
Master In Informatics Engineering

Internship

Final Report

CitizenPal
Student:
Omar Asaad
ozaki@student.dei.uc.pt

Company:
Tanǵıvel
info@tangivel.com

Supervisor of DEI :
Filipe Araujo
filipius@uc.pt

Supervisor of Tangivel:
José Campos
jcampos@tangivel.com

September 1, 2016

Abstract

Currently, countries are competing to provide better services to citizens, by automating their
services and making them available on the Internet. This makes citizens lives easier, by reducing
the time and effort they spend interacting with the public administration. With the smartphone
revolution, these services have become even more available and closer to the citizen. Unfor-
tunately, electronic government (e-government) services are varied and different, because they
belong to different institutions. Furthermore, each institution may use specific technology in
those services.

In Portugal, a lot of e-government services have been already automated and are available on
the Internet. Until now, however, there is no mobile application that allows citizens to interact
with these services. This project studies the Portuguese e-government services and understands
Portuguese government portals, in order to develop a mobile platform that manages the main
obligations of citizens to the state and makes them work under a single application, using a
coherent and simple to use interface.

Key Words: e-government, e-services, citizens, events, state services, public
portals, mobile services

1

Contents

1 Introduction 8
1.1 Project’s Goal . 8
1.2 Scope and Motivation . 8
1.3 Method and Results . 9
1.4 Document Structure . 9

2 Project Background 11
2.1 Overview Model . 11
2.2 Product Perspectives . 13
2.3 Technologies and Techniques . 15

2.3.1 Server App Technologies . 15
2.3.2 Smart-Phone App Technologies . 16
2.3.3 Back-Office Technologies . 16
2.3.4 Database Technologies: . 16

2.4 User Characteristics . 17
2.5 General Constraints . 17

2.5.1 Regulation and Privacy . 17
2.5.2 Security and Encryption . 17

3 Requirements 19
3.1 Users Scenarios and Stories . 19

3.1.1 User Story 1.Inês Santos : University Student 19
3.1.2 User Story 2.João Veŕıssimo : Employee in Decathlon 19

3.2 External Interface Requirements . 20
3.2.1 User Interfaces . 20
3.2.2 Hardware Interfaces . 21
3.2.3 Software Interfaces . 22
3.2.4 Communications Interfaces . 22

3.3 Functional Requirements . 23
3.3.1 Use Cases . 23
3.3.2 Data Flow Diagrams . 30

3.4 Non-functional Requirements . 31
3.4.1 Security Requirements . 31
3.4.2 Designing Requirements : . 32

3.5 Prioritization . 33
3.5.1 Use Cases Priorities: . 33
3.5.2 Security Priorities: . 33

4 Implementation 34
4.1 Components Overview . 34
4.2 System Architecture . 34
4.3 Server Application Architecture . 36

4.3.1 HTTP Request: . 41
4.3.2 Enabling Cors . 42

4.4 Android App Architecture . 43
4.4.1 Presentation Layer . 43
4.4.2 Logic Layer . 45
4.4.3 Data Layer . 49
4.4.4 Configuration File . 49
4.4.5 Screens and Their Relationships . 49

4.5 Back-Office App Architecture . 50
4.5.1 SPA Software Pattern . 50
4.5.2 Views . 51
4.5.3 App Configuration . 52

2

4.5.4 Controllers . 52
4.5.5 Authentication Service . 52
4.5.6 Data Model . 52

4.6 Database Diagram . 53
4.7 Assumptions and Dependencies . 54

5 Deployment 55

6 Testing 56
6.1 User Acceptance Testing . 56
6.2 Server app Performance Testing . 56

6.2.1 Test Plan . 57
6.2.2 Testing Results . 57

7 Discussion and Future Work 59

8 Conclusion 60

9 References and Bibliography 61

10 Appendixes 62
10.1 User Interfaces-Smart Phone App . 62
10.2 User Interfaces-Back-Office App . 65
10.3 Use cases . 72

10.3.1 Smart-Phone App Use Case: . 72
10.3.2 Back-Office App . 74

10.4 Screen shots . 85
10.5 Test Cases . 96

10.5.1 Smart-Phone app Test Cases . 96
10.5.2 Back-Office app Test Cases . 100
10.5.3 Testing Accounts . 109

10.6 API Resources . 109
10.7 Deployments Steps . 117
10.8 Project Planning . 120

3

List of Figures

1 Percentage of citizens using public e-services in Portugal by year 11
2 CitizenPal product model . 13
3 DubaiNow is a unified public services application. 14
4 SmartNews is a collective news application. 15
5 Technologies APIs and IDEs brands . 17
6 CitizenPal smart-phone app, login page . 20
7 UI of CitizenPal back-office app, login page . 21
8 CitizenPal back-office app, main page . 21
9 Hardware interfaces of CitizenPal project . 22
10 Communications interfaces of CitizenPal project 23
11 Use cases diagram of the smart-phone app. 25
12 Use Cases diagram of back-office, first diagram. 27
13 Use Cases diagram of back-office, second diagram. 27
14 Use cases diagram of Server app. 29
15 Data flow diagram, context view. 30
16 Data flow diagram, first level view. 30
17 Authentication using digital certificate. 31
18 User authentication using email and password. 32
19 Main required applications of CitizenPal project 34
20 Context diagram of CitizenPal system . 35
21 Context diagram of CitizenPal system with more details 36
22 Architecture of server application . 37
23 Resource services architecture . 38
24 RESTful resources properties annotations. 39
25 Data model components of server application . 39
26 Server controller components . 40
27 Http request resource process. 41
28 Ssl over Http and specifying the key store file location 41
29 Configuring secure connection and secure resources 42
30 Enabling CORS headers and methods . 42
31 Architectural layers of CitizenPal smart-phone app 43
32 Presentation layer of CitizenPal smart-phone app 44
33 All activities of CitizenPal layout architecture 44
34 Logic layer architecture of citizenPal smart-phone app 45
35 Restful client architectural components. 46
36 CitizenPal smart-phone controllers architectural components 47
37 Asynchronous tasks architectural components 47
38 Notification service components diagram. 48
39 Notification service process . 48
40 Screens relationships diagram . 49
41 SPA lifecycle vs. traditional page lifecycle . 50
42 CitizenPal web-client Angular architecture components 51
43 Controlling views by routing policy . 51
44 Back-office running configs logic . 52
45 Data binding of html views element to data model 53
46 Database model entity relational diagram . 53
47 CitizenPal architecture with “Proxy Program” addition 54
48 CitizenPal deployment machine diagram . 55
49 Performance test plan . 57
50 UI for CitizenPal smart-phone app, log in page 62
51 UI for CitizenPal smart-phone app,main page . 62
52 UI for CitizenPal smart-phone app, register new citizen page 63
53 UI for CitizenPal smart-phone app, categorize event page 63
54 UI for CitizenPal smart-phone app, event’t details page 64

4

55 UI for CitizenPal smart-phone app, keys entry page 64
56 UI for CitizenPal back-office app, Loging in page 65
57 UI for CitizenPal back-office app, main page . 65
58 UI for CitizenPal back-office app, citizens page 66
59 UI for CitizenPal back-office app, new account page 66
60 UI for CitizenPal back-office app, edit citizen info page 67
61 UI for CitizenPal back-office app, citizen events page 67
62 UI for CitizenPal back-office app, events page 68
63 UI for CitizenPal back-office app, new event page 68
64 UI for CitizenPal back-office app,edit event page 69
65 UI for CitizenPal back-office app, locations page 70
66 UI for CitizenPal back-office app, new location page 71
67 UI for CitizenPal back-office app, events page 71
68 CitizenPal app among the Android applications 85
69 Screenshot of Android app, Start page. 86
70 Screenshot of Android app, sign in page . 86
71 Screenshot of Android app, Registering Page. 87
72 Screenshot of Android app, main page . 87
73 Screenshot of Android app, event details. 88
74 Screenshot of Android app, filtered events. 88
75 Screenshot of Android app, keys entry page . 89
76 Screenshot of Android app, citizens portal credentials entry page 89
77 Screenshot of Android app, health portal credentials entry page 90
78 Screenshot of Android app, Taxes portal credentials entry page. 90
79 Screenshot of Android app , scheduling event to citizen’s calender 91
80 Screenshot of Android app , notify a new event 91
81 Screenshot of back-office app, admin login page 92
82 Screenshot of back-office app, citizen main page 92
83 Screenshot of back-office app, citizens page . 93
84 Screenshot of back-office app, edit citizen info 93
85 Screenshot of back-office app, create new citizen 94
86 Screenshot of back-office app, events that belong to specific citizen 94
87 Screenshot of back-office app, attach event to citizen 95
88 Screenshot of back-office app, delete a citizen . 95
89 Screenshotof back-office app, detach event from citizen 96
90 First step to choose the AMI . 118
91 Security groups for CitizenPal AMIs . 118
92 Security inbound roles for RESTful API machine 119
93 Appache app Manager . 119
94 Gantt for first semester plan . 120

5

List of Tables

1 Use Cases Properties . 24
2 Smart-phone Use Cases . 25
3 Back-Office Use Cases . 26
4 The server Use Cases . 28
5 Acceptance test cases properties . 56
6 Normal load testing summary results . 57

6

Definitions, Acronyms, and Abbreviations

RESTful Representational State Transfer

API Application Program Interface

DWP Dynamic Web Project

JEE Platform, Enterprise Edition (Java EE) is the standard in
community-driven enterprise software.

User The user is the actual utilizer of the application. In the
mobile application, he is the citizen. In the back-office, he
is the Admin.

TLS Transport Layer Security

HTTPs Hypertext Transfer Protocol (HTTP) within a connection
encrypted by Transport Layer Security or its predecessor

AMA In portuguese ”Agência para a Modernização Administra-
tiva”, The Agency for Administrative Modernisation.

IDE Integrated Development Environment.

API Application Program Interface.

SDK Software Development Kit

JRE Java Runtime Environment

HTML Hyper Text Markup Language

SPAs Single Page Applications

UIs User Interfaces.

JSON JavaScript Object Notation.

RDP Relational Database Provider

SQL Structured Query Language

SSL Secure Sockets Layer

MVC Model View Controller

FCM Firebase Clould Messaging

URL Uniform Resource Identifier

CORS Cross-Origin Resource Sharing

AMI Amazon Machine Image

RDP Remote Desktop Protocol

RDS Relational Database Service

WAR Web application ARchive

DFD Data Flow Diagram

HDPI High Dots Per Inch (Screen Resolution)

7

1 Introduction

The relation between the state and its citizens is of great importance. The state provides several
services such as health services, citizens registrations, taxes and vehicles managements by its
institutions. Recently, with the technological revolution, these services became automated (e-
services). This improvement allows citizens to access most of its public services online. However,
the uprising of smart phones with their great capability and connectivity, drives these services
to be more accessible and easy to use. This project provides a prototype of a mobile app that
makes these public e-services close and accessible to every citizen.

The document reflects the work that has been done for a CitizenPal proposal. CitizenPal pro-
posal was introduced by a company called Tangivel. It is located in IPN (Institute Pedro Nunes)
part of the effort to obtain a Master Degree in Informatics Engineering - Software Engineering
field.

Following section gives a description of the purpose of the project. In addition, it determines
the scope and the motivation of the project. Then, it specifies the methods and results obtained.
Finally, it provides some definitions and abbreviations used in this documents.

1.1 Project’s Goal

The main goal of the CitizenPal project is to develop a mobile application that demonstrates the
ability of a citizen to get state-related events from several public e-services in one place using a
smart phone device. It allows citizens to be notified and gives more details related to his events.

1.2 Scope and Motivation

In order to develop this application, this report identifies the most important tasks that citizens
usually do, which are related to institutions that are owned by the state.

This report explores the relationships between the citizens in Portugal and the state. By
exploring the main agencies and e-services in Portugal, the project raises many concerns related
to the project.

To understand more about the e-services of the public portal, Tangivel had several meeting
with the AMA1 that responsible for these e-services. Then they have decided to build a proto-
type that reflects the idea of CitizenPal project. For more information, see project planning 10.8
in Appendixes.

E-services are very diverse, they cover most aspects of the citizens, companies and organiza-
tions. This project is focusing on the individual citizens tasks. Enterprises and companies tasks
or related-relations with e-government are not included.
The project is targeting the citizens whom are familiar with the use of the current technology
devices, such as smartphones, laptops, etc.

The motivation of the project is to develop a more efficient way to get the state e-services
closer to the citizen. The main motivations can be summarized as follows:

1. Help citizen to remember more efficiently the state-related event and other important state
obligations for example, renewing the Citizen Card, payment of taxes).

2. Give citizens more contextual information to their location, taxes situation and necessary
documents are needed to perform these tasks. Which Assist citizens to do these tasks
proactively.

3. Avoid passing through unpleasant experiences that create feelings of anger and frustration,
and increase the citizen’s lack of confidence in the state system.

1AGÊNCIA PARA A MODERNIZAÇÃO ADMINISTRATIVA

8

1.3 Method and Results

The e-government services in Portugal are very diverse. There are several institutions that al-
ready have their services online. We started by browsing all the e-government services and related
institutions, to extract specific citizen-oriented tasks and events offered by these services. This
study includes an overview of similar projects and platforms that have been made for the same
purpose. Furthermore, Tangivel the company that is responsible for the project, contacted the
Portuguese government agency that responsible of most of these services.

Based on this effort, and considering the goals of this project, we developed a demonstration
of a mobile application for the citizens, and a number of accompanying server-side software, to
support this mobile application. The result of the project is building the following three major
applications:

• Server app: A Dynamic Web Java application with a RESTful API that receives requests
from both the mobile-app and the back-office app.

• Mobile app: An Android Mobile application that citizens use to receive their events data
and notifications.

• Back-Office app: A Web Client application that controls and manages the data of the
application.

These three aforementioned applications works together to simulate the CitizenPal project.

1.4 Document Structure

This document represents the final thesis of CitizenPal project. The document is organized as
10 chapters.

Chapter 1 gives an Introduction to CitizenPal project, scope, motivation, methods Then
Definitions and Abbreviations.

Chapter 2 explains Project Background which contains a description of project’s perspec-
tive, users characteristics and general constrains that are related to the project. In addition, it
specifies the techniques and technologies that have been used in the project.

Chapter 3 specifies the Requirements of the project. It aims to give more understanding
of the project context by introducing users stories and scenarios. Then enlisting the External
Interface Requirement such as user, hardware, software and communication interfaces. Further-
more, it specifies the functional and non-functional requirements. In the end, it points out some
important notes as prioritization of some previous requirements requirements.

Chapter 4 illustrates the Implementation of the CitizenPal System. It depicts the Ar-
chitecture of whole system. This section describes the three main architectural components of
server app, mobile app and back office app. It explains what have been done to make them work
together. Finally, it points out some assumptions and dependencies.

Chapter 5 decorate the project Deployment and describe the deployment’s specifications
and devices.

Chapter 6 shows Testing process and test sets for the system. In this document, two types
of testing has been done. A load testing and user acceptance input testing.

Chapter 7 have a Discussion and Future Work about the project in general. Discussion
points out some important decisions during the life time of the project. Finally, it shows some
important issues that can be done as . These Future works can improve and enhance the project.

9

Chapter 8 draws Conclusion of the main issues in the project and presents the results that
have been obtained.

Chapter 9 enlists all References and Bibliographies that have been used in this docu-
ments.

Chapter 10 has all the extra Appendices documents and resources that include in the
project.

10

2 Project Background

2.1 Overview Model

The impact of the technology and information access is rising in government services. In fact, the
interactive nature of the Internet technology has a great potential to make government function
better that it currently does. Therefore, most of modern governments tend to improve their
services for citizens. Consequently, rising the projects that had been made in this area, most of
them related to e-government and e-services approach.
E-services refers to the delivery of information and services online through the Internet or other
digital means. In Portugal, citizens are using the Internet services very frequent. In fact, the
e-government indicators refer that the individuals that are using Internet to interact with public
authorities is also increasing as figure 1 shows.

Figure 1: Percentage of citizens using public e-services in Portugal by year

The figure 1 compares the statistic indicator for the European Union average (blue line) and
Portugal state indicator(green line)[1]. This increasing indicates that citizens are aware of these
services. This gives CitizenPal app more chance to be used.

As a part of EU, the state of Portugal has great concerns to develop and improve their online
services for the citizens. For that reason in 2007, the Agency of Administrative Modernization or
(AMA) has bean created. AMA is the public institution that fulfills the duties of the Ministers
Council Presidency, in the areas of modernization and administrative simplification and elec-
tronic administration. It works under the authority of the Secretary of State for Administrative
Modernization.

To reduce bureaucracy and improve the usability of public services, the “Citizen Spot” or
“Loja do cidadão” has been created. The citizen spot was the result of the cooperation between
the central government and the local government. It should be opened and ready to collaborate
with other entities [4]. This will allow all these entities that also provide public services, to be
gathered in one place with several political and economical benefits.

In addition to “Citizen Spot”, AMA has developed several electronic web portals, to be served
under the e-government infrastructure such as “Portal do Cidadão” or “Citizen Portal”, “Portal
da Empresa” or “Enterprise Portal”, “Portal das Finanças” or “Taxes Portal”, and Open Data
Portal, among others. A web portal is a web site or service that offers a broad array of resources
and services.
The following points are examining these portals in more details so as to have better understand-
ing for their e-services:

11

• The “Citizen Portal” 2 is the central channel for electronic access to public services. It
currently offers many citizen-oriented services. These services are provided by several
bodies and public entities. Citizen can be able to consult different kinds of information,
regarding daily life events such as birth, death, employments, health , justice and tax
systems.
The keys that citizen should provide to access these portal usually the citizen national
number and a password.

• The “Enterprise Portal” 3 provides electronic access to public services supplied to businesses
and entrepreneurs. It serves as portal for enterprises and companies, and it brings together
information of interest for business activities related to the management, expansion and
closure of enterprises.
In order to access these services that citizen should provides business’s fiscal number “NIF”
and password.

• The “Taxes Portal” 4 provides citizens several services, which allows for example tax sub-
mission and fiscal situation consultation, among a wide range of services.
Taxes Portal needs fisical citizen number “NIF” and password to get access these services.

• “Health Portal” or “Portal do Utente” 5 The Citizen Health Portal aims to be a bridge
between the citizen and the National Health Services. It offers health related information
and services, as booking a doctor appointment or renewing regular medication.
Citizen needs to provide his Social Security number or “Numero de Segurança Social” SNS
and a password to access health services.

The interaction between these portals and the citizens happens when a citizen visits the por-
tals to consult some information or to submit some tax forms.
A citizen can register then log in on most important portals using his service numbers and pass-
word. Every portal should have different credentials. This way of interaction is very productive
and it reduces the bureaucracy, but in some cases the State has to notify the citizens for specific
events and deadlines. Citizens sometimes do not check the portals, or they forgot the dates, or
do not read the emails from the portals. This notification is crucial because usually the payments
or the submission of an information has to be in specific period of month or year, if not, the tax
system imposes an extra fine on delay.

This project is a prototype that is allowing citizens to place all the needed credentials in one
place which is the citizenPal app. Then the app can retrieve and deliver these important events
right to his mobile device.

2Citizen Portal:https://www.portaldocidadao.pt/
3Enterprise Portal:https://bde.portaldocidadao.pt
4Taxes Portal:http://www.portaldasfinancas.gov.pt
5Health Portal: https://servicos.min-saude.pt/utente/

12

https://www.portaldocidadao.pt/
https://bde.portaldocidadao.pt
http://www.portaldasfinancas.gov.pt
https://servicos.min-saude.pt/utente/

Figure 2: CitizenPal product model

As it can be seen in figure 2, CitizenPal changes the current interaction model with public
services. It allows citizen to save and place all credentials inside the app. And the project access
the portals and bring the most important events and tasks to the citizen.

2.2 Product Perspectives

In order to make the model of the CitizenPal application more meaningful, specific aspects should
be pointed out. This section defines several points that would clarify and refine the project.

Portals have several tasks and data to retrieve. Therefore, CitizenPal should define a generic
event type, which refers to a task that could take place. Each event belongs to specific category.
for example “Model 3 submission” is an event belong to Taxes Category. This prototype covers
following category :

• Taxes

• Health

• Vehicles

• Citizens

All the previous portals have been controlled by the government. The government is more
conscious to give access to these portals. For that reason, and to proceed in the project. It is
important to have a kind or “proxy” (middle tier) that can be completed in the future as they
gives access to these portals.

These specific events data should be retrieved and stored in somewhere. Then they will be
delivered to the citizen’s smart phone. As a result, CitizenPal should have some kind of interfaces
that retrieve these information and store then deliver them to the citizen.

Events data have to be stored, this require a management application or a back-office to
control these stored data on the application. This will allows an manager to control the citizen
events data. This prototype should have this kind of mechanism although it rise several consid-
erations related to privacy.

13

Since the citizen will use and store his keys of these portals. The project has to have a secure
connection and secure database to store these credentials. Security is important aspect for the
project.

The citizen’s event, usually, can be valid for specific period of time. It has starting and ending
date. Nevertheless, it could more flexible and effective to allow citizen to organize these events
with his own calendar. So citizen can attach this Event at specific date in that period, depending
on his schedule.

Usually, the events are stored in app storage even if these event has been done by the citizen.
Therefore, it is more user friendly to provide the citizen a way to refer to an event as done or
finished.

To put the CitizenPal product in perspective, lets examine the related current products that
already exist. Most of the current apps that are already made in the store is targeting specific
services such as:

• E-services app: Smart-phone apps that provide e-government services in Portugal are
not exist yet for citizens. As it has been seeing previously, there is that “Citizen’s Place”
which is a new assisted service model, closer to the populations, which brings together
services available on the Internet from various public bodies and companies in a single
physical access point, which acts as an extension of the Citizen Shops.

Internationally, There are some apps that provide e-services from several institutions on
one application such as DubaiNow app which provides the citizens in Dubai with a lot of
public services from several governments entities such as bills and payments, health care ,
driving and vehicles, housing, residency visas, security and justice, education and more.

Figure 3 shows several screenshots of DubaiNow app.

Figure 3: DubaiNow is a unified public services application.

• Collective News apps : That brings news from different portals such and news agencies.
It allows the User to obtains news services from several portals. For example, SmartNews
app which analyzes the articles of the day to deliver the top trending stories from the
trustful sources such as NBC News, TechCrunch,The Huffington Post and more.

This app might have similar structure since it retrieves the information from several re-
sources then store them in one place. Even though, this application does not require any

14

verification or storing keys in the application.
Farther more, this app uses user’s current location to provide accurate weather forecasting,
articles specific to your area, and enhance your social media options. It notify the user as
well for the new interested articles. Figure 4 shows several screenshots of smartNews app.

Figure 4: SmartNews is a collective news application.

CitizenPal Application might simulates and provides this ability. It focuses on retrieving
collective and important information for user events.

2.3 Technologies and Techniques

In this section contains all Technologies that has been used to planning, developing and deploying
the project. Including programming libraries, data forms, IDEs and APIs.

2.3.1 Server App Technologies

Server application has been developed on Eclipse MARS Java EE IDE for web Developers. It
is a Java Dynamic Web Application by using Enterprise Edition (Java EE). Server app works
as RESTful API. RESTful is a great software architectural style that allows provide client-Sever
application with several benefits such as simplicity , performance, lightweight and scalability.
The libraries that has been used in the development are:

• Jersey API: Is a framework that works as implementation of JAX-RS in Java program-
ming language. It supports several features that allows building Web services and their
clients. Is support several media type and data formats such as xml and JSON.In addition
it has a authentication structure and client API to be used in the client.

Jersey 2.2.7 has been used in the development link to library reference [4].

• Jackson API: Jackson is a very popular and efficient Java-based library to serialize or map
Java objects to JSON and vice versa. Also it is the ability to be integrated with Jersey API.

Jackson v1.9.0 is used in the current development.

15

The RESTful Web services is deployed on Appache Tomcat. Appache Tomocat is an open
source software implementation of the Java Servlet, JavaServer Pages, Java Expression Language
and Java WebSocket technologies.[5]

Appache Tomcat 7.0 is used in the current development.

2.3.2 Smart-Phone App Technologies

The smart-phone App is and Android application that build Using Android Studio IDE. Android
Studio is the official IDE for Android development which supported by Google. [6]

Android Studio 2.1 is used in the current development. The libraries that used in the devel-
opment of the Android app are :

• Jersey Client API: a client-side of Jersey API. 2.3.1

• Jackson : for the data format as well.That suitable with android development.

Android App has several Specifications that determine the main properties of the android ap-
plication deployment. They can be found in app.gradle in the main android app path. Some of
important properties are :

• compileSdkVersion : it specifies the current SDK level that used to compile the app to
particular version of Android. The SDK level that has been used in CitizenPal development
is SDK 23.0 which use to compile app for Android 6.0 (Android Marshmallow)

• minSdkVersion: it is the minimum SDK level version that the app can be working on.
In CitizenPal, it is SDK 17.0 which runs over android 4.2 (Jelly Beans)

That means that the CitizenPal will not be able to install or work on the Android systems that
are before Android 4.2 (Jelly Beans). The app can is capable to work on Android systems that
are after Android 6.0 (Marshmallow), But the new features of the new Android system might
not work properly.

2.3.3 Back-Office Technologies

The back-office is individual web-client application that is working on different machine than
than the sever. It build using JavaScript and HTML. The app developed using WebStorm IDE.
The APIs and libraries that has been used In the development are :

• AngularJS: A JavaScript API used to develop a responsive web-client application. Angu-
larJS extends HTML with new attributes. It allows us to build a Modern web application
which called SPAs (Single Page Application) that has several advantages. It used MVC
software pattern with give the application the ability to developed, managed , developed
more easily. [7]
This API Uses JQuery to be able to works.

CitizenPal project uses Angular 1.3.20 used in the in the development of the back-Office.

• Bootstrap: Used for the UI of the application. A sleek, intuitive, and most popular
HTML, CSS, and JS framework for developing responsive projects on the web. [8]

CitizenPal project uses Bootstrap 3.3.6 for for the UIs of the Back-Office.

2.3.4 Database Technologies:

CitizenPal project uses Relational Database to store and retrieve the citizen events. Mysql 5.7
used as database provider. To manage the database tables, CitizenPal project uses MYSQL
WorkBench 6.3 as tool.

16

Figure 5: Technologies APIs and IDEs brands

2.4 User Characteristics

CitizenPal app is targeting users who are in a level of education that can use smartphone features
and can be aware with network services. Basically, CitizenPal app is targeting most of citizens
that are in age of 18 to 40 years old. The users should have an obligations that related to
governments services such as taxes, renew card, car registration.
On other hand, since the app should have a back office window to control and monitor some
information in it. It has to have a system manager or administrator. The administrator should
be familiar in using the Internet and should receive a training of using this the administration
panel and he should be aware of the regulations terms. In general, there are two types of users
shall use this app:

• Citizens: They are the smart-phone users with background of using the Internet and have
already obligations related to public services.

• Admin: The administrator of the app, should responsible of controlling the data, familiar
with using Internet. and awareness of privacy terms and regulation. In addition, he should
know the back-office tasks and functions.

2.5 General Constraints

Since the app is being developed to provide the citizens with their events, It should have high
status in terms of privacy and regulation.

2.5.1 Regulation and Privacy

CitizenPal application intend to collect some sensitive information from the citizens. In order
achieves this, the application should respect the regulations. Before availing the project to pub-
lic, it should consult a lawyer that have expertise in government sensitive data. This should
be done by collaborating with the related agencies of the government. In this context, we are
proceeding in developing the project functionality to present the idea assuming that this issue
can be resolved later.

2.5.2 Security and Encryption

Cititzens should register an account in application, they should agree the terms of use and con-
ditions stating that none of the user’s information will be disclosed to entities outside of the
company.

In CitizenPal database, there has to be a means to preserve the user’s privacy, in the event of
a security breach. So, the most sensitive information, like the user’s password or locations must

17

be encrypted, in an attempt to minimize the damages.

All communications are going to carried out by HTTPs protocol by using SSL encryption
with signed certificate that allows to verifies authentications between the Server app from one
side, and the smart-phone app and back-office app from other side. Details will be explained in
the implementation section 4.

Finally, In order to provide the ability of managing the user data. Server app should dis-
tinguish between the citizen connection and the admin connection. This will create kind of
authorization policy for the incoming communication. The document will go through it with
more details in the chapter 4.

18

3 Requirements

This section introduces mainly the requirements of the project. It examine the functional and
non-functional requirement. It presents a user stories and External Interfaces.

3.1 Users Scenarios and Stories

In order to understand the app users, It is an important, to be aware with the target user. This
section will presents two Users stories and scenarios to help us to understand the project.

3.1.1 User Story 1.Inês Santos : University Student

Personal personal info:

• Age: 23 years old.

• Home Address: Coimbra.

• Civil status: Single.

• Profession: Master student in pharmacy.

Experiences:

• Internet: Regular using.

• Smart-phone device: Samsung Galaxy Mini.Android KitKat

• Apps: She uses a little, specially the social application.

• Computer: She uses it a little for studying purposes.

Inês’s Story

Ines is the younger sister among three children. She is still living with her parents. She has to
study during week days. In addition, her parents are old and they can not use the Internet. She
is helping them for taxes payments. She will appreciate if there is a way to know when the event
of payments of renewing some public documents happen without going to checkout that for her
parents.
This app will provide her with a perfect way to keep track of her events or her parents events
without making and big effort.

3.1.2 User Story 2.João Veŕıssimo : Employee in Decathlon

Personal personal info:

• Age: 26 years old.

• Home Address: Lisbon.

• Civil status: married.

• Profession: Employee at Decathlon company.

Experiences:

• Internet: Regular using.

• Smart-phone device: Alcatel pop 7, Jelly Bean.

• Apps using: A little. social used.

• Computer’s Using: he uses it as a part of his job.

19

João’s Story

João is a hard worker employed at Decathlon in Lisbon. He goes to the work place by his car.
His full time job gives him a limited time to do his other obligations such as car’s taxes and
Modelo 3 submission of his taxes. He would like to know the schedule of that payments because
he prefers to manage his taxes payments. So he can handle his time out of his job.

3.2 External Interface Requirements

3.2.1 User Interfaces

User interface (UI) has been designed to both end-user applications, smart phone and back office
application. Server application does not have an user interface.

Smart-Phone User Interface

It is important to scratch the interface before start developing which will give us a overview of
the interface and functions of the project. Next figures contains the prototype user interfaces
that have been planned.

Figure 6: CitizenPal smart-phone app, login page

The rest of the user interfaces for the smart-phone application can be seen in appendixes 10.1

Back-Office User Interface

Since the back-office app is and web client application. The interface should be designed to be
responsive and easy to use. In early planning, The scratch design was the following.

20

Figure 7: UI of CitizenPal back-office app, login page

Figure 8: CitizenPal back-office app, main page

The full user interfaces scratches can be seen in the Appendixes section 10.2.

3.2.2 Hardware Interfaces

For the project to function, it has to have several hardware interfaces. CitizenPal requires smart
phone with Android system installed and functioning. CitizenPal smart phone app will be tested
on Android device with 480*800 HDPI with 4.0 inch screen. It might have some differences with

21

the layout on smart-phones with other resolution display. The following figure 10 shows hardware
interfaces for CitizenPal system.

Figure 9: Hardware interfaces of CitizenPal project

In addition, there is a need for a two machines that can deploy the server app and another
one for deploying the back-office app and it has to be always connected to Internet.

In order for the back-office to function, Administrator’s computer device is required. This
device works as client eligible to connect to use the Internet.

Furthermore, The data should be stored in a machine that hosts Relational Database Provider
(RDP) server. As the previous devices. It should be connected to Internet.

3.2.3 Software Interfaces

In order for the citizen to use the application, he should have an smart phone with Android OS
installed on it. Android OS is occupying the majority of the market share, with around 82.8%
[9] . This will give more potentials for the app to be installed on more devices. CitizenPal app
can work on Android OS Jelly Beans or 4.2 and above. The previous Android platforms should
not have that much effects because the latest statistics from Google showed that the percentage
for smart-phones that are still using Android OS before than Jelly Beans version is around 3.7%
from all devices that use Android OS.[10]

For the CitizenPal server application, the machine that host the server app should have a
Apache server installed and running. The server application will be deployed on the Apache
tomcat server as WAR file. The Apache server should be running and ready to receive a requests
from both smart-phone app and the back-office app. More details in the Deployment chapter 5.

Since the back-office is an web-client application, it needs a browser to run the app, and server
to host the app as well. The application has been developed and hosted on Apache tomcat 7 and
tested Google Chrome Version 51.0.x. But it works on other browsers such as Mozilla Firefox or
Internet Explorer. It might need to deactivate the security options with the back-office because
the application should accept the sef-signed certificate.

3.2.4 Communications Interfaces

Most the functionalities in the project needs and Internet connection. CitizenPal smart phone
app should be able to request specific resources from the server. The Back-office as well will

22

have to send requests to the server too. The server needs to connect to database and the portals
interfaces to receive store and receives data. All requests that carried out will be a stateless
requests over the HTTP protocol. That means, it will not be any information stored about the
client in the request session. Every request should prove itself by carrying user’s credential before
it can allowed to access the resource is showing. Farther more, using HTTPs added more security
layer to connection between the client and the server. figure 10 shows the stateless requests and
communications interfaces.

Figure 10: Communications interfaces of CitizenPal project

3.3 Functional Requirements

This section describes the features and functional tasks of the project. These features and tasks
has been described as use cases, functional requirement and data flow diagram.

3.3.1 Use Cases

Use cases aimed to help to describe the system for external point view. The Use Cases of the
project is described based on these properties.

23

Use Case ID A unique numeric identifier for the Use Case

Use Case Name A short name for the Use Case using an active verb phrase

Use Case Description Briefly description of the use case and some previous con-
ditions

Use Case Actor Actor who’s goal is being satisfied by this use case and has
the primary interest in the outcome of this use case.
In CitizenPal, There are three main Actors:

• Citizen: an actor that plays the major role in smart-
phone application.

• Admin: an actor that plays the major role in back-
office web application.

• Client: an actor that plays the major role in the
server server application. It could be a the client from
smart-phone , or from the back-office.

Priority Level The use case level specifies the priority of the use case.
There are three levels for the use case priority :

• Essential: Use case is not acceptable unless these
requirements are satisfied.

• Conditional: would enhance the product, but the
product is not unacceptable if absent.

• Optional: Use case that may or may not be worth-
while.

Table 1: Use Cases Properties

The following is the list of the use cases of the CitizenPal project. The details of each of
them can be found in the Appendixes in section 10.3 . The use cases has been categorized based
on the application type.

24

Smart-Phone Use Case

Usecase Id Name Periority

SP-UC-01 Register User Essential

SP-UC-02 Log in user Essential

SP-UC-03 Show User events Essential

SP-UC-04 Filter Events Essential

SP-UC-05 Show Events Details Essential

SP-UC-06 Schedule Event Essential

SP-UC-07 Mark Event Essential

SP-UC-08 Save Email And password Essential

SP-UC-09 Keep me logged in Essential

SP-UC-10 Notify for new event Essential

Table 2: Smart-phone Use Cases

Use Cases diagram

Figure 11: Use cases diagram of the smart-phone app.

25

Back-Office Use Case

Usecase Id Name Priority level

BO-UC-01 Log in Admin Essential

BO-UC-02 Show all citizens info Essential

BO-UC-03 Add New Citizen Essential

BO-UC-04 Edit citizen Information Essential

BO-UC-05 Delete citizen Essential

BO-UC-06 Show Citizen Event Essential

BO-UC-07 detach citizen Event Essential

BO-UC-08 Attach Event Essential

BO-UC-09 Filter Event Record Essential

BO-UC-10 Filter Citizen Record Essential

BO-UC-11 Show Events information Essential

BO-UC-12 Edit Events Information Essential

BO-UC-13 Add New Event Essential

BO-UC-14 Delete Event Record Essential

BO-UC-15 Browse Event Users Essential

BO-UC-16 Deliver Event Essential

BO-UC-17 Deliver User Event Essential

BO-UC-18 Show Locations Info Essential

BO-UC-19 Edit Location Title Essential

BO-UC-20 Add Location Title Essential

BO-UC-21 Delete Location Information Essential

BO-UC-22 Portal Setting Essential

BO-UC-23 Add Portal links info Recommended

BO-UC-24 Admin should keep logged in
during the session

Essential

Table 3: Back-Office Use Cases

26

back-office use cases diagrams

Figure 12: Use Cases diagram of back-office, first diagram.

Figure 13: Use Cases diagram of back-office, second diagram.

27

Server application use cases

The server receives a request from a client (smart-phone app or back-office app). The server has
the following use cases:

Usecase Id Name Priority

SA-UC-01 Register new citizen Essential

SA-UC-02 Add new citizen Conditional

SA-UC-03 Log in admin Essential

SA-UC-04 Delete citizen account Conditional

SA-UC-05 Edit citizen Essential

SA-UC-06 Edit citizen’s flag Essential

SA-UC-07 Retrieve citizen info Essential

SA-UC-08 Retrieve citizen events Essential

SA-UC-09 Add event to Citizen Essential

SA-UC-10 Detach an event from citizen Essential

SA-UC-11 Retrieve all locations info Essential

SA-UC-12 Add new location Optional

SA-UC-13 Edit location info Optional

SA-UC-14 Retrieve all events info Essential

SA-UC-15 Edit event info Essential

SA-UC-16 Retrieve citizens of specific event Essential

SA-UC-17 Authenticate Admin Essential

SA-UC-18 Authenticate citizen Essential

SA-UC-19 Add new event record. Essential

SA-UC-20 log requests to file. Optional

Table 4: The server Use Cases

28

Server app use case diagram

Figure 14: Use cases diagram of Server app.

29

These use cases are explained in details in Appendixes 10.3.2

3.3.2 Data Flow Diagrams

This diagram provides a visual explanation of the information flow within the CitizenPal system.
It is showing the external entities that are involved in the system. Initially, The DFD context
diagram is the general gives the general view of data flow in the system.

Figure 15: Data flow diagram, context view.

This diagram refers to first level diagram as it can be seen from figure15. The system receives
and send information from all external entities that are involved. If we break down the level one
we will have the following diagram the shows level 2 of the data flow.

Figure 16: Data flow diagram, first level view.

As the figure 16 shows that the system consist of three main subsystems. First the data

30

transfer from the mobile device to the server application that store the data to entities that are
referred to D such as citizen account info. Then the server send requests to the public portals
to the retrieves information related to citizen events. The server receives the responses analayze
the requests. Extract the events info then store it to data event entity attached to user account.
This event sends to mobile app after that. Then, mobile application can notify and show citizen
events data.

In addition there is and back-office subsystem. this subsystem can send requests to change
data by the admin. The admin should provide his credentials to back office. Finally, The
back-office app can send request to server to perform the changes.

The diagram 16 above gives and idea how the data is flowing throw the subsystems. That
was important to understand the CitizenPal System.

3.4 Non-functional Requirements

3.4.1 Security Requirements

Since the project transfers data throw the Internet, security is crucial issue. There are several
major security features should be considered as security requirements:

• Authentication: authentication usually refers the process of determining whether some-
one or something is, in fact, who or what it is declared to be. To ensure the authentication
is really met, the application should authentication services that provide both machine and
user authentications.

– Machine Authentication: In order to assure that CitizenPal server is really the
server of CitizenPal project. The project should use a digital certificate technology
that signed by certificate Authority (CA) as figure 17 shows. However, using self-
signed certificate also acceptable just in the prototype as section Prioritization points
out. 3.5.

Figure 17: Authentication using digital certificate.

– User Authentication: The server application in CitizenPal project is going to be
used by two types of users Citizens, and Admin. It should have an user authentication
to determine who is requesting and apply its corresponding authorization policy. This
should down using email and password. Since the connection between the client(
Admin or citizens) is stateless in RESTful API, every request comes to the server

31

should carry its own authentication keys. Clients should be authenticate using email
and password. So, every request should carries out its email and password. as the
diagram below shows.

Figure 18: User authentication using email and password.

The requests that does not have correct password and user email will not give access to
these resources. For more about the Http request of server application see Implementation
section 4.3.1

• Encryption: encryption is a key factor in this project as well, Two issues should be
required in the project:

– Secure Data Transmitting: since the requests built on HTTP protocol. The
project should use HTTPs which assure the SSL encryption over the http proto-
col. The previous digital certificate should bind a cryptographic key. Typically, SSL
is a trade off tool used to secure the data transmitting.

– Encrypt Sensitive Data: data such as user password should be stored hashed
using one of secure hashing algorithms. and should not be retrieved at all.

• Secure User’s Input: In order to assure that the data is stored in a correct form, all
data from user should pass throw data validation process. This process should prevent
SQL-injection attacks. For the prototype, validation process could be on both client and
server side.

3.4.2 Designing Requirements :

This section, presents the standards that should be met in designing and developing the programs
in this project. Primary benefit of adhering to software standards is efficiency such as increasing
performance, reducing the maintenance time and Reducing business risks. CitizenPal project
should use the following standards throw the design and developments of the project.

• RESTful standard: Designing restful API is an art. There are several methods and
techniques used by lead companies in designing there APIs such as facebook and google
and twitter. Every company uses his own method. CitizenPal should used the a common
standard getting benefits from there APIs. [11]

• MVC standard: Is a software design standard for developing web applications. A Model
View Controller pattern is made up of the following three parts Model, View, and controller.

32

This model should be used in designing web-client application. AngularJS has a good
structure to use this pattern in the development.

• Notification Service: The mobile device should show up notification when ever there is a
new event is adding to the citizen (requirement SP-UC-11) 3.3.1. Examining the designing
requirements of service is important before starting to know which one is proper solution.
There is two approaches for pushing notification service:

– Firebase Cloud Messaging : Firebase Cloud Messaging (FCM) is a cross-platform
messaging solution that lets you reliably deliver messages at no cost. Using FCM,
you can notify a client app that new email or other data is available to sync. You can
send notification messages to users. This service is sending and an instant messages
to user’s smart-phone app. [12]

– Alarm Manager Service: Another method that might used to implement the
notification service to use alarm manager that can run the background of android
user. This service has to stay running in the background even if the application is
closed, more details 4.4.2 .

CitizenPal Smart-phone should use one of these approaches to implements the notification
services. Comparing the complexity and the needs of the project, it will be much suitable
to use Alarm Manager Service because of :

– It is not necessary for the citizen to receives this notification for the event instantly.
So the application can check for new event once a day. FCM might be more useful in
services that needs more instance messaging.

– Unlike Alarm Manager Service, FCM needs an account for the project on the service
and need more configuration for the project. This will increase the complexity of the
project.

3.5 Prioritization

This section is pointing out some topics that might be considered more important than the other
in term of the first release of this project.

3.5.1 Use Cases Priorities:

Every use case has a priority level. ”Essential” level should be applied in the prototype release.
In addition, ”Optional level” could be satisfied or could not.

3.5.2 Security Priorities:

All security requirements should be satisfied but there is some issues should be pointed out in
this prototype release.

• Connecting to public authority portals: The prototype has no connections to public portals
of e-portals of the government services. This part of the project should be on hold till
accessing the portal is granted. Read more about this in Planning section 10.8.

• Self-Signed certificate used in the prototype release can be self-signed certificate instead of
a certificate that signed by Certificate Authority.

• Validation: data validation process should be applied in both client side and the service
side. This should be satisfied in prototype release.

33

4 Implementation

This section describes architectural components of the Citizen project. It gives an overview of
implementation process and explains the mains architectural components of the project.

4.1 Components Overview

Considering the aspects that have been mentioned in the Requirements chapter 3. CitizenPal
project is consisting of the following main following parts:

Figure 19: Main required applications of CitizenPal project

• Server Application: A server side application that fetches the data from the public
portals, store the data in database, receives and replies requests from a smart-phone ap-
plication and back-office application.

• Smart-phone app: a smart phone client application in which the citizen uses to access
his events info.

• Back-Office app: a web client application that can manage the users events and portals
info. It works as administration panel of the CitizenPal project.

• Database: a database that stores and saves the user’s events and data. The database is
interacting only with the Server App.

After building these applications, it is an important to integrate them together. The integra-
tion is a part of the implementation between server and smart-phone app, server and back-office
app.

4.2 System Architecture

In order to explain the architecture, several levels of abstraction has been adapted. The abstrac-
tion levels allows to understand the project by breaking down its elements from high level to
more low level. In this architecture, several terms will be used in order to have unambiguous
understanding of the system. These terms are:

• User: an actual users of the application.

34

• Container: represents a group of components or a group of other containers that have a
common feature of task. It could be application that consists of containers and components
or, it could be a container that contains several components.

• Component: represents the lowest level of abstraction. Basically it is a file or class.

• Relation: An arrow titled by verb.

This approach of representing the architecture is created by Simon Brown for more details see
[15].

Context Diagram

The context diagram represents the outside view of CitizenPal software system. CitizenPal
[Software System] in dark blue block represents the system. Other blocks are the external
systems in which the software system has to interact with.

Figure 20: Context diagram of CitizenPal system

The figure 20 represents mainly the users and the external entities that the system is using.
As it can be seen, CitizenPal system used by the both a citizen and admin as Users. In addition,
CitizenPal uses public authorities portals to request citizen information.

35

Figure 21: Context diagram of CitizenPal system with more details

CitizenPal [software system] block consists of the containers that are represented in figure 21.
In addition, it specifies the interaction of these containers with users and with portals. In this
case, admin uses back-office [Container] and citizen uses mobile-application [Container]. Finally,
as it can be seen from the figure 21 server application [Container] uses the public portals. In the
following sections, these three containers will be explored with more details.

4.3 Server Application Architecture

Server application is the core of this project. It has been built as Java Dynamic Web application.
Server application has to run on Apache server. In general, Server application is running and
waiting for a requests from the client (back-office app or mobile app).

36

Figure 22: Architecture of server application

Figure 22 shows the architecture of Server application (inside a doted box). Server application
consists of several blocks as following:

1. Resources Services [Container]

2. Controllers [Container]

3. log [Container]

4. Data Model [Container]

5. Libraries [Container]

6. Configuration File [Component]

As it can be seen in figure 22 , the controllers in server application uses Database to store and
retrieve the information. In addition, it uses the libraries and configuration file. In the following,
we will examine these containers in more details.

• Resource Services contains all classes that responsible for RESTful API. Basically, they
have been built based on RESTful theory. The following figure 23 shows the components
of Resource Services.

37

Figure 23: Resource services architecture

Figure 23 shows the components of resource services container (inside doted box). It has
the classes that that represents RESTful API services such as user service [Component],
events service [Component], location service [Component] and status service [Component].
It uses controllers [Container]. In addition to that, it has an authentication filter [Compo-
nent]. Authentication filter can filter the requests and give the authorization that is needed
based on client type and the resource service.

Every service has several functions. These functions provide the resources. The resources
represented as URLs. URL in Jersey Library (Java library that has been used) refers as a
path. A path could be assigned to specific resource state. Basically, Every Resource has
the following properties:

1. Path: A URL that is used to access the resource by the client. Usually, it refers in
Jersey API as @Path(“/resource-name”). Naming these URLs has to be based on the
standard that has seen earlier in Chapter 3 , Designing Requirements 3.4.2 .

2. Method: An HTTP method that used to refer to the resource’s action. There are
five methods GET, POST, DELETE, PUT and HEAD. These methods determine the
behavior of the resource. Also they represented by annotations as following @GET,
@POST, @DELETE, @PUT and @HEAD.

3. Input and Output: Resource sometimes consumes or produces some data. These
data should be carried out with body of the HTTP request or by HTTP response.
Usually it represents by @Consumes(“Data-Type”) and @Produces(“Data-Type”).

38

4. Role: a name represents the authorization policy. Since CitizenPal has just admin
and citizen as a user, Resources should have a role policy such as “admin” for admin
user of the back-office. In addition, citizen users resource is having the default role
from the authentication Filter. Role represented as annotation @RolesAllowed(“role-
name”).

Example of resource below :

Figure 24: RESTful resources properties annotations.

All resource properties can be seen clearly in the figure 24. In addition to that, some
times it is important to send parameter as part of URL query which can be done using
@PathParam as figure 24 showed. It should refers to the parameter’s name with brackets
{id}
inside the URL’s path.

To browse full list of all Resources of CitizenPal API, see Appendixes at API Resources
section.10.6 .

Figure 25: Data model components of server application

• Data Model contains Java Beans of the data model. Java Beans are Java classes. These
classes represent the objects that should be send and received on the requests. They clearly
can be seen in figure 25 inside the doted block.

39

• Controllers: contains several classes which can control and manipulate the data between
the resources services [Container] and data model [Container]. It responsible for connecting
to database, data validation and data conversion. Its components showed inside the doted
block of figure 26. as following:

1. Sql Functions [Component]

A class contains all functions that are needed to perform Sql operations. Clearly, it
needs to use the Data Connection, Validation and Conversion components as figure
26 shows.

2. Data Connection [Component]

A class that responsible database connection configurations such as opening and clos-
ing the connection with the database.

3. Data Conversion [Component]

A class the contains several function the responsible for converting between the data
types and and format.

4. Data Validation [component]

A class that responsible for validating the data and verify its format and type.

Figure 26: Server controller components

Controllers used by Resource Services to perfrom the Sql Operations. It uses Data model
as we can see from figure26.

The rest of the Server Application blocks are:

• Logs a component that responsible of logging the requests, errors , and activities to external
file.

• Libraries: a container showed in the bottom of figure 22. It Contains all Java libraries.
Java Libraries are JARs files that used in for the development of the server.

• Configuration file basically, it is the configuration file in Java Dynamic web project is
XML format file. usually called web.xml. web.xml Contains properties and configurations
of the project features. It can be seen in bottom of figure 22 as well.

40

4.3.1 HTTP Request:

All HTTP requests that are asking a resource in CitizenPal API passes through authentication
filter. This filter determines if this request is allowed to pass to the service or not. This filter
allows Server application to authenticate every request. Also it specifies the authorization policy.
Authorization policy specifies if this request allowed to access this resource or otherwise it denies
the access.

In order for a request to be accepted the request should carry an authentication header with
email name and password. The email and password should be Base64 encoded and added to
header with authorization tag. Authorization tag in header should have the following format:
Headers[’Authorization’]=”Basic {email} : {password}”
The authentication filter is retrieving this header and check if the user email and password is
correct. The Admin has a static email and password, they should match with the ones in the
header. Then the authentication filter check the resource role and decide if permit access or not.
The same thing happen for the citizen request, except that the filter is retrieving the email and
password from the database by using one of controllers classes.

Figure 27: Http request resource process.

If the request is not authorized. Authentication filter denies the request and send HTTP
respond with code 401 which means ”Unauthorized”.

The successful CitizenPal response always is using OperationRespose Object. it can be seen
in Data model figure 26. OperationResponse is an object designed to carry the respond of the
requests. OperationResponse consists of three attributes:

• Result: an integer number that determine if the operation is performed successfully. 1
means it success, 0 means not success or error.

• Output: an output of the operation. Usually it is one of the Data Model Object.

• Causes: a string data explain the case of error of not successful operation.

To achieve the security authentication, It is important to configure Apache server to accept
the HTTPs. This can be done by adding some changes to server.xml in {Apache-Location} after
generating the a self-signed certificate for it.

Figure 28: Ssl over Http and specifying the key store file location

41

Another Important step is to configure the server application to use a secure connection.
which can be done by adding a configurations lines inside web.xml configuration file.

Figure 29: Configuring secure connection and secure resources

The url-pattern defines which url needs to be protected, and it can given a name as well.
transport-guarantee tells the application that protected transport layer connection HTTPS should
be used to transmit the data. It has three options CONFIDENTIAL, INTEGRAL, or NONE.
Server uses CONFIDENTIAL to prevent other entities from observing the contents of the trans-
mission. for more info related to other options [13].

4.3.2 Enabling Cors

In order for the web back-office application to send and receives requests from Server application,
CORS should be enabled. CORS stands for Cross-Origin Resource Sharing which is a specifi-
cation that open access across domain-boundaries. Because of the simple-origin policy prevents
the JavaScript application to make requests across domain boundaries. Simple origin policy has
been developed in early time of web browsers. It allows a script from one page to access content
of other pages only if they have the same origin. the same origin means same URL, port number
and host. In this case, since the back-office can been hosting in different server. It will not
allowed to access another resource out of its boundaries. Fortunately, Apache 7.0 support CORS
standard and can be activated. To activate CORS on Tomcat Apache, Server app should be
configured to accept cross filter by expressing that in web.xml as it can be seen in below lines.

Figure 30: Enabling CORS headers and methods

42

4.4 Android App Architecture

Android application works as client to Server application. CitizenPal Android app consists of
the several components divided to three important layers. The following diagram shows these
layers (inside doted block) 31. Android app is used by citizen user.

Figure 31: Architectural layers of CitizenPal smart-phone app

Android Application can be structured as these layers:

1. Presentation Layer [Container]

2. Logic Layer [Container]

3. Data Layer [Container]

Android Application is used directly by with citizen User and the application uses a configuration
file as it can be seen in figure 31 Android app layers are going to be explained in more details in
the following sections.

4.4.1 Presentation Layer

This layer consists of files that represents the design and the layout of the user interface. It
contains all activities layout files. Activities layout files are XML files that represents the design
of the interfaces components such as labels, Text Inputs, and Buttons. Figure 32 shows the
presentation layer inside the doted block. Also, it contains another resources that are needed for
the layout such as :

• Strings: a file contains all the text names represented in the layout xml files.

43

• Drawable: a folder contains images and photos.

• Values:a file contains parameters that used in layout xml files.

• Menu : a file contains a menus elements used in layout as well.

Theses elements usually has a name works as ID and it can be used any whenever they needed
in the layout XML Activity file. Activity file is window or interface in the Android app. Users
of Android app usually interacting with the activity as it can been seen in the figure 32.

Figure 32: Presentation layer of CitizenPal smart-phone app

The Activity layout files [Container] consists of several XML files that represents the design
of the android layout figure 33.

Figure 33: All activities of CitizenPal layout architecture

44

4.4.2 Logic Layer

Logic Layer controls app behavior and actions. In the logic layer there are the following containers
that are showed in figure 34 inside doted block.

1. Activity classes [Container]

2. Async Tasks [Container]

3. Controllers [Container]

4. Notification Service [Container]

5. Restful Client [Container]

These five aforementioned blocks will be explained with more details in the following points.

Figure 34: Logic layer architecture of citizenPal smart-phone app

These containers can be categorized to two types Foreground and background. The Fore-
ground components usually runs in the main thread of the CitizenPal application. It usually
drives the actions and performs the tasks of the activities. It has several classes such as controllers
class, Data Model class and RESTfull clients class. In other hands, Background components con-
tains the components that responsible of running the long term tasks or actions that need to
connect with Server application to fetch the data. Lets go through them with few more details:

• Foreground:

– Activity Classes: Every Activity layout(xml file) has Java class that controls its life
time. The activities are the major usage of other components in the logic layer.

– RESTful Client: consists of the classes that responsible of building the HTTP
RESTful requests, authenticate and receives the response. Figure 35 showed its com-
ponents inside doted block.

45

Figure 35: Restful client architectural components.

In the normal scenario when the certificate is signed by known Certificate Authority.
RESTful client will verify the identity of the server by CAs and connection will be
accepted. But since the Certificate that the server in CitizenPal that has been used
is self signed certificate (which means the server is behaving as its own CA), RESTful
client does not trust this certificate. Then, it will give an Exception during the SSL
hand shake process.
Fortunately, this can be overcome by creating a secure TrustManager, A TrustMan-
ager is what the system uses to validate certificates from the server. TrustManager
allows to trust the server certificate directly. This way has some downsides [14], but
it can be done securely.

In addition, during ssl handshaking, if the URL’s hostname and the server’s identifi-
cation hostname mismatch, the verification mechanism can call back to implementers
of HostnameVerifier interface to determine if this connection should be allowed. In
this case it will choose the default which is to terminate the connection.

– Controllers: contains foreground classes in which that are related to some actions
such as storing, conversion and encoding data and storing. it also has some classes
that manage adapting the lists layouts. figure 36

46

Figure 36: CitizenPal smart-phone controllers architectural components

• Background:

– Async Tasks: contains asynchronous tasks that are performing in the background.
These tasks are usually responsible for performing the RESTFul requests that connect
to CitizenPal server and retrieve the information. Android recommended that the
tasks that needs long term execution time should be performed in individual thread.
So it will not create the Application Not Responding (ANR) situation. Figure 37
showed theses tasks inside doted block.

Figure 37: Asynchronous tasks architectural components

Activity classes use the async tasks in to ask or send requests to the server. from
other hand, async tasks uses the RESTful client classes to make the requests.

– Notification Service: contains the classes of notification service that is running in
the background even if the application is closed figure 38 showed the components of
notification service.

47

Figure 38: Notification service components diagram.

Figure 38 shows that, it has two major components for the notification service:

∗ CitizenPal Alarm Receiver: which is java classes that runs when the scheduling
time happen and wake up the android device.

∗ Scheduling Service: is a components that responsible to schedule the tasks and
perform the task. It extends the indent service which is an asynchronous tasks.

The notification service uses AlarmManager that are provided by Android SDK. Alar-
mManager allows the app to run a background task. This task can be still running
even if the application is closed. It can wake up the device as well. The following
figure 39 depicting the process of the notification service:

Figure 39: Notification service process

As it can be seen, IntentService is a service that handles asynchronous requests on
demand. The Alarm Manager allows to schedule a specific task every period of time.
Alarm Manager ask to perform IntentService when the time accrues. IntentService
requests the resource flag from CitizenPal Server. Then it checks the flag if the flag
equal 1, this means that the user has new event. And the device should show a

48

notification and wake up the device. Waking up the device is supported by the Alarm
Manager as well.

The resource flag, is and integer number linked to every Citizen account. This resource
flag is changed to 1 when new event added to this citizen account. When the citizen
open the notification and see the events, this flag is changed to 0 to refers that this
user does not have new events.

4.4.3 Data Layer

layer that contains the components where the data is stored . The data abstraction layer con-
sists of two major components. SharedPreference storage where the data citizen events stored.
Another is the Certificate trust storage where the x509 certificate stored.

4.4.4 Configuration File

Android Application has a very important configuration file called AndroidManifest.xml. The
manifest file provides essential information about the app to the Android system such as per-
missions, names , parameters of the app. Since the CitizenPal will use Some Resources of the
device, It needs Permissions too. CitizenPal shall use the following Resources:

• Maps: because it needs to specify the location event (where the event is taking place)

• System Account and Calender: because it needs to schedule the event System user
calender account.

• Internet: because it it has to download the Events information from the CitizenPal server.

• External Storage: to store the information that retrieved from CitizenPal server.

4.4.5 Screens and Their Relationships

Screens relationships diagram represents the major navigation relation between the windows
(Activities) in the CitizenPal android application.

Figure 40: Screens relationships diagram

49

4.5 Back-Office App Architecture

4.5.1 SPA Software Pattern

The back-office is another part of the project. It controls and manages the data. Mainly, it built
as Javascript web application using AngularJS. AngularJS app is an Single Page Application
(SPA). SPA allows us to redraw any part of the UI without requiring a server roundtrip to
retrieve HTML. This achieved by separating data layer from the presentation layer by having
data model layer that handle the data and view layer that read from the model.
SPA is loading the application with one single load from the server. This loading downloads all
the application and its Libraries and never have another trip again to server. AngularJs Allows
the app to have its own routing policy or structure.

Figure 41: SPA lifecycle vs. traditional page lifecycle

CitizenPal Back-office is an SPA application. The following figure 42 shows the components
of the Back-office application. The application is downloaded once with all his libraries from the
citizenPal back-office server. It runs on any browser.
In addition, AngularJs allows the app to have its own routing policy which gives the application a
more flexibility. Lets examine the the components from down to up. There is Views [Container]
that uses App Configuration [Component] and controller [Component]. Controller uses both
Data Model [component] and Authentication Service [Component].

50

Figure 42: CitizenPal web-client Angular architecture components

4.5.2 Views

They are (User Interfaces) UIs that the user will interact with. Views are mainly a HTML forms.
These HTML forms should be linked to specifics paths or routes using routing policy. The figure
below gives an example how App Configuration component links that views with controllers and
gives it a route path.

Figure 43: Controlling views by routing policy

As it can seen, the view “Login.html” has a linked controller “loginCtrl”. In addition, both
of them (controller and View) have a routing path (routing policy) in this case “\login” .

51

4.5.3 App Configuration

App Configuration is a file that contains the configuration that linked with project during its
executing. Mainly, it used to define several configurations for the app such :

1. Routing Policy: As it has from the example in figure 44 routing policy is very important
that links the controllers with views in AngularJS.

2. Run configs: It is important to setup some important components as soon as the applica-
tion started to run such as cookies used and and some HTTP headers used during HTTP
requests. Configs here are used to check the cookies that stored when the user success the
login for every time the user perform any request in the app. The figure below explains
the runs configs. When a controller tries to perform any action, the angularJs app runs
the run configs part first.

Figure 44: Back-office running configs logic

4.5.4 Controllers

It is an components that contains the actual actions and behavior of the application. It perform
HTTP requests and drives the navigation between the views. It has several controllers.

4.5.5 Authentication Service

This is very important components. it is used to set up the authentication headers on the HTTP
request before can be sent to the RESTful API Server.

4.5.6 Data Model

In JavaScript, the data is stored as JSON. AngularJS allows to bind the data to view elements.
And any changes that happen in Date element is reflected on the View elements. This done
using the controller of the HTML page controller.

52

Figure 45: Data binding of html views element to data model

As the figure 48 shows, The controller retrieve the data by asking resources from API then
stored as JSON object that binded to HTML element.

4.6 Database Diagram

Database is built using MySql database provider. Database is an individual part from RESTful
API server and the Back-Office server. The database diagram is showed below:

Figure 46: Database model entity relational diagram

53

4.7 Assumptions and Dependencies

This application is a prototype that presenting idea and functionality of CitizenPal proposal. In
order to continue working and developing this product There are some few assumptions should
be taking in account in this document.

• Accessing the public services of the government in Portugal is not granted yet. After having
several meeting with AMA agency we decided to proceed in building the application with
model the provide the ability to add and update events that can simulate the process.

• The current architecture is still working even after the accessibility to public services is
granted. This can be accomplished by adding “proxy program ” that allows the server app
to connect with portals to get desired data.

Figure 47: CitizenPal architecture with “Proxy Program” addition

54

5 Deployment

Deploying these project is essential tasks. This sections goes through the deployments process
and the deployments specifications:

Deployment Specifications

To put these projects on work. Amazon EC2 is used for the deployment for both the API Restful
server and Back-office server host. Amazon EC2 provides a free tier for all its clients. This free
tier has been used to create two Virtual Machines with these specification :

• Microsoft Windows Server 2012 R2 Base

• 1 CPU , 1 GB RAM, 30GB Hard drive.

For Android Device, the applications is deployed on following phone:

• Phone: alcatel Pop C7 .

• OS: Android OS, v4.2 (Jelly Bean).

• Screen Resolution: 480 x 800 hdpi

It has been deployed on other projects as well. It could show some different related to resolution.
The figure shows AMIs and there interactions

Figure 48: CitizenPal deployment machine diagram

The deployment steps has been explained in Appendix section 10.7.

55

6 Testing

This section explains the testing phase of the CitizenPal system. There are several types of
testing can be done for the project such as :

• User Acceptance Testing: a set of test cases that shall be created for every functional
requirement in order to be accepted.

• Server Performance Testing: a test that has been conducted in order to examines the
actual performance respond of the server app when a large group of clients is performing
requests and under a given configuration of infrastructure.

6.1 User Acceptance Testing

Acceptance testing is used to ensure that requirements are satisfied. This test will cover the
functional requirements. In order to validate them, a set of input tests cases has been created.
Every test case has the following properties:

Test Case ID A unique numeric identifier for the Test Case

Use Case ID A use case number that is referred in use case
properties table 3.3.1 .

Description Briefly description of the use case.

Pre-Condition The previous conditions that should be satis-
fied for executing the input tests data.

Acceptance It determines if data test set is accepted or
not.

Data Input: set of input data cover the regular User input.

• #no: An input step number.

• Test Data: A set of data that required
for the current test step.

• Expected Result: expected results
that the application should produce af-
ter executing the test input.

• Actual Result: real result that the ap-
plication produced after executing the
application.

• Acceptance: It determines if the data
set test is accepted or not

Table 5: Acceptance test cases properties

In some cases the test cases does not requires and data set and that is stated in the cases.
The full test cases can be found in 10.5 section at Appendixes.

6.2 Server app Performance Testing

The performance tests is crucial because the server is going to be used by huge amount of citizens.
It should have a good performance for for clients. JMeter is a tool that can be used to test Apache
servers app and measure its performance.

56

6.2.1 Test Plan

Test plan simulates the citizens http requests. In this test plan, a normal citizen usage example
of the citizenPal api. The following diagram 49 explains the test plan:

Figure 49: Performance test plan

To test the performance of the Server application, a test plan has been performed specific
number of times. Every time is considered as user thread. After that measure the response.

Before start conducting the result, It is important to mention that the test plan has been
performed on previous deployment specification 5 machines. The client is Jmeter application
that placed in Coimbra, Portugal. The Internet connection that has been used is the enduroam
university connection network.

6.2.2 Testing Results

This test will subject the Server Application to huge number of users and and measure the
response. In this test, Server api app will be subjected to normal users requests then we will
measure its response and discuss the results.
Normal load simulate the average expected numbers of users. In this case the test runs 1000 users.

#no #Samples Min Max Average Error % Throughput KB/sec Avg. Bytes

1 1000 0.1632 0.33705 0.2614 0.00% 34 10.54 317.5

2 1000 0.0362 0.23578 0.1257 0.00% 29.6 12.24 423

3 1000 0.0198 0.22436 0.1187 0.00% 35.6 104.38 2999

4 1000 0.0073 0.24815 0.0855 0.00% 38.3 25.49 682

5 1000 0.0024 0.1472 0.0448 0.00% 55.5 12.53 231

Total 5000 0.0024 0.33705 0.1272 0.00% 74.9 68.07 930.5

Table 6: Normal load testing summary results

57

The table 6 shows that 5000 requests has been send from 1000 users. Every one perform
the previous 5 tasks. It shows the Minimum and the Maximum response time taken by the
http request for every task. It also shows the Average response time and the percentage of
failure requests. Throughput in the table represents number of requests per second. KB/sec
stands for the throughput that measured in Kilobytes per second. Finally, Avg. Bytes repre-
sents the average size of the sample response in bytes. Min, Max and Average unites are minutes.

As it has seen from results, The avarage response time for task 1 (Register new user) most
likely because its an insert and select query. It inserts the new user information. then it return
the full record to the client. The tasks 5 (Get citizen events flag) has the lowest average and
most Throughput. Because it is used to obtain 0 or 1 flag which is used to indicate if the citizen
has new events or not.

In general, the server api can handle 1000 users without having and failure request as result
indicate the Erros 0.0% for all 5000 requests.

58

7 Discussion and Future Work

Initially, this project is an prototype works as platform for citizens. It has been built with clear
objective. The objective is to help the citizen manage easily his events that are related to public
e-governments. The project takes two semesters. In the mean time, the project passed through
obstacles in first semester. The main issues that it has faced during the planning was obtaining
access to public authorities servers. After several meeting with AMA, postponement and delay
have been sensed. The company responsible for the internship decided to change the direction
the project and keep the objective the same. This alteration was made in order to present the
concept and achieve its objectives. The main changes was to add the server application and back
office application.

CitizenPal now can work as platform that controls Citizen events and give him an easy way
to get informed for his new obligations. Meanwhile, this application can be integrated with
e-government portal as soon as they give us access to their service.

Consequently, CitizenPal has been built by integrating three types of application. Smart-
phone app, RESTfull API server-side application and client-web application. The application
has been built with recent technologies that are found. Using RESTful API for the server-side
Application which considered lightweight and simple to handle a complex applications.

On other hand,the project included a building of Android-app which considered the most
operating system used in the market. It has been developed by using Android Studio platform
. Finally, building back-office as web-client application using AngularJs. AngularJS considered
new Library has been build and supported by Google. Also it uses SPA software pattern which
is started to be used recently for web application.
In the end, last challenge was the integrating these three types of application together with secure
technologies such as HTTPs encryptions and crtificate authentication.

Ultimately, CitizenPal project and this internship was and opportunity to enrich the knowl-
edge with several new technologies concepts that have been obtained during Master in software
engineering.

This prototype is a system that could be the nucleus of a future larger project that includes
most of the tasks that can be performed where the citizen in public services, the project could
be developed in the case were given permission to access to public services for e-government.
As previously discussed, there are several governments have done this to facilitate access to its
services and increase citizens’ confidence in its institutions . In this prototype, it’s good to
continue working in the future to improve and enrich the project through:

• Mobile Performance Testing: a test that can be conducted on smart-phone app to
determine the effect of the app on device environment. such as network, data usage and
buttery consumption.

• Release Plan It is important before the application can be available to all citizens, It
is important to plan specific release schedule. Working on a release plan requires time
and effort and the number of consultants and lawyers for data protection and information
security. In addition to that, CitizenPal should be subjected to work of intensively testing.
So as to reduce the errors and the possibility of failure.

59

8 Conclusion

CitizenPal was an a part of efforts to obtain the Master Degree In software Engineering. This
effort has been done as internship at company named Tangivel. The project resulted to build
the three typed main applications:

• RESTful API server-side Application.

• Android smart-phone Application.

• Web back office Application.

After building these applications, it was a great experience that has been gained to integrate
between them so they can work together smoothly with security requirements. In addition,
several software standard and patterns have been applied and used during the developments and
design. Overall, these steps and applications has been planned, designed Then developed keeping
in focus on the objective of making the life of citizen more easy and simple.

60

9 References and Bibliography

References

[1] (January, 2016) Statistical indicators reflect those of Eurostat http://appsso.eurostat.

ec.europa.eu/nui/show.do

[2] (December , 2015) DIGITAL AGENDA FOR EUROPE
[DIGITAL AGENDA FOR EUROPE]https://ec.europa.eu/digital-agenda/en/news/eu-
egovernment-report-2014-shows-usability-online-public-services-improving-not-fast

[3] (December , 2015) About ama , formal website for the Administration Modernization Agency.
http://www.ama.pt/

[4] (August , 2016) Jersey, RESTful Web Services in Java.
https://jersey.java.net/

[5] (August , 2016) Appache Tomcat
http://tomcat.apache.org/

[6] (August , 2016) Android Studio, The official Android IDE
https://developer.android.com/studio/index.html

[7] (August , 2016) Single page apps in depth
http://singlepageappbook.com/goal.html

[8] (August , 2016) Bootstrap
http://getbootstrap.com/

[9] (June , 2016) Smartphone OS Market Share, 2015 Q2
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[10] (June , 2016) Number of devices running a given version of the Android platform
https://developer.android.com/about/dashboards/index.html

[11] (August , 2016) Web API Design— Crafting Interfaces that Developers Love
https://pages.apigee.com/web-api-design-website-h-ebook-registration.html?

int_source=resources-main&int_medium=website&int_campaign=ebook&int_content=

api-design

[12] (August , 2016) Firebase Cloud Messaging
https://firebase.google.com/

[13] (August , 2016) Specifying Security Constraints
https://docs.oracle.com/cd/E19226-01/820-7627/bncbk/index.html

[14] (August , 2016) Security with HTTPS and SSL
https://developer.android.com/training/articles/security-ssl.html#SelfSigned

[15] (August , 2016) Simon Brown’s Software architecture as code
https://structurizr.com/help/about

61

http://appsso.eurostat.ec.europa.eu/nui/show.do
http://appsso.eurostat.ec.europa.eu/nui/show.do
[
http://www.ama.pt/
https://jersey.java.net/
http://tomcat.apache.org/
https://developer.android.com/studio/index.html
http://singlepageappbook.com/goal.html
http://getbootstrap.com/
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://developer.android.com/about/dashboards/index.html
https://pages.apigee.com/web-api-design-website-h-ebook-registration.html?int_source=resources-main&int_medium=website&int_campaign=ebook&int_content=api-design
https://pages.apigee.com/web-api-design-website-h-ebook-registration.html?int_source=resources-main&int_medium=website&int_campaign=ebook&int_content=api-design
https://pages.apigee.com/web-api-design-website-h-ebook-registration.html?int_source=resources-main&int_medium=website&int_campaign=ebook&int_content=api-design
https://firebase.google.com/
https://docs.oracle.com/cd/E19226-01/820-7627/bncbk/index.html
https://developer.android.com/training/articles/security-ssl.html#SelfSigned
https://structurizr.com/help/about

10 Appendixes

This section will have the Appendixes of the project. Theses appendixes is and technical and
business documents that explains the complete details of the CitizenPal Project. It includes the
Uses cases, Flow charts , Requirements, and Test cases.

10.1 User Interfaces-Smart Phone App

Figure 50: UI for CitizenPal smart-phone app, log in page

Figure 51: UI for CitizenPal smart-phone app,main page

62

Figure 52: UI for CitizenPal smart-phone app, register new citizen page

Figure 53: UI for CitizenPal smart-phone app, categorize event page

63

Figure 54: UI for CitizenPal smart-phone app, event’t details page

Figure 55: UI for CitizenPal smart-phone app, keys entry page

64

10.2 User Interfaces-Back-Office App

Figure 56: UI for CitizenPal back-office app, Loging in page

Figure 57: UI for CitizenPal back-office app, main page

65

Figure 58: UI for CitizenPal back-office app, citizens page

Figure 59: UI for CitizenPal back-office app, new account page

66

Figure 60: UI for CitizenPal back-office app, edit citizen info page

Figure 61: UI for CitizenPal back-office app, citizen events page

67

Figure 62: UI for CitizenPal back-office app, events page

Figure 63: UI for CitizenPal back-office app, new event page

68

Figure 64: UI for CitizenPal back-office app,edit event page

69

Figure 65: UI for CitizenPal back-office app, locations page

70

Figure 66: UI for CitizenPal back-office app, new location page

Figure 67: UI for CitizenPal back-office app, events page

71

10.3 Use cases

10.3.1 Smart-Phone App Use Case:

The following Use Cases explains the User goals of the mobile application. The User of the
Mobile app in this case is the Citizens.

SP-UC-01

ID SP-UC-01

Name Register User

Description User Can be able to register in citizenPal App using by using user-
name, email, password and NIF(Número de Identificação Fiscal).
email and NIF has to be Unique.

Actor The Citizen

Priority Level Essential level

SP-UC-02

ID SP-UC-02

Name Log in User

Description User can be able to Log in Using his unique email and his pass-
word.

Actor The Citizen

Level Essential level

SP-UC-03

ID SP-UC-03

Name Show User Events

Description User should be able to see his events after a success logging in
CitizenPal App.

Actor The Citizen

Level Essential level

SP-UC-04

ID SP-UC-04

Name Filter Events

Description User should be able to filter his all his events based on the the
event’s category.

Actor The Citizen

Level Essential level

72

SP-UC-05

ID SP-UC-05

Name Show Event’s details

Description User should be able to show every event’s details. events de-
tails are event category, event’s starting time, event’s ending time,
event’s location name, event’s description, and event’s status.

Actor The Citizen

Level Essential level

SP-UC-06

ID SP-UC-06

Name Schedule event

Description User Should be able to schedule his events to his own mobile
calender.

Actor The Citizen

Level Essential level

SP-UC-07

ID SP-UC-07

Name Mark Event

Description User should be able to Mark event.
mark the event is referring that the event has been done or or it
is still valid.

Actor The Citizen

Level Essential level

SP-UC-08

ID SP-UC-08

Name Save User email and password

Description User can be able to save his username and password for the next
logging in attempts without writing it again.

Actor The Citizen

Level Recommended level

73

SP-UC-09

ID SP-UC-09

Name keep logging in

Description Use can be able to automatically log in when he opens the appli-
cation.
User should have and a successfully logging in.

Actor The Citizen

Level Recommended level

SP-UC-10

ID SP-UC-10

Name Show Location Map

Description User should be able see the Location event on google Map.

Actor The Citizen

Level Recommended level

SP-UC-11

ID SP-UC-11

Name Notify for new event

Description User shall receive an Notification for the new events that user
might have.
-User logged in SP-UC-09 .
-Notification should be received even if the app is not open

Actor The Citizen

Level Essential level

10.3.2 Back-Office App

The Back office is an web client applications that can connect to the Server app and control the
data. The major actor of the back office is the Admin.

BO-UC-01

ID BO-UC-01

Name Log In Admin

Description User should be able to log in app as with user eamil and password.
The User’s email and the password is constants can’t be change.
and there is only one admin in the web application.

Actor The Admin

Level Essential level

74

BO-UC-02

ID BO-UC-02

Name Show all Users

Description User should be able to browse all citizens that have been registered
in the citizenPal App .
citizens should be listed with Username, email, NIF.
User should be logged in before.

Actor The Admin

Level Essential level

BO-UC-03

ID BO-UC-03

Name Add New citizen

Description User should be able to add new citizen to the CitizenPal App.
- Citizen information the required are username, email, pass-
word,NIF number.
- Notes field for citizen information is not required to complete
registration.
- User should be logged in before.

Actor The Admin

Level Essential level

BO-UC-04

ID BO-UC-04

Name Edit citizen Information

Description User should be able to Edit new citizen to the CitizenPal App.
- Citizen information that can be edited are username, email, pass-
word,NIF number.
- Notes field for citizen information is not required to complete
registration.
- User should be logged in before.

Actor The Admin

Level Essential level

75

BO-UC-05

ID BO-UC-05

Name Delete citizen Information

Description User should be able to delete all citizen Record.
- Deleting Citizen Record should detach him from all his connec-
tion the the events. .
- Deleting Citizen Record will not delete the its event information
- User should be logged in before.

Actor The Admin

Level Essential level

BO-UC-06

ID BO-UC-06

Name Show Citizen Events

Description User should be able to show all Events that belong to specific user.
- User should be logged in before.

Actor The Admin

Level Essential level

BO-UC-07

ID BO-UC-07

Name Detach citizen event

Description User should be able to drop (detach) Event from specific User.
Detaching from event should not affect the event information.
- Detaching from event should not affect other users that have the
same event.
- User should be logged in before.

Actor The Admin

Level Essential level

BO-UC-08

ID BO-UC-08

Name Attach Event

Description User should be able to attach event to specific user. - Attaching
event to user should not affect other users that have the same
event. - User should be logged in before.

Actor The Admin

Level Essential level

76

BO-UC-09

ID BO-UC-09

Name Filter Events records

Description User should be able to search for specific events based on event
title.
- User should be logged in before.

Actor The Admin

Level Recommended level

BO-UC-10

ID BO-UC-10

Name Filter Citizens records

Description User should be able to search for specific User based citizen’s
email.
- User should be logged in before.

Actor The Admin

Level Recommended level

BO-UC-11

ID BO-UC-11

Name Show Events records

Description User should be able Browse all events records in the citizenPal
project. The Events should be listed by Event’s title, event’s
startTime, event’s End Time, event’s description , event’s loca-
tion, event’s category. - User should be logged in before.

Actor The Admin

Level Essential level

BO-UC-12

ID BO-UC-11

Name Edit Event Information

Description User should be able to Edit User Information. The Events info
that can be edited are, event’s title, event’s start time, event’s end
time , event’s description, event’s category and event’s location .
- User should be logged in before.

Actor The Admin

Level Essential level

77

UC-13

ID BO-UC-13

Name Add New Event

Description User should be able to Add new Event. The Events info that
should be added to continue this use case , event’s title, event’s
start time, event’s end time , event’s description, event’s category
and event’s location .
- User should be logged in before.

Actor The Admin

Level Essential level

BO-UC-14

ID BO-UC-14

Name Delete Event

Description User Should be able to delete event record.
- Deleting event detaches all users that already linked to it.
- Deleting events will not delete the users that are attached to it.
- User should be logged in before.

Actor The Admin

Level Essential level

BO-UC-15

ID BO-UC-15

Name Browse event users

Description User Should be able to browse all users that are attached to spe-
cific event. - User should be logged in before.

Actor The Admin

Level Essential level

BO-UC-16

ID BO-UC-16

Name Deliver event

Description User should be able to know if the a specific events is already
delivered to the citizen - User should be logged in before.

Actor The Admin

Level Essential level

78

BO-UC-17

ID BO-UC-17

Name deliver user events

Description User should be able to know if the a specific citizen has an event
is not delivered , or all his events are delivered. - User should be
logged in before.

Actor The Admin

Level Essential level

BO-UC-18

ID BO-UC-18

Name Show Locations

Description User should be able to see all locations records that are in Cit-
izenPal’s system. Locations information are , Location’s Title ,
Location Latitude and Location Longitude . - User should be
logged in before.

Actor The Admin

Level Essential level

BO-UC-19

ID BO-UC-19

Name Edit Location Title

Description User should be able to Edit locations information. Locations in-
formation that can be edited are , Location’s Title , Location
Latitude and Location Longitude . - User should be logged in
before.

Actor The Admin

Level Essential level

BO-UC-20

ID BO-UC-20

Name Add Location Title

Description User should be able to Add locations record. Location information
the required to be added are Location’s title , Location’s latitude
and Location Longitude.
- User should be logged in before.

Actor The Admin

Level Essential level

79

BO-UC-21

ID BO-UC-21

Name Portals Setting.

Description User should be able to control the portal links and Urls.
- User should be logged in before.

Actor The Admin

Level Recommended level

Server Use Cases

Server is an Application that does not have any User interface. It application that receives re-
quests from a client. This client could be smart-phone application or back-office.

SA-UC-01

ID SA-UC-01

Name Register new citizen account.

Description It is a request to register new citizen account that comes to sever.
The request should carry out the necessary citizen information.
- client does not need any User authentication.

Actor Client (Mobile application)

Level Essential

SA-UC-02

ID SA-UC-02

Name add new citizen account.

Description It is a request to add new citizen account.
- This requests needs User authentication.

Actor Client (Admin)

Priority level Conditional

SA-UC-03

ID SA-UC-03

Name Log in admin.

Description It is a request log in the admin to the back office. logging in
is including the authentication of the admin. This request will
return true if Admin has successfully authenticate

Actor Client (Admin)

Priority level Essential

80

SA-UC-04

ID SA-UC-04

Name Delete Citizen Account

Description It is a request to delete an specific citizen account.
- Admin should be authenticated successfully

Actor Client (Admin)

Priority level Conditional

SA-UC-05

ID SA-UC-05

Name Edit Citizen account info

Description It is a request to edit the citizen info. the request should carry
the new citizen info account .
- Admin should be authenticated successfully

Actor Client (Admin)

Priority level Conditional

SA-UC-06

ID SA-UC-06

Name Edit citizen’s flag.

Description Change the citizen flag to 1 every time the user had new event.
- Admin should be authenticated successfully

Actor Client (Admin)

Priority level Essential

SA-UC-07

ID SA-UC-07

Name Retrieve citizens info.

Description get all citizens account info. The info that should retrieved are
username, citizen email, NIF, citizen flag .
- Admin should be authenticated successfully

Actor Client (Admin)

Priority level Essential

81

SA-UC-08

ID SA-UC-08

Name Retrieve citizen events

Description get all citizen events info. The event info that should be retrieved
are: event title, event start time, event end time , event descrip-
tion, event status, event category title , category location title.
- Admin should be authenticated successfully

Actor Client (Admin)

Priority level Essential

SA-UC-09

ID SA-UC-09

Name Add an event to citizen

Description It is and request that send to server to add specific event to citizen
account.
- Admin should be authenticated successfully

Actor Client (Admin)

Priority level Essential

SA-UC-10

ID SA-UC-10

Name Detach an event from citizen account

Description It is and request that sends to sever to detach specific event from
citizen account.
- Admin should be authenticated successfully

Actor Client (Admin)

Priority level Essential

SA-UC-11

ID SA-UC-11

Name Retrieve all locations info.

Description It is and request that sends to sever to retrieve all location info.
The info that should retrieved are location title , location longi-
tude, location latitude .
- Admin should be authenticated successfully

Actor Client (Admin)

Priority level Optional

82

SA-UC-12

ID SA-UC-13

Name Edit location locations info.

Description It is and request that sends to server in order to edit a location
record.
- Admin should be authenticated successfully

Actor Client (Admin)

Priority level Optional

SA-UC-13

ID SA-UC-13

Name Delete location info

Description It is and request that sends to server in order to edit a location
record.
- Admin should be authenticated successfully

Actor Client (Admin)

Priority level Optional

SA-UC-14

ID SA-UC-14

Name Retrieve all events info record

Description It is and request that sends to server to get all events records.
- Admin should be authenticated successfully

Actor Client (Admin)

Priority level Essential

SA-UC-15

ID SA-UC-15

Name Edit event info

Description It is a request that sends to server to Edit specific event.
- Admin should be authenticated successfully

Actor Client (Admin)

Priority level Essential

83

SA-UC-16

ID SA-UC-16

Name Retrieve citizens of specific event

Description It is a request that sends to server to get all citizens that belong
to specific event.
- Admin should be authenticated successfully

Actor Client (Admin)

Priority level Essential

SA-UC-17

ID SA-UC-17

Name Authenticate Admin requests.

Description The requests that carried out from the admin back-office should
be authenticate by admin email and password.

Actor Client (Admin)

Priority level Essential

SA-UC-17

ID SA-UC-17

Name Authenticate citizen requests.

Description The requests that carried out from the admin back-office should
be authenticate by admin email and password.

Actor Client (Admin)

Priority level Essential

SA-UC-19

ID SA-UC-19

Name Add new event record.

Description It is a request that sends to server to add new event from to
database.
- Admin should be authenticated successfully

Actor Client (Admin)

Priority level Essential

84

SA-UC-20

ID SA-UC-20

Name log all request to file.

Description every request shold be logged to external file with time date and
request title.

Actor Client (Admin)

Priority level Optional

10.4 Screen shots

Figure 68: CitizenPal app among the Android applications

85

Figure 69: Screenshot of Android app, Start page.

Figure 70: Screenshot of Android app, sign in page

86

Figure 71: Screenshot of Android app, Registering Page.

Figure 72: Screenshot of Android app, main page

87

Figure 73: Screenshot of Android app, event details.

Figure 74: Screenshot of Android app, filtered events.

88

Figure 75: Screenshot of Android app, keys entry page

Figure 76: Screenshot of Android app, citizens portal credentials entry page

89

Figure 77: Screenshot of Android app, health portal credentials entry page

Figure 78: Screenshot of Android app, Taxes portal credentials entry page.

90

Figure 79: Screenshot of Android app , scheduling event to citizen’s calender

Figure 80: Screenshot of Android app , notify a new event

91

Back-office interface

page.png

Figure 81: Screenshot of back-office app, admin login page

Figure 82: Screenshot of back-office app, citizen main page

92

Figure 83: Screenshot of back-office app, citizens page

Figure 84: Screenshot of back-office app, edit citizen info

93

Figure 85: Screenshot of back-office app, create new citizen

Figure 86: Screenshot of back-office app, events that belong to specific citizen

94

Figure 87: Screenshot of back-office app, attach event to citizen

Figure 88: Screenshot of back-office app, delete a citizen

95

Figure 89: Screenshotof back-office app, detach event from citizen

10.5 Test Cases

10.5.1 Smart-Phone app Test Cases

• Test Case ID: SP-TC-01

• Use Case ID: SP-UC-01

• Description: Registering User

• Pre-condition: should not have a citizen already registered with the same email.

• Acceptance: Accepted

96

#no Test Data Expected Result Actual Result Acceptance

01 Username: joao
Password: qwe123
Re-Password: qwe123
Email: joao1092@hotmail.com
NIF: 738293213

success success Accepted

02 Username: joao33
Password: qwe123
Re-Password: qww123
Email: joao1092@hotmail.com
NIF: 738293213

Fail
password does not
match

Fail Accepted

03 Username: joao33
Password: qwe123
Re-Password: qww123
Email: joao1092hotmail.com
NIF: 738293213

Fail
password does not
match

Fail Accepted

04 Username: joao33
Password: qwe123
Re-Password: qww123
Email: joao1092hotmail.com
NIF: 7383dsfsdsw

Fail
Non-valid NIF for-
mat.

Fail Accepted

• Test Case ID: SP-TC-02

• Use Case ID: SP-UC-02

• Description:Log in User

• Pre-condition: Citizen should be successfully registered.

• Acceptance: Accepted

#no Test Data Expected Result Actual Result Acceptance

01 Email: omar@hotmail.com
Password:123123

Success Success Accepted

02 Email: omarhotmail.com
Password:123123

Fail
Non-valid email

Fail Accepted

03 Email: omarddfddf@hotmail.com
Password:123123

Fail
Email/Password is
not correct

Fail Accepted

• Test Case ID: SP-TC-03

• Use Case ID: SP-UC-03

• Description: Show User events

• Pre-condition: User should be logged in successfully, User should have some events.

• Acceptance: Accepted

97

#no Test Data Expected Result Actual Result Acceptance

01 no data needed Success Success Accepted

• Test Case ID: SP-TC-04

• Use Case ID: SP-UC-03

• Description: Show User events

• Pre-condition: User should be logged in successfully, User does not have any events.

• Acceptance: Accepted

#no Test Data Expected Result Actual Result Acceptance

01 no data needed Success
no data is showed

Success Accepted

• Test Case ID: SP-TC-05

• Use Case ID: SP-UC-04

• Description: Filter events based on category

• Pre-condition: User should be logged in successfully, User does not have any events.

• Acceptance: Accepted

#no Test Data Expected Result Actual Result Acceptance

01 no data needed Success Success Accepted

• Test Case ID: SP-TC-06

• Use Case ID: SP-UC-05

• Description: Show Event’s detail

• Pre-condition: User should be logged in successfully, User does have an event.

• Acceptance: Accepted

#no Test Data Expected Result Actual Result Acceptance

01 no data needed Success Success Accepted

• Test Case ID: SP-TC-07

• Use Case ID: SP-UC-06

• Description: Schedule an Event.

98

• Pre-condition: User should be logged in successfully, User should sign in to his calendar
account into android system.

• Acceptance: Accepted

#no Test Data Expected Result Actual Result Acceptance

01 no data needed Success Success Accepted

• Test Case ID: SP-TC-08

• Use Case ID: SP-UC-07

• Description: Mark an Event as done.

• Pre-condition: User should be logged in successfully, User has a least one event, The
event’s status is valid.

• Acceptance: Accepted

#no Test Data Expected Result Actual Result Acceptance

01 no data needed Success Success Accepted

• Test Case ID: SP-TC-09

• Use Case ID: SP-UC-08

• Description: Save email and password.

• Pre-condition: User should be logged in successfully.

• Acceptance: Accepted

#no Test Data Expected Result Actual Result Acceptance

01 no data needed Success Success Accepted

• Test Case ID: SP-TC-10

• Use Case ID: SP-UC-09

• Description: Keep logging User in.

• Pre-condition: User should be logged in successfully.

• Acceptance: Accepted

#no Test Data Expected Result Actual Result Acceptance

01 no data needed Success Success Accepted

• Test Case ID: SP-TC-11

99

• Use Case ID: SP-UC-10

• Description: Show Location Map. .

• Pre-condition: User should be logged in successfully.

• Acceptance: Accepted

#no Test Data Expected Result Actual Result Acceptance

01 no data needed Success Success Accepted

• Test Case ID: SP-TC-12

• Use Case ID: SP-UC-11

• Description: Notify User for new events.User should have at least one new event.

• Pre-condition: User should be logged in successfully.

• Acceptance: Accepted

#no Test Data Expected Result Actual Result Acceptance

01 no data needed Success Success Accepted

10.5.2 Back-Office app Test Cases

• Test Case ID: BO-TC-01

• Use Case ID: BO-UC-01

• Description: Log in Admin

• Pre-condition: no pre-conditions.

• Acceptance: Accepted

100

#no Test Data Expected Result Actual Result Acceptance

01 Email:
admin@citizenpal.com
Password: admin

Success Success Accepted

02 Email:
otheremail@citizenpal.com
Password: admin

Fail
wrong email or
password

Fail Accepted

03 Email:
admin@citizenpal.com
Password: otherpass

Fail
wrong email or
password

Fail Accepted

04 Email:
citizenpal.com
Password: otherpass

Fail
wrong email or
password

Fail Accepted

05 Email:
Password: otherpass

Fail
Email is required

Fail Accepted

06 Email:
Password: otherpass

Fail
password is re-
quired

Fail Accepted

• Test Case ID: BO-TC-01

• Use Case ID: BO-UC-01

• Description: Log in Admin

• Pre-condition: no pre-conditions.

• Acceptance: Accepted

#no Test Data Expected Result Actual Result Acceptance

01 Email:
admin@citizenpal.com
Password: admin

Success Success Accepted

02 Email:
otheremail@citizenpal.com
Password: admin

Fail
wrong email or
password

Fail Accepted

03 Email:
admin@citizenpal.com
Password: otherpass

Fail
wrong email or
password

Fail Accepted

04 Email:
citizenpal.com
Password: otherpass

Fail
wrong email or
password

Fail Accepted

05 Email:
Password: otherpass

Fail
Email is required

Fail Accepted

06 Email:
Password: otherpass

Fail
password is re-
quired

Fail Accepted

101

• Test Case ID: BO-TC-02

• Use Case ID: BO-UC-02

• Description: Show All Users

• Pre-condition: Admin Login successfully .

• Acceptance: Accepted

#no Test Data Expected Result Actual Result Acceptance

01 No data is required Success Success Accepted

• Test Case ID: BO-TC-03

• Use Case ID: BO-UC-03

• Description: Add new citizen account

• Pre-condition: Admin Logged in successfully .

• Acceptance: Not Accepted , 1 error needs to be fixed

102

#no Test Data Expected Result Actual Result Acceptance

01 Username: Alex
Email: Alex@hotmail.com
Password: asd123
Re-Password: asd123
NIF: 992883732
Note: this is my test for test

Success Success Accepted

02 Username:
Email: Alex@hotmail.com
Password: asd123
Re-Password: asd123
NIF: 992883732
Note: this is my test for test

Fail
(user name re-
quired)

Fail Accepted

03 Username:Alex
Email: Alex@hotmail.com
Password: asd123
Re-Password: asd123
NIF: 992883732
Note: this is my test for test

Fail
User email already
registered

Fail Accepted

04 Username:Alex
Email: dfdhotmail.com
Password: asd123
Re-Password: asd123
NIF: 992883732
Note: this is my test for test

Fail
Email not valid

Fail Accepted

04 Username:Alex
Email: dfdhotmail.com
Password: asd
Re-Password: asd123
NIF: 992883732
Note: this is my test for test

Fail
Password does not
match

Fail Accepted

04 Username:Alex
Email: dfdhotmail.com
Password: asd
Re-Password: asd123
NIF: dfds
Note: this is my test for test

Fail
NIF should be a
number

Fail Not Ac-
cepted

• Test Case ID: BO-TC-04

• Use Case ID: BO-UC-04

• Description: Add new citizen account

• Pre-condition: Admin Logged in successfully .

103

• Acceptance: Not Accepted , 1 error needs to be fixed (similar to BO-TC-3)

#no Test Data Expected Result Actual Result Acceptance

01 no data needed Success Success Accepted

• Test Case ID: BO-TC-05

• Use Case ID: BO-UC-05

• Description: Delete Citizen Info

• Pre-condition: Admin Logged in successfully .

• Acceptance: Accepted.

#no Test Data Expected Result Actual Result Acceptance

01 no data needed Success Success Accepted

• Test Case ID: BO-TC-06

• Use Case ID: BO-UC-06

• Description: Show the events that belong to specific citizen

• Pre-condition: Admin Logged in successfully .

• Acceptance: Accepted.

#no Test Data Expected Result Actual Result Acceptance

01 no data needed Success Success Accepted

• Test Case ID: BO-TC-07

• Use Case ID: BO-UC-07

• Description: Detach an event from specific citizen, citizen account should have some
events attached to it.

• Pre-condition: Admin Logged in successfully .

• Acceptance: Accepted.

#no Test Data Expected Result Actual Result Acceptance

01 no data needed Success Success Accepted

• Test Case ID: BO-TC-08

• Use Case ID: BO-UC-08

104

• Description: Attach an event to specific citizen

• Pre-condition: Admin Logged in successfully .

• Acceptance: Accepted.

#no Test Data Expected Result Actual Result Acceptance

01 no data needed Success Success Accepted

• Test Case ID: BO-TC-09

• Use Case ID: BO-UC-09

• Description: Filter events records.

• Pre-condition: Admin Logged in successfully .

• Acceptance: Accepted.

#no Test Data Expected Result Actual Result Acceptance

01 no data needed Success Success Accepted

• Test Case ID: BO-TC-10

• Use Case ID: BO-UC-10

• Description: Filter citizens records.

• Pre-condition: Admin Logged in successfully .

• Acceptance: Accepted.

#no Test Data Expected Result Actual Result Acceptance

01 omar@hotmail.com
(any citizen email)

Success Success Accepted

• Test Case ID: BO-TC-11

• Use Case ID: BO-UC-11

• Description: Show all events records

• Pre-condition: Admin Logged in successfully .

• Acceptance: Accepted.

#no Test Data Expected Result Actual Result Acceptance

01 No data is required Success Success Accepted

105

• Test Case ID: BO-TC-13

• Use Case ID: BO-UC-13

• Description: Add new event record

• Pre-condition: Admin Logged in successfully .

• Acceptance: Accepted. 1 error

#no Test Data Expected Result Actual Result Acceptance

01 Title: Renew Car License
Category: Vehicle Event
Location: Car Inspection center
StartTime: 2016-08-17
EndTime: 2016-08-24
Description: should bring several
documents

Success Success Accepted

02 Title:
Category: Vehicle Event
Location: Car Inspection center.
StartTime: 2016-08-17
EndTime: 2016-08-24
Description: should bring several
documents

Fail
(title required)

Fail Accepted

03 Title:Renew Car License
Category: Vehicle Event
Location: Car Inspection center.
StartTime: 2016-08-24
EndTime: 2016-08-17
Description: should bring several
documents

Fail
(start time should
be less than end
time)

Fail Not Ac-
cepted

04 Title: Renew Car License
Category: Vehicle Event
Location: Car Inspection center
StartTime:
EndTime: 2016-08-24
Description: should bring several
documents

Fail
(Starttime and
Endtime are re-
quired)

Fail Accepted

05 Title: Renew Car License
Category: Vehicle Event
Location: Car Inspection center
StartTime: 2016-08-17
EndTime: 2016-08-24
Description:

Fail
(Description re-
quired)

Fail Accepted

• Test Case ID: BO-TC-12

• Use Case ID: BO-UC-12

• Description: Edit specific event record

106

• Pre-condition: Admin Logged in successfully .

• Acceptance: Accepted, 1 error (similar to BO-TC-13)

• Test Case ID: BO-TC-14

• Use Case ID: BO-UC-14

• Description: Delete event record.

• Pre-condition: Admin Logged in successfully.

#no Test Data Expected Result Actual Result Acceptance

01 No data is required Success Success Accepted

• Test Case ID: BO-TC-15

• Use Case ID: BO-UC-15

• Description: Browse event users.

• Pre-condition: Admin Logged in successfully.

• Acceptance: Accepted

#no Test Data Expected Result Actual Result Acceptance

01 No data is required Success Success Accepted

• Test Case ID: BO-TC-16

• Use Case ID: BO-UC-16

• Description: Deliver sign event.

• Pre-condition: Admin Logged in successfully.

• Acceptance: Accepted

#no Test Data Expected Result Actual Result Acceptance

01 Select one event Success Success Accepted

• Test Case ID: BO-TC-17

• Use Case ID: BO-UC-17

• Description: Deliver sign events on user record.

• Pre-condition: Admin Logged in successfully.

• Acceptance: Accepted

107

#no Test Data Expected Result Actual Result Acceptance

01 Select a citizen record Success Success Accepted

• Test Case ID: BO-TC-18

• Use Case ID: BO-UC-18

• Description: show location records.

• Pre-condition: Admin Logged in successfully.

• Acceptance: Accepted

#no Test Data Expected Result Actual Result Acceptance

01 No data is required Success Success Accepted

• Test Case ID: BO-TC-19

• Use Case ID: BO-UC-19

• Description: Add new Location record

• Pre-condition: Admin Logged in successfully.

• Acceptance: Not Accepted,1 errors

#no Test Data Expected Result Actual Result Acceptance

01 Title: citizen spot
Latitude: -9.172264
Longitude: 121.3434

Success Success Accepted

01 Title:
Latitude: -9.172264
Longitude: 121.3434

Fail
(Title is required)

Fail Accepted

01 Title: citizen spot
Latitude: erd
Longitude: dsfs

Fail
(Latitude and Lon-
gitude should be
numbers)

Fail Not Ac-
cepted

• Test Case ID: BO-TC-20

• Use Case ID: BO-UC-20

• Description: Edit Location record.

• Pre-condition: Admin Logged in successfully.

• Acceptance: Not Accepted , 1 errors (similar to BO-TC-19)

108

• Test Case ID: BO-TC-21

• Use Case ID: BO-UC-21

• Description: Portal Setting.

• Pre-condition: Admin Logged in successfully.

• Acceptance: Not Accepted , (Need to be continued when proxy app is developed)

10.5.3 Testing Accounts

These accounts can be used to test the system:

• Admin back-office account:

– email: admin@citizenPal.com

– password: admin

• Android CitizenPal app:

– email:omar@hotmail.com

– password: 123123

10.6 API Resources

CitizenPal RESTful API is a set of resources. Each resources has properties. The following
Tables go throw these resources in details.
The application root path is ”/app”. Then every resource has it own path. In order to use
the path of a specific resource, you should add the root path. For example: user resources is
”/app/users” and events resoruce is ”/app/events”. The following tables explain more:

Path ”/users/hello”

Method GET

Produces/Consumes Produces

Role Permit all

Description Resource used for testing, it produces a massage
”Hello world API !” . It can be accessed by any-
one

109

Path ”/users/login”

Method POST

Role citizen

Produces OperationResoponse Object.

Consumes User Object (email and password)

Description Resource used for Resources used for log in, The
Client send and User object loaded with email and
password, The response is OperationResponse.
If the log in success, OperationResponse will be
loaded with full User Info

Path ”/users/{userId}/flag”

Method GET

Role citizen

Produces OperationResoponse Object.

Consumes null

Description Retrieve user’s flag . user flag indicates if the users
has new events or not. The flag has the following
values, 1 indicate there are new events, 0 indicate
there are not new events.

Path ”/users/register”

Method PUT

Role PermitAll(because the citizen is not registers yet so
any one can able to register new account)

Produces OperationResoponse Object.

Consumes User Object

Description Register new citizen account. It returns the Oper-
ationResponse to tell if the operation is success or
not.

Path ”/users/add”

Method PUT

Role Admin

Produces OperationResoponse Object.

Consumes User Object

Description create new user account.

110

Path ”/users/admin”

Method POST

Role Admin

Produces OperationResoponse Object.

Consumes nothing

Description Log in the admin, this does not need to consume any data because
the the admin credentials should be sent on the header request.
Http Request will not be permitted to access this resources if id
does not pass the Authentication filter

Path ”/users/all”

Method GET

Role Admin

Produces OperationResoponse Object. with list of citizens info in the out-
put section

Consumes nothing

Description Used to retrieve citizens accounts info information.

Path ”/users/{userId}”

Method DELETE

Role Admin

Produces OperationResoponse Object.

Consumes nothing

Description Used to delete citizen record info.

Path ”/users/{userId}”

Method POST

Role Admin

Produces OperationResoponse Object.

Consumes User Object

Description Used to edit citizen info.

111

Path ”/users/{userId}”

Method GET

Role Admin

Produces OperationResoponse Object (User Object on its out-
put) .

Consumes nothing

Description Get Citizen account by citizen reocord id

Path ”/users/user/{userId}/events”

Method GET

Role Citizen

Produces OperationResoponse Object. with list of events

Consumes nothing

Description Used to retrieve events of the citizen.

Path ”/users/{userId}/other/events”

Method GET

Role Admin

Produces OperationResoponse Object.

Consumes nothing

Description used to retrieve all events that does not belong to
the citizen.

Path ”/users/{userId}/events”

Method POST

Role Admin

Produces OperationResoponse Object.

Consumes Event Object

Description Add Events to specific Citizen account.

Path ”/users/{userId}/events/{eventId}”

Method DELETE

Role Admin

Produces OperationResoponse Object (User Object on its out-
put) .

Consumes nothing

Description used to detach specific event from specific user.

112

Path ”/events/{userId}/flag”

Method PUT

Role Citizen

Produces OperationResoponse Object. (output is Integer)

Consumes nothing

Description change the user Events flag as zero.
Setting flag as zero means that these events has been
already downloaded on the user device.

Path ”/events/user/{userId}”

Method GET

Role Citizen

Produces OperationResoponse Object.(output is list of Event
objects)

Consumes nothing

Description Used to retrieve citizen events by user id

Path ”/events/category/{userId}”

Method GET

Role Citizen

Produces OperationResoponse Object.(output contains list of
category)

Consumes nothing

Description Retrieve all citizen Category.

113

Path ”/events/status/{userId}”

Method GET

Role Citizen

Produces OperationResoponse Object. (output contains list of
Status objects)

Consumes nothing

Description Used to retrieve events Status.

Path ”/events/event/{eventId}/user/{userId}”

Method GET

Role Citizen

Produces OperationResoponse Object.(output is Event object)

Consumes nothing

Description Used to retrieve specific event that belong to specific
citizen

Path ”/events/add”

Method PUT

Role Admin

Produces OperationResoponse Object.

Consumes Event object

Description Used to add new Event.

Path ”/events/{eventId}”

Method GET

Role Admin

Produces OperationResoponse Object(output contains Event
object)

Consumes nothing

Description Used to Retrieve event information by its id

114

Path ”/events/{eventId}”

Method POST

Role Admin

Produces OperationResoponse Object.

Consumes Event Object

Description Used to Update the event information

Path ”/events/{eventId}”

Method DELETE

Role Admin

Produces OperationResoponse Object.(output is Event object)

Consumes nothing

Description Remove event by its id. * WARNING: This Service
deletes the events and all its relation to user.

Path ”/events/add”

Method PUT

Role Admin

Produces OperationResoponse Object.

Consumes Event object

Description Used to add new Event.

Path ”/events/all”

Method GET

Role Admin

Produces OperationResoponse.(output contians list of Events
objects)

Consumes nothing

Description Used to Retrieve all events

115

Path ”/events/{eventId}/users”

Method GET

Role Admin

Produces OperationResoponse Object (output contains list of users)

Consumes Event Object

Description Used to retrieve users that belong to specific event

Path ”/events/{eventId}/users/{userId}”

Method DELETE

Role Admin

Produces OperationResoponse Object.

Consumes nothing

Description Used to detach the citizen from being attached to specific event

Path ”/locations/all”

Method GET

Role Admin

Produces OperationResoponse Object.(Output contains list of location ob-
jects)

Consumes nothing

Description Used to retrieve all locations records.

Path ”/locations/{locationId}”

Method DELETE

Role Admin

Produces OperationResoponse.

Consumes nothing

Description Used to delete and specific location object.

116

Path ”/locations/add”

Method PUT

Role Admin

Produces OperationResoponse Object.

Consumes Location Object

Description Used to add new location.

Path ”/location/{locationId}”

Method GET

Role Admin

Produces OperationResoponse Object(output contains Location object)

Consumes nothing

Description Used to detach the citizen from being attached to specific event

Path ”/locations/{locationId}”

Method POST

Role Admin

Produces OperationResoponse Object.

Consumes location object

Description Used to retrieve all locations records.

Path ”/status/all”

Method GET

Role Admin

Produces OperationResoponse. (output contains list of status objects)

Consumes nothing

Description Used to retrieve all location records.

10.7 Deployments Steps

The deployment steps are going to expressed here with some important decisions.

1. Create AMI (Amazon Machine Image) : In able to create a AMI we should create an
account and valid credit card. Lunching Instance of EC2. Windows Free tier has been
chosen for the AMI. As the figure down below shows.

117

Figure 90: First step to choose the AMI

Create the AMI involves 7 steps. As it can be seen in the figure 90:

(a) Choose AMI.

(b) Choose Instance Type.

(c) Configure Instance Details

(d) Add Storage

(e) Tag Instance

(f) Configure Security Group .

(g) Review Instance Launch

One of the important step is Configuring Security Group. Security group is working like a
firewall for AMI. It has to be configured carefully.
Every Security Group has Inbound and Outbound. The Inbound has rules for for the ports
and the protocols that should be allowed to access the AMI. Two Secruity Group should
be created. One for every machine as it can be seen in figure 92 blow

Figure 91: Security groups for CitizenPal AMIs

The rules for API RESTful API AMI should allow HTTPs, HTTP, with ports 80, 8080,
8443, 443 .

118

Figure 92: Security inbound roles for RESTful API machine

Note: RDP (Remote Desktop Protocol) used for remotly control the AMI. The back-Office
AMI security group should add a role for HTTP with port 80, 8080 .

2. Installs Appache 7.0 And MYSQL Server on RESTful AMI. and configure the HTTPs and
self-signed certificate.

Note: The database can be deployed using RDS (Relational Database Service) . I chosed
to Install the database server in the same machine of RESTful API because deploying on
RDS cost extra money.

3. Deploying WAR file: Dynamic Java Web project can be extracted as WAR file. WAR files
can be deployed using Appache app manager figure 93.

Figure 93: Appache app Manager

WAR file can be uploaded then deploy the app. As we can see the in the table of Applica-
tions in figure 93. we can see all the applications.

Since the Back-Office is an JavaScript app, Deploying the Back-office can be Copying the
project to Appcache/webapps/[projectFolder] and restart the server.

4. Change the IPs of the HTTP to match the Public IPs of the AMIs.

119

Testing all applications in order to make sure that they are responding to each other is an
important too to make sure there is no interface does not work.

10.8 Project Planning

During the First Semester. The planning of the project, it was several attempt to get access
to the public e-services portals by meeting with ama Agency which is located Lisbon. We had
several meeting to present the idea. They showed acceptance of the idea it self. but a delay
and postponement have been sensed.Therefor, The company changed the concept to build a
prototype of the project to represent the idea.

The following graph explains the overview view plan for the first semester:

Figure 94: Gantt for first semester plan

1. Understanding the project’s context
Understand the overview of CitizenPal proposal, the main goals and its motivation.

2. First meeting with AMA
First meeting with AMA the agency that is responsible for the e-Goverment Portals
(Agência para a Modernização Administrativa) to explain the project and to collaborate
with them.

3. Defining List of Requirements
Defining list of concrete requirements and tasks that can be included in CitizenPal App.

4. Second meeting with AMA
The second meeting with AMA was to confirm and collaborate with them over the project
requirements and tasks.

5. Writing and documenting
It is the process to describe and documents every activities and facts and write the report.

During the second Semester the project will have the following activities:

1. Specifying requirements in the project.

2. Build Architecture of the project.

3. Testing and evaluating.

4. Documenting.

120

	Introduction
	Project's Goal
	Scope and Motivation
	Method and Results
	Document Structure

	Project Background
	Overview Model
	Product Perspectives
	Technologies and Techniques
	Server App Technologies
	Smart-Phone App Technologies
	Back-Office Technologies
	Database Technologies:

	User Characteristics
	General Constraints
	Regulation and Privacy
	Security and Encryption

	Requirements
	Users Scenarios and Stories
	User Story 1.Inês Santos : University Student
	User Story 2.João Veríssimo : Employee in Decathlon

	External Interface Requirements
	User Interfaces
	Hardware Interfaces
	Software Interfaces
	Communications Interfaces

	Functional Requirements
	Use Cases
	Data Flow Diagrams

	Non-functional Requirements
	Security Requirements
	Designing Requirements :

	Prioritization
	Use Cases Priorities:
	Security Priorities:

	Implementation
	Components Overview
	System Architecture
	Server Application Architecture
	HTTP Request:
	Enabling Cors

	Android App Architecture
	Presentation Layer
	Logic Layer
	Data Layer
	Configuration File
	Screens and Their Relationships

	Back-Office App Architecture
	SPA Software Pattern
	Views
	App Configuration
	Controllers
	Authentication Service
	Data Model

	Database Diagram
	Assumptions and Dependencies

	Deployment
	Testing
	User Acceptance Testing
	Server app Performance Testing
	Test Plan
	Testing Results

	Discussion and Future Work
	Conclusion
	References and Bibliography
	Appendixes
	User Interfaces-Smart Phone App
	User Interfaces-Back-Office App
	Use cases
	Smart-Phone App Use Case:
	Back-Office App

	Screen shots
	Test Cases
	Smart-Phone app Test Cases
	Back-Office app Test Cases
	Testing Accounts

	API Resources
	Deployments Steps
	Project Planning

