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Abstract

The exception handling mechanism has been one of the most used reliability tools in

programming languages for over four decades. Nearly all modern languages have some

form of “try-catch” model for exception handling and encourage its use. Nevertheless,

this model has not seen significant change, even in the face of new challenges, such as

concurrent programming and the advent of reactive programming. As it stands, the

current model is reactive, rather than proactive — exceptions are raised, caught, and

handled. Online Failure Prediction techniques generally work at a very high level, show-

ing potential for prediction of program crashes. However, these techniques have never

been at the hands of the programmers as an effective tool to improve software quality.

This work proposes an alternative exception handling model — PreX — where excep-

tions are no longer caught but, rather, predicted and possibly prevented. By applying

recent advances in Online Failure Prediction to Exception Handling, PreX aims to fully

prevent exceptions, bringing failure prediction techniques to a much more fine-grained

level that the programmer can control. Predicting exceptions enables a range of pre-

ventive measures that enhance the reliability and robustness of a system, offering new

revitalization strategies to developers. In addition to introducing the concept of PreX,

this work defines its model and architecture and provides a full evaluation of its pro-

totype implementation, showing that it offers significant advantages to developers and

that it can be applied to real-world projects.
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Chapter 1

Introduction

This chapter provides an overall perspective of the thesis. Section 1.1 introduces the

scope and motivation. Section 1.2 details the goals. Section 1.3 notes the contributions

of the thesis. Finally, the last section describes the structure of the remainder of the

document.

This thesis aims to bring forward a paradigm shift in exception handling models. Instead

of acting on an exception, a new exception handling model can trigger an alarm of a

possible (i.e. predicted) exception, allowing for attempts at its prevention. This adds

robustness and reliability to the software, which can then act on a potential exception

and proactively alter its behavior. The increased reliability can come at a fraction of the

cost of other alternatives.

1.1 Motivation

The Exception Handling (EH) mechanism [1] has been one of the most used reliability

tools in programming languages for more than four decades. Most programming lan-

guages, such as Java, Python and C++, provide some form of “try-catch” model for

Exception Handling. This model has gone unchanged, even in the face of concurrent

software and programming languages for multi-core platforms (e.g. Scala, Erlang and

Elixir). Thus, the sequential Exception Handling model remains the leader in popularity

[2].

However, the ubiquity of the Exception Handling mechanism for error recovery does not

imply its most correct or desirable usage [3]. Developers often use Exception Handling

language constructs as a way of hiding problems, performing log activities or informing

the user of unexpected behaviour, rather than recovering from it autonomously [4]. This

1



Introduction 2

kind of use of Exception Handling might be considered a symptom of a design flaw in

the mechanism – the system only acts when it is too late, thus making the problem

unavoidable.

Recent work in the field of Online Failure Prediction (OFP) [5–7] has shown that sev-

eral techniques can be used with success in predicting failures. OFP mechanisms act in

run-time, providing warnings and estimating failure probabilities according to the char-

acteristics of the running system. While these systems have seen some success, they are a

high-level approach to failure prediction, without fine-grained control at the source code

level [5]. There has been some [6, 8] work on predicting failures of individual applica-

tions and components, but these are too generic, predicting only task completion status

(success/error) [6] or generic component failures [8] (e.g. memory failures). There is lack

of a lower-level OFP mechanism that can notify programs and applications of relevant,

specific, and potential failures, such as a database timeout, instead of merely predicting

the overall failure of the system or the exit status of applications.

It seems, then, that Online Failure Prediction mechanisms could be applied at a lower-

level, together with the Exception Handling mechanism, to provide tools for programmers

to act proactively in the face of potential exceptions, leading to an overall increase in

software reliability and robustness. For example, by detecting that a database timeout is

imminent due to excessive workload, an application can adjust its workload, preventing

the failure instead of failing and only afterwards trigering the failure handling strategy,

thus reducing overall downtime and increasing robustness, reliability and performance.

To further illustrate the motivation for this new model, consider a system of at least

a database and several client applications. Consider also that these client applications

are write-heavy, meaning they processes several thousands of write operations per sec-

ond, sending them to the database. Due to the heavy load, the database may become

unresponsive and ultimately trigger a ConnectionTimeout exception on one of the appli-

cations. That application will then have to attempt to reconnect, and restart where it

was previously, if such is really possible. This shows the aforementioned downfall of the

conventional Exception Handling mechanism – the system only reacts to exceptions, it

does not avoid them. The motivation for this work stems from this issue – client appli-

cations would benefit from a prediction (i.e. a warning) that the database may trigger

a ConnectionTimeout exception. With such a warning, they can, for instance, proac-

tively slow their execution rate and prevent the exception from happening. Ultimately,

slowing execution down could prove to be more efficient than triggering the exception

and restarting the whole process and, as seen in the results of this work, this is indeed

a valuable alternative to current reliability tools.
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Note also that the proposed model offers new strategies that are not traditionally avail-

able to application developers or system administrators. For example, consider a scenario

where a web-service exposes several services and is faced with a Denial of Service (DoS)

on one of these services. Ordinarily, solutions involve a blocking the source IPs or ter-

minating the web-service altogether. This is a direct consequence of the layer at which

intrusion detection systems work, which is outside of the application itself. With PreX,

the attack can be detected at the application level (indeed, it can be detected within

a specific method), allowing the developer to shut down only the relevant services and

letting the remainder of the web-service continue working as normally. This fine gran-

ularity is one of the defining distinctions between PreX and other work in the area of

failure prediction.

1.2 Goals

The purpose of this thesis is to introduce a novel approach to Exception Handling by

providing the means for developers to act on an exception before it happens, thus broad-

ening the range of their revitalization strategies. The approach reshapes the concept of

“try-catch” blocks, so that programmers can be alerted of potential exceptions within a

given time frame and take some action, much like in the conventional Exception Handling

mechanism. Thus, a potential exception is detected and the program flow is transferred

to an exception prevention block. In this block, the programmer can specify what to do

when faced with a probable exception.

This new Exception Handling approach is called Preventive Exception Handling

(PreX), and applies the methods and techniques of the Online Failure Prediction field to

exception handling, thus empowering programmers to act proactively. PreX introduces

a new model for Exception Handling, with the goal of being easy to use, practical, and a

successful integration of the fields of Exception Handling and Online Failure Prediction,

as well as the first to act on potential exceptions before they have happened – errors are

avoided, rather than handled.

The final goals of the thesis are: (i) the design of PreX; (ii) a prototype implementation

of PreX; (iii) a validation of PreX; and (iv) publication of the full source-code for the

implementation under an open-source license.

1.3 Contributions

The main contributions of this work are:
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• The proposal and design of a new preventive exception handling model –

PreX –, applying Online Failure Prediction techniques at the source-code/language

level for fine-grained control over exception prediction.

• The implementation of the aforementioned Exception Handling model,

in the form of tools for efficient resource monitoring (probes), a Java 8

library that can be used in any project to incorporate this model, a system for

real-time prediction of exceptions and an administrator application to

control this system with both CLI and GUI interfaces.

• The evaluation of the proposed model, by using the aforementioned imple-

mentation on real-world scenarios, namely the open-source Shopizer e-commerce

application.

• The publication of the full source-code for the implementation and mod-

ified software files under an open-source license. The source code for the PreX

system (coordinator, library and administration application) is available at https:

//github.com/Jorl17/prex and the source-code for a cross-platform probe that is

compatible with PreX is available at https://github.com/Jorl17/prex-probe.

1.4 Structure

The remaining document is structured as follows. Chapter 2 introduces the state of

the art in exception models in programming languages and failure prediction, as well as

related work. Chapter 3 specifies the proposed model and its architecture, as well as a

validation of its usefulness with simulation tools. Chapter 4 details the implementation

of the proposed model in the Java programming language. Chapter 5 presents the

experiments used to validate the model and its implementation. Chapter 6 presents the

work plan used throughout the thesis, a risk analysis and a publication plan. Finally,

Chapter 7 presents the conclusions and future work possibilities.

https://github.com/Jorl17/prex
https://github.com/Jorl17/prex
https://github.com/Jorl17/prex-probe


Chapter 2

State of the Art

This chapter presents the state of the art in two distinct areas of research – exception

handling models and online failure prediction. In addition, it notes related work in the

field of self-healing systems and business process exception handling. A brief summary

is presented at the end of the chapter.

2.1 Definitions

The following sections provide definitions of the terms used throughout this work.

There have been several attempts to get a precise definition of faults, errors and failures

(e.g. [9], [10] and [11]). Since this chapter is heavily based on the survey by Salfner et al.

[5], the definitions of failure, error and fault here presented are the sames found in work

by Avižienis et al. [11] and used in the work of Salfner et al. The definition of symptom

is the one used in the work of Salfner et al.

2.1.1 Failure

A service failure, often abbreviated as failure, is the event that happens when a service

deviates from correct operation. This may happen because it does not comply with its

functional specification or because the original specification does not adequately describe

system function. Salfner et al. note that a failure refers to “misbehavior that can be

observed by the user, which can be a human or another computer system”. In that sense,

although “things might go wrong” in a system, it does not constitute a failure insofar as

there is no deviation from correct service.

5
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2.1.2 Error

The aforementioned situation where “things might go wrong” is formalized as the situa-

tion where “the system’s state deviates from the correct state”. This is called an error.

An error corresponds to the part of the total system state that may lead to a subsequent

service failure. Many errors never reach the system’s external state, hence do not cause

a failure.

Avižienis et al. [11] further distinguish between undetected errors and detected

errors: An error can remain unidentified until a detector identifies the incorrect state.

2.1.3 Fault

A fault is the “hypothesized cause of an error”. In other words, it is its root cause.

Often, faults remain dormant until they are activated, leading to incorrect system state

(an error) and, ultimately, might lead to a failure.

2.1.4 Symptom

Errors might cause failures, but they might also cause “out-of-norm” behavior as a side-

effect. For example, the system might operate with expected results but do so with

increased CPU usage or memory consumption. This behaviour is called a symptom [5].

2.1.5 Relationship between concepts

Figure 2.1 presents an overview of the concepts introduced in this section. As an ex-

ample, consider a system with a memory leak. A fault, the underlying cause of the

error, might be a missing delete or free statement. Once the offending piece of code

(responsible for freeing) is executed, an incorrect state is entered, thus, an error becomes

present. Through time, memory consumption will increase and this will affect overall

system metrics and performance (these side-effects are the symptoms). Eventually, if no

preventive action is taken, a failure happens (i.e. the system crashes).



State of the Art 7

Figure 2.1: Relationship between faults, errors, symptons and failures. The encapsu-
lating boxes show the technique by which the corresponding phemonenon can be made

visible (Salfner et al. [5]).

2.2 Online Failure Prediction

Recent trends in industry and academia have seen a shift from traditional fault handling

approaches to new efforts on autonomic computing, trustworthy computing, recovery-

oriented computing and other techniques for proactively handling failures. This shift

encompasses techniques that fit onto the term Proactive Fault management [5]. In Proac-

tive Fault Management, there are essentially four steps [5]:

1. Online Failure Prediction is performed in order to identify problems. This step

can estimate failure probabilities, outputting a probability, a binary (fail/no fail)

scenario or some other measure of failures happening in the future.

2. Once failures have been predicted within a threshold, they have to be further

pinpointed (e.g. which component is likely to cause failure?), in an act of diagnosis.

3. Based on the previous steps, some actions (i.e. countermeasures) must be taken

using several decision making systems. These systems take into account the con-

fidence in the diagnosis and other relevant system information in a process called

action scheduling.

4. Lastly, the selected actions are carried out (i.e. executed) in hopes of preventing

the predicted fault. Examples of these actions are reconfiguration of distributed

systems or data synchronization among data centers.

Thus, Online Failure Prediction is only one of four distinct and critical steps in Proactive

Fault Management systems. It is, nevertheless, a large research field on its own.
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2.2.1 Online Prediction

Online prediction is visualized in Figure 2.2. A failure is to be predicted with some given

lead-time ∆tl, at current time t, based on the current system state measured within a

data window of length ∆td (which we call data validity time). This prediction (e.g.

fail/no fail, failure probability, etc) is valid during a window ∆tp, called the prediction

period.

A failure might not always be predicted in time. For instance, if we predict an “out-of-

memory” error within 2 seconds, but need 5 seconds to fully slow down our process and

prevent the error, then the prediction lead-time will have been useless. Thus, there is a

minimum warning time, ∆tw, needed for a system to react proactively to the failure

prediction.

The prediction period, ∆tp, is critical in online prediction. If a value is too low, the

prediction is prone to fail many times, so higher values always increase the amount of

correct predictions. However, very large windows make the prediction useless – it is not

useful to know that a system is going to fail somewhere between today and five hundred

years.

Figure 2.2: Time relations in online failure prediction (Salfner et al. [5]).

2.2.2 Evaluation Metrics

In order evaluate the quality of fault prediction algorithms, a set of evaluation metrics

must be defined. There are several common metrics used to assess these algorithms.

Most of the metrics are defined based on the Contingency Table as displayed in Table

2.1.
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Table 2.1: Contingency table

True Failure True Non-Failure Sum

Predicted Failure
(failure warning)

true positive (TP)
(correct warning)

false positive (FP)
(false warning)

positives
(POS)

Predicted Non-failure
(no failure warning)

false negative (FN)
(missing warning)

true negative (TN)
(correct lack of warning)

negatives
(NEG)

Sum failures (F) non-failures (NF) total (N)

Based on the contingency table (also known as the confusion matrix), there are common

ways to measure the performance of a fault prediction algorithm [5]. These are shown

in Table 2.2

Table 2.2: Common formulas to measure the performance of a fault prediction algo-
rithm

Name Formula

Precision TP
TP+FP = TP

POS

True Positive Rate
Recall

TP
TP+FN = TP

F

False positive rate FP
FP+TN = FP

NF

True negative rate
Specificity

TN
TN+FP = TN

NF

False negative rate FN
TP+FN = FN

F

Negative predictive value TN
TN+FN = TN

NEG

False positive error rate FP
FP+TP = FP

POS

Accuracy TP+TN
N

Odds ratio TP×TN
FP×FN

The True Positive Rate (TPR), False Positive Rate (FPR), False Negative Rate (FNR)

and True Negative Rate (TNR) can all be expressed as a percentage or a value in the

range [0; 1]. If TPR = 1, then all failures are accurately predicted. However, this

metric alone is not enough to evaluate the performance of an algorithm. Indeed, one

can trivially achieve TPR = 1 by always predicting a failure. The downside of this is

that the True Negative Rate will be 0. There is a compromise between TPR and TNR

because there are two distinct kinds of errors: (i) failing to correctly predict a failure (a

false negative) and (ii) predicting a failure when there is none (a false positive). This

leads to another popular metric that tries to balance these two different kinds of errors,

called the F-measure (F1):
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F1 = 2
precision× recall
precision+ recall

An F1 of 1 (or 100%) is achieved by a perfect prediction system which never fails.

2.2.3 Prediction Methods

Salfner et al. [5] identified four distinct major branches of methods in Online Failure

Prediction:

• Failure tracking

• Symptom Monitoring

• Detected Error Reporting

• Undetected Error Auditing

In the following sections, we introduce each of these branches and note relevant research

work in them. For a more in depth state of the art, interested readers should look at the

aforementioned survey [5].

2.2.3.1 Failure Tracking

Methods belonging to the class of Failure Tracking draw conclusions regarding future

failures from past failures. These methods don’t explore run-time data beyond simple

tracking of time.

There are two main classes of methods within Failure Tracking. These are Probabil-

ity Distribution Estimation methods, which have their roots in offline reliability

prediction, and Co-Occurrence methods. The former methods try to estimate the

probability distribution of time-to-fail, whereas the latter methods explore spatial prox-

imity (i.e. machines tend to fail in proximity clusters; thus, the probability of failure

should increase with co-occurent failures).

Csenki [12] uses a Bayesian predictive approach to improve the prediction of the next time

to failure in an offline software reliability prediction context. Pfefferman and Cernuschi-

Frias [13] also propose a Probability Distribution Estimation method by using a non-

parametric method to model the failure process (time between failures) as a Bernoulli-

experiment where a failure of type k occurs at time n with probability pk(n). With
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this information, the authors apply different “window sizes” based on the probability for

each kind of failure, applying their new model to software reliability data. Regarding

Co-Occurence methods, these are mostly used for root cause analysis rather than failure

prediction. Liang et al. [8] explored temporal and spatial correlation to successfully

predict hardware component failures in IBM’s BlueGene/L. Fu and Xu [14] use a similar

approach, coupled with a neural network, to predict the number of hardware failures with

81.6% accuracy and software failures with 72.9% accuracy for the LANL HPC system.

These results are above average for online failure prediction, where, as shown in this

section, most results tend towards 50% accuracy.

2.2.3.2 Symptom Monitoring

Symptom Monitoring methods periodically analyze samples of system state variables,

such as the amount of free memory or page swaps, to estimate imminent failures. A key

concept of these methods is the idea of service degradation – the system may start to

exhibit some form of degradation before the actual failure happens (e.g. before a database

time-out, successive requests might take a longer time to process). This degradation can

be observed in system side-effects, such as longer response times, high CPU load or high

memory consumption (e.g. in the case of memory leaks). These side-effects are called

the symptoms of the failure.

Subclasses of Symptom Monitoring methods are:

• Function Approximation methods use the system samples to estimate and

approximate a target function. This function can be one of (i) the probability of

failure occurrence (only available in the training dataset as a boolean function) or

(ii) some computing resource such as the amount of page swaps (which is available

in run-time within the data validity time).

• Classifier methods directly use the values of system variables to ascertain failure-

prone or failure-free state. A decision boundary in the system variable space is

computed from previous data in a training phase, separating data points which

indicate a “failure” and data points which indicate “normal operation”. For exam-

ple, if there is only one variable, such as free memory, a decision boundary can be

expressed in the form freemem ≤ 100 Mb. If free memory falls below 100 Mb, the

predictor outputs a failure-prone state. Classifiers generalize this idea to higher di-

mensionality cases, and then compare the current data values to the precomputed

decision boundary.
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• System Models methods are similar to Classifier methods, but differ in the

sense that they only rely on failure-free data. Instead of computing a decision

boundary, they compute a normal operation system model, comparing its estima-

tion outcome with the current system functioning and using this as the basis of

the failure prediction.

• Time series analysis methods treat monitored system variables as a time series

and use analysis of samples to predict future values which are then used for the

prediction.

Regarding function approximation, Vaidyanathan and Trivedi [15] present a stochastic

approach in the form of a semi-Markov reward model based on workload and resource

usage data to predict resource exhaustion due to software aging. Their goal is to control

software rejuvenation processes and validate the phenomenon of software aging. The

proposed model gives better trend estimates of swap-space and free memory than simply

using a time-based approach. However, since this model does not model interactions

between resources, it does not necessarily accurately predict a system failure. In Li et al.

[16], another stochastic approach is given, where an auto-regressive model with auxiliary

input is used in a similar way, predicting resource exhaustion times. Their method was

shown to be computationally less expensive and have better results than Castelli et

al.’s method [17] on their dataset. Andrzejak and Silva [18] employ a regression based

approach to model the performance of an Apache Axis SOAP server. Their goal was

to optimize software rejuvenation times, something which they were able to achieve.

Regarding Machine Learning approaches, Neville [19] described how standard neural

networks can be used for failure prediction in large scale engineering plants. Hoffmann

[20] used an approach based on Universal Basis functions (UBF) to predict failures

of a telecommunication system. In a followup work [21], the authors predict resource

consumption of the Apache webserver using different modelling techniques. Their UBF

approach yielded the best results for free physical memory prediction, although Support

Vector Machines were a better choice for server response times.

Classifier methods for this category of online failure prediction include the work of

Hamerly and Elkan [22]. The authors perform hard disk drive failure prediction with two

different bayesian methods. The first uses a mixture of naive Bayes submodules and the

second is a naive Bayes classifier trained with Expectation-Maximization. This second

method computes conditional probabilities for SMART (Self-Monitoring, Analysis, and

Reporting Technology) values belonging to the failure/non-failure classification. Using

a decision threshold of 0.005, their approach achieves a true positive rate of 0.33 with

false warnings having a probability of 0.0036. Of all failures, they predict 56% of them
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Figure 2.3: Function approximation methods approximate target functions (Salfner
et al. [5]).

with a false positive rate of 0.0082 and a class threshold t of 0.001, outperforming in-

dustry standard methods. Pizza et al. [23] present a method for classification of faults

in transient or permanent faults whenever erroneous behavior is observed. Salfner et al.

note that this method can be used for failure prediction. Turnbull and Alldrin [24] use

Radial Basis Function networks to classify data windows as failure/non-failure. These

data windows contain monitoring values of hardware sensors (e.g. temperature and volt-

age). They achieve a 0.87 true positive rate and 0.10 false positive rate on a balanced

dataset (i.e. with the same number of positive and negative classifications). Murray et

al. [25] apply SVMs, among other algorithms that do not fit into this category, to pre-

dict hard-drive failures. They predict roughly 45% of failures (true positive rate of 0.45)

with about 12% false alarms (false positive rate 0.12), which the authors consider might

be higher than desirable. Their approach is interesting in the sense that they develop

a window-based method to group data for classification. Bodík et al. [26] analyse hit

frequencies of web-pages using a naive Bayes classifier. They provide a visual tool that

can predict failures with an average warning time of 37 hours, although their dataset

is very small and labels for failure/non-failure were not available (the authors extracted

these using unsupervised learning techniques). Although not included in the survey by

Salfner et al., Irrera et al. [27] presented a sliding window approach to incorporate the

time dimension in a classification failure prediction problem, showing that this dimension

improves results, but that it makes the problem harder as larger windows are used.

Figure 2.4: Classifier methods use a decision-boundary to distinguish between failure
and failure-free states (Salfner et al. [5]).
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Regarding system models, Elbaum et al. [28] propose methods where they inspect func-

tion calls, changes in configuration and module loading of the pine email client. Their

most successful method used sequence-based checking: a failure was predicted whenever

two successive events that did not belong to the stored training event data happened.

Hughes et al. [29] use a statistical test for hard disk failure prediction. They compare

values from fault-free hard-disks at run-time and predict a failure whenever a certain

threshold is exceeded. They are able to predict failures with 40%-60% accuracy and

0.002 false positive rate (thus, having lower performance than Hamerly and Elkan [22]’s

method). A similar statistical approach is used by Bodík et al. [26]. Their work, already

mentioned in another categorization, provides an additional method where website hit

frequencies of the 40 most frequently used pages are compared to “historically normal” hit

frequencies using a statistical test. Significant differences are considered anomalous and

failure-prone. Their results can predict failures with the aforementioned average warning

time of 37 hours, but have the same aforementioned limitations. Ward et al. [30] use a

statistical test to compare the mean and variance of the number of TCP connections of

two web proxy servers to identify performance failures. They achieve 80%-90% accuracy

with “only two false failures”.

Figure 2.5: Time series analysis methods operate on a sequence of variables through
time (Salfner et al. [5]).

Lastly, concerning time series analysis models, Garg et al. [31] present a three-step

approach to predict resource exhaustion. Their approach smooths the time-series and

detects trends using a seasonal Kendall test (the method cannot be applied otherwise),

finally applying a non-parametric procedure for prediction. Their experiments were

performed on variables such as free memory, size of file table, process table size and used
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swap space of UNIX machines. Castelli et al. [17] note that IBM implemented a curve-

fitting algorithm for the xSeries Software Rejuvenation Agent, using extrapolation for

prediction. Cheng et al. [32] presented a two-step approach for failure prediction within

a high availability cluster system. Their approach first computes a health index using

fuzzy logic. If a node is considered “sick”, then they use a linear function to estimate mean

time to resource exhaustion. They showed that they could improve availability due to

accurate prediction and recovery mechanisms (backup nodes and system administrator

notifications). Shereshevsky et al. [33] observed that memory-related system parameters

show multifractal characteristics in the case of software aging, using this knowledge to

predict system crashes.

2.2.3.3 Detected Error Reporting

In Detected Error Reporting methods, past error logs are used to predict future failures.

This approach differs significantly from Symptom based approaches (which use system

variables) in two ways: (i) events, unlike system variables, are not continuously spaced/-

monitored, and thus require an event-oriented approach; (ii) system variables are usually

real-valued, whereas event logs usually contain discrete information such as a timestamp

or an ID. This branch of methods, then, carries a data window (coinciding with the data

validity time) whose past events are taken into account when predicting the future.

Figure 2.6: Detected error reporting methods use previous error reports for predicting
failures, as opposed to other variables such as system statistics (Salfner et al. [5]).

Like Symptom based approaches, Detected Error Reporting shares many topics with

the area of machine learning, and Salfner et al. distinguish the following subclasses of

methods:

• Rule-based methods use rule-based systems for the basis of their predictions. A

series of conditions (called rules) are iterated until the first that matches is found
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(indicating failure). If none are found, then failure-prone states are discarded.

Thus, systems of this form usually have rules in the form of

IF condition1 THEN failure_prone_status

IF condition2 THEN failure_prone_status

...

• Co-Occurence methods are similar to the Co-Occurence methods presented in

Section 2.2.3.2 with the only difference that they are based on detected errors

(events) rather than previous failure data.

• Pattern Recognition methods search for patterns in the error reports. These

methods usually use a ranking value to express similarity between patterns that are

known to lead to failures and patterns that are known to be of normal operation.

• Statistical Test methods rely on statistical testing approaches to failure predic-

tion. Examples include checking the histogram of current number of error reports

and comparing it to one during normal operation using statistical tests.

• Classifiers methods, like Co-Occurence methods, are similar to the Classifiers

methods presented in Section 2.2.3.2 with the only difference that they are based

on detected errors (events) rather than previous failure data.

The first rule-based approach seems to be that of Hätönen et al. The authors built a

system with simple rules of the form “if errors A and B occur within X seconds, then error

C occurs within Y seconds with probability p”. Their algorithm returned too many rules

and needed to be post-processed/filtered by a human operator. Weiss [34, 35] presents

a failure prediction technique called “timeweaver” based on a genetic training algorithm.

The algorithm builds rules using a genetic programming approach, starting from an

initial set of rules and building new ones with crossing and mutations. These are then

evaluated with a fitness function that considers prediction quality as well as diversity of

the rule set. They apply this algorithm to alarms of the 4ESS Switches that route the

majority of the AT&T network traffic. The author notes that the performance of the

algorithm is heavily influenced by the lead-time and that good results can be achieved

if the lead-time is low (1-10 seconds). Vilalta et al. [36] propose the eventset method,

using a data mining approach (a rule-based model) based on the type of reported error

(the time dimension is discarded). Under specific conditions, they have a false negative

rate of only 0.16, although this value can be as extreme as 0.83 under other system

conditions (the false positive rate is always lower than 0.1).
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Regarding Co-Occurence, Lin and Siewiorek [37] present a set of heuristic rules on the

time of occurrence of consecutive error events to identify permanent failures. Their

technique is mostly suited to hardware failures, and achieves a true positive rate of

0.9375 and precision of 0.75. However, the method has little value if failures do not occur

frequently. Several authors [38–40] use grouping methods to make the observation that

temporal co-occurence should be used to predict upcoming failures in short timespans.

Salfner et al., who have proposed the classification used in this thesis, also present the

only identified methods of Detected Error Reporting with Pattern Recognition. Their

central idea is that of merging the time-based characteristics of Lin and Siewiorek’s

[37] method with the type-of-error characteristic of Vilalta et al.’s [36] method. In this

sense, in [41], the authors present Similar Events Prediction (SEP), a semi-Markov chain

model. Their method achieves a precision of 0.800, recall of 0.923 and F-Measure of

0.8571 on data from an industrial telecommunication system. In Salfner and Malek

[42], the authors propose a hidden semi-Markov model to “add an additional level of

flexibility”. This method achieves precision of 0.852, recall of 0.657 and F-Measure of

0.7419. Both of these methods seem to perform better than other failure prediction

methods, whose precision and recall tend towards 50-60%.

Figure 2.7: Pattern Recognition methods extract features from data and compare
these to failure and non-failure sequences (Salfner et al. [5]).

There is only one documented instance of classification approaches to Detected Error

Reporting. Domeniconi et al. [43] present an extension of Support Vector Machines

called SVD-SVM (Singular-Value-Decomposition and Support-Vector-Machine) and ap-

ply this extension to predict critical or fatal system errors. The approach was used with

data of a production computer network with an “error rate” of 7.2% to 8.6% for online

prediction.

2.2.3.4 Undetected Error Auditing

Detected Error Reporting, which we have already discussed, searches for errors in data

that is actively being used. Undetected Error Auditing, on the other hand, looks for

errors and error states in data not currently used. For example, a consistency check on

the filesystem might help predict failures in the future – if some files are found to be

inconsistent, we can predict that accesses to those files will trigger a failure.
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Salfner et al. did not find any examples of such systems in their literature review, and

this still seems to be the case.

2.2.4 Current Challenges

Online Failure Prediction faces several different challenges in order to be practical. One

such challenge regards variable selection and data gathering. Indeed, in [44], the authors

note that it is difficult to obtain the necessary data for failure prediction, since failures are

rare events. Hoffman et al. [45] also show that the set of variables that help prediction

might be quite small. In [46], the authors propose an approach for selecting the most

adequate variables for failure prediction. The authors use this approach in followup

works [47, 48].

Failure Prediction has been showed to be highly sensitive to the training data. As such,

datasets should be chosen carefully, taking special precaution with data resulting from

virtualization or fault injection methods. In this sense, Irrera and Vieira [48] present

a framework to assess the representativeness of fault injection-generated failure data.

In [47], the authors show that data generated within virtualized environments can be

used for failure prediction, but that virtualization technology and different workloads

can influence the correlation of these variables with failures.

Another challenge in failure prediction is related to naturally evolving software systems.

In dynamic environments and real-world scenarios, the system setup is prone to changes

(e.g. configuration, hardware and workload changes). In [49], the authors study the per-

formance of a failure predictor when the supervised system (a webserver) is subjected

to successive updates. Their results show that the performance of failure predictors

is indeed greatly affected by the updates and that re-training improves performance.

Berardini et al. [50] propose CASSANDRA, an online failure prediction technique com-

bining compile-time and run-time information to determine the current application state

and the possibility of failure. Their method is designed specifically for evolving systems

where state changes dynamically, but requires a high degree of compile-time information

(e.g. “Which sequence of states leads to a failure?”).

2.3 Exception Handling Models

Exception Handling separates the operation domain (the execution domain of a particular

segment of code) into two distinct domains: the operation’s standard domain, and the

operation’s exceptional domain. Normal program flow, absent of errors, is contained
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in the standard domain. If an operation is invoked within its exceptional domain, it

leads to an exception being raised, followed by the invocation of an exception handler,

that, in theory would deal with the abnormal condition (e.g. by logging it, correcting

it, or using a different approach altogether). This invocation is done by a signaller (i.e.

callee). An Exception Handling Model defines the interaction between the signaller and

its handler. An Exception Handling Mechanism defines the language constructs within

a programming language to express a given Exception Handling Model. [51]. In this

section, we give an overview of the classical and current Exception Handling models and

their limitations.

2.3.1 Classical Exception Handling Models

Yemini et al. [52] identified four distinct Exception Handling Models, summarized in

[53]:

• Resumption model – When an exception is raised, the control flow is transferred

from the raise point to the handler and, after the exception has been handled, it

is transferred back to the raise point. This model effectively binds the caller and

the callee together and is prone to recursive resumption, thus being difficult to

implement [53].

• Termination model – An exception is raised within a protected block, with the

control flow transferred to the handler, terminating any intervening blocks. The

control flow then resumes as if the protected block terminated without any errors.

This is the most widespread Exception Handling Model in use [53].

• Retrying model – The signaller is invoked after some operation has been made.

This model is more appropriate to transient faults, where retrying the invocation

might lead to no exceptions. The main disadvantages of this model are its inherent

implications for non-idempotent operations, counters, etc – the programmer must

be wary of how the code executes. Since it has been shown [53] that this model can

be mimicked by using a loop and the termination model, it is often not explicitly

supported.

• Nonlocal transfer – The program flow can be transferred to any other location in

the program. This model has the obvious drawback of being hard to maintain and

much more error-prone. [53]

All of these models share a common characteristic – an exception is raised, and only

then can some action be taken. There is no proactive approach in this form of exception
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handling. This, unfortunately, means that many incorrect uses of Exception Handling

Mechanisms arise, with programmers focusing on hiding errors, rather than attempting

to fix them [4].

2.3.2 Advances in Exception Handling Topics and Models

Exception Handling has been around for more than forty years. Several authors and

programming languages have proposed alternative models which extend the classical

models and adapt them to new scenarios. In this section, we focus on some of these new

models and ideas.

2.3.2.1 Side-Effects

In most programming languages, as mentioned, the termination model is implemented

with an Exception Handling mechanism. Typical and familiar syntax provided by mod-

ern programming languages, such as Java, Python or C# follows a try-catch-finally

syntax:

1 try {
2 . . . Some code that can throw except i on s . . .
3 } catch ( . . . ) {
4 . . . Exception Handling code . . . .
5 } f i n a l l y {
6 . . . Code to be executed r e g a r d l e s s o f except ion invoca t i on . . .
7 }

Listing 2.1: Typical syntax for current exception handling models

This syntax provides ways for programmers to employ the termination model and append

to it some additional cleanup procedures that should always be executed in a finally

block. For example, if a file is opened before the try block, it does not matter if an

EndOfFileException is raised and caught within that try block, since the programmer

will always want to close the file – thus, this should be done in the finally block.

The try-catch-finally demonstrates how the termination model does not deal with leaked

state (i. e. side-effects of the called code). Code that has been executed may have unde-

sired side-effects that need to be undone so that the application maintains consistency.

Indeed, in accordance to Lanvin et al. [54], there are three main goals to exception

handling mechanisms:

1. Detection of an error
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2. Localization of the error source

3. Error recovering

Lanvin et al. [54] argue that most programming languages achieve the two initial goals

but fail to ensure that error recovering ensures a return to a consistent state.

There have been different proposals for extending the termination model and augment-

ing it with richer semantics to reduce or eliminate the problem of side-effects. In the

same paper, Lanvin et al. [54] propose the idea of reconstructors: counter-actions for

each operation that can “undo” that operation and, thus, bring the program back to a

previous state. This approach, however, further adds complexity, as it forces program-

mers to explicitly program the reconstructors. Note how the finally block, seen in other

programming languages, tries to accomplish part of this task, but may lack all the nec-

essary information to perform the required cleanup operations (e.g. it may not know

exactly where the exception happened).

Apple’s Swift programming language [55] introduced error handling techniques that

highly resemble exception handling mechanisms. Although implemented differently, they

offer very similar syntactic and semantic facilities, the only main difference being the in-

troduction of a defer block. Like finally in other languages, the defer block marks

instructions that should be run independently of an exception1 being caught or not.

However, defer adds significantly more flexibility than finally, since: (i) there can be

multiple defer blocks anywhere through the function (they are not tied to a try-catch

block); (ii) defer blocks are always processed when the function is exited, even if the

function itself throws an exception2 and (iii) the multiple defer blocks are invoked in

reverse order of their declaration. This addition, thus, is conceptually similar to Lanvin

et al.’s work, and allows errors to be handled more gracefully and state consistency to

be achieved more easily due to the more fine-grained defer blocks.

2.3.2.2 Concurrent Exception Handling

Concurrent programming is now a core part of most software projects. Yet, the classical

Exception Handling models were not developed to take concurrent programming into
1Swift 2 does not contain the concept of exceptions explicitly. Instead, it is functionally backwards-

compatible with the previous iteration of the language, “piggybacking” error codes in additional function
parameters. Nevertheless, the end result is code that shares high resemblance with exception handling,
and, in this document, we treat these error messages as exceptions for simplicity.

2Note that this makes more sense if we realize that Swift internally implements exceptions mostly as
in/out parameters and using conventional return statements.
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account [2]. This issue becomes increasingly complex when dealing with implicitly par-

allel languages (e.g. [2]) or futures [56]. In these particular situations, different problems

clearly emerge:

• Catching an exception does not necessarily inform us about which potentially asyn-

chronous operations in the sequential try-catch block have been executed, thus

making it impossible to reliably know the current program state or how to revert

to a previous, consistent state.

• If an exception is raised in an asynchronous method call, in which thread should

it be handled?

• If an exception is raised in an asynchronous method call, when should it be caught?

For example, if Futures are used, should the exception be caught at the point of

method invocation, or at some other point in time, such as when requesting the

Futures result itself?

There have been attempts at simplifying the process of Concurrent Exception Handling.

Zhang et al. [56] propose an as-if-serial exception handling mechanism for their particu-

lar flavor of Futures for Java (called DBLFutures). Their mechanism provides as-if-serial

semantics for futures, meaning that “the semantics of the parallel future version is the

same as that of the sequential version” (exceptions are delivered to the same point as

they are delivered when the program is executed sequentially). The mechanism does

not provide true as-if-serial semantics, but only does it in terms of the control flow of

exception delivery. Thus, the global side effects of parallel execution are not “undone” in

the face of an exception. For this, the authors also implement a stricter version of their

DBLFutures, named Safe DBLFutures (SDBLFutures), which uses a technique similar

to software transactions within the JVM. It should be noted that this mechanism is

proposed by the authors as a “cheap solution” to concurrency, where a sequential version

has already been written and a concurrent re-write would be too costly.

Gesbert et al. [57] use a barrier system to ensure that parallel executions often hit

checkpoints. As noted in [2], this would allow programmers to know the previous safe

state to which they should recover, but introduces the problem of a delicate trade-

off between the frequency of checkpoints (more frequent checkpoints make Exception

Handling easier) and the amount of parallelism. Other solutions [58, 59] rely on Software

Transactional Memory to guarantee that operations within a try block either all happen

or not, though these can be costly and cannot reliably deal with all side-effects (e.g.

undoing writes to files).
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2.3.2.3 Actor Model and Functional Reactive Programming

The actor model [60] has also emerged as an alternative model of computation that

promises higher scalability [61]. In the actor model, actors communicate through asyn-

chronous messages and without any form of memory/state sharing. Exception Handling

in actor-based models shares a high degree of similarity with traditional Exception Han-

dling. For example, in the Akka toolkit [62], when an exception is thrown, the cor-

responding actor is suspended, as well as all of its children actors, and the failure is

signalled to a supervisor. This supervisor can employ four different strategies: (i) re-

suming the actor, ignoring the exception; (ii) restarting the actor; (iii) terminating the

actor; and (iv) escalating the failure to its own supervisor.

Similarly to the actor model, in current Functional Reactive Programming (FRP) lan-

guages (where the core concept is that of a stream or flow of data that changes with

time and is transformed by language specific operators and functions [63]), Exception

Handling also resorts to similar methods, although there are some alternative models.

For example, the Flapjax language has different data flows: one for errors and one for

data itself, with the additional possibility of using a global error flow [64]. In some

languages and frameworks, such as Rx, if an exception handler is not provided for the

thrown exception, then it is simply ignored. Thus, FRP can opt by mimicking the typical

try-catch-finally blocks, although with a different syntax.

2.4 Self-Healing systems and predictive exceptions model

The previous sections have shown how Online Failure Prediction can be successfully

used to predict failures, in spite of challenges regarding, for instance, data sampling and

feature selection. However, little work has been done for predictions at a more fine-

grained level. Predictions are usually made at the system level, at most predicting a

generic “crash” of some component. Thus, while promising, these techniques have no

practical use for developers who wish to provide specific counter-measures when faced

with the possibility of an exception.

There has been some related work done in the field of self-healing systems. Magalhães

and Silva [65] propose a general self-healing proactive framework for web-based appli-

cations. Their work introduces a general framework to create self-healing transactional

web-based systems. The framework, although operating at a lower level than tradi-

tional Online Failure Prediction methods, does not support run-time notifications at

code-level nor operate at the fine-grained level that might be desired for applying more

efficient preventive measures. Psaier et al. [66] propose a similar framework for mixed
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interactions between humans and Software-Based Services (SBS). Schneider et al. [67]

present a recent and thorough survey of self-healing systems and frameworks. Their

survey shows that self-healing systems are becoming more autonomous, although this is

partly attributed to more specialization. For example, different approaches are used for

mobile and centralised computing environments. The most successful systems are also

those that use heavily supervised methods, thus relying strongly on human interaction.

This interaction can be in the form of failure detection, as well as in manual insertion

of recovery and healing strategies. Some methods employ evolutionary programming

techniques to dynamically build new recovery solutions, such as the Plato framework

proposed by Ramirez et al. [68]. Self-healing systems, thus, are still heavily dependent

on predefined assumptions. For example, in the case of the Plato framework, crossover

and mutation operators must be defined (the authors give an example of dynamic re-

mote data mirror reconfiguration). Furthermore, these systems do not allow application

developers to leverage information regarding system failure. It is usually the job of a

system administrator to define recovery actions, and no preventive actions are taken.

To the best of our knowledge, there has not been any proposal for an exception model

that notifies application code of potential exceptions (i.e. a predictive exception model).

However, Kim et al. [69] propose a proactive approach to exception handling within a

business process. In their work, the authors note that business processes often involve

“human exception handlers” that react to “exceptions”. They conclude that there is a

need for a proactive exception handling which allows for action as soon as a business

process exception is “predicted”, and that this action can be specified by an external

agent (e.g. a system administrator) as a reaction to a prediction. Kim et al.’s work is,

thus, similar to the work presented in this thesis, but differs significantly in the following

key points:

• It concerns exceptions in a business process management context.

• It does not learn how to predict business process exceptions. Instead, a system ad-

ministrator can build a set of rules similar to “Necessary_Roll_Replacement >

Available_Roll_In_Supplier”. Thus, the prediction code is a set of rules de-

termined from experience, only dependent on business conditions (i.e. this work

cannot “predict” a database timeout).

Nevertheless, the core concept of PreX is the same as the concept seen in the work by

Kim et al.: a shift from reactive exception handling is needed, in favour of more proactive

behaviour. PreX focuses on the exception handling mechanism in the context of pro-

gramming languages, and on systems which can use online failure prediction mechanisms

to “learn” exceptions independently of human interaction.
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2.5 Summary

There is a broad class of Online Failure Prediction methods which have been shown

to produce good results in practical scenarios. Many of these methods are based on

machine learning algorithms. Thus, some of the major challenges in failure prediction

are associated with machine learning challenges – for each problem, there is a particular

set of features deemed ideal, but it is not a trivial task to find this ideal set. Furthermore,

failure prediction in the context of dynamic environments requires alternative methods

which support re-training or can act on-demand with new data.

The Exception Handling mechanism has not seen much change throughout the years.

Although there have been several alternative models proposed, in particular due to an

increase in popularity of alternative programming paradigms, such as functional reactive

programming, the base principle of modern exception handling is still the same – the

mechanism reacts to an exception, it cannot prevent it. Online Failure Prediction meth-

ods show potential as the base for a paradigm shift in Exception Handling mechanisms

where exceptions are no longer caught, but can be predicted on a fine-grained level.

There has been some related work in the context of self-healing systems and business

process exception handling, but there is no automated fine-grained model for the pre-

vention of exceptions. This thesis presents PreX, a preventive exception model that

proposes that the system, as a whole, actively work towards predicting and preventing

exceptions. Applications can then be more resilient, robust, reliable and have increased

performance.





Chapter 3

PreX – A predictive model for

exception handling

PreX is an exception model that focuses on preventing exceptions rather than catching

them. The central idea was depicted with the example given in Section 1.1: it could be

more efficient to temporarily reduce the throughput of a write-heavy application than to

catch a ConnectionTimeout exception and have to restart the process. It makes sense

that there are other scenarios, similar to this, where systems and developers would benefit

from an easy-to-use proactive model for Exception Handling. We now present PreX.

Preventing exceptions implies predicting them. To this end, the area of Online Failure

Prediction provides valuable insight. There have been successful failure prediction sys-

tems, but these operate on a broader level. In order to predict exceptions, the proposed

model needs to adapt failure prediction techniques to a per-exception basis. Furthermore,

since no two systems are alike, the prediction models will have to be trained for specific

deployments. Thus, the PreX model comprises different phases from development to

successful prevention:

1. Coding phase. The programmer develops the application using a new set of

programming language constructs introduced by the PreX model. These are similar

to traditional try-catch blocks seen in several languages.

2. Training phase. In this phase, different machine learning algorithms are applied

(after feature selection, data pre-processing, etc), determining which is the most

applicable to the specific exception. Data is gathered for different runs of the

application, using resource monitoring facilities.

3. Detection phase. The application is deployed with the trained model and ex-

ecuted. The model is used to detect potential exceptions. If the trained model

27
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becomes ineffective due to changes in environment conditions, the training phase

might be required again. Alternatively, self-adapting pattern recognition algo-

rithms can be used.

4. Prevention phase. If an exception is predicted, the application can be alerted to

apply preventive measures and try to avoid the potential exception from effectively

being raised.

In the following sections, each of these phases is detailed from the perspective of the

syntax and semantics of the model, followed by an overall perspective of the architecture

and the necessary components of PreX. Lastly, the behavior of the system during its

different phases is presented.

3.1 Basic Definitions

PreX introduces several new concepts in the context of exception handling. In current

exception handling models, exceptions are raised, caught and handled. In PreX, excep-

tions can also be predicted with some degree of confidence within certain blocks of code.

These blocks are called prediction blocks. Whenever an exception is predicted to oc-

cur within a prediction block, the application is notified of this prediction through an

alarm, which is said to be triggered. Program flow is then interrupted and transferred

to a prevention block, where some action can be taken, after which program execution

continues as normal (similar to the way the resumption model works). Note that this

alarm is not an exception, nor does it propagate like exceptions do. It is, instead, an

event that signifies a potential exception.

At times, it might be useful to request that the exception handling model wait until it

triggers the alarm. For example, a set of atomic operations should not be interrupted.

Programmers can specify these blocks, which are called no-alarm blocks.

In summary, PreX introduces the following new concepts:

• Prediction Block – The region of code where programmers wish to be notified

of exception predictions (to which they want to react). This matches the try block

seen in current exception handling mechanisms, which is why it is also called the

try block.

• Alarm – The indication that an exception might happen (i.e. it has been pre-

dicted) within a prediction block. Alarms are triggered by the exception handling

mechanism.
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• Prevention Block – The code block to which control is transferred after an alarm

is triggered. These blocks can contain any code, but will usually try to prevent the

exception from happening.

• No-alarm Block – A block of code (within a prediction block) where no alarm

can be triggered. If an exception has been predicted during the execution of a

no-alarm block, the corresponding alarm is only triggered once flow is outside of

the aforementioned block. There can be any number of no-alarm blocks.

There are other concepts relating to PreX that will be introduced in the next sections

and that help with the overall understanding of how PreX works.
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3.2 Syntax & Semantics

An example of the syntax of PreX is shown in Figure 3.1. In this example we use a

variant of Java code with the proposed syntactic changes. In the following sections, the

detailed syntax and semantics of PreX used in Figure 3.1 are described in detail. The

highlighted sections of code are discussed in Section 3.4.

Figure 3.1: Example of PreX using synchronous try-catch-prevent.
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3.2.1 The try-prevent-catch and try-prevent_async-catch constructs

PreX provides semantics similar to traditional try-catch blocks, although two different

constructs are added to the language. The first is the try-prevent-catch construct, as

seen below:

1 try (<pred ict ion_context >) {
2 // . . . P r ed i c t i on Block .
3 // Except ions can be caught and alarms can be t r i g g e r e d
4 } prevent ( <exception_name>, <informat ion_object> ) {
5 // . . . Prevent ion Block .
6 // Execution f o l l ow s the resumption model .
7 } catch ( . . . ) {
8 // . . . Exception Handling code
9 }

Listing 3.1: The try-prevent-catch construct

The try block denotes the scope during which a program cares about alarms regarding

some particular exception (i.e. it is the prediction block). If an alarm is not raised,

and if the exception cannot be prevented, it is raised and caught by the code, and

the traditional termination Exception Handling model is used, with program flow being

transferred from within the try block to the catch block.

The second construct added by the model is similar, but uses the prevent_async keyword

instead of the prevent keyword. When an alarm is triggered, it can transfer execution

flow to the prevention block in two different ways, depending on the construct used:

• Synchronously: execution within the try block is suspended and flow is trans-

ferred to the prevent block. In normal circumstances, the execution is then trans-

ferred back to the previous code within the try block (resumption model).

• Asynchronously: execution within the try block continues normally, and the

prevent_async block is executed asynchronously.

Thus, in PreX, triggering an alarm does not necessarily terminate the execution of code

within the try block (as opposed to the termination model when an exception is raised).

Instead, execution is resumed as if there had not been any interruption, because pre-

venting an exception should not halt normal execution of the current code.

When using a synchronous approach, alarms are not triggered at just any point in time

within the try block. Within this block, every program statement will be executed

without any interruption from the exception handling mechanism (unless exceptions are
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raised). The flow of execution only moves to the prevention block between statements,

without the need for propagation in the call stack. In this sense, PreX uses an approach

similar to static binding, meaning that alarms are not “propagated” as if they were

exceptions. Instead, they are tied to the prevention block to which they belong. This

approach makes sense if we consider that only the closest code, within the exact context

of the particular exception, can know how to react to a specific prediction. Listing 3.2

shows an example of where alarms can be triggered (A, B, C, D, E and F) .

1 try (<p r ed i c t i on context >) {
2 func t i on1 ( ) ; A
3 c = a + b ; B
4 i f ( c > 0 && d < a ) {
5 C
6 func t i on2 ( ) ; D
7 func t i on3 ( ) ; E
8 } F
9 }

Listing 3.2: Alarms can only be triggered in between statements (A, B, C, D, E and
F)

3.2.2 The no_alarm keyword

If developers wish to prevent the triggering of alarms during the execution of a set of

statements, a special no_alarm keyword can be used to denote a new scope within which

alarms are not possible – the no-alarm block. In Figure 3.1, lines 13-16 belong to one of

these scopes. In the asynchronous approach, as in the synchronous approach, alarms are

only triggered when the program flow is outside the protected block. Thus, the no_alarm

keyword can act as a synchronization primitive between code in the prevention block and

code within the try block.

1 no_alarm {
2 // No−alarm block ! No alarm can be t r i g g e r e d here .
3 }

Listing 3.3: The no_alarm keyword starts a no-alarm block where alarms can’t be
triggered

3.2.3 The prediction context

Since no two systems are alike, the models used for prediction will have to be trained

for specific deployments. Note that, for instance, ConnectionTimeout exceptions may be
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different depending on the workload and the different systems involved. A write-heavy

workload will have different characteristics when compared to a read-heavy workload.

This motivates the need to distinguish between different kinds of predictions of Connec-

tionTimeout exceptions. This distinction is made by an argument to the try keyword

that uniquely identifies the block of code that it encloses: try(<prediction context>).

1 try (<pred ict ion_context >) {
2 . . .
3 }

Listing 3.4: The try block accepts a prediction context as its argument

Write-heavy blocks can then use try(“write-exceptions”), whereas read-heavy blocks can

use try(“read-exceptions”) to handle two completely different models for the same kind

of exception (ConnectionTimeout) under different contexts. This argument is a string

called the prediction context. Several exceptions can be predicted within the same

prediction context (and corresponding alarms triggered), and a prediction context binds

training data and a prediction model to a unique name. To train the model, the system

administrator may specify which prediction contexts he/she wants the program to be

trained in during a training phase. When in this training phase, no prediction mechanism

is used in those prediction contexts (i.e. no alarms can be triggered), although exceptions

can still be caught. If the exception is raised and caught, this training mechanism is

notified to adapt its prediction models.

3.2.4 The sample keyword

PreX allows programmers to periodically sample variables that they think will be useful

for prediction, in addition to system variables monitored with custom probes. For in-

stance, the remaining number of operations left might be useful in predicting connection

timeouts. These variables can be supplied to the prediction system at any time using

the sample (<variable_name>,<variable_value>) construct.

1 sample(<va r i ab l e name>, <sample value >);

Listing 3.5: The sample keyword can feed data into the prediction system within any
prediction block

Note that if the sample keyword is used when in the training phase, it still feeds data to

the prediction system.
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3.2.5 The prevent block and the prediction information object

The prevent block is introduced with the prevent keyword. It requires two arguments:

• The first is the name of the exception to prevent, so that different prevent blocks

be assigned to the same try block, similarly to how there can be different catch

blocks in most programming languages.

• The second is the name to assign to the prediction information object within

that prevent block. This object is created by the exception prevention mechanism

and contains information regarding the alarm that has been triggered, such as the

lead time, the data validity time or specific information regarding the prediction

method chosen by the mechanism. This information might be used by application

code to apply different prevention techniques.

In Listing 3.6, an example prevent block is shown for TimeoutException exceptions. The

prediction information object can be accessed within the prevent code with the name

predInfo.

1 prevent ( TimeoutException , predIn fo ) {
2 // Block f o r prevent ing TimeoutExceptions , when
3 // t r i g g e r e d by an alarm .
4 // predIn fo conta in s p r ed i c t i on in fo rmat ion such a lead−time .
5 }

Listing 3.6: Example prevent block, which requires the name/type of exception and
a name to assign to the prediction information object

3.3 Architecture

PreX’s architecture is suited for three different scenarios:

• Prediction Scenario: in which a set of models has already been trained and is

used at run-time to predict failures.

• Training Scenario: in which no prediction happens and the models are trained

for future usage (coinciding with the training phase).

• Combined Scenario: in which the previous scenarios might happen at the same

time, providing a suitable system for dynamic environments where models must

be retrained and conditions change.
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Some components of PreX are shared in all of these scenarios, while some of them

are only active in a particular scenario. Exceptions can be predicted using system-wide

information. Several entities can share information used for prediction (more data, when

appropriately filtered, implies better predictions). An entity need not be deployed in an

independent machine on its own, and different entities might share the same machine.

There are three main kinds of entities within a system using PreX:

• Data gathering entities: These entities feed periodic samples of data (e.g. mem-

ory and CPU usage) to the coordinator entities. Most of the prediction data comes

from these entities, which don’t execute any code that wants to be alerted of possi-

ble exceptions. The sampling rate for each of these variables is not pre-determined

and may vary according to system load and characteristics.

• Code entities: Whenever a try block is entered, the exception prevention mech-

anism spawns a code entity that connects to the coordinator entity. Each code

entity may want to register with the coordinator to be notified of predictions of

certain kinds of exceptions within a prediction context. It is the responsibility of

the code entity to trigger the alarm and transfer execution to the prevention block.

• Coordinator entities: A (potentially replicable) coordinator entity, responsible

for aggregating the data from the other two types of entities and running the

prediction system.

Each try-prevent-catch or try-prevent_async-catch block spawns a new code entity. The

coordinator entity is responsible for running the failure prediction methods for predicting

exceptions. This behavior is described in Section 3.4 in more depth.

The behaviour of the code and coordinator entities is different during the training phase.

During this phase, the code entity registers that it will be sending data and information

regarding a given prediction context and a given exception. The coordinator then uses

this data to train the model.

The different entities can be freely distributed among machines, and might all run on a

single machine, although this might have a performance impact on the overall system.

A typical deployment scenario is depicted in Figure 3.2, where the Coordinator Entity

is allocated to an individual machine. Note, however, that all entities might be executed

in the same machine, and that Figure 3.2 is merely an example.
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Figure 3.2: Example deployment of entities in a system. Another example involves
deploying all entities in the same machine

Lastly, PreX is designed with the idea of extensibility. As such, implementations should

offer an open protocol for interaction with the coordinator entity is specified so that

other developers can build their own probes that feed data to the prediction system.

Furthermore, this modularity means that if a new feature is ever needed, the data gath-

ering entity does not need to be rebuilt and redeployed – instead, a new probe can be

written, and data sent according to the open protocol. Security concerns can also be

added atop this open protocol and are not the focus of the work in this thesis.

3.3.1 Prediction Scenario

In the Prediction Scenario, PreX’s architecture is as depicted in Figure 3.3.

Several different Probes might be executed in different machines of the system. These

probes have a System Data Gatherer1, responsible for gathering many different met-

rics, such as CPU, Memory, Disk and Network usage. This data is forwarded to a Data

Communication Module, which transforms it and filters it to conform to a prede-

fined standard, finally sending it to the Coordinator Entity. The Data Communication

Module is independent of the System Data Gatherer.
1Note that any kind of probe can be used with PreX, and “System Data Gatherer” probes do not

need to be limited to CPU, Memory and related information. When PreX is deployed in a system, the
most appropriate system variables must be sampled with probes and fed to the mechanism.
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Figure 3.3: Components and Connectors diagram depicting PreX’s architecture for
the Prediction Scenario.

The Coordinator Entity is composed of three main modules:

• A Trained Models Database from where the models are read.

• A Predictor Module, which processes the data available and, using the trained

models, determines if an exception has been predicted or not.

• A Communication Module. This module acts as the bridge between the Co-

ordinator Entity and other entities. A Data Sink receives data and passes it to

the Predictor Module. A Prediction Notifier module forwards prediction no-

tifications to Code Entities. Lastly, a Subscription Listener awaits for Code

Entities to notify that they intend to listen to some prediction, thus activating the

Predictor Module.
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Finally, the Code Entity, corresponding to the Exception Handling Mechanism itself,

is composed of three major components:

• TheException Handling Activator, responsible for running programmer-specified

code whenever an exception is predicted, ensuring correct program state. This is

the module that triggers an alarm and transfers execution to the prevention block.

• The Communication Module, acting as the bridge between this entity and

the remaining entities. A Subscriber module informs the Coordinator Entity

of the prediction context and exceptions that the Code Entity is interested in

predicting. A Prediction Notification Receiver listens for exception prediction

notifications from the Coordinator Entity, passing them to the Exception Handling

Activator.

• The User-Supplied Data Module, a module very similar to a Probe, with the

difference being that, unlike with Probes, this module gathers data supplied by the

application developer using the sample keyword. Note how the Data Communi-

cation Module is the same in the Probe and User-Supplied Data Module.

3.3.2 Training Scenario

In the Training Scenario, PreX’s architecture is as depicted in Figure 3.4.

This scenario shares some components with the previous scenario, but introduces addi-

tional ones. When training, data flows exactly as in the previous scenario. Thus, the

Probe and the User-Supplied Data Module (of the Code Entity) are unchanged.

Similarly, in the Coordinator Entity, the Data Sink does not change. The Trained

Models Database is now the destination of the output of a Training Module, re-

sponsible for building new models. In the Code Entity, there is no longer the need

for a Subscription Module, although exceptions must be detected with an Exception

Detector and passed to the Coordinator Entity through an Exception Notifier.
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Figure 3.4: Components and Connectors diagram depicting PreX’s architecture for
the Training Scenario.

3.3.3 Combined Scenario

In the Combined Scenario, PreX’s architecture is as depicted in Figure 3.5.

This scenario is the combination of the two previous scenarios, articulating all modules so

that trained models can be retrained at run-time. If an exception is not prevented (even

after being predicted), then it will eventually be raised and detected in the Exception

Detector, which ultimately passes this information to the Coordinator Entity. Thus,

new data and information about exceptions are used to train new models at run-time.

This scenario is ideal for dynamic environments where base conditions change.
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Figure 3.5: Components and Connectors diagram depicting PreX’s architecture for
the Combined Scenario.

3.4 Model Behaviour

To illustrate the behaviour of PreX, Figure 3.6 depicts the interaction between code,

entities, and the prediction system for the code example in Figure 3.1 shown in a previous

section. Notice that the code uses the synchronous prediction model. Also note that

if the code was executed during the training phase, no alarms would be triggered, so

section d would not be entered.

The example Listing 3.1 allows understanding of how the overall system behaves when

deployed. In the example scenario, several typical data gathering entities would be

placed: one at the database machine and one more for each of the client machines

(executing the code). Furthermore, a coordinator entity might be placed somewhere

within the system.
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Figure 3.6: Interaction between code and entities through time for the code example
in Figure 3.1. For simplicity, in this example, the loop only runs once.

When line 7 is reached, a code entity is spawned by the exception handling mecha-

nism, registering with the coordinator (through the Subscriber module) that it wants

to be warned of ConnectionTimeout exceptions within the “write-exceptions” prediction

context. The coordinator node begins predicting exceptions based on the data being

gathered by the data gathering entities (probes). At line 10, the sample keyword is used,

making the code entity send a sample of data to the coordinator entity (which now uses

this data together with the data form the data gathering entities). Normal operation

continues at line 13.
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Line 13 starts a no_alarm block, indicating that even if notifications of exception pre-

dictions are received, alarms cannot be triggered (thus guaranteeing that it is executed

atomically in this regard). In Figure 3.6, an exception is predicted during execution of

the no_alarm block. This information is sent to the Code Entity, which delays activating

the Exception Handling mechanism. Once at line 17, outside of the no_alarm block,

the code is interrupted and execution continues in line 19, the prevent block (an alarm

is triggered). A sleep instruction is executed in hopes of reducing the workload on the

server (thus preventing the exception) and execution continues exactly where it stopped

(resumption model), at line 18. This sequence of steps can happen many times during

execution.

In the case that the exception could not be prevented, it may be raised at line 16

(the write method is the one that throws this exception), transferring program flow to

line 25 as with the traditional Exception Handling mechanism of current programming

languages. In either case (prediction or catching), the code entity terminates its execution

at the end of the try-prevent-catch block, notifying the coordinator that it is no longer

going to be interested in notifications.

If the prevent_async keyword had been used, the behavior would be similar, but code in

the prevent block would be run asynchronously and in parallel. The no_alarm keyword

can act as a synchronization primitive between the prevention handler and the code

within the try block, guaranteeing that alarms would only be triggered once the main

program code finished the no_alarm block.

Consider now that the prediction model has not been trained yet. To perform training, no

changes to the code are required. A system administrator selects the “write-exceptions”

prediction context for training and runs the application. In this case, reaching line 7

still spawns a code entity, but it is only to feed data regarding the “write-exceptions”

prediction context and the ConnectionTimeout exception. At line 10, data is sent to the

coordinator as normal. Line 13 has no effect, since exceptions are not being predicted,

and the only way of exiting the try block scope is to either successfully terminate the

operation (i.e. a golden run) or by catching an exception. In both cases, the code entity

notifies the coordinator and terminates itself afterwards.
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3.5 Training and Prediction Methodology

PreX supports several prediction methods. Individual methods can be trained on the

gathered data, and the most appropriate one can be selected. Nevertheless, PreX pre-

diction methods have to operate on a basic set of features and follow a certain technique.

For instance, it is different to use classification methods than it is to use regression

methods. In this section we present the approach taken by PreX for prediction.

3.5.1 Features

As noted previously, Data Gathering Entities, as well as Code Entities, supply the pre-

diction system with data. Each data point fed to the Coordinator Entity is characterized

by a system-local timestamp and the data itself. The Coordinator Entity distinguishes

features sent from different machines (the CPU Usage in machine A is a different feature

than CPU Usage at machine B, even if measured at the exact same time). Each Data

Gathering entity can sample different kinds of variables, such as those regarding CPU

Usage, Network statistics, Disk usage/errors or Memory/Swap Usage. In total, this can

amount to dozens of variables being sampled regularly (for example, 100ms). All data

is numeric or binary. As an example, in the preliminary results presented in Appendix

B, 49 variables were sampled from one machine.

The PreX model (and the implementation presented in this thesis) are not harcoded to

any features or probes. Different scenarios require inherently different data and, since

the PreX protocol is open (see chapter 4), any probe can provide additional features

used for prediction. Examples of features include: the CPU usage, the number of users

logged into a machine, the most invoked HTTP method of a web-service (e.g. POST,

PUT or GET).

3.5.2 Prediction Method

In Section 2.2.3, a classification of Online Failure Prediction methods proposed by Salfner

et al. [5] was presented, together with several examples of applied prediction methods

in published works. PreX’s prediction method heavily influences the kind of algorithms

and their performance, as well as the data pre-processing steps to be taken. As can

be gathered from our chapter on the state of the art, there seems to be no definitive

method for online failure prediction. Prediction algorithms can be considered as a kind

of optimization problems where a number of input varibles (i.e. “features”) are used to

model the state (failure/no-failure or a probability of failure) of the system. Depending
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on the type of failure and system, these input variables and their correlation with the

external failure state of the program can vary greatly. In this sense, the “No Free Lunch

Theorem” of Wolpert and Macready [70] shows that, indeed, no algorithm will be better

than every other algorithm for all different kinds of predictions. Thus, if PreX intends

to be broad, it must support several different prediction methods.

Different methods require different types of data. Some methods, such as the Eventset

method proposed by Vilalta et al. [36], discard most temporal information regard-

ing events. These methods also use Detected Error Reporting techniques (see Section

2.2.3.3). In the case of PreX, the only kind of error reporting is the exception itself,

so these approaches are not appropriate. Additionally, PreX aims to include the time

dimension within its prediction system, since we believe it is a critical part of the predic-

tion process (Duetterich [71] and Irrera et al. [27] have shown the importance of the time

dimension). Other methods (e.g. [29], [26] and [30]) use statistical tests to compare fea-

ture distributions with error-free states or error states. These statistical methods could

be applied to the kind of data gathered by PreX, but they also make it harder to include

the time-dimension for prediction. Additionally, these statistical methods often require

more a priori knowledge of the system so that the statistical models can be built. Other

approaches (e.g. [15], [16], and [18]) use regression and function approximation tech-

niques. PreX could implement this approach, although it is more adequate to resource

exhaustion scenarios and might not be appropriate for all kinds of exceptions that PreX

intends to predict.

A failure prediction problem can also be modeled as a classification problem. These

problems can be solved by state-of-the-art classifiers, and many authors have used clas-

sification methods for Online Failure Prediction (e.g. [22], [24], [25], [26] and [43]). Irrera

et al. [27] presented a sliding window approach to incorporate the time dimension in

a classification failure prediction problem. Their data was similar to the data used in

this thesis (see Chapter 5) and their approach, which applies techniques presented by

Duetterich [71], is the inspiration for our approach – PreX treats failure prediction as a

classification problem.

3.5.3 Failure Prediction as a Classification Problem

In this section, we present the failure prediction problem as a classification problem.

In addition, we present the rationale that lead to the final “feature set” used in PreX,

which we further elaborate on the next section. This “feature set” does not specify which

individual features (e.g. amount free memory or disk accesses) are used, but, instead,
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specifies how to transform any amount of these individual features into a dataset ready

for failure prediction.

If we consider that it is possible to sample data at precise instants t1, ..., tm, separated

by intervals of time T , then at each time ti, a feature-vector comprised of n features

can be defined as:

xi = (xi,1, ..., xi,n)

This vector represents the system state at time ti and has a corresponding label vector

yi ∈ {0, 1} where 1 indicates a failure and 0 indicates a failure-free state. Over intervals of

time T , there can be several feature vectors xi and labels yi that characterize the system

state. A classification problem can then be formulated to, given each feature vector

xi, determine the hidden-class of the corresponding label yi ∈ {0, 1}. Each individual

feature j ∈ 1, ..., n is denoted by xi,j (feature j of feature vector at time ti).

However, this model has several limitations. The first of these limitations is the as-

sumption that data can be sampled at precise instants. PreX’s data gathering entities

do not guarantee that data is sampled at exact times. One solution to this problem

involves using approximate values. For example, if there is no value for ti = 0.3s, but

there is one for ti = 0.1s, we can use that value. The problem with this approach is

that some variables might have more plausible approximations than others, and simply

“picking the closest one” might introduce error in the data2. An alternative, which we

propose in PreX, is to use a window of size T to summarize the information regarding

the features in the feature vector. If between ti = 1s and ti+1 = 2s (T = 1s) there are

many different values for feature j, one could take xi to be the mean of these values

(thus averaging feature j over the window of length T starting at instant ti). A “simple”

average might hide information useful in prediction, and PreX proposes that for each

feature j, an additional set of features be constructed for each of the windows. Although

implementations of the model may vary, possible features can be the mean, standard de-

viation, maximum, minimum and the derivative3. Thus, for each original feature j (e.g.

CPU Usage), which can be sampled an arbitrary number of times within the interval

[ti; ti+1[, a total of 5 features are generated. By introducing this step, we have developed

an augmented feature vector (and a corresponding augmented feature window,

or time-window) with five times the number of features (which we call the augmented

features), representing a time interval instead of a specific time instant. We can apply
2This problem is, in a sense, similar to the problem of missing value imputation.
3We define the “derivative” as the quotient xf−xs

tf−ts
where xs is the first measured value of the feature

in the time window (measured at time ts) and xf is the last value of the feature in the time window
(measured at time tf ).
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the classification problem to the augmented feature vector, provided that the definition

of the label yi is “the program state (failure/non-failure) during the window [ti; ti+1[”.

We call the process that builds the augmented feature vector from the original data the

time-window construction.

A second problem with the aforementioned model is the lack of time dimension for fail-

ure prediction. Samples are not correlated and are specific to time ti. The proposed

changes, with the augmented feature vector, already incorporate a sense of time, in par-

ticular the derivative feature. However, this information alone does not provide enough

information about the time dimension. As a solution, we propose to apply the sliding

window presented by Irrera et al. [27] to our augmented feature vector. Thus, for any

window [ti; ti+1[ with augmented feature vector xi, we can construct a sliding window

wi:

wi = (xi−(k−1),1 , ..., xi−(k−1),n︸ ︷︷ ︸
xi−(k−1)

, xi−(k−2),1 , ..., xi−(k−2),n︸ ︷︷ ︸
xi−(k−2)

, ...︸︷︷︸
...

, xi,1 , ..., xi,n︸ ︷︷ ︸
xi

)

Where k, the size of the sliding window (which we call the merge window), is the

number of windows to be concatenated in window wi. We call this step window-merge.

With both of these steps, the final feature vector, wi, is constructed. This provides a

data validity time ∆td = T × k.

For our classification problem, a label li is necessary. We have defined wi as the concate-

nation of several augmented feature vector windows xi−(k−1), ..., xi, but have not defined

what to do with their labels yi−(k−1), ..., yi. Irrera et al. consider only the last value

yi, discarding potential failures measured previously. An alternative would be to define

li = 1 if any of yi−(k−1), ..., yi was 1 (in other words, a merge window would be labeled

as “failure” if any of its concatenated windows was labeled as “failure”). Both of these

approaches tie the merged window to a failure within that window of size T × k, which
implies that, at run-time, they do not allow us to predict failures outside the scope of

this window. To compensate for this, we change the label li of wi to be 1 if there is

a failure in any of the augmented feature vectors of the next merged window and 0 if

there are none. Hence, the lead time, ∆tl is T (the difference in time between merged

windows). A further generalization that allows for higher values of ∆tl can be achieved

by defining li to be 1 if there is a failure in any of the augmented feature vectors of the

t− th next merged window, making ∆tl = t× T . The prediction period is ∆tp = T .
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3.5.4 Overview of feature set construction

In the previous section, we presented the rationale behind most of the construction of

the feature set to be used with a classifier. In this section, we formalize this process.

Data Gathering Entities gather data at arbitrary times (usually with some desired fre-

quency, such as 100 ms or 1000 ms). This data is condensed in windows of size T , called

augmented feature windows, which are represented by augmented feature vectors

x1, ..., xn. Window x1 contains condensed/augmented feature information (in the cur-

rent version of PreX, as detailed in Chapter 4, the mean, standard deviation, maximum,

minimum, number of samples and derivative of the data are taken) for the interval [0;T [.

Window x2 contains condensed/augmented feature information for the interval [T ; 2T [

and so forth. If a failure/exception was recorded within the timespan of a window, that

window is considered as a failure window. If there are m variables (e.g. CPU Usage,

Memory Usage, etc), the augmented feature vector is of size 5 ×m, since each variable

produces 6 augmented features. This step, the time-window construction, is shown

in Figure 3.7.



PreX – A predictive model for exception handling 48

Figure 3.7: Time-Window Construction groups and summarizes variables according
to “time windows” of size T . Note that in this figure there are 5 summarized features

instead of 6.

The augmented feature windows are then merged in the window merging process. A

configurable parameter, k ∈ {1, . . .}, specifies how many windows should me merged.

The input vector wi is formed by taking

wi = (xi−(k−1),1 , ..., xi−(k−1),n︸ ︷︷ ︸
xi−(k−1)

, xi−(k−2),1 , ..., xi−(k−2),n︸ ︷︷ ︸
xi−(k−2)

, ...︸︷︷︸
...

, xi,1 , ..., xi,n︸ ︷︷ ︸
xi

)

and using a sliding window process for each of the original augmented feature windows.

Each window wi is then assigned a label, li, defined as
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li =

1, if there was an exception in the t-th next augmented feature window

0, otherwise

where t ∈ {1, . . .} is another configurable parameter. This step is shown in Figure 3.8.

A classifier can then be trained to predict the labels li based on the windows wi, ensuring

a lead time ∆tl = t×T with a data validity time of ∆td = T ×k and a prediction period

of ∆tp = T . An implementation of PreX trains several different classifiers using this

input data and chooses the best for each prediction context4. Thus, the configurable

data for feature set construction is given by the tuple

(T, k, t)

where T is the window-size, k is the number of windows to merge/concatenate and t is a

“look-ahead” parameter to determine how much in advance a failure is to be predicted.

Obvious trade-offs exist among these parameters, the classification performance and

accuracy. These trade-offs were studied during the development of the thesis, and can

be seen in Chapter 5 and Appendix B. Also note that for the same dataset, higher

values for k reduce the number of instances available for classifier training, potentially

impacting accuracy.

The example shown in Figures 3.7 and 3.8 presents a representation of the feature set

construction process with k = 2, t = 1 and 2 features. Also note that in these figures,

the number of augmented features is 5 instead of 6, although the algorithm is the same.
4Fore more information regarding the choice of “best classifier”, see Chapter 4.
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Figure 3.8: WindowMerge merges augmented feature windows using a sliding window
process. Each of the sliding windows, composed of merged augmented feature windows,
is then passed to a classifier. In this example, k = 2 and t = 1. Note that in this figure

there are 5 summarized features instead of 6.
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It should be noted that data will not always be available (some windows might have

no data at all regarding some features, or the user-supplied variables might be supplied

irregularly). Thus, a missing value imputation method can be used. Implementations of

PreX might consider using one of the following methods:

• Imputation with global average (if the source distribution is random, then replacing

missing values with the average of that feature will not introduce any bias [72]).

• Imputation with average of last n samples.

• Imputation with global median (the median is a more outlier-robust approach [73]).

• Imputation with median of last n samples.

• Imputation using the K-nearest neighbours algorithm using the remaining available

features as a model (as proposed by [74]).

Finally, a form of feature selection can be used. As we have seen, after the time-window

construction and window-merge steps, the number of features increases dramatically (by

a factor of k× t), and the classification problem might become unfeasible. Several strate-

gies can be used for feature selection, such as the three-step feature selection process seen

in [27]: (i) removal of null/constant features; (ii) using a classical linear correlation met-

ric (such as the Pearson correlation coefficient); and (iii) a classical approach involving

wrapper or filter methods. Alternatively, a strategy similar to the one proposed by Ir-

rera et al. [46] can be used, where changes in features are compared between failure and

failure-free executions of a program, based on the concept of a symptom. However, note

that PreX is not a generic failure prediction system: it is designed for an application-

specific domain and, as such, the variables used for prediction can be specified for each

different prediction context, reducing the amount of features used in the training process.

In Chapter 4, the approach taken by our PreX implementation regarding missing value

imputation and feature selection is described.

3.6 Preliminary Experiments

The main idea behind PreX is that an alarm of a potential exception might offer signif-

icant advantages for developers. However, as discussed in the state of the art (Chapter

2), there has been no work done on the prediction of exceptions at such a fine-grained

level. A first step in the validation of the model, hence, involves verifying if it is possible

to reliably predict exceptions.
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A set of preliminary experiments, shown in full detail in Appendix B were performed

to assess the predictive capabilities of the model. These preliminary experiments used a

scenario where exceptions were triggered within the TPC-W benchmark. These experi-

ments only intended to validate the main principles of the model, and did not involve a

full implementation of PreX as specified in previous sections.

The results of these experiments demonstrated that, indeed, it was possible to predict

exceptions, and, consequently, that the first part of the PreX model – prediction – was

sound. In these preliminary experiments, a J48 classifier achieved a false negative rate

of 9.90% for T = 2500, k = 4 and t = 1, while maintaining a very low false positive rate

(0.12%).

3.7 Simulation

The PreX model involves two distinct stages: prediction and prevention. The latter stage

is heavily dependent on the application domain, meant to be written by the programmer

(when an alarm is triggered). Nevertheless, it is important to assess the usefulness of the

proposed model with regards to prevention. If prevention is not useful, then prediction

also loses its uselfuness. In this section, we present a simulation experiment used to

validate the prevention capabilities of PreX.

Using simulation tools, we can quickly change model parameters and assess their overall

impact on the system. For example, it is possible to assert the impact of too many

false negatives on the system. Thus, without the need for a full experiment, it becomes

feasible to evaluate the model’s prevention capabilities, insofar as we are aware of the

simulation limitations. In the next sections, we present the simulated scenario, the

simulation parameters, its implementation, limitations and results.

3.7.1 Simulated Scenario

The simulated scenario closely resembles the one presented in the preliminary experi-

ments mentioned in the previous section and shown in Appendix B and was developed as

an attempt of modeling this scenario. A number of simulated clients are running concur-

rently, overloading a simulated server that accesses a database (which, in our preliminary

experiments, was the TPC-W Server).

In the case of TPC-W, used in the preliminary results seen in Appendix B, exceptions

happen due to connection pool exhaustion. However, real-world applications are often
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protected against this kind of situation, so we opted by modeling the exceptions dif-

ferently and more realistically. As the server gets overloaded with clients, the time to

run queries increases, eventually becoming impractical, with some database management

systems triggering an exception in server code when the query exceeds a fixed time. This

is the scenario which we model in our simulation: if a query reaches a certain time limit

(the query max_time), an exception is raised in the server code. In addition, the query

time should depend on the number of active clients.

If we include PreX in this scenario, it now becomes possible for alarms to be triggered,

signifying the prediction of a potential exception. When this occurs, a preventive action

can be taken. Note that due to existence of false negatives, it is possible that this action

is taken even if the query time is far from the max_time.

The preventive action is written by the application developer, and might involve complex

procedures. However, we intended to assess the impact of a simple action first, so

that complicated preventive actions were not unnecessarily coded. To this end, we

modeled our clients to sleep for a random amount of time, uniformly distributed in a

fixed interval. By sleeping, the clients essentially delay their execution and re-schedule

it to a later time, according to a uniform distribution. The rationale behind this is

that heavy/lengthy queries are scattered across a random uniform interval, effectively

reducing the load on the database and throttling the rate of requests. Consequently,

faster queries are prioritized, allowing these clients to disconnect and freeing more CPU

room for the execution of the heavy queries, possibly reducing the number of exceptions

and increasing the throughput of successful operations. This idea is revisited in the

experiments detailed in Chapter 5.

Figure 3.9: Simulation scenario. Each client is an independent agent.
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3.7.2 Simulation Parameters

Figures 3.10 and 3.11 show that there are a number of steps in the simulation of each

client that depend on simulation parameters. Some of these parameters, such as the time

to run each query, depend on the application domain, and should be selected to closely

resemble real-world behaviour. Other parameters, such as the time to sleep in a recovery

action, or the model accuracy, are configurable parts of our model. It is, then, useful to

observe how the simulation outcome changes depending on these latter parameters.

Figure 3.10: Flowchart of the behavior of each individual simulated client when PreX
is not used.
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Figure 3.11: Flowchart of the behavior of each individual simulated client when PreX
is used.

The simulation parameters are, then:

• Number of clients. They represent the number of active clients connecting and

overloading the server. This is similar to the number of virtual clients used by the

TPC-W load generator (seen in Appendix B). It is mostly through this parameter

that different workloads can be simulated.

• Connection time. This parameter represents the time that it takes for a client

to start a connection to the server, before it runs any queries. In practice, lower

values mean that more clients can connect in a smaller interval, leading to higher

loads on the server. We determined this parameter from the experimental data

gathered in the preliminary experiments seen in Appendix B.

• Query time. The query time, that is, the time to run a query, depends on the

number of currently connected clients. More clients should lead to a longer query

time. This parameter is essential to the simulation, and must closely resemble

realistic environments. We adjusted our experimental scenario to measure the

query time according to the number of clients. These experiments revealed a linear

relationship between the query time and the number of clients. Other articles where
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TPC-W is used have shown that this linearity exists [75–77]. As such, we modeled

the query time according to a linear expression of the form:

query_time = base_time+ k × number_of_clients+N (m,σ)

where the base_time and k are deployment-specific attributes determined em-

pirically and where m and σ are the mean and standard deviation of a normal

distribution used to add some noise and randomness to the query time. m and σ

were chosen to add very little noise, since the query times did not exhibit a high

standard deviation.

• Maximum query time (max_time). This value represents the maximum time

that a query can take before the database raises an exception in the server code.

Lower values lead to more exceptions. This parameter was configured to have

“sensible” values for an operation in an e-commerce web-site.

• Exception prediction accuracy. This parameter models the accuracy of the

PreX model. In our simulation, it is represented by a tuple (FNR, FPR), repre-

senting the false negative rate and the false positive rate, respectively. This way,

depending on whether the query time exceeds the max_time (i.e. an exception

will happen), we can accurately simulate the outcome of PreX’s predictions. It is

interesting to experiment with different values and determine their effect on the

simulation metrics.

• Prevention sleep time (prevention_time). This parameter regards the pre-

vention mechanism presented in the previous section. When a client receives an

alarm of a potential exception, it sleeps for a given prevention_time to try to pre-

vent the exception and reduce the load on the server. The prevention_time is, thus

another interesting parameter to test for different values. In this work we defined

it as a value sampled form a uniform distribution between 33.3% and 100% of the

max_time (the rationale is that we should wait some time, at most max_time

until we try again, but preferably less).

• Simulation time. The simulation time should not have a significant effect in the

simulation, as long as it is sufficient for simulation stabilization. Indeed, it was

selected so as to allow for this stabilization.
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3.7.3 Implementation and metrics

The simulation was implemented in Python 3 using the SimPy5 library. The clients were

implemented as a simulation object which yielded execution whenever a simulation step

should wait for a given time (i.e. a “timeout”). The server was simulated using a shared

resource where the number of active clients was kept, thus influencing the query time.

SimPy is a unitless simulation framework. However, considering that each simulation

step/unit is a millisecond, we can simulate with millisecond precision. To reach this goal,

all the empirical parameters (e.g. the query base time) were measured with millisecond

precision. As noted in the previous section, the simulation was run until after it had

stabilized and long enough to gather enough data, totalling 5 simulated minutes.

To analyze the simulation and evaluate the proposed model, several performance metrics

were gathered. These allow analysis of the number of exceptions, number of successful

operations and successful operation throughput.

3.7.4 Limitations

Although the use of simulation software offers development advantages, as well as a fast

way to study different model parameters, it is not without its limitations. The simulation

is only as good as its underlying model. In our model of the TPC-W scenario (see

Appendix B), we put aside the ramp-up period and scheduled all clients to start executing

concurrently. This limitation might impact the generality of our results. Similarly, we

have assumed that there is independence of connection time and query time. This makes

sense when a load balancer is used, forcing the bottleneck to be at the database layer,

but it was not necessarily the case with the TPC-W setup.

This simulation does not distinguish between query types. This means that read queries

are treated exactly the same as write queries. There are scenarios where this is the

case, but the TPC-W workload used in the preliminary experiments contained a mix of

both queries. It may nevertheless still be possible that the linear relationship between

the number of clients and the query time holds. However, more advanced prevention

actions, such as prioritizing write queries (usually shorter and more business-critical in

e-commerce websites) over read queries, are not allowed with this simulation model.

Finally, this simulation does not deal with dynamic environments, where the performance

accuracy might change at run-time. However, the results allow us to understand what

would happen to the system if the performance accuracy suddenly changed. In this
5https://simpy.readthedocs.io

https://simpy.readthedocs.io
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section we present the results for the preliminary experiments, validating the model’s

predictive capabilities, as well as the results for the simulation, validating the model’s

preventive usefulness.

3.7.5 Results

To analyse the effectiveness of the proposed prevention action and, hence, validate the

usefulness of the proposed model, several measurements were made.

Figure 3.12 shows the operation throughput as a function of the number of clients (n), for

different scenarios. The baseline scenario corresponds to normal operation, when PreX is

not used. The remaining scenarios show the use of PreX and the prevention action with

varying degrees of prediction accuracy. The accuracy of the preliminary results is used,

in its 10-fold cross-validation variant (FNR=0.0152, FPR=0.0889) and its “test on one,

validate on another” variant (FNR=0.233, FPR=0.0701). Additionally, there are three

scenarios with varying accuracy which reveal how the system behaves: FPR=FNR=0.5;

FPR=0.1,FNR=0.9 and FPR=0.9,FNR=0.1. In total, the 7 different scenarios allow an

evaluation of PreX. Figure 3.13 shows the total number of recorded exceptions for the

same scenarios.

Figure 3.12: Successful operation throughput with and without PreX, based on num-
ber of clients, for different prediction accuracy models.

It is clear from Figures 3.12 and 3.13 and that PreX offers increased throughput when

the server is overloaded. Due to false positives, the prevention mechanism leads to a

lower throughput in the absence of exceptions (n < 180). However, when exceptions

start happening (n = 180), the throughput abruptly falls in the absence of PreX. In
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contrast, PreX delays the appearance of exceptions and offers increased throughput,

offering advantages to application developers which intend to increase the reliability of

their systems.

Figure 3.13: Total number of exceptions with and without PreX, based on number
of clients, for different prediction accuracy models.

An increase in the false positive rate naturally leads to a decrease in operation through-

put, delaying the appearance of exceptions. When this value is very high, the throughput

can decrease by 50%, but exceptions are also delayed. This implies that the preventive

action is also useful even when an exception is not bound to happen. However, it is clear

that it is most useful when exceptions are accurately predicted (e.g. FNR=FPR=0.1).

The area under curve seems larger when there is an adequate balance of FNR and FPR

(higher prediction accuracy). This is the case with the empirical data used (FNR=0.233,

FPR=0.0701). Thus, the simulation shows that the TPC-W scenario, whose prediction

model we already know, is an ideal use-case for PreX and the proposed prevention action.

Figures 3.14 and 3.15 show the throughput and number of exceptions when using PreX

with varying degrees of false positive rate. The false negative rate is fixed at the empiri-

cally determined value for TPC-W (0.233). Three different scenarios (with and without

PreX) are represented: for 128, 192 and 256 clients. If we look at Figures 3.12 and

3.13 we see that these three workloads have clearly different characteristics. The first

represents the absence of exceptions. The last represents a full server overload. The

second one is a balance between both, in the transition phase where the server can still

accommodate some clients, but already catches exceptions. It makes sense, then, to look

at these three different scenarios.
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Figure 3.14: Successful operation throughput with and without PreX, based on the
false positive rate, for different workloads.

Figure 3.15: Total number of exceptions with and without PreX, based on the false
positive rate, for different workloads.

As we have seen before, a higher false positive rate has a negative effect in the operation

throughput when exceptions are rare. However, in the scenario where the server is over-

loaded (256 clients), higher values actually have a positive effect, once again strengthen-

ing the idea that the preventive action is useful even before the exception is predicted. In

general, there are less exceptions when the preventive action is used more often, but this

often means that the overall throughput decreases (since operations are being adjourned

for a later time).
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Figures 3.14 and 3.15 show similar plots, regarding the throughput and number of ex-

ceptions when using PreX with varying degrees of false negative rate.

Figure 3.16: Successful operation throughput with and without PreX, based on the
false negative rate, for different workloads.

Figure 3.17: Total number of exceptions with and without PreX, based on the false
negative rate, for different workloads.

The analysis of the model’s behaviour with regards to false negative rate is more straight-

forward. An increase in false negative rate leads to more exceptions, because the preven-

tion mechanism is less used. Nevertheless, it is interesting to note that even when there

are many false negatives (i.e. exceptions are often not predicted), the proposed model

offers advantages. For example, a false negative rate of 0.8 still represents a three-fold
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increase in operation throughput for the heaviest workload (256 clients). This shows

that PreX offers new reliability options which are useful to developers.

Lastly, Figures 3.18, 3.19 and 3.20 show the throughput during each second of three

simulated scenarios. Each of these represents a different workload, once again using 128,

192 and 256 clients. The prediction accuracy used the one determined empirically in the

previous section (FNR=0.233, FPR=0.0701), since these are the most realistic values

currently available.

Figure 3.18: Successful operation throughput in one simulation with and without
PreX, for a workload with no exceptions, using the empirically determined false negative

and false positive rates.

Figure 3.19: Successful operation throughput in one simulation with and without
PreX, for a workload with some exceptions, using the empirically determined false

negative and false positive rates.
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Figure 3.20: Successful operation throughput in one simulation with and without
PreX, for a workload with many exceptions, using the empirically determined false

negative and false positive rates.

It can be concluded, from Figures 3.18, 3.19 and 3.20, that, whenever there are ex-

ceptions, PreX offers an increase in operation throughput during the simulation. For

example, in the case of 192 clients (Figure 3.19), this increase is marginal, but guar-

antees that, in the end, more operations will have completed successfully. In the case

of 256 clients (Figure 3.20), the original simulation flatlines its throughput due to the

constant overload of clients. By using PreX, it is possible to continue operation, even if

some exceptions are triggered. Lastly, in the workload with no exceptions (Figure 3.18),

we see the effect of false positives marginally decreasing the operation throughput when

PreX is used. The increase in throughput is a direct consequence of the uniform redistri-

bution of load which reduces the amount of concurrent clients and, ultimately, increases

individual query performance (if there are less simultaneous clients, the overall query

performance increases). The effectiveness of PreX’s preventive capabilities is evaluated

in a real-world scenario in chapter 5.





Chapter 4

Implementation

The proposed model was implemented as a prototype. This prototype consists of four

different applications:

• Coordinator: The coordinator entity as presented in the model. Developed in

Java 8 as a standalone application.

• Client Library: The client library designed to be used by applications wishing to

make use of the new model. It can be used to feed data to the system (acting as a

probe) or to introduce the new try-prevent-catch blocks. It is a Java 8 library that

can be easily plugged into existing Java 8 projects with a small number of changes

to original application code.

• Probe: A data gathering entity (probe) as presented in the model. Developed in

Java 8 as a standalone application, adapted from previous work and modified to

communicate with the coordinator.

• Administration Application: An administration application used to control

and communicate with the coordinator for tasks such as scheduling training of

new models or adjusting prediction parameters. This was developed in Java 8,

supporting both a CLI and GUI interface.

The implementation, thus, uses a Java 8 library. This choice allows easy integration

in projects, without the need for additional parsers or JVM modifications. A library is

simple to integrate in current projects, even those which have not yet been ported to

Java 8. In section 4.2.3 we present the advantages and disadvantages of this approach.

In this chapter, we present example usage of the implemented model, the architecture and

main design choices when developing each of these applications, as well as an overview

of the protocol used between them.

65
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4.1 Introductory Concepts

To better understand the implementation details of PreX, in this section, we present a

set of core concepts used throughout this chapter.

The coordinator and client libraries exchange protocol messages, which are serializable

Java classes exchanged through the ObjectOutput/InputStream mechanisms. Regular

clients1 can: (i) ask the coordinator to start/stop making predictions or (ii) supply data

to the prediction system. Data is supplied in the form of samples. A sample represents

a unique data point and is characterized by a name, a source, a timestamp and a value.

Samples with the same source come from the same client (e.g. from the same probe),

and samples with the same timestamp happened at the same time.

When the coordinator builds the set of features used to train prediction of a given

exception in a given prediction context, it does not consider that samples with the same

name belong to the same feature. Indeed, the unique identifier of a sample is a pair

<sample name, sample source>. This allows samples of the same kind from different

machines (e.g. the CPU usage from machine A and the CPU usage from machine B).

The training process involves the algorithm described in section 3.5. This algorithm

requires a starting time and stopping time to build the different time-windows. As such,

the coordinator must be able to identify when an experiment “started” and when an

experiment “ended”. In between the start and end of each experiment, the algorithm

can be applied. Within the PreX implementation, these are known as runs: each run

is characterized by a start and finishing timestamp. The system can continue to work

when a run is not currently active, but that data is not used for training (it might be

used for prediction). It is the responsibility of the coordinator to maintain a database

of data (samples) and prediction models, which are characterized by the (T, k, t)

parameters described in Section 3.5, a Weka binary model, and the model’s performance

metrics for the most recent training data. The data stored in the database must then be

summarized with the window-merge algorithm into what is known as a summarized

dataset: a dataset, for a specific combination of (T, k, t) parameters, that has been

through the time-window construction and window-merge algorithms.

An architectural overview of the implementation is seen in Figure 4.1. There are two

main components: the coordinator (server) and the client library used to build probes

and the try-prevent-catch. This architecture is very similar to the proposed architecture

for model implementations previously presented in section 3.3.
1Regular clients are applications using the model and probes. Other clients, such as the administra-

tion application, can perform other tasks besides those of regular clients.
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Figure 4.1: Overview of the implementation architecture

4.2 Client library

The client library attempts to isolate most of the communication mechanisms between

the coordinator and any clients. It makes uses of Java 8 functionality, such as functional

interfaces, and encourages the use of lambda functions to emulate the addition of new

syntactic elements to the Java language. It can also be used to only supply data to the

coordinator, effectively acting as a probe. In the following sections, we show how this

library can be used in existing applications to implement the PreX model, how it can be

used to implement Probes, and compare it with the model itself.

4.2.1 Try-Prevent-Catch

If an application wishes to use the try-prevent-catch construct in synchronous mode,

it first needs to create an instance of the PrexClient class. This class accepts four

parameters:

• A unique identifier for this client

• The coordinator hostname

• The coordinator port
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• A sample buffer size (defaults to 1)

The unique identifier is used by probes or when the sample keyword is used. It allows

each sample of a feature to be uniquely identified and tied to an entity (source). The

sample buffer size determines how many samples can be buffered before they are flushed

to the coordinator, allowing tuning of network performance. Since most applications will

use the PrexClient class with try-prevent-catch blocks, the default value of 1 means that

sample keyword data is flushed instantly.

Once an instance of the PrexClient class has been obtained, a chaining design pattern

can be used to emulate try-prevent-catch blocks as in the example in Listing 4.1.

1 PrexCl ient c l i e n t = new PrexCl ient (<id >, <host >, <port >);
2
3 c l i e n t
4 . Try ( <pr ed i c t i o n context >, ( t ) −> {
5 // . . . code which must c a l l t . check ( ) ;
6 })
7 . Prevent ( <except ion type >.class , ( p r ed i c t i on In f oOb j e c t ) −> {
8 // . . . code
9 })
10 . Catch ( <except ion type >.class , ( except ion ) −> {
11 // . . . code
12 } ) . sync ( ) ;

Listing 4.1: Example syntax of the try-prevent-catch implementation

Evidently, the graphical disposition of code is a mere suggestion, since these are only

methods being called through the chaining design pattern. No code is actually run until

the sync method is called, indicating the synchronous version of the model, as opposed

to the asynchronous one.

Within the try block, one must manually invoke t.check() whenever the programmer

wishes the code to potentially jump to the prevent block. This is a consequence of

implementing the approach as a Java library without additional changes to the bytecode

of the function, JVM changes or a pre-processor. If the programmer does not invoke

t.check(), then the prevent block can never be accessed (although the catch block can).

The prevent function must accept an instance of a PredictionInformationObject. This

object corresponds to the model’s prediction information object and, in the current

implementation of PreX, offers access to the lead-time. Thus, within the prevent block,

it is possible to act differently based on how long ago the prediction was made, or how

close the exception is to happen, according to the alarm.
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Note also that PreX supports the exception hierarchical tree. If the user specifies that

it wants to catch or prevent exceptions of type Java.lang.Exception, then any subclass

of this class is also considered by the system. This is achieved through reflective code.

Thus, in practice, very little changes are required when replacing try-catch blocks with

this implementation. The main required changes are:

• An instance of the PrexClient class should be obtained and used within the function

with the try-prevent-catch block. This instance can be re-used.

• Exceptions have to be appended with the .class suffix.

• The check method has to be invoked within the try block whenever it is useful to

execute to check for exception alarms. The sample method can also be invoked.

• A prediction context must be supplied and a prevention action must be written.

• Since code is effectively usually contained in lambda functions , it might be neces-

sary to convert non-final variables to final variables.

• It is also necessary to store any return values in variables outside of the lambda

functions, adding an extra return statement after the sync method call.

An academic example of the implementation can be seen in listing 4.2:

1 PrexCl ient c = new PrexCl ient ( " c l i e n t 1 " , " l o c a l h o s t " , 1610 ) ;
2
3 c
4 . Try ( " t e s t " , ( t ) −> {
5 Connection conn = connect ionPoool . getConnect ion ( ) ;
6
7 while ( data = getDataToWrite ( ) ) {
8 t . check ( ) ; // Might jump in to prevent b l o c k !
9 data . writeToDB( conn ) ;
10 }
11 })
12 . Prevent ( SQLException . class , ( p r ed i c t i on In f oOb j e c t ) −> {
13 try { Thread . s l e e p ( 1000 ) ; } catch ( Exception e ) {}
14 })
15 . Catch ( SQLException . class , ( except ion ) −> {
16 System . e r r . p r i n t l n ( "There was an e r r o r wr i t i ng the data ! " ) ;
17 } ) . sync ( ) ;
18 conn . c l o s e ( ) ;

Listing 4.2: Academic example of the try-prevent-catch implementation
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In this example, the client identifies itself as “client1 ” and connects to a coordinator run-

ning at localhost:1610. It then continuously fetches data to write to a database. Since the

writeToDB method might raise a SQLException exception, the programmer introduces

a call to check before writing to the database, so that the prevention mechanism can be

activated if any alarm is triggered. The prevention action involves a temporary sleep to

reduce overload on the database.

The previous code would look very similar if using Java’s native try-catch, showing that

this approach adds little extra verbosity:

1 try {
2 Connection conn = connect ionPoool . getConnect ion ( ) ;
3
4 while ( data = getDataToWrite ( ) ) {
5 data . writeToDB( conn ) ;
6 }
7 } catch ( SQLException e ) {
8 System . e r r . p r i n t l n ( "There was an e r r o r wr i t i ng the data ! " ) ;
9 }
10 conn . c l o s e ( ) ;

Listing 4.3: Equivalent native Java try-catch implementation

An asynchronous version of the try-prevent-catch construct can be used by calling async

instead of sync at the end of the chain. Note that in this scenario, the calls to check()

have no effect.

4.2.2 Probes

The PrexClient class is also the base class used by any probes. To build a probe, one

must first instantiate this class, making sure to provide a unique source which does not

change between executions, since it will be attached to any samples provided by this

probe. If a probe is designed to feed many different samples and features in a short

amount of time, it should not use the default sample buffer size of 1, instead changing

it to a more suitable value which does not overflow the network with samples.

Once an instance has been made available, the probe can send data to the coordinator

at any time with the sample method. An example of code using this functionality of the

client library, adapted from one of the project’s probes2, is seen in Listing 4.4.
2Available at https://github.com/Jorl17/prex-probe.

https://github.com/Jorl17/prex-probe
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1 class Probe {
2 private PrexCl ient c l i e n t ;
3
4 public Probe ( S t r ing src , S t r ing host , int port ) {
5 c l i e n t = new PrexCl ient ( src , host , port , 100/∗ b u f f e r s i z e ∗/ ) ;
6 }
7 // . . .
8 public void l og ( DataPoint po int ) {
9 // I t e r a t e f e a t u r e s and supp ly them to the p r e d i c t i on system
10 for ( Feature f : po int . ge tFeatures ( ) )
11 c l i e n t . sample ( f . getFeatureName ( ) , f . a sF loat ( ) ) ;
12 }
13 // . . .
14 }

Listing 4.4: Example Probe code (adapted from PreX’s probes)

The code in Listing 4.4 shows the instantiation of a PrexClient in line 5 with a sample

buffer of 100 samples. In lines 10-11, several features are fed to the sample buffer, which

will be flushed whenever 100 samples have been filled. This example shows that it is

easy to build probes and integrate them with a PreX coordinator, since no additional

work is required3.

4.2.3 Comparison with model

The model present in previous chapters of this thesis is not fully implemented with the

proposed approach, although the provided implementation is functionally equivalent.

This implementation uses native Java features, making extensive use of higher-order

functions (functions which accept other functions as arguments), generics and reflective

code (for run-time exception type inheritance checking). These allow code to look very

similar to traditional exception handling without extensive project rewrite. Indeed, our

experiments, presented in section 5, involved adapting the Shopizer code and porting it

from Java 7 to Java 8, a task which was not difficult, in spite of this being a complex

web application.

The main alternatives to the proposed approach were:

• Implementing JVM and compiler support for the new model
3In future work, security considerations might make this process lengthier, by adding authentication

mechanisms.
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• Implementing a compilation pre-processor that integrated current code with the

existing library

• Using instrumentation techniques to remove the need for calling check

Modifying the JVM would force projects to use this modified compiler and runtime,

making the implementation harder to use. Similarly, a pre-processor would demand

extra effort on behalf of the developer. Instrumentation techniques would allow for

automatic insertion of check calls, but would hinder performance. In addition, since the

no-alarm keyword could not be implemented that way4, automatically inserting these

calls would remove the ability to temporarily stop alarms.

The main disadvantage of the chosen implementation is that it does not allow for the

full model to be implemented. In particular, explicit calls to check are needed and the

no_alarm keyword is not present (although its functionality is, in the form of explicit

check calls). The programmer is also forced to manually create and monitor the Prex-

Client class, which would not be needed with modifications to the compiler and runtime.

Lastly, as seen in section 5.4.3, there is some small overhead that this implementation

adds and that could possibly be removed by using a modified runtime and compiler.

4.3 Protocol

The communication between Coordinator and clients follows a protocol using the Java

ObjectOutputStream and ObjectInputStream streams. There is a pre-defined abstract

Message class which all protocol messages should extend. This Message class only has

to carry the source (unique identifier) of the message.

In total, the following messages are implemented in the protocol to exchange information

between all entities:

• BufferedSamplesMessage: Supply a set of samples contained in a buffer to the

coordinator.

• RecordedExceptionMessage: Notify the coordinator of an exception that has

happened, so that it can be stored for future model training.

• StartListeningToPredictionsMessage: Notify the coordinator that a given

client wishes to listen to predictions for a given exception under a given prediction
4It would be possible to wrap the no-alarm code in another lambda function, but this would make

code harder to develop due to scopes issues (e.g. forcing variables to be made final).
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context. The coordinator should reply with the current status of the prediction

(true or false).

• StopListeningToPredictionsMessage: Notify the coordinator that a given client

wishes to stop listening to predictions for a given exception under a given prediction

context.

• ExceptionPredictionStateMessage: Notify the client that a given prediction

status has changed (either from true to false or the reverse). It is up to the client

library to keep track of the current state by listening to these messages.

• TrainMessage: Trigger the training of predictions for a given exception under a

given prediction context. The coordinator should train several models, compare

them with the current best (if it exists) on current data, and elect a new winner.

Used by the administrator application.

• AddPredictionContextSampleIDsMessage: Notify the coordinator that it

should add sample IDs (<name,src> sample pairs) to a given prediction context.

Used by the administrator application.

• RemovePredictionContextSampleIDsMessage: Notify the coordinator that

it should remove sample IDs (<name,src> sample pairs) from a given prediction

context. Used by the administrator application.

In practice, the development of new probes and sources of data does not require un-

derstanding the internal protocol of the implementation, since it is abstracted through

higher level functions provided to application developers.

4.4 Coordinator

The coordinator is implemented as a standalone server with an integrated H2 [78]

database. It listens to clients which can instruct it to perform specific actions (such

as starting the training process), provide data (probes) or request information regarding

exceptions. Each client is handled by a separate independent thread. By default, the

coordinator listens on TCP port 1610.
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4.4.1 Database

The coordinator must be able to store all the samples provided by clients at any time.

These samples are then meant to be used both for training, which can be performed

offline, or in real-time, during online predictions. For this purpose, a relational database

(the H2 Embedded database used in MySQL compatibility mode) was chosen. H2 offers

the benefit of being tightly integrated with the Java language and being easy to use

as a self-contained embedded database. By relying on the database, issues regarding

concurrency, data consistency and storage are made easier. However, not all of the

Coordinator’s structures are appropriate for storage in a database. For example, trained

models are mere binary data, compatible with the Weka Explorer tool, and for this reason

do not need to be stored in the database. Thus, the database used in the Coordinator is

used only for Samples, Exceptions, Prediction Contexts and Runs. An entity-relationship

diagram of the coordinator database can be seen in Figure 4.2.

Figure 4.2: Entity-Relationship diagram of the coordinator database. The Sam-
ple_Snapshot table acts as a snapshot of the most recent data in the Sample table for

performance reasons.

In total, there are 4 different entities: Sample, Prediction_Context, Recorded_Exception

and Execution_Run. A prediction context is associated to several samples, and several

samples can be used by different prediction contexts. Each recorded exception must

have been recorded and reported within a try block and, hence, is bound to one single

prediction context. The Execution_Run table stores the start and end of each different

run. Its IDs are incrementing and auto-generated, so that at any given time a model

can claim that it is trained with data from the “n-th first runs”. It should be noted that
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there are two distinct tables for samples: the Sample and Sample_Snapshot tables. The

first table contains all the recorded sample data. However, since samples must also be

accessed in real-time, an additional table (Sample_Snapshot) was created to store only

the most recent samples, usually pre-configured to store the samples of the last minute.

This makes the real-time access to recent data much faster, particularly in situations

where there are thousands of samples arriving at the coordinator every second.

4.4.2 Training

The training process can be triggered with a specific message, usually sent using the

administration client. When the coordinator is asked to train the prediction of an ex-

ception under a given prediction context, it begins a CPU-intensive task meant to train

several models.

The several models use the algorithm presented in section 3.5 and, therefore, might

require different values for T , k and t. As a consequence, their datasets (instances used

for training) are different, although they are made from the same data. Each dataset

is made by applying the Time-Window Construction and Window-Merge algorithms to

each run stored in the server. Since the Sample table grows into very large values, cached

versions of these datasets are stored as binary files. This allows models to bypass heavy

queries to the database, accelerating the training process. In section 3.5 we noted that

the process of window-merging required a set of summarized features to be extracted

for each of the original features in the data. In this implementation of PreX, these are:

the number of samples, the mean, the maximum, the minimum, the standard deviation

and the derivative. These metrics offer a range of information regarding the diversity of

samples, as well as time-based information (number of samples and derivative).

In section 3.5.4, it was noted that PreX implementations should consider missing value

imputation techniques. In its current implementation, PreX does not perform missing

value imputation, representing missing values with NaN or a a constant value (typically

-1). This decision stems from the fact that most classification methods already offer their

own missing value imputation solutions, which are often best suited for their methods.

In addition, missing value imputation techniques would affect the performance of the

prediction system, which must act in real-time to make quick predictions within a tight

window. It is more efficient to let each of the classifiers deal with the issue of missing

values. Furthermore, preliminary experiments with offline data showed that even when

each of the missing value imputations presented in section 3.5.4 was used, results did not

change (in particular due to the fact that there is little missing data in our experiments).
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Section 3.5.4 also noted that PreX implementations might need to perform feature se-

lection in order to improve classifier performance and accuracy. In the experiments with

the full PreX model, detailed in chapter 5, several of the feature selection methods of-

fered by Weka were tested5, but these did not significantly change the accuracy of the

provided models. This is a consequence of the fact that our models were already highly

accurate and our features did not have a high overlap. Implementing feature selection

processes would add extra development time for little gain in the scenarios which we

explored. More importantly, since each prediction context can select which samples it

“cares about”, the task of feature selection loses part of its value, since the system ad-

ministrator should select features which are relevant. Nonetheless, in a future version of

PreX, a feature selection process might offer advantages if there is a much larger number

of variables to consider (something which was not the case in the experiments detailed

in chapter 5).

A training request does not need to happen only once and, in dynamic environments,

it happens several times during application execution. This means that it is often not

necessary to rebuild the full dataset, but only include data from more recent runs. The

coordinator checks which runs have already been used to build datasets and only adds

new data as needed, making the overall training process more efficient. It should be noted

that in this process the dataset is automatically balanced using the supervised instance

resampling filter found in Weka, although the system administrator is encouraged to

have a balance of “golden-runs”

At the same time that the different (T, k, t) datasets are being created (or read from

disk), several threads are spawned training models using the Weka Java library. The

coordinator then waits up to a maximum of a configurable amount of time for all the

models to finish training. If any models cannot be trained during this time, they are

aborted and discarded. Whichever models have successfully finished training are ranked

and the new best model is chosen. If training had already happened before, the current

best is loaded and evaluated on the new data to assert if it should remain the current

model or if it should be replaced.

The (T, k, t) parameter combinations can be supplied when the training request is made,

though a set of default values is used. The prediction models are currently hardcoded

and offer a variety of classifiers with different parameters. These are:

• The J48 classifier under its default configuration

• The RandomTree classifier with depth limit set to 2, 3, 5 and unlimited.
5The CorrelationAttributeEval, PrincipalComponents, OneRAttributeEval and WrapperSubsetEval

methods were used.
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• The REPTree classifier with depth limit set to 2, 3, 5 and unlimited.

• The MultilayerPerceptron with default parameters, training time = 100, and three

distinct network configurations: one with as many neurons as features in a hidden

layer, one with two hidden layers and as many neurons as features per layer, and

one with only 10 neurons per layer, often having higher error but training faster.

• The RandomForest classifier under its default configuration.

• The IBk classifier with k=5,30,100.

These classifiers offer a broad range of methods which can be trained in realistic time

frames. It should be noted that in the original implementation there were other types

of classifiers, such as Naive Bayes classifiers, but they often underperformed and took

longer to train.

The decision tree algorithms have depth limits defined wherever possible to increase

generality and avoid overfitting. The IBk (K-means) classifier uses values of K which

are computationally feasible, since in our experiments values for K>100 did not allow

for real-time classification.

The models are all validated using 10-fold cross validation to avoid overfitting and ensure

a fair comparison. They are then compared according to the following pseudo-code:

1. If both A and B have a high F-measure value6 (≥ 0.75), then pick the one with

the lowest False Negative Rate.

2. Otherwise, pick the one with the highest f-measure value.

The main idea behind this algorithm is that we first prefer to pick models which are

accurate (exhibit a high f-measure value) but, if both models can be categorized as

“sufficiently accurate” (which we define as having an f-measure greater than or equal to

0.75), then we should prefer the one that predicts exceptions the most, thus having the

lowest false negative rate. Other factors could be taken into account when ranking the

models. For example, it would make sense to give precedence to the models with higher

lead-time or with a smaller value of k (the preliminary experiments show that higher

values of k tend to lead to models that strongly overfit to the data). However, since

the training parameters (T, k, t) can be adjusted by the user, these were left out of the
6The F-measure value is the harmonic mean of recall and precision. A value of 0.75 ensures a

“sufficiently” good model can be used, with an appropriate balance of both types of error (for example,
achieved by precision and recall of 0.75). However, since the F-measure does not explicitly take into
account the true negative rate, and since our model is particularly interested in preventive false negatives,
another comparison metric is used after the models are “sufficeintly good”.
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ranking process – it is therefore up to the user to provide “sensible” parameters. Lastly,

an adjusted F-measure with different weights on precision and recall could be considered,

but the proposed two-step approach initially filters “bad” models and then focuses on

those with the better characteristics, instead of attempting to do these different processes

in one step.

4.4.3 Prediction

Predictions are managed within the Coordinator by a PredictionManager. The Predic-

tionManager keeps track of current clients interested in predictions, as well as current

threads making predictions. Whenever a client wants to “start listening to predictions

for a given exception and prediction context”, the PredictionManager first checks if there

is already a thread doing these predictions and, if there isn’t, creates it.

The prediction threads start by loading the currently best model available. They then

remain dormant for a period of T × k, so that enough samples can be gathered for

prediction. Once this time has passed, the Time-Window Construction and Window-

Merge algorithms are applied to the last T × k seconds of data and fed to the Weka

model, which outputs a prediction. If the prediction changes (it starts at its current

value, false at the start), the prediction thread notifies the PredictionManager, which in

turn notifies each of the interested clients of this change.

In dynamic environments, the best models might change at run-time. If such is the case,

the PredictionManager is notified and propagates this information to any relevant pre-

diction threads. These detect the change, load the new model and restart the procedure.

Whenever all clients announce that they no longer wants to listen to predictions (most

likely because they have all exited the try block), the PredictionManager waits a pre-

determined amount of time (currently 5 seconds) before graciously terminating the ap-

propriate prediction thread. This “grace period” greatly improves performance in situ-

ations where clients are constantly entering and leaving a try block, such as when it is

nested within a loop or in recurrent actions (e.g. a web-server satisfying several similar

requests). In effect, the same thread is reused and the overhead of constantly creating

and terminating threads (or even re-using them from a thread-pool) is eliminated. In ad-

dition, if no such “grace period” existed, then it might happen that no predictions would

ever be made in a scenario where clients have a life-span smaller than the prediction

T × k (a situation found, for example, in the experiments seen in chapter 5).
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4.5 Administration Application

Some actions within the PreX system, such as training, marking runs as started, or

adding and removing associations between features and prediction contexts, have to be

triggered by an outside source. While the PrexClient class offers all of this function-

ality, the recommended way of performing these actions is by using the administration

application.

The administration application offers a GUI seen in Figure 4.3. An administrator can

connect to any coordinator and: (i) start and stop a run; (ii) trigger the training of

a model; (iii) Perform changes to sample prediction context associations. The GUI

can be used with any number of coordinators by simply changing the host and port

and reconnecting, thus avoiding the need for different program instances at different

times. In a real-world scenario, an administrator would mostly use the GUI to mark an

application run as started or stopped.

Figure 4.3: Administration GUI to interact with the coordinator.

In addition to the GUI, the same application can be controlled through a series of com-

mand line options, offering the same functionality. This allows easy automation of all of

these tasks. Indeed, to perform the validation experiments shown in chapter 5, the CLI

interface was used. In total, there are 9 different command line options (–start-run,

–end-run, –prediction-context, –train, –coordinator-host, –coordinator-port,

–sample-src, –sample-name).





Chapter 5

Validation

The preliminary results (Appendix B) demonstrated that it was possible to predict ex-

ceptions with high degrees of accuracy. However, these experiments did not shed any

light with regards to the preventive capabilities of PreX. The preventive mechanism of-

fered by PreX was shown to be useful using a simulation detailed in Section 3.7, but

neither of these experiments validated the model as a whole, in its final implementation

detailed in chapter 4. Thus, a set of additional experiments were designed to validate

the model and its implementation.

These experiments focused on validating the model simultaneously in its two main com-

ponents: prediction and prevention. In addition, they were performed with full im-

plementations of this model, as described in chapter 4. PreX was tested on a real

enterprise e-commerce solution – the open-source Shopizer application – with the in-

tent of showing that the use of this model can increase system reliability and availabil-

ity at a fraction of the cost of other approaches. The implementation of PreX used

in these experiments can be used with any existing Java project and is available at

https://github.com/Jorl17/prex.

A modified instance of the open-source e-commerce Java software Shopizer [79] was

configured, using a MariaDB database as the backend. The Shopizer e-commerce ap-

plication is one of the largest open-source e-commerce platforms and is under constant

development.

A workload was configured using jMeter [80] to simulate Web users navigating through

the virtual shop, eventually overloading the database. As a consequence, since queries

were pre-configured to timeout in the database after a period of time, during the execu-

tion of the workload, several exceptions are raised. PreX was then used to predict and

prevent as many of these exceptions as possible.
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The goal of the experiments was to test the following research hypotheses:

1. H1: PreX is able to predict exceptions with False Positive Rates and False Negative

Rates below 20%.

2. H2: PreX is able to prevent exceptions in an effective way.

3. H3: PreX enables the usage of new and differentiated recovery strategies, not avail-

able to traditional EH models.

4. H4: It is possible to define a (T, k, t) parameter configuration that will deliver good

performance.

5. H5: The exception prediction algorithms are sufficiently robust to withstand slight

differences in environment conditions without affecting accuracy

6. H6: PreX does not impact performance by more than 5%.

To test question 1, an offline training of classifiers is sufficient. These classifiers can then

be used at run-time to test question 2. At the same time, traditional recovery strategies

should be employed to be compared with the preventive mechanism and test question

3. Finally, hypothesis 4 can be partially tested by exploring different parameters in

the offline training. To test hypothesis 5, we can train models in different scenarios,

with different workloads, and validate them on one another. Finally, the last hypothesis

concerns the impact of PreX on the overall performance of the system. Even when no

prediction is being made, but data is being sampled, there might be some overhead

added by PreX. By comparing the execution of the original unmodified Shopizer with

a modified Shopizer, where PreX is used but has no prediction models trained, this

comparison can be made.

In the following sections we present the experimental setup and methodology, as well as

the results of these experiments.

5.1 Experimental Setup

The setup consisted of 4 machines, simulating a 3-tiered architecture. The machines all

had the same hardware and software, shown in Table 5.1, and were named prex1, prex2,

prex3 and prex4.
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Table 5.1: Summary of the machine specifications for the validation experiments

CPU + OS RAM HDD Name

Intel Core i3
3.10GHz

CentOS 7 (64 bit)
4GB

WD5000AAKX
7200 RPM
16MB Cache

SATA 6.0GB/s

prex1

Intel Core i3
3.10GHz

CentOS 7 (64 bit)
4GB

WD5000AAKX
7200 RPM
16MB Cache

SATA 6.0GB/s

prex2

Intel Core i3
3.10GHz

CentOS 7 (64 bit)
4GB

WD5000AAKX
7200 RPM
16MB Cache

SATA 6.0GB/s

prex3

Intel Core i3
3.10GHz

CentOS 7 (64 bit)
4GB

WD5000AAKX
7200 RPM
16MB Cache

SATA 6.0GB/s

prex4

An instance of MariaDB 10 was configured in the prex1 machine, to act as the data

source for Shopizer. Shopizer itself was downloaded from the official repository and

installed in prex2. By default, the application comes with a limited set of mock data (6

products). Since we wanted to create high workloads at the database layer, we modified

Shopizer so that each product was inserted, with slightly different versions, 1000 times.

Hence, in total, there were 60.000 products.

An instance of jMeter was installed in the prex3 and prex4 machines, so that they could

be used to induce heavy loads on the other two machines, simulating the client layer.

In addition to this, the PreX coordinator was deployed in prex3. The coordinator is

responsible for training and prediction, which is bound to consume a significant amount

of CPU time. Thus, it was deployed in the machine with the least CPU usage (prex3 ),

so as to reduce its overhead on the system.

The PreX probes communicated with the coordinator to feed real-time data used for

training and predicting1. The modified Shopizer application included the PreX client

library and the try-prevent-catch mechanism, also communicating with the coordinator

as described in section 4.3. Lastly, an administrator application was used from within

the prex3 machine to control the experiments. Figure 5.1 shows the overall experimental

setup.
1These probes sampled dozens of variables regarding CPU, RAM, Network and Disk access, similarly

to the probes used in Appendix B.



Validation 84

Figure 5.1: Experimental Setup for the full implementation experiments.

5.2 Experimental Methodology

The experimental procedure consisted of two stages: training and preventing. The first

stage involved running a series of tests where exceptions were triggered, using a simu-

lation of several users navigating in Shopizer (with jMeter). After each test was com-

pleted, the machines were reset to its original state and the experiments repeated, so

that enough data was available to accurately train several validation models. The trained

models (whose training was triggered by the administration application) were then used

by PreX in a second stage, repeating the previous steps, but using a method to try to

prevent exceptions, detailed further below. Thus, the full model was tested, from predic-

tion to prevention, covering all the different blocks that are part of the try-prevent-catch

mechanism

The default configurations for Shopizer allowed queries to take a very long time, making

tests unpractical and unrealistic. To counter this situation, MariaDB was configured

to timeout unfinished queries after 15 seconds. Under heavy workloads, this triggers

exceptions in the Shopizer application, which were used for training.

The workload was generated by jMeter instances running in the remaining two machines

(prex3 and prex4 ). When each test started, the prex3 machine introduced a heavy

workload simulating 128 clients clicking through the website at a random time after the

test start (between 35 - 50 seconds). This number was just enough to strain resources

on the database machine, making its four cores reach 99-100% usage, but still without
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raising exceptions. At a random time (ranging between 1 to 2 minutes to let the original

workload stabilize), the prex4 machine introduced an additional workload, using a ramp-

up time, with the intent of pushing the database beyond its limits and raising exceptions.

The random time makes the scenario more realistic and less predictable, simulating a

sudden burst of interest in the website, as is usually observable in Christmas and Black

Friday.

The aforementioned workload introduced by the prex4 machine was not always the same.

Three different workloads were selected so that different scenarios could be simulated.

The goal of the experiment was to validate the accuracy of models trained on one work-

load and being used to predict exceptions in another. The three different workloads are

shown in Table 5.2. After 3-5 minutes, the test was stopped and then the procedure was

redone until all tests had finished.

Table 5.2: Characteristics of the three different workloads

Workload/Scenario Number of Clients Ramp-Up time
(seconds) Notes

Heavy Load 256 100 Simulates quick high
influx of clients

Medium Load 128 100 Simulates quick moderate
influx of clients

Heavy Load with long ramp-up 256 400 Simulates slow high
influx of clients

For each stage (training and preventing), each test was run 15 times, which totals 45 full

tests (15 for each of the three workloads presented), each containing data for about 10

minutes of execution, with dozens of exceptions recorded.

Besides a training phase, the predictive exception mechanism also involves a prevention

phase wherein the developer might specify code to run in case of an alarm – this is the

code within the prevent block. In our scenario, the e-commerce website was flooded

with too many requests (see Table 5.2), but not all of them are of the same value for

the company. For example, updates and inserts are usually associated with transactions

and important business operations, whereas read operations are more geared towards

navigation of the online catalog (where most of the time is spent). Therefore, it makes

sense that, upon detecting a possible exception, indicating a heavy workload, a mecha-

nism should prioritize inserts and updates over reads. This way, the important business

operations can take precedence, increasing the monetary gain of the company during an

overload of clients. This was the mechanism implemented in our experiments.

Upon detecting that an exception was imminent, the modified Shopizer application

waited a random interval (depending on the lead-time) before executing the lengthy

read operations that lead to exceptions. This has several consequences:
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• The insert and update queries are executed without any delay, thus being priori-

tized and increasing the company’s monetary gain.

• The heavy read operations were scattered across a random uniform interval, effec-

tively reducing the load on the database (throttling the rate of requests).

• The Shopizer application, which uses a threadpool, would not be stuck waiting

for the lengthy read operations to finish. Instead, it could process other, smaller

operations, effectively increasing the overall throughput of the application.

• Due to the reduced load on the database, exceptions might be prevented.

This preventive action is the same as described in the simulation experiment detailed in

section 3.7. Although that simulated scenario was geared towards the TPC-W bench-

mark, the rationale behind the preventive action remains the same and, as the results

will show, it is an appropriate action to take when an alarm is triggered.

After running the first tests, where PreX had not yet trained any models, the system

was started once more and the coordinator was instructed to train predictions for the

aforementioned exception and prediction context. As described in Section 3.5.4, the

prediction algorithm involves three parameters: T , k and t. For this experiment, we

trained algorithms only for t = 1, since it is likely that windows closer to the exception

contain more valuable information (it might be interesting to experiment with other

values for t in future work). The (T, k, t) parameters submitted for training are seen in

Table 5.3. The values were selected to achieve lead-times of 10 and 15 seconds, which

are enough for a corrective action to take place. 15 seconds is the time it takes for the

database to timeout the queries and trigger an exception, thus making it an interesting

value to explore.

Table 5.3: All combinations of variables used in the full experiments

T
(Time-Window

size)

k
(Number of

merged windows)

t
(Number of windows

to look-ahead)
2500 ms 4 1
5000 ms 2 1
7500 ms 2 1
10000 ms 1 1
15000 ms 1 1

The PreX model trained each of the classifiers presented in section 4.4.2, for each of

these windows. In total, 84 classifiers had to be trained, cross-validated and compared

to one another.
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Once the system had completed training and determined the best model, the experiments

were redone. No code changes were necessary, since the only difference was that the

coordinator now had trained models which it could automatically use to perform online

predictions.

A final step in the experimental procedure involved running the original Shopizer code

unmodified and comparing it with the modified Shopizer code when no predictions were

enabled. Since these experiments were focused on performance metrics, they need not

be executed for the different kinds of workloads. Thus, they were only focused on the

“Heavy Load” workload. However, these experiments were done at a later time and,

due to slightly different machine configurations, resulted in different throughput and

exception values. Consequently, in order to allow for a fair comparison, these results

could not be directly compared with those of the previous runs. The solution was to

re-run the experiments with PreX and the “Heavy Load” workload. These were done

with 30 runs instead of 15, to further eliminate outliers in the data. Therefore, in this

second set of runs, each test was run 30 times and consisted of the following steps: (i)

the machines, probes and applications were started; (ii) the administration client marked

the start of a run; (iii) the prex3 workload was introduced; (iv) the prex4 workload was

introduced; (v) the administration client marked the stop of a run; (vi) the applications

(probes, coordinator, Shopizer and database) were stopped. The same random intervals

as described previously were used between runs, and it should be noted that steps (ii)

and (v) were omitted when the unmodified Shopizer instance was used.

In summary, four different sets of runs were carried: (i) runs with PreX, without trained

models; (ii) runs with PreX, and with trained models; (iii) runs without PreX (normal

Shopizer code) and (iv) run with PreX, without trained models (re-done). Runs (i) and

(ii) were done at the same time and compared against each-other to validate the full

model in its predictive and preventive capabilities, whereas runs (iii) and (iv) were also

done at the same time and compared against each other to assess PreX’s impact on

performance.

5.3 Comparison Metrics

To compare the preventive exception model with the prior exception handling model,

Shopizer was modified to retry the failed operations to a maximum of three times. This

means that even if exceptions were caught, the operation itself might be successful on

a following retry attempt. Thus, this recovery mechanism can be compared with the

aforementioned prevention mechanism. This is summarized in Table 5.4. Note that

in the final experiments, where Shopizer was run unmodified and compared with PreX
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(without trained models), the recovery action was not used (it would not be a fair

comparison).

Table 5.4: Comparison of recovery and prevention strategies

Scenario Strategy Notes
Without
PreX

Retry operation until a maximum
of three attempts is reached.

Common recovery
strategy .

With
PreX

Sleep for a random amount of
time between 5-15 seconds when
alarm (of exception) is triggered

(for read queries).

Simple prevention
strategy offered by PreX.

Distributes load and
prioritizes updates.

We introduced profiling code into Shopizer. As such, it was possible to register when

heavy operations were started, when they ended, when an exception was caught and,

at a later stage, weather the prevention technique was being used. This allowed us to

collect the following metrics on each test:

• The count of successfully completed operations (even if they had to be retried).

• The count of exceptions.

• The count of unsuccessful operations (i.e. operations which never finished, exceed-

ing the limit of retries).

• Average count of successfully completed operations per second (successful operation

throughput).

With these metrics, it is possible to assess the effectiveness of the proposed model. For

example, it is possible to know if the model prevents exceptions at the cost of performance

(i.e. throughput), or if it is inefficient (i.e. prevents few exceptions).

5.4 Results

In this section we present the results of the experiments. These results focus on three

distinct aspects: (i) first, there is a discussion of the offline analysis of the best classi-

fier performance for several (T, k, t) parameter combinations; (ii) secondly, we present

and analyse the results of the prevention mechanism, comparing it with other recovery

strategies, once the best of these combinations had been selected; (iii) thirdly, we analyse

the performance impact of using PreX, even when i has no trained models available.
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5.4.1 Classifier Performance (Offline Analysis)

Table 5.5 presents the results of the different (T, k, t) parameter combinations. FPR

stands for False Positive Rate, indicating the percentage of “false warnings”. FNR indi-

cates the False Negative Rate, or the amount of “missed warnings”. It is worse to have a

high FNR than to have a high FPR, since “missed warnings” mean an exception was not

predicted, possibly having consequences for business. In addition to performing 10-fold

cross-validation for each of the workloads (heavy workload, medium workload, heavy

workload with long ramp-up), some of the datasets were used for training and validating

on other datasets. This allows for an assessment of the generality of the predictor (i.e.

is a good predictor for the heavy workload an equally good predictor for the medium

workload?).

Table 5.5: Offline Analysis classifier performance (DNF means Did Not Finish)

Dataset

heavy load
(10-fold CV)

heavy load
with long
ramp-up

(10-fold CV)

medium load
(10-fold CV)

train
heavy load
val. heavy
load w/

long ramp-up

train
high-load
validate

medium load

train
medium load

validate
heavy load

train
heavy load
w/ long

ramp-up val.
medium load

T k FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR
1000 10 0.37 0.20 0.33 0.10 0.38 0.20 DNF DNF DNF DNF DNF DNF DNF DNF
2000 5 0.15 0.13 0.16 0.14 0.16 0.14 0.17 0.06 0.20 0.16 0.33 0.10 0.99 0.00
2500 4 0.10 0.11 0.20 0.02 0.10 0.11 0.09 0.06 0.11 0.13 0.01 0.01 1.00 0.01
5000 2 0.03 0.04 0.19 0.02 0.04 0.05 0.20 0.04 0.08 0.06 0.12 0.03 1.00 0.00
7500 2 0.01 0.02 0.16 0.01 0.01 0.03 0.01 0.04 0.01 0.03 0.09 0.02 0.16 0.00
10000 1 0.02 0.03 0.12 0.02 0.02 0.03 0.01 0.04 0.01 0.04 0.08 0.02 0.99 0.00
15000 1 0.03 0.05 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.03 0.06 0.06 0.00 0.00

In general, the best results were achieved with the (7500, 2) and (15000, 1) pairs. In

other words, using windows of 7500 ms, grouped in pairs of two, or windows of 15000,

without grouping, achieved the best prediction accuracy. This remains the case even

when datasets are validated on one another (i.e. training with one and validating on

another). It is also clear that an increase in windows quickly makes the data too noisy

(i.e. adds too many features and reduces the amount of information about each one),

rendering poor results (these results are in line with those of Ivano et al. [27]).

It should be noted that when the heavy workload with long ramp-up dataset is used for

training (and even simply using 10-fold cross validation), the results are bad (exceptions

are almost never predicted). This is a consequence of less data on exceptions for this

dataset. Since the ramp-up time is high, very few exceptions were recorded on the

dataset, making it unbalanced and affecting the classifier performance. At the time when

these experiments were run, the PreX implementation did not yet offer the functionality

of resampling the data to make it balanced, although such functionality was available in

the later experiments used to compare PreX’s performance impact.
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These results show that it is possible to predict these exceptions, and that predictors

for different scenarios are accurate on each other’s datasets. Since the best results were

reached with the (7500, 2) pair (excluding an outlier for the heavy load with long ramp-

up time), the next phase of the experiments – prevention – was performed using this

predictor.

The best classifier was a Decision Tree classifier (using the C4.5 algorithm, as provided by

the J48 classifier in Weka [81]) and used a combination of variables from both machines,

namely:

• TCP Passive Opens (from prex2 )

• CPU Combined Usage (from prex1 and prex2 )

• CPU User Time (from prex1 )

• Used Memory (from prex1 )

The number of passive opens variable makes sense, as it increases when more clients

connect. Similarly, the CPU usage easily allows one to understand in which situation the

system is in. If the CPU usage in the database machine increases, consistently reaching

100%, then it is at its maximum load (and in particular, it might be spending much time

doing user-mode processing in the database), possibly leading to an exception. In much

the same way, if the CPU usage in the server machine decreases, it might indicate that

there is a bottleneck in the database (the server would be waiting for the database to

finish). When all of these variables are combined with the decision tree, then they allow

for the results shown in Table 5.5. It should be noted that no human had to create rules

for triggering alert events, everything was machine generated from the data collected at

run-time.

As noted in section 5.2, the “Heavy Load” experiments were run a second time due

to differences in machine configurations and to allow for a fair comparison with an

unmodified shopizer. In these second experiments, the best classifier was obtained using

the REPTree algorithm. It had an F-measure of 0.945, FPR of 0.13 and FNR of 0.0017.

This classifier had a lead-time of 10 seconds, with T = 5000 and k = 2. Table 5.6 shows

a ranking of the 10 best classifiers found in the last batch of experiments.
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Table 5.6: Best classifiers found in the last batch of experiments

Rank Classifier Algorithm F-Measure FPR FNR (T, k, t)

1 REPTree 0.945 0.13 0.0018 (5000,2,1)
2 REPTree 0.932 0.015 0.0026 (10000,1,1)
3 REPTree 0.976 0.05 0.0067 (10000,1,1)
4 MultilayerPerceptron 0.861 0.33 0.009 (10000,1,1)
5 MultilayerPerceptron 0.965 0.06 0.019 (10000,1,1)
6 J48 0.976 0.028 0.023 (15000,1,1)
7 RandomTree 0.859 0.345 0.030 (5000,2,1)
8 REPTree 0.942 0.081 0.049 (7500,2,1)
9 RandomTree 0.915 0.096 0.084 (15000,1,1)
10 J48 0.94 0.081 0.049 (5000,2,1)

The top 10 classifiers all used very small values of k, showing that higher values of k lead

to bad performance. Indeed, the performance of classifiers where k = 4 had, at times,

an F-Measure of only 0.5. From Table 5.6 we can also see the comparison algorithm at

work: the algorithm with the best F-Measure is ranked sixth due to its higher value for

false negative rate. It would be interesting to explore other ranking algorithms as art of

future work. The table also allows us to conclude that the best classifiers are based on

decision tree algorithms and neural networks. It is also interesting to note that the best

classifier was not the one with the highest lead-time. There is an inherent bias when

choosing classifiers with t = 1 and high lead-times, because if t = 1 and the lead-time

increases, then so does the size of the prediction window (i.e. the prediction period).

A bigger prediction window increases the likelihood that there is an exception in that

window and, henceforth, the less precise each model has to be2.

5.4.2 Prevention Mechanism Results (Online Analysis)

Table 5.7 shows the results of the prevention mechanism. Using the exception mecha-

nism significantly decreased the number of exceptions (by factors between 40 and 100),

with some increase (2.2%) in successful operation throughput for the Heavy Load and

Medium Load scenario. In the last scenario, throughput decreased by 1%, although this

scenario has far less exceptions and, thus, the mechanism is less useful and might add

some overhead3. These results show that the prediction mechanism worked, detecting

exceptions as soon as the database machine started being overloaded with connections.

Once these exceptions were being predicted, the prevention action was used with success.
2In other words, if the prediction window is sufficiently large, the dataset quickly becomes saturated

with “windows with exceptions” and the models become biased towards predicting exceptions, even with
data resampling.

3The idea that overhead might be at the root of a decrease in performance is further explored in 5.4.3
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Table 5.7: Comparison of scenarios with and without the prevention mechanism

Scenario
Successful
operations
(mean)

Unsuccessful
operations
(mean)

Exceptions
(mean)

Successful
operations
per second
(mean)

Heavy Load 4294.6 1.134 207.34 12.65
Heavy Load
with PreX 4832.27 0.0 3.8 12.93

Medium Load 4462.33 1.067 200.93 12.64
Medium Load
with PreX 4507.4 0.0 2.93 12.91

Heavy Load with
long ramp-up 4286.0 0.47 132.2 12.81

Heavy Load with
long ramp-up
with PreX

4566.73 0.0 1.2 12.62

The effects of the prevention mechanism can be seen in Figure 5.2, where two plots of

different runs of the experiment (for the heavy workload) are shown: one with the mech-

anism and one without it. Throughput starts by increasing, until it peaks (maximum

capacity is reached). Afterwards, without the prevention mechanism, several exceptions

are raised, although the throughput is roughly the same. When the prevention mecha-

nism is used, there is a slight increase in throughput, and a significant decrease in the

number of exceptions. For the Heavy Load scenario, exceptions are decreased by a factor

of 54, a change from 207.34 to 3.8 average exceptions per test. For the Medium Load

scenario, this factor is 69, a change from 200.93 to 2.93 average exceptions per test.

Finally, in the last scenario, there is a decrease in exceptions by a factor of 110, a change

from 132.2 to 1.2 average exceptions per test. Note that the prediction mechanism some-

times stopped predicting exceptions (possible false negatives), leading to an increase in

operations completed successfully without the preventive action, but also leading to the

few exceptions that still happen. This is an indication that if a better prediction model

had been found, more exceptions might be prevented. Also note that there are no false

negatives before the prex4 workload begins.

The increase in successful operation throughput can be attributed to a more efficient

resource usage. Since the workload is being distributed, and since less time is being

spent retrying failed queries, then the overall throughput increases. In addition, note

that these results do not reflect the throughput of other operations. For example, since

read operations are effectively being “deprioritized”, an increase in the throughput of

write operations is expected. Thus, for this scenario, the use of the proposed exception

prevention mechanism is a valid and valuable technique, with very little additional effort
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for the programmer (he/she only needs to code the recovery mechanism, train the model

by running the system, and then enable the trained model).

Figure 5.2: Operation and exception throughput with and without the prevention
mechanism.

Note that the results shown in Table 5.7 and Figure 5.2 compare PreX with and without

trained models. Another interesting run to inspect is shown in Figure 5.3. In this run,

at around 155 seconds, the coordinator stops triggering alarms. As a consequence, the

preventive action is not taken and some exceptions happen. At around 195 seconds, the

alarms start being triggered again, temporarily stopping between 210 and 230 seconds.

This shows that the predictions aren’t perfect, and that there is a clear relationship

between prediction, preventive action and exceptions: if no prediction happens (and,

hence, no preventive action takes place), then exceptions happen as they would if PreX

was not used.
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Figure 5.3: Operation and exception throughput in one of the experimental runs
where PreX was used (with trained models). In this run, there were some false negatives

and exceptions.

5.4.3 Impact on performance

One of the main goals of the validation experiments was to evaluate the impact of PreX

on the overall system performance (due to possible overhead). The comparison of runs

with and without the PreX system (with predictions disabled) allows to perform this

evaluation4. Table 5.8 shows the results of this comparison.

Table 5.8: Comparison of scenarios with predictions enabled or disabled, when using
PreX

Scenario
Successful
operations
(mean)

Exceptions
(mean)

Successful
operations
per second
(mean)

Without PreX 4201.5 203.5 12.59
With PreX (no predictions) 3865.4 117.4 12.08

PreX does indeed add some overhead to the system. The operation throughput decreases

from 12.59 to 12.08 operations per second, a 4.1% difference. This is also reflected in

a decrease of the total number of exceptions. The ratio of exceptions to successful

operations with PreX is 0.030, whereas it becomes 0.048 when the system is not used

at all. Given this difference, a decrease in the number of exceptions points towards

a bottleneck in the prex2 machine. Indeed, if there was some overhead in the prex1
4Note that the results “With PreX (no predictions)” are different from those shown in the previous

section because, as noted previously, these experiments were re-run independently under slightly different
machine configurations.
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machine (where the database is hosted), the number of exceptions would increase with

PreX because the database would have less CPU time to process the queries and more of

these queries would timeout. Similarly, if the overhead was the same in both machines,

the ratio of exceptions to successful operations would not change, because both machines

would suffer a similar performance hit.

The results are not surprising. The usage of PreX is bound to add some overhead to

the system. Firstly, one must consider that probes add increased network traffic. This

could become an issue and reduce the total number of operations if the network could

not handle the amount of traffic generated by jMeter and the probes at the same time.

However, such a scenario is unlikely, as the machines shared a gigabit connection and

the data used in these tests is not sufficient to bottleneck the connection. Probes also

add increased CPU load to the machines where they are located (prex1 and prex2 ), but

this was inspected during each of the tests and never exceeded 1%. The main reason

for PreX’s overhead is more likely attributed to the computational overhead of using the

PreX library. Although the try-prevent-catch mechanism featured in the implementation

(Chapter 4) offers a structure which is graphically similar to a native try-catch, it makes

use of lambda functions which must be created for each execution of their parent function.

in addition, these functions are not directly invoked, but the client must be instantiated

and exchange an initial protocol message with the coordinator, which further delays the

execution of the relevant Shopizer code. Thus, in a native implementation of the PreX

model this overhead would be eliminated or greatly reduced.

Further experiments could be performed to assert if these are the true sources of overhead

in the system. For example, another scenario could be constructed where the same PreX

library client could be re-used, instead of one being created for each operation. This

would eliminate the overhead of the initial protocol message with the coordinator. These

experiments are a good candidate for future work.

5.4.4 Answer to Research Hypotheses

If we recall the research hypotheses presented previously (see section 5), we can conclude

that:

1. H1: the hypothesis is accepted. PreX is able to predict exceptions for our scenario

with satisfactory accuracy, displaying False Positive Rates of no less than 15% and

False Negative Rates of no less than 19%. The best results showed FPR and FNR

in the 3-5% range.
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2. H2: the hypothesis is accepted. PreX can be used to prevent exceptions in an effec-

tive way. The number of exceptions dramatically decreased in all three scenarios,

by factors of 54, 68 and 110.

3. H3: the hypothesis is accepted. PreX offers new techniques that can compete with

current revitalization strategies. Using the new model to prevent exceptions, even

with a simplistic approach, the successful operation throughput increased about 2%

in two of the three scenarios, when compared with a retry strategy. The increase

in throughput is significant, with p < .01 using a dependent T-Test.

4. H4: the hypothesis is accepted. The values for (T, k, t) have a high impact on

prediction performance. High values for k, coupled with low values for T lead to

worse results. The (7500, 2, 1) and (15000, 1, 1) configurations provided the best

performance.

5. H5: the hypothesis is accepted. The prediction models showed generality, since

when applied to different workloads, performance was still adequate. More different

scenarios should also be the focus of future work.

6. H6: the hypothesis is accepted. Using PreX, even when no models have been

trained, decreases performance by an average of 4.1%.



Chapter 6

Planning and development

The research developed in this thesis is a “High Risk, High Reward” kind of research.

As such, it was planned with a focus on careful risk analysis, a thoroughly planned

architecture and a publication plan with several milestones. During the first semester,

work mostly focused on the state of the art, risk analysis, preliminary experiments (to

validate the model’s predictive capabilities, available in Appendix B) and the publication

plan. In the second semester, work focused on validation of the model’s preventive

capabilities and in the implementation of the full model. In the following sections, we

present an overview of the thesis plan, the risk analysis and contingency plan, and the

publication plan. We also note additional research and professional activities carried out

during the development of the thesis.

6.1 Overview

The implementation of PreX followed an adaptation of the waterfall model, as shown

in Figure 6.1. The first step in the development of PreX was the study of the state of

the art. Afterwards, the PreX model was designed, as well as its architecture. The vali-

dation experiments were defined, identifying evaluation scenarios, exceptions to predict,

and countermeasures and techniques allowed by PreX. These three stages then allowed

for a more iterative development methodology. In a first stage, the PreX prototype was

implemented implemented for offline prediction of exceptions, performing offline valida-

tion and returning to the implementation stage to adjust the prototype. Once offline

prediction has reached a mature state, the prototype can then be adjusted for online

prediction, using another implement-validate-implement iterative cycle.

This adapted waterfall model allowed for a strong focus on theoretical aspects of PreX,

providing the foundation for a solid model with promising applicability to real-world
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Figure 6.1: Project development methodology for PreX.

scenarios. Once this model had been fully defined, the two-phase implementation using

iterative development allowed for regular (e.g. weekly) evaluation of the project progress,

as well as easy adjustments. A traditional waterfall approach would, for example, only

validate the online model. This would delay validation and make adjustments to the

implementation harder, since it would comprise much more functionality and lines of

code. Thus, this methodology combined the robustness of a well-thought model design

process with the benefits of quick development, testing and validation processes. In

addition, since online prediction involves the execution of the preventive actions, this

division in two-stages clearly separated prediction from reaction to prediction.

In the first semester, the work on PreX produced one published article [82]. The develop-

ment plan used during that semester can be seen in Figure 6.2, as a Gantt chart. Work

was mostly focused on surveying the literature and development of the PreX model, as

well the overall architecture of the solution.

Figure 6.2: Development plan (Gantt chart) used during the first semester.
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In the second semester, work mostly focused on the implementation of the PreX archi-

tecture with a prototype, as well as its final validation. This was done in the aforemen-

tioned two stages: first, using offline prediction and, afterwards, using online prediction

and preventive actions. In this semester, the PreX model was implemented and validated

with two experiments (detailed in chapter 5) and a simulation (detailed in section 3.7),

producing different journal articles (see Appendix A).

The work carried out during the second semester can be seen in Figure 6.3, as a Gantt

chart. In this chart, the secondment that took place in Brazil (see section 6.4) is also

highlightedl

Figure 6.3: Work carried out during the second semester, as a Gantt chart.

6.2 Risk Analysis and Contingency Plan

An important part of the development of the thesis involved carefully analysing possible

risks and devising ways to prevent them from happening or mitigating their effects. Since

this was a “High Risk, High Reward” research, a focus on early risk analysis was extremely

important. For this analysis, the several development stages were inspected, looking for

potential risks and analysing them according to a likelihood and impact scale. Each

risk was then assessed according to its potential impact on the thesis and probability of

happening. The impact is graded as Low, Medium or High, with Low implying that the

thesis is not greatly impacted by the risk, and High implying that if such risk happens the
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thesis may be strongly affected by it. The probability is graded in percentage intervals

[0, 25[, [25, 50[, [50, 75[ and [75, 100]. The results of this risk analysis can be seen in Table

6.1. For each of the determined risks, a set of mitigation and preventive actions were

developed, forming a contingency plan. These can be seen in Table 6.2.

Table 6.1: Risk analysis according to impact and probability

ID Risk Impact Probability

1 The model’s preventive capabilities might not offer any
advantages for developers, rendering its main premise worthless. Low [25, 50[

2 Real-world exception data may not be available, affecting model
validation and evaluation. High [75, 100]

3 The model’s predictive capabilities might not be sufficiently good
to justify its usage, limiting its preventive capabilities. High [25, 50[

4
The model involves the development of a distributed real-time
adaptive machine learning system, which may be too difficult to

implement and delay the thesis.
Medium [25, 50[

Four major risks were identified, two of which have a high impact on the thesis. Risk 1

concerns the model’s preventive capabilities, which might not offer any real advantage

to developers. If there is no use in acting on an exception before it happens, then the

premise of the model is flawed and there is little contribution that this thesis can provide.

In order to mitigate this risk, a simulation was developed that assessed the overall impact

of the model in a real-world system1. In addition, several revitalization strategies made

available by PreX were designed early on, to make sure that the model was viable. Risk 2

notes that if there is no real-world data available, then the model might not be properly

validated and evaluated. Since this risk has a high impact and probability, it is the one on

which most effort should be focused. Indeed, early during the development of the thesis

a mitigation plan was developed: if there were no data available, a set of real-world

experiments, with existing platforms, were to be developed, producing the necessary

dataset. Risk 3 notes that even if the model’s preventive capabilities are useful, they are

limited by its predictive capabilities. To mitigate this risk, a lengthy survey of the state

of the art in online failure prediction was conducted, with early preliminary experiments

answering the question “can we predict exceptions?”, showing that the model could offer

accurate predictions. Lastly, Risk 4 is the only one regarding implementation details.

Since this model involves developing a distributed system capable of learning, adapting

and making predictions in real-time, at the same time having to be tightly integrated

with an existing language and the existing exception handling model, it could happen

that it would be too difficult to implement. In order to prevent such difficulty from

arising, the PreX architecture was carefully planned in the initial stages of the project,

so that major implementation roadblocks were caught early on and avoided.
1If it was verified that the model was not useful, then the focus of the thesis would have to be changed.
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Each of the mitigation/prevention plans devised were essential in the development of

the thesis. For example, by acknowledging that real-world data would probably be

lacking, an initial focus on preliminary experiments resulted in a published paper [82].

Similarly, the early focus on PreX’s architecture significantly reduced its implementation

complexity and, indeed, the final implemented architecture bears a high resemblance with

the designed architecture.

Table 6.2: Mitigation and Prevention actions for each of the identified risks

ID Risk Mitigation/Prevention Plan

1
The model’s preventive capabilities might
not offer any advantages for developers,
rendering its main premise worthless.

Perform a simulation experiment
to validate the preventive

usefulness; design preventive
actions made possible through
PreX early during the thesis

2
Real-world exception data may not be
available, affecting model validation and

evaluation.

Plan and execute real-world
experiments with existing
platforms (e.g. Shopizer).

3
The model’s predictive capabilities might
not be sufficiently good to justify its usage,

limiting its preventive capabilities.

Survey state of the art in online
failure prediction and perform
early preliminary experiments.

4

The model involves the development of a
distributed real-time adaptive machine

learning system, which may be too difficult
to implement and delay the thesis.

Design a solid and robust
architecture very early.

6.3 Publication plan and milestones

The thesis was developed with a publication plan and a set of milestones in mind. The

goal was to publish at least a paper in a conference and one in a high-impact journal. As

the semesters progressed, these goals were adapted to include other publishing milestones.

The conference paper was submitted, accepted, and published [82] in the WorldCIST’16

conference held in Recife, Brazil. This conference was chosen after analysis of several

conferences in the area of software engineering and/or failure prediction which were

accepting papers during the first semester. The main conferences in the areas of software

engineering and/or failure prediction were surveyed during the first semester, at the end

of October, with the intent of submitting an article during the month of November. This

would allow for quick feedback on the main research ideas behind PreX.
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After the conference paper had been published, a set of additional publishing milestones

were defined2. In total, the following milestones were used as guidelines for the thesis

work:

• (1st milestone, reached) November: Submission of short-paper or preliminary

results paper to a conference. This paper has been published [82].

• (2nd milestone, reached) April: Submission of a full-paper to a journal with

a validation of the full model on real-world data. This paper has been submitted

[83].

• (3rd milestone, reached) May/June: Submission of a full-paper to a journal

with a validation of the preventive model’s usefulness. This paper has been sub-

mitted [84].

• (4th milestone, ongoing) July: Submission of a full-paper to a journal with a

validation of the of the full, generic, implementation of PreX, possibly in the are

of security. This paper is under development.

As a result of these milestones, in addition to the article published in the WorldCIST

conference, an article was submitted to the Journal of Systems and Software3 [83], an-

other article was submitted to the Advances in Knowledge and Information Software

Management journal [84] and, lastly, a final paper is still being prepared, detailing the

full implementation of PreX. All of the published and submitted (under the process of

peer-revision) papers can be seen as Appendixes to the thesis. Note that the last mile-

stone is still ongoing, and a new journal article is still being written for submission during

July.

6.4 Secondment in Brazil

As part of a collaboration with the Universidade Federal de Alagoas (UFAL) in Maceió,

Brazil, some of the research in this thesis was done during a one-month secondment

in Maceió in the context of the DEVASSES project. During this stay, we collaborated

with professor Baldoíno Fonseca dos Santos Neto and his research team, presenting our

work and providing feedback and suggestions on their research. The research team also

provided valuable feedback for this thesis.
2It should be noted that one of these milestones (set in May/June) was the outcome of an invitation to

submit an extended version of the WorldCIST’16 paper to the Advances in Knowledge and Information
Software Management journal.

3This journal was chosen after a survey of several top-tier journals where the research in this thesis
could be published.
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The secondment took place between April and May, 2016, partially overlapping with

the date of the WorldCIST’16 conference, allowing for the presentation of the published

article. Most of the experiments presented in chapter 5 were done in Brazil.

6.5 Teaching at the University of Coimbra

Parallel with the thesis, during the second semester, work was also done as a monitor for

the “Acertar o Rumo” programme of the University of Coimbra. This involved weekly

classes of 3 hours with a class of 22 students for the “Programação Avançada em Java”

course. There were a total of 16 classes.

This experience, in parallel with the research work being developed and the secondment

in Brazil, helped develop academic, research and teaching skills, ultimately helping the

development of the thesis.





Chapter 7

Conclusions and Future Work

PreX is a new Exception Handling model that defies nowadays’ Exception Handling

preconceptions. Current research in exception handling and online failure prediction

shows that a fine-grained system for predicting exceptions is currently missing. Instead

of catching exceptions, this model proposes that the system, as a whole, actively work

towards predicting and preventing exceptions. Applications can then be more resilient,

robust, reliable and have increased performance.

In this thesis, we presented PreX as a new preventive model and offered its first imple-

mentation, made publicly available at https://github.com/Jorl17/prex. The model

was validated with different experiments and a simulations.

The results show that PreX, as a model and, in particular, as implemented in this thesis,

can be a useful tool to increase the reliability of systems. It is easy to integrate the

model into an existing Java project without drastically changing the layout of try-catch

blocks. A GUI tool is supplied to allow easy interaction with the system. The real-world

experiments performed with this implementation and the open-source Java e-commerce

Shopizer solution showed that exceptions could be dramatically reduced (by an order

of magnitude), with reduced impact in performance. This solution is an inexpensive

way of increasing reliability of services, which would ordinarily be increased with higher

monetary costs (e.g. by adding replication).

The thesis also shed some insight into ideal (T, k, t) parameters of the proposed failure

prediction method. It is clear that high values of k hinder training time and prediction

accuracy, although small values might offer the benefit of more temporal information.

The values of T are also subject to a problem-dependent sweet-spot and should be

carefully examined by system administrators looking to use this model. The new model

offers new tools for developers: not only can they proactively use some of their existing
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recovery techniques, but they can also employ new techniques made available before

an exception happens. These new tools allow for more reliable systems, built with a

proactive and self-aware environment.

PreX was fully validated. Its predictive capabilities were validated with two distinct

experiments, whereas its preventive capabilities were validated both with a simulation

and with a real-world scenario. The main goal of this thesis was, thus, achieved: a new

model was proposed, implemented and fully validated, demonstrating its usefulness as a

new tool for application developers.

The implementation presented in this thesis is only the first implementation of the pro-

posed model. There is room for much future work. There are other scenarios where it

can be applied, particularly in the security domain, where it is useful for applications to

selectively shutdown only part of their services if they detect an attack, instead of block-

ing clients or temporarily denying all access. All of the experiments in this work focused

on a value of t = 1 to validate the usefulness of the model. However, now that PreX was

shown to be useful, work can continue on other values for t = 1 (i.e. how reliably can

the lead-time be increased with higher values for t?). The current implementation used

a range of different classifiers (16), but there are certainly other classifiers and parame-

ter configurations which could be explored as future work. It would also be interesting

to deploy PreX in an enterprise environment and evaluate its impact in more “realistic

scenarios”. Finally, while our experiments focused mostly on exceptions within windows

of 5-15 seconds, it would be interesting to validate the model on much larger timescales,

where it might be shown that higher values of k offer benefit in this scenario.

On a more personal level, this year was marked by many professional experiences. I con-

tinued my research in the area of NoSQL systems and worked on the PreX model and

its implementation, facing many fascinating design challenges and decisions. During this

time I took a one-month secondment in Brazil, where I had the opportunity of collab-

orating with wonderful colleagues and professors who provided feedback and additional

insight into this thesis. I also had the pleasure of interacting with highly motivated

students during weekly classes as a monitor in the “Acertar o Rumo” programme. All

of these activities worked together to keep me motivated and learning something new

everyday, which I am extremely grateful for.
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Publications during the

development of the thesis

A.1 Publications

• João Ricardo Lourenço, Bruno Cabral, and Jorge Bernardino. A predictive

model for exception handling. In Proc. of the 16th World Conference on

Information Systems (WorldCIST), 2016 (upcoming).

• João Ricardo Lourenço, Bruno Cabral, Jorge Bernardino and Marco Vieira. Com-

paring NoSQL databases with a relational database: performance and

space. In International Journal of Big Data, 2016 (upcoming).

A.2 Submissions (under revision)

• João Ricardo Lourenço, Bruno Cabral, and Jorge Bernardino. A predictive

model for exception handling. Submitted to: Journal of Systems and Soft-

ware.

• João Ricardo Lourenço, Bruno Cabral, and Jorge Bernardino. Predicting and

preventing exceptions for increasing reliability. Submitted to: Advances in

Knowledge and Information Software Management.
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Preliminary Experiments

To demonstrate that PreX is a feasible model, some preliminary experiments with the

TPC-W benchmark were conducted in the first semester. These experiments only in-

tended to validate the main principles of the model, and did not involve a full imple-

mentation of PreX as specified in previous sections.

The TPC-W benchmark [85] simulates the activities of a retail store Web site. It defines

a set of 14 user transactions that are either of browsing or ordering types. TPC-W

has a workload generator that emulates the behavior of users according to pre-specified

configurations. In our experiments, the connection pool of the TPC-W server was ex-

hausted due to the overload of clients, resulting in NullPointerExceptions in several

different sections of code. Using failure prediction methods, we attempted to predict

these exceptions.

In the following sections, a description of the preliminary experiments is given. These

experiments were performed offline, using only a limited portion of PreX’s architecture.

B.1 Experimental Setup

The setup consisted of three virtual machines running the Crunchbang Linux distribu-

tion (Irrera et al. [47] showed that virtualization did not significantly influence failure

prediction results). The three machines were allocated with 1 GB of RAM and a single

virtual CPU core. They communicated through local network bound to the host ma-

chine. One of the machines ran the TPC-W Server, the other the MySQL database,

and the third the TPC-W load-generator. In this third machine, a custom-built data

gathering tool was placed, sampling data at the rate of 100 samples per second. The
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full list of variables is presented in Section B.2. The experimental setup can be seen in

Figure B.1.

Figure B.1: Experimental setup of the preliminary experiment.

B.2 Variables used for prediction

The experiments used a custom-built Java data gathering tool developed on top of the

System Information Gatherer And Reporter (SIGAR)1 library. This library is cross-

platform and exposes functionality through Java bindings, making it ideal for quick

development and integration with the Java language. In total, 49 variables were sampled,

regarding CPU, Memory, Network, Disk, JVM and system statistics. The full list of

sampled variables can be seen in Table B.1. Since the Null Pointer exceptions were being

caused by connection pool exhaustion in the TPC-W Server, many variables associated

with network were sampled.

B.3 Data preprocessing

The SIGAR library does not always provide values for some of its variables, leading to

missing values. In these preliminary experiments, these were replaced with the previous

recorded value at run-time by our Java application. In future PreX versions, a proper

missing value imputation method will be used.

After recording several golden-runs (executions with no failure), as well as several execu-

tions with failure, the final data was passed to a pre-processing window-based algorithm.
1https://github.com/hyperic/sigar.

https://github.com/hyperic/sigar
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Table B.1: Full list of variables sampled for the preliminary experiments

Variable Type Subsystem

CPU Usage (%) float CPU

Memory Usage (%) float Memory

Swap Usage (%) float Memory

Total Swap int Memory

Open Connections int Network (TCP)

In Errors int Network (TCP)

In Segments int Network (TCP)

Out Segments int Network (TCP)

Retransmitted Segments int Network (TCP)

Attempt fails int Network (TCP)

Established connections int Network (TCP)

Established connection resets int Network (TCP)

Passive opens int Network (TCP)

RxBytes int Network (Interface)

RxDropped int Network (Interface)

RxErrors int Network (Interface)

RxFrame int Network (Interface)

RxOverruns int Network (Interface)

RxPackets int Network (Interface)

Interface Speed int Network (Interface)

TxBytes int Network (Interface)

TxCarrier int Network (Interface)

TxCollisions int Network (Interface)

TxDropped int Network (Interface)

TxErrors int Network (Interface)

TxOverruns int Network (Interface)

TxPackets int Network (Interface)

Available free bytes int Disk

Total Free bytes int Disk

Total Number of Bytes int Disk

Disk Queue int Disk

Number of disk reads int Disk

Number of disk writes int Disk

Disk Usage (%) float Disk

JVM Major Faults int Monitored Process JVM

JVM Minor Faults int Monitored Process JVM

JVM resident memory int Monitored Process JVM

JVM shared memory int Monitored Process JVM

JVM total memory int Monitored Process JVM

JVM Number of Threads int Monitored Process JVM

JVM Open File Count int Monitored Process JVM

JVM Heap Usage int Monitored Process JVM

Number of Idle Processes int System Processes

Number of Running Processes int System Processes

Number of Sleeping Processes int System Processes

Number of Stopped Processes int System Processes

Number of Threads int System Processes

Number of Zombie Processes int System Processes

Total Number of Processes int System Processes
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This algorithm involved the two stages of PreX’s feature set construction algorithm

described in Section 3.5.4: (i) time-window construction and (ii) window-merge. This

algorithm has three configurable parameters:

• T : The size of each time-window within which data is summarized with the mean,

standard deviation, maximum, minimum and the derivative in the time-window

construction step.

• k: The number of time-windows to merge in the window-merge step.

• t: The number of time-windowss to “look-ahead” for prediction and label assign-

ment during the window-merge step.

The ideal values of these parameters is impossible to know a priori, with some values

leading to better predictions than others. These values also affect the lead-time (∆tl)

and data validity time (∆td), since ∆tl = t×T and ∆td = T × k. Thus, it is valuable to

test several combinations of these parameters. To this end, a lead-time of 10 seconds with

t = 1 was selected. 10 (seconds) is a “sensible” value to predict this kind of exception and

allow for potential counter-measures, such as reducing the rate of requests. In addition,

by choosing t = 1, the data used for prediction is the one closest to the exceptions

themselves, which might provide better results. Future experiments involving t 6= 1

would allow to truly assess the impact of this parameter.

Thus, several different parameter combinations were tested, leading to different datasets

used for classification. The full list of tested values can be seen in Table B.1. Note also

that, since there are 49 variables, each time-window contains 49×5 = 245 variables/fea-

tures.

Table B.2: All combinations of variables used in the preliminary experiments

T (Time-Window size) k (Number of merged windows) t (number of windows to look-ahead)

1000 ms 10 1
2000 ms 5 1
2500 ms 4 1
5000 ms 2 1

B.4 Classifier Selection

The experiments were done using the WEKA2 toolkit, specifically, the Weka Knowledge

Explorer Graphical User Interface. The dataset was very large, with some combinations
2http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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of parameters yielding as much as 2450 features. Since it was not the focus of these

preliminary experiments, no data reduction or feature selection was performed. This

combination of factors limited the availability of some classifiers, which took too much

time to train on the datasets of as much as 3030 instances.

As these are the first experiments with PreX, a decision was made to mostly try different

kinds of classifiers. Thus, the following WEKA classifiers were selected:

• J48: An implementation of the C4.5 algorithm used for building decision trees

[86].

• RandomTree: A decision-tree classifier built withK randomly selected attributes

at each node. Fast to train, should not achieve particularly good results, useful for

baseline comparisons.

• Logistic: An implementation of a modified version of Cessie and van Houwelin-

gen’s [87] multionomial logistic regression model.

• Naive Bayes: A Naive Bayes classifier using estimator classes. Numeric estimator

precision values are chosen by WEKA based on analysis of the training data.

• SMO: An implementation of John Platt’s sequential minimal optimization algo-

rithm for training a support vector [88] classifier.

The default WEKA parameters were chosen for all classifiers, as precise parameter choie

is reserved for future work.

B.5 Dataset Generation

The data were generated by executing a modified version of the TPC-W framework.

The TPC-W framework allows for a certain number of clients, Remote Browser Emu-

lators (RBEs) to be configured. A high number of RBEs leads to quicker Null Pointer

Execeptions because the connection pool is exhausted faster. In addition, low values

might not lead to any exception at all. Thus, the number of RBEs is also a parameter

worth investigating. However, since PreX should be flexible and work under different

environments, it was decided that data would be gathered for different RBEs and fed

to the classification algorithm regardless of the number of RBEs. The classifiers should

then, hopefully, be more than general than if experiments were limited to a fixed number

of RBEs, at the possible cost of classification accuracy.
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The experiments were done twice and at different times. The idea was to assess the

impact of different system characteristics on the classification process. A classifier could

be trained for the first batch of experiments and then tested on the second batch, and

vice-versa. If each of the two datasets had be generated in consecutive executions of

the TPC-W framework, data within each dataset could implicitly be skewed by the

system characteristics at that point in time, leading to corresponding skewed results and

classifiers – it is therefore interesting to assess the performance of classifiers trained with

one dataset and validated with the other, generated at different times.

An initial empirical analysis of the relationship between exception occurrence and the

number of RBEs was performed by gradually increasing the number of RBEs until ex-

ceptions started happening. A value of 400 RBEs was found to occasionally lead to

exceptions, with successive increases leading to faster and faster exceptions. Using this

original empirical analysis, and looking to gather data regarding both failure and failure-

free executions, the experiments were executed for the following 9 numbers of RBEs:

400,500,600,700,800,900,1000,1100,1200. At 1200 RBEs, exceptions were almost always

triggered. However, when the experiments were done a second time, the impact of the

different system characteristics was instantly noticeable, leading to exceptions much ear-

lier in the process. As a result, for this second run, executions started with the number

of RBEs set to 200.

For each of these values of RBEs, 30 different executions were required, so as to gather

more data and attenuate possible outliers in the data. Thus, for example, for the first

dataset, a total of 270 (9 × 30) executions were monitored. TPC-W executions where

no exception was registered were stopped after 3 minutes, since it was verified that

exceptions were never triggered after this time.

In summary, two datasets were generated at different times, under different system char-

acteristics3. Each of these datasets consisted of about 270 TPC-W executions (with 9

different numbers of RBEs), including golden-runs and failure runs. The two datasets

shared clearly different characteristics, as a simple ad-hoc analysis of the data showed.

Once the TPC-W executions had been finalized, the data was processed in Matlab, with

the aforementioned data preprocessing steps, and validated in two different ways: using

10-fold cross validation, and training with the first dataset and validating on the second.
3The second dataset was generated after the virtual machines had been used for day-to-day routines,

such as web-browser and software development.
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B.6 Results

Table B.3 presents the results for both datasets using 10-fold cross-validation 4. FNR

stands for False Negative Rate and FPR stands for False Positive Rate. Both of these

values are given as a percentage. The former measures the exceptions that were not

correctly predicted by the classifier, whereas the latter measures situations where excep-

tions were incorrectly predicted. In the case of PreX, FNR is of much more value, since

false negatives lead to exceptions, whereas false positives might only induce corrective

action without it being necessary.

Table B.3: Preliminary results for the two datasets using 10-fold cross-validation.

Classifier
J48 Logistic NaiveBayes RandomTree SMO

Dataset T k FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR
1 1000 10 46.88 0.27 15.625 0.55 6.25 3.07 62.5 0.59 15.625 0.17
1 2000 5 20.97 0.17 14.512 0.51 4.84 1.35 17.75 0.48 1.61 0.13
1 2500 4 14.46 0.24 8.434 0.55 2.41 4.42 20.49 0.52 6.03 0.13
1 5000 2 25 0.68 25 1.71 0.83 13.4 25.83 1.03 25.83 0.13
2 1000 10 16.13 0.25 19.36 0.88 9.68 0.87 32.25 0.75 6.445 0.37
2 2000 5 11.37 0.186 20.45 1.43 6.82 4.35 25 0.43 18.18 0.31
2 2500 4 9.80 0.186 N/A N/A 7.84 1.87 9.81 0.43 1.96 0.19
2 5000 2 25 1.11 27.5 2.48 1.25 8.882 25 1.30 26.25 0.12

The results show that, using 10-fold cross-validation, a Naive Bayes classifier produced

the best false negative rate of 0.83% and a false positive rate of 13.4%. In other words,

the algorithm only failed to predict failures 0.83% of the time, and inaccurately predicted

a failure 13.4% of the time (note that the authors of [25] think that such a value, in their

work, would be “too high”). This result was achieved for T = 5000 and k = 2. In

general, most classifiers5 become better at predicting exceptions for lower values of k

and higher values of T . This should be further focused on in future work, but it might

be due to smaller feature vectors and, thus, better training. Note that the best classifiers,

regardless of the combination of T and k, seem to be NaiveBayes and SMO. Additionally,

note that, again, the best results for the second dataset are achieved for T = 5000 and

k = 2, using the same WEKA classifier (NaiveBayes).

These values encouraged future work which became part of this thesis. Although prelim-

inary, they showed that it is possible to predict exceptions with a lead-time of 10 seconds.

However, as we have noted before, an additional validation step was performed, where

classifiers were trained on one dataset and validated on another. Table B.4 presents

these results. The first column indicates which dataset was used for training (the other

one being used for validation). Unfortunately, the training process for this validation
4The data for the second dataset using the Logistic classifier is missing, symbolized by the use of

“N/A”.
5With the exception of the RandomTree classifier, which selects random features.
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proved too computationally expensive and, thus, there are many results which could not

be computed in time. These are marked with DNF (Did Not Finish).

Table B.4: Preliminary results for the two datasets using one dataset for training and
the other for validation.

Classifier
J48 Logistic NaiveBayes RandomTree SMO

Dataset T k FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR
1 1000 10 51.61 0.18 100 0.55 DNF DNF 41.93 0.12 25.81 1.06
1 2000 5 18.18 0.43 DNF DNF DNF DNF 9.09 0.48 0 73.54
1 2500 4 9.80 0.12 DNF DNF 1.45 41.18 74.5 0.52 100 0
1 5000 2 45 0.12 DNF DNF DNF DNF 22.5 1.03 DNF DNF
2 1000 10 15.62 8.99 100 0 DNF DNF 68.75 0.75 100 0
2 2000 5 32.25 2.97 0 100 30.65 5.44 52 0.43 0 100
2 2500 4 13.25 1.80 N/A N/A 25.4 2.55 35 0.43 100 0
2 5000 2 100 0.21 0 100 24 7.01 30 5.15 0 100

These results give us valuable insight. The original results were clearly a consequence

of overfitting to the particular system state and characteristics. In particular, the SMO

classifier, which was one of the best classifiers in the previous results, now presents false

negative rates of either 0% or 100% indicating that the classifier always classified the

data as belonging to only one class. The best result, for the SMO classifier, is a false

negative rate of 25.81%. In general, most classifiers show worse performance under this

scenario, but the best result is still achieved by a NaiveBayes classifier, with a false

negative rate of 1.45 for T = 2500 and k = 4 when training with the first dataset and

classifiying with the second. However, when the datasets are swapped, the false negative

rate drops to 25.4%. In addition, the 1.45 false negative rate had a corresponding false

positive rate of 41.18%, which is excessive for practical scenarios.

The J48 classifier achieves a false negative rate of 9.90% for T = 2500 and k = 4,

while maintaining a very low false positive rate (0.12%). If the datasets are swapped,

the results are similar, with a false negative rate of 13.25% and a false positive rate of

1.80%. Thus, this seems to be the best result using this form of validation. In fact, the

J48 classifier seems to produce the best results. The NaiveBayes classifier also produces

results which fail to predict at most 31% of exceptions.
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Abstract. The exception handling mechanism has been one of the most
used reliability tools in programming languages for over four decades.
Nearly all modern languages have some form of “try-catch” model for
exception handling and encourage its use. Nevertheless, this model has
not seen significant change, even in the face of new challenges, such
as concurrent programming and the advent of reactive programming.
As it stands, the current model is reactive, rather than proactive —
exceptions are raised, caught, and handled. We propose an alternative
exception handling model — PreX — where exceptions are no longer
caught but, rather, predicted and prevented. Online Failure Prediction
techniques generally work at a very high level, showing potential for pre-
diction of program crashes. However, these techniques have never been
at the hands of the programmers as an effective tool to improve software
quality. By applying recent advances in Online Failure Prediction, PreX
aims to fully prevent exceptions, bringing failure prediction techniques
to a much more fine-grained level that the programmer can control. Pre-
dicting exceptions enables a range of preventive measures that enhance
the reliability and robustness of a system, offering new revitalization
strategies to developers.

Keywords: Exception Handling, Online Failure Prediction, Self-Healing

1 Introduction

The Exception Handling (EH) mechanism was proposed by Goodenough [1] and
has been one of the most used reliability tools in programming languages for
more than four decades. This model has gone unchanged, even in the face of
concurrent software and programming languages for multi-core platforms (e.g.
Scala, Erlang and Elixir). Thus, the sequential Exception Handling model re-
mains the preferred Exception Handling model [2].

However, the ubiquity of the Exception Handling mechanism for error re-
covery does not imply its most correct or desirable usage. Most of the time,
developers use EH language constructs as a way of hiding problems, performing
log activities or informing the user of unexpected behavior, rather than recov-
ering from it autonomously [3]. This kind of use of EH might be considered a
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symptom of a design flaw in the mechanism – the system only acts when it is
too late, thus making the problem unavoidable.

In this paper, we propose a new approach to Exception Handling, by pro-
viding the means for developers to act on an exception before it happens, thus
broadening the range of their revitalization strategies. The approach reshapes
the concept of “try-catch” blocks, so that programmers can be alerted of potential
exceptions within a given time frame and take some action, much like in the con-
ventional Exception Handling mechanism. This new approach is called Preven-
tive Exception Handling (PreX), and applies the methods and techniques
of the Online Failure Prediction field to the lower-level concepts of programming
languages, thus empowering programmers to act proactively. PreX introduces a
new model for Exception Handling, with the goal of being easy to use, practi-
cal, and a successful integration of the fields of Exception Handling and Online
Failure Prediction, as well as the first to act on potential exceptions before they
have happened – errors are avoided, rather than handled. In contrast to Online
Failure Prediction, which operates on a much higher level of abstraction, PreX
allows programmers to produce code that is aware of possible predictions during
its execution, so that very fine-grained solutions for exception prevention and
reaction to potential exceptions can be applied. By acting on exceptions before
they happen, developers get an increased range of techniques for dealing with
exceptions. Thus, while traditional Exception Handling techniques can still be
used, there is potential for new and hopefully more efficient strategies.

To illustrate the motivation for this new model, consider a system consisting
of at least a database and several client applications. Consider also that these
client applications are write-heavy, meaning they processes several thousands of
write operations per second, sending them to the database. Due to the heavy
load, the database may slowly become unresponsive and ultimately trigger a
ConnectionTimeout exception on one of the applications. That application will
then have to attempt to reconnect, and restart where it was previously, if such
is really possible. This shows the aforementioned downfall of the conventional
Exception Handling mechanism – the system only reacts to exceptions, it does
not prevent them. Our motivation stems from this issue – we believe that the
client applications would benefit from a prediction (i.e. a warning) that the
database may trigger a ConnectionTimeout exception. With such a warning,
they can, for instance, proactively slow their execution rate and prevent the
exception from happening. Ultimately, slowing execution down could prove to
be more efficient than triggering the exception and restarting the whole process.

The main contributions of this work are as follows: a) explanation of the need
for a paradigm shift in Exception Handling; b) proposal of a new model for pre-
ventive handling of exceptions; c) presenting results that evidence the feasibility
of the proposed model in the prediction and handling of likely exceptions.

The remainder of this paper is structured as follows. Section 2 presents back-
ground in Exception Handling models and mechanisms and Online Failure Pre-
diction. Section 3 details the proposed model. Section 4 presents preliminary
results of the model. Finally, Section 5 contains our conclusions and future work.
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2 Background and Related Work

Exception Handling separates the operation domain into two distinct domains:
the operation’s standard domain, and the operation’s exceptional domain. Nor-
mal program flow, absent of errors, is contained in the standard domain. If an
exception or error condition is encountered, an exception is raised, followed by
the invocation of an exception handler, that, in theory would deal with the
abnormal condition and correct it. This invocation is done by a signaller (i.e.
callee). An Exception Handling Model defines the interaction between the sig-
naller and its handler. An Exception Handling Mechanism defines the language
constructs within a programming language to express a given Exception Han-
dling Model. [4]. In this section, we give an overview of the classical and current
Exception Handling models and their limitations.

2.1 Exception Handling Models

Yemini et al. [5] identified four distinct Exception Handling Models, summarized
in [6]:

– Resumption model – When an exception is raised, the control flow is
transferred from the raise point to the handler and, after the exception has
been handled, it is transferred back to the raise point. This model effectively
binds the caller and the callee together and is prone to recursive resumption,
thus being difficult to implement [6].

– Termination model – An exception is raised within a protected block,
with the control flow transferred to the handler, terminating any intervening
blocks. The control flow then resumes as if the protected block terminated
without any errors. This is the most widespread model in use [6].

– Retrying model – The signaller is invoked after some operation has been
made. This model is more appropriate to transient faults, where retrying
the invocation might lead to no exceptions. The main disadvantages of this
model are its inherent implications for non-idempotent operations, counters,
etc – the programmer must be wary of how the code executes.

– Nonlocal transfer – The program flow can be transferred to any other
location in the program. This model has the obvious drawback of being hard
to maintain and much more error-prone [6].

Modern advances in Exception Handling, such as concurrent exception han-
dling or alternative models in the context of the actor model and Functional
Reactive Programming, still share a common characteristic with these classi-
cal models – an exception is raised, and only then can corrective actions hap-
pen. This, unfortunately, means that many incorrect uses of Exception Handling
Mechanisms arise, with programmers focusing on hiding errors, rather than at-
tempting to fix them [3]. PreX intends to shift the current practice and allow
programmers to act before problems arise.
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2.2 Failure Prediction

Recent trends in industry and academia have triggered a shift to new efforts
on autonomic computing, trustworthy computing, recovery-oriented computing
and other techniques for proactively handling failures. Several techniques have
been proposed and used with success, to an extent, in Online Failure Predic-
tion systems. Salfner et al. [7] present a lengthy survey and taxonomy of online
failure prediction systems. In their work, these authors explain how Liang et
al. [8] explored temporal and spatial correlation to successfully predict hard-
ware component failures in IBM’s BlueGene/L. Cheng et al. [9] presented an
approach for failure prediction within a high availability cluster system. They
showed that they could improve the availability due to accurate prediction and
recovery mechanisms (backup nodes and system administrator notifications). Vi-
lalta et al. [10] propose the eventset method, using a data mining approach (a
rule-based model). Under specific conditions, they have a false negative error
of only 0.16, although this value can be as extreme as 0.83 under other system
conditions (false positives are always lower than 0.1).

These and other results show that Online Failure Prediction can be success-
fully used to predict failures. However, little work has been done for predictions
at a more fine-grained level. Predictions are usually made at the system level,
at most predicting a generic “crash” of some component. Thus, while promising,
these techniques have no practical use for developers who wish to provide spe-
cific counter-measures when faced with the possibility of an exception. In this
sense, some work has been done in the field of self-healing systems. For example,
Magalhães and Silva [11] propose a general self-healing proactive framework for
web-based applications. Their work introduces a general framework to create
self-healing transactional web-based systems. The framework, although operat-
ing at a lower level than traditional Online Failure Prediction methods, does not
support run-time notifications at code-level nor operate at the fine-grained level
that might be desired for applying more efficient preventive measurements.

3 A New Model for Exception Handling – PreX

PreX is an Exception Handling model that focuses on preventing exceptions
rather than catching them. The central idea was depicted with the example given
in Section 1: it could be more efficient to temporarily reduce the throughput of a
write-heavy application than to catch a ConnectionTimeout exception and have
to restart the process. We believe that there are other scenarios, similar to this,
where systems and developers would benefit from an easy-to-use proactive model
for Exception Handling. We now present PreX. Note that this is not a formal
description of the model, such work is out of the scope of this article due to the
space limitation.

Preventing exceptions implies predicting them. To this end, the area of Online
Failure Prediction provides valuable insight. There have been successful failure
prediction systems, but these operate on a much broader level. In order to predict
exceptions, the proposed model needs to adapt failure prediction techniques to a
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per-exception basis. Furthermore, since no two systems are alike, the prediction
models will have to be trained for specific deployments. Thus, the PreX model
comprises different phases from development to successful prevention:

1. Coding phase. The programmer develops the application using a new set
of programming language constructs introduced by the PreX model. These
are similar to traditional try-catch blocks seen in several languages.

2. Training phase. In this phase, different machine learning algorithms are
applied (after feature selection, data pre-processing, etc), determining which
is the most applicable to the specific exception. Data is gathered for different
runs of the application, using resource monitoring facilities.

3. Detection phase. The application is deployed with the trained model and
executed. The model is used to detect potential exceptions. If the trained
model becomes ineffective due to changes in environment conditions, the
training phase might be required again. Alternatively, self-adapting pattern
recognition algorithms can be used.

4. Prevention phase. If an exception is predicted, the application can apply
preventive measures and try to avoid the potential exception from effectively
being raised.

In the following sections, each of these phases is detailed from the perspective
of the syntax and semantics of the model, followed by an overall perspective of
the architecture and the necessary components of PreX. Lastly, the behavior of
the system during its different phases is presented.

3.1 Syntax & Semantics

An example of the syntax of PreX is shown in Figure 1. Pseudo-code similar to
Java is used. A database connection is established to send a number of pending
writes (sent at line 15). PreX provides semantics similar to traditional try-catch
blocks, although two different constructs are added to the language: try { }-
prevent(){ }-catch(){ } and try{ }-prevent_async(){ }-catch(){ }. Additionally,
in PreX, predicting an exception does not necessarily terminate the execution of
code within the try block (as opposed to the termination model). Instead, exe-
cution is resumed as if the exception had not been predicted, because preventing
an exception should not halt normal execution of the current code.

If an exception is predicted, it can be handled in two different ways:

– Synchronously: execution within the try block is suspended and flow is
transferred to the prevent block. In normal circumstances, the execution is
then transferred back to the previous code within the try block.

– Asynchronously: execution within the try block continues normally, and
the prevent_async block is executed asynchronously.

Thus, the try block denotes the scope during which a program cares about
predicting some exception, the protected region. This exception may then be
predicted and raised synchronously. If the exception is not predicted or cannot be
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prevented, it is effectively raised by the code, and the traditional (synchronous)
Exception Handling model is used, with program flow being transferred from
within the try block to the catch block.

When using the synchronous approach, predicted exceptions are not raised
at just any point in time within the try block. Within this block, every program
statement will be executed without any interruption from the exception predic-
tion mechanism. The flow of execution only moves to the prevention handler
between statements, thus eliminating the need for propagation in the call stack.
Thus, unlike traditional Exception Handling models, PreX uses a static binding
approach, meaning that exceptions are not propagated. Instead, they are tied to
the handler of the try-prevent-catch or try-prevent_async-catch to which they
belong. Only the closest code, within the exact context of the particular excep-
tion, can know how to react to a specific prediction. If developers wish to prevent
the delivery of predicted exceptions during the execution of a set of statements,
a special no_interrupt keyword can be used to denote a new scope within which
interruptions are not possible. In Figure 1, lines 13-16 belong to one of these
scopes. In the asynchronous approach, as in the synchronous approach, excep-
tions are only delivered when the program flow is outside the protected block.
Thus, the no_interrupt keyword can act as a synchronization primitive between
the prediction asynchronous handler code and the code within the try block.

PreX allows programmers to periodically sample variables that they think
will be useful for prediction, in addition to system variables monitored with cus-
tom probes. For instance, the remaining number of operations left might be useful
in predicting connection timeouts. These variables can be supplied to the predic-
tion system at any time using the sample (<variable_name>,<variable_value>)
construct. Furthermore, since no two systems are alike, the prediction models will
have to be trained for specific deployments. In particular, note that, for instance,
ConnectionTimeout exceptions may be different depending on the workload (e.g.
“write-heavy” vs “read-heavy”) or the variables being provided by the program.
This motivates the need to distinguish different blocks of code and assign them
meaningful names. Thus, the try keyword requires an additional argument that
uniquely identifies the block of code that it encloses: try(<prediction context>).
Write-heavy blocks can then use try(“write-exceptions”), whereas read-heavy
blocks can use try(“read-exceptions”) to handle two completely different models
for the same kind of exception (ConnectionTimeout) under different contexts.
The argument of the try keyword is the prediction context. Several exceptions
can be predicted within the same prediction context, and a prediction context
binds training data and a prediction model to a unique name. An example of
this construct is in line 10 of Figure 1.

To train the model, the system administrator may specify which prediction
contexts he/she wants the program to be trained in during a training phase.
When in this training phase, no prediction mechanism is used in those prediction
contexts and exceptions can only be caught. Data with the sample keyword is
still fed to the training mechanism, and if the exception is raised and caught,
this training mechanism is notified to adapt its prediction models.
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Fig. 1. Example of PreX using synchronous try-catch-prevent.

3.2 Architecture

Within PreX, exceptions can be predicted using system-wide information. Sev-
eral entities can share information used for prediction (more data, when appro-
priately filtered, implies better predictions). An entity need not be an indepen-
dent machine on its own, and different entities might share the same machine.
There are three main kinds of entities within a system using PreX:

– Coordinator entities: A (potentially replicable) coordinator entity, respon-
sible for aggregating the data from the other two types of entities and running
the prediction system.

– Data gathering entities: These entities feed periodic samples of data (e.g.
memory and CPU usage) to the coordinator entities. Most of the prediction
data comes from these entities, which don’t execute any code that wants
to predict exceptions. The sampling rate for each of these variables is not
pre-determined and may vary according to system load and characteristics.

– Code entities: Whenever an application wants to predict exceptions (or
train that prediction), it spawns a code entity that connects to its coordinator
entity. Each code entity may want to register with the coordinator for a
certain kind of exception within a prediction context. These entities are then
notified whenever an exception of that kind has been predicted. It is the
responsibility of the code entity to raise the local exception within the code.

It is then clear that each try-predict-catch or try-predict_async-catch block
spawns a new code entity. The coordinator entity is responsible for running the
failure prediction methods for predicting exceptions. These can be selected a
priori by a system administrator during the training phase.

The behaviour of the code and coordinator entities is different during the
training phase. During this phase, the code entity registers that it will be sending
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data and information regarding a given prediction context and a given exception.
The coordinator then uses this data to train the model.

Since we are dealing with a distributed system, it is complex to generate
samples at the exact same time in every entity. For this reason, the coordinator
entity groups data within time windows. Precise information about when an
event (e.g. a data sample) happened is lost in favor of a more general interval
during which several events happened. This data can then be processed using
Online Failure Prediction methods such as those presented in [10], [12] or [13].

3.3 Behaviour

To illustrate the behaviour of PreX, Figure 2 depicts the interaction between
code, entities, and the prediction system for the code example in Figure 1 during
a prediction. Notice that the code uses the synchronous prediction model. In the
asynchronous prediction model, the no_interrupt keyword would not be allowed.
Also note that if the code was executed during the training phase, no exceptions
would be predicted, so sections c and d would not be entered.

Fig. 2. Interaction between code and entities through time for the code example in
Figure 1. For simplicity, in this example, the loop only runs once.
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4 Preliminary Results

We have conducted experiments with the TPC-W benchmark to demonstrate
that the proposed model is feasible in the prediction and handling of likely
exceptions. TPC-W simulates the activities of a retail store Web site. It has a
workload generator that emulates the behavior of users according to pre-specified
configurations. In our experiments, the connection pool of the TPC-W server was
exhausted due to client overload, resulting in different NullPointerExceptions.
Using failure prediction methods, we attempted to predict these exceptions.

The setup consisted of three virtual machines running the Crunchbang Linux
distribution (Irrera et al. [13] showed that virtualization did not significantly
influence failure prediction results). These were allocated with 1 GB of RAM
and a single virtual CPU core. They communicated through a local network
bound to the host machine. One of the machines ran the TPC-W Server, the
other the MySQL database, and the third the TPC-W load-generator. In this
third machine, a custom-built data gathering tool was placed, sampling data at
the rate of 100 samples per second. 49 variables were sampled, including CPU
load, open TCP connections, and number of running processes.

After recording several golden-runs (executions with no failure), as well as
several executions with failure, the final data was passed to a pre-processing
window-based algorithm (the dataset was filtered to contain a balance between
both kinds of runs). This algorithm involved two stages: (i) time-window con-
struction and (ii) window-merge. In the first, fixed time windows of size T , start-
ing at time t = 0 were created. For each of the 49 variables, samples within the
same window were condensed using the mean, standard deviation, maximum,
minimum, and derivative (rate of change). Thus, each window contained 245
variables (5× 49). The second step, window-merge, involved concatenating N of
the previously generated time-windows, appending them with a binary variable
indicating if a crash was recorded within the next group of merged windows.
In practice, each group of merged windows offers a time-to-failure prediction of
N × T . The final windows were then processed within Weka3 as a classification
problem. Empirically, we chose T = 5 s and N = 2, meaning a time-to-prediction
of 10 seconds. The experiments were done for a TPC-W simulation of a “slow”
and “fast” ramp up of users. This was done to assess if classifiers trained with one
set of data could still be accurate on different data within similar circumstances.

The results were promising – with 10-fold cross-validation, a Naive Bayes
classifier only failed to predict failures 1.52% of the time, and inaccurately pre-
dicted a failure 8.89% of the time. When this classifier was applied to data from
the “faster” ramp of TPC-W clients, the false negative rate was of 23.3%, whereas
the false positive rate was 7.01%. These results, although very preliminary, show
that prediction of exceptions is within our reach, and that such a model can
be useful for programmers – in this scenario, a time-to-prediction window of 10
seconds would allow the TPC-W clients to reduce their rate of requests, thus
preventing or delaying the exception.

3 http://www.cs.waikato.ac.nz/ml/weka/
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5 Conclusions and Future Work

In this paper, we have proposed a new Exception Handling model that defies
nowadays’ Exception Handling preconceptions. Current research in exception
handling and online failure prediction shows that a fine-grained system for pre-
dicting exceptions is currently missing. Instead of catching exceptions, this model
proposes that the system, as a whole, actively work towards predicting and pre-
venting exceptions. Applications can then be more resilient, robust, reliable and
have increased performance. Our preliminary results also show that it is possible
to predict exceptions, and that a paradigm shift towards prevention, rather then
reaction, is quite within our reach. As future work, we intend to develop a proof
of concept implementation of PreX in a modern programming language.
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Abstract

The exception handling mechanism has been one of the most used reliability tools in programming languages in the
last decades. However, this model has not changed much with time, in spite of advances in programming languages,
which include concurrent programming and a shift towards more reactive paradigms, the basic principle remains the
same - an exception occurs, and the mechanism reacts. We propose a new paradigm, inspired by Online Failure
Prediction (OFP), to predict exceptions and possibly avert them by triggering the execution of preventive actions.
The proposed model - PreX - is, thus, proactive, operating in a much finer-grained level than any other form of
online failure prediction. OFP has shown promising results in predicting failures at a higher level, but has never been
available to the developer, being mainly a system level technique. Thus, PreX will offer developers a new range of
revitalization strategies. In this work, we describe the model and evaluate its performance by applying it to a real e-
commerce solution, demonstrating how it is capable of predicting and preventing exceptions at run-time. Furthermore,
we also show that PreX increases the overall availability and performance of the system under the same conditions.

Keywords:
exception handling, proactive, failure prediction, self-healing, preventive, predictive

1. Introduction

The Exception Handling (EH) mechanism [1] has
stood as one of the most used reliability tools in pro-
gramming languages since the decade of 1980. Most
programming languages, such as Java, Python and C++,
provide some form of “try-catch” model for Excep-
tion Handling. Modern advances in exception handling
models, in particular due to multi-core platforms and
new programming languages (e.g. Scala, Erlang and
Elixir) still rely on the base assumption of classical
models – an error occurs and a handling routine can only
react to it after it has happened.

However, the ubiquity of the Exception Handling
mechanism for error recovery does not imply its most
correct or desirable usage [2]. Most of the time, devel-
opers use Exception Handling language constructs as a
way of hiding problems, performing log activities or in-
forming the user of unexpected behaviour, rather than
recovering from it autonomously [3]. This kind of use
of Exception Handling might be considered a symptom
of a design flaw in the mechanism – the system only acts
when it is too late, thus making the problem unavoidable
[3].

Recent work in the field of Online Failure Prediction
(OFP) [4, 5, 6] has shown that several techniques can
be successfully used to predict failures. Online Fail-
ure Prediction mechanisms act in run-time, providing
warnings and estimating failure probabilities according
to the characteristics of the running system. Even if
these systems have seen some success, they only pro-
vide a high-level approach to failure prediction, without
fine-grained control at the source code level [4]. There
has been some work [5, 7] on predicting failures of in-
dividual applications and components, but these are too
generic and only able of predicting task completion sta-
tus (success/error) [5] or generic component failures [7]
(e.g. memory failures). There is no lower-level Online
Failure Prediction mechanism that can notify programs
and applications of relevant, specific, and potential fail-
ures, such as a database timeout, instead of merely pre-
dicting the overall failure of the system or the exit status
of applications.

Online Failure Prediction mechanisms can be applied
at a lower-level, if integrated with the Exception Han-
dling mechanism, and provide tools for programmers
to act proactively in the face of potential exceptions,
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leading to an overall increase in software reliability and
robustness. For instance, by detecting that a database
timeout is imminent due to excessive workload, an ap-
plication can adjust its workload, preventing the failure
instead of failing and only afterwards triggering the fail-
ure handling strategy, thus reducing overall downtime
and increasing robustness, reliability and performance.

To further illustrate the motivation for this new
model, consider a system of at least a database and
several client applications. Consider also that these
client applications are write-heavy, meaning they pro-
cesses several thousands of write operations per second,
sending them to the database. Due to the heavy load,
the database may slowly become unresponsive and ulti-
mately trigger a ConnectionTimeout exception on one of
the applications. That application will then have to at-
tempt to reconnect, and restart where it was previously,
if such is really possible. This shows the aforemen-
tioned downfall of the conventional Exception Handling
mechanism – the system only reacts to exceptions, it
does not avoid them. The motivation for this work stems
from this issue – we believe that the client applications
would benefit from a prediction (i.e. a warning) that the
database may trigger a ConnectionTimeout exception.
With such a warning, they can, for instance, proactively
slow their execution rate and prevent the exception from
happening. Ultimately, slowing execution down could
prove to be more efficient than triggering the exception
and restarting the whole process. The new model, then,
could improve reliability at a fraction of the cost of other
approaches, such as vertical or horizontal scaling tech-
niques.

The new model reshapes the concept of “try-catch”
blocks into “try-prevent-catch” blocks, allowing pro-
grammers to write handling routines which will be
executed when an exception is predicted to happen.
These routines can contain programmer-written preven-
tive code, meant to prevent the exception, thus increas-
ing the overall reliability and availability of systems.
The preventive block is a shift from a reactive paradigm
– where it might be too late to react to the error – to
a proactive paradigm – where the program proactively
prevents exceptions and consequently might increase
performance.

Our experiments validate PreX on a real enterprise
e-commerce solution – the open-source Shopizer ap-
plication – showing that the use of this model can in-
crease system reliability and availability at a fraction of
the cost of other approaches. The results are extremely
promising, showing decreases in the number of excep-
tions by two orders of magnitude, leading to several
golden-runs where no exception happens, accompanied

by statistically significant (p < 0.01) increases in suc-
cessful operation throughput.

The remainder of this article is structured as follows.
Section 2 presents the state of the art in Online Failure
Prediction and the characteristics of current exception
handling models. Section 3 details the new preventive
model and its architecture. Section 4 presents the exper-
imental setup for the first the validation of this model.
The results are presented and discussed, as well as fu-
ture work possibilities, in Section 5. Finally, Section 6
presents the conclusions.

2. State of The Art

This section presents the state of the art in two dis-
tinct areas of research – exception handling models and
online failure prediction. In addition, it discusses re-
lated work in the field of self-healing systems. A brief
summary is presented at the end of the section.

2.1. Exception Handling Models
Yemini et al. [8] identified four distinct Exception

Handling Models, summarized in [9]:

• Resumption model – When an exception is raised,
the control flow is transferred from the raise point
to the handler and, after the exception has been
handled, it is transferred back to the raise point.
This model effectively binds the caller and the
callee together, and is prone to recursive resump-
tion, thus being difficult to implement [9].

• Termination model – An exception is raised
within a protected block, with the control flow
transferred to the handler, terminating any inter-
vening blocks. The control flow then resumes as
if the protected block has terminated without any
errors. This is the most widespread model in use
[9].

• Retrying model – The signaller is invoked after
the completion of some operation. This model is
appropriate to transient faults, where retrying the
invocation might lead to no exceptions. The main
disadvantages of this model are its inherent impli-
cations for non-idempotent operations, counters,
etc – the programmer must be wary of how the
code executes.

• Nonlocal transfer – The program flow can be
transferred to any other location in the program.
This model has the obvious drawback of being
hard to maintain and much more error-prone [9].
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Modern advances in Exception Handling, such as
concurrent exception handling or alternative models in
the context of the actor model and Functional Reactive
Programming, still share a common characteristic with
these classical models – an exception is raised, and only
then can corrective actions happen. This, unfortunately,
means that many incorrect uses of Exception Handling
Mechanisms arise, with programmers focusing on hid-
ing errors, rather than attempting to fix them [3].

To the best of our knowledge, our model is the first
proposal for a preventive exception handling model
which shifts the current practice and allows program-
mers to act before problems arise. However, Kim et
al. [10] propose a proactive approach to exception han-
dling within a business process. In their work, the au-
thors note that business processes often involve “human
exception handlers” that react to “exceptions”. They
conclude that there is a need for a proactive exception
handling which allows for action as soon as a business
process exception is “predicted”, and that this action can
be specified by an external agent (e.g. a system admin-
istrator) as a reaction to a prediction. Kim et al.’s work
is, thus, similar to the work presented in this article, but
differs significantly in the following key points:

• It concerns exceptions in a business process man-
agement context.

• It does not learn how to predict business process
exceptions. Instead, a system administrator can
build a set of rules similar to “X > Y”. Thus, the
prediction code is a set of rules determined from
experience, only dependent on business conditions
(i.e. this work cannot “predict” a database time-
out).

Nevertheless, the core concept of PreX is the same as
the concept seen in the work by Kim et al.: a shift from
reactive exception handling is needed, in favour of more
proactive behaviour. PreX focuses programming lan-
guages, and on systems which can use online failure
prediction mechanisms to “learn” exceptions indepen-
dently of human interaction.

2.2. Online Failure Prediction

In this section, an overview of current Online Fail-
ure Prediction methods is given, after some basic def-
initions have been presented. In this section, we start
by presenting the definitions used throughout this work.
Afterwards, we briefly describe the are of Online Fail-
ure Prediction and present several proposed and tested
methods.

2.2.1. Definitions
Throughout this work the following definitions are

used [11, 4]:

• Failure: A service failure, often abbreviated as
failure, is the event that happens when a service
deviates from correct operation. This may hap-
pen because it does not comply with its func-
tional specification or because the original speci-
fication does not adequately describe system func-
tion. Salfner et al. [4] note that a failure refers
to “misbehavior that can be observed by the user,
which can be a human or another computer sys-
tem”. In that sense, although “things might go
wrong” in a system, it does not constitute a failure
insofar as there is no deviation from correct ser-
vice.

• Error: An error corresponds to the part of the total
system state that may lead to a subsequent service
failure. Many errors never reach the system’s ex-
ternal state, hence do not cause a failure. Avižienis
et al. [11] further distinguish between undetected
errors and detected errors: An error can remain
unidentified until a detector identifies the incorrect
state.

• Fault: A fault is the “hypothesized cause of an
error”. In other words, it is its root cause. Of-
ten, faults remain dormant until they are activated,
leading to incorrect system state (an error) and, ul-
timately, might lead to a failure.

• Symptom: Errors might cause failures, but they
might also cause “out-of-norm” behavior as a side-
effect. For example, the system might operate with
expected results but do so with increased CPU us-
age or memory consumption. This behaviour is
called a symptom [4].

Online Failure Prediction can be summarized in Fig-
ure 1. A failure is to be predicted with some given
lead-time ∆tl, at current time t, based on the current
system state measured within a data window of length
∆td (which we call data validity time). This prediction
(e.g. fail/no fail, failure probability, etc) is valid during
a window ∆tp, called the prediction period.

A failure might not always be predicted in time. For
instance, if we predict an “out-of-memory” error within
2 seconds, but need 5 seconds to fully slow down our
process and prevent the error, then the prediction lead-
time will have been useless. Thus, there is a minimum
warning time, ∆tw, needed for a system to react proac-
tively to the failure prediction.
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The prediction period, ∆tp, is critical in online pre-
diction. If a value is too low, the prediction is prone
to fail many times, so higher values always increase the
amount of correct predictions. However, very large win-
dows make the prediction useless – it is not useful to
know that a system is going to fail somewhere between
today and five years.

Figure 1: Time relations in online failure prediction (Salfner et al.
[4]).

2.2.2. Prediction Methods
Salfner et al. [4] identified four distinct major

branches of methods in Online Failure Prediction: (i)
Failure Tracking, (ii) Symptom Monitoring, (iii) De-
tected Error Reporting, (iv) Undetected Error Auditing.

Failure Tracking methods use past failures to pre-
dict the future. Approaches to prediction can range
from temporal correlation between failures to simple
histograms of failure times. Csenki [12] uses a Bayesian
predictive approach to improve the prediction of time-
to-failure in an offline software reliability prediction
context. Some methods can be used in failure predic-
tion, although they are mostly used for root cause anal-
ysis. Such is the case with the work of Liang et al. [7],
who explored temporal and spatial correlation to suc-
cessfully predict hardware component failures in IBM’s
BlueGene/L. Fu and Xu [13] use a similar approach,
coupled with a neural network, to predict the number
of hardware failures with 81.6% accuracy and software
failures with 72.9% accuracy for the LANL HPC sys-
tem. These results are above average for online failure
prediction, where, as shown in this section, most results
tend towards 50% accuracy.

Symptom Monitoring methods periodically analyze
samples of system state variables, such as the amount
of free memory or page swaps, to estimate imminent
failures. A key concept of these methods is the idea
of service degradation – the system may start to ex-
hibit some form of degradation before the actual failure
happens (e.g. before a database time-out, successive re-
quests might take a longer time to process). This degra-
dation can be observed in system side-effects, such as
longer response times, high CPU load or high memory
consumption (e.g. in the case of memory leaks). These
side-effects are called the symptoms of the failure.

Li et al. [14] present a stochastic approach where
an auto-regressive model with auxiliary input is used
to predict resource exhaustion times. Their method
was shown to be computationally less expensive and
have better results than Castelli et al.’s method [15] on
their dataset. Andrzejak and Silva [16] employ a re-
gression based approach to model the performance of
an Apache Axis SOAP server. Their goal was to op-
timize software rejuvenation times, something which
they were able to achieve. Regarding Machine Learning
approaches, Neville [17] described how standard neural
networks can be used for failure prediction in large scale
engineering plants. Hoffmann [18] used an approach
based on Universal Basis functions (UBF) to predict
failures of a telecommunication system. In a followup
work [19], the authors predict resource consumption of
the Apache webserver using different modelling tech-
niques. Their UBF approach yielded the best results for
free physical memory prediction, although Support Vec-
tor Machines were a better choice for server response
times.

Other approaches use classification methods. An ex-
ample is the work of Hamerly and Elkan [20], who per-
form hard disk drive failure prediction with two dif-
ferent bayesian methods. The first uses a mixture of
naive Bayes submodules and the second is a naive Bayes
classifier trained with Expectation-Maximization. This
second method computes conditional probabilities for
SMART (Self-Monitoring, Analysis, and Reporting
Technology) values belonging to the failure/non-failure
classification. Using a decision threshold of 0.005, their
approach achieves a true positive rate of 0.33 with false
warnings having a probability of 0.0036. Of all failures,
they predict 56% of them with a false positive rate of
0.0082 and a class threshold t of 0.001, outperforming
industry standard methods and other classification ap-
proaches (such as [21]). Turnbull and Alldrin [22] use
Radial Basis Function networks to classify data win-
dows as failure/non-failure. These data windows con-
tain monitoring values of hardware sensors (e.g. tem-
perature and voltage). They achieve a 0.87 true positive
rate and 0.10 false positive rate on a balanced dataset.
Irrera et al. [23] presented a sliding window approach
to incorporate the time dimension in a classification fail-
ure prediction problem, showing that this dimension im-
proves results, but that it makes the problem harder as
larger windows are used. There have also been some
symptom monitoring methods which use time-series
analysis. For example, Garg et al. [24] present a three-
step approach to predict resource exhaustion. Their ap-
proach smooths the time-series and detects trends using
a seasonal Kendall test (the method cannot be applied
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otherwise), finally applying a non-parametric procedure
for prediction.

In Detected Error Reporting methods, past error
logs are used to predict future failures. This approach
differs significantly from Symptom based approaches
(which use system variables) in two ways: (i) events,
unlike system variables, are not continuously spaced/-
monitored, and thus require an event-oriented approach;
(ii) system variables are usually real-valued, whereas
event logs usually contain discrete information such as
a timestamp or an ID. This branch of methods, then,
carries a data window (coinciding with the data valid-
ity time) whose past events are taken into account when
predicting the future.

Vilalta et al. [25] propose the eventset method, us-
ing a data mining approach (a rule-based model) based
on the type of reported error (the time dimension is dis-
carded). Under specific conditions, they have a false
negative rate of only 0.16, although this value can be
as extreme as 0.83 under other system conditions (the
false positive rate is always lower than 0.1). Lin and
Siewiorek [26] present a set of heuristic rules on the
time of occurrence of consecutive error events to iden-
tify permanent failures. Their technique is mostly suited
to hardware failures, and achieves a true positive rate of
0.9375 and precision of 0.75. However, the method has
little value if failures do not occur frequently. Several
authors [27, 28, 29] use grouping methods to make the
observation that temporal co-occurence should be used
to predict upcoming failures in short timespans.

Salfner et al., who have proposed the classification
used in this article, also present the only identified meth-
ods of Detected Error Reporting with Pattern Recogni-
tion. Their central idea is that of merging the time-based
characteristics of Lin and Siewiorek’s [26] method with
the type-of-error characteristic of Vilalta et al.’s [25]
method. In this sense, in [30], the authors present
Similar Events Prediction (SEP), a semi-Markov chain
model. Their method achieves a precision of 0.800, re-
call of 0.923 and F-Measure of 0.8571 on data from
an industrial telecommunication system. In Salfner and
Malek [31], the authors propose a hidden semi-Markov
model to “add an additional level of flexibility”. This
method achieves precision of 0.852, recall of 0.657 and
F-Measure of 0.7419. Both of these methods seem to
perform better than other failure prediction methods,
whose precision and recall tend towards 50-60%.

Lastly, in Undetected Error Auditing, methods look
for errors and error states in data not currently used –
as opposed to Detected Error Reporing. For example,
a consistency check on the filesystem might help pre-
dict failures in the future – if some files are found to be

inconsistent, we can predict that accesses to those files
will trigger a failure. Salfner et al. did not find any ex-
amples of such systems in their literature review, and
this still seems to be the case.

For a full survey regarding Online Failure Prediction
methods, interested readers should look at the afore-
mentioned survey [4].

2.3. Self-Healing Systems
The previous sections have shown how Online Fail-

ure Prediction can be successfully used to predict fail-
ures, in spite of challenges regarding, for instance, data
sampling and feature selection [32, 33, 34]. However,
little work has been done for predictions at a more fine-
grained level. Predictions are usually made at the sys-
tem level, at most predicting a generic “crash” of some
component. Thus, while promising, these techniques
have no practical use for developers who wish to pro-
vide specific counter-measures when faced with the pos-
sibility of an exception.

There has been some related work done in the field
of self-healing systems. Magalhães and Silva [35] pro-
pose a general self-healing proactive framework for
web-based applications. Their work introduces a gen-
eral framework to create self-healing transactional web-
based systems. The framework, although operating at
a lower level than traditional Online Failure Predic-
tion methods, does not support run-time notifications
at code-level nor operate at the fine-grained level that
might be desired for applying more efficient preven-
tive measures. Psaier et al. [36] propose a similar
framework for mixed interactions between humans and
Software-Based Services (SBS). Schneider et al. [37]
present a recent and thorough survey of self-healing sys-
tems and frameworks. Their survey shows that self-
healing systems are becoming more autonomous, al-
though this is partly attributed to more specialization.
For example, different approaches are used for mobile
and centralised computing environments. The most suc-
cessful systems are also those that use heavily super-
vised methods, thus relying strongly on human inter-
action. This interaction can be in the form of failure
detection, as well as in manual insertion of recovery
and healing strategies. Some methods employ evolu-
tionary programming techniques to dynamically build
new recovery solutions, such as the Plato framework
proposed by Ramirez et al. [38]. Self-healing systems,
thus, are still heavily dependent on predefined assump-
tions. For example, in the case of the Plato framework,
crossover and mutation operators must be defined (the
authors give an example of dynamic remote data mir-
ror reconfiguration). Furthermore, these systems do not
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allow application developers to leverage information re-
garding system failure. It is usually the job of a system
administrator to define recovery actions, and no preven-
tive actions are taken.

2.4. Summary

There is a broad class of Online Failure Prediction
methods which has been shown to produce good results
in practical scenarios. Many of these methods are based
on machine learning algorithms. Thus, some of the ma-
jor challenges in failure prediction are associated with
machine learning challenges – for each problem, there
is a particular set of features deemed ideal, but it is not
a trivial task to find this ideal set. Furthermore, failure
prediction in the context of dynamic environments re-
quires alternative methods which support re-training or
can act on-demand with new data.

The Exception Handling mechanism has not seen
much change throughout the years. Although there have
been several alternative models proposed, in particular
due to an increase in popularity of alternative program-
ming paradigms, such as functional reactive program-
ming, the base principle of modern exception handling
is still the same – the mechanism reacts to an exception,
it cannot prevent it. Online Failure Prediction methods
show potential as the base for a paradigm shift in Ex-
ception Handling mechanisms where exceptions are no
longer caught, but can be predicted on a fine-grained
level. This article presents PreX, a preventive exception
model that proposes that the system, as a whole, should
actively work towards predicting and preventing excep-
tions. Applications can then be more resilient, robust,
reliable and have increased performance.

3. PreX – A predictive model for exception handling

PreX is an Exception Prevention model that focuses
on preventing exceptions rather than catching them. The
central idea was depicted with the example given in
Section 1: it could be more efficient to temporarily re-
duce the throughput of a write-heavy application than to
catch a ConnectionTimeout exception and have to restart
the process. It makes sense that there are other scenar-
ios, similar to this, where systems and developers would
benefit from an easy-to-use proactive model for Excep-
tion Handling.

Preventing exceptions implies predicting them. To
this end, the area of Online Failure Prediction provides
valuable insight. There have been successful failure pre-
diction systems, but these operate on a broader level. In
order to predict exceptions, the proposed model needs

to adapt failure prediction techniques to a per-exception
basis. Furthermore, since no two systems are alike, the
prediction models will have to be trained for specific
deployments. Thus, the PreX model comprises different
phases, including training and prevention. In the follow-
ing sections, each of these phases is detailed from the
perspective of the syntax and semantics of the model,
followed by an overall perspective of the architecture
and the necessary components of PreX. Lastly, the be-
havior of the system is presented.

3.1. Basic Definitions

PreX introduces several new concepts in the context
of exception handling. In current exception handling
models, exceptions are raised, caught and handled. In
PreX, exceptions can also be predicted with some de-
gree of confidence within certain blocks of code. These
blocks are called prediction blocks. Whenever an ex-
ception is predicted to occur within a prediction block,
the application is notified of this prediction through an
alarm, which is said to be triggered. Program flow is
then interrupted and transferred to a prevention block,
where some action can be taken, after which program
execution continues as normal (similar to the way the
resumption model works). Note that this alarm is not
an exception, nor does it propagate like exceptions do
in traditional systems, either static or dynamic. It is,
instead, an event that alerts for a potential exception.

At times, it might be useful to temporarily delay the
exception prevention mechanism. For example, a set of
atomic operations should not be interrupted. Program-
mers can explicitly set these blocks, which are called
no-alarm blocks.

In summary, PreX introduces the following new con-
cepts:

• Prediction Block – The region of code where pro-
grammers wish to be notified of exception predic-
tions (to which they want to react). This matches
the try block seen in current exception handling
mechanisms, which is why it is also called the try
block.

• Alarm – The notification that an exception might
happen (i.e. it has been predicted) within a predic-
tion block. Alarms are triggered by the exception
prediction mechanism.

• Prevention Block – The code block to which con-
trol is transferred after an alarm is triggered. These
blocks can contain any code, but will usually try to
prevent the exception from happening.
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• No-alarm Block – A block of code (within a pre-
diction block) where no alarm can be triggered,
and where they are instead postponed. If an ex-
ception has been predicted during the execution
of a no-alarm block, the corresponding alarm is
only triggered once flow is outside of the afore-
mentioned block. There can be any number of no-
alarm blocks.

There are other concepts relating to PreX that will be
introduced in the next sections. However, these basic
definitions are essential to start understanding the sys-
tem.

3.2. Syntax & Semantics

An example of the syntax of the model is shown in
Figure 2. In this example, we use pseudo-code very
similar to Java. In the following sections, we will de-
scribe the detailed syntax and semantics of PreX used
in Figure 2. The code is described in Section 3.3, as it
is used in Figure 2.

Figure 2: Example of PreX using synchronous try-catch-prevent.

3.2.1. The try-prevent-catch and try-prevent_async-
catch constructs

PreX provides semantics similar to traditional try-
catch blocks, although two different constructs are

added to the language. The first is the try-prevent-catch
construct, as seen below:

Listing 1: The try-prevent-catch construct

1 t r y (< p r e d i c t i o n _ c o n t e x t >) {
2 / / . . . P r e d i c t i o n Block .
3 / / E x c e p t i o n s can be c a u g h t
4 / / and a l a r m s can be t r i g g e r e d
5 } p r e v e n t ( <excep t ion_name > ,
6 < i n f o r m a t i o n _ o b j e c t > ) {
7 / / . . . P r e v e n t i o n Block .
8 / / E x e c u t i o n f o l l o w s t h e r e s u m p t i o n
9 / / model .

10 } c a t c h ( . . . ) {
11 / / . . . E x c e p t i o n Hand l ing code
12 }

The try block denotes the scope during which a pro-
gram cares about alarms regarding some particular ex-
ception (i.e. it is the prediction block). If an alarm is
not raised, and if the exception cannot be prevented, it is
raised and caught by the code, and the traditional termi-
nation Exception Handling model is used, with program
flow being transferred from within the try block to the
catch block.

The second construct added by the model is similar,
but uses the prevent_async keyword instead of the pre-
vent keyword. When an alarm is triggered, it can trans-
fer to the prevention block in two different ways, de-
pending on the construct used:

• Synchronously: execution within the try block is
suspended and flow is transferred to the prevent
block. In normal circumstances, the execution is
then transferred back to the previous code within
the try block (resumption model).

• Asynchronously: execution within the try block
continues normally, and the prevent_async block
is executed asynchronously.

Thus, in PreX, triggering an alarm does not necessar-
ily terminate the execution of code within the try block
(as opposed to the termination model when an excep-
tion is raised). Instead, execution is resumed as if there
had not been any interruption, because preventing an ex-
ception should not halt normal execution of the current
code.

When using a synchronous approach, alarms are not
triggered at just any point in time within the try block.
Within this block, every program statement will be ex-
ecuted without any interruption from the exception pre-
diction mechanism (unless exceptions are raised). The
flow of execution only moves to the prevention block
between statements, without the need for propagation
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in the call stack. In this sense, PreX uses an approach
similar to static binding, meaning that alarms are not
“propagated” as if they were exceptions. Instead, they
are tied to the prevention block to which they belong.
This approach makes sense if we consider that only the
closest code, within the exact context of the particular
exception, can know how to react to a specific predic-
tion. Listing 2 shows an example of where alarms can
be triggered (A, B, C, D, E and F) .

Listing 2: Alarms can only be triggered in between statements (A, B,
C, D, E and F)

1 t r y (< p r e d i c t i o n c o n t e x t >) {
2 f u n c t i o n 1 ( ) ; A
3 c = a + b ; B
4 i f ( c > 0 && d < a ) {
5 C
6 f u n c t i o n 2 ( ) ; D
7 f u n c t i o n 3 ( ) ; E
8 } F
9 }

3.2.2. The no_alarm keyword
If developers wish to prevent the triggering of alarms

during the execution of a set of statements, a special
no_alarm keyword can be used to denote a new scope
within which alarms are not possible – the no-alarm
block. In Figure 2, lines 13-16 belong to one of these
scopes. In the asynchronous approach, as in the syn-
chronous approach, alarms are only triggered when the
program flow is outside the no alarm block. Thus, the
no_alarm keyword can act as a synchronization prim-
itive between code in the prevention block and code
within the try block.

Listing 3: The no_alarm keyword starts a no-alarm block where
alarms can’t be triggered

1 no_a la rm {
2 / / No−a la rm b l o c k ! No a la rm can be
3 / / t r i g g e r e d h e r e .
4 }

3.2.3. The prediction context
The prediction system must be informed of which

variables/features are relevant to each prediction block.
It is not practical to use every available feature for
prediction, because there might be too many features.
Thus, there is a need to uniquely identify the different
prediction blocks. In addition, note that the same kind
of exception can happen in different circumstances, and
that models trained for one circumstance might be of
little use in other circumstances due to different sys-
tem configurations. To solve both of these problems,

a (string) argument to the try keyword can be supplied,
called the prediction context.

Listing 4: The try block accepts a prediction context as its argument

1 t r y (< p r e d i c t i o n _ c o n t e x t >) {
2 . . .
3 }

Blocks can then be uniquely identified by their pre-
diction context. For example, a ConnectionTimeout
exception in a write-heavy block can be distinguished
from a ConnectionTimeout exception in a read-heavy
block by using different arguments, such as try(“write-
exceptions”) and try(“read-exceptions”). Two com-
pletely different models for the same kind of exception
(ConnectionTimeout) under different contexts and pos-
sibly using different features (later defined by the user)
can then be trained. Several exceptions can be predicted
within the same prediction context (and corresponding
alarms triggered), and a prediction context binds train-
ing data and a prediction model to a unique name. To
train the model, the system administrator may specify
which prediction contexts he/she wants the program to
be trained in during a training phase. During this train-
ing phase, no prediction mechanism is used for those
prediction contexts (i.e. no alarms can be triggered), al-
though exceptions can still be caught. If an exception is
raised and caught, the training mechanism is notified to
adapt its prediction models.

3.2.4. The sample keyword
PreX allows programmers to periodically sample

variables that they think will be useful for prediction,
in addition to system variables monitored with custom
probes. For instance, the remaining number of opera-
tions left might be useful in predicting connection time-
outs. These variables can be supplied to the prediction
system at any time using the sample (<variable_name>,
<variable_value>) construct.

Listing 5: The sample keyword can feed data into the prediction sys-
tem within any prediction block

1 sample (< v a r i a b l e name > , <sample va lue > ) ;

Note that if the sample keyword is used when in the
training phase, it still feeds data to the prediction sys-
tem.

3.2.5. The prevent block and the prediction information
object

The prevent block is introduced with the prevent key-
word. It requires two arguments:

8



• The first is the name of the exception to prevent,
so that different prevent blocks be assigned to the
same try block, similarly to how there can be differ-
ent catch blocks in most programming languages.

• The second is the name to assign to the predic-
tion information object within that prevent block.
This object is created by the exception prediction
mechanism and contains information regarding the
alarm that has been triggered, such as the lead time,
the data validity time or specific information re-
garding the prediction method chosen by the mech-
anism. This information might be used by applica-
tion code to apply different prevention techniques.

In Listing 6, an example prevent block is shown for
TimeoutException exceptions. The prediction informa-
tion object can be accessed within the prevent code with
the name predInfo.

Listing 6: Example prevent block, which requires the name/type of
exception and a name to assign to the prediction information object

1 p r e v e n t ( T imeou tExcep t ion , p r e d I n f o ) {
2 / / Block f o r p r e v e n t i n g
3 / / Timeo u tE xc ep t io ns , when t r i g g e r e d
4 / / by an a la rm .
5 / / p r e d I n f o c o n t a i n s p r e d i c t i o n
6 / / i n f o r m a t i o n such a l ead − t ime .
7 }

3.2.6. Architecture
The PreX model’s architecture can be applied to three

different scenarios:

• Training Scenario: in which no prediction hap-
pens, only data is collected, and the models are
trained for future usage (coinciding with the train-
ing phase).

• Prediction Scenario: in which a set of models has
been trained and are used at run-time to predict
failures.

• Combined/On-line Scenario: in which the pre-
vious scenarios might happen at the same time,
providing a suitable system for dynamic environ-
ments where models must be retrained as condi-
tions change.

Some components of PreX are shared among these
scenarios, while others are only active in a particular
scenario. The model’s architecture relies on several dif-
ferent entities which cooperate to train models, make

predictions and activate the prevent block. These en-
tities can be distributed among the system, and do not
need to exist in the same machine as the code with the
try block. There are three main kinds of entities within
a system using PreX:

• Data gathering entities: These entities feed peri-
odic samples of data (e.g. memory and CPU usage)
to the coordinator entities. Most of the prediction
data comes from these entities, which don’t exe-
cute any code that wants to be alerted of possible
exceptions. The sampling rate for each of these
variables is not pre-determined and may vary ac-
cording to system load and characteristics.

• Code entities: Whenever a try block is entered, the
exception prevention mechanism spawns a code
entity that connects to the coordinator entity. Each
code entity may want to register with the coordina-
tor to be notified of predictions of certain kinds of
exceptions within a prediction context. It is the re-
sponsibility of the code entity to trigger the alarm
and transfer execution to the prevention block.

• Coordinator entities: A (potentially replicable)
coordinator entity, responsible for aggregating the
data from the other two types of entities and run-
ning the prediction system.

Each try-prevent-catch or try-prevent_async-catch
block spawns a new code entity. The coordinator entity
is responsible for running the failure prediction methods
for predicting exceptions. This behavior is described in
Section 3.3 in more depth.

The behaviour of the code and coordinator entities is
different during the training phase. During this phase,
the code entity registers that it will be sending data and
information regarding a given prediction context and a
given exception. The coordinator then uses this data to
train the model.

The different entities can be freely distributed among
machines, or might all run on a single machine, al-
though this might have a performance impact on the
overall system. A typical deployment scenario is de-
picted in Figure 3, where the Coordinator Entity is allo-
cated to an individual machine.

Lastly, PreX is developed with the idea of extensibil-
ity. As such, an open protocol for interaction with the
coordinator entity is specified so that other developers
can build their own probes to feed data to the predic-
tion system. Furthermore, this modularity means that if
a new feature is ever needed, the data gathering entity
does not need to be rebuilt and redeployed – instead, a
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Figure 3: Example deployment of entities in a system.

new probe can be written, and data sent according to the
open protocol.

3.3. Model Behaviour

To illustrate the behaviour of PreX, Figure 4 depicts
the interaction between code, entities, and the predic-
tion system for the code example in Figure 2 shown in
Section 3.2. Notice that the code uses the synchronous
prediction model. Consider also that if the code is exe-
cuted during the training phase, no alarms will be trig-
gered, so section d will not be entered.

The example Listing 2 allows understanding of how
the overall system behaves when deployed. In the ex-
ample, several data gathering entities are placed: one
at the database machine and one more for each of the
client machines (executing the code). Furthermore, a
coordinator entity might be placed somewhere within
the system.

When line 7 is reached, a code entity is spawned by
the exception prediction mechanism, registering with
the coordinator that it wants to be warned of Connec-
tionTimeout exceptions within the “write-exceptions”
prediction context. The coordinator node begins pre-
dicting exceptions. At line 10, the sample keyword is
used, making the code entity send a sample of data to the
coordinator entity (which now uses this data together
with the data from the data gathering entities). Normal
operation continues at line 13.

Line 13 starts a no_alarm block, indicating that even
if notifications of exception predictions are received,
alarms cannot be triggered (thus guaranteeing that lines
14-16 are not interrupted). In Figure 4, an exception
is predicted during execution of the no_alarm block.
This information is sent to the Code Entity, which de-
lays triggering the prediction alarm. Once at line 17,

Figure 4: Interaction between code and entities through time for the
code example in Figure 2. For simplicity, in this example, the loop
only runs once.

outside of the no_alarm block, the code is interrupted
and execution continues in line 19, the prevent block
(an alarm is triggered). For the sake of brevity in the
example, the preventive handler executes a very simple
prevention strategy. A sleep instruction is executed to
momentarily reduce the workload on the server (thus
preventing the exception) and execution continues ex-
actly where it stopped (resumption model), at line 18.
This sequence of steps can happen many times during
execution.

In the case that the exception cannot be prevented, it
may be raised at line 16 (the write method is the one that
throws this exception), transferring program flow to line
25. The code entity terminates its execution at the end
of the try-prevent-catch block, notifying the coordinator
that it is no longer going to be interested in notifications.

Consider now that the prediction model has not been
trained yet. To perform training, no changes to the code
are required. A system administrator selects the “write-
exceptions” prediction context for training and runs the
application. In this case, reaching line 7 still spawns
a code entity, but it is only to feed data regarding the
“write-exceptions” prediction context and the Connec-
tionTimeout exception. At line 10, data is sent to the
coordinator as normal. Line 13 has no effect, since ex-
ceptions are not being predicted, and the only way of
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exiting the try block scope is to either successfully ter-
minate the operation (i.e. a golden run) or by catching
an exception. In both cases, the code entity notifies the
coordinator and terminates itself afterwards.

3.4. Training and Prediction Methodology
PreX supports several prediction methods. Individ-

ual methods can be trained on the gathered data, and
the most appropriate one can be selected. Nevertheless,
PreX prediction methods have to operate on a basic set
of features and follow a certain methodology. For in-
stance, there are several differences in the way regres-
sion and classification methods are used. In this section
we present the approach taken by PreX for prediction.

3.4.1. Features
As noted previously, Data Gathering Entities, as well

as Code Entities, supply data to the prediction system.
Each data point fed to the Coordinator Entity is charac-
terized by a system-local timestamp and a value. The
Coordinator Entity distinguishes features sent from dif-
ferent machines (the CPU Usage in machine A and the
CPU Usage at machine B are different features, even if
measured at the exact same time). Each Data Gathering
entity will sample variables regarding CPU Usage, Net-
work statistics, Disk usage/errors and Memory/Swap
Usage. In total, this can amount to dozens of variables
being sampled regularly (for example, 100ms). All data
is numeric or binary. Since the PreX protocol will be
open, any (authorized) probe will be able to provide ad-
ditional features used for prediction.

In summary, the proposed model works in a dis-
tributed way, using any kind of features suitable for the
specific exception and context of prediction. The de-
fault probes in PreX gather system variables regarding
CPU, I/O, Network and other services. These are then
used within the prediction method to make predictions.

3.4.2. Prediction Method
In Section 2.2.2, we presented the work of Salfner

et al. [4], a classification of Online Failure Methods
and survey of published work in OFP. PreX’s predic-
tion method will heavily influence the kind of algo-
rithms and their performance, as well as the data pre-
processing steps to be taken. As can be gathered from
our chapter on the state of the art, there is no definitive
method for online failure prediction – no approach has
shown to be generally better than other approaches, and
the application scenario heavily influences the method-
ology used. Prediction algorithms can be considered as
a kind of optimization problems where a number of in-
put varibles (i.e. “features”) are used to model the state

(failure/no-failure or a probability of failure) of the sys-
tem. Depending on the type of failure and system, these
input variables and their correlation with the external
failure state of the program can vary greatly. In this
sense, the “No Free Lunch Theorem” of Wolpert and
Macready [39] shows that, indeed, no algorithm will be
better than every other algorithm for all different kinds
of predictions. Thus, if PreX intends to be broad, it must
support several different prediction methods.

Different methods require different data. Some meth-
ods, such as the Eventset method proposed by Vilalta
et al. [25], discard most temporal information regard-
ing events. These methods also use Detected Error Re-
porting techniques. In the case of PreX, the only kind
of error reporting is the exception itself, so these ap-
proaches are not appropriate. Additionally, we need to
include the time dimension within our prediction sys-
tem, since it is a critical part of the prediction process
(Duetterich and Irrera et al. have shown the importance
of the time dimension [40, 23]). Other methods (e.g.
[41], [42] and [43]) use statistical tests to compare fea-
ture distributions with error-free states or error states.
These statistical methods could be applied to the kind
of data gathered by PreX, but they also make it harder
to include the time-dimension for prediction. Addition-
ally, these statistical methods often require more a pri-
ori knowledge of the system so that the statistical mod-
els can be built. Other approaches (e.g. [44], [14], and
[16]) use regression and function approximation tech-
niques. PreX could implement this approach, although
it is more adequate to resource exhaustion scenarios and
might not be appropriate for all kinds of exceptions that
PreX intends to predict.

A failure prediction problem can also be modeled as
a classification problem. These problems can be solved
by state-of-the-art classifiers, and many authors have
used classification methods for Online Failure Predic-
tion (e.g. [20], [22], [21], [42] and [45]). Irrera et al.
[23] presented a sliding window approach to incorpo-
rate the time dimension in a classification failure pre-
diction problem. Their work, which applies techniques
presented by Duetterich [40], is the inspiration for our
approach – PreX treats failure prediction as a classifica-
tion problem.

3.4.3. Feature Set Construction (prediction algorithm)
In this section we present the prediction approach

used by PreX, which is a classification approach.
Data Gathering Entities gather data at arbitrary times

(usually with some desired frequency, such as 100 ms or
1000 ms). This data is condensed/summarized in win-
dows of size T , called augmented feature windows,
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which are represented by augmented feature vectors
x1, ..., xn. Window x1 contains condensed/augmented
feature information (in the current version of PreX,
the mean, standard deviation, maximum, minimum and
derivative of the data are taken) for the interval [0; T [.
Window x2 contains condensed/augmented feature in-
formation for the interval [T ; 2T [ and so forth. If a fail-
ure/exception is recorded within the timespan of a win-
dow, that window is considered as a failure window. If
there are m variables (e.g. CPU Usage, Memory Usage,
etc), the augmented feature vector is of size 5×m, since
each variable produces 5 augmented features. This step,
the time-window construction, is shown in Figure 5.

The augmented feature windows are then merged in
the window merging process to incorporate the time
dimension. A configurable parameter, k ∈ N, specifies
how many windows should me merged. The input vec-
tor for classification, wi is formed by taking

wi = (xi−(k−1),1 , ..., xi−(k−1),n︸                     ︷︷                     ︸
xi−(k−1)

,

xi−(k−2),1 , ..., xi−(k−2),n︸                     ︷︷                     ︸
xi−(k−2)

, ...︸︷︷︸
...

, xi,1 , ..., xi,n︸       ︷︷       ︸
xi

)

and using a sliding window process for each of the
original augmented feature windows. Each window wi

is then assigned a label, li, defined as

li =



1, if there was an exception in the
t-th next augmented feature window

0, otherwise

where t ∈ N is another configurable parameter which
controls the lead-time. This step is shown in Figure 6.

A classifier can then be trained to predict the la-
bels li based on the windows wi, ensuring a lead time
∆tl = t × T with a data validity time of ∆td = T × k
and a prediction period of ∆tp = T . PreX trains several
different classifiers using this input data and chooses the
best for each prediction context. Thus, the configurable
data for feature set construction is given by the tuple

(T, k, t)

where T is the window-size, k is the number of win-
dows to merge/concatenate and t is a “look-ahead” pa-
rameter to determine how much in advance a failure is to
be predicted. Obvious trade-offs exist among these pa-
rameters, the classification performance and accuracy.
In Section 5 part of these trade-offs are studied. Also

note that for the same dataset, higher values for k reduce
the number of instances available for classifier training
at the cost of making each instance much larger in terms
of features, potentially impacting accuracy.

The example shown in Figures 5 and 6 presents a rep-
resentation of the feature set construction process with
k = 2, t = 1 and 2 features.

It should be noted that data will not always be avail-
able (some windows might have no data at all regard-
ing some features). Thus, a missing value imputation
method should be used.

Finally, a form of feature selection should be used. As
we have seen, after the time-window construction and
window-merge steps, the number of features increases
dramatically (by a factor of k × t), and the classification
problem might become unfeasible. Several strategies
can be used for feature selection, such as the three-step
feature selection process seen in [23]: (i) removal of
null/constant features; (ii) using a classical linear cor-
relation metric (such as the Pearson correlation coeffi-
cient); and (iii) a classical approach involving wrapper
or filter methods. Alternatively, a strategy similar to the
one proposed by Irrera et al. [34] can be used, where
changes in features are compared between failure and
failure-free executions of a program, based on the con-
cept of a symptom.

4. Experimental Evaluation

In this section, we present the evaluation strategy.
Unlike experiments in [46], these involved a prototype
of the full model, using offline training, online moni-
toring, and methods to prevent exceptions. In addition,
this work focuses on a real-world scenario, instead of an
artificial benchmark. PreX can provide new revitaliza-
tion strategies for developers, possibly enabling them to
increase reliability at a lower cost when compared with
other reliability techniques, such as replication. The aim
of our experiments was to validate this hypothesis in a
real world scenario

A modified instance of the open-source e-commerce
Java software Shopizer [47] was configured, using a
MariaDB database as the backend. A workload was
configured using jMeter [48] to simulate Web users nav-
igating through the virtual shop, eventually overloading
the database. As a consequence, since queries were pre-
configured to timeout in the database after a period of
time, during the execution of the workload, several ex-
ceptions are raised. PreX was then used to predict and
prevent as many of these exceptions as possible.

The goal of the experiments was to answer the fol-
lowing research hypotheses:
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Figure 5: Time-Window Construction groups and summarizes variables according to “time windows” of size T .
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Figure 6: Window Merge merges augmented feature windows using a sliding window process. Each of the sliding windows, composed of merged
augmented feature windows, is then passed to a classifier. In this example, k = 2 and t = 1.
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1. H1: PreX is able to predict exceptions with False
Positive Rates and False Negative Rates below
20%.

2. H2: PreX is able to prevent exceptions in an effec-
tive way.

3. H3: PreX enables the usage of new and differen-
tiated recovery strategies, not available to tradi-
tional EH models.

4. H4: It is possible to define a (T, k, t) parameter
configuration that will deliver good performance.

5. H5: The exception prediction algorithms are suffi-
ciently robust to withstand slight differences in en-
vironment conditions without affecting accuracy

To answer question 1, an offline training of classifiers
is sufficient. These classifiers can then be used at run-
time to answer question 2. At the same time, traditional
recovery strategies should be employed to be compared
with the preventive mechanism and answer question 3.
Finally, question 4 can be partially answered by explor-
ing different parameters in the offline training. Lastly,
to answer question 5, we can train models in different
scenarios, with different workloads, and validate them
on one another.

4.1. Experimental Setup

The setup consisted of 4 machines, simulating a 3-
tiered architecture. The machines all had the same hard-
ware and software, shown in Table 1, and were named
prex1, prex2, prex3 and prex4.

An instance of MariaDB 10 was configured in the
prex1 machine, to act as the data source for Shopizer.
Shopizer itself was downloaded from the official repos-
itory and installed in prex2. By default, the applica-
tion comes with a limited set of mock data (6 prod-
ucts). Since we wanted to create high workloads at the
database layer, we modified Shopizer so that each prod-
uct was inserted, with slightly different versions, 1000
times. Hence, in total, there were 60.000 products.

An instance of jMeter was installed in the prex3 and
prex4 machines, so that they could be used to induce
heavy loads on the other two machines, simulating the
client layer. Figure 7 shows the overal experimental
setup. Two Code Entities (probes), as defined by the ar-
chitecture of PreX, were placed in the system: one in the
database machine and another one in the server/shopizer
machine. These entities sampled several system vari-
ables, including CPU, memory and disk usage, network
and TCP related statistics.

Table 1: Summary of the machine specifications for the validation
experiments

CPU + OS RAM HDD Name

Intel Core i3
3.10GHz

CentOS 7 (64 bit)
4GB

WD5000AAKX
7200 RPM

16MB Cache
SATA 6.0GB/s

prex1

Intel Core i3
3.10GHz

CentOS 7 (64 bit)
4GB

WD5000AAKX
7200 RPM

16MB Cache
SATA 6.0GB/s

prex2

Intel Core i3
3.10GHz

CentOS 7 (64 bit)
4GB

WD5000AAKX
7200 RPM

16MB Cache
SATA 6.0GB/s

prex3

Intel Core i3
3.10GHz

CentOS 7 (64 bit)
4GB

WD5000AAKX
7200 RPM

16MB Cache
SATA 6.0GB/s

prex4

Figure 7: Experimental Setup.
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4.2. Experimental Methodology

The experimental procedure consisted of two stages:
training and preventing. The first stage involved running
a series of tests where exceptions were triggered, using a
simulation of several users navigating in Shopizer (with
jMeter). After each test was completed, the machines
were reset to its original state and the experiments re-
peated, so that enough data was available to accurately
train several validation models. After these models had
been trained, they were used in the second stage, repeat-
ing the previous steps, but using a method to try to pre-
vent exceptions, detailed further below. Thus, the full
model was tested, from prediction to prevention.

The default configurations for Shopizer allowed
queries to take a very long time, making tests unprac-
tical and unrealistic. To counter this situation, we con-
figured MariaDB to timeout unfinished queries after 15
seconds. Under heavy workloads, this triggers excep-
tions in the Shopizer application, which were used for
training.

The workload was generated by jMeter instances run-
ning in the remaining two machines (prex3 and prex4).
When each test started, the prex3 machine introduced a
heavy workload simulating 128 clients clicking through
the website at a random time after the test start (be-
tween 35 - 50 seconds). This number was just enough
to strain resources on the database machine, making its
four cores reach 99-100% usage, but still without rais-
ing exceptions. At a random time (ranging between
1 to 2 minutes to let the original workload stabilize),
the prex4 machine introduced an additional workload,
using a ramp-up time, with the intent of pushing the
database beyond its limits and raising exceptions. The
random time makes the scenario more realistic and less
predictable, simulating a sudden burst of interest in the
website, as is usually observable in Christmas and Black
Friday.

The aforementioned workload introduced by the
prex4 machine was not always the same. Three differ-
ent workloads were selected so that different scenarios
could be simulated. The goal of the experiment was to
validate the accuracy of models trained on one workload
and being used to predict exceptions in another. The
three different workloads are shown in Table 2. After 3-
5 minutes, the test was stopped and then the procedure
was redone until all tests had finished.

For each stage (training and preventing), each test
was run 15 times, which totals 45 full tests (15 for each
of the three workloads presented), each containing data
for about 10 minutes of execution, with dozens of ex-
ceptions recorded.

Table 2: Characteristics of the three different workloads
Workload/Scenario Number of Clients Ramp-Up time

(seconds) Notes

Heavy Load 256 100
Simulates quick high
influx of clients

Medium Load 128 100
Simulates quick moderate
influx of clients

Heavy Load with long ramp-up 256 400
Simulates slow high
influx of clients

Besides a training phase, the predictive exception
mechanism also involves a prevention phase wherein
the developer might specify code to run in case of an
alarm. In our scenario, the e-commerce website was
flooded with too many requests (see Table 2), but not
all of them are of the same value for the company. For
example, updates and inserts are usually associated with
transactions and important business operations, whereas
read operations are more geared towards navigation of
the online catalog (where most of the time is spent).
Therefore, it makes sense that, upon detecting a pos-
sible exception, indicating a heavy workload, a mecha-
nism should prioritize inserts and updates over reads.
This way, the important business operations can take
precedence, increasing the monetary gain of the com-
pany during an overload of clients. This was the mech-
anism implemented in our experiments.

Upon detecting that an exception was imminent, the
modified Shopizer application waited a random inter-
val (depending on the lead-time) before executing the
lengthy read operations that lead to exceptions. This
has several consequences:

• The insert and update queries are executed without
any delay, thus being prioritized and increasing the
company’s monetary gain.

• The heavy read operations were scattered across
a random uniform interval, effectively reducing
the load on the database (throttling the rate of re-
quests).

• The shopizer application, which uses a threadpool,
would not be stuck waiting for the lengthy read op-
erations to finish. Instead, it could process other,
smaller operations, effectively increasing the over-
all throughput of the application.

• Due to the reduced load on the database, excep-
tions might be prevented.

As described in Section 3.4.3, the prediction algo-
rithm involves three parameters: T , k and t. For this
experiment, we trained algorithms only for t = 1, since
it is likely that windows closer to the exception contain
more valuable information (it might be interesting to ex-
periment with other values for t in future work). With
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regards to T and k, the values are presented in Table 3.
These first five pairs of values were selected to achieve
a lead-time of 10 seconds, which are enough for a cor-
rective action to take place. The last pairs were selected
to try and achieve a lead-time of 15 seconds, which is
the time it takes for the database to timeout the queries
and trigger an exception, thus making it an interesting
value to explore.

Table 3: All combinations of variables used in the experiments
T

(Time-Window
size)

k
(Number of

merged windows)

t
(Number of windows

to look-ahead)
1000 ms 10 1
2000 ms 5 1
2500 ms 4 1
5000 ms 2 1
7500 ms 2 1

15000 ms 1 1

After an initial offline analysis, detailed in Section
5, the best combination of values was used for real-
time prediction and preventive action. In addition to
that, since we are performing an initial analysis of the
model, we chose to use a Decision Tree classifier (using
the C4.5 algorithm, as provided by the J48 classifier in
Weka), so as to be able to interpret the prediction rules.

4.3. Comparison Metrics

To compare the preventive exception model with the
prior exception handling model, we modified Shopizer
to retry the failed operations to a maximum of three
times. This means that even if exceptions were caught,
the operation itself might be successful on a following
retry attempt. Thus, this recovery mechanism can be
compared with the aforementioned prevention mecha-
nism. This is summarized in Table 4

Table 4: Comparison of recovery and prevention strategies
Scenario Strategy Notes
Without

PreX
Retry operation until a maximum

of three attempts is reached.
Common recovery

strategy .

With
PreX

Sleep for a random amount of
time between 5-15 seconds when
alarm (of exception) is triggered

(for read queries).

Simple prevention
strategy offered by PreX.

Distributes load and
prioritizes updates.

We introduced profiling code into Shopizer. As such,
it was possible to register when heavy operations were
started, when they ended, when an exception was caught
and, at a later stage, weather the prevention technique
was being used. This allowed us to collect the following
metrics on each test:

• The count of successfully completed operations
(even if they had to be retried)

• The count of exceptions

• The count of unsuccessful operations (i.e. opera-
tions which never finished, exceeding the limit of
retries)

• Average count of successfully completed opera-
tions per second (successful operation throughput)

With these metrics, it is possible to assess the effec-
tiveness of the proposed model. For example, it is possi-
ble to know if the model prevents exceptions at the cost
of performance (i.e. throughput), or if it is inefficient
(i.e. prevents few exceptions).

5. Evaluation

In this section we present the results of our experi-
ments. We start by discussing the offline analysis of the
several (T, k, t) parameter combinations. Afterwards,
we present the results of the prevention mechanism,
once the best of these combinations had been selected.

5.1. Classifier Performance (Offline Analysis)
Table 5 presents the results of the different (T, k, t)

parameter combinations. FPR stands for False Posi-
tive Rate, indicating the percentage of “false warnings”.
FNR indicates the False Negative Rate, or the amount
of “missed warnings”. It is worse to have a high FNR
than to have a high FPR, since “missed warnings” mean
an exception was not predicted, possibly having con-
sequences for business. In addition to performing 10-
fold cross-validation for each of the workloads (heavy
workload, medium workload, heavy workload with long
ramp-up), some of the datasets were used for training
and validating on other datasets. This allows for an as-
sessment of the generality of the predictor (i.e. is a good
predictor for the heavy workload an equally good pre-
dictor for the medium workload?)

Note that, as previously noted, only a decision tree
algorithm was chosen because it allows for an interpre-
tation of the prediction method. If this classfication ap-
proach showed poor results, we would have moved on
to others.

In general, the best results were achieved with the
(7500, 2) and (15000, 1) pairs. In other words, using
windows of 7500 ms, grouped in pairs of two, or win-
dows of 15000, without grouping, achieves the best
prediction accuracy. This remains the case even when
datasets are validated on one another (i.e. training with
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Table 5: Offline Analysis classifier performance (DNF means Did Not Finish)
Dataset

heavy load
(10-fold CV)

heavy load
with long ramp-up

(10-fold CV)

medium load
(10-fold CV)

train heavy load
validate heavy load
with long ramp-up

train high-load
validate

medium load

train medium load
validate

heavy load

train heavy load
with long ramp-up

validate medium load
T k FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR
1000 10 0.37 0.20 0.33 0.10 0.38 0.20 DNF DNF DNF DNF DNF DNF DNF DNF
2000 5 0.15 0.13 0.16 0.14 0.16 0.14 0.17 0.06 0.20 0.16 0.33 0.10 0.99 0.00
2500 4 0.10 0.11 0.20 0.02 0.10 0.11 0.09 0.06 0.11 0.13 0.01 0.01 1.00 0.01
5000 2 0.03 0.04 0.19 0.02 0.04 0.05 0.20 0.04 0.08 0.06 0.12 0.03 1.00 0.00
7500 2 0.01 0.02 0.16 0.01 0.01 0.03 0.01 0.04 0.01 0.03 0.09 0.02 0.16 0.00
10000 1 0.02 0.03 0.12 0.02 0.02 0.03 0.01 0.04 0.01 0.04 0.08 0.02 0.99 0.00
15000 1 0.03 0.05 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.03 0.06 0.06 0.00 0.00

one and validating on another). It is also clear that an
increase in windows quickly makes the data too noisy
(i.e. adds too many features and reduces the amount
of information about each one), rendering poor results
(these results are in line with those of Ivano et al. [23]).

It should be noted that when the heavy workload with
long ramp-up dataset is used for training (and even sim-
ply using 10-fold cross validation), the results are bad
(exceptions are almost never predicted). This is a conse-
quence of less data on exceptions for this dataset. Since
the ramp-up time is high, very few exceptions were
recorded on the dataset, making it unbalanced and af-
fecting the classifier performance. To counter this sce-
nario, the dataset could be balanced, or an increased
penalty could be added for a missed exception.

These results show that it is possible to predict these
exceptions, and that predictors for different scenarios
are accurate on each other’s datasets. Since the best re-
sults were reached with the (7500, 2) pair (excluding an
outlier for the heavy load with long ramp-up time), the
next phase of the experiments – prevention – was per-
formed using this predictor.

The predictor itself, a Decision Tree classifier (using
the C4.5 algorithm, as provided by the J48 classifier in
Weka [49]) used a combination of variables from both
machines, namely:

• TCP Passive Opens (from prex2)

• CPU Combined Usage (from prex1 and prex2)

• CPU User Time (from prex1)

• Used Memory (from prex1)

The number of passive opens variable makes sense,
as it increases when more clients connect. Similarly, the
CPU usage easily allows one to understand in which sit-
uation the system is in. If the CPU usage in the database
machine increases, consistently reaching 100%, then it
is at its maximum load (and in particular, it might be
spending much time doing user-mode processing in the

database), possibly leading to an exception. In much the
same way, if the CPU usage in the server machine de-
creases, it might indicate that there is a bottleneck in the
database (the server would be waiting for the database to
finish). When all of these variables are combined with
the decision tree, then they allow for the results shown
in Table 5. Keep in kind that no human had to create
rules for triggering alert events, everything was machine
generated from the data collected at run-time.

5.2. Prevention Mechanism Results (Online Analysis)

Table 6 shows the results of the prevention mecha-
nism. Using the exception mechanism significantly de-
creased the number of exceptions (by factors between
40 and 100), with some increase (2.2%) in successful
operation throughput for the Heavy Load and Medium
Load scenario. In the last scenario, throughput de-
creased by 1%, although this scenario has far less ex-
ceptions and, thus, the mechanism is less useful and
might add some overhead. These results show that the
prediction mechanism worked, detecting exceptions as
soon as the database machine started being overloaded
with connections. Once these exceptions were being
predicted, the prevention action was used with success.

Table 6: Comparison of scenarios with and without PreX

Scenario
Successful
operations

(mean)

Unsuccessful
operations

(mean)

Exceptions
(mean)

Successful
operations
per second

(mean)
Heavy Load 4294.6 1.134 207.34 12.65
Heavy Load
with PreX 4832.27 0.0 3.8 12.93

Medium Load 4462.33 1.067 200.93 12.64
Medium Load

with PreX 4507.4 0.0 2.93 12.91

Heavy Load with
long ramp-up 4286.0 0.47 132.2 12.81

Heavy Load with
long ramp-up

with PreX
4566.73 0.0 1.2 12.62

The effects of the prevention mechanism can be seen
in Figure 8, where two plots of different runs of the
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experiment (for the heavy workload) are shown: one
with the mechanism and one without it. Throughput
starts by increasing, until it peaks (maximum capac-
ity is reached). Afterwards, without the prevention
mechanism, several exceptions are raised, although the
throughput is roughly the same. When the prevention
mechanism is used, there is a slight increase in through-
put, and a significant decrease in the number of excep-
tions. For the Heavy Load scenario, exceptions are de-
creased by a factor of 54, a change from 207.34 to 3.8
average exceptions per test. For the Medium Load sce-
nario, this factor is 69, a change from 200.93 to 2.93
average exceptions per test. Finally, in the last scenario,
there is a decrease in exceptions by a factor of 110, a
change from 132.2 to 1.2 average exceptions per test.
Note that the prediction mechanism sometimes stopped
predicting exceptions (possible false negatives), lead-
ing to an increase in operations completed successfully
without the preventive action, but also leading to the few
exceptions that still happen. This is an indication that if
a better prediction model had been found, more excep-
tions might be prevented. Also note that there are no
false negatives before the prex4 workload, which leads
to exceptions, begins.

The increase in successful operation throughput can
be attributed to a more efficient resource usage. Since
the workload is being distributed, and since less time
is being spent retrying failed queries, then the overall
throughput increases. In addition, note that these re-
sults do not reflect the throughput of other operations.
For example, since read operations are effectively being
“deprioritized”, an increase in the throughput of write
operations is expected. Thus, for this scenario, the use
of the proposed exception prevention mechanism is a
valid and valuable technique, with very little additional
effort for the programmer (he/she only needs to code
the recovery mechanism, train the model by running the
system, and then enable the trained model).

5.3. Answer to Research Hypotheses

If we recall the research hypotheses presented previ-
ously (see Section 4), we can conclude that:

1. H1: the hypothesis is accepted. PreX is able to
predict exceptions for our scenario with satisfac-
tory accuracy, displaying False Positive Rates of
no less than 15% and False Negative Rates of no
less than 19%. The best results showed FPR and
FNR in the 3-5% range.

2. H2: the hypothesis is accepted. PreX can be used
to prevent exceptions in an effective way. The

Figure 8: Operation and exception throughput with and without PreX.

number of exceptions dramatically decreased in all
three scenarios, by factors of 54, 68 and 110.

3. H3: the hypothesis is accepted. PreX offers new
techniques that can compete with current revital-
ization strategies. Using the new model to prevent
exceptions, even with a simplistic approach, the
successful operation throughput increased about
2% in two of the three scenarios, when compared
with a retry strategy. The increase in throughput is
significant, with p < .01 using a dependent T-Test.

4. H4: the hypothesis is accepted. The values for
(T, k, t) have a high impact on prediction perfor-
mance. High values for k, coupled with low values
for T lead to worse results. The (7500, 2, 1) and
(15000, 1, 1) configurations provided the best per-
formance.

5. H5: the hypothesis is accepted. The prediction
models showed generality, since when applied to
different workloads, performance was still ade-
quate. More different scenarios should also be the
focus of future work.

5.3.1. Future Work
This model can be applied to other real-world sce-

narios to assert how effective it is outside of the exper-
iments shown in this paper. In addition, a more thor-
ough study can be conducted, evaluating the effort of
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development with and without PreX. The experiments
also focused heavily on validating the model, but not
finding ideal parameters for our scenario or more gen-
eral results. For example, is there a general pattern that
can be used for all exceptions of a certain kind? Are
some combinations of parameters (T, k, l) generally bet-
ter than others? Are these parameters specific to certain
scenarios? All of these questions raise future work pos-
sibilities. Lastly, some aspects of the model have not
yet been tested, namely the sample keyword, the asyn-
chronous variant of the model, and the online variant
where new models are trained at run-time.

6. Conclusions

In this work we introduced and validated PreX, a new
preventive exception model which changes the excep-
tion handling paradigm from reactive to proactive. Ex-
periments show that PreX is a viable alternative to other
revitalization strategies. Implementations of the model
can be used to prevent exceptions, effectively increasing
the reliability and availability of systems at a fraction of
the cost of other, and, perhaps, more powerful alterna-
tives, such as vertical or horizontal scaling. The recov-
ery strategy used in this work is simple, but effective,
leaving potential for exploration of other strategies.

The new model is focused on developers, enabling
them to program the recovery mechanisms as they write
application code, exactly as they would write excep-
tion handling code. Some exception handling strategies
can be used (e.g. attempting a reconnection, cleaning
caches, etc), although in preventive fashion. More im-
portantly, PreX adds new strategies, such as dynamic
adjustment of the workload or a prioritization of dif-
ferent queries, focusing on the business interest of the
application.

The experiments show that PreX can offer very sig-
nificant advantages to developers. In our scenario, there
were decreases in the number of exceptions by two
orders of magnitude, accompanied by statistically sig-
nificant (p < 0.01) increases in successful operation
throughput.
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Abstract: The exception handling mechanism has been used as a reliability tool for over four
decades. It is present in most modern languages, often with similar constructs, such as “try-catch”
or “try-except”. However, this model has not changed, in spite of new challenges, namely con-
current and reactive programming. This model is reactive, instead of proactive – exceptions are
raised, caught and handled. We propose an alternative exception handling model – PreX – where
exceptions are no longer caught, but, instead, are predicted and prevented. This model uses Online
Failure Prediction techniques at a low-level, allowing the programmer to be notified of possible
exceptions before they happen, ultimately offering new reliability tools. In this work, we present
additional validation of the preventive exception handling model with a simulation experiment,
concluding that operation throughput can be increased under heavy loads, and that even when
prediction accuracy is low, the proposed model offers significant throughput improvements.

1. Introduction

The Exception Handling (EH) mechanism was proposed by Goodenough [1] and has been one
of the most used reliability tools in programming languages for more than four decades. This
model has gone unchanged, even in the face of concurrent software and programming languages
for multi-core platforms (e.g. Scala, Erlang and Elixir). Thus, the sequential Exception Handling
model remains the preferred Exception Handling model [2].

However, the ubiquity of the Exception Handling mechanism for error recovery does not imply
its most correct or desirable usage. Developers often use EH language constructs as a way of
hiding problems, performing log activities or informing the user of unexpected behavior, rather
than recovering from it autonomously [3]. This kind of use of EH might be considered a symptom
of a design flaw in the mechanism – the system only acts when it is too late, thus making the
problem unavoidable.

In a previous work [4], we proposed a new approach to Exception Handling, by providing
the means for developers to act on an exception before it happens, thus broadening the range
of their revitalization strategies. The approach reshapes the concept of “try-catch” blocks, so
that programmers can be alerted of potential exceptions within a given time frame and take some
action, much like in the conventional Exception Handling mechanism. This new approach is called
Preventive Exception Handling (PreX), and applies the methods and techniques of the Online
Failure Prediction field to the lower-level concepts of programming languages, thus empowering
programmers to act proactively. PreX introduces a new model for Exception Handling, with the
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goal of being easy to use, practical, and a successful integration of the fields of Exception Handling
and Online Failure Prediction, as well as the first to act on potential exceptions before they have
happened – errors are avoided, rather than handled. In contrast to Online Failure Prediction, which
operates on a much higher level of abstraction, PreX allows programmers to produce code that is
aware of possible predictions during its execution, so that very fine-grained solutions for exception
prevention and reaction to potential exceptions can be applied. By acting on exceptions before
they happen, developers get an increased range of techniques for dealing with exceptions. Thus,
while traditional Exception Handling techniques can still be used, there is potential for new and
hopefully more efficient strategies.

To illustrate the motivation for this new model, consider a system consisting of at least a
database and several client applications. Consider also that these client applications are write-
heavy, meaning they processes several thousands of write operations per second, sending them to
the database. Due to the heavy load, the database may become unresponsive and ultimately trig-
ger a ConnectionTimeout exception on one of the applications. That application will then have to
attempt to reconnect, and restart where it was previously, if such is really possible. This shows
the aforementioned downfall of the conventional Exception Handling mechanism – the system
only reacts to exceptions, it does not prevent them. Our motivation stems from this issue – client
applications benefit from a prediction (i.e. a warning or alert) that the database may trigger a
ConnectionTimeout exception. With such a warning, they can, for instance, proactively slow their
execution rate and prevent the exception from happening. Ultimately, slowing execution down
should prove to be more efficient than triggering the exception and restarting the whole process.

This article is a revised and extended version of our WorldCIST 2016 paper [4]. It improves
and complements the former by validating the preventive capabilities of the proposed model using
a simulation. By using simulation tools, we can quickly experiment with model parameters and
study how PreX is affected by prediction accuracy and different workloads.

The remainder of this paper is structured as follows. Section 2 presents background in Ex-
ception Handling models and mechanisms and Online Failure Prediction. Section 3 details the
proposed model. Section 4 presents the preliminary experiments used to validate the model’s
predictive accuracy. Section 5 presents the simulation used to validate the model’s preventive
capabilities. Finally, Section 6 contains our conclusions and future work.

2. Background and Related Work

Exception Handling separates the operation domain (the execution domain of a particular segment
of code) into two distinct domains: the operation’s standard domain, and the operation’s excep-
tional domain. Normal program flow, absent of errors, is contained in the standard domain. If an
operation is invoked within its exceptional domain, it leads to an exception being raised, followed
by the invocation of an exception handler, that, in theory would deal with the abnormal condition
(e.g. by logging it, correcting it, or using a different approach altogether). This invocation is done
by a signaller (i.e. callee). An Exception Handling Model defines the interaction between the sig-
naller and its handler. An Exception Handling Mechanism defines the language constructs within a
programming language to express a given Exception Handling Model. [5]. In this section, we give
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an overview of the classical and current Exception Handling models and their limitations.

2.1. Exception Handling Models

Yemini et al. [6] identified four distinct Exception Handling Models, summarized in [7]:

• Resumption model – When an exception is raised, the control flow is transferred from the
raise point to the handler and, after the exception has been handled, it is transferred back to
the raise point. This model effectively binds the caller and the callee together, and is prone to
recursive resumption, thus being difficult to implement [7].

• Termination model – An exception is raised within a protected block, with the control flow
transferred to the handler, terminating any intervening blocks. The control flow then resumes
as if the protected block has terminated without any errors. This is the most widespread model
in use [7].

• Retrying model – The signaller is invoked after the completion of some operation. This
model is appropriate to transient faults, where retrying the invocation might lead to no excep-
tions. The main disadvantages of this model are its inherent implications for non-idempotent
operations, counters, etc – the programmer must be wary of how the code executes.

• Nonlocal transfer – The program flow can be transferred to any other location in the program.
This model has the obvious drawback of being hard to maintain and much more error-prone
[7].

Modern advances in Exception Handling, such as concurrent exception handling or alterna-
tive models in the context of the actor model and Functional Reactive Programming, still share
a common characteristic with these classical models – an exception is raised, and only then can
corrective actions happen. This, unfortunately, means that many incorrect uses of Exception Han-
dling Mechanisms arise, with programmers focusing on hiding errors, rather than attempting to fix
them [3].

To the best of our knowledge, our model is the first proposal for a preventive exception handling
model which shifts the current practice and allows programmers to act before problems arise.
However, Kim et al. [8] propose a proactive approach to exception handling within a business
process. In their work, the authors note that business processes often involve “human exception
handlers” that react to “exceptions”. They conclude that there is a need for a proactive exception
handling which allows for action as soon as a business process exception is “predicted”, and that
this action can be specified by an external agent (e.g. a system administrator) as a reaction to
a prediction. Kim et al.’s work is, thus, similar to the work presented in this article, but differs
significantly in the following key points:

• It concerns exceptions in a business process management context.

• It does not learn how to predict business process exceptions. Instead, a system administrator
can build a set of rules similar to “X > Y ”. Thus, the prediction code is a set of rules
determined from experience, only dependent on business conditions (i.e. this work cannot
“predict” a database timeout).

Nevertheless, the core concept of PreX is the same as the concept seen in the work by Kim et
al.: a shift from reactive exception handling is needed, in favour of more proactive behaviour.
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PreX focuses programming languages, and on systems which can use online failure prediction
mechanisms to “learn” exceptions independently of human interaction.

Modern advances in Exception Handling, such as concurrent exception handling or alternative
models in the context of the actor model and Functional Reactive Programming, still share a com-
mon characteristic with these classical models – an exception is raised, and only then can corrective
actions happen. This, unfortunately, means that many incorrect uses of Exception Handling Mech-
anisms arise, with programmers focusing on hiding errors, rather than attempting to fix them [3].
PreX intends to shift the current practice and allow programmers to act before problems arise.

2.2. Failure Prediction

Recent trends in industry and academia have triggered a shift to new efforts on autonomic com-
puting, trustworthy computing, recovery-oriented computing and other techniques for proactively
handling failures. Several techniques have been proposed and used with success, to an extent,
in Online Failure Prediction systems. Salfner et al. [9] present a lengthy survey and taxonomy
of online failure prediction systems. In their work, these authors explain how Liang et al. [10]
explored temporal and spatial correlation to successfully predict hardware component failures in
IBM’s BlueGene/L. Cheng et al. [11] presented an approach for failure prediction within a high
availability cluster system. They showed that they could improve the availability due to accurate
prediction and recovery mechanisms (backup nodes and system administrator notifications). Vi-
lalta et al. [12] propose the eventset method, using a data mining approach (a rule-based model).
Under specific conditions, they have a false negative error of only 0.16, although this value can be
as extreme as 0.83 under other system conditions (false positives are always lower than 0.1).

These and other results show that Online Failure Prediction can be successfully used to pre-
dict failures. However, little work has been done for predictions at a more fine-grained level.
Predictions are usually made at the system level, at most predicting a generic “crash” of some
component. Thus, while promising, these techniques have no practical use for developers who
wish to provide specific counter-measures when faced with the possibility of an exception. In this
sense, some work has been done in the field of self-healing systems. For example, Magalhães and
Silva [13] propose a general self-healing proactive framework for web-based applications. Their
work introduces a general framework to create self-healing transactional web-based systems. The
framework, although operating at a lower level than traditional Online Failure Prediction methods,
does not support run-time notifications at code-level nor operate at the fine-grained level that might
be desired for applying more efficient preventive measurements.

3. PreX – A predictive model for exception handling

PreX is an Exception Handling model that focuses on preventing exceptions rather than catching
them. The central idea was depicted with the example given in the introduction: it could be
more efficient to temporarily reduce the throughput of a write-heavy application than to catch a
ConnectionTimeout exception and have to restart the process. We now present PreX.

Preventing exceptions implies predicting them. To this end, the area of Online Failure Predic-
tion provides valuable insight. There have been successful failure prediction systems, but these
operate on a much broader level. In order to predict exceptions, the proposed model needs to
adapt failure prediction techniques to a per-exception basis. Furthermore, since no two systems
are alike, the prediction models will have to be trained for specific deployments. Thus, the PreX
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model comprises different phases from development to successful prevention:

1. Coding phase. The programmer develops the application using a new set of programming
language constructs introduced by the PreX model. These are similar to traditional try-catch
blocks seen in several languages.

2. Training phase. In this phase, different machine learning algorithms are applied (after fea-
ture selection, data pre-processing, etc), determining which is the most applicable to the spe-
cific exception. Data is gathered for different runs of the application, using resource monitor-
ing facilities.

3. Detection phase. The application is deployed with the trained model and executed. The
model is used to detect potential exceptions, triggering alarms of potential exceptions. If
the trained model becomes ineffective due to changes in environment conditions, the training
phase might be required again. Alternatively, self-adapting pattern recognition algorithms
can be used.

4. Prevention phase. If an exception is predicted (in which case an alarm is triggered), the
application can apply preventive measures and try to avoid the potential exception from ef-
fectively being raised.

In the following sections, each of these phases is detailed from the perspective of the syntax and
semantics of the model, followed by an overall perspective of the architecture and the necessary
components of PreX. Lastly, the behavior of the system during its different phases is presented.

3.1. Syntax & Semantics

An example of the syntax of PreX is shown in Figure 1. Pseudo-code similar to Java is used.
A database connection is established to send a number of pending writes (sent at line 16). PreX
provides semantics similar to traditional try-catch blocks, although two different constructs are
added to the language: try { }-prevent(){ }-catch(){ } and try{ }-prevent_async(){ }-catch(){ }.
Additionally, in PreX, triggering an alarm does not necessarily terminate the execution of code
within the try block (as opposed to the termination model). Instead, execution is resumed as if the
alarm had not been triggered, because preventing an exception should not halt normal execution of
the current code.

If an exception is predicted, triggering an alarm, such alarm can be handled in two different
ways:

• Synchronously: execution within the try block is suspended and flow is transferred to the
prevent block. In normal circumstances, the execution is then transferred back to the previous
code within the try block.

• Asynchronously: execution within the try block continues normally, and the prevent_async
block is executed asynchronously.

Thus, the try block denotes the scope during which a program cares about predicting some
exception, the protected region. This exception may then be predicted, triggering an alarm. If
the exception is not predicted or cannot be prevented, the traditional (synchronous) Exception
Handling model is used, with program flow being transferred from within the try block to the
catch block.
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Fig. 1. Example of PreX using synchronous try-catch-prevent.
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When using the synchronous approach, alarms are not triggered at just any point in time within
the try block. Within this block, every program statement will be executed without any interruption
from the exception prediction mechanism. The flow of execution only moves to the prevention
handler between statements, thus eliminating the need for propagation in the call stack. Thus,
unlike traditional Exception Handling models, PreX uses a static binding approach, meaning that
exceptions are not propagated. Instead, they are tied to the handler of the try-prevent-catch or try-
prevent_async-catch to which they belong. Only the closest code, within the exact context of the
particular exception, can know how to react to a specific alarm. If developers wish to prevent the
triggering of alarms during the execution of a set of statements, a special no_alarm keyword can be
used to denote a new scope within which alarms are not possible. In Figure 1, lines 13-17 belong
to one of these scopes. In the asynchronous approach, as in the synchronous approach, exceptions
are only delivered when the program flow is outside the protected block. Thus, the no_interrupt
keyword can act as a synchronization primitive between the prediction asynchronous handler code
and the code within the try block.

PreX allows programmers to periodically sample variables that they think will be useful for pre-
diction, in addition to system variables monitored with custom probes. For instance, the remaining
number of operations left might be useful in predicting connection timeouts. These variables can be
supplied to the prediction system at any time using the sample (<variable_name>,<variable_value>)
construct. Furthermore, since no two systems are alike, the prediction models will have to be
trained for specific deployments. In particular, note that, for instance, ConnectionTimeout excep-
tions may be different depending on the workload (e.g. “write-heavy” vs “read-heavy”) or the
variables being provided by the program. This motivates the need to distinguish different blocks
of code and assign them meaningful names. Thus, the try keyword requires an additional argu-
ment that uniquely identifies the block of code that it encloses: try(<prediction context>). Write-
heavy blocks can then use try(“write-exceptions”), whereas read-heavy blocks can use try(“read-
exceptions”) to handle two completely different models for the same kind of exception (Connec-
tionTimeout) under different contexts. The argument of the try keyword is the prediction context.
Several alarms can be triggered within the same prediction context, and a prediction context binds
training data and a prediction model to a unique name. An example of this construct is in line 7 of
Figure 1.

To train the model, the system administrator may specify which prediction contexts he/she
wants the program to be trained in during a training phase. When in this training phase, no alarm
can be triggered in those prediction contexts and exceptions can only be caught. Data with the
sample keyword is still fed to the training mechanism, and if the exception is raised and caught,
this training mechanism is notified to adapt its prediction models.

3.2. Architecture

Within PreX, exceptions can be predicted using system-wide information. Several entities can
share information used for prediction (more data, when appropriately filtered, implies better pre-
dictions). An entity need not be running on an independent machine on its own, and different
entities might share the same machine. There are three main kinds of entities within a system
using PreX:

• Coordinator entities: A (potentially replicable) coordinator entity, responsible for aggregat-
ing the data from the other two types of entities and running the prediction system.

• Data gathering entities: These entities feed periodic samples of data (e.g. memory and CPU
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usage) to the coordinator entities. Most of the prediction data comes from these entities,
which don’t execute any code that wants to be alarted of possible exceptions. The sampling
rate for each of these variables is not pre-determined and may vary according to system load
and characteristics.

• Code entities: Whenever a try block is entered, the exception handling mechanism spawns a
code entity that connects to the coordinator entity. Each code entity may want to register with
the coordinator to be notified of predictions of certain kinds of exceptions within a prediction
context.

It is then clear that each try-predict-catch or try-predict_async-catch block spawns a new code
entity. The coordinator entity is responsible for running the failure prediction methods for predict-
ing exceptions, which lead to alarms triggered by the code entity. These can be selected a priori
by a system administrator during the training phase. The behaviour of the code and coordinator
entities is different during the training phase. During this phase, the code entity registers that it
will be sending data and information regarding a given prediction context and a given exception.
The coordinator then uses this data to train the model.

Since we are dealing with a distributed system, it is complex to generate samples at the exact
same time in every entity. For this reason, the coordinator entity groups data within time windows.
Precise information about when an event (e.g. a data sample) happened is lost in favor of a more
general interval during which several events happened. This data can then be processed using
Online Failure Prediction methods such as those presented in [12], [14] or [15].

3.3. Behaviour

To illustrate the behaviour of PreX, Figure 2 depicts the interaction between code, entities, and
the prediction system for the code example in Figure 1 during a prediction. Notice that the code
uses the synchronous prediction model. Also note that if the code was executed during the training
phase, no alarm would be triggered, so section d would not be entered.
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Fig. 2. Interaction between code and entities through time for the code example in Figure 1. For
simplicity, in this example, the loop only runs once.
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4. Predicting Exceptions

We have conducted experiments with the TPC-W benchmark to demonstrate that the proposed
model is feasible in the prediction of likely exceptions. In the following Section (Section 5), we
use a simulation to demonstrate that the model is useful in the prevention of exceptions and that
it can increase the overall reliability of a system. TPC-W simulates the activities of a retail store
Web site. It has a workload generator that emulates the behavior of users according to pre-specified
configurations. In our experiments, the connection pool of the TPC-W server was exhausted due
to client overload, resulting in different NullPointerExceptions. Using failure prediction methods,
we attempted to predict these exceptions.

4.1. Experimental Setup

The setup consisted of three virtual machines running the Crunchbang Linux distribution (Irrera et
al. [15] showed that virtualization did not significantly influence failure prediction results). These
were allocated with 1 GB of RAM and a single virtual CPU core. They communicated through a
local network bound to the host machine. One of the machines ran the TPC-W Server, the other the
MySQL database, and the third the TPC-W load-generator. In this third machine, a custom-built
data gathering tool was placed, sampling data at the rate of 100 samples per second. 49 variables
were sampled, including CPU load, open TCP connections, and number of running processes. This
setup can be seen in Figure 3.

Fig. 3. Experimental setup of the preliminary experiments.

After recording several golden-runs (executions with no failure), as well as several executions
with failure, the final data was passed to a pre-processing window-based algorithm (the dataset
was filtered to contain a balance between both kinds of runs). This algorithm involved two stages:
(i) time-window construction and (ii) window-merge. In the first, fixed time windows of size T ,
starting at time t = 0 were created. For each of the 49 variables, samples within the same window
were condensed using the mean, standard deviation, maximum, minimum, and derivative (rate
of change). Thus, each window contained 245 variables (5 × 49). The second step, window-
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merge, involved concatenating N of the previously generated time-windows, appending them with
a binary variable indicating if a crash was recorded within the next group of merged windows. In
practice, each group of merged windows offers a time-to-failure prediction of N × T . The final
windows were then processed within Weka1 as a classification problem. Empirically, we chose
T = 5 s and N = 2, meaning a time-to-prediction of 10 seconds. The experiments were done for
a TPC-W simulation of a “slow” and “fast” ramp up of users. This was done to assess if classifiers
trained with one set of data could still be accurate on different data within similar circumstances.

4.2. Results

The experimental results were promising. Using 10-fold cross-validation, of the several classifiers
tested, which included decision trees, support vector machines and belief networks, a Naive Bayes
classifier only failed to predict failures 1.52% of the time (false negative rate), and inaccurately
predicted a failure 8.89% of the time (false positive rate). To further check that this result was not
due to overfitting, the same classifiers were trained with data from the “faster” ramp of TPC-W
clients and then validated on the ”slower” ramp of TPC-W clients. The aforementioned Naive
Bayes classifier remained the best, with a false negative rate was of 23.3%, and a false positive rate
of 7.01%.

These results, although very preliminary, show that prediction of exceptions is within our reach,
and that such a model can be useful for programmers – in this scenario, a time-to-prediction win-
dow of 10 seconds would allow the TPC-W clients to reduce their rate of requests, thus preventing
or delaying the exception.

5. Validation with a simulation

In the previous section, we presented the preliminary experiments designed to show that excep-
tions can be predicted. However, the PreX model involves two distinct stages: prediction and
prevention. The latter stage is heavily dependent on the application domain, meant to be written
by the programmer (when an alarm is triggered). Nevertheless, it is important to assess the useful-
ness of the proposed model with regards to prevention. In this section, we present the simulation
experiment used to validate the prevention capabilities of PreX.

Using simulation tools, we can quickly change model parameters and assess their overall impact
on the system. For example, it is possible to assert the impact of too many false negatives on the
system. Thus, without the need for a full experiment, it becomes feasible to evaluate the model’s
prevention capabilities, as long as we are aware of the simulation limitations. In the next sections,
we present the simulated scenario, the simulation parameters, its implementation and limitations.

5.1. Simulated Scenario

The simulated scenario closely resembles the one presented in Section 4. A number of simulated
clients are running concurrently, overloading a simulated server that accesses a database (which,
in our preliminary experiments, was the TPC-W Server). Figure 4 shows the simulated scenario.

In the case of TPC-W, exceptions happen due to connection pool exhaustion. However, real-
world applications are often protected against this kind of situation, so we opted by modeling the
exceptions differently and more realistically. As the server gets overloaded with clients, the time to
run queries increases, eventually becoming impractical, with some database management systems

1http://www.cs.waikato.ac.nz/ml/weka/
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triggering an exception in server code when the query exceeds a fixed time. This is the scenario
which we model in our simulation: if a query reaches a certain time limit (the query max_time), an
exception is raised in the server code. In addition, the query time should depend on the number of
active clients.

If we include PreX in this scenario, it now becomes possible for alarms to be triggered, signi-
fying the prediction of a potential exception. When this occurs, a preventive action can be taken.
Note that due to existence of false negatives, it is possible that this action is taken even if the query
time is far from the max_time.

The preventive action is written by the application developer, and might involve complex pro-
cedures. However, we intended to assess the impact of a simple action first, so that complicated
preventive actions were not unnecessarily coded. To this end, we modeled our clients to sleep for
a random amount of time, uniformly distributed in a fixed interval. By sleeping, the clients essen-
tially delay their execution and re-schedule it to a later time, according to a uniform distribution.
The rationale behind this is that heavy/lengthy queries are scattered across a random uniform inter-
val, effectively reducing the load on the database and throttling the rate of requests. Consequently,
faster queries are prioritized, allowing these clients to disconnect and freeing more CPU room for
the execution of the heavy queries, possibly reducing the number of exceptions and increasing the
throughput of successful operations.

Fig. 4. Simulation scenario. Each client is an independent agent.

5.2. Simulation Parameters

In the simulation, a number of clients are simulated using agents. These agents’s behaviour is
different, depending on whether we are using the PreX model or not. If we do not use this model,
their behaviour can be modeled by the flowchart seen in Figure 5. A simulated client sleeps during
a connection time, connects to the server (incrementing the number of active clients) and, based on
the number of active clients determines a query time. By comparing this time with the max_time, it
determines if an exception should be triggered or not. If an exception is triggered, the client should
sleep for max_time, whereas if it is not triggered, it should sleep for the determined query time.
When PreX is used, their behaviour is extended to the one seen in the flowchart in Figure 6. This

12



flowchart adds a set of steps that simlate the prevention mechanism: a client simulates a prediction
(based on the FNR and FPR) and, if this prediction is true, invokes the preventive action (a sleep).
When a certain maximum simulation time is reached, every client is terminated.

Fig. 5. Flowchart of the behavior of each individual simulated client when PreX is not used.

Figures 5 and 6 show that there are a number of steps in the simulation of each client that depend
on simulation parameters. Some of these parameters, such as the time to run each query, depend
on the application domain, and should be selected to closely resemble real-world behaviour. Other
parameters, such as the time to sleep in a recovery action, or the model accuracy, are configurable
parts of our model. It is, then, useful to observe how the simulation outcome changes depending
on these latter parameters.

The simulation parameters are, then:

• Number of clients. They represent the number of active clients connecting and overloading
the server. This is similar to the number of virtual clients used by the TPC-W load generator.
It is mostly through this parameter that different workloads can be simulated.

• Connection time. This parameter represents the time that it takes for a client to start a
connection to the server, before it runs any queries. In practice, lower values mean that more
clients can connect in a smaller interval, leading to higher loads on the server. We determined
this parameter from the experimental data gathered in Section 4.
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Fig. 6. Flowchart of the behavior of each individual simulated client when PreX is used.

• Query time. The query time, that is, the time to run a query, depends on the number of
currently connected clients. More clients should lead to a longer query time. This parameter
is essential to the simulation, and must closely resemble realistic environments. We adjusted
our experimental scenario to measure the query time according to the number of clients.
These experiments revealed a linear relationship between the query time and the number of
clients. Other articles where TPC-W is used have shown that this linearity exists [16–18]. As
such, we modeled the query time according to a linear expression of the form:

query_time = base_time+ k × number_of_clients+N (m,σ)

where the base_time and k are deployment-specific attributes determined empirically and
where m and σ are the mean and standard deviation of a normal distribution used to add
some noise and randomness to the query time. m and σ were chosen to add very little noise,
since the query times did not exhibit a high standard deviation.

• Maximum query time (max_time). This value represents the maximum time that a query
can take before the database raises an exception in the server code. Lower values lead to more
exceptions. This parameter was configured to have “sensible” values for an operation in an
e-commerce web-site.

• Exception prediction accuracy. This parameter models the accuracy of the PreX model. In
our simulation, it is represented by a tuple (FNR, FPR), representing the false negative rate
and the false positive rate, respectively. This way, depending on whether the query time ex-
ceeds the max_time (i.e. an exception will happen), we can accurately simulate the outcome
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of PreX’s predictions. It is interesting to experiment with different values and determine their
effect on the simulation metrics.

• Prevention sleep time (prevention_time). This parameter regards the prevention mechanism
presented in the previous section. When a client receives an alarm of a potential exception, it
sleeps for a given prevention_time to try to prevent the exception and reduce the load on the
server. The prevention_time is, thus another interesting parameter to test for different values.
In this work we defined it as a value sampled form a uniform distribution between 33.3% and
100% of the max_time (the rationale is that we should wait some time, at most max_time
until we try again, but preferably less).

• Simulation time. The simulation time should not have a significant effect in the simulation,
as long as it is sufficient for simulation stabilization. Indeed, it was selected so as to allow for
this stabilization.

5.3. Implementation and metrics

The simulation was implemented in Python 3 using the SimPy2 library. The clients were imple-
mented as a simulation object which yielded execution whenever a simulation step should wait
for a given time (i.e. a “timeout”). The server was simulated using a shared resource where the
number of active clients was kept, thus influencing the query time.

SimPy is a unitless simulation framework. However, considering that each simulation step/unit
is a millisecond, we can simulate with millisecond precision. To reach this goal, all the empirical
parameters (e.g. the query base time) were measured with millisecond precision. As noted in the
previous section, the simulation was run until after it had stabilized and long enough to gather
enough data, totalling 5 simulated minutes.

To analyze the simulation and evaluate the proposed model, several performance metrics were
gathered. These allow analysis of the number of exceptions, number of successful operations and
successful operation throughput.

5.4. Limitations

Although the use of simulation software offers development advantages, as well as a fast way to
study different model parameters, it is not without its limitations. The simulation is only as good
as its underlying model. In our model of the TPC-W scenario, we put aside the ramp-up period and
scheduled all clients to start executing concurrently. This limitation might impact the generality of
our results. Similarly, we have assumed that there is independence of connection time and query
time. This makes sense when a load balancer is used, forcing the bottleneck to be at the database
layer, but it was not necessarily the case with our TPC-W setup.

This simulation does not distinguish between query types. This means that read queries are
treated exactly the same as write queries. There are scenarios where this is the case, but the TPC-
W workload used in the previous experiments contained a mix of both queries. It may nevertheless
still be possible that the linear relationship between the number of clients and the query time holds.
However, more advanced prevention actions, such as prioritizing write queries (usually shorter
and more business-critical in e-commerce websites) over read queries, are not allowed with this
simulation model.

2https://simpy.readthedocs.io
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Finally, this simulation does not deal with dynamic environments, where the performance ac-
curacy might change at run-time. However, we shall see, the results allow us to understand what
would happen to the system if the performance accuracy suddenly changed.

5.5. Results

To analyse the effectiveness of the proposed prevention action and, hence, validate the usefulness
of the proposed model, several measurements were made.

Figure 7 shows the operation throughput as a function of the number of clients (n), for different
scenarios. The baseline scenario corresponds to normal operation, when PreX is not used. The
remaining scenarios show the use of PreX and the prevention action with varying degrees of pre-
diction accuracy. The accuracy of the preliminary results is used, in its 10-fold cross-validation
variant (FNR=0.0152, FPR=0.0889) and its “test on one, validate on another” variant (FNR=0.233,
FPR=0.0701). Additionally, there are three scenarios with varying accuracy which reveal how the
system behaves: FPR=FNR=0.5; FPR=0.1,FNR=0.9 and FPR=0.9,FNR=0.1. In total, the 7 differ-
ent scenarios allow an evaluation of PreX. Figure 8 shows the total number of recorded exceptions
for the same scenarios.

Fig. 7. Successful operation throughput with and without PreX, based on number of clients, for
different prediction accuracy models.

It is clear from Figures 7 and 8 and that PreX offers increased throughput when the server
is overloaded. Due to false positives, the prevention mechanism leads to a lower throughput in
the absence of exceptions (n < 180). However, when exceptions start happening (n = 180),
the throughput abruptly falls in the absence of PreX. In contrast, PreX delays the appearance of
exceptions and offers increased throughput, offering advantages to application developers which
intend to increase the reliability of their systems.

An increase in the false positive rate naturally leads to a decrease in operation throughput,
delaying the appearance of exceptions. When this value is very high, the throughput can decrease
by 50%, but exceptions are also delayed. This implies that the preventive action is also useful
even when an exception is not bound to happen. However, it is clear that it is most useful when
exceptions are accurately predicted (e.g. FNR=FPR=0.1). The area under curve seems larger when
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Fig. 8. Total number of exceptions with and without PreX, based on number of clients, for different
prediction accuracy models.

there is an adequate balance of FNR and FPR (higher prediction accuracy). This is the case with
the empirical data used (FNR=0.233, FPR=0.0701). Thus, the simulation shows that the TPC-W
scenario, whose prediction model we already know, is an ideal use-case for PreX and the proposed
prevention action.

Figures 9 and 10 show the throughput and number of exceptions when using PreX with varying
degrees of false positive rate. The false negative rate is fixed at the empirically determined value
for TPC-W (0.233). Three different scenarios (with and without PreX) are represented: for 128,
192 and 256 clients. If we look at Figures 7 and 8 we see that these three workloads have clearly
different characteristics. The first represents the absence of exceptions. The last represents a full
server overload. The second one is a balance between both, in the transition phase where the server
can still accommodate some clients, but already catches exceptions. It makes sense, then, to look
at these three different scenarios.

As we have seen before, a higher false positive rate has a negative effect in the operation
throughput when exceptions are rare. However, in the scenario where the server is overloaded
(256 clients), higher values actually have a positive effect, once again strengthening the idea that
the preventive action is useful even before the exception is predicted. In general, there are less
exceptions when the preventive action is used more often, but this often means that the overall
throughput decreases (since operations are being adjourned for a later time).

Figures 9 and 10 show similar plots, regarding the throughput and number of exceptions when
using PreX with varying degrees of false negative rate.

The analysis of the model’s behaviour with regards to false negative rate is more straightfor-
ward. An increase in false negative rate leads to more exceptions, because the prevention mech-
anism is less used. Nevertheless, it is interesting to note that even when there are many false
negatives (i.e. exceptions are often not predicted), the proposed model offers advantages. For ex-
ample, a false negative rate of 0.8 still represents a three-fold increase in operation throughput for
the heaviest workload (256 clients). This shows that PreX offers new reliability options which are
useful to developers.

Lastly, Figures 13, 14 and 15 show the throughput during each second of three simulated sce-

17



Fig. 9. Successful operation throughput with and without PreX, based on the false positive rate,
for different workloads.

Fig. 10. Total number of exceptions with and without PreX, based on the false positive rate, for
different workloads.
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Fig. 11. Successful operation throughput with and without PreX, based on the false negative rate,
for different workloads.

Fig. 12. Total number of exceptions with and without PreX, based on the false negative rate, for
different workloads.
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narios. Each of these represents a different workload, once again using 128, 192 and 256 clients.
The prediction accuracy used the one determined empirically in the previous section (FNR=0.233,
FPR=0.0701), since these are the most realistic values currently available.

Fig. 13. Successful operation throughput in one simulation with and without PreX, for a workload
with no exceptions, using the empirically determined false negative and false positive rates.

Fig. 14. Successful operation throughput in one simulation with and without PreX, for a workload
with some exceptions, using the empirically determined false negative and false positive rates.

It can be concluded, from Figures 13, 14 and 15, that, whenever there are exceptions, PreX
offers an increase in operation throughput during the simulation. For example, in the case of 192
clients (Figure 14), this increase is marginal, but guarantees that, in the end, more operations will
have completed successfully. In the case of 256 clients (Figure 15), the original simulation flat-
lines its throughput due to the constant overload of clients. By using PreX, it is possible to continue
operation, even if some exceptions are triggered. Lastly, in the workload with no exceptions (Fig-
ure 13), we see the effect of false positives marginally decreasing the operation throughput when
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Fig. 15. Successful operation throughput in one simulation with and without PreX, for a workload
with many exceptions, using the empirically determined false negative and false positive rates.

PreX is used. The increase in throughput is a direct consequence of the uniform redistribution of
load which reduces the amount of concurrent clients and, ultimately, increases individual query
performance (if there are less simultaneous clients, the overall query performance increases).

6. Conclusions and Future Work

In this paper, we have extended on previous work, where we proposed a new Preventive Exception
model that defies nowadays’ Exception Handling preconceptions. Current research in exception
handling and online failure prediction shows that a fine-grained system for predicting exceptions
is currently missing. Instead of catching exceptions, this model proposes that the system, as a
whole, actively work towards predicting and preventing exceptions. Applications can then be
more resilient, robust, reliable and have increased performance.

Our preliminary results show that it is possible to predict exceptions, and that a paradigm shift
towards prevention, rather then reaction, is quite within our reach. Furthermore, the simulation
experiments shown in this work also demonstrate the model’s usefulness as a reliability tool, al-
lowing exceptions to be prevented and an overall increase in system throughput and availability.
We have shown that even when the accuracy of the prediction engine is low, there is an increase in
throughput and system stability.

As future work, we intend to develop a proof of concept implementation of PreX in a modern
programming language, extending the simulation validation with a real implementation.
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