the modernized world. Existing 

literature has mostly investigated the technological aspects of autonomous vehicles and their 

implications on the driver and driving environment, however, there is few research with a more 

comprehensive view, regarding other direct and indirect potential impacts of AV adoption 

(Fagnant & Kockelman, 2015; Milakis et al., 2017). 

 

2.2 Agent-Based Model 

In this chapter, we will make a general overview of the existing research regarding agent-based 

simulation of automated vehicles. For this purpose, we will follow more or less, the 2020 article 

“Agent-Based Simulation of Autonomous Vehicles: A Systematic Literature Review”, 

published in IEEE Access (Jing et al., 2020), complementing with other sources, including the 

very recent systematic review article from July 2021, “A systematic review of agent-based 

models for autonomous vehicles in urban mobility and logistics: Possibilities for integrated 

simulation models”, that was published in the Computers, Environment and Urban Systems 

journal (Li et al., 2021), while the previously referred article was already analyzed and the 

writing of this chapter was already ongoing. In addition to that, we will also have a quick look 

to the 2019 research article, “Exploring the Performance of Different On-Demand Transit 

Services Provided by a Fleet of Shared Automated Vehicles: An Agent-Based Model”, 

published in the Journal of Advanced Transportation (Wang et al., 2019). 

2.2.1 Background 

Previously we talked about several potential benefits related to the use and widespread 

implementation of AVs, such as turning the roads into a much safer environment, decreasing 

congestion and traffic, lowering emissions and inducing fuel savings, decreasing fleet size and 

need for parking, increasing accessibility, freeing up time for drivers, and generating huge 

economic benefits, amongst others. Notwithstanding the huge positive impact that AVs may 

have, their impact is uncertain, since there is yet no extensive use of fully autonomous vehicles. 
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For this reason and due to the fact that real-life testing of AVs is expensive, the construction of 

simulation systems is essential for acquiring vast amounts of data at a low cost. Additionally, 

legal constraints and safety issues constitute other real-life testing barriers, which can be 

surpassed with simulation operations. Complex systems such as an AV network require that 

multiple variables and scenarios be tested in a variety of environments, and agent-based 

simulation is a suitable option for this purpose (Jing et al., 2020). 

Agent-Based Models (ABMs), as described in a previous chapter, are computational simulation 

models that focus on the individual entities and their interactions with each other and the 

environment. Compared to other models and simulation methods, the ABM is improved in 

many aspects, like flexibility and hierarchy, and being more intuitive, as they represent objects 

as individual things. Furthermore, it factors in the diversity and the different characteristics for 

each agent (humans and vehicles). The model analyzes the system from a microscopic scale to 

a macroscopic scale perspective. AV transportation systems are complex, and therefore we must 

examine the interplay of the interrelated components in the system, this includes people, cars, 

the road grid, and the environment (Jing et al., 2020). 

As computer processing power has increased, researchers have built several agent-based 

models with increasingly more features and with scenarios ever more similar to the real-world. 

Each investigator develops the models for their own purpose, concentrating on their defined 

main variables, with some models being more complex than others. This and the use of different 

simulation platforms results in a wide variety of solutions to approach in the real world. While 

some researchers may focus on the travel and environmental implications of AV, others will 

concentrate on the parking requirements associated with the implementation of AV. Other main 

concerns include the performance of AV systems, the traffic congestion caused by AV and the 

model share of AV (Jing et al., 2020). 

In the last years, Agent-Based simulation of AV has seen a considerable growth in quality and 

quantity of research, with multiple papers being published on this topic, thus raising the need 

for a standard protocol for comparison. The following chapter’s analyzed information was 

obtained through the use of the ODD (Overview, Design concepts, and Details) protocol (the 

“ODD protocol” was published in 2006 with the purpose of describing and standardizing 

Individual-Based models and Agent-Based models) and some of the complementary 

information was obtained through the use of the more recent and specific variant AAODD 

(Autonomous vehicle Agent-based Overview, Design concepts and Details) protocol (Grimm 

et al., 2006; Jing et al., 2020). 
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2.2.2 Overview of existing literature 

From the main systematic review in question, 44 valid papers were chosen from the selection 

process. This process included the retrieving of a total of 10,769 papers (including duplicates) 

from the following databases: Web of Science, ScienceDirect, SPRINGER LINK, IEEE Xplore 

and TRID; and their consequent selection by a number of criteria (check the original article for 

more detail on the process of selection). However, from the selection process of the 2021 

systematic review, a total of 80 papers were selected (73 publications in mobility and 7 

publications in logistics). While the papers from the 2020 systematic review were searched in 

May 2019, the more recent systematic review’s authors carried out the research in December 

2020, with only papers issued after 2015 being filtered. Although the number of chosen papers 

varies due to the selection process criteria, we can already verify a significant increase of papers 

on the subject in the period between the researches of these two reviews (less than 2 years), 

with the majority of the papers being published in 2019 and 2020 (Jing et al., 2020; Li et al., 

2021). 

Date and geographic distribution 

In terms of date distribution of the papers/articles, as we can see from the plots in Figure 2.3 

and Figure 2.4 (2020 review and 2021 review respectively), both systematic reviews reflect that 

the interest and work done on the subject has and is increasing significantly throughout the 

years, with most of it being done recently (note that in the 2020 review, although 2019 has less 

published work than previous years, the research for this systematic review was done in May 

2019, not even halfway through the year). In addition to that, the increase over the years has 

been not only in quantity, but also in quality, as results obtained via AAODD show the average 

scores of publications obtained annually grow throughout the years, with AV systems in ABMs 

getting more complex by compounding diverse technical options and ABM methods getting 

more mature, leading to more realistic simulation scenarios (Jing et al., 2020; Li et al., 2021). 

 

Figure 2.3: Number of papers per year, 2020 review (Source: (Jing et al., 2020)) 
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Figure 2.4: Number of papers per year, 2021 review (Source: (Li et al., 2021)) 

 

The 2020 review’s geographic distribution (seen in Figure 2.5) of case study areas used in the 

agent-based models research of AV follows the aforementioned trend that presently places the 

United States of America as the most developed country (in various aspects) on the subject, 

with Europe not far behind. Although China is nowadays one of the leading countries in AV 

technology (as already talked about in previous chapters), none of the 44 papers selected are 

from the country. The authors of the article point out that this may be due to the fact of research 

data not being publicly available and that all reviewed articles are in English. The 2021 review 

shows a somewhat similar trend, but with European countries as a whole, catching up with the 

USA, and Asian countries appearing with a more significant number of case studies than before 

(see Figure 2.6). Additionally, some studies adopted theoretical networks that are not based on 

real-world road networks (Jing et al., 2020; Li et al., 2021). 

 

Figure 2.5: Geographic distribution of papers, 2020 review (Source: (Jing et al., 2020)) 
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Figure 2.6: Geographic distribution of papers, 2021 review (Source: (Li et al., 2021)) 

 

Simulation platforms 

Due to the infancy of fully autonomous AV technology and the high costs of field testing, 

several simulation platforms are being used to investigate the implications of autonomous 

vehicles’ adoption. The ABM community has created toolkits to assist researchers in creating 

customized ABMs. Figure 2.7 and Figure 2.8 show the platform distribution of the analyzed 

papers in the 2020 and 2021 systematic review, respectively. Many different platforms are used, 

such as: MATSim, SimMobility, AnyLogic, MATlab, amongst others. Toolkits are mostly 

based on existing platforms, but some researchers create ABMs without the use of platforms. 

The most popular choice is usually MATSim, which is programmed in Java and has an activity-

based and agent-based open-source framework (Jing et al., 2020; Li et al., 2021). 

 

Figure 2.7: Platform distribution of papers, 2020 review (Source: (Jing et al., 2020)) 
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Figure 2.8: Platform distribution of papers, 2021 review (Source: (Li et al., 2021)) 

 

Data collection 

There are many sources through which one can obtain data. For the studies in question, most 

obtained data is regarding environments, populations, and validations. 

The cornerstone of ABMs in transportation is a certain population of individuals with varied 

traits and behaviors, so it is important to collect reliable and representative data for each case. 

To generate a population, the most commonly used information is population census (regarding 

socio-demographic data), household travel surveys (regarding the agents’ travel demand) and 

services plus travel data (regarding the locations of the agents’ activities). Regional taxi datasets 

are an alternate source for creating travel demand since they are more available over longer 

periods of time than travel surveys and match better with SAV characteristics, although there 

are some downsides, such as the neglect of mobility regarding other transportation modes, 

resulting in a major percentage of overlooked trips. Other sources of data include cell phones, 

GPS devices, surveys, amongst others. Ideally, for a more complete depiction of the population, 

researchers will combine data from multiple sources (Hörl & Balac, 2021; Hyland & 

Mahmassani, 2020; Li et al., 2021; Liu et al., 2020). 

In terms of the model environment, 95% of the models examined are based on real maps, 

ranging from minor regions like heavily populated urban areas and links between railway 

stations and universities to national level simulations. The majority of publications that use real-

world situations utilize online open-source map datasets (example: OpenStreetMap), while 

some use grid-based cities. Typically, these models are limited to smaller service regions with 

a larger trip density. Another type of simplification are grid-based networks, allowing just 

horizontal and vertical mobility, although due to the advancement of computing power, this 

option becomes more uncommon after 2017 (Kim et al., 2019a, 2019b; Li et al., 2021; Scheltes 

& de Almeida Correia, 2017; Sheppard et al., 2019). 
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As autonomous vehicles are still in an early phase, currently, there is very little to none real-

life data that can be used to validate projected future scenarios. Researchers may, however, 

evaluate whether the simulation is accurate by comparing traffic performance in a simulation 

without AV to the respective real-world data, which is primarily based on traffic count data. 

Nonetheless, it is uncommon for most studies to show their validation data (Li et al., 2021). 

Key variables in the simulation and model assumptions 

Reality is very complex and there are virtually infinite different scenarios. So, researchers 

developing ABMs, use many assumptions to simplify it. Depending on each case, various 

variables and assumptions can be used in the model. 

In Figure 2.9, we can see the most common critical variables considered in simulations, that 

affect the performance of the system. Fleet size being the most common and followed by 

demand, strategy, ridesharing, vehicle range, travel modes, pricing scheme, configuration of 

stations, service area, refuel/recharge time, vehicle capacity, maximum waiting time and 

cruising time (Jing et al., 2020). 

Fleet size unavoidably has an impact on the operation of the system and is related to vehicle 

replacement (market penetration) rate. Demand is a primary factor since it comprises two 

important factors: the trip demand and the AV penetration. Many different AV’s market 

penetration rates are assumed by researchers, from full penetration (100%) to intermediate and 

low values of penetration, with this broad variation depending on each situation and purpose of 

study. The strategy variable can be distinguished in many types, such as scheduling strategies, 

assignment strategies, deployment strategies, operation strategies and hailing strategies, 

amongst others. Ridesharing is also an important variable to take into account, since it can 

reduce fleet size significantly. Additionally, some studies consider ridesharing optional, with 

individuals having a certain “willingness to share” (0-100%) and the vehicles can be ridesharing 

or not. Generally, the accepted deviation for ridesharing is less than 10km or 10% to 40% travel 

time increase. Vehicle range is usually an important factor when the simulation is regarding 

electric vehicles, with considered ranges varying from 100km to multiple times that number. 

Taking into consideration different travel modes will obviously impact the system’s 

performance and some studies have tested and compared AV implementation with different 

transport modes present in mixed scenarios. Pricing schemes are usually used to explore AVs 

market potential. The configuration of stations is normally split into parking stations and 

charging stations, with the most important being charging stations since it can strongly impact 

fleet size and system performance. In most cases, the service area is a fixed variable for a well-

defined region, however, some studies have examined how changing the service area can affect 

the system’s performance. Refuel/recharge time is also an important factor, once again with 

particular interest when regarding electric vehicles, since electric charging times can be 
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significantly higher than refueling if fast charging is not considered. Vehicle capacity is the 

vehicle’s capability to carry individuals and usually varies between 1 and 4 passengers. 

Passenger waiting time, although not in particular relevance in Figure 2.9 (since it is commonly 

used as a simulation output indicator, as we will see later), is a major factor in transportation 

ABMs, and refers to the time between placing an order and the moment the AV arrives. A 

waiting time limit is typically established, in order to guarantee an acceptable service level. 

Waiting time will range from about 5 to 20 min usually, with some studies testing multiple 

limits to obtain minimum fleet size, and only a few studies assume that agents will wait 

indefinitely for the transport service. Some researchers go further, by giving individuals in the 

simulation the possibility of choice of transport mode and an associated contemplation period 

to assess transportation offers, although most models neglect this process. The impact of 

cruising time and other variables, such as certain electric vehicle assumptions, is also examined 

in a few models (Dandl et al., 2019; Hyland & Mahmassani, 2020; Jing et al., 2020; Li et al., 

2021; Lokhandwala & Cai, 2018). 

 

Figure 2.9: Critical variables considered in the simulations, 2020 review (Source: (Jing et al., 2020)) 

 

Model execution and scenario variations 

Before carrying out an ABM simulation, there are some processes and strategies to be 

considered. Additionally, ABMs and their characteristics can be adapted and readjusted fairly 

easily, thus creating scenario variations of which results can be compared and assessed. 
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With the network and mobility data sorted out, typically, the next thing to do is to generate 

sample vehicle trips through methods such as Monte Carlo and Poisson distribution. Depending 

on whether fleet size is or is not a variable, it may be necessary to determine a preliminary fleet 

size, with two major methods usually being identified: SAV “seed” simulation, where a central 

dispatcher generates vehicles until the demand is met within a specified reach of usually 20 

minutes; and through changes in the average waiting time, where vehicles are added up until 

the moment when the waiting time ceases to decrease appreciably.  (Chouaki & Puchinger, 

2021; Fagnant & Kockelman, 2018; Li et al., 2021, 2020; Zhang et al., 2015). 

The most popular operational strategies associated with SAV can usually be categorized into 

one of these types: Dispatching Strategy, Rebalancing Strategy and Parking Strategy (Figure 

2.10). 

 

Figure 2.10: Reviewed SAV operational strategies, 2021 review (Source: (Li et al., 2021)) 

 

Dispatching strategies can be simple or complex, and it is assumed that the clients’ decision-

making is instantaneous. In the “First Come First Serve” method, vehicles are sent to the clients 

as soon as an order is placed, while in the “Time Minimization” and “Shortest Path” methods, 

the vehicles are dispatched according to their distance from the client. But in order to obtain 

more efficient results, particularly when regarding peak hours, some researchers apply a mixed 

method known as “Load-balancing heuristic”. In this method, dispatchers monitor if there is 

more vehicle supply than request demand, and according to that balance, they can alter between 

the “First Come First Serve” and “Shortest Path” methods. In the case of non-instantaneous 

decision-making, dispatchers can opt to send a vehicle to the client, even when the request is 
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not confirmed, although the efficiency of this method is tied to the request confirmation rate 

(Li et al., 2021). 

Rebalancing strategies, also known as vehicle relocation, might enhance SAV service levels, 

but it may also raise overall congestion owing to the increased number of empty vehicle 

kilometers traveled (VKT) during rebalancing/relocation, and as a result, in certain situations, 

rebalancing is limited to specified hours or demands. There are two vehicle relocation strategies 

essentially: one has predefined criteria (such as a certain distance limit, or a minimum time 

limit) and doesn’t take into account demand forecasting; the other is adaptable by taking into 

account demand forecasting, through data such as vehicle location, current demand and 

availability (spatial-temporal demand forecast strategies and demand-supply balancing 

strategies are some examples) (Li et al., 2021). 

Although parking strategies can reduce fleet size, lower passenger waiting times and improve 

equity in the provision of transportation services, prior to 2019, the majority of articles did not 

include AV parking strategies, and simply allowed AVs to park on the side of the road. This 

approach raises some concern, since it might interfere with the normal operation and will 

probably affect network performance. So, other options, such as warehouse parking, mall 

parking and dedicated AV parking, have been tested lately. When considering electric vehicles, 

these parking can be associated with charging posts, so they can recharge off-service while 

parked. Notwithstanding, empty VMT/VKT and some other cons are predictably going to arise 

with these parking strategies (Li et al., 2021). 

As already mentioned, scenario variations are common, since most can be done quickly and 

without too much effort. Many researchers include more than one scenario on their ABMs, and 

these scenario variations can be classified into four viewpoints (Li et al., 2021): 

• AV Demand, where the concern is with any factors that impact passengers' willingness 

to utilize autonomous vehicles and sharing rides, and variable scenarios are obtained by 

directly changing customer demand or by creating behavior control systems that 

indirectly affect the demand; 

• AV Supply, which concentrates on the characteristics that influence how many vehicles 

are offered, with the most prominent by far being fleet size (in the beginning, increasing 

the fleet size is beneficial for achieving rapid gains in service quality, but beyond a 

certain point, the efficiency begins to decline, and it becomes more advisable to alter 

other factors, such as vehicle range, service area, passenger capacity, electrifying 

vehicles, etc.); 

• Operational Strategy, where the focus is on the already discussed popular strategy 

variables such as dispatching, rebalancing and parking, but also on others such as 
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platooning, multiple different charging schemes (when regarding electric vehicles), 

geofencing, pre-booking, shifting service between door-to-door and terminal-to-

terminal (time tailored), amongst others;  

• Other Infrastructure, where other road components that are not directly associated with 

AV, but have an indirect impact on their operation, are addressed. Here we divided them 

into “Other modes of transportation”, in which scenarios are regulated by either 

changing public transport availability or by altering other factors that indirectly affect 

their preference, and “Network”, where different scenarios emerge essentially from 

changing the capacity and adding links in the network. 

Figure 2.11 sums up the categorized factors, with the numbers between parentheses indicating 

how many articles used those factors (out of the 73 articles regarding mobility reviewed in the 

2021 systematic review) and “Others” relates to variables that were only used once (Li et al., 

2021). 

 

Figure 2.11: Factors for reviewed ABM scenario variations, 2021 review (Source: (Li et al., 2021)) 

 

Simulation output and result analysis 

When it comes to AVs, the most common question is how many standard vehicles can they 

replace, and the number varies depending on the mode of operation. Different research can 

present different values, but generally speaking, SAVs can replace from 4 to 10 standard 

vehicles, depending on many factors. Although, some research have reached results with even 

higher vehicle replacement ratios, such as 1:14 in a hypothetical city case study. Considering a 
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more optimal scenario in which an SAV can replace about 10 standard vehicles, this would 

mean a 90% reduction of not only the number of vehicles present in the network, but also of 

parking needs, leading to land-use savings. It is worth noting that, without SAVs, the capacity 

improvement of private AVs is somewhat limited. Additionally, despite the replacement rate 

being high, it does not necessarily mean that the network will not be congested, since studies 

typically show a VMT/VKT rise of about 20%, which means that the network will have 

approximately 1.2 times the original traffic. As mentioned, there are many factors that can 

significantly impact the fleet size or replacement rate, some of the most common include: AV 

market penetration, service area (and respective network shape), average demand, ride sharing, 

trip flow density, average waiting time, expected service level, ride sharing, relocation strategy, 

and targeted user groups. (Jing et al., 2020; Li et al., 2021; Zhang et al., 2015) 

In terms of simulation output indicators, the most frequent (according to the 2020 systematic 

review) are the following: indicators related to time (which are divided into, by order of 

frequency, waiting time, travel time, response time, service time), indicators related to distance, 

mode share, fleet size or replacement rate, cost analysis, service or rejection, parking demand 

and vehicle utilization (see Figure 2.12 and Figure 2.13). Note that although in Figure 2.12, 

fleet size is not presented as the most common indicator for the 2020 systematic review articles, 

we can verify that in Figure 2.9, fleet size appears as the most common variable, emphasizing 

its overall importance in these studies (Jing et al., 2020; Li et al., 2021). 

 

 

Figure 2.12: The main simulation output considered in the simulations, 2020 review (Source: (Jing et al., 2020)) 
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Figure 2.13: The indicator related to time - waiting time, travel time, response time, and service time, 2020 review (Source: 

(Jing et al., 2020)) 

 

All these mentioned factors and indicators are important and influence significantly the 

outcome and result analysis of each simulation. The significance of their impact can be very 

high or simply not relevant, it will depend on each specific case and scenario, with many being 

interdependent. AV service level for example, is crucial for customer satisfaction, and depends 

strongly on the average waiting time (an average waiting time of 5 to 10 minutes can usually 

satisfy about 95% of travel demand). Passenger travel time and empty VMT/VKT are also 

service level characteristics. The use of electric cars could reduce service level of the system, 

due to vehicle range and charging time, although this is expected to be less of a problem with 

the advance of technology and can also be optimized in present day through the optimizing of 

charging schemes, additionally, there are strong environmental benefits associated with the use 

of SAEVs (Jing et al., 2020; Li et al., 2021). 

Notwithstanding that private and ridesharing autonomous cars will bring multiple benefits, 

public transportation will still be very important, in particular in dense transport demand 

regions, since they have higher carrying capacity and a more efficient passenger/area ratio, as 

well as having lower fares (moreover, studies indicate that autonomous public transportation 

will be even cheaper than current prices) (Jing et al., 2020; Li et al., 2021). 

2.2.3 Study Example 

In this chapter, as already mentioned, we will take a quick overlook to a specific case study, the 

2019 research article, “Exploring the Performance of Different On-Demand Transit Services 

Provided by a Fleet of Shared Automated Vehicles: An Agent-Based Model”, published in the 
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Journal of Advanced Transportation, by Senlei Wang, Gonçalo Homem de Almeida Correia 

and Hai Xiang Lin (Wang et al., 2019). This study is useful as a guideline for the purpose of 

this thesis, with the software used in the study being the same (Anylogic) as the one used for 

the development of the present work. 

Model specifications and operations 

The ABM in this study was created to simulate the operation of SAVs in a parallel transit service 

(PTS) and a tailored time-varying transit service (TVTS), in which the latter can alternate 

between two service schemes: station-to-station service (SSS), also known as terminal-to-

terminal, and door-to-door service (DDS), and the former permits the simultaneous operation 

of both SSS and DDS. Travel distance and price were not considered factors to guide user 

choice between the different services, instead, different levels of willingness to choose SSS in 

the PTS system were defined: PTS-20%, PTS-40%, PTS-60%, and PTS-80% (according to 

willingness to choose SSS). This willingness is assumed to differ according to price, or else 

clients would certainly choose DDS, since it is a more comfortable option (Wang et al., 2019).  

In Figure 2.14 we can observe how the components of the system interact. Travel demand 

requests are met with the assignment of vehicles by the fleet operator in real-time. Once the 

vehicle has all the crucial data (origin, destination and identification) regarding the travel 

request, it will communicate with the requesters for pickups and drop-offs. In addition, the 

dynamic ridesharing module in the fleet operator will try to gather travelers together, and the 

routing module in the central traffic operator will then be responsible for generating a route in 

real-time for the assigned vehicle (Wang et al., 2019). 

The authors considered the following model assumptions and specifications (Wang et al., 

2019): 

(i) No induced travel demand is taken into account 

(ii) All the travelers are willing to share rides with strangers 

(iii) The battery capacity can support full-day operations for each SAV 

(iv) The parking spaces are enough for all the SAVs in each station; 

(v) SAV speed is predefined on road segments and updated for peak hours and off-peak 

hours respectively; 

(vi) Cancellation of assigned SAV is not allowed; 

(vii) Travelers will give up a request when the waiting time for being assigned a vehicle 

exceeds a specific time threshold; 

(viii) Travelers’ choices between door-to-door service and station-based service are based 

on a fixed willingness to use a certain service, which is an experimental parameter 

(20%, 40%, 60%, and 80%). 
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Figure 2.14: Interaction between system components of the study example (Source: (Wang et al., 2019)) 

 

Two assignment techniques are developed in the model: the first-come, first-served (FCFS) 

assignment method, and an optimum assignment method. In the FCFS, the real-time demand 

request is met with the nearest idle vehicle, while in the optimal assignment method, a group of 

idle vehicles is assigned to a set of demand requests, with the goal of minimizing the empty 

VMT/VKT of the assignment (Wang et al., 2019). 

The FCFS assignment method has the following straightforward rules (Wang et al., 2019): 

(i) The fleet operator will find an idle and nearest SAV in the same sub-region as the 

request departure location based on the FCFS principle; 

(ii) If there is no available SAV close to the request, the fleet operator will find an idle 

SAV from the whole study area to serve it; 

(iii) The fleet operator only gives top priority to shared riders. That is, the travelers who 

will share their rides are sorted from the waiting list, and assigned an idle and nearest 

SAV as soon as possible. 

As already mentioned, the fleet operator in the optimal vehicle assignment method can bundle 

requests and assign them to a set of idle vehicles (the size of the bundle will change according 

to the real-time demand), with the purpose of minimizing empty VMT/VKT. The matching 
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problem between bundled requests and the selected set of available vehicles is solved using the 

Hungarian algorithm (the Hungarian algorithm method is an optimization algorithm that solves 

assignment problems). When the operator cannot allocate adequate idle vehicles to apply as 

input for the algorithm or there is only one request, the FCFS method applies (Kuhn, 2010; 

Wang et al., 2019). 

The dynamic generation of demand is done by creating a specific number of time-dependent 

requests for each area and for a certain time period (spatial-temporal), and locating a destination 

for each request. In Figure 2.15, we can visualize the model’s traveler behavior by means of a 

UML state machine (also known as state diagram or state chart). User-defined conditions (such 

as timeouts or rates, and agent’s arrival) can prompt transitions (Wang et al., 2019). 

The dynamic ridesharing intends to group several travelers with approximate spatial-temporal 

characteristics. Requests with matching OD regions can share an SAV. The authors used a 

defined set of rules for the implementation and function of dynamic ridesharing (these are 

described in the original article) (Wang et al., 2019). 

Fleet size is an experimental factor in the model. Different fleet sizes are tested in the 

simulation, with size estimates being small, in order to maintain an adequate system service 

level (Wang et al., 2019). 
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Figure 2.15: The state chart that represents the behavior of a travel request of the study example (Source: (Wang et al., 

2019)) 
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Model application and implementation 

The model used for the simulation was created in the Anylogic software, more specifically in 

the Agent-Based Model platform, using Java programming language. Simulation tests were 

carried out in a hypothetical urban area, to test the presented SAV system and its different 

schemes. The road network of the hypothetical city (city scale of 5 km x 5 km) was obtained 

from the Urban Dynamics Education Simulator (UDES) model, and has 78 links and 77 nodes 

(Figure 2.16) (Wang et al., 2019).  

 

Figure 2.16: The road network of the study example (Source: (Wang et al., 2019)) 

 

Figure 2.17 presents fundamental input parameters for the simulation. The system meets a total 

demand of 110,000 trips over a 24-hour period. The vehicle velocity is predefined for all 

systems and varies from peak hours to off-peak hours. In this model, a speed of 36 km/h is 

assumed for off-peak hours, with a 20% reduction in peak-hours. In terms of energy 

expenditure, a rate of 1 kWh per 7 km is assumed for a two-seat, lightweight car. The maximum 

waiting time before the client gives up is defined as 5 minutes. The adopted vehicle capacity 

for a shared vehicle is 2 passengers. And the time period for optimal assignment is 5 seconds 

(Wang et al., 2019). 
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Figure 2.17: Input parameters of the study example (Source: (Wang et al., 2019)) 

 

The results were analyzed in seven points (for a more detailed analysis of the results, see the 

original article) (Wang et al., 2019): 

• Analysis of the Impact of Vehicle Assignment Methods 

• Analysis of Fleet Size Variations 

• Analysis of the Impact of Dynamic Ridesharing 

• Analysis of Waiting Time and Service Time 

• Analysis of VKT and Energy Consumption 

• Analysis of System Capacity and Drop-Out Requests 

• Analysis of Empty Trips 

According to the results of the simulation, SAV systems combined with dynamic ridesharing 

can decrease average waiting time, VMT/VKT, and empty SAV trips considerably. 

Furthermore, the suggested optimum vehicle assignment method can minimize empty 

VMT/VKT for pickups by up to 40% for all assessed SAV systems and increase system 

capacity for passenger transportation. When comparing the TVTS system, which has 

inconvenient access during peak hours, to the PTS system, which always provides DDS, we 

find that PTS may achieve equivalent system performance in terms of average waiting time, 

service time, and system capacity as TVTS. Additionally, compared to the FCFS vehicle 

assignment method, the optimal assignment can lower empty VMT/VKT values for all analyzed 

systems and allow the SAV systems to transport significantly more clients (Wang et al., 2019). 
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2.3 Summary 

Given the obvious potential of AVs, policymakers and the general public would be advised to 

pursue a smooth and well-planned introduction and transition to this new technology. With or 

without legislative and regulatory action, the state of AV technology appears to be improving. 

However, these initiatives will have a significant impact on how AV technologies evolve and 

are finally adopted. To solve the numerous challenges described above, intelligent planning, 

effective predictions, and regulatory action and change are necessary. Although there are 

enormous potential benefits, there are still significant challenges to complete implementation 

and widespread market penetration. Most people will be unable to pay the initial price of AV 

technology. Lawmakers and government institutions should start funding research into how 

autonomous cars could influence transportation and land use patterns, as well as how to 

effectively adapt our transportation system to maximize their advantages while avoiding any 

negative repercussions of the transition to a mostly self-driving fleet.  

The concept of a self-driving car may seem far off, but autonomous technology is rapidly 

advancing, and certain capabilities are already available on current vehicle models. This new 

technology has the potential to minimize collisions, reduce congestion, increase fuel efficiency, 

reduce parking demands, provide mobility to individuals who are unable to drive, and transform 

the world’s travel pattern drastically over time. These changes will have clear and quantifiable 

advantages. 

Notwithstanding, in previous chapters, we talked about multiple potential benefits, regarding 

safety, congestion and traffic, travel-behavior, freight transportation and economic impact, but 

nonetheless, there are still some cons to these benefits. So, besides the previously exposed major 

issues concerning the implementation of AVs (vehicles costs, legislation and regulations, 

liability and ethics, security, privacy), we must consider these issues involving AV benefits’ 

weaknesses. As long as humans travelling in a self-driving car have the option to shutdown 

self-driving mode and take control, many problems will persist, particularly in terms of safety. 

When a crash is inescapable, liability issues are a large concern and could be significant obstacle 

to implementation. The possibility of VMT increasing, may create further problems associated 

with high automotive use, like extra emissions, higher fuel consumption and more health issues. 

Already congested roadway infrastructure may be negatively impacted also due to the increase 

in trips. Urban sprawl will most likely increase with the implementation of AV, since commute 

time will be turned into useful time. The use of platooning with AV can create difficulties for 

other drivers trying to enter or exit highways, conceivably causing the need for new 

personalized infrastructure with dedicated lanes for platooning. 

There are still many unknowns and the level of impact of all these underlying issues regarding 

the implementation of self-driving cars is difficult to estimate, mostly because we lack the data 
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for that analysis. Tests and experiments have to be done, by using autonomous vehicles and AV 

fleets in various situations and scenarios, to collect the very needed data. But it will take some 

time for autonomous vehicles to be widely used in our daily lives, and operating an autonomous 

vehicle fleet can be quite expensive. This is where simulation systems come in. Simulation 

systems can be designed for the purpose of not only saving money but also to gather large 

amounts of data without having to use real-life vehicles in real-life scenarios, where the safety 

issues and legal constraints of field testing are a concern. Agent-Based Models are ideal for 

simulating AV systems, since they are better than the conventional methods of simulation in 

many aspects and simulate the model thoroughly from macroscopic to microscopic properties. 

An ABM uses interactions between its agents and environment to describe the system. In the 

case of an SAV system, it models travel demands and vehicle motion, and the interactions 

among travelers and vehicles. These simulated models can give us valuable information on how 

the elements of an SAV system interact and their various effects on the environment. This useful 

data can then be used to assist on decision taking, when implementing AV and SAV systems in 

real-life. Summarizing, simulations of AV and SAV systems through agent-based models are 

an important piece on the widespread adoption of autonomous vehicles. More data and studies 

translate in a quicker, proper and safer transition to a world where AV are the norm. 

However, no matter how safe autonomous vehicles are and will eventually become, there will 

almost certainly be an initial sense that they are dangerous due to the lack of a human driver. 

Often, policy is driven by perception issues, which can cause implementation delays. But the 

reality is that humans are doomed to make mistakes. Even though we can improve and find 

better ways to do something, our capabilities are limited by many physical and biological 

factors. While the popular phrase “practice makes perfection” has some truth to it, there will 

always be some percentage of error and failure, and although it is true that machines have their 

share of error and failure, it is orders of magnitude lower than humans. We cannot compete 

with the precision and processing capacity of computers. 

Consider the following example. An intersection in a certain city, full of cars with human 

drivers. The traffic light turns green, the first driver accelerates, then the second, then the third, 

and so forth, until someone must stop at the red light. If all the drivers accelerated at the same 

time, the individual that previously had to stop at the red light, would have gone through. 

Coordination is a major problem for traffic flow. Human drivers have slow reactions and short 

attention spans, and this limits how many vehicles can get through an intersection and can 

eventually lead to traffic congestion. This is the reason highways don’t have intersections. The 

more autonomous vehicles driving through an intersection (instead of human drivers), the more 

efficient it will get. 
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Nowadays, we already have self-driving cars on the roads, and in many places, you can turn on 

the auto-pilot and the car will drive itself, but the individual in the car has to be alert and ready 

to take over control at any given time and the individual behind the wheel is still legally 

responsible for what happens with the car (although, as mentioned in previous chapters, in some 

specific areas, there are already taxi services where the vehicle is fully autonomous with no one 

prepared to take over control). But in the following years, manufacturers of autonomous 

vehicles are going to take increasingly more responsibility for its actions. This has led people 

to consider ethics and moral problems when designing autonomous vehicles. We can think of 

basically infinite different scenarios where an autonomous vehicle would have to make a 

difficult choice, where it would have to choose between “the lesser of two evils” like steer into 

an old person instead of a pregnant woman, for example. But the fact is, accidents are taking 

place as you read this. Every year, more than a million people die and up to 50 million get 

injured on the roads, globally. And in more than 90% of these accidents, driver error is the 

problem. This is the true moral dilemma. Postponing autonomous vehicle implementation just 

because of a very small percentage of scenarios where a difficult choice has to be done, is 

getting distracted from the main issue. Each day we delay putting autonomous vehicles on the 

road, the more people will die and get injured. That should be the main moral and ethical 

question regarding self-driving cars, why aren’t we putting them on our roads sooner. 

The science communicator Derek Muller gives an interesting example: “(…) before the 1940s, 

almost all elevators had drivers in them (…) and when people started putting in driverless 

elevators, the public was very concerned and they didn’t want to ride in those elevators. (…) 

Adoption was slow (…) they tried to advertise to help people understand that it was in fact safe, 

but ultimately, there was an elevator drivers’ strike in New York City, and that really annoyed 

people, and it helped the adoption of automated elevators. If you found a driver in an elevator 

today, you would wonder “Why are they there?”. Now you might think an elevator is just so 

simple (…) it is effectively one-dimensional motion. But airplanes are also flown extensively 

by computers. (…) humans are much more likely to take manual control and land on sunny 

days (…) the counterintuitive thing is that we expect the humans to be better, particularly in 

tough situations, but when it comes to airplanes, if it’s bad weather, you actually want the plane 

flying itself. So, the obvious next question is, would you want the same thing for cars?” (Muller, 

2021). 

The most developed autonomous vehicles, such as Waymo fully autonomous vehicles and Tesla 

auto-pilot mode have more experience than any human driver, because they’ve accumulated 

data over millions of kilometers of driving on public roads. If you were an average driver, you 

would have to drive for hundreds of years to accumulate equivalent driving experience. Waymo 

has driven more than 20 million miles (32 million km) autonomously and has done more than 

15 billion simulated miles (24 billion km) (Waymo, 2021). As of April 2020, Tesla has driven 



Designing a fleet of Shared Autonomous Electric Vehicles and its charging stations through simulation RELATED LITERATURE 

João Carlos Quintal Lopes  46 

more than 3 billion miles (approximately 5 billion km) on auto-pilot mode (Trefis, 2020). In 

the 1st quarter of 2021, the Tesla Vehicle Safety Report states that “In the 1st quarter, we 

registered one accident for every 4.19 million miles driven in which drivers had Autopilot 

engaged. For those driving without Autopilot but with our active safety features, we registered 

one accident for every 2.05 million miles driven. For those driving without Autopilot and 

without our active safety features, we registered one accident for every 978 thousand miles 

driven. By comparison, NHTSA’s most recent data shows that in the United States there is an 

automobile crash every 484,000 miles.” (Tesla, 2021). Although, we should keep in mind that 

the driving environment where the majority of these Tesla auto-pilot miles were driven is not 

specified. The collected data is used to train the vehicle’s systems, to improve the software, and 

the knowledge and experience gained can then be applied to the entire fleet. In Waymo’s Safety 

Report, some types of accidents, like the car going off the road or hitting stationary objects, 

have been completely eliminated by the autonomous driving (Waymo, 2021). In the report, the 

eight types of significant accidents that happened with Waymo vehicles in over six million 

miles driving, involved a human driver doing something foolish, such as speeding, driving on 

the wrong side of the road, passing through a red light, etc.  

Ultimately, autonomous vehicles do not need to be perfect and flawless, they just need to be 

better than us humans. And what many people are unaware of, is that they already are 

considerably better than the average driver. Self-driving vehicles are not something of the 

distant future, they are already here, and they work. The question is not, if autonomous vehicles 

will replace human drivers, but how quickly will this happen. 
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3 METHODOLOGY 

3.1 Introduction 

In this third chapter, we will explain the overall development of the simulation work, including 

model design, simplifications assumed, design and development within the simulation software, 

and post-simulation analysis approach. 

The first step consisted in gathering data about daily trips within the Region of Coimbra in order 

to create an Origin/Destination Matrix. This was an easy step, since this data was already 

available, through a mobility inquiry done in 2009. The second step was a diagnosis of the 

region’s mobility via an analysis of the data. In this analysis, we did multiple screenings of the 

trips until a final selection was reached. After having all the mobility data sorted out, we began 

developing the simulation model. For this task we resorted to the multimethod simulation 

modelling tool, AnyLogic. This software offers different options of simulation modelling, but 

in this work, we used an Agent-Based Model (ABM). In this type of simulation model, the 

actions and interactions of independent agents are simulated with the objective of evaluating 

their effects on the system as a whole (Anylogic, n.d.). After creating a general approach to the 

functioning of the model, we proceeded to implement it in the simulation software. First, we 

defined the physical space for the simulation, in our case, the road network of the Region of 

Coimbra. Then further work was done in many aspects, since we would be simulating the 

autonomous vehicle transport fleet providing door-to-door transportation to a number of 

generated users, and so there were many constraints and objectives to consider. In this step, the 

objective was to determine the number of vehicles in the fleet, assuming that all demand is 

satisfied. Initially, our plan was to consider three scenarios: time-shared scenario; time-shared 

and space-shared scenario; mixed case scenario. In the first scenario, only time-shared vehicles 

are considered. In this case, vehicles act similarly to a taxi service, making direct connections 

between origin and destinations, and one person per vehicle is assumed. In the second scenario, 

in addition to being time-shared, the vehicles are also space-shared, similar to a shuttle service. 

This means that ridesharing is possible, and detours can be made in order to pick up passengers, 

thus, predictably, most vehicles would have multiple passengers travelling at the same time. 

Note that this does not mean that there would always be more than one passenger in the car, 

there can be moments where the car only has one passenger or none. In the third and last 

scenario, some mixed case scenarios are considered, where, contrary to the previous case, a 

certain percentage of cars serve strictly as time-sharing and the rest serve as both time and 

space-sharing vehicles. However, due to time restrictions, we only considered a time-shared 

scenario (this will be further explained in future chapters). We did not consider the existence of 

private vehicles, since the fleet satisfied all mobility demand for the region and all fleet vehicles 

were shared by the users. The last step of model development served to introduce the electric 
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functioning component to the vehicles and determine the number of charging stations and where 

they should be located. Initially, this was planned to be achieved on the basis of already having 

calculated the number of vehicles for the fleet (previous stage). But, as later will be explained, 

another approach was chosen, with the number of charging ports being calculated in the same 

simulation as the previous stage. 

 

3.2 General Procedure 

Before starting to build the model in the simulation software, we needed to outline the general 

procedure for how the model would work. As mentioned previously, although ridesharing is a 

key element for this work and project, it was not fully employed in the simulation due to time 

restrictions for both development and simulation. The vehicles in the simulation are still time-

shared, but not space-shared, that is, the same vehicle can be used by different travelers at 

different times, but travelers cannot share the vehicle at the same time (ridesharing is not 

allowed). Nonetheless, we idealized a model design that is able to accommodate ridesharing 

(see Figure 3.1). In this model, there are two main input variables: maximum waiting time and 

maximum trip added time. 

 

Figure 3.1: Ridesharing (time and space) model flowchart 
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Following the flowchart in Figure 3.1, firstly there is a travel request in the system. The traveler 

may be willing to share the vehicle (rideshare) or not, that is, he may be willing to travel with 

another traveler in the vehicle simultaneously and possibly having a certain added time to his 

original trip duration. This willing to share is normally associated with a financial benefit 

opposed to not sharing, i.e., the traveler’s will to share may be influenced by the lower fare of 

a shared vehicle. If the traveler is willing to share, then the system operator will search for an 

existing nearby ridesharing car (that is, a vehicle that has a current traveler willing to share) 

with an available seat that is within the new traveler’s maximum waiting time and within the 

maximum trip added time for both the current traveler and the new traveler. If the vehicle in 

question meets these criteria, then it is assigned to the new traveler, and the vehicle will make 

a detour to stop and pick up the new traveler. If one of these criteria is not met or the traveler is 

not willing to share, then the system operator will search for an existing nearby empty car that 

is within the new traveler’s maximum waiting time. If a vehicle is available, then it is assigned 

to the new traveler and will drive to the traveler’s location and pick him up. If no vehicle is 

available, the system will generate a new car to meet the demand. This new car is added to the 

existing and active vehicle fleet. 

The model that was actually used in the simulation software does not include rideshare, and, 

therefore, is a simplification of the previous model (see Figure 3.2). 

 

Figure 3.2: Ridesharing (time only) model flowchart 

 

Following the flowchart in Figure 3.2, firstly there is a travel request in the system. The system 

operator will search for an existing nearby empty car that is within the new traveler’s maximum 

waiting time. If a vehicle is available, then it is assigned to the new traveler and will drive to 

the traveler’s location and pick him up. If no vehicle is available, the system will generate a 

new car to meet the demand. This new car is added to the existing and active vehicle fleet. 
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3.3 Model Development 

For the software model development, we were provided with a license to use the AnyLogic 

8.5.2 University version from 2019. As mentioned previously, ridesharing is not considered, so 

the simulation model developed is based on the flowchart model design from Figure 3.2. 

Notwithstanding, the model was built in such a way, that the ridesharing function could be 

enabled later on (for future research purposes) (Anylogic, n.d.). 

3.3.1 Waiting time 

As seen by reviewing the literature, waiting time is an important factor of both input and output 

information when simulating a transport service. In this model, it is a key parameter, more 

specifically, we input the maximum waiting time desired, before running the simulation. In 

order to ensure a good service level, most ABM studies define a maximum waiting time 

anywhere from 5 to 20 minutes, although some studies have an indefinite maximum waiting 

time (Jing et al., 2020; Li et al., 2021). On a psychological level, we verify that these values are 

somewhat acceptable. Without getting to much into the psychological side of the perception of 

waiting time, in a study from 2019 regarding the acceptable wait times at transit bus stops, 

survey results indicated that the least acceptable wait time beyond the scheduled arrival time 

reported was 1 minute and the maximum acceptable wait time was 20 minutes, but most users’ 

acceptable wait times ranged between 5 to 15 minutes (Arhin et al., 2019). User’s average wait 

times varied depending on a number of factors, such as time of day, presence of bench, gender, 

ethnicity and knowledge of bus arrival time. Although this mentioned study can give us a 

reference values for the acceptable maximum waiting times, it is not directly comparable to this 

work, since in the study, the analyzed acceptable wait time is a delay time beyond what was 

scheduled. In this work, the traveler would be given an estimated waiting time (such as when 

you order an Uber for example) based on the ETA (Estimated Time of Arrival) of the vehicle 

to his location. This is different in the sense that, when you request a vehicle, you will then be 

informed of the ETA, and only have to be ready at the pickup location at that time (for example, 

a certain person is working and will be ready to go home in about 10 minutes, the person could 

request a vehicle in advance, so that when they are ready to go home, the vehicle is already 

arriving, avoiding the need to wait at all). In the “The Psychology of Waiting Lines”, by David 

H. Maister, the author states that “Waiting in ignorance creates a feeling of powerlessness, 

which frequently results in visible irritation and rudeness on the part of customers” (Maister, 

1985). So, the fact that the traveler knows in advance how much time they will have to wait, 

allows us to stretch the waiting time range, while maintaining a good service level perception 

to most of the user population. 
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3.3.2 Battery capacity, consumption and charging 

Since the model uses hypothetical future vehicles, some assumptions needed to be done 

regarding the vehicle technology. In this case study we tried to find a balance between future 

and present technology. It is well known that, with time, technology gets better and production 

costs lower, making it more accessible to the general public. Autonomous vehicle technology, 

batteries, engine efficiency, etc., follow this trend. This said, regarding both the vehicle’s 

battery and energy consumption, we opted for values that are above and below average, 

respectively. We assumed a battery capacity of 100 kWh. This battery capacity is above the 

approximately 59 kWh battery capacity average of the many already available commercial 

electric vehicles, with some models actually surpassing 100 kWh battery capacity. Having a 

smaller battery usually means less range, but it also means the car is lighter, so energy 

consumption won’t be as high, and thus there is some increase in range (nonetheless, in general, 

having a larger battery will translate in more range). Although not considered in this work, 

charging the vehicle can possibly be associated with solar panels, as some manufacturers are 

already doing, increasing the vehicle’s range. In terms of energy consumption, we assumed 100 

Wh/km at a speed of 10 m/s (36 km/h), with the rate of energy consumption varying according 

to the vehicle’s speed (Equation 3.1), thus, the energy consumption of the vehicle’s battery 

depends on how much distance and how fast it drives. The energy consumption increases 

linearly with the vehicle’s speed, i.e., higher velocities mean higher battery expenditure (and 

thus less range) and vice-versa. This energy consumption per kilometer is almost half of the 

current average of 195 Wh/km. Although this is a big leap, we have to remember that this study 

is for a future vehicle fleet, and technology will be further along then. Notwithstanding, there 

are already electric cars that can average this value of energy consumption or even less, mostly 

prototype vehicles and vehicles involved in research, but even some soon to be available 

commercial vehicles get close to this value (for example, the available for pre-order electric 

vehicle “Lightyear One” has an estimated energy consumption of 104 Wh/km). In summary, 

these assumed values appear to be reasonable, even for present technology standards (Electric 

Vehicle Database, n.d.-a, n.d.-d, n.d.-b; Lightyear One, n.d.; Lu et al., 2014; Ribau et al., 2012). 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = 100 ×
𝑣

10
 [𝑊ℎ/𝑘𝑚]           , 𝑤ℎ𝑒𝑟𝑒 𝑣 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛 𝑚/𝑠                (3.1) 

Regarding the charging stations, it was assumed the existence of charging stations in every 

zone, with the number of ports varying from zone to zone, depending on the demand. Another 

approach could have been creating fewer charging stations and locating them in the 

surroundings of the more urban areas. In practical terms, this may be the best approach 

(depending on each case), to avoid the need of dedicated parking space in the central urban 

areas. Nevertheless, in this case study, we did not consider this approach in the simulation, since 

obtaining an optimal location would further strain the already slow running simulation. An 
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optimization process could have been applied to the simulation results to find the ideal number 

of charging stations and their respective location, which is normally associated with vehicle 

parking. But this would mean having to develop an optimization model, which is not the 

purpose of this work (another work is being developed within the Driving2Driverless project 

to determine the ideal locations for parking the vehicle fleet). In this work we used a simplified 

process consisting of charging the vehicles where they were parked in each zone. For the 

charger’s capacity, we assumed supercharger type characteristics, that completely charge the 

100-kWh battery in one hour (as mentioned in the Introduction, when the topic of Electric 

Vehicles was addressed), presently there are already chargers with this kind of capacity, with 

many currently available superchargers already charging these kinds of capacities in less time). 

3.3.3 AnyLogic Model Interface 

Three types of agents were created in the ABM simulation model: cars, travelers and zones. 

Each type of agent has parameters, variables and functions associated with them. The AnyLogic 

software main window, in Figure 3.3, contains the parameters, variables and functions relevant 

to the model. It is in this window that we have the GIS (Geographic Information System) map, 

where the agents coexist and interact. The GIS map is an AnyLogic available tool that allows 

us to display and manage GIS maps in the model. This GIS map in specific, is what is called a 

tiled map, that is transferred in real time from online map services (for example, 

OpenStreetMap). It precisely represents the real terrain and road network of the region. The OD 

zones have geographic coordinates, which are placed in this map accordingly. Traveler agents 

will generate at certain locations according to the OD table and request a vehicle. Car agents 

will then be generated and drive through the road network in the map. This process can actually 

be visualized during the simulation (although this option was later turned off to ease the amount 

of software processing). The simulated day was defined as 90 thousand seconds (25 hours) 

long, so that travelers that start their trip late in the day (trip requests are only generated from 

the beginning of day until midnight) could have to time to get to their location and finish the 

trip. Since we only simulated one day, we assumed that all vehicles would be generated with 

50% battery charge level (and could later charge to 100% when needed). 



Designing a fleet of Shared Autonomous Electric Vehicles and its charging stations through simulation METHODOLOGY 

João Carlos Quintal Lopes  53 

 

Figure 3.3: Print from the AnyLogic software, showing the main window of the model (parameter:  ; variable:  ; 

function:  ; agents: ) 

 

In the Zone agent window (see Figure 3.4), we have the following parameters: ID, Name, 

Longitude, Latitude and Population. For each zone, these parameters are linked to the input 

from the Attribute Table. There are also two variables, one registers the total number of charges 

made in each zone, and the other counts the number of cars that are currently charging in each 

zone, during the simulation (this last variable is associated to a data set tool, that registers the 

value of the variable every 60 seconds, giving us data on how the number of simultaneous 
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charges, in each zone, varies along the day). At the end of the simulation, for each zone, these 

values will be registered as an output. 

 

Figure 3.4: Print from the AnyLogic software, showing the Zone agent window of the model (parameter:  ; variable: ) 

 

In the Traveler agent window (see Figure 3.5), we have the following parameters: ID, Origin 

(origin zone ID), Origin name (origin zone name), Destination (destination zone ID), 

Destination Name (destination zone name), Departure Time, and Expected Travel Time. As 

before, these parameters are linked to the input data, from the OD table. Multiple variables 

related to actions such as measuring waiting time, travel time, travel distance, and calculating 

expected waiting time, are associated to this agent. But more importantly, in this window we 

have the traveler statechart. This statechart defines how the traveler agent exists within the 

simulation. All traveler agents are generated from the OD table at the beginning of the 

simulation and will immediately become idle (their state will be “Idle”). Note that, although it 

may seem counterintuitive to generate all agents at once in the beginning of the simulation, it 

is indeed beneficial regarding simulation running time, since reading or writing data during the 

simulation, opposed to at the start or at the end, dramatically increases running time; this type 

of approach was actually tried out during the model development, in an effort to decrease 

running time. As the simulation is running, at each agent’s departure time, the agent will 

become active and enter the “Waiting for Assignment” state. In this state, the waiting time 

started counting and the vehicle assignment function was called from the main window, which 

in turn will call the vehicle searching function from the traveler window. This second function 

searches for an existing vehicle within the defined maximum waiting time by calculating how 

much time will a parked or moving vehicle take to arrive to the traveler’s location (in the case 

of the moving vehicle, it will calculate how much trip time the vehicle has left with its current 

traveler and sum the trip time from its current traveler destination location to its new traveler 

origin location). Due to the software’s limitation, it is not possible to calculate exactly how 

much time a vehicle will take to arrive through the map, so these trip times are provided as 

input (Expected Travel Time). In a minority of cases, the traveler’s waiting time will actually 

surpass the defined maximum. If there are no available vehicles that meet the criteria, then the 

vehicle assignment function will generate a new car to meet the travel demand and assign it to 
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the traveler. A message will then be sent to the traveler, informing that a vehicle has been 

assigned to him and will pick him up. The traveler will now enter the “Waiting for Pick Up” 

state and maintain it until it receives a message informing that the vehicle has arrived. At this 

point, the traveler will enter the “In Movement” state, and the waiting time will stop counting 

and be stored as a variable, to be registered later, as an output. When the vehicle arrives to the 

traveler’s destination, it will send a message to the traveler informing he has arrived and he can 

now enter his final state, where he ceases to be active. At the end of the simulation, for each 

traveler agent, values such as Traveler ID, Origin, Destination, Departure Time, Traveler 

Waiting Time, Traveler Assigned Time and Traveler Travel Time will be also registered as an 

output. 

 

Figure 3.5: Print from the AnyLogic software, showing the Traveler agent window of the model (parameter:  ; variable:  

; function: ) 

 

In the Car agent window (see Figure 3.6), we only have one main parameter, the car ID (which 

is defined by order of being generated). The main variables associated with this agent are related 

to actions such as, counting the number of trips and charges for each vehicle, giving the value 

of each vehicle’s current zone ID and assigned traveler ID. In this window, we have both a 

statechart (yellow rectangles) and three system dynamics charts (light blue rectangles). Just as 

before, the statechart defines how the agent exists within the simulation. When generated (since 
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we only simulated one day, we assumed that all vehicles would be generated with 50% battery 

charge level and could later charge to 100% when needed), car agents will be parked at the 

traveler’s request origin location coordinates (their state will be “Parked”), but since they are 

generated to serve a travel request message, they will immediately change to the state “Waiting 

for Passenger”, send a message to the traveler informing the vehicle has arrived, and the Current 

Zone variable value will be set equal to the assigned traveler’s origin zone ID. In the case that 

the assigned vehicle was already previously generated, thus, was assigned to a traveler that was 

within the defined maximum waiting time, the car agent will change to the state “Moving to 

Pick Up” and proceed to move to the assigned traveler’s location coordinates. When the agent 

arrives to the traveler’s origin location, a message will be sent to the traveler informing the 

vehicle has arrived, the car agent will change to the state “Waiting for Passenger” and the 

Current Zone variable will be set to the assigned traveler’s origin zone ID. When the traveler 

agent gets into the car agent, the vehicle will then change to the state “Moving to Drop Off” 

and proceed to move to the traveler’s destination location coordinates. When entering this state, 

the simulator will also start counting the assigned traveler’s travel time. When exiting this state, 

the travel time will stop counting and be stored as a variable, to be registered later, as an output. 

In addition to that, the variable that counts the vehicle’s number of trips will increase by one, 

and the Current Zone variable will be set to the assigned traveler’s destination zone ID. At 

destination arrival, the traveler will leave the car, and the vehicle can now take one of three 

options: park, charge or pick up another traveler. If the battery level is 30% or higher and there 

is a travel request within the maximum waiting time radius, the vehicle will immediately move 

to pick up this new traveler (change to the “Moving to Pick Up” state). If the battery level is 

30% or higher and there isn’t any travel request that meets the criteria, the vehicle will park 

(change to “Parked” state). Finally, if the battery level is below 30% of its capacity (this battery 

capacity level is about enough to make any given trip within the Coimbra region) the car will 

go to a charging port (change to the “Charging” state), fully charge its battery and then move 

to the “Parked” state. In the “Parked” state, if the vehicle’s battery level is below 90% and 

within 30 minutes there is no new travel request for the vehicle, i.e., if the vehicle is parked for 

more than 30 consecutive minutes, the vehicle will go to the charging port (change to the 

“Charging” state) to fully charge its battery and then return to the “Parked” state. Regarding the 

system dynamics charts, each one has a different purpose (identically to the statecharts, these 

charts function independently for each car agent in the simulation). One controls the battery 

level, by having both a charging flow and consumption flow (these rates were mentioned 

above). The other two register the car’s total distance driven (in meters) and the total energy 

used (in kWh), respectively. At the end of the simulation, for each car, values such as Car ID, 

Number of Trips, Number of Charges, Current Zone ID, Energy Used and Distance Driven will 

be registered as an output. It should be noted, that initially, the simulation model was also 

registering all sorts of live data, during each vehicle’s trip, but in order to simplify the amount 

of software processing, this data registration was disabled.  
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Figure 3.6: Print from the AnyLogic software, showing the Car agent window of the model (parameter:  ; variable: ) 

 

3.3.4 Software and Model Limitations 

After the simulation model was functioning and ready to run, it was then time to start running 

multiple simulations to obtain result data. Since the quantity of input data was too big for the 

software to handle in feasible time (a software limitation, since the computers used were not 

using their hardware capacities at the limit - most of the time, memory usage was 2-3% of what 

was available), several attempts were made to reduce the running time by downsizing the total 

travel demand. After testing all the total travel demand size samples mentioned in Section 4.2.4, 

we reached the conclusion that the only samples running in a feasible time were the sizes 10 

and 20 times smaller than the full size. The 10 times smaller size sample took more than 9 days 

to complete one simulation. Though, due to time restrictions and the instability of the AnyLogic 

software (with frequent crashes), we used the 20 times smaller size sample, that took 

approximately 4 days to complete a simulation. As mentioned before, this downsize came at a 

cost, with the different trips becoming disproportional and less representative of reality. 

Based on what was stated above, one of the things done to speed up the simulation time, was 

turning off the OpenStreetMap server vehicle routing, so the software would instead use 

straight-line distance. This too came at a cost, since the straight-line distance is lower than the 
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real road distance, and travel time was predefined, the vehicle had to lower its speed in order to 

complete the trip in the determined time (less distance to cover in the same travel time, thus, 

slower speed). In addition, as mentioned before (Section 3.3.2), the battery’s energy 

consumption rate depends on both the vehicle’s speed and distance covered, so the energy 

consumption rate was quite lower than what it should’ve been. 

 

3.4 Post-simulation Analysis 

The output data retrieved from the simulations is then sorted out and processed. The main output 

variable is the vehicle fleet size. The fleet size varies with the defined maximum waiting time 

(see Figure 5.4). So, from the multiple simulations done, we are able to trace a trend line that 

represents how the fleet size varies with the maximum waiting time. 

The total of charges done in each zone during the simulation and how many cars were charging 

at the same time at any given time are stored during the simulation. This allows to determine, 

for each zone, how much energy is needed to charge the vehicles and the number of charging 

ports needed. Other types of statistical data (although more limited in quantity than what was 

planned, due to the stated issues) such as distance driven, energy used (per vehicle), number of 

trips (per vehicle), average traveler waiting time and others, were also registered and analyzed. 

Note that, if simulation was run with the complete ridesharing model, the vehicle fleet size 

would vary according to maximum waiting time and maximum trip added time. In that case it 

would be necessary to do combinations of different values for both parameters and the number 

of simulations needed would be squared. The result would be a trend space-curve. In addition 

to that, if we also assumed multiple scenarios with different penetration rates, we would have 

multiple trend space-curves as a result, that could then be compared. 
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4 CASE STUDY 

4.1 Introduction 

As already mentioned, this work focus on the design of an SAEV transport service through 

simulation, for the Region of Coimbra (NUTS III), in Portugal. The “Comunidade 

Intermunicipal da Região de Coimbra” (Intercity Community of the Region of Coimbra), or 

simply “Região de Coimbra” (Region of Coimbra) is a Portuguese administrative division, 

more specifically, a NUTS III subregion of the “Região do Centro” (Centro Region). The 

intercity community is composed of 19 municipalities (see Figure 4.1), which are then 

subdivided into “Freguesias” (“Freguesias”, usually translated as civil parishes, are a third-level 

Portuguese administrative subdivision): Arganil, Cantanhede, Coimbra, Condeixa-a-Nova, 

Figueira da Foz, Góis, Lousã, Mealhada, Mira, Miranda do Corvo, Montemor-o-Velho, 

Mortágua, Oliveira do Hospital, Pampilhosa da Serra, Penacova, Penela, Soure, Tábua and Vila 

Nova de Poiares, incorporated under Law No. 75/2013, of 12 September (Lei No 75/2013, de 

12 de Setembro, 2013), with Coimbra being its main city. The Region of Coimbra is similar to 

the administrative division of the District of Coimbra, with the difference being that the intercity 

community also includes Mealhada (from the District of Aveiro) and Mortágua (from the 

District of Viseu). According to the 2021 census’ preliminary results (see Figure 4.2), the 

Region of Coimbra has a total population of 436 949 (5% less compared to 2011). The total 

area is 4,336 km2 and the population density is about 101 individuals per square km (CIM RC, 

n.d.; Lei No 75/2013, de 12 de Setembro, 2013; Gabinete de Estratégia e Estudos, 2019; INE, 

2021). 

 

Figure 4.1: The 19 municipalities of the Region of Coimbra (Source: (CIM RC, n.d.)) 
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Figure 4.2: Adapted print from the 2021 Portuguese census website regarding population data from the municipalities of the 

Region of Coimbra (Source: (INE, 2021)) 

 

For the mobility analysis of this region, we were provided with data from the mobility inquiry 

report (TIS, 2009) (this inquiry was done with the purpose of acquiring data for the project 

“Metro Mondego”, which had the goal of constructing a network of a light surface metro to 

operate within some areas of the region of Coimbra). In this mobility inquiry, zones of origin 

and destination were created either by aggregating parishes (particularly in rural areas) or by 

subdividing parishes (particularly in urban areas). In this work, we considered the same zone 

divisions as in the mobility inquiry report (see Figure 4.3) for our trip data (in both boundaries 

and identification number). 
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Figure 4.3: Print from the QGIS software, showing Mondego mobility inquiry report’s zones 

 

For the purpose of this study, trips inside the zones and from or to zones outside the region of 

Coimbra were discarded, since the main objective of this transport system is to serve trips within 

the region of Coimbra. Note, that in Figure 4.3, we are seeing all the internal covered zones in 

the inquiry (zones with red color and zones with pink color), which includes the entire Region 

of Coimbra (NUTS III), plus some additional areas, that belong to other intercity communities 

(note that, the pink colored zones correspond approximately to Coimbra’s urban perimeter). In 

this study, we only consider zones that are within the intercity community of Coimbra, thus, 

some of the represented zones in Figure 4.3 are not part of this study. 

The Table A.1 in the Appendix shows the zones considered (and their respective population), 

which act as origin and destinations for the trips. As mentioned, these zones have the same 

boundaries and are numbered as they were in the Mondego mobility inquiry report (TIS, 2009). 
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4.2 Case Study Data Processing 

4.2.1 Population variation and assumptions 

In the report, they use population data from the 2001 census as a basis and estimate a population 

size for each zone in 2009. Nowadays, we have more recent data regarding population size, 

more specifically, from the 2021 census. By obtaining the preliminary results from the 2021 

census, we can compare and see how the population has changed within the region of Coimbra. 

Table 4.1 shows the population of each municipality in 2009 (inquiry report’s estimate) and in 

2021 (preliminary results from the 2021 census) (TIS, 2009). 

We can see there are some population variations in the municipalities, with mostly rural areas 

losing population and urban areas maintaining. Although some variations are significant, such 

as in the municipality of Penacova and Soure (22.35 and 16.11%, respectively), we chose to 

maintain the number of trips without adjusting to these variations. This choice was based on 

the fact that these population variations are not that significant when considering the many 

estimates that have already been done until this point. Furthermore, as we will see in following 

chapters, the need for downsizing the total travel demand generated much more significant 

errors than these population variations did. 

Table 4.1: Population variations of the municipalities of the Region of Coimbra 

2009 Inquiry Estimates 2021 Census % Variation 

Arganil 12798 Arganil 11 067 Arganil -13.53% 

Cantanhede 38930 Cantanhede 34 218 Cantanhede -12.10% 

Coimbra 140336 Coimbra 140 796 Coimbra 0.33% 

Condeixa-a-Nova 17423 Condeixa-a-Nova 16 733 Condeixa-a-Nova -3.96% 

Figueira da Foz 63229 Figueira da Foz 58 982 Figueira da Foz -6.72% 

Góis 4446 Góis 3 806 Góis -14.39% 

Lousã 18787 Lousã 17 012 Lousã -9.45% 

Mealhada 22100 Mealhada 19 358 Mealhada -12.41% 

Mira 13269 Mira 12 126 Mira -8.61% 

Miranda do Corvo 13687 Miranda do Corvo 12 014 Miranda do Corvo -12.22% 

Montemor-o-Velho 24820 Montemor-o-Velho 24 587 Montemor-o-Velho -0.94% 

Mortágua 10217 Mortágua 8 960 Mortágua -12.30% 

Oliveira do Hospital 21714 Oliveira do Hospital 19 421 Oliveira do Hospital -10.56% 

Pampilhosa da Serra 4416 Pampilhosa da Serra 4 067 Pampilhosa da Serra -7.90% 

Penacova 16894 Penacova 13 119 Penacova -22.35% 

Penela 6287 Penela 5 443 Penela -13.42% 

Soure 20580 Soure 17 264 Soure -16.11% 

Tábua 12331 Tábua 11 163 Tábua -9.47% 
Vila Nova de Poiares 7491 Vila Nova de Poiares 6 813 Vila Nova de Poiares -9.05% 

TOTAL 469755 TOTAL 436949 TOTAL -6.98% 
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4.2.2 Attribute table 

Concerning the zone attribute table, data regarding the population of each zone was obtained 

from the report (although this data was not necessary for the simulation per se). Using the QGIS 

software to analyze the files provided regarding the inquiry’s zoning, we obtained the centroid 

coordinates (in the WGS84 coordinate reference system) for each defined zone, as well as some 

data for the attribute table (zone ID, location coordinates: latitude and longitude, name 

designation and population size) which was then used as an input to the simulation model. 

4.2.3 Origin/Destination table 

Firstly, we extracted the final OD (Origin/Destination) table available in the mobility inquiry. 

In a first screening, we maintained information about the individual trip inquiry number, trip 

start time, origin zone, destination zone, type of inquiry and expansion coefficient (TIS, 2009). 

Then, a process of trip selection was carried out. All trips that had either an origin or destination 

outside the region of Coimbra (area subjected to study) were deleted, in other words, trips with 

OD zones that did not belong to one of the 19 municipalities were removed. Trips within the 

same zone (short local trips), that is, trips with the same origin and destination zone ID, were 

also eliminated. These short trips within the same zone are mostly done by foot or bicycle and 

have a small duration of 10 to 15 minutes, thus amenable to be neglected. 

From the previous selections, the number of trips decreased from 827601 to 467403. The 

expansion coefficient of each remaining individual trip inquiry was then rounded to the closest 

integer (0.137% increase in the number of trips due to rounding). Following, the OD table was 

expanded according to each trip’s respective expansion coefficient, with the final OD table 

having a total of 468044 trips taking place within the region of Coimbra along the course of 24 

hours. The final OD table was filtered once more and the only information that remained was 

an ID for each trip, an origin zone ID, a destination zone ID and a departure time (that was 

converted to seconds to match the model’s time unit). 

4.2.4 Downsizing total travel demand 

Due to reasons that are explained in more detail in Section 3.3, there was a need to downsize 

the total travel demand. Starting from the final aggregated OD table referenced in Section 4.2.3, 

the table was downsized to multiple sizes. When a trip agent count would be less than 0.5, the 

agent count would always round up in order not to lose the type of trip represented (since 

rounding down would mean the agent count would be 0), for other number rounding, 

conventional rules would apply, with the decimal 0.5 or higher rounding up, and the lower than 

that rounding down. The total travel demand was downsized to approximately half its size, one 
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fourth, one eighth, one tenth, and one twentieth, by respectively dividing it by 2, 4, 8, 10, 20, 

and then rounding trip agent count as mentioned. 

This downsize induces some error due to the rounding. The 2 times smaller size sample 

maintains proportions between trips (since the smaller agent count is precisely 2), but from here 

on, any more downsize will have more and more disproportions between trips. It was discussed 

to remove some zones from the simulation, in order to maintain the original number of trips in 

the remaining zones while reducing the quantity of data, but we opted not to take this approach, 

since after removing a considerable amount of OD zones, the quantity of data would still be too 

large and downsizing would need to be done either way (it would not induce as much 

disproportion between trips, but it would still induce it). So rather than removing areas from the 

transport fleet service, we maintained all zones and thus maintain a variety of different trips. 

Table 4.2 shows examples of this transformation, for a sample 20 times smaller than the original 

travel demand. 

Table 4.2: Examples of the total travel demand downsizing to a twentieth of the size 

Original nº of trips Divided by 20 Rounded  

6 0.3 1 

14 0.7 1 

48 2.4 2 

52 2.6 3 

112 5.6 6 

 

4.3 Mobility Statistics 

4.3.1 Traveler average, highest and lowest Travel Time 

The general travel time average of the 24458 travelers is 15.86 minutes (approximately 15 

minutes and 52 seconds). The trip with the highest traveler travel time is 105 minutes and the 

lowest is 1 minute. We can verify in Figure 4.4, that shorter duration trips are the most common, 

with the 10 most frequent travel times being all under 15 minutes. The most frequent travel 

time is 6 minutes, with 1868 travelers making a trip with this duration. And the less frequent 

travel times are from longer duration trips, with 77, 102 and 103 minutes being the less common 

travel times (only one trip each). Note, that for analysis purposes, the travel times were rounded 

to their closest integer. 
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Figure 4.4: Travel times and their respective frequency 

 

4.3.2 Most and less common Origins and Destinations 

The most frequent trip origin is Zone 303 (with 1247 trips), which is in the Coimbra urban 

perimeter, more specifically, the “Baixa - Avenida Fernão de Magalhães” area, and the less 

frequent trip origin is Zone 133 (with 24 trips) in Soure (see Table 4.3). The most and less 

frequent trip destinations are very similar to the corresponding origins, with similar frequency 

also (see Table 4.4). 

Table 4.3: Most and less frequent origin zones and their respective frequency 

ORIGINS 

MOST FREQUENT FREQUENCY LESS FREQUENT FREQUENCY 

Zone 303 1247 Zone 133 24 

Zone 301 962 Zone 49 29 

Zone 65 904 Zone 38 36 

Zone 315 875 Zone 206 36 

Zone 302 869 Zone 304 36 

Zone 312 726 Zone 55 38 

Zone 320 570 Zone 348 38 

Zone 307 565 Zone 210 39 

Zone 6 541 Zone 9 40 

Zone 326 486 Zone 37 40 
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Table 4.4: Most and less frequent destination zones and their respective frequency 

DESTINATIONS 

MOST FREQUENT FREQUENCY LESS FREQUENT FREQUENCY 

Zone 303 1236 Zone 133 24 

Zone 301 963 Zone 49 29 

Zone 65 898 Zone 38 35 

Zone 315 881 Zone 206 35 

Zone 302 873 Zone 304 36 

Zone 312 717 Zone 200 37 

Zone 307 574 Zone 55 38 

Zone 320 564 Zone 348 38 

Zone 6 544 Zone 210 39 

Zone 326 485 Zone 37 39 

 

4.3.3 Trip Distribution 

In Figure 4.5, we can see the trip distribution throughout the 24 hours of the day. As expected, 

we have two main peaks that correspond to the morning peak hour traffic and the evening peak 

traffic (these peaks correlate to business hours). 

 

Figure 4.5: Trip distribution throughout the day (24 hours) 

 

4.3.4 Case Study Scenarios 

For the purpose of this work’s analysis and based on what was stated in Section 3.3 regarding 

waiting time, five simulations were run with the following maximum waiting time values (in 

minutes): 5, 10, 15, 20 and 30. So, for each different Maximum Waiting Time scenario, one 

simulation was run. The Maximum Waiting Time was the only defined parameter that was 

different between the five scenarios.  
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5 RESULTS 

5.1 PRESENTATION OF RESULTS 

5.1.1 Traveler 

Average Waiting Time 

In Table 5.1 we have the traveler’s average waiting time with and without null values, that is, 

the average of all traveler’s waiting times and the waiting time average of all travelers that have 

a non-null waiting time (waiting time higher than zero). Since the system would generate a new 

car at the traveler’s location in situations when there was no available vehicle that met the 

assignment criteria, the waiting time of that traveler would be 0 minutes. 

Table 5.1: Traveler average Waiting Time with and without considering null values 

 MAX WAITING TIME 
 5 MIN 10 MIN 15 MIN 20 MIN 30 MIN 

AVERAGE WAITING TIME [minutes] 0.15 0.34 0.57 0.77 1.13 

AVERAGE WAITING TIME (w/ null) [minutes] 2.64 4.43 6.23 7.61 9.94 

 

Highest Waiting Time 

The highest waiting times are presented in Table 5.2. As stated in Section 3.3.3, in a minority 

of cases, the traveler’s waiting time will actually surpass the defined maximum, and here we 

see the highest of those values. 

Table 5.2: Top 10 highest waiting times 

 MAX WAITING TIME 

 5 min 10 min 15 min 20 min 30 min 

1
0

 H
IG

H
ES

T 
W

A
IT

IN
G

 T
IM

ES
 

[m
in

u
te

s]
 

27.10 26.54 37.34 44.02 68.51 

19.04 25.85 37.23 42.35 51.62 

15.96 25.81 36.37 39.18 50.09 

11.76 25.35 30.79 39.17 49.07 

11.61 21.80 30.17 38.78 49.05 

11.11 21.44 30.17 38.72 47.61 

10.98 20.75 30.17 38.08 47.49 

10.96 20.25 29.99 37.90 47.46 

10.63 19.98 28.73 37.36 46.07 

10.53 19.94 28.69 37.34 45.67 
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Maximum Waiting Time success rate  

Following-up what was stated above, since there are traveler waiting times that surpass the 

defined maximum, we can calculate the success rate of a traveler being served within time (see 

Table 5.3). We can verify that these rates are similar for the different Maximum Waiting Times, 

nonetheless, there is a slight failure rate decrease trend as we increase the Maximum Waiting 

Time, i.e., as Maximum Waiting Time increases, so does the success rate of the traveler being 

served in time. 

Table 5.3: Number and percentage of travelers that were picked up after the defined Maximum Waiting Time 

 MAX WAITING TIME 

 5 MIN 10 MIN 15 MIN 20 MIN 30 MIN 

NUMBER OF TRAVELER WT > MAX WT 175 160 189 148 126 

% OF WT > MAX WT 0.72% 0.65% 0.77% 0.61% 0.52% 

 

5.1.2 Car 

Trips  

The average number of trips that a vehicle completes during the simulation is presented in Table 

5.4. In Table 5.5, we can see that the highest number of trips done by a vehicle is somewhat 

similar for every simulation. 

Table 5.4: Average number of trips done per vehicle 

 MAX WAITING TIME 

 5 MIN 10 MIN 15 MIN 20 MIN 30 MIN 
AVERAGE NUMBER OF TRIPS PER VEHICLE 1.40 1.43 1.46 1.48 1.50 

 

Table 5.5: Top 10 highest number of trips done by a vehicle 

 MAX WAITING TIME 

 5 MIN 10 MIN 15 MIN 20 MIN 30 MIN 

TO
P

 1
0

 N
º 

TR
IP

S 
P

ER
 V

EH
IC

LE
 

41 41 39 43 37 

39 38 38 40 37 

38 38 37 40 37 

37 37 37 39 36 

37 36 37 39 36 

36 35 36 39 36 

36 35 35 37 35 

35 35 35 36 35 

34 34 35 36 35 

32 34 35 36 35 
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Distance Driven  

We can verify that the average Distance Driven, both per vehicle and per trip, and the total 

Distance Driven, increases as the Maximum Waiting Time increases (Table 5.6). The highest 

distance driven by a vehicle can vary a little but is somewhat similar between the different 

simulations (see Table 5.7). The Distance Driven registered, as explained in Section 3.3.4, is a 

straight-line distance. So, the distances and averages showed in the following tables are straight-

line distance. Nonetheless, to give a rough idea of the real distance, we a calculated an increase 

factor, by choosing 50 random trips (about half from urban areas, other half from rural areas) 

and calculating the ratio between the simulated (straight-line) distance and the real road 

distance. The average of those 50 ratios, is a factor of approximately 1.5. 

Table 5.6: Average distance driven per vehicle and per vehicle trip, and total distance driven 

 MAX WAITING TIME 
 5 MIN  10 MIN 15 MIN  20 MIN  30 MIN  

AVERAGE DISTANCE DRIVEN PER VEHICLE [Kilometers] 12.721 13.140 13.490 13.756 14.167 

AVERAGE DISTANCE PER VEHICLE TRIP [Kilometers] 9.113 9.170 9.238 9.300 9.414 

TOTAL DISTANCE DRIVEN [Kilometers] 222877 224280 225939 227453 230245 

 

Table 5.7: Top 10 highest distance driven by a vehicle 

  MAX WAITING TIME 

  5 MIN 10 MIN 15 MIN 20 MIN 30 MIN 

TO
P

 1
0

 V
EH

IC
LE

S 

D
IS

TA
N

C
E 

D
R

IV
EN

 (
K

ilo
m

et
e

rs
) 

438.350 454.943 520.092 523.018 488.373 

417.924 425.082 446.119 484.579 459.897 

408.893 412.664 424.895 473.650 451.194 

391.144 409.081 423.744 468.585 442.141 

373.167 401.868 410.099 462.692 441.934 

372.590 401.666 409.629 432.493 426.150 

368.973 400.425 402.547 424.800 425.277 

367.661 390.045 402.413 423.360 416.130 

365.763 384.665 401.100 419.127 413.221 

363.634 380.699 396.731 417.888 405.385 

 

Battery Usage  

Just as Distance Driven, the Battery Usage average per vehicle and vehicle trip, and the total 

energy used (Table 5.8), increases with the Maximum Waiting Time (this is normal, since 

Battery Usage depends on speed and distance). The highest values are also similar between 

simulations (Table 5.9). 
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Table 5.8: Average battery usage per vehicle and per vehicle trip, and total energy expenditure 

 MAX WAITING TIME 
 5 MIN  10 MIN 15 MIN  20 MIN  30 MIN  

AVERAGE BATTERY USED PER VEHICLE [Wh] 1320 1363 1398 1425 1468 
AVERAGE BATTERY USED PER VEHICLE TRIP [Wh] 946 951 957 963 975 

TOTAL ENERGY EXPENDITURE [kWh] 23132 23261 23418 23564 23852 
 

Table 5.9: Top 10 highest battery usage by a vehicle 

  MAX WAITING TIME 

  5 MIN 10 MIN 15 MIN 20 MIN 30 MIN 

TO
P

 1
0

 V
EH

IC
LE

S 

B
A

TT
ER

Y 
U

SE
D

 (
kW

h
) 

54.396 50.594 55.011 58.476 55.485 

45.889 49.060 50.590 56.034 51.056 

44.981 47.753 46.233 55.004 48.474 

44.536 47.394 45.860 52.912 47.514 

43.577 47.330 45.640 52.866 47.292 

43.525 45.393 45.446 51.053 44.110 

42.188 44.421 45.384 48.849 44.066 

39.389 42.589 43.834 48.203 43.572 

38.815 41.628 42.692 47.833 43.422 

38.700 41.513 42.246 46.234 42.633 
 

Charging 

The average number of charges per vehicle is presented in Table 5.10, and the highest values 

of charges per vehicle are presented in Table 5.11. 

Table 5.10: Average number of charges per vehicle 

 MAX WAITING TIME 

 5 MIN 10 MIN 15 MIN 20 MIN 30 MIN 
AVERAGE Nº OF CHARGES PER VEHICLE 1.006 1.006 1.008 1.007 1.009 

 

Table 5.11: Top 10 highest number of charges done by a vehicle 

 MAX WAITING TIME 

 5 MIN 10 MIN 15 MIN 20 MIN 30 MIN 

TO
P

 1
0

 N
º 

O
F 

C
H

A
R

G
ES

 P
ER

 

V
EH
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LE

 

4 4 4 4 4 

4 4 4 4 4 

4 4 4 4 4 

4 4 4 4 4 

4 4 4 4 4 

4 3 4 3 3 

4 3 4 3 3 

4 3 3 3 3 

3 3 3 3 3 

3 3 3 3 3 
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Finish Zone 

In Table 5.12 and Table 5.13 we can verify the most common finishing zones for the vehicles 

and their respective frequency. These zones correspond exactly to the most common 

destinations (see Table 4.4) and are the same for every simulation, although the order of 

frequency can change. 

Table 5.12: Top 10 most common vehicle end zones and their respective frequency (a) 

 MAX WAITING TIME 
 5 MIN 10 MIN 15 MIN 
 ZONE ID FREQUENCY ZONE ID FREQUENCY ZONE ID FREQUENCY 

TO
P

 1
0

 F
IN

IS
H

 Z
O

N
ES

 ID
 303 1036 303 1004 303 994 

301 753 301 738 301 737 

65 734 65 713 65 702 

315 717 315 708 315 702 

302 711 302 701 302 687 

312 565 312 551 312 549 

307 458 307 453 307 450 

320 435 6 431 6 421 

6 434 320 422 320 417 

326 365 326 356 326 343 

 

Table 5.13: Top 10 most common vehicle end zones and their respective frequency (b) 

 MAX WAITING TIME 

 20 MIN 30 MIN 

 ZONE ID FREQUENCY ZONE ID FREQUENCY 

TO
P

 1
0

 F
IN

IS
H

 Z
O

N
ES

 ID
 303 987 303 974 

301 728 301 717 

315 695 315 695 

65 694 65 680 

302 682 302 675 

312 543 312 528 

307 446 307 444 

6 418 320 413 

320 415 6 406 

326 338 326 337 

 

5.1.3 Zone Charges 

Total Charges 

The number of total charges per zone is how many times a vehicle charged in that zone 

throughout the day. The average number of charges per zone and the total number of charges 

decreases with increasing Maximum Waiting Time (see Table 5.14). Although the average in 
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the simulations is between 120 and 130 charges per zone, the number of charges per zone varies 

greatly among different zones, from above 1000 charges to only 14 charges in some zones (see 

Table 5.15, Table 5.16, Table 5.17 and Table 5.18). 

Table 5.14: Average and total number of charges per zone 

 MAX WAITING TIME 

 5 MIN  10 MIN 15 MIN  20 MIN  30 MIN  

AVERAGE NUMBER OF CHARGES PER ZONE 129.3 126.0 123.8 122.1 120.2 

TOTAL NUMBER OF CHARGES 17714 17258 16959 16732 16474 

 

Table 5.15: Top 10 zones with most charges done and their respective charges (a) 

 MAX WAITING TIME 

 5 MIN 10 MIN 15 MIN 

 ZONE ID CHARGES ZONE ID CHARGES ZONE ID CHARGES 

TO
P

 1
0

 M
O

ST
 C

H
A

R
G

ES
 Z

O
N

ES
 

303 1036 303 1004 303 994 

301 753 301 738 301 737 

65 734 65 713 65 702 

315 717 315 708 315 702 

302 711 302 701 302 687 

312 565 312 551 312 549 

307 458 307 453 307 450 

320 435 6 431 6 421 

6 434 320 422 320 417 

326 365 326 356 326 343 

 

Table 5.16: Top 10 zones with most charges done and their respective charges (b) 

 MAX WAITING TIME 

 20 MIN 30 MIN 

 ZONE ID CHARGES ZONE ID CHARGES 

TO
P

 1
0

 M
O

ST
 C

H
A

R
G

ES
 Z

O
N

ES
 

303 987 303 974 

301 728 301 717 

315 695 315 695 

65 694 65 680 

302 682 302 675 

312 543 312 528 

307 446 307 444 

6 418 320 413 

320 415 6 406 

326 338 326 337 
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Table 5.17: Top 10 zones with less charges done and their respective charges (a) 

 MAX WAITING TIME 

 5 MIN 10 MIN 15 MIN 

 ZONE ID CHARGES ZONE ID CHARGES ZONE ID CHARGES 
TO

P
 1

0
 L

ES
S 

C
H

A
R

G
ES

 Z
O

N
ES

 
49 17 49 16 49 14 

50 20 50 18 50 17 

133 20 133 19 133 19 

37 21 38 20 55 19 

38 21 37 21 38 20 

53 22 53 22 37 20 

55 24 55 23 53 20 

9 26 9 23 210 23 

210 28 52 25 52 24 

304 28 112 27 9 25 

 

Table 5.18: Top 10 zones with less charges done and their respective charges (b) 

 MAX WAITING TIME 

 20 MIN 30 MIN 

 ZONE ID CHARGES ZONE ID CHARGES 

TO
P

 1
0

 L
ES

S 
C

H
A

R
G

ES
 Z

O
N

ES
 

49 14 49 15 

37 17 53 17 

38 18 38 18 

50 19 37 19 

133 20 50 19 

55 20 55 19 

53 22 133 20 

9 23 9 21 

210 24 52 24 

52 24 304 24 

 

Simultaneous Charges 

Regarding charging stations, this parameter is one of the most important, since it represents the 

maximum number of vehicles charging at any given time, which can then be used to estimate 

the number of charging ports needed. In Table A.2 in the Appendix, we can see these values 

for every zone. In Table 5.19 and Table 5.20 we can see the zones with highest number of 

simultaneous charges, and in Table 5.21 and Table 5.22 we can see the zones with lower 

number. 
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Table 5.19: Top 10 zones with most simultaneous charges done and their respective charges (a) 

 MAX WAITING TIME 
 5 MIN 10 MIN 15 MIN 
 ZONE ID CHARGES ZONE ID CHARGES ZONE ID CHARGES 

TO
P

 1
0

 M
O

ST
 S

IM
 C

H
A

R
G

ES
  303 94 303 91 303 91 

65 84 65 84 65 81 

302 65 302 63 315 65 

315 63 315 63 302 62 

312 56 312 53 312 53 

301 51 301 51 301 51 

307 43 307 43 6 42 

321 40 321 39 307 42 

320 39 320 38 321 39 

328 37 204 36 320 38 

 

Table 5.20: Top 10 zones with most simultaneous charges done and their respective charges (b) 

 MAX WAITING TIME 
 20 MIN 30 MIN 
 ZONE ID CHARGES ZONE ID CHARGES 

TO
P

 1
0

 M
O

ST
 S

IM
 C

H
A

R
G

ES
  303 90 303 96 

65 81 65 84 

315 62 302 61 

302 59 315 61 

312 53 312 54 

301 50 301 51 

307 43 307 43 

321 39 6 41 

6 39 321 39 

320 36 320 36 

 

Table 5.21: Top 10 zones with less simultaneous charges done and their respective charges (a) 

 MAX WAITING TIME 
 5 MIN 10 MIN 15 MIN 
 ZONE ID CHARGES ZONE ID CHARGES ZONE ID CHARGES 

TO
P

 1
0

 L
ES

S 
SI

M
 C

H
A

R
G

ES
 49 3 49 3 49 3 

9 4 9 4 53 3 

37 4 37 4 37 4 

38 4 38 4 38 4 

53 4 53 4 59 4 

59 4 59 4 112 4 

133 4 112 4 133 4 

52 5 133 4 9 5 

112 5 29 5 29 5 

213 5 52 5 52 5 
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Table 5.22: Top 10 zones with most simultaneous charges done and their respective charges (b) 

 MAX WAITING TIME 
 20 MIN 30 MIN 
 ZONE ID CHARGES ZONE ID CHARGES 

TO
P

 1
0

 L
ES

S 
SI

M
 C

H
A

R
G

ES
 53 3 29 3 

49 3 37 3 

37 3 49 3 

133 4 53 3 

112 4 9 4 

59 4 38 4 

38 4 55 4 

358 5 59 4 

337 5 112 4 

213 5 133 4 

 

Following, we have a chart with 5 curves (one for each simulation) with total number of 

charging vehicles at any given minute throughout the day (Figure 5.1). As it can be seen, these 

curves are very similar, with only some small variations. 

 

Figure 5.1: Total number of charging vehicles at any given minute throughout the day (defined maximum Waiting Time of 5, 

10, 15, 20 and 30 minutes) 

 

In Figure 5.2 and Figure 5.3, we can see these same curves for three urban area zones (Coimbra, 

Figueira da Foz and Cantanhede) and three rural area zones (Soure, Pampilhosa da Serra and 

Penacova), respectively. While the urban area zones approximately follow the curve in Figure 

5.1, the rural area zones diverge more from this pattern. 
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Figure 5.2: Number of charging vehicles at any given minute throughout the day (defined maximum Waiting Time of 5 

minutes) in urban area zones 

 

 

Figure 5.3: Number of charging vehicles at any given minute throughout the day (defined maximum Waiting Time of 5 

minutes) in rural area zones 

 

5.1.4 Vehicle Fleet Size 

Finally, in the following charts, we have the analysis that gives us the variation of vehicle fleet 

size depending on Maximum Waiting Time. From the data in Table 5.23, we can create a scatter 

0

20

40

60

80

100

0 1 2 3 4 5 6 7 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

1
2

2
2

3
2

4N
u

m
b

er
 o

f 
V

eh
ic

le
s 

C
h

ar
gi

n
g

Time [hours]

Urban Area Zones

Zone 303 Zone 6 Zone 65

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
1

2
2

2
3

2
4N

u
m

b
er

 o
f 

V
eh

ic
le

s 
C

h
ar

gi
n

g

Time [hours]

Rural Area Zones

Zone 130 Zone 206 Zone 112



Designing a fleet of Shared Autonomous Electric Vehicles and its charging stations through simulation RESULTS 

João Carlos Quintal Lopes  77 

chart and trace a variation line and equation. In Figure 5.4, we have the trendline (which is a 

logarithmic curve) and respective equation for the variation rate of vehicle fleet size depending 

on Maximum Waiting Time. In Figure 5.5 and Figure 5.6, we see this curve but represented in 

relation to the average Waiting Time (with and without null values, respectively). 

Table 5.23: Number of vehicles generated in each simulation 

 MAX WAITING TIME 

 5 MIN 10 MIN 15 MIN 20 MIN 30 MIN 

NUMBER OF VEHICLES 17521 17068 16749 16535 16252 

 

 

Figure 5.4: Vehicle fleet size variation with increasing maximum Waiting Time 
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Figure 5.5: Vehicle fleet size variation compared to the average Waiting Time of the simulations 

 

 

Figure 5.6: Vehicle fleet size variation compared to the average Waiting Time (without null values) of the simulations 
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5.2 DISCUSSION OF RESULTS 

It was expected that the number of vehicles needed for the transport service fleet would decrease 

with the increase of maximum waiting time, and the results showed this. Nonetheless, we 

expected a higher decrease rate. Comparing to the lowest Maximum Waiting Time tested (5 

minutes), increasing this time to 10 minutes lowered the number of vehicles needed by 2.59%, 

to 15 minutes by 4.41%, to 20 minutes by 5.63% and to 30 minutes by 7.24%. So, we can see 

that by increasing the time six-fold, we only decreased the number of vehicles needed by 7.24%. 

These results are expectedly due to multiple factors. One reason may be the fact that the main 

focus of this study was interurban trips, thus, many shorter trips with a small Maximum Waiting 

Time radius, would meet vehicle assignment criteria, so by increasing Maximum Waiting Time, 

there would be considerably more travelers served with less cars. Another reason may be the 

fact that we did not fully employ the ridesharing feature (only time-sharing vehicles, not space-

sharing). With space-sharing vehicles, multiple travelers could travel in one single car, further 

reducing the vehicle fleet size needs. Downsizing the total travel demand also may be one of 

the main factors, since due to rounding, trips representation became highly disproportional. A 

trip that initially represented 29 traveler trips, after downsizing represents only 1 traveler trip, 

while a trip that initially represents 1 traveler trip, after downsizing still represents 1 traveler 

trip. 

Besides the problems described above, some other model limitations include vehicle relocation, 

charging, vehicle and travel request generation, warm-up period and simulated time. Regarding 

vehicle relocation, despite not being considered in this model, its effect would not have been 

significant, since there is a scheduled systematic trend in the flow of traffic, with an 

approximately equal number of travelers going in one direction at the beginning of the day and 

returning in the opposite direction at the end of the day. Nonetheless, it should be noted that 

depending on each case, relocation can be beneficial in multiple aspects, and if, for example, 

there were fewer charging stations and they would only be located in certain areas, in this case, 

relocation would have a more significant role. Concerning charging, as stated in Section 3.3.3, 

we assumed that the vehicle’s battery would start with 50% charge. Since many vehicles in this 

simulation only did one trip, they would consequently park and after 30 minutes, they would 

charge (because every generated new vehicle’s battery was below 90% charge). Many of these 

trips were short, so the amount of battery used was small, which means, if the vehicle’s battery 

would’ve have been generated fully charged, the number of charges done would’ve been 

considerably lower. Regarding vehicle and travel request generation, the vehicles were 

generated at the exact location of the travel request, thus, the waiting time was zero (unrealistic 

waiting time). Ideally, the traveler request should’ve been generated at a random location within 

a populated area of the zone and the car should’ve been generated randomly or at specific 

chosen location within the traveler’s zone. Still on the subject of vehicle generation, this study 
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also didn’t include a “warm-up”, where there would be a first simulation to generate the cars 

and estimate the fleet size, and then a second simulation would be run with the vehicles already 

generated at their respective location. Unfortunately, due to the long simulation running times, 

this was not possible to do. Note that, for the vehicle fleet size estimate, there is no need for a 

warm-up, but for obtaining other parameters, such as, more realist waiting times, this process 

should be done. Finally, the simulation was only run for one day’s trips. Preferably, the 

simulation would include multiple days (for example, an entire week), with possibly some small 

random variations, to create continuity between the simulated days and give results more 

approximate to reality. 

Despite the multiple limitations, the significance of the results of this study is mainly affected 

by the downsizing of the total travel demand. For real world applications, the simulations should 

have been run with the original total travel demand as input. Notwithstanding, the model built 

was prepared to run full size simulations during multiple days, but due to the software’s 

limitations regarding running time, this was by far unfeasible.  
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6 CONCLUSION 

This work provided a global overview regarding the subject of autonomous vehicles and agent-

based model simulation. We first introduced multiple concepts, such as, autonomous vehicles, 

ridesharing, electric vehicles, shared autonomous vehicles, simulation and agent-based models. 

We addressed many of the potential benefits that come with the implementation of autonomous 

vehicles and some major issues to consider. Potential benefits include increase in road safety, 

less traffic and emissions, changes in travel behavior and accessability, revolutinizing freight 

transportation and a significant positive economic impact. Major issues involve high vehicle 

costs, lagging legislation and regulations, liability and ethics approaches, security threats, 

privacy issues and lacking research. Concerning agent-based models, we revised two recent 

systematic reviews regarding the subejct and complemented by reviewing a study example. The 

overview of the existing literarture included date and geographic distribution, data collection, 

simulation key variables, model execution, scenario variations, outputs and analysis of results. 

In the study example, we reviewed model specifications, operations, application and 

implementation.  A methodology was developed to design an SAEV system and its components 

using simulation. The general model procedure, model development and post-simulation 

analysis were described. The methodology includes an agent-based simulation model with 

zones, travelers and vehicles as agents, allowing for them to interact based on input data and 

defined parameters. The ABM model was implemented using a software tool available in the 

market (Anylogic). The Region of Coimbra (NUTS III) served as a testbed for the methodology. 

A background of this region was presented, along with mobility statistics and the data 

processing steps that were done. Results showed that by increasing maximum waiting time, 

there is a logarithmic decrease of the vehicle fleet size needed. In addition to these results, 

statistics regarding travelers, vehicles and charging zones were showed. Finally, there was a 

discussion concerning the results, in which the interpreation of results and their sigfinicance 

and validity was addressed. 

To summarize, we can divide the case study steps in three stages. The first stage consisted of 

analyzing data and diagnosing the current mobility situation of the region using said data. The 

second stage consisted of designing the model and building it in the simulation software, where 

we introduce an autonomous vehicle fleet providing transfer services, with a time-sharing only 

fleet. The third stage focused on the introduction of electric functioning vehicles and charging 

ports. Besides the case study development, an introduction to certain concepts regarding the 

subject at hand, and a review of the literature related to autonomous vehicles and existing 

simulation models was also done. Finally, after all simulations were ran, their results were 

analyzed, compared and discussed. 
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In future work, fully ridesharing vehicles with two or more seats should be considered. Multiple 

battery and charging capacities should be tested, along with different charging scenarios (for 

example, considering electricity charging cost, which is cheaper at night). For a real-world 

scenario preparation, optimization work regarding the charging stations’ location should be 

done also. OD zone divisions should be better adjusted according to type and quantity of the 

travel requests and other forms of public transportation functioning in parallel could also be 

considered to be available for the traveler (with possibly different costs taken into 

consideration). Other factors such as vehicle relocation and traveler location generation can 

also lead to better results. 

To conclude this work, we should note that autonomous technology is already presently 

working and always improving. Just as it was stated in the introduction of this thesis, the era of 

autonomous driving is coming, and we should prepare for it. This work and the project in which 

it is inserted, aims to contribute to this purpose.  
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APPENDIX A 

Table A.1: Zones’ Attribute Table, with ID, coordinates, name and population 

ZONA Longitude Latitude Designação População 

1 -8.740332 40.415207 Mira 8022 

2 -8.628689 40.398116 Cantanhede 3690 

3 -8.679095 40.391049 Cantanhede 2632 

6 -8.60488 40.353889 Cantanhede 8450 

8 -8.527283 40.268654 Cantanhede 2649 

9 -8.549431 40.301177 Cantanhede 1261 

16 -8.479111 40.397729 Mealhada 2359 

18 -8.442709 40.380881 Mealhada 4306 

19 -8.467936 40.346125 Mealhada 3513 

20 -8.404707 40.364338 Mealhada 2215 

21 -8.42949 40.33872 Mealhada 4492 

22 -8.349015 40.29154 Penacova 2869 

23 -8.327612 40.250669 Penacova 4263 

24 -8.273208 40.280919 Penacova 3620 

25 -8.275755 40.213098 Vila Nova de Poiares 5655 

27 -8.208394 40.223273 Vila Nova de Poiares 1836 

29 -8.2674 40.164537 Lousã 1757 

30 -8.191125 40.164539 Lousã 2042 

32 -8.24669 40.102167 Lousã 12397 

33 -8.209645 40.126087 Lousã 2591 

34 -8.324849 40.157026 Miranda do Corvo 4074 

35 -8.328149 40.098031 Miranda do Corvo 7478 

37 -8.376595 40.08789 Miranda do Corvo 979 

38 -8.300948 40.054129 Miranda do Corvo 1156 

39 -8.524728 40.142682 Condeixa-a-Nova 3894 

42 -8.550677 40.09827 Condeixa-a-Nova 3273 

43 -8.499543 40.117144 Condeixa-a-Nova 4521 

44 -8.475493 40.09815 Condeixa-a-Nova 3769 

48 -8.612806 40.0531 Soure 8313 

49 -8.595723 40.146049 Soure 1643 

50 -8.625389 40.118123 Soure 1295 

51 -8.630926 40.159767 Soure 1641 

52 -8.650048 40.150291 Soure 1539 

53 -8.569911 40.169352 Montemor-o-Velho 2183 

54 -8.595516 40.233804 Montemor-o-Velho 2216 

55 -8.629348 40.221093 Montemor-o-Velho 1672 

56 -8.634074 40.205953 Montemor-o-Velho 3013 

57 -8.6091 40.172867 Montemor-o-Velho 1464 



Designing a fleet of Shared Autonomous Electric Vehicles and its charging stations through simulation APPENDIX A 

João Carlos Quintal Lopes  96 

58 -8.672715 40.188947 Montemor-o-Velho 2779 

59 -8.70959 40.135254 Montemor-o-Velho 2448 

63 -8.804989 40.137765 Figueira da Foz 3225 

64 -8.8389 40.170334 Figueira da Foz 7800 

65 -8.854918 40.152024 Figueira da Foz 10957 

66 -8.853562 40.129596 Figueira da Foz 2732 

67 -8.880607 40.180998 Figueira da Foz 8131 

100 -8.790587 40.446197 Mira 3077 

101 -8.728616 40.465223 Mira 2170 

102 -8.601844 40.443669 Cantanhede 3428 

103 -8.530723 40.383364 Cantanhede 3546 

104 -8.516612 40.340842 Cantanhede 2743 

105 -8.659142 40.319465 Cantanhede 6407 

106 -8.782807 40.34177 Cantanhede 4124 

110 -8.379019 40.38148 Mealhada 2929 

111 -8.484381 40.30259 Mealhada 2286 

112 -8.318394 40.331616 Penacova 1809 

113 -8.189986 40.301533 Penacova 4333 

114 -8.462623 40.071658 Condeixa-a-Nova 1966 

123 -8.8409 40.039687 Figueira da Foz 3274 

124 -8.845198 40.085293 Figueira da Foz 4213 

125 -8.780644 40.060248 Figueira da Foz 3391 

126 -8.780794 40.097009 Figueira da Foz 1982 

127 -8.788647 40.192223 Figueira da Foz 4110 

128 -8.778227 40.239 Figueira da Foz 9304 

129 -8.844987 40.221392 Figueira da Foz 4110 

130 -8.704299 40.078089 Soure 4213 

131 -8.675576 40.277235 Montemor-o-Velho 5802 

132 -8.704602 40.238568 Montemor-o-Velho 3243 

133 -8.516146 40.008614 Soure 1936 

200 -8.253141 40.41952 Mortágua 10217 

202 -8.01518 40.334164 Tábua 12331 

203 -7.863711 40.368464 Oliveira do Hospital 21714 

204 -8.079163 40.227601 Arganil 8166 

205 -7.908224 40.230224 Arganil 4632 

206 -7.916355 40.084317 Pampilhosa da Serra 4416 

210 -8.369832 40.010123 Penela 6287 

213 -8.089421 40.10254 Góis 4446 

301 -8.423912 40.206383 Alta / Universidade Pólo I 1694 

302 -8.420175 40.209284 Av Sá da Bandeira / Praça da República 1303 

303 -8.433597 40.212488 Baixa / Avde Fernão de Magalhães 2163 

304 -8.421227 40.222967 Coselhas 744 
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305 -8.42426 40.199101 Parque 244 

306 -8.429294 40.191971 Quinta das Lágrimas / Quinta da Várzea 1663 

307 -8.438773 40.207853 Rossio de Santa Clara / Guarda Inglesa 1592 

308 -8.421422 40.213499 Montes Claros 3571 

309 -8.431252 40.217115 Conchada 1536 

310 -8.420119 40.217567 Rua Padre Manuel da Nóbrega 1326 

311 -8.413192 40.214314 Cruz de Celas 1183 

312 -8.409453 40.220571 Bairro de Celas / Hospital 1186 

313 -8.407176 40.213396 Olivais / Cumeada 2486 

314 -8.41331 40.208115 Av Dias da Silva / Loios / Cidral 1838 

315 -8.406973 40.204606 Solum 4018 

316 -8.417386 40.197054 Arregaça 1459 

317 -8.416201 40.201473 Rua do Brasil 2275 

318 -8.408955 40.198864 Bairro Norton de Matos 5016 

319 -8.401124 40.197631 Casa Branca 1125 

320 -8.410233 40.194736 Vale das Flores 3573 

321 -8.417796 40.186593 Quinta da Boavista / Universidade Pólo II 1034 

322 -8.406457 40.186153 Alto de São João / Quinta da Portela 1323 

323 -8.444461 40.202884 Almas de Freire / Vale Gemil 3126 

324 -8.446085 40.186897 Alto dos Barreiros / Cruz dos Morouços 2460 

325 -8.452463 40.196815 Mesura / Póvoa 2017 

326 -8.463025 40.195601 Covões / Espírito Santo das Touregas 3363 

327 -8.475301 40.197838 Fala 4171 

328 -8.461714 40.213938 São Martinho do Bispo / Bencanta 2592 

329 -8.478468 40.208185 Casais 2492 

330 -8.44351 40.226841 Loreto 3549 

331 -8.432564 40.226265 Monte Formoso / Ingote 3903 

332 -8.426315 40.238023 Bairro de São MIguel / Bairro da Liberdade 1653 

333 -8.442946 40.2425 Pedrulha 1938 

334 -8.433982 40.257536 Adémia / Bairro de Santa Apolónia 4525 

335 -8.420622 40.248631 Eiras 1621 

336 -8.411845 40.232453 Lordemão 1856 

337 -8.393651 40.211888 Tovim de Baixo 980 

338 -8.399685 40.216884 São Sebastião / Av Elísio de Moura 3182 

339 -8.401877 40.211925 Quinta da Maia 1797 

340 -8.395035 40.203611 Chão do Bispo 2376 

341 -8.394676 40.191686 Areeiro 1430 

342 -8.385452 40.212374 Tovim de CIma 1269 

343 -8.365241 40.183222 Ceira 5056 

344 -8.419952 40.158381 Castelo Viegas - freguesia e Assafarge 2091 

345 -8.456714 40.169343 Antanhol / Palheira e Carvalhais 3170 

347 -8.504439 40.19628 Taveiro 3201 
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348 -8.487464 40.180724 Ribeira de Frades / Valongo 1046 

349 -8.476805 40.238692 Antuzede 2145 

350 -8.537999 40.223396 São Silvestre - SM Árvore 3740 

351 -8.570021 40.256278 Lamarosa 2158 

352 -8.514385 40.241397 São João do Campo - freguesia 2168 

353 -8.465833 40.272732 Vil de Matos - freguesia e Trouxemil / Torre de 3477 

355 -8.426 40.296445 Souselas - freguesia 2953 

356 -8.396481 40.320057 Botão - freguesia 1580 

357 -8.396482 40.269563 Brasfemes - freguesia 1742 

358 -8.38183 40.24563 São Paulo de Frades / Rocha Nova 1694 

359 -8.354748 40.215646 Casal do Lobo / Dianteiro 1182 

360 -8.375803 40.205042 Torres do Mondego 1120 

361 -8.391129 40.132129 Almalaguês - freguesia 3229 

362 -8.464169 40.135317 Cernache - freguesia 3674 

364 -8.536687 40.182761 Ameal / Arzila - freguesia 2258 

 

Table A.2: Number of total daily charges per zone 

Zone ID 5 MIN 10 MIN 15 MIN 20 MIN 30 MIN 

1 93 81 72 76 71 

2 71 67 67 65 57 

3 43 37 33 30 33 

6 347 332 336 327 329 

8 65 57 53 55 53 

9 26 23 25 23 21 

16 45 45 48 45 45 

18 203 186 175 173 173 

19 69 64 65 62 62 

20 47 46 44 42 41 

21 110 100 98 89 91 

22 31 28 29 24 26 

23 50 49 48 48 45 

24 109 108 90 93 88 

25 81 85 88 81 78 

27 38 39 40 37 37 

29 31 28 27 28 25 

30 93 89 86 87 85 

32 256 248 235 232 231 

33 109 113 110 107 108 

34 85 83 81 79 79 

35 180 176 174 174 161 

37 21 21 20 17 19 
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38 21 20 20 18 18 

39 81 80 74 73 73 

42 43 39 40 39 36 

43 144 142 140 130 122 

44 54 51 43 46 43 

48 142 139 136 142 136 

49 17 16 14 14 15 

50 20 18 17 19 19 

51 44 46 43 42 40 

52 29 25 24 24 24 

53 22 22 20 22 17 

54 36 35 34 32 29 

55 24 23 19 20 19 

56 61 60 60 57 57 

57 33 31 31 29 28 

58 214 207 195 196 195 

59 31 31 29 29 28 

63 82 80 79 72 74 

64 274 265 264 263 257 

65 682 666 654 652 640 

66 136 134 131 127 122 

67 238 227 226 225 218 

100 62 62 59 56 53 

101 54 52 55 53 52 

102 52 53 53 51 49 

103 84 83 77 74 74 

104 71 70 70 68 67 

105 130 128 127 126 120 

106 99 98 98 98 93 

110 68 70 68 67 66 

111 64 65 63 61 60 

112 30 27 32 30 29 

113 107 105 105 102 100 

114 35 36 36 35 36 

123 74 74 68 66 66 

124 145 144 137 135 130 

125 67 62 62 62 61 

126 33 34 34 32 31 

127 94 92 91 89 90 

128 187 185 180 177 172 

129 88 86 84 85 84 

130 72 72 72 65 65 
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131 96 93 95 94 91 

132 55 54 55 55 56 

133 20 19 19 20 20 

200 30 29 27 26 27 

202 75 75 74 73 70 

203 76 75 73 69 68 

204 132 130 129 127 126 

205 51 51 50 50 49 

206 30 29 28 27 28 

210 28 28 23 24 25 

213 32 31 30 28 25 

301 621 611 603 603 592 

302 563 544 533 522 517 

303 849 824 816 807 793 

304 28 28 25 24 24 

305 63 66 64 63 68 

306 111 106 103 104 103 

307 420 412 406 404 402 

308 229 222 223 219 220 

309 73 72 72 73 75 

310 121 123 124 122 123 

311 248 240 235 234 228 

312 544 529 527 520 511 

313 154 148 150 149 147 

314 340 336 329 324 323 

315 644 639 637 629 622 

316 76 74 74 73 71 

317 205 196 195 195 192 

318 198 194 193 190 192 

319 87 85 84 83 83 

320 425 415 411 409 404 

321 347 338 336 329 319 

322 196 197 196 194 192 

323 127 124 121 121 120 

324 83 83 84 84 81 

325 75 72 71 70 70 

326 370 360 347 345 342 

327 131 125 123 122 121 

328 322 309 304 302 295 

329 99 96 95 94 93 

330 185 179 179 178 172 

331 130 127 126 126 124 
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332 93 92 92 90 89 

333 137 133 129 129 127 

334 194 192 191 189 185 

335 95 91 89 87 86 

336 77 74 72 72 73 

337 29 29 29 30 29 

338 133 129 128 127 128 

339 83 82 82 82 82 

340 112 111 109 110 109 

341 77 77 77 76 75 

342 51 52 51 50 49 

343 181 176 174 175 171 

344 59 53 54 54 54 

345 102 102 97 96 96 

347 212 204 201 198 192 

348 29 29 29 29 29 

349 76 73 71 71 72 

350 122 119 120 119 118 

351 61 59 56 57 57 

352 61 61 58 61 58 

353 142 141 138 135 135 

355 132 127 122 120 121 

356 39 39 40 39 37 

357 40 38 38 37 37 

358 35 35 30 25 25 

359 41 37 38 30 31 

360 88 81 80 80 79 

361 89 89 88 86 84 

362 118 116 113 111 111 

364 70 69 66 65 65 

 


