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Abstract:

The analysis of medical care utilization has usually been made using econometric models, and
two types of specifications (one-part vs two-parthurdle models) have disputed the label for the
best model to describe the data. The choice of one empirical model over another has usually been
essentially an empirical question, being in this domain that this paper contributes to the literature.

Untif 1997, when latent class models were introduced to study the subject, hurdie models, when
compared to simple one-part models, like Poisson or negative binomial, generally arises as the
preferred specification, however, when compared to latent class models, its statistical adequacy to
fit the data does not emerge as the better one.

It should, however, be noted that LCNM models have usuatly been compared with one particular
hurdle formulation, the one that uses a binary model for the first part and truncated-at-zero
negative binomial model for the positive observations. In general the use of the negative binomial
is advocated because the specification must include the unobserved factors present in this stage of
the model, nevertheless accounting for unobserved heterogeneity in a model for the positives is not
a linear task and some pitfalls may come up during specification process. In this paper we argue
that the popular hurdle specification accounts incorrectly for the unobserved heterogeneity,
causing a misspecification in the model for the positives.

Accordingly, in this paper we propose a new specification for the hurdle model which we
believe to be the correct. The innovative hurdle specification suggested is different from the
popular hurdle only in the model for the second stage, where we propose a correct specification
based on latent class models, gairiing statistical flexibility and departing from strong distributional
assumptions in the modelling process.

After comparing the new hurdle with other competing count data models using information
criteria statistics, Vuong and GoF tests, we have found that our new hurdle specification
outperforms all other competing models. including the traditional hurdle and Latent class models.
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1. Introduction

Over the course of the last thirty years, or so, two major classes of econometric specifications
have tended to dominate the empirical literature on medical care utilization*; we are referring to
one-part models and 1o two-part models. The debate over the merits of each approach to model
health care utilization has been intense and interesting.

One-part models can be considered as specifications based on Grossman’s Human Capital model
(Grossman, 1972, Wagstaff, 1986). As is well known, in Grossman’s framev wk the individual is
taken as the primary decision maker, fully controlling the choices regurding medical care.
Basically, one-part regression models are regression models, with a linear or non-linear reduced
form equation, where a dependent variable, which represents medical care utilization, are
explained as a function of a set of medical care determinants. Examples of this approach is
provided by Cameron ef al. (1988) and Vera-Hernandez (1999), who used insights provided by
Grossman’s model to develop a ‘theoretical framework’ in which frame individual behaviour.
Subsequently, the ‘theoretical model’ is used as a justification to the empirical regression model.
Conversely, two-part models belong to the other class of specifications widely use to explain
medical care utilization. Early applications of this model were justified only by statistical rcasons.
The model was initially proposed to deal with the characteristics of the medical care consumption
indicators, namely the high number of individuals reporting as non-users of health care (Duan et
al., 1983, Manning ct al., 1987). Later on, Pohlmeier and Ulrich (1995) framned this class of
models in the principal-agent set-up. Under this framework, the patient is no longer the unique and
sovereign decision maker, as he transfers to the doctor the responsibility about the amount of
medical services to consume. The empirical counterpast of the principal-agent model is the two-
part model, which assumes a two part decision structure, with different decision agents in cach
part of the process. The first decision, the contact to a physician, is controlled by individual, hence
Grossman’s type approach is likely to be relevant (Wagstaff, 1986). After the contact decision, the
choices necessary at the second stage are taken essentially by the physician, possibly including
patient preferences, therefore, Grossman type models are likely to be less relevant in this stage.
The two components of this dual process might diverge in the respective economic determinants

and can provide different evidence to policy making.

! Early studies on medical care demand have relied also on other statistical methods other than econometric
specifications, for example, analysis of variance and analysis of covariance. A review of early empirical
methods for medical care utilization study can be found on DUAN, N., MANNING, W. G, MORRIS, C. N.
& NEWHOUSE, J. P. (1983) A comparison of alternative modeks for the demand for medical care. Journal

of business and Statistics, 1, 115-126.
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In summary, both types of empirical specifications have a theoretical support, however, the lack
of consensus about the appropriate framework, Grossman like models or principal-agent models,
to represent individual behaviour concerning medical care decisions has been the norm. Therefore,
the choice of one econometric specification over another has usually been essentially an empirical
question being in this domain that this paper makes a contribution to the literature. To pursue this
goal we use data taken from the Portuguese National Health Survey (NHS, 1999) to estimate and
tests statistical hypothesis on a wide variety of regression models specified in the spirit of one-part
model and on the gpirit of two part models. Our indicator of health care utilization is the total
number of doctor visits in a period of three months.

Some authors advocate the utilization of two-part models, also referred to as hurdle models in
count data, because they are the empirical counterpart of the principal agent set-up, which, they
believe, represent well the actual decision process (Jimenez-Mattin et al., 2002, Pohlmeier and
Ulrich, 1995). In fact, we also consider that hurdle models are more appealing specifications to
explain medical care utilization because it reflects more accurately the decisional structure
regarding health care choices. NMoreover, relative to simpler models, the hurdle can be more
enlightening as it allows separating and quantifying the determinants of medical care concerning
the decision to see the physician as well as the frequency of visits, what can be significant for
heatth policy making (Pohlmeier and Ulrich, 1995 113).

Until 1997, when Deb and Tuvedi introduced latent class models in the study of this theme, the
hurdle framework was viewed as the appropriate empirical methodology to explain the usage of
medical care services, essentially because it had a theoretical support, and also due to its statistical
properties, which seem appropriate to deal with the characteristics of medical care data. In fact,
when compared to simple one-part models, like Poisson or negative binomial, the hurdle model
generally arises as the preferred specification (Gerdtham, 1997, Deb and Trivedi, 1997, Van Ourti,
2004, Deb and Trivedi, 2002).

Deb and Trivedi ( 1997, , 2002) did some criticisms to the hurdle specification and proposed an
alternative economeltric framework to study medical care utilization. The authors advocated that
latent class models (henceforth referred to as LCM) present statistical properties that makes the
model more appealing to study utilization data, and in fact, they provided evidence favouring the
LCM specification over the hurdle model. Other authors, also compared the statistical performance
of LCM with hurdle and found similar results (Gerdtham and Trivedi, 2001, Sarma and Simpson,
2006). Therefore, the empirical evidence seems to make the case that LCM, making use of a
combination of several statistical processes in the same mode! gaining in this way additional
statistical flexibility, offer always a better framework to analyse health care utilization data.

A question now arises: how to deal with this apparent contradiction between theory — we

believe that the decision making process regarding health care choices should be framed in the




principal-agent set-up — and empirical findings showing that one-step models, namely the LCM,
provide better fit relative to the hurdle model? To begin with, there is evidence, although scarce,
pointing toward the statistical gains of the hurdle specification over LCM. For instance, Jiménez-
Martin et al. (2002), using data from the European Community Household Pancl estimated hurdle
and LCM models to evaluate the determinants of individual utilization of medical care using
several utilization measures, namely, the number of visits to a GP and the number of visits to a
speciatized doctor. They found mixed evidence concerning the model that better describes the
data. LCM models were found to be more suitable than hurdle models when the dependent
variable is the number of visits to a General Practitioner, while the opposite is reported for visits to
specialist physicians. Winkelmann (2004) have also found that hurdie specification performs better
than LCM models.

We note that LCM models have usually been compared with one particular hurdle formulation,
the one that uses a binary model for the first part and truncated-at-zero Poisson or negative
binomial model for the positive observations. In general the use of the negative binomial is
advocated to deal with the positives because the specification must include the unobserved factors
present in this stage of the model (Pohlmeier and Ulrich, 19935). However, accouniing for the
presence of unobserved heterogencity for the positives — in a truncated-at-zero sample -— is not a
lincar task, and some pitfalls may come up during the specification process (Santos-Silva, 2003,
Lourengo and Ferrcira, 2005). Therefore, in the hurdle model, in part of specifying a model for the
second stage, the way one account for the unobserved heterogencity is not irrelevant and it may
affect model performance. In fact, Santos-Silva (2003) argues that in the popular hurdle model, the
one based on the negative binomial probability function, the unobserved heterogeneity is
incorrectly modelied, thus, causing the hurdle model to be misspecified. This potential
misspecification can be one explanation for the poor statistical performance of the popular hurdle
model when compared to the LCM.

Accordingly, in this paper we propose a new specification for the hurdle model which we
believe to be ihe correct. The hurdle model that we are suggesting in this paper is different from
the popular hurdle only in the formulation of the model for the second stage. In this stage, we
suggest a specification that uses latent class models, therefore, in this way we account for the
presence of unobserved heterogeneity in a flexible way and not depending on strong distributional
assumptions. E

Therefore, the contribution of this paper is twofold: On the one hand we suggest an aliciative
hurdle formulation, namely, a new way to account for the unobserved heterogeneity in the
specification of the model for the positives. Morcover, we compare the statistical performance of
our alternative hurdle with the performance of popular hurdle models as well as LCM models,

using information criteria statistics, Vuong and GoF tests. These comparisons may allow us 10

Tans



reconsider the relevance or irrelevance of the principal-agent models as theoretical frameworks
framing individual behaviour. On the other hand, we assess the stability of the effect of various
covariates, e.g. income, health insurance generosity and rural status, across the various models
under evaluation, using average marginal effects statistics. The results of these comparisons may
be relevant to evaluate if models specified under different assumptions about the unobserved
heterogeneity are stable, or, on the contrary, change from model to model.

The paper is organized as follows: Section 2 aims at presenting some aspects of the main
empirical specifications that have been used to model medical care utilization. We will give
emphasis to mixture models. Section 3 proposes a new hurdie formulation. combining insights

dont

from hurdle and latent class models. The next section, 4, presents the dataset used, the dey

as well as the independent variables selected for this empirical application. Section 5 presents and

discusses some results.

2. Empirical specifications to analyse health care utilization:

Emphasis on mixture models

In the analysis of count data the Poisson regression model (PRM) is usuvally indicated as the
reference model. However the model is usually unsatisf:l;:lory in fitting real data, mainly because
real data are ‘overdispersed’ and present a proportion of zeros (excess zeros) inconsistent with the
PRM . Mullahy (1997) points out that overdispersion and excess zeros are consequences of
unobserved heterogeneity, which must be included in the model, otherwise the estimates will lose
efficiency, inducing biases on variances and, consequently, on testing procedures (Cameron and
Trivedi, 1996, Gourieroux and Visser, 1997). These considerations motivate the utilization of

specifications that include unobserved heterogeneity.

Mixture models: general definition

One well known approach to account for the presence of unobserved heterogeneity in health
care utilization is to assume that the data generating process (dgp) is a mixture model. Two types
of mixture models can be considered: continuous and discréle mixtures.

Lindsay and Lesperance (1995) define a continuous mixture as a probabilistic model where the

conditional density of y, is defined as

FOn 15 87)= [ 1 (31 1550, )* B0, 1 5,.7) v, .

where h(v; | x;.7) is the mixing distribution.
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When the unobserved heterogeneity is assumed to be represented by a discrete random variable,

- with an unknown number (P) of support points, the conditional probability function of y; is given

by
P .
FOitx08)=3 7,1, (071 %01 8) 2}
) =

This formulation assumes that f(y; | x;, B) is a convex lincar combination of the component
. . . j . £ -
distributions fj(y‘ |x,-,v,-’,ﬂj) J=1..P, in proportions z,,---,7., such that 3"z =1, 7,20.
se
Particular instances of these two approaches have been used to model healthcare utilization. The

most well known are the negative binomial model and latent class models.

The Negative Binomial Model

The negative binomial distribution (henceforth NB) can be derived in a number of ways
however, perhaps most popular is obtained as a continuous mixture model allowing the mean
parameter of the PRM to vary randomly across the population according to a gamma distribution
(Cameron and Tn'vcdi, 1998).

Following Deb and Trivedi (2002), the NB probability function of y;, conditional on x;, can be
wiitten as,
_LUi*n)
21T (n,)

- 7 —(g+y, . .
Fix) nt (A ) Ay =002 (3]

where I'(.) is the gamma function, J =exp(x;/}) and 73, =(%)ﬂ.}‘, The two most applied
versions of the NB arc obtained setting & = 1 (NB1), or k = 0 (NB2).

The NB family of densities is considered as the most general and flexible discrete distribution,
nevertheless its utilization in applied work may present some weaknesses. First, it is a fully
parametric model relying on explicit assumptions about the distribution of unobserved
heterogeneity, and cconomic theory that gives insight about the unknown functional form for the
distribution is often lacking (Wedel et al.,, 1993); sccond, in the NB the zeros and positives are
assumed to share the same dgp, therefore, if the impact of a covariate differs across the support of
the dependent variable, the NB model does not capture that different impact (Deb and Trivedi,

2002, Winkelmann, 2004). Hence, empirical health cconomists have suggested the formulation of

more general count data models.
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Latent class models
A more recent approach to address the problem of unobserved heterogeneity uses latent class
models (LCM). A Latent Class Model (LCM) specification arises when the random variable that

represents the unobserved heterogeneity, v, is assumed to be discrete with P support points. In

this formulation it is implicit the assumption that the population consists of P homogeneous,
relative to the unobserved factors, latent subpopulations. Latent class models were first applied to
the studv of health care data by Deb and Trivedi (1997) and since then, a number of other
empirical applications have appeared in the literature (Deb and Trivedi, 2002, Deb and Trivedi,
1997, Deb, 2001 #58, Bago d'Uva, 2006, Bago d'Uva, 2005, Lourengo and Ferreira, 2005,
Jimenez-Martin et al., 2002, Atella et al., 2004, Gerdtham and Trivedi, 2001).

Under the LCM framework, the conditional probability function of y; is given by yhe

probability function presented in 2.

The advantages of using Latent Class Models over the use of continuous mixture models has
been emphasized by a number of authors therefore it is worthless to feproduce them here (Deb
and Trivedi, 2002, Cameron and Trivedi, 1998, Wedel et al., 1993, Heckman and Singer, 1984),
However, Jimenez Martin el al. (2002) while agreeing that latent class presents good statisticat
propetties, also criticize its application because it is driven only by statistical reasons, not being
the empirical counterpart of an economic model.

One can argue that all models presented so far, PRM, NB and the standard LCM are specified in
the spirit of one-part models. In this models the impact of individual and doctor inputs to the
decision making process regarding the number of visits, are entangled, therefore, non-separable.
Even in the LCM, which assumes that two stochastic processes govem health care choices,
individual and doctor contributions to the choice are mixed in each stochastic process. In this
situation it is difficult to know who, doctor or patient, contributes more to make decisions
regarding the number of visits. Therefore, the evolvement from the PRM to the NB and, from the
later to the standard LCM has been motivated for statistical reasons, implicitly neglecting the
economic motivation behind model specification. It has been widely acknowledged that in the
context of healthcare choices, due to the asymmetry of information between patient and physician,
the decision process involve two stages, with different key decision makers in each step (Zweifel,
1981). Accordingly, it has been argued that the specification of cmpiﬁcal models should recognize

this two stage decisional structure.

The Hurdle regression model
Cragg (1971) proposed an econometric specification suvited to analyse consumption decisions
that can be considered as being made in two stages. Later, Mullahy (1986) suggested a model with

a similar decision structure adapted to a count variable.

35



In the case of health care utilization this type of two-stage decision process still to be pertinent
* because the key decision makers in each stage are different. In the first singe the decision 1o seek
medical care is individual based, while in the second stage decisions are mainly doctor based,
possibly including patient preferences (Pohlmeicr and Ulrich, 1995, Santos-Silva and Windmeijer,
2001).

For a general formulation of the hurdle model, let y;, denote the count variable and
x; = [x“,x,-;;u,x,k] a (1xk) vector of covariates. Assume aiso that f,( ) and f, () are discrete
probability functions, where fl() governs the first part of the model and a truncated-at-zero

version of f2() governs the process after the hurdle has been crossed. Then, the probability

function of the hurdle model is given by,
fi(0)x;4) ¥ oy=0

(4]
[1- A0 x:8)* o0n 153802 >0) o 3=12..,

£ | x;: 80, 8,)=

Poisson and NB probability functions are common choices for fl(), being also possible to
specify the first part as binary models like probit and logit. For [, (.)(he most popular aliernatives
are Poisson and NB (Winkelmann, 2004). The main rcason driving the wutilization of the NB
probability function in the second stage, instead of the Poisson, is that the modelling in this stage
needs to account for the presence of unobserved heterogeneity, that is to be likely present because
household micro-data hardly measures supply side influences regarding medical care decisions
aboul the duration of the treatment (Pohlmeier and Ulrich, 1995).

From the above we have learned that hurdle specifications has a two-fold appeal to explain
health care utilization. On on¢ hand it is an empirical modcl whose bstmcture is suggested by a
‘theoretical’ model, and on the other hand it has a good statistical performance in explaining health
care utilization (Cameron and Trivedi, 1998, Pohlmeier and Ulrich, 1995). Despite this double

advantage of the hurdle specification, it has been subjected to some critical observations.

The popular hurdle specification: some éomme_nts

The popular hurdle specification has been subjected to some critical remarks, which can be
broadly classified into two groups: In the first group we include data related problems, while in the
second group we incorporate specification issucs objections. .

The data related problems were fully addressed by Pohimeier and Ulrich (1995). In short, they
arise because the hurdle modcl assumes that during the period of analysis individuals go through

one illness spell only. This assumption is verified when the data regarding medical consultations is
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measured per illness episode and not during a fixed time period as occurs in cross-section datasets.
If the single illness spell is violated then the second stage parameters are not identified (Santos-
Silva and Windmeijer, 2001). Regarding this difficulty, we follow Pohlmeier and Ulrich (1995)
and Gerdtham (1997) and assume that the occurrence of multiple illness spells is a rare event,
therefore, all parameters of the model will be identified. Note that in our application the
observation period used to capture doctor visits is short (3 months), meaning that the occurrence of
multiple illness spell are less likely to occur. In addition, roughly 70% of the individuals had less
than one visit, thus we believe that this provides enough evidence to support the assumption of a
single illness spell during the observation period.

The second group of unfavourable comments are related to specification issues, focusing
primarily on the difficulties to account for the unobserved heterogencity in the specification of the
second part of the hurdle. As was mentioned previously, in applied work it has been common to
specify the second stage of the hurdle as a truncated-at-zero Poisson or NB. Gurmu (1997) object
to the utilization of truncated-at-zeso NB on the grounds that the model rests on the explicit
assumption that unobserved heterogeneity is Gamma distributed, what can be considered arbitrary
especiail_v without any prior information about the true distribution of the unobserved
heterogeneity. In the event of a misspecification of the unobserved heterogeneity, then the
estimation process would lead to inconsistent estimates. In an attempt to respond to some of these
criticisms, Gurmu (1997) proposed a semi-parametric mixture hurdle model, thus not requiring
prior knowledge about the distribution of unobserved heterogeneity, however, even Gurmu’s
alternative hurdle model may misspecify the part for the strictly positive counts. This is a much
more subtle form of misspecification that may arise when modelling the positives in hurdle
models. This issue is closely related to the specification and estimation of models for truncated

counts with unobserved heterogeneity.

Models for truncated counts: short notes

As is well known, the application of standard count data models to truncated samples leads to

inconsistent parameter estimates, thus, suitable modification of standard count data models have to

be made to make valid inference (Cameron and Trivedi, 2005, Grogger and Carson, 1991, Gurmu
and Trivedi, 1992, Santos-Silva, 2003).

. N . . th . .
Let f(¥, | x,) represent the density function of the i person in the actual population, then, the

probability function of 3 in the sample is given by,
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f(y,IJq,y.>0)=L()zlx,)=7,{}yj%7—‘l—) y=L2.. {5]

where (¥, | x, )is ihe probability function in the actual population (Grogger and Carson, 1991,
Brannas and Rosenqvist, 1994, Gurmu and Trivedi, 1992). Given the likely presence of
unobserved factors affecting medical care utilization, when ‘modclling truncated data the
researcher must explicitly account for its presence. As pointed out in a previous section, one
natural way of accounting for the preésence of unobserved heterogencity is through the use of
mixture models, therefore, mixture models for truncated counts should be specified (Santos-Silva,
2003, Cameron and Trivedi, 1998, Grogger and Carson, 1991, Brannas and Rosenqvist, 1994).
However the specification of mixture models in truncated samples is not as lincar as in the

standard case thus careful analysis is required.

Specification of mixture models for runcated samples

Santos-Silva (2003) studied the impact of endogenous sampling, of which truncation is a
specific instance (Cameron and Trivedi, 2005), in the distribution of the unobserved heterogencity.
The author highlighted that in truncated samples the investigalor may account for ihe
unobservables in two different ways, and the choice of the correct one can be an important issue.

As was shown in the previous section, the suitable probability model to analyse runcated-at-
zero data is given by expression 5. Consider now that the researcher intends to include unobserved
heterogeneity in the specification. Accordingly, the probabilistic model in the actual (overall)

population, f ( »ix ) if specified as an LCM, is expressed as,

P .
FOi % B)= 2w, 05 (0015 Byod ) fel
j=1
Therefore, it is immediate that,
F
P(y>0|x,.8) =Y nP(y>0|x.8.v) i
J=1

Plugging equations 6 and 7 into equation 5, under the LCM framewoik, the density in the

sample, can be written as,

F

Yot (3 1%.0.8,) : :
L 1x.8)=- 8]
ZﬂjP(y, >(J|x‘,v,’,ﬂj)

J=t

The above expression can also be expressed as
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< f, X, xlf J
f;()’,lv\',,ﬂ)zz P’J() |x.u, p) i 1]
8 )

J=1
2 P(3=01x.5,.0))
Jj=1

Working out equation 9, it can be re-expressed as 12, presented below,

r (3 x.0.8)  1-P(y, =0]x,.8,.0] (o]
L0 1x.8)=Y| ; Pj’(“'“' v B) (1P =01%.8,v)] ,

-t [1—(2751)(}; =0|.\-,.pj.u,v')ﬂ*[1-13(,; =01x.8,.v/)]
o LixelB) ). |
_JZ,:‘(I—P(J’, =0(x,.ﬂj,v;')}”’ ny
=§fj(y,|x.,u/,p,)ﬁ, -

In12, 7 (,V, |x,.v/, ,BJ) is the probability function of the j component distribution in the

sample,

" ACIEEN))
77 (3155 8,)= 1-P(3, =01x.0.5)

13)

and the mixing probabilities, in the truncated population are now given by,

1-P(y, =01x,v/:4,)

(e i [14]
l—[ZﬂJP(y,=0|x,.ﬂ},v,’)] .

J=t

Summing up, to account for the presence of unobservable factors in truncated datasets the

density of the count in the sample, f; (y‘ | x ), can be written in two different ways

L%B)-3 ACILERL)

F' l—[zp:ﬂJP(y, :0!:,.ﬁ],v,’))

) {15]

and
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F

LOAx.B)=Y 1 (n1x.0.8,)%, [16]

=
where f] ( yla,v, ﬂ}) and 7, are defined above.

Equation 15 assumes that the unobserved factors belong to the individuals present in the actual
population, thus this speciﬁcgtion assumes that the researcher are making assumptions aboul the
distribution of the unobserved heterogeneity in the overall population. On the other hand, equation
16 assumes that the unobserved factors belong to the individuals present in the truncated
population, hence, making ass’umplions'aboul the distribution of the unobserved heterogencity in
this population. These two possibilities to specify the distribution of the unobservables, therefore,
the distribution of the positive éo_unts, Icads the analyst to a cross-road regarding the choice of the
proper specification to model the data. Is it indifferent to choose between 15 and 167 Sanios-Silva
(2003) point out that it is not indiffercnt, indicating also that care is needed in deciding which

model is the most suitable to fulfil the aims of lhcranalysis.

Specification p (g i £, %0 8,) is the proper formulation when

J=1 ]—[ilt’P()":O|xl,ﬂ,l),/)] ’

,.1

the population of interest is the actual population, while the rescarcher should use
F

Ly x.8)= ij ()', |x,,u",ﬂ/)fr/ if the empirical analysis aims at analysing the
=1

population induced by the sampling scheme, in this case, the truncated population (Santos-Silva,

2003).

There is an infuilion behind this result. On the one hand, when the study aims at analysing the

- actual population, the researcher assumes that the unobserved factors are in the overall population,

thus, the unobserved factors aggregate in the overall population to generate the latent classes.

Hence it makes sense first to specify a mixture model in the actual population and only afier that

truncate the mixture, resulting equation 15. On the contrary, when the target of the study is the

truncated population, then the analyst assumes that the unobserved factors are in this population.

In this event the unobserved factors aggregate in the population of positives to form latent classes

(of users), hence, one should at first to specify a truncated distribution to réprcscm cach latent

class of users, and only after that mixture the truncated distributions that represent each latent class

of users, resulting Equation 16.
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3. An alternative hurdle formulation using latent class models

Given the reasoning presented in the previous section, it is reasonable to ask: which mixture
specification, given by 15 or 16, is more suitable to use when one intends to specify the second
part of the hurdle model? In the case of hurdle models, it is natural to estimate the modet for the
positive counts by making assumptions concerning the distribution of the unobserved
heterogeneity in the truncated population (Santos-Silva, 2003), thus, the LCM for the positives

should be specified according to 16, that is,

L0 15.8)=31 (315087, =3 Ldxwf) oo

=1 = l—P(y, =O|x,,ﬁj,vl.z) 7,

However the popular hurdle formulation specifies the second stage according to 15, meaning
that the researcher are making assumptions regarding the unobserved heterogeneity in the actual
population, and consequently, according to Santos-Silva’s, are making inference to the actual
population and not the truncated population as it should be in the case of hurdle models.

From this discussion we can conclude that in hurdle contexts the inclusion of the unobserved
heterogeneity in the model for the positives should be done following clear specification
hypothesis. The assumed dgp for the positives must be specified using 16, implying that models
using specification 15 are, by definition, misspecifed, therefore inappropriate in hurdle contexts.
Consequently, one can argue that the popular hurdle specifications based on the NB distribution,
when the use of this density is justified as a manner to account for the presence of unobserved
heterogeneity in the second part of the model, are misspecified.

Mullahy (1986), Pohimeier (1995), Gerdtham (1997), Jimenez-Martin (2002) and Grootendorst
(2002) are only some examples of applications of hurdle models specified in such, supposedly,
inadequate way. Even the semi-parametric hurdle model proposed by Gurmu (1997) use the
continuous counterpart of density 15 to model the positives.

One exception of a hurdle specification that departs from this popular specification is the hurdle
formulation proposed by Winkelmann (2004). The author specifies the second stage of the model
according to the continuous counterpart of 16, thus correctly pointing towards the truncated
population. Winkelmann's proposes a probit for the first part and a trﬁnca!ed Poisson-log-normal
model for the strictly positive observations. For the second part the model initially specifies a
truncated Poisson, and next assumes that the unobservables, present in the truncated population,

are normally distributed. Regarding the statistical performance of this hurdle, Winkelmann



concludes that it offers a substantial improvement over all other models’. This finding can be
considered evidence in favour of Santos-Silva thesis that, in the case of hurdle modcls, the
hypothesis regarding the distribution of the unobservables should be made in the truncated
population. We note that Winkelmann's specification is fully parametiic, conscquently may be
somewhat arbitrary. The author do not offer any justification to support the assumption that the
unobserved heterogeneity in the truncated population follows a normal 'dcusily. Hence, we
consider that a specification less dependent on strong distributional assumptions is fully desirable.

Bago d'Uva (2006) pointed out that the modéls to analyse mcdicai care utilization are not
constrained to be only hurdle or only LCM being possible to combine the features of both
formulations. Although she mentions that combining hurdle and LCM are restricled to be applied
in panel data contexts, otherwise, one would face ideniification problems, this is only true in her
formulation.

In fact, the new hurdle that we propose in this paper combincs features of both formulations,
hurdle and LCM, and can be eslimated with cross-section data. It mwiges the original fhurdle
formulation as suggested by the principal-agent set-up with LCM specitications to deal with the
positives. Basically, we merely propose a modification in the approach 10 treat the individuals with
a positive number of visits. The suggestion is to use the LCM framework to specify a density for
the strictly positive utilization, providing in this manner statistical flexibility to the second stage of
the hurdle. Note that our approach respond to at least onc criticism that Deb and Trivedi (2002)
made to the popular hurdie. The authors expressed a preference for the hurdle over LCM because
the consequences of a misspecification of the dgp will be smaller in the case of LCM, as it can

_serve as a better approximation to any true, but unknown, probability density. In our model,
because we are specifying a hurdle based on LCM, the consequences of a misspecification will be
similar.

For a formulation of the model, let, y;, , denote the dependent variable and
x; =[x, %9, Xy ] @ (luk) vector of covariates. Furthermore, assume that both f;(.) and
fj(), J=1..P are discrete probability functions. Assume that f;(.) governs the hurdle part

and a truncated-at-zero LCM governs the process after the hurdle has been crossed. Under these

conditions, the probability function y; is given by,

% The competing models estimated by Winkelmann were: Poisson, Negative Binomial, Poisson log-normal,
Hurdle negative binomial, Probit-Poisson-log-normal, two components finite mixture negative Binomial,

and a multi-episode Poisson logarithmic
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In the first step a binary model is estimated, while in the second step, constraining our sample to
the individuals with a positive number of doctor visits, “}c estimate a model that assuines that the
density in the truncated sample is given by a latent class model specified according to 16.

The construction of the likelihood furiction for this model does not present any relevant
difficulties.

In our view, the main advantage of a hurdle model with the second part specified as an LCM is
that the new model continues to be the empirical counterpait of an economic model, the principal-
agent model, and at the same time unobserved heterogeneity is modelled through a semi-
parametric approach, therefore, moving away from strong, and always somewhat arbitrary,
distributional assumptions. In addition, in our model the positives are analyzed under the

assumption that the unobserved heterogeneity exists in the population of health care users.

4. Data and variables

All results presented in this article are based on cross-section data taken from the National
Health Survey, 1999 version (henceforth referred to as NHS_99). The survey is a representative
sample of the Portuguese population and collected data from 48.606 individuals. It provides a wide
range of information, at an individual level, about socioeconomic and demographic variables, life
styles, health status indicators and medical services utilization (Ministério da Saide - Instituto
Nacional de Saude, 1999).

After dropping the 4.8% of individuals reporting to hold a private health insurance in addition to
the observations with missing values on any of the interest variables, the final sample comprise
42.501 observations. The elimination of observations due to the presence of missing values may
raise sample selection issues. They may occur whenever one estimite models using a sub-sample
and the unobservable characteristics influencing inclusion in the sub-sample, in our case
influencing non-response, are correlated with the unobservable factors that influence the
dependent variable (Vella, 1998). If deletion is non-random then standard procedures applied to
the final sample would result in incorrect inference regarding the impact of the observables on
doctor visits (Wooldridge, 2002, Vella, 1998).

In our application ‘income’ is the variable that the individuals most lack to respond (about 6%).

However, only a small share (10%) of those who had not filled the income question did it



intentionally, with remaining 90% declaring not knowing the houschold income. In this situation
the existence of comelated unobserved factors influencing both the decision to respond and the
number of doctor visits seems unlikely. However, to test whether this reduction in the sample is
random we performed a statistical test suggested by Wooldridge (2002) (procedure 17.2, page
368). Duc to space constraints we omit the dotails about the test, namely, the instrumental
variables used (details will be sent upon request). Concerning the result of the lest, the inferest
cocflicient (the 2SLS parameter on ,i) is -0.769 (se = 0.53, 1 = -1.43) showing no evidence of
sample selection bias.

The dependent variable - VISITS - is the total number of visits to physicians in a 3 months

period. The empirical distiibution of the dependent variable is given in the Table 1,

Insert Table 1 about here

The maximum number is 30 visils, the average is 1.29 (se = 2.06), showing that the variance is
almost four fold the mean, SeMg a sign of ‘overdispersion’, which was confirmed by formal tests
of overdispersion.

As covariates we have sclected those that have been found to influence medical care utilization
in similar studics. The covariates were clusicred into four groups, encompassing socioeconomic
and demographic variables, health status indicators, a supply side determinant, and, finally, a

group of variables capturing cach individual’s health insurance status.

Insert Table 2 about here

The intuition to use these covariates is given by several authors. Therefore we skip a detailed

1

description about cach variable, namely, why to include it in the regression and the cl
through which they, supposedly, impact health care utilization. Nevertheless it is worth to explain
how some variables were created.

Education is measured z.ls the total number of years in school. In the case of individuals aged
less than 14, education is measured as the maximum education among the adults in houschold.

Income, as is common in surveys like the one we use, is captured through a categorical ordinal
variable measuring disposable net household monthly income. In this paper, in place of use
dummy variables to include income, we opted for compuling the monthly equivalent disposable

income. To create it we have used the modificd OECD scale.
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The rural_area variable was created by augmenting the NHS_99 with data gathered from the
National Bureau of Staistics, who classified each ‘Freguesia™ in predominantly urban, medially
urban and predominantly rural. After including this information in our dataset we end up with a
new variable, which classifies each individual’s place of residence as predominantly rural,
predominantly urban and medially urban. We merged the categories predominantly urban medially
urban status, creating in this way two dummy variables, ‘rural_area’ and ‘urban_area’.

Regarding health status, one usual way to measure it is using self-assessed health (SAH).
Indeed, the NHS_99 includes SAH, however we decided not to use it because a large number of
individuals have failed to respond to it. The inclusion of SAH would lead to the elimination of
36% of observations, dropping to 27.044. One may argue that 27.044 observations provide enough
degrees of freedom to estimate with sufficient precision the model parameters, what in fact is true,
however we suspect that the loss of these individuals may cause sample selection bias. It can be
argued that individuals in worse (unmeasured) health status are more retuctant to self-assess their
health, or because they are unable to do it or because they do not want express their opinion about
it. This suggests the existence of unobserved factors, unobserved health status, that influence both,
the non-response and the number of visits, thus causing sample selection bias. Once again, to test
whether the elimination of these individuals is random we performed the statistical test suggested
by Wooldridge (2002), mentioned above. The result of the test show clear evidence of sample
selection bias. The relevant coefficient is -0.525 (se = 0.117, t = -4.48). This result provides a first
indication that inclusion of SAH would cause the working sample to depart from a random sample,
and a sound econometric analysis should have this into account if one want to include SAH in the
analysis. Our strategy to avoid the problem was to leave out of the analysis the SAH variables.
This approach of excluding SAH can have a cost and also fead to results potentially misleading
results (Cameron and Trivedi, 2005), nevertheless, we believe that in our application this is less
likely to occur because we have a large array of variables to capture health status measuring it
sufficiently well. Therefore, we assume that leaving out of the analysis SAH indicators does not
cause any econometric problems.

The next variable, ‘Phy_[000 residents’, was created by adding external data to the NHS_99. A
first step to create this variable was the assignment of each individual area of residence to a

tertitorial region referred to as ‘Nut III'. Afterwards, using data from the National Bureau of

7 For some purposes the Portuguese territory is divided in three hierarchic administrative divisions: In the
first level is the “Distrito’, containing ‘Concelho’ (municipality) and finally, each ‘Concelho’ contains a
number of ‘Freguesias™. In 1999 Portugal was divided in approximately 4000 *Fregnesias’

? An alternative administrative division of Portugal is at the level of what is known as *NUT", where NUT I
is Portugal mainland, NUT {I represent the five health regions (North, Centre, Lisbon and Tagus valley.
Alentejo and Algarve), and NUT I further divides the territory in more 28 territorial units '
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Stalistics about the total number of physicians and the total population in cach Nut HI was possible
to compuie the total number of physicians per 1000 residents at the level of NUT 1L

Finally, the last group of variables considered as determinants of medical carc utilization is the
health insurance variables. Portugal provides health insurance with two main types of insurance
schemes; first, the coverage provided by the statutory National Health Service (NHS), covering
about 75% of the population; second, the health insurance supplied by various public and private
insurance funds whose membership is based on professional or occupational category, referred io
as Health Subsystems (HSS). Among the HSS the fund thai cover all civil servants, usually
referred to as ADSE, is different from the remaining mainly because the scale of operation.
Because membership to these funds comes with the profession or occupation, it casy to argue that
the variables representing insurance are exogenous in our models. Summarizing, in terms of healih
insurance, we identify thiee types of access groups; 1) individuals covercd only by the NHS,
(‘NHS-only’); 2) those individuals covered by the ADSE fund and 3) the individuals who benefits
from a health insurance contract provided by a HSS other than the ADSE (referred to as OHSS).

Sample statistics of the independent variables considered in the analysis are presented in Table

Insert here Table 3

5. Results and discussion

Stata 9.0 was used 1o estimate all models and to perform all numerical computations presented
throughout this paper. To account for the possibility of model misspecification the variance-
covariance matrix was computed using the robust sandwich estimator (Cameron and Trivedi,
1998, White, 1982). Conversely to the simple negative binomial and hurdle models the estimation
of models including LCM specifications may be challenging and time consuming. We opted for
- estimating those models by direct optimization of the likelihood function, despite the existence of

other feasible methods, namely, the EM algorithm. The challenges associated to this estimation

method are that the likelihood function of such models may have multiple local maxima, hence
one cannot exclude the possibility of convergence to local solutions (McLachlan and Péel, 2000).
In this paper we have guarded against this possibility estimating repeatedly each model using a
number of different initial solutions. Simpler modcls were used to generate the initial solutions.

We did not obscrve any relevant convergence problems.

In this article all models that include an LCM specification assumes the existence of only 2
latent classes. Wedel et al. (1993) mentioned that the empirical evidence has shown that a small
number of latent classes provide enough flexibility to reproduce the data accurately. Morcover, all,
at least the one that we know, empirical applications of this methodology to health care data have

reported that two latent classes provide sufficient flexibility to explain medical care counts quite
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well (Deb and Holmes, 2000, Deb and Trivedi, 2002, Deb and Trivedi, 1997, Jimenez-Martin et
al., 2002, Atella et al., 2004, Lourengo and Ferreira, 2005). In addition models with P > 2 will
become rapidly overparametrized, thus, difficult, if not impossible, to estimate. Actually, we did
some experiments with P = 3 and experienced severe difficulties in the estimation process.
Regarding the choice of the density for cach latent class we have chosen the NB probability
function. In this paper we have estimated the most general LCM specification allowing that the
distribulions governing the latent classes vary in all parameters, intercept, slopes and the
dispersion parameter.

In what follows, this section is organized into three subsections. In the first subsection we
address the question of determining if the new hurdle specification is, from a statistical point of
view, preferred relative to the competing specifications. In the second subsection, we compare the
segmentation of the population into latent classes gencrated by the popular LCM and the new
LCM based hurdle. Finally, in the last subsection we estimate the impact of selected covariates in
the mean function of several models estimated to assess (he stability of some potentially relevant
health policy indicators across models, making also some interpretation work of the most relevant

results in terms of health economics conclusions.

Does the new hurdle present berter fit?
This subsection addresses the subject of determining if the new hurdle specification is, from a
statistical point of view, prefenied relative to the competing specifications estimated in this paper.

Table 4 presents the acronyms along with the description of all competing models.

Insert here Table 4

We have used likelihood ratio tests (LR) to choose among nested specifications, while to
discriminate among non-nested specifications we have relied on Vuong tests (Vuong, 1989,
Winkelmann, 2003), information criteria [BIC (Bayesian Information criteria) and CAIC
(Consistent Akaike Information criteria)] (Sin and White, 1996, Deb and Trivedi, 1997, Deb and
Trivedi, 2002) and GoF tests (Leamer, 1986, Cameron and Trivedi, 2005, Andrews, 1988, Deb
and Trivedi, 2002).

Table 5 reports the LR tests results. Some of these tests are made in the boundary of the
parameter space, consequently, the rejection region must be adjusted to make correct decisions

(Cameron and Trivedi, 1998).

Insert here Table 5

Both versions of the NB model were rejected in favour of the popular NB based hurdle (tests LRI

and LR4), which were also rejected in favour of the standard LCM models (tests LR2 and LRS).
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This result shows that single index of the NBi family impose constraints not verified by the data.
Therefore, more general count data models are necessary to adequately describe the data. Still in
Table 5, it shows that the models H_NB1 and H_NB2 are rejected when compared, respectively,
to HLCM_NB1 and HLCM_NB2 (tests LR 3 and LR 6), suggesting that our new LCM based
hurdle model outperforms the popular NB based hurdle. This seems to indicate that, conversely to
the common practice of specify a simple truncated-at-zero negative binomial model in the second
stage of the hurdle, the second part of the model is better described by a 2-component LCM madel.
An alterative interpretation of this result is that the popular NB based hurdle accounts incorrectly
for the unmeasured factors, being necessary more sophisticated ways to deal with the prescr = of
individual unobserved effects.

Regarding the performance of models LCM_NBi vs HLCM_NBi, because they are non-nested
we compare them using Vuong tests, information criteria, and GoF tests.

Before analysing the results of the Vuong tests, we briefly present some details about its

implementation. Consider the statistical decision of choosing between two non-nested models, /g
,

and g p,- Voung’s hypothesis can be formulated as follows,

[H(, 1 fg and gg are equivalent models] s [H‘ (f,x is better than g, ) or ( gp is better than f )]

When the models are strictly nested Voung proposed the utilization of the following test

statistic,
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Voung showed that under H, the test statistic I follows a standard normal distribution, therefore,

at a significant level o, the decision rule presented by Vuong (1989) is as follows: 1)If 17 > Z

then one rejects the null hypothesis of equivalent models in favour of fﬂ' being better than g g
2) I I <-Z, then one rejects the null hypothesis in favour of 8p, being better than f,, and

finally, 3)1f ~Z <V < Z_ itis not possible to discriminate among the competing models.

Table 6 reports the results of Voung tests, providing clear evidence about the better performance

of our new hurdle formulation. The Voung test statistic for the comparison of the non-nested



mod:ls I CM_NBi against HL.CM_NBi (i=1,2) clearly rejects, at significance level of 12, the two

LCN Nisimodels (tests 12 und ¥V3).

- Insert Table 6 about here ‘

lu addition, the test to contrast model HLCM_NB1 against HLCM_NB2 rejects the new hurdle

with NB1 as bascline density, evidencing that the new hurdle with NB2 as bascline distribution is

the pictesred model to fit our data.
Tuble 7 presents values of BIC and CAIC for each model estimated. On the basis of this

critciion the model with lower values for both statistics is preferred (Deb and Trivedi, 2002).

‘ S Insert here Table 7

The figures in the table show that NBi models perform pootly relative to all other econometric

specilicaions, as is evidenced by the large BIC and CAIC values, which is entirely in line with the
LR t:s1s conclusions presented carlier. Comparing the models LCM_NBi with H_ NBi in the spirit
of 1,.b and Trivedi (2000) the results offer mixed evidence regarding which model performs better.
The 1.CM_NB1 model performs better than H_NBI1, the opposite result occurs when the NB2 is
the Luse model. Voung tests results reporied in Table 6 support this view. However, what is more
refevant from Table 7 is that both BIC and CAIC present lower values for the new hurdle showing
that it perfonms better than all competing specifications. Morcover, overall, the model with lower
valu:s for BIC and CAIC is model HLCM_NB2. This finding is a further input to add to Voung
tests conclusion supporting the superiority of HLCM _NB2 specification over all alternative
speutlications.

In addition to all these tests, we have also peiformed some goodness of fit fests to verify the
robustness of the previous findings. Due to space constraints we omit its results (will be sent upon
requ s>t), however it is worth to mention that their conclusions are¢ completely in line with the
con lusions presented so far.

In summary, all model sclection tests converge into the same conclusion: the model
HI.CA_NB2 is the specification that performs better in fitting our data. Our global results are in
accordance with Winkelmann’s (2004) conclusions that hurdle specifications that deviate from the
popular hurdle negative binomial model can outperform the familiar LCM specification. In line
with Winkehinann, our findings also suggest that the evidence that has been reported favouring
latent class models over the popular hurdle specification (¢.g. (Deb and Holmes, 2000, Deb and
Trivedi, 2002, Deb and Trivedi, 1997, Jimenez-Martin et al., 2002, Sarma and Simpson, 2006) can
be interpreted as evidence against that particular specification of the hurdle but not against the
general hurdle framework. Therefore, this evidence, in some way gives new life to the principal

agent model as a feasible economic framework in which to base the ¢conometiic specifications to
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analyse medical care utilization, and it may renew the discussion about the better econometric
model to explain medical care utilization models.

The majority of empirical work that have been reporting the better statistical performance of
LCM specifications over the hurdle framework have in common the fact that their dependent
variable (number of doctor visits) are measured during one year period. This is a long period that
may cause the violation of the single illness spell. This probable violation of the single illness spell
assumption along with the misspecification of the model for the positives in the hurdle may
explain the reported superiority of the LCM over the hurdle. When the data regarding the number
of doctor consultations are collected during a shorter time period (for example, 3 months),
decreasing the probability of violating the single illness spell assumption, the hurdle structure may
again emerge as a suitable model to explain individual behaviour. In this data paradigm, if the
second part of the hurdle correctly specifies the unobservables then the hurdle structure
outperforms the L.CM framework. This is precisely what our and Winkelmann's (2004) results
have showed. In both empirical applications doctor visits are measured during a three months
period, and the second part of the hurdle are correctly specified. The results of both applications
presented similar conclusions regarding the preference for the hurdle structure. Therefore, in our
view, the perfornance of one specification over another, being dependent on the manner one
specifies the mode] for the positives may also depend on the characteristics of the data, namely, on
the survey design. Clearly, to confirm this thesis one would have to apply the new hurdle
formulation to medical care data gathered during the period of one year, and verifv whether the

new specification stiil to outperform the popular LCM model.

Unobserved heterogeneity and latent class characteristics

The results reported in the previous subsection have shown that the new hurdle specification,
presents better statistical performance when compared to all competing specifications. In addition
the results also show that the traditional LCM with NB1 as baseline distributions are, among the
traditional count data models, the model that better represents the data’. Both specifications use the
LCM framework to develop the model to analyse the data, however under different hypothesis
regarding the unobserved heterogeneity. The pure LCM is formulated under the assumption that
the unabserved heterogeneity is present in the overall population under study, in contrast, the 1.CN
part of the new hurdle is specified under the hypothesis that the unobserved heterogencity is
present in the population of health care users. Therefore, it would be interesting to analvse if the
latent classes of users generated by the two LCM based models are similar or, on the contrarv. are

different.

5 Despite Voung tests contrasting some LCM versions with some versions of the popular hurdle

specifications lead to inconclusive results.



Table 8 presents the expected number of visits and respective standard ervors as estimated by the

models LCN_NB1 and HLCM_NB2.

Insert here Table 8

It is worth to quickly mention how the figures presented in Table 8 were compuied.
For the LCM_NB1 we estimated the fitted mean for the overall population (column 1) by taking

the sample averages of the estimates of the L.CM mean function given by,

E(y, I:q):n*exp(x;ﬂ)ﬂl—n)*exp(x}A) {20]

To compute the fifted mean for each latent class, we have borrowed the procedure proposed by
Bago d'Uva (2006). First, one has to assign each individual to a latent classe, which can casily be
done after calculating the posterior probability that individual i belongs to the latent class j, which

is given by (Deb and Trivedi, 2002)

P(Lec, it - ’,,&)=7ﬂ9"———~‘x"ﬂ’) j=12 21]
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After computing the posterior probabilities, each individual was assigned to a latent class
according to the highest posteiior probability. Then, conditional on the latent class, we have
estimated the distribution of visits, according to,

E(y1x.8)=4,=ep(x8) j=12 122]

Finally, the fitted values for each class (columns 2 and 3) were obtained by taking the sample
averaye for each class, selecting, obviously, only the individuals of that class.

The model HI.CM_NB2 respects the original idea of a hurdle model assuming that the
population is, a priori, segmented in the population of health care users and non-users. For the
healils care users (y, > 0) one can compute the fitted mean for each latent class (columns 6 and 7)
in the: users population. Similar to what was done previously to the LCM_NB1 model, we have
computed the posterior probability that individual i belongs to the latent class /, however, because
we aic working in the users population, formula 21 has to be slightly modificd,

o Lnixg)
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After computing these posterior probabilities in the users population, once again, each individual
was assigned to a latent class according fo the highest posierior probability. Then, conditional of

the latent class, we have estimated the distribution of visits, according 1o
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Finally, the fitted values for each class were obtained by taking the sample average for each
class.
On the other hand, the fitted mean in the whole users population, is given by

col<8) . . ool)

B L)) A i . [25)
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We note that given our specification for the LCM in the users population, the #_ reflect the
proportions of individuals belonging to each latent class in the users population and not on the full
population as would be the case if we have used specification 15.

Finally, to estimate the fitted mean for the overall population under study (users+non-users), we

have used the expression,
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In every case the standard error was computed using the Delta method (Oehlert, 1992,
Wooldridge, 2002). After computing the standard error, the construction of the confidence
intervals is straightforward (Cameron and Trivedi, 1998).

As is well known, standard LCM models usually permit to categorize the overali population into
two latent classes. One class is formed by low intensity users of health care, while the peopl: that
form the other class are classified as high intensity users (Deb and Holmes, 2000, Deb and Trizedi,
2002, Deb and Trivedi, 1997, Sarma and Simpson, 2006, Gerdtham and Trivedi, 001,
Winkelmann, 2004). The LCM_NB1 results obtained in our application are fully in line with these
findings, as they also suggest that the overall population can be segmented into a population of
high intensity users, about 14% of the sample, visiting the doctor, in average, 4.3 (se = 0.454)
times in each quarter, while the remaining 86% of the sample are grouped in the low intensity
users class, visiting the doctor 1.13 (se = 0.015).

Before analyse the classes generated by HLLCM_NB2 note that the L.CM part of this model deals
with the unobserved heterogeneity in the health care users population, which might be dilferent
from the unobservables in the overall population. The possible differences in the sources of
unobserved heterogeneity assumed in each mode! may cause the emergence of dissimilar latent
classes.

The model HLCM_NB?2 suggests that the users population can be segmented into two clnsters.
The first cluster (column 6) who comprise about 18% of the uvsers population have, on average,
4.27 (se = 0.406) visits to a physician, while the remaining 82% vof individuals (U_Class ) seek
care about 2.03 (se = 0.014) times. Note that the model predicts that expected number of visits for

the user population is 2.38 (se = 0.014).



Ccinparing the latent classes generated by the two models, we can conclude that the high users
class turmed by cach model presents a similar expected utilization, about 4.3 visits, despite the
diffcience in the estimated proportion of individuals, 14% as estimated by the LCM _NB1 and
18%¢ as estimated by the HLCM_NB2. This seems to indicate that the high users class suggested
by both models overlap in a large extent. However, concemning the low users class, it show
difterences in the expected utilization as well as in the percentage of individuals. The LCMN_NB1
model predicts an average utilization of 1.13 visits, while the other model predicts an expecied
utilization of about 2 visits. Note that the respective 99% confidence intervals do not overlap what
suggests statistically significant differences in the estimates. The different characteristics of the
classes gencrated by the two models, especially the differences in the Jow users class, show that, in
fact, the sources of unobserved heterogeneity may vary across populations (full population vs users
population).

Among the health care users population, one can clearly label one class as high intensity users
and the other as low intensity users. Iowever, more important than this classification into low and
high uvsers, it is its classification as, respectively, ‘healthy’ and ‘ill’ clusters of individuals, as has
been Irequent to inferprel the latent classes suggested by the general LCM (Deb and Trivedi, 1997,
Deb and Trivedi, 2002). Is this split of the population into ‘healthy’ vs il individuals still valid in
the health care users population? We believe that the classification is still valid, even more valid,
duc to the role of the physician in the choices regarding the number of visits among the health care
users. The argument goes as follows:

Ulader the hurdie framework, the initial decision to seck care is enfirely dependent on the
individual, however, afier the contact decision, the physician’s role in deciding about the number
of visits increases. Therefore, it can be argued that, in the health care uscrs population, it is mainly
the doctor who decides, based on characteristics of the individuals, health status included (most of
them unobserved to the rescarcher), who is visits the doctor regulaity (high user) and who visits
less regularly (low user). That is, it can be argued that it is the physician who makes the larger
coatribution to the allocation of individuals to each latent class. It is widely recognized that
dociors, compared to patients, when make decisions on behalf of the patient tend to base the
decisions more on the health status of the individual, and less on other factors, like socio-
demographic and ‘patient preference’ factors. Therefore in the presence of an i/ individual, the
docior, based on observed and unobserved health status, will advice a high number of visits. On
the contrary, in the presence of a healthy individual, will advice a low number of visits. In this way,
the high users group will comprise the ‘if/’ individuals, while the low users group will comprise
the ‘healthy’ individuals, perhaps the ones that seek mostly preventive care and have that may go

through sporadic episodes of illness.
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If the former reasoning is accepted then we expected that, in model HLCM_NB2 the observed
health status variables to have a similar effect in explaining the number of visits in each latent
class. For example, consider the effect, conditional on a fatent class, of suffering from back pain in
the mean number of visits. When the decision is mainly doctor based, he assesses the patient
health care needs in function of the health status of the individual, part of it unobserved to the
researcher, being unlikely that other unobserved (for the researcher) non-related health status
factors contribute much to the decision. Therefore we expect that the impact of back pain in the
number of visits to be similar across latent class. On the contrary, in the full population (model
LCM_NB1), when the individual has an increased role on the decision process, the observed
health status (back-pain) may interact differently with the unobserved factors in each latent class,
causing different individual decisions in different classes. In order to assess to what extent the
impact of health status covariates are different across latent classes, we have tested the equality of

health status variables slopes across the latent classes. The results are presented in Table 9.

Insert Table 9 about here

The results are what we expected. In the HLCM_NB2 model the health status group of variables
have similar roles in explaining the average number of visits in both latent classes (p = 0.027),
conversely, in the LCM_NBI model the health status variables show a different, statistically

significant, impact in each latent class (p = 0.000).

Do different models provide different evidence?

An important health policy theme in Portugal is that of access to health care, where access
should dependent only on medical need rather than on socio-economic or demographic variables,
fike, for instance, area of residence, income, insurance status and so on. Thus, the empirical test to
examine if those in equal need have equal access to health care could be relevant for the
Portuguese health authorities. However, as was clearly asserted by Deb and Holmes (2000, the
estimates of medical care utilization are dependent on the empirical specification used to examine
the data, thus, if health care utilization models do not reflect propetly the behavioural structures
then estimates will not reflect real use, and suggested policies may have unexpected consequences.
In order to shed some light on the extent that policy relevant measures depends on the form of the
empirical gpecification used to analyse health care utilization, and at the same time to determine if
access to health care in Portugal is dependent only medical need, in this subsection we estimate the
effect of ‘income’, ‘education’, area of residence — ‘rural area’ — and insurance coverage —
‘NHS-only* — on the mean function for a number of models estimated. Table 10 reports the

results of the analysis.

Insert Table 10 about here




Beginning with the analysis of the estimates of the effect of the covariates in the overall
population (columns 1, 2, 3, 5 and 8), we note that, for each covariate considered, all madels
present estimates statistically significant, and with the same sign. Despite some vanations in the
estimaies, the 99% all confidence intervals generally overlap in a large extent, meaning that after
accounting for the standard deviation, the estimates of the average marginal cffect resulting from
different models are not statistically different. This means that if the goal of the rescarch is to
verify how the mean utilization varies in response to a change in covariates then it secems that the
extra effort to estimate more sophisticated models do not uncover any new relevant results, and a
siple single index model like Poisson or Negative Binomial will be sufficient. However, more
sop:histicated models generally permit to enhance the analysis.

omparing now the effect of the covariates on the frequency decisions (columns 4 and 9)
estunated by the two hurdle versions presented in Table 10, once again the cstimales of the two
mo-kels are very stmilar, both in sign, intensity and statistical significance. A quick look to the
tabte also shows that the impact of the covariates in the expected number of visits for the high
users class of both models (column 6 and 10) although presenting somewhat large differences in
the intensity of the estimate, they have in common the lack of statistical significance, meaning that
thuse factors are not important in explaining medical care utilization. This similarities regarding
the impact of the covariates is not surprising, especially after having concluded above that the high
uscis class created by the two models are similar in the predicted utilization. In Table 10 the main
diffciences arise in the estimates of the AME for the low users class generated by the different
models (columns 7 and 11). For each covariate, the AME effect is statistically significant in the
low users class generated by the LCM_NBI model, while they loose the statistical significance in
the tow users class generated by the HL.CM_NB2 model.

1 summary, calculations based on all models generally show only small differences, possibly
without statistical significance, on AME estimates. In our view, when the analyst objective is to
study the mean function, the advantage of using structural models, like hurdie and LCM, is that
they enhance the analysis, allowing extracting more information from the data.

IHowever, most of the times, among the analyst aims are the study of the cffect of covariates in
othcr policy relevant measurcs other than the mean. For instance the goal can be o study the
probability of having at least one visit, or the probability that use exceeds a given value. Perhaps,
this could reveal that different models generate different conclusions, however, we will leave this
analysis for future work.

Table 11 reports the parameter estimates and standard errors for models LCM_NBI1 and

1l CM_NB2.

{_- ) Insert Table 11 about here
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A quick scan through the results of the new hurdle model, reported in the three right most
columns of Table 11, show that the signs of the probability® of being a user are consistent with the
results found in similar studies. Moreover, almost all covariates considered in the analysis present
statistical significance, meaning that they influence the probability of visit a doctor. Generally
lower health status is associated to a higher probability of making a visit to the doctor and being
only covered by the NHS lowers that probability. In addition, the demographic variables also
present the anticipated signs. Among this class of variables, we highlight that income increases the
probability of visiting a doctor, while living in a rural area is a factor that decreases that
probability. These results suggest that access to health care dependent not only on health status but
also on income (more income increases the probability of use), living place (those who reside in
rural areas are less likely to have a visif to the doctor) and on the type of insurance coverage (those
who are only covered by the NHS are less probable to see the doctor).

Regarding the effect of covariates in the number of visits after crossing the hurdle, they are
presented in the two right most columas of Table 11. The columns labelled ‘High usersfuser’
present the parameters for the high intensity users class, while the column labelled ‘Low
usersluser’ presents the estimates for the low intensity users class. After the contact decision, the
results show that in the high users class only some of the health status variables presents statistical
significance. This is a significant result as it shows that, once in the system, those in similar need
for medical care receive a similar quantity.

Regarding the impact of the covariates in the low users class, although more variables have
gained statistical significance [female (+). (north, centre, LVT, alentejo (+) and not_work (+)). the
result that we found more relevant is that income, insurance generosity (NHS-only) and living
place (Rural_Area) still without statistical significance, meaning that they do not exert any
relevant impact on the expected number of visits to the doctor. This result has also been shown in
Table 10 (columns 10 and 11). Like in the high users class, the results for the low users class also
indicate that after the contact decision, the frequency of utilization does not depend on income,
neither on the place of residence or on the generosity of the insurance status.

Therefore, one can conclude that in the Portuguese health care system, the effect income. place
of residence and insurance generosity related inequities are in the contact decision, and not on the
frequency of utilization, conditional on the individual had jump the first hurdle of deciding to see
the doctor. Note that this conclusion illustrates the importance of using more sophisticated models
to analyse medical care utilization. Using, for instance, the simple NB1 model, one would have

concluded that income, rural area and NHS-only covariates played a significant role in explaining

% Notice that we have specified a NB model for the first part of the hurdle, therefore, the figures presented in
the “first part’ should not be interpreted as measuring the intensity of the impact on the probability of being

a user. However, the sign and the direction of the effect are coincident.
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medical care ulilization. However this global result hidden crucial information, namely, that the
bottle neck (relative to the thice variables in analysis) is on the probability of initiating the process
of care, and not on the frequency of utilization, after crossing the bottle neck.

Also note that the use of LCM_NBI1, would have fcad to the same incomplete conclusion
regarding the effect of income, living place and insurance gencrosity. Column 7 of Table 10 show
that in the low users population, income, rural arca and NHS-only covariates exert an ¢ffect on the
mean utilization, meaning that in this low uses population non- medical care need related variables
play a role in the frequency of utilization. However, the model HLCM_NB2, the one that we
belicve that better represents the data, once more, shows that after contact decision, the covariates
income, NHS-only and rural area do not influence utilization the low users (the class generated by

the model HLCM_NB2).
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7. Appendix A - Tables

Table 1 - Empirical distribution of the total number of physician visits (VISITS)

Visits pslative
L) egueggz
0 46.01%
1 23.75%
2 12.40%
3 9.19%
4 3.25%
5 1.92%
6 1.61%
7 0.40%
8 0.32%
9
10
211
"Mean
Variance
Vanance/mean 329
n 2501
Table 2 - Variable Definilions
Variable name Variable Definition
Visits Total number of doctor visits during a 3 months period
Socioeconomic
Age [/10] Age, in years, divided by 10
sqAge Square of age[/10]
Female =1 if the individual is female
Married =1 if the individual is married
Educati Nuinber of years of schooling. In the case of child, the education of most educated adult
cation PP
living in the household
Not_work =] :12: ymdxvndml did not work in the two weeks previous to the application of the
Retired = 1 if the individual is retired
Unemployed =1 if the individual is unemployed
(og) Income Logaritlun of equivalised monthly real incom in hundreds of Euros
North =1 if the individual lives in the north region
Centre = 1 if the individual lives in the centre region
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LTV =1 if the individual lives in the Lisbon and Tagus Valley region
Alentejo =1 if the individual lives in the Alentejo region
Rural_Area = | if the individual lives in a rural area
Health Status
Diabetes = 1 if the individual suffers from diabetes
Insulin =1 if the individual is insulin dependent
EBP =1 if the individual suffers from elevated bleod pressue
Asthma =1 if the individual suffers from asthma
Bronchitis =1 if the individual suffers from bronchitis
Allergy =1 if the individual suffers from an allergy
Back pain =1 if the individual suffers from back pain
sick_long_Run =1 if the individual suffers from an illness for more than 3 months
sick_Short_nm =1 if the individual reports had been sick in the previous two weeks
- = 1 if the individual has some sort of physical handicap that impedes lim to execute
Limited ¥ N N oo
certain physical daily activities
Stress = | if the individual is took sleeping pills in the last two weeks
NeverSmoked = 1 if the individua!l never smoked during het/his lifetime
not physical activity | =1 if the individual's daily activities do not require physical activity
mild_exercise = | if the individual engages in mild sports activities at least four hours a week.
Supply side
Phy_1000_residents | Total number of licensed ph per 1000 inhabi [Nut IIf regional level}
Insurance Status
NHS-only = 1 if the individual is covered only through the NHS
ADSE = 1 if the individual is covered by the ADSE insurance scheme
HOSS = 1 if the individual is covered by a HSS, other than ADSE (ref class)
Seasonality
Winter =1 if the period of observation was in the Winter
Spring =1 if the period of cbservation was in the Spring
Sumnmer = 1 if the period of observation was in the Summer
Table 3 - Summary statistics for covariates (N = 42.501)
Mean S.d Max  Min
Age [110] 4.240 233t 0 103
Fermale 0.527 0.499 0 1
Martied 0.540 0.498 0 1
Echication 5.380 4.300 ¢ 24
not_work 0.589 0.492 [ 1
Retired 0202 0.401 0 1
Unemployed 0.030 0171 0 1§
Income(/100} 3.656 2718  0.231 24939
North 0.315 0.464 ] 1
Centre 0.200 0.400 0 1
LVT 0.246 0.431 0 |
Alentejo 0119 0324 ] 1
Rural _Area 0.170 0376 0 1
Diabetes 0.056 0231 0 1
. 0.006
Insulin [/diabetes =0.11} 0.079 0 1
EBP 0.178 0.383 0 1
Asthma 0.062 0.241 0 1
Bronchitis 0.030 0.170 0 1
Allergy 0.144 0351 0 1
Back pain 0.407 0.491 0 1
sick_long_Run 0.009 0.096 0 !
sick_Short_run 0.344 0475 0 1
Limited 0.045 0.207 0 1
Stress 0.113 0317 0 1
NeverSinoked 0.629 0.483 0 i
not physical activity 0.609 0488 0 1
mild_exercise 0.149 0.356 0 [}
Phy_1000_Inhabitants 2.774 2220 0579 9152
NHS-only 0.848 0359 0 1
A




ADSE 0.095 0.293 '] 1
Winter 0.248 0432 0 1
Spring 0252 0434 0 1
S 0244 0.429 0 1
Table 4 Description of competing models estimated
Number of
Model . Log L Log L
o Model description parameters to
Acronym estimate NegBinl | NegBin2
?Ell > Negative binomial regression model 36 -01.837 | -02,200
Popular Hurdle specification: both hurdie and
. positive part are specified using a NB2 probability - L&l
H_NBi, =12 function. In the hurdle the dispersion parameter was n -61,470 61,275
set to one. )
LCM_NB, Two latent class model with NBi as component . .
i=1.2 distributions. B “oLI70 | -61.389
New Hurdle model: first part based on the NB
HLCM NBi distribution. The second part is specified as a 2-
=12 : LCM with NBi as baseline distribution. The 108 -60,938 | -060,740
' dispersion paraniter was set to one in the first
stage.
Table 5 - Likelihood ratio tests resulis
Test number Null Altemative st L.]? . Df Result
atistic
LRI NB1 H_NBI 734.08 35 HNBI
LR 2¢ NBI LCM_NBI 13327 37 | LCMNBI
| LR 3¢ H_NBI HLCM_NBI | 10640 37 | HLCMNBI
| LR4 NB2 H NB2 1851.1 35 HNB2
LR 5¢ NB2 LCM_NB2 16223 37 LCMNB2
LR 6+ H NB2 | HLCM NB2 | 1068.6 37 | HLCMNB2
¢ - Tests made in the boundary of the parameter space.
Table 6 — Results of Vuong tests to discriminate among non-nested aliematives
N -G Vuong Result
Test Model 1 F’x Model 2 [ Statistic { Preferred iodel)
Vi LCM_NB1 LCM NB2 121 LCM_NBI**
V2 LCM_NBI HLCM_NBI -10.0 HLCM_NBI**
V3 LCM _NBI HLCM NB2 -156 HLCM_NB2**
V4 LCM_NB2 HLCM_NBI1 -133 HLCM _NBI**
V5 | LCM NB2 HLCM NB2 191 HL.CM_NB2™
Vo HLCM _NBI HLCM_NB2 -12.90 HLCM_NB2**
v7 | LCM NBI H NBI 63 LCM_NBI**
V8 LCM_NB2 H _NB2 2.2 Inconclusive
V9 LCM_NBI H_NB2 2.1 Inconclusive
Vvio LCM_NB2 H_NBI 1.6 Inconclusive
Vil NBI NB2 6.7 NB1**
Vi2 | H_NBI H_NB2 61 H_NB2
#kp < 0.01
Table 7 - Information Criteria results
Model BIC calc
NB1 124,057.9 124,093.9
H NBI 123,696 8 123,767.8
LCM_NBI 123,119.5 123,192.5
HLCM_NBI 123,027.1 123.135.1
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NB2 124,785.0 124821.0
H_NB2 123.306.9 123.377.9
LCM_NB2 123,557.0 123,630.0
HLCM_NB2 & 122,632.7 122,740.7

& - Model preferred by BIC and CAIC

Table 8 — Model fitted means, standard errors (in parenthesis) and confidence intervals

Model LCM_NBt Model HLCM_NB2
Users popnilation
Low
Overall High users Low users Overall Overall High users/Users
usersiisers
Poprilation 13.8% 86.2% Population PoprilationUsers 17.8% 8220
Estimated mean 120(0.010) 4.29 (0.454) 1.13(0.015) 1.29 (0.009) 2.38(0014) 4.27 (0.400) 2.03(0.014)
99% Cl1 {1.26-1.32) [3.12 - 5.46) [1oe-1.17] [1.27-131) [2.34-2.42} [3.22-532) [1.99 -2.07]
Column nr. 1 2 3 4 5 6 7
Table 9 - Results of statistical tests to test the equality of parameters across latent classes. Applied for the
models LCM_NB1 and HLCM_NB2
DOF Chit DOF) value ChifDOF) value
LCM_NB1(p) | HLCM_NB2(p)
All slopes 34 196.7 (0.000) 106.8 (0.000)
Health status 14 104.3(0.000) 26.6 (0.021)
Soctoeconomic 15 31.1 (0.008) 42.2 (0.0002)
I 2 0.37(0.832) 0.15(0.929)
Table 102 - Average marginal effect of selected variables for different models. Impact on the mean function
Model | pojoson | NB1 HNB2 LCM_NBI HLCA NI
Health care users
Overall | Overall Overall | Users Overall High Low Overall Users HNigh Low
Covariate pop. users users | _users users
Ficome 0069 0.042 0.007 -0.005
(elasticity) (0.059) | (0.014) 10.03) (0.01)
Edvcati 0.037 0.010 -0.002 -0.005
cattor (0.054) 03)* | (0.027) | (0.004)
Rural Ar -0.259 -0.214 -0.04
traldrea (0379) (0.209) | (0.03)
-0316 -0.06
NHS-only (0368) | 10.052)
Column nr. 10 1

Notes:

The income-elasticity reported in columns 1, 2, 6 and 7, is a parameter that comes ont directly from estimation

results. This is the case because income is included in logs in the linear index of the mean function, given by
E{y,|%)=exp(x ).

All other figures reported in the previous table represent Average Marginal effects (AME), that is, the sample
average of individual marginal effects (Cameron and Trivedi, 2005). The individual marginal effects are the
derivative of the respective mean function, when one is evaluating the effect of a continuous covariate. or the
individual discrete changes from 1 to 0, when one is evaluating the effect of a durmy variable. In the case of
coltunns 6, 7, 10 and 11, the average effects were computed using only the individuals that were allocated to

each class.

3435




3 Concerning the popular hurdle model, with NB2 as baseline distribution in both stages: one can identify two

- ‘ o wwlis)
meas functions; the mean for the users population, given by E(y; |x,, 5 >0)=-——-———>—+ fcolumn 4],
1-P, (3, =0]x,)
exp(x, 82
and the mean for the overall population, E(y, [x, )= [l -R{y=0Ix.8 )] * v*—(— - ,,),, —— |column 3).

1-P,(5,=0|x.8;)

4. Regarding the model LCM__ NBI, the mean for the overall population [column 3] 1s given by equation 20. In
whai concerns the expressions of the mean functions for columns 8, 9, 10 and 11, see, respectively, equations 26,
25and 24.

5. The

6. Standard errors, on parenthesis, were computed using the delta method, implemented in Stata. Details will be
sent upon request.

7. *p<0.001

Table 11 - .LCM_NBI and HLCM NB1 estimation results
Hurdle Latent class model: NB2 as parent distribution
N = 42.501 Firstpart Secondpart
High users/user Low users/user
(17.8%9) (82.29
3(

Age[/10]

0.319(0.031) 0.062(0.061) 0.055 (0.029)
sqAge 0.035(0.003) -0.014 (0.007) -0.005 (0.003)
female 0.322 (0.024) -0.132 (0.058) 0.101¢0.024)
Married 0.314(0.029) -0.026 (0.062) 0.115(0.025)
Education 0.022 (0.004) -0.001 (0.009) -0.004(0.004)
Retired 0.305 (0.044) 0.229 (0.086) 0.045(0.03)
Unemployed -0.072(0.067) 0.173(0.144) 0.001 (0.066)
(log) Income 0.119(0.02) 0.01 (0.042) -0.01(0.018)
North 0.265 (0.037) -0.104 (0.089) __0.104(0039)
Centre 0.42 (0.04) 0.082 (0.093) 0.175{0.03%)
LVT 0.274(0.04) -0.129 (0.09) 0.128 (0.04)
Alentejo 0.25(0.044) -0.137 (0.1) 0.111(0.049)
Rural Arca -0.166 (0.031) -0.068 (0.068) -0.034(0.027)
not_work 0.153(00 5(0.069) 0.206¢0.03)
“ Health SGHiE. i s i
Diabetes 0842 (0.064) 0.052 (0.097) 0.153(0.031)
insulin 0.882(0.238) 0632 (0.182) 0.193(0.078)
HBP 0.699 (0.035) 0.034(0.062) 0.126 (0.023)
Asthma 0.052 (0.097) 0.052 (0.097) 0.052 (0.097)
Bronchitis 0.24(0.072) -0067 (0.109) 0.128(0.041)
Allergy 0.372(0.033) 0.143{0.061) 0.104{0.024)
Backp 0.316¢0.026) 0.048 (0.059) 0.176 (0.024)
sick_long Run 1542(0.17) 0.675(0.157) 0.629 (0.053)
sick_Short nin 1.002 (0.025) 0.452(0.051) 0.466 (0022)
Limited -0.120(0.067) 0.439 (0.096) 0.091 (0.041)
Stress 0.875(0.044) 0.285 (0.063) 0.245(0.024)
NeverSmoked -0.106 (0.023) -0.161 (0.063) -0.103 (0.025)
not physical activity 0.026 (0.036) 0.156 (0.085) 0.039 (0.036)
i i -0.087(0.042) 0.083 (0.102) 0.018¢0.043)
0.018(0.005) 0014 (0012) 0.005(0.005)
-0.22 (0.048) -0.096 (0.107) -0.05(0.042)
ADSE -0.205(0.057) -0.083 (0.127) -0.053 (0.052)
- Seasonal
Winter 0071 (0.03) -0.102 (0.067) 0.009 (0.028)
Spring 0.185(0.03) 0.024(0.069) 0.082 (0.027)
Sumuner 0.066 (0.03) -0.139 (0.069) 0.089 (0.028)
- 1242 (0.193) 0.158(0.035)

Note: Robust standard eirors in parenthesis
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