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“Why did humans lose their body hair? Why did they start walking on their hind legs?

Why did they develop big brains? I think that the answer to all three questions is sexual

selection.”

Richard Dawkins





UNIVERSITY OF COIMBRA

Abstract

Faculty of Sciences and Technology

Department of Informatics Engineer

Master’s Degree in Informatics Engineering
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by Paulo Jorge Reis Pereira

When Darwin published his theories about evolution, he presented two key mechanisms

responsible for the evolution (natural selection and sexual selection). While the natural

selection has widely accepted by the scientific community, the sexual selection has highly

criticised and so it was forgotten over time. It was only nearly a century later, that the

sexual selection began to be acknowledged, mainly due the researches of Fisher and

Zahavi. In the last decades, other matter that has intrigued the scientific community is

the reasons that lead an individual to join a herd and how to describe the movements

observed in these herds. Some authors, among which Reynolds, suggest that the flocking

behaviour emerges through simple motion rules.

Afterwards, hybrid algorithms combining the ideas from evolution and motion of flocks

were presented. In such algorithms, the motion rules evolve over the time. Inspired in

these algorithms, in this dissertation is proposed a new algorithm, which inserts in these

hybrid models the ideas from sexual selection, in particular mate choice. In the end,

the emergence of a flocking behaviour is expected and the effects of using mate choice

instead of the traditional approaches are analysed.

Keywords. flocking behaviour, evolutionary algorithms, sexual selection, mate choice,

boid, artificial life, co-evolutionary, prey, predator
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Chapter 1

Introduction

When Charles Darwin gathered his notes and published “On the origin of species” [1],

he presented a revolutionary scientific theory stating that the species evolve over time, in

order to be better suited to the environment which they inhabit. In his book, he presents

two main mechanisms responsible for the evolution of species: the natural selection and

the sexual selection. However, while the natural selection was widely accepted as a fact

by the scientific community, the sexual selection (in particular the female mate choice)

was widely criticised and so, over the time, this mechanism was forgotten. It was only

nearly a century later, that the sexual selection came back on the spotlight through the

presentation of a few researches, in which excel the works of Fisher [2, 3] and Zahavi [4].

In the last decades, sexual selection originated several discussions around the scientific

community, contributing for an increase of evidences that support this theory.

Nowadays, the sexual selection is widely accepted by the community, but it has not

established itself on evolutionary computation. Some researches, among which Miller

and Todd [5], concluded that there are advantages of using sexual selection instead of the

traditional algorithms. The evolutionary computation is a research field within artificial

intelligence which is influenced by the ideas of Darwin [1, 6] about the evolution of species

through natural selection. This area was mainly influenced by the natural selection, once

when the evolutionary computation was stabilised, the sexual selection was still not

accepted as a core mechanism responsible for the evolution of species. The algorithms

inspired by the natural selection are called evolutionary algorithms and although their

differences all of them have in common the same principles. In each generation, this

kind of algorithm will try to improve the fitness of a given population, via processes of

selection and variation.

Another matter that has intrigued the scientific community, more specifically the etholo-

gists, is the cooperative behaviour of several individuals that can be seen in flocks. They

1
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have question themselves about the reasons that can lead several individuals to group

together in a herd and how to describe mathematically the different movements seen

in herds. A behaviour study presented by Barnard and Thompson [7] suggests greatest

benefits for an individual to join a flock instead of surviving by itself. By the other hand,

several authors, in which excel Reynolds [8], suggested that the behaviours seen in flocks

may emerge through the application of simple movement rules in each individual that

belongs to the flock.

Recently, a new kind of algorithm was proposed, combining the ideas of evolution theory

and motion of flocks [9, 10]. In this new category of hybrid algorithm, the movement rules

of the individuals evolve over the time, wherein the motion rules are evolving to adapt to

the surrounding environment and to the neighbourhood of each individual. Therefore, it

should be interesting to combine the ideas of the two aforementioned algorithms (female

mate choice and motion of flocks) in one algorithm. One idea that is not yet found in

the literature. In this new type of algorithm, the mating parents aren’t only selected

based on the fitness but also based in the preferences of each individual.

1.1 Scope

Darwin [1, 6] introduced two methods for sexual selection: male competition and female

mate choice. However in his researches, he has mainly focused on the method of female

mate choice, following this inclination also the few presented researches combining evo-

lutionary computation with sexual selection were mainly focused in the second method.

Leitão and Machado [11] proposed a new design for female mate choice inspired in what

occurs in the nature, in which: the individuals pick their mates according their prefer-

ences, the mates preferences are inherited (similar with the physical genotypes and they

evolve over time) and the mate selection introduces its own pressure but is subject to

the selection pressure.

The motion of flocks can be described through the simple movement rules proposed by

Reynolds [8], which are a weighted sum of three accelerations (separation, cohesion and

alignment) within the neighbourhood of each individual. Spector et al. [9] inspired by

the ideas proposed by Reynolds [8], they developed two models constituted by individu-

als of several species. Wherein, each specie struggles with each other in order to survive.

The movement rules are evolving over time and since that the components of the move-

ment rules proposed by Reynolds are part of the available genotype, it is expected the

emergence of a motion of flocks among the population of each specie.
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1.2 Research Objectives

The main objective of this dissertation is to develop a model, combining the ideas of

motion of flocks with the ideas of a variant of evolutionary algorithms that uses sexual

selection instead of the traditional selection methods. Therefore, there are two intentions

of developing such algorithm:

• Observe the existence of cooperative movements between individuals of the same

specie;

• Analyse the effects on the results of using sexual selection (female mate choice) in

comparison with the traditional selection methods.

Papers suggesting the visualisation of motion of flocks in hybrid algorithms and re-

searches suggesting benefits of using methods of sexual selection in evolutionary algo-

rithms can be found in the literature. Therefore since this two intentions are observed

in each one of these algorithms, it’s expected that in the proposed algorithm, which is

a combinations of the previous algorithms, it is possible to observe the same evidences.

1.3 Outline

The remainder of this document is structured as follows: the main ideas behind this

research are presented in chapter 2, where the evolutionary algorithms are presented

in section 2.1, highlighting the recent approaches using sexual selection instead of the

traditional approaches, in subsection 2.1.4. Afterwards, algorithms able to simulate

motion of flocks are presented in section 2.2.1. Subsequently, hybrid models, models

which combine the ideas of two fields of artificial intelligence: evolutionary computation

and motion of flocks, are referred in section 2.2.3.

The developed simulator is described in chapter 3. In section 3.1, the framework used

to develop the simulator is presented and then the components of the simulator are

described in the section 3.2. Afterwards, in section 3.3, the evaluation system developed

to evaluate each simulation is presented. The tests performed are analysed on chapter

4, where the results of five experiments are studied in the sections 4.1, 4.2, 4.3, 4.4.a and

4.4.b, respectively. The last section of this chapter, section 4.5, presents a global analysis

of the five experiments. Finally, the conclusions of the obtained results are presented in

the last chapter, chapter 5. This chapter also presents the proposed future work.





Chapter 2

State of the Art

The present chapter contains the state of the art of the dissertation. This chapter

is divided in two sections: the fundamental concepts of evolutionary computation, a

computational field inspired by the evolution of species, are presented in the first section

and, in the second section, the main ideas behind collective intelligence are presented,

in particular, the algorithms able to simulate motion of flocks, such as birds and fishes.

The first section begins by introduce the fundamental ideas behind the concepts of evo-

lutionary computation, as well how they arose and who presented them. Afterwards,

the algorithms inspired by the evolution of species, the evolutionary algorithms, are

introduced. Subsequently, the basic algorithm of an EA is presented, followed by an

explanation of the algorithm. Each of the main components of a classic EA are de-

scribed in the following subsections, presenting the most common algorithms of each

component. In the next subsection, the four classical algorithms, which belong to the

group of evolutionary algorithms, are presented. Afterwards, the main concepts of sex-

ual selection are introduced in a new subsection, giving special attention to the female

mate choice over mate competition. Subsequently, an overview regarding those concepts

is presented, followed by the introduction of variants of evolutionary algorithms that

use mate choice selection instead of the traditional methods. Finally, in the end of that

section, a recent proposed design for this variant of evolutionary algorithms is presented.

The main concepts related to collective intelligence are introduced in the following sec-

tion, giving special consideration to algorithms related with motion of flocks. In the first

subsection, the main concepts are presented in an overview, containing the suggested

greatest advantages for an individual join a herd instead of survive by itself. After-

wards, some algorithms inspired on motion of flocks, such as the Boid algorithm and

Particle Swarm Optimisation, are presented. Subsequently, some models which include

more than one specie in the environment are shown below, pointing the benefits that the

5
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competition between species may bring to a simulation. Finally, a new kind of algorithm

which combines the ideas of evolutionary computation with the ideas of motion of flocks,

is presented and discussed, in the last subsection.

2.1 Evolutionary Computation

Evolutionary Computation (EC) [12–15] is a research area within artificial intelligence

which is heavily inspired by a nature process, the evolution of species by natural selection.

This natural process was first introduced by Charles Darwin in “On the origin of species”

[1]. This area results from the efforts of bring together several researches that had in

common the simulation of evolution, such like, genetic algorithms (GA) [16], evolutionary

strategies (ES) [17, 18], evolutionary programming (EP) [19] and genetic programming

(GP) [20].

The evolutionary algorithms (EAs) [12–14, 21, 22] are algorithms that, despite their

differences, they share a common inspiration. The evolution is an iterative process that

given a population of individuals, this process will try to improve their individuals, via

processes of selection and variation, to the surrounding environment. In other words,

the individuals more suited have higher probabilities to survive to the next generations

and they also have higher probabilities to reproduce and thus pass their genetic material

to future generations.

In an EA, each individual represents a candidate solution to a given problem, in which its

fitness is classified by its outcome to the problem. It’s intended that along generations the

current best candidate solution owns a better fitness when compared with the solutions of

the former best candidates. Once the EAs belong to the group of stochastic algorithms,

there are no guarantee of finding the optimal solution of the problem. Even find a

satisfactory solution can take a large number of generations. Since this kind of algorithms

interact over a group of candidate solutions, the EA belong to the family of trial and

error problem solvers [14, 22], which via the processes of selection and variation it is

considered a global optimiser.

2.1.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a group of algorithms which simulate evolution.

EAs are inspired in biological evolution and took with particular emphasis methods,

such as recombination, mutation and selection. These algorithms are used to search

candidate solutions of complex problems in a given search space [23]. The EAs
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are divided into several different algorithms [16–20], but there are a common model

kept among themselves, figure 2.1. In an EA, the only existing interactions between

individuals are through the comparison of the fitness (this during the selection methods),

and during the reproductions (while crossing the genotype of individuals to create new

offsprings). Except those cases, typically, there aren’t interactions between individuals.

Figure 2.1: Common sketch of an EA

The several EAs have in common the same idea. Across generations, the population will

have better suited individuals improving the fitness of the population, hence the fitness

of the best individual cannot get worse when compared with the previous.

Given a complex problem, it is necessary to analyse the issue at hand, in order to find

a function that describes the quality of each solution. The values returned by that

fitness function will be used to evaluate and to compare the various candidate solutions.

Normally, it is intended to maximise the fitness function and so the higher the better

[12–14]. An EA begins to generate several random individuals, during the initialisation

phase, and then, they are evaluated according the fitness function. There are various

methods that can be used to generate the initial population, each one with their own

characteristics affecting the diversity of the initial candidate solutions. However, they

all shared the necessity to know the search space of the problem, this to generate the

candidate solutions within that space. The search space [23] is the space of all feasible

solutions, which means that an EA is only looking for candidate solutions within this

space. Normally, the search space is known but when it’s not, there are methods that

can be used to find suitable solutions for the search space, such as hill climbing [24],

tabu search [25] and simulated annealing [26]. Those solutions are not necessarily the

optimal solutions but they can be used to define limits for the search space.
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Based on the fitness of the candidate solutions, some of the most suited candidates

are picked out to generate new offsprings. The generation of offsprings is performed

in two steps: first the recombination (reproduction) and then the mutation [14].

Finally, by comparing the candidate solutions of the last generation with the offsprings,

the most suited solutions are selected to survive to the next generation. This routine

is repeated until a stop criteria is manifested. Finally, the candidate solution with the

highest fitness is returned by the algorithm. This routine is displayed in the following

algorithm, algorithm 1.

Algorithm 1: Basic algorithm of an EA

Data: Problem, Fitness function, Stop Criteria

Result: Best individual

Population ← RandomPopulation(Problem);

Population ← EvaluatePopulation(Population, FitnessFunction);

while does not meet the Stop Criteria do

Parents ← SelectParents(Population);

Offspring ← VariationOperators(Parents);

Offspring ← EvaluatePopulation(Offspring, FitnessFunction);

Population ← SelectSurvivors(Population, Offspring);

end

return bestIndividual(Population)

The improvement of the population’s fitness occurs due the interrelationship between

two forces [14]: the diversity and the selection pressure.

Diversity - It measures the number of different solutions. An increment in the diver-

sity facilitates the entry of novelty in the population, which helps to further

explore the search space. Due to this force, the EAs are less likely to get

trapped in local optimums. This force is the main responsible for the ex-

ploration [27]. The exploration consists in probing the search space, with

the hope of finding promising solutions which later will have to be refined.

At the beginning, the diversity is promoted by the generation of the initial

population and later, in each generation, by the variation operators.

Selection pressure - The selection of candidate solutions, during the reproduction and

survival phases, increases the pressure between individuals, which struggle

with each other in order to have a greater chance of reproduction and sur-

vival. This force is responsible by the improvement of the average fitness
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of the population, through the exploitation [27]. The exploitation consists

in probing a promising limited area (the neighbourhood of the most suited

solutions) with the hope of improving the current solutions.

2.1.2 Components of EA

In this subsection, the main common components and operators used in practically

every EA are presented. Each variant of the classic EAs has specific peculiarities for the

components and operators that are discussed in this subsection.

2.1.2.1 Representation

One of the first steps during the development of an EA is to define how to represent the

individuals, that is, link the problem context to the search space of candidate solutions.

This often involves simplifying or abstracting some aspects of the real world [12–14, 23].

Figure 2.2: Spaces and mappings of candidate solutions

The possible solutions within the original problem context are called phenotypes and

their encoding, that is, the individuals within the EA are referred as genotypes. The

process of mapping an individual from the phenotype space to the genotype space (search

space) is called representation, also known as encoding. Its inverse mapping is known

as decoding. The word “representation” has also another meaning in EC, it may be

used to refer the data structure used to store the genotypes.

A candidate solution can be represented by one of two forms:

• Phenotype - the original problem context, the object. E.g. human.

• Genotype - the representation of the object, the chromosome. E.g. DNA.



10 Chapter 2 State of the Art

2.1.2.2 Population

The population [14] is a multiset1 that is used to store candidate solutions, usually

under the form of genotypes. These candidate solutions are static and therefore during

the course of an EA they cannot change or adapt. It’s the population that changes

through the entry of new candidates and the departure of older candidates.

A population is defined by the representation of individuals and the size of the multiset.

Normally, the size is constant, and so it does not change during the execution. However,

in some variants of EA (adaptive EAs), the size of the population can change [28].

In these EAs, the size may vary according the diversity or fitness found within the

population, or simply over the time.

During the evolutionary search, the population as a whole only interacts with the

selection operators, in contrast with the variation operators that interact only with

some individuals. In some EA oriented to dynamic environments, there are several sub-

populations in which they also interact with each other, with the goal of improving their

individuals. The Self-Organising Scouts (SOS) [29] and the Shift Balance Theory [30]

are some examples of this variant of EA.

In other variants, the diversity within the population is measure and if a new individual

is very similar to a candidate that belongs the population, then only one of them will

belong to the population. The solution with the higher fitness is chosen, while the other

is discarded [31].

2.1.2.3 Fitness Function

The fitness function [13–15] measures the quality of a candidate solution to a given

problem, it represents what the solutions should adapt themselves.

The quality function represents the problem to be solved. Normally, this function is

composed by a decoding function to recreate the phenotype, followed by a quality

measure in the phenotype space.

The value returned by the fitness function will be used to evaluate and to compare the

various candidate solutions to a given problem. That value will be used during the

selection operators and at the end of the evolutionary search to retrieve the most

suited individual among the population.

1A multiset is a set in which an object can appear more than once.
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2.1.2.4 Initialisation

Usually, the initialisation is kept as simple as possible, where the first population is

seeded by randomly generated candidate solutions. Depending on the problem, it

may be possible to use some heuristics [14, 32] to generate the initial population,

resulting in a higher average fitness. However, these heuristics are computationally

heavy and, therefore, they should only be used when necessary.

The simplest method used to randomly generated solutions is the random uniform

sampling [14, 32], where the candidates are generated randomly within the search space.

This method does not distributed the individuals equally in the search space, which leads

to a lesser diversity in the population. There are other methods that distribute better

the individuals, such as simple sequential inhibition [32] and latin hypercube [32].

2.1.2.5 Parent Selection

The parent selection [12, 14], also known as mate selection, is a procedure that picks

individuals based on their fitness, this to allow them to be parents of new individu-

als. This procedure can be deterministic or stochastic. In EC, the parent selection

is usually stochastic, given two individual, the individual with the worst fitness can

eventually be chosen but with a lower probability, in order to the search does not get

too greedy. In the determinist methods, given two individuals, the individual with the

higher fitness will always be the one chosen. Some of the most common algorithms used

for mate selection are described below.

Roulette Wheel [14] - The probability of choosing each candidate solution is calcu-

lated according the cumulative probability distribution. Afterwards, a ran-

dom real within the interval of probabilities, [0, 1] is picked. That number

matches a certain individual, which will be chosen to be a parent. This

method is repeated until a certain desired number of mates (n) are chosen.

Stochastic Universal Sampling [14] - This algorithm is similar with the previous, in

the way that the probability of each candidate is calculated according the

cumulative probability distribution. However it’s only need to run once to

get n parents. This because, a random real is picked within the interval

[0, 1/n] and to this number is cumulatively added the value 1/n until there

are n cumulative probabilities. Each of these matches a certain individual.

Tournament Selection [14] - This algorithm starts to pick randomly a certain number

(k) of individuals from the population. Then in the deterministic version
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the individual with the highest fitness is chosen, in the stochastic versions

the others solutions can also be chosen but with a lower probability. This

method is repeated until a certain desired number of mates (n) are chosen.

2.1.2.6 Variation Operators

The variation operators [12–14] consist in operations that are used to create new

individuals from the individuals selected during the mate selection. These operations

are divided in two types depending in the number of parents:

• Mutation - generates a new individual from only one parent.

• Recombination - generates a new individual from more than one parent.

Usually, the recombination is applied first to generate offsprings and then the mutation

is applied over those new individuals. The variation operators [12–14] are usually applied

probabilistically according a mutation rate and a recombination rate.

The generation of offsprings can produce infeasible solutions. Solutions which in-

fringe any existing restriction or that don’t belong to the search space. Some EAs have

implemented a repair algorithm [13, 14], that in the presence of infeasible solutions, the

repair algorithm corrects them into feasible solutions.

Recombination

The recombination is an operator that blends the chromosomes of two or more in-

dividuals in order to generate new individuals. Consequently, the new individuals have

features in common with each of their parents.

Normally, the recombination occurs between two parents [14], as it can be observed in

nature. However in an EA, the recombination may also occur between more than two

parents, depending on the issue at hand.

Mutation

Given a genotype of one individual, this operator modifies randomly its genes. So

the genotype of the new individual results of a chain of random choices [14]. Normally,

it is intended that the new individual does not differ a lot from the original individual.
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2.1.2.7 Survivor Selection

Usually, the size of the population remains constant during an evolutionary search. As

the size of the population is limited, after a generation it is necessary to choose which

individuals (initial population + offsprings) will survive to the next generation.

At this stage, it is intended that the most suited individuals survive but it’s also intended

that some of the individuals with a worse fitness survive, in order to inject novelty in

the population and thus increase its diversity. Some of the most common algorithms

used for the survivor selection [12] are listed below.

Generational [14] - The older population is discarded and only the offsprings survive

to the next generation.

Elitism [14] - Considering n the size of the population and k < n. The k most suited

candidate solutions of the older population are picked out to survive to the

next generation. Those are grouped with the n− k most suited individuals

of the offsprings.

Steady State [14] - This algorithm starts by grouping the older population with the

offsprings in a multiset. Then the n individuals with the higher fitness are

picked to survive to the next generation.

2.1.2.8 Stop Criteria

An EA is a computationally heavy algorithm, which can take a long time to return a

reasonable outcome. As referred before, EAs are stochastic algorithms which means

that there is no guarantee of reaching the ideal solution. Reason why it is necessary

to have a stop criteria [14] to halt the evolutionary search.

The most common stop criterias are: a maximum limit number of generations; until the

best fitness, average fitness and/or diversity exceed a certain value; and until the best

fitness, mean fitness and/or diversity remains under a determined threshold during a

certain number of generations.

2.1.3 EA variants

The EAs are a type of algorithms heavily inspired in evolution that have a common

model among them. However each of their variants have their particularities, altering

some components of the traditional EA.
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In one kind of those variants during the variation operators, besides the offsprings are

also added new random individuals (immigrants) [14]. This mechanism provokes an

increase in the diversity. Other algorithms deal with a dynamic environment [14], in

other words one environment wherein the problem may change over the time. In the case

of a dynamic environment, the algorithm must have mechanisms to increase the diversity

when a change is detected, favouring the exploration [27] under the exploitation [27]. In

other algorithms, the mutation rate and/or recombination rate may change during

an evolutionary search, depending on the value of diversity, best fitness and/or average

fitness.

There are various kind of algorithms that belong to the group of EA being inconceiv-

able mention them all. For that reason only some of them are referred in this subsection,

giving relief to the classical EA algorithms. It is worth mentioning, that each of those

classical algorithms gave rise to countless new algorithms. In which some components

may be different from the original algorithms. However in the following subsections,

only the classic algorithms are mentioned.

2.1.3.1 Genetic Algorithms

Genetic algorithms (GA) [12, 14, 16] were first proposed by John Holland [16] in 1975.

In the first years, this approach was mistakenly considered as an optimisation method.

However, the thesis of De John [33] helped to define what today is considered the tradi-

tional genetic algorithm. The features which distinguish the GA proposed by Holland,

SGA, of the other EAs are described in the table below.

Representation Bit-strings

Recombination 1-Point Crossover

Mutation Bit flip (low probability of mutation)

Parent Selection Fitness proportional (Roulette Wheel)

Survival Selection Generational

Table 2.1: Main features of the Simple GA (SGA)

2.1.3.2 Evolution Strategies

In the early 1960s, evolutionary strategies (ES) [12, 14, 16] were introduced by Rechen-

berg and Schwefel [17, 18]. This type of EA is specialised in self-adaptation, by having a

method to regulate the standard deviation, σ, of the Gaussian distribution. The values

returned by the Gaussian distribution are then used to mutate individuals [14]. ESs
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have more one singularity, during the survival selection each individual is not compared

with the real fitness but with a fitness raking. Also, the survivor methods are different

from the mentioned above. The most common methods are: the (µ, λ) which discards

the older population and only the stronger offsprings survive and the (µ + λ) in which

the offsprings are compared with their parents and only the best individuals survive.

Representation Real-valued vectors

Recombination Discrete (one of the parents) or intermediary (average of the parents)

Mutation Gaussian perturbation (adjustment of σ by 1/5 success rule)

Parent Selection Uniform random

Survival Selection Deterministic elitist replacement by (µ, λ) or (µ+ λ)

Table 2.2: Main features of an ES

2.1.3.3 Evolutionary Programming

The Evolutionary Programming (EP) [12, 14] was introduced by Fogel et al. [19] in 1960.

In first versions of this paradigm, the genotype was represented through finite state

machines, but nowadays the traditional EP uses real-values vectors as representation

[14]. Similarly with the ES, the EP is also specialised in self-adaptation and both have

the same representation. However the variation operators and the selection methods are

different. In an EP, all individuals are chosen to generate offsprings, which are generated

only by mutation. Therefore each individual creates a new individual via mutation. The

survivor selection begins by grouping the offspring with the parents, in a multiset, and

then the survivors are chosen through tournaments.

Representation Real-valued vectors

Recombination None

Mutation Gaussian perturbation (adjustment of σ)

Parent Selection Deterministic (each parent create one offspring)

Survival Selection Stochastic Round-Robin tournaments (µ+ λ)

Table 2.3: Main features of an EP

2.1.3.4 Genetic Programming

Genetic Programming (GP) was first introduced by Barricelli and Nils Aall [34] in

1954, but the main pioneer of GP was John R. Koza [20]. Unlike most of the other EAs,

which are typically used to optimise problems, GPs are usually used to breed computer

programs, so they can be classified as an algorithm of machine learning. While most of
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EAs are used to find an optimum point of a problem, GPs are used to search models for

an optimum fit [12, 14]. To accomplish such task each program of a GP is represented

through a parse tree, in which each component of GP iterates over that representation.

Representation Tree structures

Recombination Exchange of sub-trees

Mutation Random changes in trees

Parent Selection Fitness proportional

Survival Selection Generation replacement

Table 2.4: Main features of a GP

2.1.4 Sexual Selection

Since young, Charles Darwin showed great appreciation for natural history which pos-

sibly led him years later to embark on a five year survey voyage on board of the HMS

Beagle. Darwin had a unique opportunity to closely observe principles of botany, ge-

ology and zoology. Over the voyage, he collected and observed a variety of specimens,

including birds and fossils. Afterwards on board of Beagle, he described what he saw in

letters and speculated about the similar features seen in different specimens, what lead

him to speculate about the origin of life. After the voyage on Beagle, he gathered his

notes and published “On the origin of species” [1], where he introduced a revolutionary

scientific theory, the evolutionary theory. That theory holds that the species evolve

over time, in order to be better suited to the environment that they inhabit. In his

book, he also presents two main mechanisms responsible for the evolution of species,

those mechanisms are able to influence the survival rate of an individual between and

within species. The two introduced mechanisms were the natural selection and the

sexual selection, afterwards Darwin developed the concept of sexual selection in “The

descent of man and selection in relation to sex” [6].

The natural selection is a process where the most suited individuals, to the environ-

ment they inhabit, tend to survive more time and thus produce more offsprings. Since

that the most suited individuals have higher probabilities to survive and to reproduce, it

provokes that there is a greater probability that their traits are passed across generations

and therefore the offsprings will be better adapted to the environment. This mechanism

increases the selection pressure, which provokes a greater competition within individuals

from the same species, since that the most suited individuals have higher probabilities

to survive and to reproduce. However, it also promotes competition between species,
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once the species with most suited individuals have superior probabilities to survive and

to dominate the other species.

The natural selection explains many of the traits that can be seen in the nature, but

there are some traits and behaviours that this mechanism fails to explain. For example,

the large and garish tails of some birds, such like the plumage of male peacocks, don’t

seem to increase their odds of survival. Also, the courtship behaviours of some species

and the parental investment by the males to their offsprings that can be seen in some

species don’t seem to provide any gain, since that the males could use that time to

reproduce with other females. By the contrary, these traits and behaviours are costly

to the individuals who have to bear them. An individual with such traits has to spend

more energy to maintain them and these traits may also affect their mobility comparing

with individuals without any of those traits.

According the natural selection, individuals with such traits should be less likely to

survive and to reproduce. Since they manifest useless traits and therefore those traits

should be less likely to be observed in future generations. However that is not ob-

served in nature, wherein several ornamentations and behaviours are visible in different

populations of species, which may suggest the existence of another evolution process

responsible of this fact. Darwin explains this phenomenon by the sexual selection, in

others words, traits that may not provide any gain in terms to make the offsprings more

adapted to the environment can be passed between generations. However it increases

the selection pressure within a population, by the individuals that manifest certain traits

and behaviours are more attractive and so they have a higher probability to reproduce.

So the magnitude of the manifested traits and behaviours increases the mortality (since

they are costly) but also increases the reproduction rates.

Darwin proposed two main processes for sexual selection: male competition and mate

choice. The male competition promotes evolution of traits of the strongest males.

Therefore, the males compete with each other in order to have a higher chance to

reproduce with the females, for example this behaviour is seen in prides wherein the

lions struggle to be the alpha which it’s the only lion that can reproduce with any

lioness of that pride. The female mate choice promotes the evolution of traits that

the females consider attractive and so a male with such traits have a higher rate of

reproduction. This process is observed in ostentations in which the peacocks with the

more attractive plumage and courtship dance have greater probabilities to reproduce.

Darwin in his researchers about sexual selection had mainly focused on the female mate

choice.
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2.1.4.1 Overview

When Darwin presented his ideas in the “On the origin of species” [1], it caused a shock

in the society. Over the time, his ideas were widely accepted by the scientific community

as the most plausible explanation for the origin of life. However, while the natural

selection was largely accepted by the scientific community; the sexual selection,

in particular the female mate choice, was widely criticised and so it was forgotten

over the time. In part, this was due the treatment of Darwin over sexual selection

that sometimes it was confusing and it lacked a general framework in which, he could

relate the various concepts (sex-linked inheritance, sex ratio at conception, differential

mortality, parent care and form of the breeding systems) [35]. Some of the authors that

criticised the female mate choice, such as Alfred Russel Wallace [36], defended that the

male competition is a process that exists within the natural selection and therefore the

natural selection and the sexual selection are part of only one evolutionary mechanism.

It was only nearly a century later, that the sexual selection came back on the

spotlight through the presentation of a few researches, in which excel Fisher [2, 3] and

Zahavi [4].

It was only after the works of Ronald Fisher [2, 3] that the sexual selection fell again

in the public domain. He presented new important concepts, among which the sexy son

hypothesis (females tend to choose the males with higher probabilities of reproduction

rate, also the care giving and other direct benefits are appreciated), Fisher’s principle

(the sex ratio of most species through sex selection is about 1:1) and the Fisherian

runaway (male ornamentations are the result of a positive feedback (“runaway”) by the

preferences of females for those exaggerated ornamentations).

Years later, Amotz Zahavi [4] consolidated the ideas presented by Fisher. By introduc-

ing, the handicap principle which holds that the traits and behaviours that don’t seem

to contribute for the survival of a specie can be seen as indicators of fitness. Once those

traits and behaviours are costly, they can be seen as handicaps. So those handicaps

couldn’t be maintained by weak individuals and therefore only the most suited individ-

uals to the environment, with a higher fitness, are able to maintain such traits. One

year later, Richard Dawkins [37] also defended this idea.

Over time, the researches mentioned above and, as well as, others researches have gained

ground in the community and so the sexual selection began to gain relevance. In the last

decades, these ideas originated several discussions between biologists, psychologists and

anthropologists; contributing for an increase of evidences supporting sexual selection.
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Nowadays, these theories are widely accepted by the community, but they have not

established itself on evolutionary computation.

Evolutionary computation is a research field within artificial intelligence which is heavily

influenced by the ideas of Darwin [1, 6] about the evolution of species through natural

selection. The sexual selection wasn’t able to influence the development of EAs, once

when the evolutionary computation was stabilised the sexual selection was still not

accepted as a core mechanism responsible for the evolution of species. In the last decades,

some researches tried to bring the concepts of sexual selection to EC, instead of the

traditional parent selection methods, they used methods based on sexual selection, in

particularly based on mate choice. The results of those experiments [38, 39] suggest

that they outperformed the classic strategies. Algorithms based on mate choice

can bring [11]: an increase in the accuracy (when mapping phenotypes into fitness),

an increase in the reproduction variance (since individuals, with no survival relevance,

may be able to reproduce), by the stochastic selection be able to escape from local

optimums and it promotes sympatric specification, diversity and parallel evolutionary

searches. Similar with the researches of Charles Darwin related with sexual selection,

also in the evolutionary computation, the algorithms based on sexual selection were

mostly influenced by the female mate choice in relation to male competition.

2.1.4.2 Mate Choice in EC

In a traditional EA, each parent is independently chosen based only on the fitness

value, this method is shown in the image 2.3. Wherein, it is considering that the repro-

duction occurs between two organisms and so it’s necessary to choose two individuals

to generate a new individual.

Figure 2.3: Classic Parent Selection
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The evolutionary algorithms inspired by sexual selection through mate choice are very

different from each other, but they seem to follow a same model [11], that model can

be seen in the image 2.4. Most of those algorithms have in common that the physical

traits are inherited from the parents and that the females pick their mates according

their levels of attractiveness. The differences verified between those algorithms are

mainly differences: in the attractiveness function, in the traits that are passed between

generations (physical and/or mental) and in the reproduction of individuals (asexual or

sexual).

Figure 2.4: Parent Selection through Mate Choice

In the traditional EAs, picture 2.3, the mechanism for mate selection is used to pick

the parents among the population, this only based on the fitness values. In the EAs

influenced by mate choice, picture 2.4, the parent selection is a more complex process

wherein they are selected based on the fitness but also in the mating preferences.

The algorithms inspired on mate choice began to use a similar method with the classic

selection methods to select the first parent, the female. Then a predetermined number

of candidates are selected from the remaining population, the method used to pick

those candidates may be similar with the method used to pick the first parent. Some

authors [40] presented algorithms that used exactly the same method to select the first
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parent and then to select the candidates. Finally, the candidates are evaluated ac-

cording to the features that the female considered attractive and the candidate with the

higher level of attractiveness is chosen to be the second parent. This routine is

described in the following algorithm, algorithm 2.

Worth mentioning, that the methods used to select the candidates are usually stochastic

this to avoid the return of the same individuals when this method is called.

Algorithm 2: Mate Choice algorithm

Data: Population, Number of candidates (n)

Result: Parent 1, Parent 2

Parent 1 ← SelectParent(Population);

Parent 2 ← SelectCandidate(Population);

Most Attractive ← evaluateCandidate(Parent 2, Parent 1);

for i← 2, n do

Candidate ← SelectCandidate(Population);

Attractiveness ← evaluateCandidate(Candidate, Parent 1);

if Attractiveness > Most Attractive then

Parent 2 ← Candidate;

Most Attractive ← Attractiveness;

end

end

return parent 1, parent 2

2.1.4.3 Mate Choice variants

A female selects an individual among several candidates according its level of attrac-

tiveness. Then the variation operators are applied to the couple, in order to generate

offsprings. The level of attractiveness, also known as mating preference, is a set of

traits which an individual considers attractive. Therefore, a female will pick an indi-

vidual that manifests such particular traits during the mate selection. Those traits can

be classified as static, the set of traits considered attractive does not change during its

lifetime, or dynamic, such set of traits can change during the lifetime of that individual.

Several authors used fixed parameters and fixed mating selection functions (preferences)

as static preferences, such as hamming distances [41, 42], Euclidean distances [42,

43] and using the fitness value as distance [41, 42]. Another two of those selection

functions are the assortative mating selection [44] and the disassortative mating selection

[44]. These two functions are opposites, while in the assortative mating selection the

individuals with similar genotypes and/or phenotypes are more often paired than others.
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In the disassortative mating selection, the individuals with dissimilar genotypes and/or

phenotypes are more often paired than others. The difference between those functions

are the traits that each individual considers attractive.

Static preferences can achieve competing results and desired behaviours. However, dy-

namic preferences can be extremely valuable. The dynamic function can be divided in

three distinct groups [11]: deterministic, adaptive and self-adaptive.

Deterministic approaches are the least common of the dynamic preferences. Ratford et

al. [45] proposed a deterministic preference, in which dissimilar individuals are favoured

in the first generations, but afterwards, they are increasingly penalised over the genera-

tions.

Adaptive approaches entrust on the information obtained from past generations to

control the parameters and/or the preferences. Fry et al. [46] introduced a strategy

in which the probability of an individual, for a mate choice operator changes according

the relative success of generating better offsprings, this in the previous generations.

Sánchez-Velazco and Bullinaria [47] presented a model which combines three metrics:

age, fitness and likelihood to produce offsprings. While the age and the fitness are

deterministic metrics, the likelihood to produce offsprings corresponds to the feedback

of other individuals.

The two previous groups don’t correspond to what is observed in nature, wherein similar

to what happens with the physical traits also the mating preferences change over time,

during the evolutionary process. The concept of self-adaptive is the group most similar

to what is seen in nature, wherein the parameters and/or the preference are encoded in

individuals as it happens with the encoding of a solution. In that way, the parameters

and/or preferences may change with the evolutionary process, adapting to the surround-

ing environment. Fry et al. [46] presented a second model wherein its probability of

selecting a mate partner is also encoded in each individual. This probability is inherited

by offsprings and through the comparison of fitness, it can be adapted. Galan et al. [43]

introduced an algorithm that sorts the mating candidates by a Euclidean distance and

by the fitness values. Then it chooses the candidate placed in a encoded position, that

position is encoded in the first parent together with the genotype, which can be seen as

an extra gene.

Looking at nature, the mate choice [11] is performed by the female individuals. Due to

the costly reproductive investments of females (gestation and parental care), they

pick males that can provide the better genes in order to create most suited offsprings.

By other side depending on the species, some males want to reproduce with the largest
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possible number of females, in order to increase the number of offsprings which share

their genes. In other species, behaviours like care of youth by males are considered

attractive, and so, also the males have reproductive investments. Normally, those males

only reproduce with one female by mating season, once they have to invest their time

to provide care of offsprings.

In the EAs influenced by mate choice, there are various approaches to establish the

gender roles of each individual. The most common approaches are: the genre is

determined randomly at the beginning of each generation [48], the genre is attributed

alternatively during the reproduction cycle [49], the gender role is decided during the

initialisation and then it is static [48, 49] and each individual participate as female

during the female selection and then the remaining individuals participate as males in

the candidate selection [40].

Leitão and Machado [11] suggested a new design for female mate choice inspired in

what occurs in nature. The model proposed by them follows three nature inspired rules:

• Individuals choose their mates according their own mating preferences;

• Mating preference (mental traits) are inherited and they evolve from the mating

preferences of their parents, as occurs with the physical traits;

• Mate selection introduces its own selection pressure but it is itself subject to the

pressure of selection (once a male is selected from the previous selected candidates).

In this new proposed design, each individual is composed by two chromosomes, one for

the physical traits and other for the mental traits. They suggested two different models

to represent the mating preferences (mental traits): the first, by representing the

chromosomes of the ideal mating (the individuals are mapped into the phenotype space

and then, they are compared with the ideal mating, the most similar candidate is chosen

to be the other parent), and the other, by representing an evaluation function (it’s

necessary to design a perceptive system to evaluate the candidates according to the

number of displayed traits).

Similar to the work of Holdener [40], in their approach each individual can take the role of

female or male. The female is chosen among the whole population by a traditional parent

selection method and the male candidates are chosen randomly among the remaining

individuals. This approach allows to select individuals with a low probability of survival,

which can bring novel genes to the population.
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2.2 Collective Intelligence

Another matter that has intrigued the scientific community, in particular the etholo-

gists, is the formation of high structure groups of animal seen in nature. Those groups

result from the grouping of several individuals of a same specie in a flock and from the

movement of each individual emerges a global behaviour in the flock. The scientific

community [50], have question themselves about the reasons that can lead several in-

dividuals to group together in a herd and how to describe mathematically the different

movements seen in herds.

A behaviour study presented by Barnard and Thompson [7] suggests greatest benefits

for an individual to join a flock instead of surviving by itself. The main proposed

advantages, for an individual join a herd instead of survive by itself, follow:

• Avoiding predation (“safety in numbers”);

• Deterrence (groups are able to defend themselves from predators);

• Easier to find resources;

• Easier to find a sexual partner.

In some flocks of animals, such as birds and fishes, seem to exist a strong coordination

between all the individuals that belong to the flock, which may suggests that each

individual is aware of all the remaining individuals. Some authors [8, 51] proposed that

the global behaviour seen in flocks may emerge from simple local rules that are

applied at each individual. From these simple local rules, a global behaviour emerges in

the flock. The whole is greater than the sum of its parts.

Over the time, some algorithms influenced by the motion of flocks of some species were

presented, although the behaviours of such algorithms are simpler when compared to the

behaviours observed in nature. Some examples of such algorithms are: Particle Swarm

Optimisation (PSO) [52], Ant Colony Optimisation (ACO) [53] and Bees algorithm [54].

2.2.1 Motion of flocks

In 1980s, different researches were presented suggesting that coordination of flocks may

be achieved by an application of mathematics nonlinear dynamics [55] and that the be-

haviours seen in flocks may emerge from individuals following simple rules of movement

[51]. Simultaneously but independently, Reynolds [8] presented a computer simulation
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representing the flight of a flock of birds. In that simulation, the behaviour of each

individual (Boid2) was determined by the weighted sum of three simple movement

rules, based on geometrical calculations.

1. Collision Avoidance - avoids collisions with nearby Boids;

2. Flock Centering - attempts to stay close to nearby Boids;

3. Velocity Matching - attempts to match velocity with nearby Boids.

The following picture was withdrawn from “Bio-Inspired Artificial Intelligence” [56] and

it describes the simple movement rules proposed by Reynolds [8], figure 2.5.

Figure 2.5: Simple movement rules proposed by Reynolds

The algorithm presented by Reynolds [8], algorithm 3, allows to simulate the motion of

flocks. It starts by initialise the population. Afterwards, it determines the neighbour-

hood of each Boid, which are later used to calculate the three simple movement rules

(separation, cohesion and alignment). Then those accelerations are added to update the

velocity. Finally, the position of each Boid is updated using the new velocity.

2Reynolds refers to each individual as Boid
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Algorithm 3: Boids algorithm

Data: Environment, Stop Criteria

Result: Flocking Simulation

Population ← initialisePopulation(Environment);

while does not meet the Stop Criteria do

for i← 1, Population do

Neighbourhood ← getNeighbourhood(Population[i], Population);

v1 ← separation(Population[i], Neighbourhood);

v2 ← cohesion(Population[i], Neighbourhood);

v3 ← alignment(Population[i], Neighbourhood);

Population[i].velocity ← Population[i].velocity + v1 + v2 + v3 ;

Population[i].position ← Population[i].position + Population[i].velocity ;

end

end

Couzin [57], in his researches, explored different weights for those three simple movement

rules (separation, cohesion and alignment). He discovered that depending on the

weights given to each rule, different behaviours emerged in the population, figure

2.6 [58]. The main observed behaviours that emerged, depending on the weights of each

of those simple movement rules, are: swarm, torus and flock.

Figure 2.6: Different behaviours observed by Couzin

The motion of animal herds, in particular of birds and fishes, have originated other

algorithms which use different approaches. IL Bajec et al. [50] introduced an algorithm

based on fuzzy logic, which allows to use uncertain knowledge and it does not requires

a transition from linguistic descriptions to mathematical formula. In 1985, two years

before the work of Reynolds [8], a short animation called “Eurythmy” [59] was presented

showing motion of a flock of birds. However, the algorithm used to create that simulation
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was not specifically intended for flock modelling, since it utilised a “force field animation

system” to create all the behaviours seen in that simulation.

Kennedy and Eberhart [52] inspired in the algorithms representing motion of flocks,

they presented a new algorithm to optimise nonlinear functions by iteratively try

to improve candidate solutions. The particle swarm optimisation (PSO) consists in a

population of candidate solutions which collectively move in the search space, searching

for the optimum point. Each individual [56] is characterised by its position, velocity and

fitness.

The algorithm of the particle swarm optimisation is shown below, algorithm 4. It starts

by randomly initialise the position and velocity of each particle. Then each particle

is compared with the problem in order to get its evaluation and the solution with the

highest fitness is recorded. Afterwards, until a certain restriction is found true, the

velocity of each particle is updated, based on its own velocity and on an acceleration

vector towards the best particle. Then the position of each particle is updated with the

new velocity. In the next step, each particle is re-evaluated and if appropriate the best

particle is updated.

Algorithm 4: PSO basic algorithm

Data: Problem, Fitness function, Stop Criteria
Result: Best individual
Population ← RandomPopulation(Problem);
Population ← EvaluatePopulation(Population, FitnessFunction);
BestParticle ← findBestParticle(Population);
while does not meet the Stop Criteria do

for i← 1, Population do
Population[i].velocity ← Population[i].velocity + randomPositiveNumber *
(Population[i].position - BestParticle.position);

Population[i].position ← Population[i].position + Population[i].velocity ;
UpdateEvaluation(Population[i], FitnessFunction);
BestParticle ← compareEvaluation(Population[i], BestParticle);

end

end
return BestParticle

The basic algorithm of PSO has been the root for the creation of new variants. The

main differences found in those variations are: different neighbourhoods (geological vs

social and/or global vs local), consider the best particle of the neighbourhood instead

of the global best particle, implement also a random component, introduce a maximum

velocity, give a weight to each component when the velocity is updated and also consider

the previous best position of each particle.
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2.2.2 Predator-Prey Competition

In the nature, a balance tends to exist between the numbers of preys and predators

within the same environment. They evolve together over time, this to help them to

survive in the environment through the development of features. While the preys

develop traits and behaviours to help them to escape from predators, the predators

develop traits and behaviours to be more effective at catching their preys. Some

preys group together in order to improve their odds of survival. Some of the benefits

for an individual to join a flock instead of surviving by itself were mentioned earlier

(behaviour study of Barnard and Thompson [7]). Similar to the behaviours observed

in some preys, also some predators use similar strategies to help them catching their

preys. A fine example of this occurrence is the pack of wolves, in which through the

coordination of several wolves, they are able to hunt animals bigger than them, which

would be impossible if they were alone.

Reynolds [8] suggested for future work that would be interesting to include other compo-

nents in his model, such as the inclusion of other types of Boid, e.g. preys and predators,

and rules for a Boid seeks food resources. Years later, Lee Spector et al. [9] included

some of those behaviours in their swarm simulation. Their simulation allows the exis-

tence of several species, wherein each specie competes with the others in order to

have access to food resources. The food resources are scattered in the environment

and are finite, the sum of food resources remains constant by the appearance of new food

resources. The observed species can be categorised as preys, since they don’t attack the

others and they only gain energy from the food resources. Each Boid belongs to one of

the existing species and its movement is decided by a set of four basic rules (separation,

cohesion, alignment and a vector towards the closest food resource). Therefore, a specie

to survive has to track its food resources and should try to control the food resources in

order to deny their access to Boids from other species.

Adam Birt and Samuel Shaw [10] presented a similar simulation but with preys and

predators. They have studied the impacts that the addition of predators might bring

to an environment of Boids. Their results suggest that if the number of predators is

suitable to the population of preys, it seemed to stabilise the population maintaining

the gene value high.
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2.2.3 Evolutionary Behaviour

Various authors tried to combine the ideas of the algorithms of motion of flocks

with the evolutionary algorithms, creating new hybrid models. One of the biggest

differences between the algorithms representing the motion of flocks and evolutionary

algorithms happen at the level of interactions between individuals. In EAs, the indi-

viduals don’t interact with others except in selection methods and variation operators.

However, in the flocking algorithms there are a large interaction between particles, once

the movement of each particle depends on the movement of other particles.

Several authors [60–63] proposed hybrid models which combine the ideas from EAs and

PSO. They have in common the fact that both algorithms are used to optimise non-

linear functions. The new hybrid algorithms had interesting results suggesting greater

advantages when compared with the classic algorithms, which have a faster convergence

and outperform the classic algorithms.

Other researches [9, 10, 64] proposed hybrid models which combine EAs with Boid

algorithm. The approaches chosen by most of them were similar, such as Reynolds [8]

suggested the movement of each individual is described through a weighted sum of

simple rules. However the weights of each rule are not equal for all individuals, where

the weights evolve through a genetic algorithm. Adam Birt and Samuel Shaw [10]

introduced a similar model but with preys and predators, in their simulation only the

preys evolve over generations, the predators are limited to chase the closest preys. Lee

Spector et al. [9] presented two new models for swarm simulation. Their simulations

have several species, wherein each specie competes with the others in order to have

access to food resources. Each specie has to evolve aiming to track the food resources

and also attempting to deny the access of food resources to Boids from different species.

The first model is similar to the earlier described. The other model is similar with a

combination of a GP with the Boid algorithm, it is used to evolve programs. In other

words, it is used to evolve the movement rules of each Boid. However, instead of

a GP they use Push [65], which is a programming language (a based-stack GP) that

represents the evolving programs through stacks of finite size.





Chapter 3

Experimental Setup

In this dissertation, the author proposes himself to develop a new model for swarm

simulation, which in addition of the combination of concepts of evolutionary al-

gorithms and of algorithms inspired in motion of flocks (Boid algorithm), it also

combines the concepts of sexual selection, more specifically the concepts of female

mate choice. The proposed model consists in a group of multi-agents, where the agents

can belong to one of two species (preys or predators). The individuals of both species

have similar features, such as a set of motion rules, position, velocity, maximum velocity,

acceleration, maximum acceleration, vision angle, maximum steering angle, energy and

a function describing the energy consumption.

As it happens in nature, in the proposed model, both species evolve over time in order

to become better adapted to the environment and to help them to improve their

odds of survival against the adaptations of the other specie. The preys have the

intentions to develop traits that help them to catch the food resources and to escape from

predators; while the predators aim in traits which help them to be more effective at

catching preys. As the observation of the nature suggests in the long term, the existence

of a balance between the number of preys and predators is expected, which means that

both species are adapted against the other specie and also adapted to the surrounding

environment.

In the long run, it is excepted the emergence of a coordinate behaviour among

all agents of each specie, once the simple motion rules proposed by Reynolds [8]

are part of the available genotypes to form the set of motion rules for each particle.

Subsequently, the observation of nature and also the literature [7] suggest the existence

of biggest benefits for an individual to join a flock instead of surviving by itself, such as

by working together is easier to find and catch their food resources and to escape from

predators.

31
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Algorithms inspired in both EC and motion of flocks are not a novelty. Lee Spector

et al. [9] presented two models inspired in those ideas, wherein the motion rules of

different species are evolving over generations. Those species are competing with each

other to have access to food resources. In one of those models, the weights of a static

motion rule, a weighted sum, are evolving. While in the other model, the own motion

rules of each Boid is evolving. Also, Adam Birt and Samuel Shaw [10] presented an

algorithm, in which the preys are evolving through a Genetic Algorithm. The GA is

used to evolve the weights of a static motion rule. They have also added another specie

of predators, although the predators have a static motion rule that doesn’t evolve. The

authors found that the increment in pressure by the introduction of predators brings

benefits for the swarm model, such as stabilisation of the average fitness, but this only

if the number of predators is adequate for the number of preys.

However, the literature lacks of an algorithm which combines the concepts of EAs,

algorithms inspired in motion of flocks and sexual selection. Notwithstanding, some

researches inspired in sexual selection, in particular female mate choice, suggest greatest

benefits in EAS when compared with the results of traditional selection methods, such

as Miller and Todd [5] and Penousal Machado et al. [38, 39].

The author of this dissertation proposed to develop a swarm model inspired in evo-

lutionary algorithms and algorithms inspired in motion of flocks. The parent selec-

tion, during each generation, is performed with a selection method inspired in female

mate choice instead of the traditional parent selection methods. The effects of using

sexual selection are later analysed, in order to study the effects of using such algorithm

instead of the traditional methods.

3.1 Framework

The framework chosen to develop the simulator of this dissertation was BREVE1

[66]. There are other frameworks that implement decentralised system simulations, such

as Swarm [67] and StarLogo [68]. However, they are not well suited for simulations of

realistic artificial life. Swarm [67] is not a single integrated application, it is a collection of

libraries written in Objective-C and Java. So, it is not easy to develop new simulations.

Also, Swarm does not provide frameworks for 3D simulations and visualisation. The

StarLogo [68] is considered easy to use. However, the simulations are based on a 2D

landscape of ‘patches’, and therefore, this package is more indicated for discrete models.

The simulations of complex 3D models and physical models are a tough task.

1http://www.spiderland.org/s/

http://www.spiderland.org/s/


Chapter 3 Experimental Setup 33

BREVE is a 3D simulation environment designed to be used in decentralised systems

and artificial life. It simulates continuous time and space and the simulations can be writ-

ten in one of two available programming languages: in “steve” (a simple interpreted

object-oriented language created especially for BREVE, which borrows many features

from popular languages such as C, SmallTalk and Objective-C) or in Python. Addi-

tionally, BREVE allows the developers to use external libraries or languages, through

plugins that can be accessed in steve.

This framework allows the development and simulation of realistic creatures, having its

own OpenGL display engine, methods for detection and resolution of collisions, an

experimental support for articulated body physical simulation and mechanisms able

to simulate the breeding and evolution of artificial life, such as genetic algorithm,

genetic programming and Push [65]. Push is a programming language used to simulate

genetic programming (a stack-based GP), where the genes are represented in a stack of

finite size instead of the traditional tree structure.

BREVE allows the customisation of each agent, such as its shape, properties and

constants. It also offers the customisation of simulations, where the users of the

framework can change its velocity, control the visualisation camera, the light settings,

the graphic rendering and user interface. The users can take snapshots of simulations

and record them in a video clip. Additionally, BREVE has other features to help the

development of new simulations, such as tools for logging and debugging.

One of the biggest advantages of BREVE when compared with its competitors is the

number, variety and quality of the examples accompanying the framework, which

exhibit the power of the simulation engine and language. BREVE provides several

demos, such as game of life, Braitenberg vehicles, motion of flocks, evolution of walking

behaviours and physical examples, such as fountain, demolition, and springs. From those

examples stand out two algorithms inspired in the motion of flocks, “SwarmEvolve-

1.0 ” and “SwarmEvolve-2.0 ”. Those two examples were created by Lee Spector et al.

[9], wherein they both are inspired in evolutionary algorithms, and thus the motion of

particles evolve over time. In “SwarmEvolve-1.0 ”, the weights of a fixed motion rule

(weighted sum) will adapt to the surrounding environment, while in “SwarmEvolve-2.0 ”,

the own motion rule of each particle is evolving over generations.
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3.2 Design

In this section, the main components and features of the proposed simulator are detailed.

The new model combines the main ideas of evolutionary computation, sexual selection

and motion of flocks. The environment is populate by agents that can belong to one of

two species (prey or predator). The simulator was developed in BREVE simulation

environment and was written in Python programming language.

Each specie has different objectives and they will evolve to better accomplish those

objectives. While the preys have to catch food resources, that are scattered in the

environment, and move away from predators. The predators have to approach preys in

order to steal their energy. Each agent has a limited energy and when its energy is equal

or less than 0 the agent dies and thus it disappears from the environment. Therefore, in

order to survive the agents have to evolve to the surrounding environment in order

to accomplish their objectives.

Figure 3.1: Draft of the proposed algorithm
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The algorithm starts by initialise the various agents. It begins to spread the food

resources around the environment and then the environment is populated with preys

and predators. The size of each agent depends of its energy. Afterwards, the first cycle

of this algorithm begins. In the first step, interaction, the position, velocity and energy

of each agent is updated, according their neighbourhoods and their motion rules. The

energy of each Boid is decremented in each interaction depending on its age and its

level of attractiveness. Also, the energy of each agent is checked, if it is equal or lesser

than 0 the agent dies and then its instance is added to a list of dead agents. There

are two lists of dead agents, one for each specie. Afterwards, depending in the number

of the interaction, it can be executed one of two steps: generation or immigration.

The generational step is a periodic step that occurs between a certain numbers of

interactions. In this step, new offsprings are generated, after chosen their parents. If the

model does not enter in the generation step then it enters in the immigration. The size

of each population is checked, if it is lower than a determined threshold, new immigrants

are generated and scattered around the environment. One part of those immigrants

consist in new random agents and, the other part, in previously dead agents that are

brought back to the environment. This cycle is repeated until a certain stop criteria

is manifested, occurrence that stops the execution of the algorithm. The proposed

algorithm is represented in the previous image, figure 3.1.

It is worth mentioning the regarded meanings by the author for the words interaction

and generation. Those words mean different steps, in which a interaction is any

cycle in the simulation (any step in which agent can move). The generation is consid-

ered a periodically step which can occur after a interaction, depending in the count of

interactions. In a generation, new offsprings are created.

The main components of the algorithm are detailed in the following subsections.

The developed model has other features, such as save and load simulations. Before

run a simulation, it can be decided to store a simulation or load a previously stored

simulation. If it was decided to save a simulation, all the agents of that simulation will

be stored in checkpoints, periodical events between a determined number of interactions,

as well as at the end of the simulation. Also, the developed simulator allows to record

a simulation in a movie clip. A simulation may take a long time until the simulation

stops, reason why this feature is the most appropriate way to observe the execution of

the simulation.
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3.2.1 Representation

In order to represent a Boid (phenotype) in the model, it is necessary to have a repre-

sentation for the genotype. Each Boid is characterised by several parameters, such

as position, velocity, acceleration, vision angle and energy. However, since it is desired

that the motion rules of each species evolve over time. The genotype representation

has to focus in the motion rules of each Boid.

Besides the physical genotype, each prey has also other genotype to represent the fea-

tures of their tails (size and brightness), but the tails are not represented graphically.

This genotype, the sexual genotype, is similar with the physical genotype, in the way

that both are inherited from their parents and they evolve over generations. The

values returned by this structure (size and brightness) act as handicaps. The size af-

fects the mobility of the preys and the brightness increases the consumption of energy.

Those values will also constrain the parent selection, but only when the selection method

inspired on mate choice is being used.

3.2.1.1 Physical Genotype

In the proposed model, the representation for the motion rules can be chosen between

three available representations: GA (genetic algorithm), GP (genetic program-

ming) or Push [65]. The framework has implemented methods for evolutionary algo-

rithms (GA and GP), but the author had to develop their own algorithms of GA and

GP, once the implemented methods are not suitable for the proposed model. In those

methods, it is not possible for a element to interact with other elements and so, it is

impossible to calculate the motion of each element since it depends of the neighbouring

agents. Due their similarity, first the GA is presented, followed by the description of GP

and Push.

The genotype of the GA consists in real-valued vectors. Those real values represent

the weights of a static motion rule, wherein they are evolving in order to improve

the motion of the individuals of each species. Similarly with the works of Adam Birt

and Samuel Shaw [10] and Lee Spector et al. [9].

acceleration = w1 · cohesion+ w2 · alignment+ w3 · separation+

+w4 · target+ w5 · randV ector + w6 · flee
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The static motion rule is shown above, wherein the last expression is only applied on the

preys. There are six components which consist in six vectors. Cohesion is an attempt

to stay close to the neighbour Boids of the same species. A Boid attempts to match

the velocity of the neighbour Boids of the same species, through the alignment. The

separation is a vector aiming to avoid the collisions with the neighbour Boids of the

same species. The target vector represents the direction of the closest source of energy

within its neighbourhood. If the Boid is a prey then it points the closest food resource

and if it is a predator, it is points the closest prey. To introduce novelty, a random

vector is added. Finally, the flee rule represents the escape movement, its vector is the

opposite direction to the predators that exist in the neighbourhood.

The representations based on GP and Push are similar. Both of them are used to

evolve the own motion rule of each individual based on the motion rules of its parents.

Those motion rules result of a combination of vectors of a given set of vectors with

another set of operators. The structure of the genotype of a GP is well defined. The

genotype is stored in a binary tree with a defined depth, where each leaf has to be

a vector of the given set of possible vectors. The remaining nodes can be any of the

available operators. Contrariwise, the data structure of Push is not well defined. The

genotype is saved in a stack of finite size, where it exists a stack for each data type

(vector, integer, float and string). It also allows sub-trees within the stack, but there are

not a structure and so, the operators and vectors are placed in random positions.

The result vector of each motion rule is stored on the top of the vector stack.

The set of operators and vectors used by GP and Push are the same. The chosen

operators and vectors have been influenced by the rules proposed by Reynolds [8] and by

the rules used by Lee Spector et al. [9], which beyond the rules proposed by Reynolds,

they also used other new rules. The sets of the available operators and vectors are

displayed in following table, table 3.1.

Vectors Operators

separation +
aligment -
cohesion *
target /

flee
randVector

currentVelocity
currentEnergy

Table 3.1: Sets of available vectors and operators for the physical genotype
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Most of those vectors were explained before. Therefore, since there are two new vec-

tors, the currentVelocity and currentEnergy, they need to be decribed. As the name

regards, the currentVelocity is a vector with the current velocity of the Boid and the

currentEnergy is a vector in which all the positions have the current energy of the

Boid.

Respectively the operations in vectors, while the addition and subtraction of vectors of

the same size (3×1) is a permitted operation and it results in a vector of the same size.

The multiplication and division of vectors of the same size are not allowed. Due

to that motive, the operators of multiplication and division were respectively replaced

by the point-wise product and point-wise division. The result of those operations

is a vector of the same size of the input vectors.

3.2.1.2 Sexual Genotype

Usually, the traits and behaviours seen in the nature, which are associated to the sexual

selection (female mate choice), are observed in preys. Normally, the predators deal

with the most challenged conditions, which don’t allow them to waste energy in features

that don’t help them to protect themselves or to catch their preys. On the other hand,

the preys usually have most favourable conditions than the predators, which allow them

to have a larger number of individuals. Due this increment on the selection pressure,

the preys developed other methods to select their mates, the sexual selection. Those

individuals to stand out of the others developed eccentric and costly features with

the goal of increasing their odds of reproduction.

Due this fact, the author of this dissertation decided that the mate selection of the

preys will be performed with female mate choice, while the traditional methods

for mate selection will be used to select the parents of the predators. The female

mate choice performed in the preys is conducted having regard to some features of

the tail of each prey. The chosen characteristics of the tail are the size of its tail and

its brightness. The size of the tail will affect the mobility of the prey, the greater

the tail the lower the maximum speed. To maintain its tail brighter a prey need to

spend more energy than the necessary and so, the brighter the tail the bigger the

energy spend.

The chosen female mate choice was inspired in the new design proposed by Leitão and

Machado [11], wherein the sexual genotype is self-adapted (it is inherited and evolves

over generations) and the individuals pick their mates according their own mating
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preferences. To accomplish such task, it was chosen that the sexual genotype is rep-

resented through a tree-based GP, which during the variation operators the operators

of crossover and mutation will operate on this representation. This structure returns

the size and the brightness of the tail of each prey in each interaction, also during the

mate choice, those values will be used to select the mates of the preys. The genotype is

stored in a binary tree with a defined depth, where each leaf has to be a float of the

given set of possible floats. The remaining nodes can be any of the available operators.

The sets of the available operators and floats are displayed in following table, table 3.2.

Floats Operators

tailSize +
tailBrightness -

randFloat *
currentEnergy /

distanceToMatingSeason
numPreysNeighbourhood

numPredatorsNeighbourhood

Table 3.2: Sets of available floats and operators for the sexual genotype

As the name regards, the tailSize returns the size of the tail and the tailBrightness

returns the brightness of the tail. A random float is introduced through the rand-

Float. The currentEnergy returns the current energy of the prey. The preys are

able to know the number of interactions remaining until the mating season through

the distanceToMatingSeason. The numPreysNeighbourhood and numPreda-

torsNeighbourhood return the number of preys and predators, respectively, which are

found in the neighbourhood of each prey.

3.2.2 Population

The population consists in a list of all alive agents from the same species. Those

agents are scattered around the environment. The environment chosen for this model

consists in an 2D environment with limited size, which has wrap boundaries. In

other words, if a Boid overcomes the barriers it will appear in the opposite side of the

environment. However, a Boid will only perceive the opposite side when it gets there.

There are three kind of agents (preys, predators and food resources), which are

scattered around the environment. The size of each agent will depend on its energy.

Each population does not have any restriction around its size and so, each popula-

tion grows and decreases according the advances of the other specie and its own

features, which should adapt to the environment.
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Each Boid perceives the others according a local neighbourhood. Each Boid can only

perceives physical features and so, they are unable to perceive the internal features

of its neighbours, such as their motion rules. The size of each neighbourhood is similar

between species, but its size varies according the specie. Due the advantageous traits

to follow trails seen in the predators, the “target zone” of the predators is slightly

bigger. The actual proportion of the neighbourhood of a prey towards the environment

is shown in the following picture, figure 3.2.

Figure 3.2: Proportion size of the neighbourhood of a prey towards the environment

The previous picture shows a simplistically vision of the neighbourhood, where only the

size of each neighbourhood is regarded. In reality, the proposed neighbourhood is a

combination of three neighbourhoods which depend on the direction and vision

angle of each Boid, as well as, the distance to the Boid, figure 3.3.

Figure 3.3: Neighbourhoods of each Boid
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The size of each of the three neighbourhoods will affect the number of Boids which

will be considered by each motion rule.

• Separation Zone - only the Boids of the same specie within the red neighbour-

hood will be considered for the separation rule;

• Social Zone - the Boids of the same specie within the red and yellow neigh-

bourhoods will be considered for the alignment and cohesion rules;

• Target Zone - the agents within the red, yellow and green neighbourhoods

will be considered for the target and flee rules.

3.2.3 Fitness Function

Among the various parameters that a Boid have, the energy is the parameter that

better represents the quality of each Boid. However, between generations the

energy can vary a lot depending of the surrounding environment and so, a Boid with

a higher energy at the mating season (generational step), it’s not necessary a Boid

that had a great performance throughout all the time. Reason why the chosen fitness

function for a Boid is the average of the energy between generational steps.

fitnessFunction = average(Boid.energy)

However, the energy is not a trivial measure of quality, once the energy is not only

subject to the performance of its own individual but also on other factors. The

chosen fitness function is subject to its own survivor which depends on three

factors. The survivor of each Boid will depend on the advances of the Boids of other

specie, since if the other Boids are adapted to the movements the opposing species, so

the Boids of that specie are less likely to survive. Other factor, is the energy that each

Boid loses in each interaction. Which increases, depending on the increase of its age

or on the increase of its level of attractiveness. The last factor is the adaptation of

the population of the same specie than the Boid, since the motion of each Boid may

depend on the motion of other Boids of the same specie, which may negatively influence

a Boid with a good genotype.
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3.2.4 Initialisation

The initialisation is the first step of a running simulation, in this step the initial pop-

ulation is generated. By default the initial population is created randomly, but it

can be decided to load a previously stored simulation and therefore, the simulation is

able to retrieve the stored agents and to progress the simulation from the moment that

was saved.

As referred before, the chosen environment consists in a limited area with wrap bound-

aries, area that will be randomly populated by preys, predators and food resources. The

initial sizes of the populations of preys and predators are a set of given numbers. The

positions of preys and predators are randomly generated using the latin hypercube

method, which allows to distribute reasonably a predetermined number of agents in a

finite known space. The velocity is a random real vector that is generated between

the two given numbers. In the beginning, the acceleration starts null. The generation

of the physical genotype of each Boid depends on the chosen representation. How-

ever, they have in common the fact that they are initialised randomly, also the sexual

genotype is initialised randomly.

In the GA, each real-valued vector is populated by random real numbers between two

predetermined values. In GP, each node can be populated with an operator or a vector.

If the node was populated with an operator then he will have two child nodes and the

process is repeated for those nodes. In the Push representation, the genotype is created

randomly between the following choices: operators, vectors and creating sub-trees. The

only restriction is the length size of the genotype.

The energy of each food resource is a random real number that is generated between

two predetermined values, which don’t differ a lot from each other. The sum of the

energies of all food resources is predetermined and constant and so, the total number

of food resources depends of their cumulative energy. New resources are created until

the predetermined total energy is reached. Once the total number of food resources

is not known at the beginning of a simulation, the latin hypercube method cannot

be used to generate the initial positions of the food resources, to use that method is

necessary to know the size of the population. In order to distribute reasonably the

food resources in the environment, the simple sequential inhibition was chosen to

generate the initial positions, this method ensures that there are a minimum distance

between each resource.



Chapter 3 Experimental Setup 43

3.2.5 Interaction

The first step of each interaction is the step with its same name, “interaction”. This step

starts by checking the energy of each agent, followed by the update of each agent

(position, velocity, acceleration, energy, size of the tail and its brightness).

The energy of each prey and predator is checked, if it is below or equal than zero

then the Boid dies and its instance is added to a list of dead instances of the same

specie than it. During the immigration, these instances can return to the environment.

By default but it can be changed, there is an animation when a Boid dies, where its

shape will gradually disappear. The energy of each food resource is also checked, if

its energy is below or equal than zero it will disappear from the environment. However,

once it was decided that total energy of all food resources is constant. When the total

energy decreases new food resources are added to compensate for the lost energy. Those

new food resources are created using the method referred before, in the initialisation

sub-section. However, they don’t simple appear with all of their energy. Instead, there

is an animation were the new food resources will grow until its real size. The real

size of each food resource depends of its energy.

The update of each Boid (prey and predator) starts by the update of its acceleration,

followed by the update of its maximum velocity. A new acceleration is calculated

through the motion rules presented in its physical genotype and in its neighbourhood.

Through this vector and the former velocity, the new velocity for this interaction is

found. The acceleration and the velocity are restricted by maximum and minimum

values. Finally, the previous position is added with the new velocity to find the new

position for the Boid.

energy = Boid.energy+ collectedEnergy− 0.01× (1+ logsig(
Boid.age− 100

12
)+2× logsig(Boid.tailBrigh− 5))

The energy is updated in each interaction according the previous energy. At this

energy is added the energy collect of its targets, if the Boid is close to its targets.

Then a static amount of energy is decremented. Depending on the values of its age

and brightness of its tail more energy is decremented. The functions used to retrieve

those values are sigmoid functions, which depend on its age and brightness of its tail.

Those sigmoid functions were carefully chosen, taking into account the range of values

that the the inputs may vary. The values of the size and brightness of the tails may

vary from 0 to 10 and the sigmoid functions are limited to return values between 0 and
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1, where they return a value near 0, if the passed parameters are equal or below than 0,

and with the increase of the parameters also increase the returned value.

maximum velocity = maxV el ∗ (1− logsig(Boid.tailSize− 5))

As referred before, the size and the brightness of the tail of each prey are returned

in each interaction by the sexual genotype. Their values will affect the mobility and the

consumption of energy by each interaction. The size of the tail of each prey will affect

its maximum velocity, which can vary between zero and a given threshold. The value

of the size is obtained through a sigmoid function.

3.2.6 Generation

Depending in the count of interactions, the generational step (mating season) can be

executed. This step is a periodic step which occurs between a certain number of

interactions. In this step, offsprings are generated based on the selected parents.

Figure 3.4: Generational step

3.2.6.1 Parent Selection

As observed in nature, the preys may choose its mates not only by its fitness but also

by other features that it may have (mate choice). By the other side, the predators

tend to struggle with each other in order to reproduce (male competition). In a EC, the
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simulation of the male competition is really hard to mimic, reason why the methods

decided to select the mates of the Boids vary depending on the specie. To the

predators, the chosen mate selection is a traditional method for mate selection,

similar to the method represented in picture 2.3, in which both parents are chosen

through a tournament selection method (five elements of the same specie are randomly

picked and the element with the higher fitness is chosen to be a parent).

The mate selection method used to select the parent of preys is similar to the method

represented in the picture 2.4. The chosen mate selection method is a female mate

choice, which was inspired in the new design proposed by Leitão and Machado [11].

This mate selection method introduces its own selection pressure, by the selection of

the most attractive candidate, but it is itself subject to the selection pressure, by the

selection of candidates.

The chosen mate selection method starts by choosing the first parent (female) through

a tournament selection method (five elements are randomly picked between all the

preys and the element with the higher fitness is chosen to be a parent). Afterwards, five

candidates are chosen randomly between the remaining preys. The tail’s traits (size

and brightness) of the candidates are evaluated with the traits of the female, and

the candidate with the slightest difference is chosen to be the other parent (male).

As referred before, the traits of the tail act as handicaps, since they constrain the preys.

The size affects the mobility (maximum velocity) and the brightness constrains the spent

energy by interaction.

3.2.6.2 Variation Operators

The variation operators are used on the parent population to generate new individuals.

First, the recombination method is applied to generate offsprings and then the mutation

operator is used on them. The used methods for recombination and for mutation will

depend on the representation chosen by the user, this for the physical genotype.

Since the author decided to represent the sexual genotype only by a tree-based GP

representation, there are only one method for the recombination and other for the

mutation that will operate on this data structure.

Recombination

If it was decided to use a genetic algorithm (real-value vector) to represent the physical

genotype then the recombination method that will be used is the one point crossover.

In this method, the vectors representing the physical genotype of the parents are likewise
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divided in two vectors, the genotype of the descendants results of the grouping of the

two different parts of the two parents.

The recombination method used in a tree-based GP representation (sexual genotype

and physical genotype) is the exchange of sub-trees. One random sub-tree of a parent

is exchanged by a random sub-tree of the other parent, in order to construct the genotype

of the offspring. The documentation of Push lacks the description of the recombination

method used by the framework, but the observed results suggest that this stack-based

GP representation (Push) uses a similar method to the method explained above.

Mutation

If it was decided to use a genetic algorithm (real-value vector) to represent the physical

genotype then the mutation method that will be used is the uniform mutation. In

this method, according to a given probability, each real value in the vector might be

added with a uniform random value.

The recombination method used in a tree-based GP representation (sexual genotype

and physical genotype) is the exchange of a sub-tree with a random sub-tree.

One random sub-tree of a individual might be exchanged with a new random sub-tree,

according to a given probability. The documentation of Push lacks the description of

the mutation method used by the framework, but the observed results suggest that

this stack-based GP representation (Push) uses a similar method to the method

explained above.

3.2.6.3 Grouping of populations

The last generational step corresponds to the merging of the current population with

the offsprings. In a EA, this step matches the survival selection, where the most

suited individuals between the current population and the offsprings are more likely to

survive to the next generation.

However, the author decided that in the proposed model the entry and depart of

Boids only happen, respectively, with the steps of generation and immigration

and when the energy of a Boid is equal or lesser than zero, which means that the size

of the population is not constant over time. Therefore, in this last step, the offsprings

are simply grouped with the current population.
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3.2.7 Immigration

This step is executed if the generational step is not performed. In other words,

this is a step that is practically always performed, except when the modulus of the count

of iterations is equal to a given number. In that situation, the generational step will be

executed instead of this step.

In this step, the size of each population (preys and predators) is checked, if it is

lower than a given threshold then immigrants are added to that population, in

order to maintain the balance between species. Without this step, the population

of one specie could vanish. If the preys disappear, then the predators will die since they

could not steal the energy of the preys. The disappearance of the predators would cause

an exponential growth in the number of preys, once there are no predators to control

their numbers.

The new immigrants are generated through two different mechanisms and after-

wards they are scattered around the environment via latin hypercube method. One

part of those immigrants consist in new random Boids in order to introduce novelty

and the other part, in dead Boids that are brought back to life. This last mechanism

will bring the last dead Boids to the simulation, this mechanism aims to reuse Boids

which might have a good performance but when they were alive their surrounding

environment was too hostile.

3.2.8 Stop Criteria

The proposed model can take a long time to return a reasonable outcome and, even

afterwards, it can run continuously. Reasons why it is necessary to have a stop criteria

[14] to halt the evolutionary search.

The chosen stop criteria is a threshold for the number of interactions. That

threshold was refined after the performance of some simulations, in order to improve

that limit.

3.3 Evaluation Mechanism

One of the biggest challenges of a model like the one proposed is the process of evalua-

tion and comparison of results from several simulations. This due the co-evolution

of two different species. This model is constituted by agents of two species which

evolve at the same time. Therefore, it’s necessary to find reliable values to be compared
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with the returned values of other simulations, in order to compare the efficiency of each

simulation.

One drastic change at the values of the evaluation metrics may not mean a drastic

change in the quality of that specie. Instead, it can have a different meaning, such

as a change in the other specie (either in quality or in their numbers) or that the

surrounding environment is too hostile (for some reason the individuals of that

specie cannot find and/or get close to any energy source in their neighbourhood).

In order to get reliable results, it is necessary to change some mechanisms of the

model described above, once that model is not suitable for this objective. In that

model, it’s not possible to analyse the evolution of only one specie and the evolution

of each specie is constrained by the other specie, which can negatively influence the

results. Therefore, the evaluation process of simulations has to take in account two

important aspects:

• The genotype of each population

• The size of each population

In order to be coherent with the results and resolve the problem of co-evolution,

it’s necessary to evaluate only one specie by simulation. Therefore, the genotype

of the other specie have to remain static during the simulation. Also, the size of

each population will affect the evolution of the species. Reason why it is necessary to

implement a mechanism to control the size of each specie.

3.3.1 Design

Accordingly, the proposed model is constituted by two different systems. The “free

world” is the system that is described in the section above. This system does not have

any restriction, either in the size or in the genotypes of the populations. The other

system is the evaluation system which is used to evaluate simulations. This last

system has restrictions in the size of each population and in the genotypes of species. In

order to have the same initial conditions, it is preferable that the evaluated simulations

have always the same random seed to generate numbers.

The evaluation system is divided in two steps. Initially, it is executed a simulation

wherein both species evolve over time and without any constrain. After a certain
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number of generations, that simulation finishes and the genotypes of the most suited

individuals of both species are stored in a data-set. Afterwards, two simulations

are executed in order to evaluate the species separately and one at a time. The

individuals belonging to the evaluated specie will evolve over time. In order to control

their size, it was decided an initial size for the population. This size is also the

maximum size of the population and at each mating season, new individuals are

added until the size of the population is equal to this initial size.

If the size is bigger than 60% of the initial size then the elements with a worst fitness

are removed until the size is equal to 60%. Afterwards, new offsprings are added to

the population, until the size of the population is equal to its initial size. Therefore, the

size of the survival population will consist in at least 40% of offsprings. The described

mechanism used to control the size is very similar with the elitism.

In those two simulations, the genotypes of individuals belonging to the specie that

is not being evaluated remain static over the simulations. The genotype of those

individuals is loaded from the data-set stored in the initial step. To control their

numbers there are a determined initial size for that population and when an individual

starves, is out of energy, he dies and then he reappears randomly in the environment.

3.3.2 Metrics

Each simulation will be evaluated through four metrics. Additionally, the main

actions of each agent (birth, death, reproduction and immigration) are recorded in a

log file. Through the analyses of that file, it’s possible to find the relationships between

agents and, thus, determine the number of offsprings of each agent. Also, if the preys

are the analysed specie, the values of the traits of their tails (size and brightness) are

stored in order to allow the analysis of its evolution.

• Average fitness

• Fitness of the best individual

• Diversity of the physical and mental (attractiveness) genotype

• Number of deaths by specie

In the average fitness metric, the average of the energy of all the individuals that are

being evaluated is stored. Afterwards, it is performed the average of those values in

order to have the average of the energy between mating seasons. At the end of each
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mating season, the fitness of the most suited individual is stored, in order to record

the values for the fitness of the best individual. The diversity metrics provide

a global information about how the genotypes differ in the population and about the

stabilisation of the population, both in terms of making the individuals more suited to

the environment and in terms of making the individuals more attractive for the females.

Finally, the number of deaths by specie provides information about the evolution of

the number of individuals between mating seasons. During the course of the simulation,

it is intended that the number of deaths decreases and stabilises, due the adaptation of

the specie.



Chapter 4

Experimental Results and

Discussion

The present chapter contains the results of this dissertation. Those results were obtained

from different simulations, after several runs. First, the results are shown and afterwards,

they are statistically compared with other results. Finally, a discussion of the results

is presented, in which is discussed if the results are statistically equal within a given

confidence interval and, if not the case, how they differ from each other.

The author has decided to conduct five different experiments. The first experiment

aims to study possible effects that the representation used for the physical genotypes

may have in a simulation. Therefore, three simulations were tested each one with 30 runs.

Those simulations have the same initial conditions, but they differ in the representation

used for the motion rules, which can be genetic algorithm (GA), tree-based genetic

programming (GP) or stack-based genetic programming (Push).

The following two experiments aim to observe possible effects of using sexual se-

lection. In the second experiment, the results of two simulations are compared in

order to analyse possible effects of the using sexual selection instead of using tra-

ditional methods for the parent selection. The two simulations have the exact same

initial conditions and representation for the motion rules. The difference between them

is the method used for parent selection, one uses a traditional method and the other

uses a method inspired on female mate choice. Afterwards, the third experiment is

intended to observe possible effects of sexual selection on different initial condi-

tions. Therefore, this experiment is very similar with the previous except on the initial

conditions which are different and harsher for the agents.

51
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Considering the results of the previous experiments, several experiments were

conducted in order to further explore other solutions which may have different con-

clusions. Several experiments were carried out and since it is not possible to report all

of them. The author decided to only report and analyse two of those experiments in

this dissertation.

As it was explained in the above section, subsection 3.3, in order to test a simulation,

first it is needed to train a population of agents (preys and predators) with the imposed

constraints and then each population is tested only one at a time, this because of the

problem of co-evolution. In order to get a sufficient number of replicates each test is

repeated 30 times.

Afterwards, the results are compared with each others. The first hypothesis to be

tested is whether there are significant differences between the results, this within a

confidence interval of 95%. If the first hypothesis does not manifest, then a second

hypothesis is tested to discover what results have statistically the higher values,

this also within a confidence interval of 95%.

Normally, the results of EC don’t follow a normal (Gaussian) distribution for the

underlying data. Reason why it was used nonparametric statistics to compare the

results. Due to the characteristics of data and experiments, the author used the Mann-

Whitney test, since he only compared two simulations at a time. In the first hypothesis,

it was used a two-tailed test and, for the second hypothesis it was used a one-tailed test.

4.1 Experiment I

As referred above, this first experiment aims to observe possible disparities between

the results of several simulations, which have the same initial conditions but they have

different representations for the motion rules. The motion rules can be represented

through genetic algorithm (GA), tree-based genetic programming (GP) or stack-based

genetic programming (Push). The method used for the parent selection was a tradi-

tional selection method. Only six metrics were considered for the comparison and

analysis of the results (best fitness, average fitness, number of deaths, diversity of the

sexual genotype, tail’s brightness and tail’s size). The data from the diversity of the

physical genotype (motion rules) were not regarded, once each simulation uses a

different representation and so, the results of each representation may not have a di-

rect relationship with the results of other representations, which makes their comparison

meaningless.
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Firstly, the initial conditions used in the simulations are described, followed by the

discussion of the results of the preys and then of the predators. The graphics shown

in the discussion represent the evolution of the values of the regarded metrics between

generations (mating seasons), in which the vertical bars don’t represent the exact values

but an estimation for the 95% confidence interval.

The following list shows the values used in this experiment for the initial conditions.

• Number of runs: 30

• Number of generations by run: 100

• Interval of interactions between generations: 50

• Mutation probability: 10%

• Elitism proportion: 60%

• Size of tournament: 5

• Number of candidates: 5

• Maximum depth of a tree: 5

• Initial number of preys in each generation: 80

• Initial number of predators in each generation: 20

• Size of the environment: [400, 200]

• Maximum amount of food resources: 350

• Minimum distance between food resources: 25

• Size of the separation zone: 2

• Size of the social zone: 10

• Size of the prey’s target zone: 25

• Size of the predator’s target zone: 30

• Maximum acceleration: 2

• Maximum prey’s velocity: 0.5

• Vision angle of preys: 150°

• Maximum steering angle of preys: 30°

• Maximum predator’s velocity: 0.73

• Vision angle of predators: 130°

• Maximum steering angle of predators: 20°

Those values result from previous values that the author found appropriate, which

were later tuned after the observation of several simulations. It worth mentions the

differences between preys and predators, as referred before, the developed simulator

is strongly inspired by nature and normally in the nature the predators have a greater
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freedom in their movements than the preys. Reason why in this simulator they have

a higher maximum velocity and a greater neighbourhood. However, in order to better

focus their preys, the predators have their eyes more close to each other which reduce

them angle of view.

In the nature, a balance between the number of preys and predators tends to exist, in

order to maintain both species alive. In this simulation, the size of each population

was chosen after the observation of the evolution of their number in a “free world”

simulation, over several generations. It was chosen the sizes that the populations seem

to converge.

Preys

In the following graphics, it is possible to observe the outcomes of the evolution of preys

through six metrics: best fitness, average fitness, number of deaths, diversity of the

sexual genotype, tail’s brightness and tail’s size.

Figure 4.1: Expt 1.1 - Best fitness of
the preys

Figure 4.2: Expt 1.1 - Average fitness
of the preys
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Figure 4.3: Expt 1.1 - Number of
deaths of the preys

Figure 4.4: Expt 1.1 - Diversity of
the sexual genotype

Figure 4.5: Expt 1.1 - Tail’s Bright-
ness of the preys

Figure 4.6: Expt 1.1 - Tail’s Size of
the preys

It is possible to observe a rapid rise on the fitness in the graphics of the average (figure

4.1) and best fitness (figure 4.2). Also, during that time is observed a large decline

on the number of deaths (figure 4.3) which may suggest that until that moment the

preys are evolving their motion in order to get access to the food, until they converge to

have effective motion rules. After that moment, the competition among prey increases

causing a lower average fitness and a increase in the number of deaths.

In the diversity of the sexual genotype (figure 4.4), it is possible to observe that the

results from GP are statistically smaller that results from the other representations.

It may be caused by the partition of the data. Other interesting facts are the values

of the brightness (figure 4.5) and size (figure 4.6) of the tail. Since they both act as

handicaps, it was expected that their values decrease over the generations which didn’t

happen. Both results may vary between 0 and 10 and since the values of the size seem

to oscillate between the value 5, they seem to be random and so the size seem to not
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affect the evolution of the preys. Also, the values of the brightness seem to start

smaller (around 3.8) and then, they increase (around 4.5), which may suggest that in

the beginning the brightness influences the preys, but after they have effective motion

rules, they seem to ignore that handicap since they can bear it.

Except for the values of the sexual diversity, within a 95% confidence interval, it

cannot be stated that exist significant differences between the results shown above.

Predators

In the following graphics, it is possible to observe the outcomes of the evolution of

predators through three metrics: best fitness, average fitness and number of deaths.

Figure 4.7: Expt 1.2 - Best fitness of
the predators

Figure 4.8: Expt 1.2 - Average fitness
of the predators

Figure 4.9: Expt 1.2 - Number of deaths of the predators

The results from GP stand out from the remaining results, its results from average

(figure 4.8) and best fitness (figure 4.7) start statistically lower than the results

from the other representations. However they increase until they reach the same values.
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The same applies in values of the number of deaths (figure 4.9), wherein its values

start statistically higher than the other values, but they also decrease until they

reach the same values.

Those results were expected since the motion rules of GP are being generated, unlike

the GA which has already a motion rule. However the results of the GP should also

be observed on the results from Push since they are similar, which didn’t happen likely

because of the motion rules of Push. The results of the metrics didn’t indicate, but the

motion rules of Push are simpler than the other motion rules, wherein the Boids seem

to only pursue their energy sources. Not existing a motion of flocks.

Analysis of the results

The comparison between the outcomes of different representations has revealed that, in

general, there are no significant differences between the different representations.

This observation was expected since both simulations start with random genotypes which

will evolve over generations, in similar environments.

However, it exists a difference between the results of GP and the other representations.

In the preys, the values of the sexual diversity seem to be smaller, but it may happen

because of the partition of the data. While, the simulation that use GA and Push to

represent the physical genotype, also have another data structure (tree-based GP) to

represent the sexual genotype. The same does not happen with the simulations that

use GP to represent the motion rules, wherein the sexual genotype is stored in the same

data structure that is used to store the physical genotype and so, the sexual and physical

genotype are directly related.

The use of different data structures can lead to different partitions of the data

during the crossover operators. For example, in a simulation that uses GA or Push, a

offspring can inherit 30% of the physical genotype of its mother and 80% of the sexual

genotype of its father. However, in a simulation that uses GP, those percentages will

be equal for both genotypes. The effects of those differences can be observed on the

evolution of the sexual diversity over generations.

Also, in the predators, it is observed a difference in the first generations between the

values of the GP and the other representations. Those results are within the expected,

since the motion rules of the predators are evolving over the time, requiring a greater

number of generations to stabilise than the results from GA. Those results should also be

observed on Push. However, the motion rules of Push unlike the others, usually evolve

to just pursue its target which provokes different results and motions.
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4.2 Experiment II

The second experiment has the purpose to discuss possible effects that may happen in

simulations when the traditional parent selection method (tournament) is replaced

with a method inspired on female mate choice. In order to test this scenario, the

results of simulations using traditional selection method and a method inspired on mate

choice were collected after each simulation is repeated 30 times. Afterwards, the results

of simulations having the same representation for the physical genotype are analysed.

All the simulations were executed with the same initial conditions, which are the

same as those described in the first experiment. It should be noted, that the simulations

that are compared only refer to simulations wherein the preys are being evaluated, once

it was decided that only the preys can use a method inspired on mate choice for the

parent selection.

Firstly, the results obtained through simulations using GA to represent the motion rules

are analysed, followed by the analysis of simulation using GP for the representation and

by the analysis of simulation using Push for the representation. Afterwards, a discussion

covering general aspects of the results is presented.

GA

The following graphics were used to compare the outcomes of seven metrics: best fitness,

average fitness, number of deaths, diversity of the physical genotype, diversity of the

sexual genotype, tail’s brightness and tail’s size. The results were obtained from two set

of simulations, one using a traditional method for the parent selection and the other a

method inspired on female mate choice, wherein both simulations use GA to represent

the physical genotype.

Figure 4.10: Expt 2.1 - Results of the
best fitness

Figure 4.11: Expt 2.1 - Results of the
average fitness
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Figure 4.12: Expt 2.1 - Results of the
number of deaths

Figure 4.13: Expt 2.1 - Results of the
physical diversity

Figure 4.14: Expt 2.1 - Results of the
sexual diversity

Figure 4.15: Expt 2.1 - Results of the
tail’s brightness

Figure 4.16: Expt 2.1 - Results of the tail’s size

Among the results from best fitness (figure 4.10), average fitness (figure 4.11) and

number of deaths (figure 4.12) do not seem to exist significant differences between
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the simulations using traditional selection methods and the method inspired on mate

choice, this within a 95% confidence interval.

In the physical diversity (figure 4.13), the results of the simulation using mate choice

from the generation 25 to the 50 are statistically higher than the results from the tradi-

tional method. Also, the results from the sexual diversity (figure 4.14) of mate choice

seem to be higher than the other, but statistically there are no significant differences

between them.

The same happens with the results of the brightness (figure 4.15), wherein the results

from mate choice seem to be higher. However that hypothesis was not statistically

manifested. The results from the size (figure 4.16) seem to not contribute for the

evolution of the preys where is values appear to be random.

GP

The following graphics were used to compare the outcomes of seven metrics: best fitness,

average fitness, number of deaths, diversity of the physical genotype, diversity of the

sexual genotype, tail’s brightness and tail’s size. The results were obtained from two set

of simulations, one using a traditional method for the parent selection and the other a

method inspired on female mate choice, wherein both simulations use GP to represent

the physical genotype.

Figure 4.17: Expt 2.2 - Results of the
best fitness

Figure 4.18: Expt 2.2 - Results of the
average fitness
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Figure 4.19: Expt 2.2 - Results of the
number of deaths

Figure 4.20: Expt 2.2 - Results of the
physical diversity

Figure 4.21: Expt 2.2 - Results of the
sexual diversity

Figure 4.22: Expt 2.2 - Results of the
tail’s brightness

Figure 4.23: Expt 2.2 - Results of the tail’s size

As it happened in the previous data, within a 95% confidence interval, it seems that

there are no significant differences between the results from best fitness (figure

4.17), average fitness (figure 4.18) and number of deaths (figure 4.19).
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In the results of the sexual (figure 4.21) and physical diversity (figure 4.20), it is pos-

sible to observe a clear separation between the results of mate choice and the traditional

method, wherein the results from mate choice seem to be higher. However, it cannot be

stated that exist significant differences between those results.

The results from the brightness (figure 4.22) suggest that there are no differences

between the selection methods. Once again the results from the size (figure 4.23) seem

to be random.

Push

The following graphics were used to compare the outcomes of seven metrics: best fitness,

average fitness, number of deaths, diversity of the physical genotype, diversity of the

sexual genotype, tail’s brightness and tail’s size. The results were obtained from two set

of simulations, one using a traditional method for the parent selection and the other a

method inspired on female mate choice, wherein both simulations use Push to represent

the physical genotype.

Figure 4.24: Expt 2.3 - Results of the
best fitness

Figure 4.25: Expt 2.3 - Results of the
average fitness
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Figure 4.26: Expt 2.3 - Results of the
number of deaths

Figure 4.27: Expt 2.3 - Results of the
physical diversity

Figure 4.28: Expt 2.3 - Results of the
sexual diversity

Figure 4.29: Expt 2.3 - Results of the
tail’s brightness

Figure 4.30: Expt 2.3 - Results of the tail’s size

Within a 95% confidence interval, it doesn’t seem to be significant differences

among the above graphics. Except for the data from physical genotype (figure 4.27),

where contrary to what was observed in simulations with other representations, in this
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experiment the physical diversity of the mate choice seems to be lower. That difference

is not statistically valid and may be caused by the motion rules generated by Push which

are simpler than the others. That fact may provoke unpredictable consequences.

Analysis of the results

In general, the statistical analysis suggests that there are no significant differences

between using a traditional method for the parent selection and using a method

inspired on mate choice, this for the results of best fitness, average fitness, number of

deaths, tail’s brightness and tail’s size. Within a 95% of confidence interval, it seems

that there are no significant differences between those results.

Also, the results from GA and GP seem to suggest that the values of the physical and

sexual diversity may be higher when using the method inspired on mate choice.

That difference is not statistically verified, but there are a clear separation of the values,

wherein the values from mate choice seem to be higher. However, the same didn’t

happen with the results from Push, wherein it seems that there are no differences

between the values of physical diversity, also in the sexual diversity, the values of

mate choice seem to be lower than the others.

However, since this observation is only observed in simulations using Push. It may be

caused the own representation of Push. One possible explanation for the difference on

the results can be its design for the genotype. During the execution of the code, the

results of the different nodes and sub-trees are stored at the top of the same stack. At

the end of the execution of the code, the final outcome is the value standing at the top

of the stack. That value can be the result of a complex operation or simply the value in

a leaf, which may provoke the simpler motions of the individuals when compared with

the individuals from other representations.

4.3 Experiment III

In similarity of the second experiment, the third experiment has the purpose to

study possible effects that the replacement of a traditional parent choice method

by a method inspired on mate choice can cause on the results. The difference between

this and the previous experiment lies on the initial conditions, in particular in the

quantity of food resources and in the minimum distance between them. This difference

aims to confirm if the conclusions found in the previous experiment remain true in

different initial conditions.
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Besides, the initial conditions are different than on the other experiments, they are also

harsher in order to test the simulation in a more extreme environment. Therefore, the

maximum amount of food resources decreases from 350 to 222 and the minimum

distance between food resources increases from 25 to 35.

Firstly, the results obtained through simulations using GA to represent the motion rules

are analysed, followed by the analysis of simulation using GP for the representation and

by the analysis of simulation using Push for the representation. Afterwards, a discussion

covering general aspects of the results is presented, discussing in particular the evolution

of the values obtained from the sexual genotype.

GA

The following graphics were used to compare the outcomes of seven metrics: best fitness,

average fitness, number of deaths, diversity of the physical genotype, diversity of the

sexual genotype, tail’s brightness and tail’s size. The results were obtained from two set

of simulations, one using a traditional method for the parent selection and the other a

method inspired on female mate choice, wherein both simulations use GA to represent

the physical genotype.

Figure 4.31: Expt 3.1 - Results of the
best fitness

Figure 4.32: Expt 3.1 - Results of the
average fitness
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Figure 4.33: Expt 3.1 - Results of the
number of deaths

Figure 4.34: Expt 3.1 - Results of the
physical diversity

Figure 4.35: Expt 3.1 - Results of the
sexual diversity

Figure 4.36: Expt 3.1 - Results of the
tail’s brightness

Figure 4.37: Expt 3.1 - Results of the tail’s size

In these conditions, it seems that there are no significant differences between the

results shown above, this within a 95% confidence interval.
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GP

The following graphics were used to compare the outcomes of seven metrics: best fitness,

average fitness, number of deaths, diversity of the physical genotype, diversity of the

sexual genotype, tail’s brightness and tail’s size. The results were obtained from two set

of simulations, one using a traditional method for the parent selection and the other a

method inspired on female mate choice, wherein both simulations use GP to represent

the physical genotype.

Figure 4.38: Expt 3.2 - Results of the
best fitness

Figure 4.39: Expt 3.2 - Results of the
average fitness

Figure 4.40: Expt 3.2 - Results of the
number of deaths

Figure 4.41: Expt 3.2 - Results of the
physical diversity



68 Chapter 4 Experimental Results and Discussion

Figure 4.42: Expt 3.2 - Results of the
sexual diversity

Figure 4.43: Expt 3.2 - Results of the
tail’s brightness

Figure 4.44: Expt 3.2 - Results of the tail’s size

In these conditions, it seems that there are no significant differences between the

results shown above, this within a 95% confidence interval.

Push

The following graphics were used to compare the outcomes of seven metrics: best fitness,

average fitness, number of deaths, diversity of the physical genotype, diversity of the

sexual genotype, tail’s brightness and tail’s size. The results were obtained from two set

of simulations, one using a traditional method for the parent selection and the other a

method inspired on female mate choice, wherein both simulations use Push to represent

the physical genotype.
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Figure 4.45: Expt 3.3 - Results of the
best fitness

Figure 4.46: Expt 3.3 - Results of the
average fitness

Figure 4.47: Expt 3.3 - Results of the
number of deaths

Figure 4.48: Expt 3.3 - Results of the
physical diversity

Figure 4.49: Expt 3.3 - Results of the
sexual diversity

Figure 4.50: Expt 3.3 - Results of the
tail’s brightness
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Figure 4.51: Expt 3.3 - Results of the tail’s size

In these conditions, it seems that there are no significant differences between the

results shown above, this within a 95% confidence interval.

Analysis of the results

The analysis of this experiment has revealed some different evidences than the results

of the previous experiment. However the conclusions remain the same. For the

proposed model, it seems that there are no significant differences between using mate

choice or the traditional selection methods.

The suggestions found in the experiment II do not hold true when the conditions are

harsher for the individuals. In the experiment II, it was suggested that could exist slight

differences between using mate choice and the traditional methods, although they are

not statistically relevant. In this experiment, those suggestions don’t hold true, none

of the results stand out from the others.

4.4 Experiment IV

As been seen, the results from the above experiments are far from the expected

results, wherein there are no significant differences between using mate choice or the

traditional selection methods. However, the most surprising fact is the values of charac-

teristics of the tail (brightness and size). It is expected that their values decrease over

generations, since they both act as handicaps, which didn’t happen.

It is observed a small contribution of the brightness for the evolution of the preys.

In the first generations, it starts smaller but it increases over the generations until it

stabilises. Also, the size of the tail seems to randomly oscillate around the value 5, which
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taking in account that both the brightness and the size may vary from 0 to 10. It reveals

that the values of the size are random, it seems to not contribute for the evolution of

the preys.

Those values suggest that the preys are in the beginning more focused in developing

an effective motion rule in order to survive, wherein the brightness slightly influence

their survival. So, the preys are more focused evolving its motion rules, over the bright-

ness and the size of their tails. After they have an effective motion rule, they don’t

seem to need to evolve the features of the tail, since they are fit enough to bear those

handicaps.

In order to further explore the parameters of the developed model, several experi-

ments were conducted, varying various aspects of the simulations, such as the number

of generations, the interval between mating seasons, the size of each population, the

energy functions, the sexual genotype, the percentage of survivors and the quantity of

food resources.

Among those experiments, two were chosen to be shown and analysed. The differ-

ence, in both experiments when compared with the second experiment, is the energy

function, wherein the pressure under the brightness of the tail was increased in both

experiments.

The energy function used in the above experiments follows below.

energy += collectedEnergy − 0.01× (1 + logsig(
age− 100

12
) + 2× logsig(tailBrigh− 5))

4.4.a Experiment 4.1

As referred above, this experiment aims to explore other energy function which may

causes different conclusions. As been seen in the previous experiments, the brightness

of the tail seems to only have slightly effects in the beginning, after that its values

increase until they stabilise. This may suggest that the individuals are not sufficiently

constrained by the brightness. For that reason in this experiment, the energy function

was replaced by the following.

energy += collectedEnergy − 0.01× (1 + logsig(
age− 100

12
))−Boid.energy × (tailBrigh/10)

As it can been seen the values of the evaluated functions don’t only depend on age of

the individuals but also in brightness of their tails, which unlike the previous function
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its outcome is not limited. In the previous equation the outcome of the function that

has the brightness as a parameter could only vary between 0 and 0.02. In the evaluated

function, that value can vary between 0 and 1 and it also depends on the value of

the current energy of the individual. This with the purpose of the individual does

not always lose the same amount of energy but a quantity directly related with its own

energy. Another difference is the function used to determine the energy lost due to the

brightness of the tail. In the previous experiment that function was a sigmoid function,

but in this experiment that function was replaced by a straight line.

Firstly, the results obtained through simulations using GA to represent the motion rules

are analysed, followed by the analysis of simulation using GP for the representation and

by the analysis of simulation using Push for the representation. Afterwards, a discussion

covering general aspects of the results is presented, discussing in particular the evolution

of the values obtained from the sexual genotype.

GA

The following graphics were used to compare the outcomes of seven metrics: best fitness,

average fitness, number of deaths, diversity of the physical genotype, diversity of the

sexual genotype, tail’s brightness and tail’s size. The results were obtained from two set

of simulations, one using a traditional method for the parent selection and the other a

method inspired on female mate choice, wherein both simulations use GA to represent

the physical genotype.

Figure 4.52: Expt 4.a.1 - Results of
the best fitness

Figure 4.53: Expt 4.a.1 - Results of
the average fitness
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Figure 4.54: Expt 4.a.1 - Results of
the number of deaths

Figure 4.55: Expt 4.a.1 - Results of
the physical diversity

Figure 4.56: Expt 4.a.1 - Results of
the sexual diversity

Figure 4.57: Expt 4.a.1 - Results of
the tail’s brightness

Figure 4.58: Expt 4.a.1 - Results of the tail’s size

The results from the best (figure 4.52) and average fitness (figure 4.53) are smaller

than the results from the second experiment, also they are taking more generations until

they stabilise. By the other hand, the number of deaths (figure 4.54) seem to be higher



74 Chapter 4 Experimental Results and Discussion

and they are more unstable. As it happened in the second experiment, the values of the

physical (figure 4.55) and sexual diversity (figure 4.56) seem to be visually higher

for the mate choice. However, that hypothesis did not manifest statistically. Also their

values are vastly superior when compared with the values of the second experiment.

In this experiment, the brightness (figure 4.57) seems to influence the evolution of the

individuals, where it goes down until it stabilises. Once again the size (figure 4.58) of

the tail seems to be ignored during the evolution. Within a 95% confidence interval,

it seems that there are no significant differences between the results shown above.

GP

The following graphics were used to compare the outcomes of seven metrics: best fitness,

average fitness, number of deaths, diversity of the physical genotype, diversity of the

sexual genotype, tail’s brightness and tail’s size. The results were obtained from two set

of simulations, one using a traditional method for the parent selection and the other a

method inspired on female mate choice, wherein both simulations use GP to represent

the physical genotype.

Figure 4.59: Expt 4.a.2 - Results of
the best fitness

Figure 4.60: Expt 4.a.2 - Results of
the average fitness
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Figure 4.61: Expt 4.a.2 - Results of
the number of deaths

Figure 4.62: Expt 4.a.2 - Results of
the physical diversity

Figure 4.63: Expt 4.a.2 - Results of
the sexual diversity

Figure 4.64: Expt 4.a.2 - Results of
the tail’s brightness

Figure 4.65: Expt 4.a.2 - Results of the tail’s size

The results from this experiment are very similar with the results from the previous

results (GA). Except, in the results from physical (figure 4.62) and sexual diversity

(figure 4.63), in which there are no significant differences between the selection methods.



76 Chapter 4 Experimental Results and Discussion

It seems that there are no significant differences between the results shown above,

this within a 95% confidence interval.

Push

The following graphics were used to compare the outcomes of seven metrics: best fitness,

average fitness, number of deaths, diversity of the physical genotype, diversity of the

sexual genotype, tail’s brightness and tail’s size. The results were obtained from two set

of simulations, one using a traditional method for the parent selection and the other a

method inspired on female mate choice, wherein both simulations use Push to represent

the physical genotype.

Figure 4.66: Expt 4.a.3 - Results of
the best fitness

Figure 4.67: Expt 4.a.3 - Results of
the average fitness

Figure 4.68: Expt 4.a.3 - Results of
the number of deaths

Figure 4.69: Expt 4.a.3 - Results of
the physical diversity
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Figure 4.70: Expt 4.a.3 - Results of
the sexual diversity

Figure 4.71: Expt 4.a.3 - Results of
the tail’s brightness

Figure 4.72: Expt 4.a.3 - Results of the tail’s size

Also, the results from this experiment are very similar the the results from the pre-

vious results (GA). Except, for the results from physical diversity (figure 4.69),

in which there are no significant differences. In these conditions, it seems that there

are no significant differences between the results shown above, this within a 95%

confidence interval.

Analysis of the results

It seems to exist a great similarity among the various results. The increase in the

pressure of the brightness caused different results when compared with the results of

the second experiment. The greater pressure provokes that the values of best fitness

and average fitness start with lower values that are increasing over time, at a slow

pace. Also, it can be seen an increase in the mortality of the individuals which is

demonstrated by a lower average fitness and a raise in the number of deaths.
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That raise in the mortality, it will provoke a increase in the number of immigrants

since the number of preys is highly unstable. This situation seems to cause the results in

the physical and sexual diversity, wherein they are decreasing over the generations

but these values are vastly superior when compared with the values of the second ex-

periment, which is expected by the greater number of random individuals. As referred

before, one part of the immigrants consists in random individuals and the other part

consists in previously dead individuals that are brought back to the simulation.

Once again the results of the features of the tail are far from the expected values.

Once more, the results of the size seem to not contribute for the evolution process.

The values of the brightness are decreasing over the generations, as expected, but

then they don’t stabilise around the lowest possible value for the brightness (zero).

This observation may suggest that even with a greater increase in the pressure of the

brightness, the individuals are more concerned with the evolution of the motion rules

and then when they have effective motion rules to describe their movements. They are

able to bear the possible handicaps which they can have, ignoring then the evolution of

its brightness.

4.4.b Experiment 4.2

As the experiment above, this experiment aims to explore other energy function

which may cause different conclusions. As been seen in the previous experiments, the

brightness of the tail seems to only have slightly effects in the beginning, after that

its values increase until they stabilise. This may suggest that the individuals are not

sufficiently constrained by the brightness. For that reason in this experiment, the

energy function was replaced by the following.

energy += collectedEnergy − 0.01× (1 + logsig(
age− 100

12
) + 2× logsig((energy × tailBrigh+ 0.5) ∗ 9.5))

As can been seen, the values of the evaluated functions don’t only depend on age of

the individuals but also in brightness of their tails, which unlike the previous exper-

iments its outcome depends on the value of the current energy of the individual.

This with the purpose of the individuals don’t always lose the same amount of energy

but a quantity directly related with its own energy. Thereunto, a new sigmoid function

was carefully chosen, wherein its parameters may vary from 0 to 1. In this experi-

ment, the rules of the sexual genotypes were slightly changed. In the previous

experiments, the values of the features of the tail could vary from 0 to 10. However,
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in this experiment those outcomes were limited from 0 to 1, wherein those out-

comes represent the results of operations between percentages. For example, the rule

“distanceToMatingSeason’ now represents the percentage of time until a mating sea-

son and the rule “numPreysNeighbourhood” now represents the percentage of preys

among the neighbourhood of the individual.

Firstly, the results obtained through simulations using GA to represent the motion rules

are analysed, followed by the analysis of simulation using GP for the representation and

by the analysis of simulation using Push for the representation. Afterwards, a discussion

covering general aspects of the results is presented, discussing in particular the evolution

of the values obtained from the sexual genotype.

GA

The following graphics were used to compare the outcomes of seven metrics: best fitness,

average fitness, number of deaths, diversity of the physical genotype, diversity of the

sexual genotype, tail’s brightness and tail’s size. The results were obtained from two set

of simulations, one using a traditional method for the parent selection and the other a

method inspired on female mate choice, wherein both simulations use GA to represent

the physical genotype.

Figure 4.73: Expt 4.b.1 - Results of
the best fitness

Figure 4.74: Expt 4.b.1 - Results of
the average fitness
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Figure 4.75: Expt 4.b.1 - Results of
the number of deaths

Figure 4.76: Expt 4.b.1 - Results of
the physical diversity

Figure 4.77: Expt 4.b.1 - Results of
the sexual diversity

Figure 4.78: Expt 4.b.1 - Results of
the tail’s brightness

Figure 4.79: Expt 4.b.1 - Results of the tail’s size

Comparing the above results with results from the second experiment, it is possible to

observe that the best (figure 4.73) and average fitness (figure 4.74) are smaller, also

these values seem to take slightly longer to stabilise. By the other hand, the number

of deaths (figure 4.75) seem to be higher and they are more unstable. The results from
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the physical (figure 4.76) and sexual diversity (figure 4.77) seem to suggest that the

results from mate choice are slightly higher. However, it was not verified statistically.

Regarding the results of the features of the tail, they don’t seem different from the results

from the second experiment, wherein the brightness (figure 4.78) seems to have only a

slightly influence on the individuals, especially in the first generations. Once again the

size (figure 4.79) seems to not influence the evolution process.

GP

The following graphics were used to compare the outcomes of seven metrics: best fitness,

average fitness, number of deaths, diversity of the physical genotype, diversity of the

sexual genotype, tail’s brightness and tail’s size. The results were obtained from two set

of simulations, one using a traditional method for the parent selection and the other a

method inspired on female mate choice, wherein both simulations use GP to represent

the physical genotype.

Figure 4.80: Expt 4.b.2 - Results of
the best fitness

Figure 4.81: Expt 4.b.2 - Results of
the average fitness

Figure 4.82: Expt 4.b.2 - Results of
the number of deaths

Figure 4.83: Expt 4.b.2 - Results of
the physical diversity



82 Chapter 4 Experimental Results and Discussion

Figure 4.84: Expt 4.b.2 - Results of
the sexual diversity

Figure 4.85: Expt 4.b.2 - Results of
the tail’s brightness

Figure 4.86: Expt 4.b.2 - Results of the tail’s size

The results from this experiment are very similar with the results from the previous

results (GA). Except, in the results from physical (figure 4.83) and sexual diversity

(figure 4.84), in which there are no significant differences between the selection methods.

It seems that there are no significant differences between the results shown above,

this within a 95% confidence interval.

Push

The following graphics were used to compare the outcomes of seven metrics: best fitness,

average fitness, number of deaths, diversity of the physical genotype, diversity of the

sexual genotype, tail’s brightness and tail’s size. The results were obtained from two set

of simulations, one using a traditional method for the parent selection and the other a

method inspired on female mate choice, wherein both simulations use Push to represent

the physical genotype.
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Figure 4.87: Expt 4.b.3 - Results of
the best fitness

Figure 4.88: Expt 4.b.3 - Results of
the average fitness

Figure 4.89: Expt 4.b.3 - Results of
the number of deaths

Figure 4.90: Expt 4.b.3 - Results of
the physical diversity

Figure 4.91: Expt 4.b.3 - Results of
the sexual diversity

Figure 4.92: Expt 4.b.3 - Results of
the tail’s brightness
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Figure 4.93: Expt 4.b.3 - Results of the tail’s size

The results from this experiment are very similar with the results from the previous

results (GP). It seems that there are no significant differences between the results

shown above, this within a 95% confidence interval.

Analysis of the results

It seems to exist a great similarity among the various results. The increase in the

pressure of the brightness caused different results when compared with the results of the

second experiment. The increase in pressure provokes that the values of best fitness

and average fitness start with lower values that are increasing over time, also the

values seem to take slightly longer to stabilise. Also, it can be seen an increase in the

mortality of the individuals which is demonstrated by a lower average fitness and a

raise in the number of deaths.

That raise in the mortality, it will provoke a increase in the number of immigrants

since the number of preys is highly unstable. This situation seems to cause the results in

the physical and sexual diversity, wherein they are decreasing over the generations

but they values are vastly superior when compared with the values of the second ex-

periment, which is expected by the greater number of random individuals. As referred

before, one part of the immigrants consists in random individuals and the other part

consists in previously dead individuals that are brought back to the simulation.

Once again the results of the features of the tail are far from the expected values. Once

more the results of the size seem to not contribute for the evolution process. The values

of the brightness start lower but over the generations their values increase until they

stabilise. This fact may suggest that the brightness slightly influence the preys in the

first generations, but when their motion rules become noticeably effective they start to

ignore that handicap once they are able to bear it.
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4.5 Analysis of the experimental results

The following section has the purpose to summarise the various conclusions of the ex-

periences analysed above. An important issue is the fact that the above experiments

were only analysed by the results of each metric. There are other important variables

that could be studied, e.g. the existence of a motion of flocks, which it’s difficult to

analysed by the obtained data. Therefore, the existence of a motion of flocks was only

confirmed by the visual analysis of the movement of the individuals. An intriguing

fact is the results from Push, which don’t seem to different from the others. However

the movements generated by this representation are far simpler than the movements

generated by the other representations, the main rule among those individuals seem to

be the target, in other words, they seem to only pursue their energy sources.

The first experiment had the purpose to study possible differences between different rep-

resentations, by the other hand, the second and the third experiments aim to study

the effects of using a method inspired on mate choice instead of using a traditional

method for the parent selection. The analysis of the results revealed some interesting

facts, the results from the conducted experiments seem to suggest that there are no

significant difference between the results from simulations that use different rep-

resentations for the motion rules. This excluding the results of the sexual diversity

for the GP representation that as been seen in the experiment I, it seems to produce

individuals with sexual genotypes less dissimilar. That fact can be caused by the strong

relationship between the physical and the sexual genotypes, for the GP, which are stored

in the same data structure.

The results from the second experiment suggested that there are no significant

differences between the results. The results from the physical and sexual diversity

seem to suggest that there are a slightly difference between the results from mate choice

and the traditional method, this for the GA and GP representation, wherein the results

from mate choice seem to be higher. However, the statistical test did not validate that

hypothesis.

The results of the features of the tail are far from the expected results. It was

expected that their values will decrease over generations which didn’t happen. The

results from the brightness seem to start smaller and then, they increase until stabilise.

Also, the values of the size seem to be random. It should be noted, that in each simulation

there are four aspects that can constrain the evolutionary process, they are the motion

rules, the fitness, the brightness of the tail and the size of the tail. The observed results

suggest that in the beginning the brightness influences slightly the preys, but after
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they have effective motion rules they seem to ignore that handicap, since they can bear

it. Conversely, the results of the tail’s size suggest that the velocity of each Boid isn’t

a main concern in the evolutionary process, where it can be random.

In order to confirm the previous conclusions, a third experiment was conducted. This

experiment is very similar with the second experiment, except in the initial conditions

which are harsher, the amount of food resource is lower and the distance between

them is bigger. The initial conditions were changed with the purpose of studying if the

conclusions reached in the second experiment remain true with other initial conditions.

The change in the environment, as would be expected, provokes an increase in the

mortality in each population. The obtained results suggest, once more, that there are

no significant differences between using a method inspired on mate choice and the

traditional selection method.

The previous results, especially of the features of the tail, are far from the ex-

pected values. The values of the handicaps should have a more relevant place in the

evolutionary process which could provokes different conclusions when the results from

the mate choice are compared with the values from the traditional method. In order

to further explore the developed simulator were conducted several experiments,

varying various aspects of the simulations. Among those experiments, two were cho-

sen to be shown and analysed in this dissertation, wherein the pressure under the

brightness of the tail was increased in both experiments.

Those two new experiments have some differences between the results of the base

case (second experiment), but they both have in common the fact that don’t seem to

exist significant differences between using a method inspired on mate choice or a tra-

ditional method, for the selection of the parents. In the new experiments, the pressure

on the brightness was increased, causing a large increase in the mortality of the

preys.

The results from both experiments, especially from the fourth experiment, suggest

that even with a greater increase in the pressure of the brightness, the individuals

are more concerned with the evolution of the motion rules. Then, when they have

effective motion rules to describe their movements, they are able to bear the possible

handicaps which they can have. Ignoring then, the evolution of those values.



Chapter 5

Conclusions and Future Work

Darwin presented two mechanisms responsible for the evolution of species. The natural

selection was widely accepted by the scientific community, but the same did not happen

with the sexual selection which was widely criticised. It was only almost a century later,

that the sexual selection came back to the spotlight. Nowadays, due the contribution

of various authors, the sexual selection, like the natural selection, is accepted as one of

the main mechanisms responsible to the evolution. However it has not established itself

on evolutionary computation, field that is strongly influenced by the natural selection.

Even, if some researchers suggest that there are advantages of using sexual selection

instead of the traditional algorithms for the parent selection.

Another matter that has intrigued the scientific community, is the cooperative be-

haviours seen in flocks. The community has question themselves about the reasons

that can lead several individuals to group together in a herd and how to describe math-

ematically the different movements seen in herds. Reynolds suggests that the behaviour

seen in flocks may emerge through the application of simple movement rules in each

individual. Recently, a new kind of algorithm was presented, combining the ideas from

evolutionary computation with the algorithms of motion of flocks, wherein it is observed

the evolution of the movement of each agent in order to produce elements more suited

to the environment.

Therefore, it should be interesting to use a method inspired in female mate choice on

the above algorithm, one idea that is not yet found in the literature and that is explored

in this dissertation. A simulator was developed combining of motion of flocks with the

ideas of a variant of evolutionary algorithms that uses sexual selection instead of the

traditional selection methods.
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The developed simulator is composed by several agents that can belong to one of three

types: food resources, preys or predators, wherein the motion rules of the preys and

predators are evolving over time. While the preys aim to better catch the food resources

and to run away from predators, the predators have the purpose to be better effective

at catching the preys. Cooperative movements between the agents of the same type are

expected.

The evaluation of a simulator with such characteristics is not an easy task, wherein both

species are evolving and the size of each population can vary a lot over the time. Reason

why it was developed a separate system to evaluate the simulation. Each simulation

only evaluates one specie at time, with some restrictions: the size of the population is

limited and only the genotypes of the evaluated specie will evolve.

Through that system, it was possible to meet one of the objectives of this research,

of analysing possible effects that may happen when the traditional method is replaced

with the method inspired on mate choice. Several experiments were conducted, each

one with their own objectives. At the end, it was concluded that there are no significant

differences between the results.

In summary, the analysis of the different experiments suggest, that for the proposed

model, there are no significant differences between the available representations for the

physical genotype. Also, the analysis of the results suggest that there are no significant

differences between using mate choice and traditional method for the parent selection.

An interesting observation that was seen in all experiments is the fact that the features

of the tail seem to only contribute slightly for the evolutionary process, wherein the

preys seem to be more concerned with the evolution of their motion rules.

Also, the observation of each simulation suggests the existence of cooperative behaviours

between the agents, which is in agreement with the other objective of this research.

Future Work

For future work, the features of the tail should be further explored, trying to make them

more relevant for the evolutionary process. Also, it should be interesting to test other

values for the parameters and to test the simulations in other environments (different

initial conditions), in order to, respectively, further adjust their values and to gather

more evidences that support the obtained results.
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Other aspect that should be improved in the future is the performance of each experi-

ment, in particular the execution of simulations in a row wherein the framework is not

releasing the allocated memory. Finally, other aspect that may be explored is the appli-

cation of the motion rules of the most suited individuals in a more realistic simulation of

flocks. In order to better observe the evolved movements, facilitating their comparison

with the real movements seen in flocks.





Appendix A

Graphical User Interface

This section aims to group the several descriptions of objects that can be read over the

chapter 3. These objects correspond to all the agents that can be observed in a running

simulation. The following print screen, figure A.1, is used to assist in the description of

the several objects.

Figure A.1: Graphical user interface of the simulator

In the previous picture is possible to observe the environment of a running simulation.

That environment has wrap boundaries, therefore when an agent overcomes the barriers

it will reappear in the opposite side of the environment. The environment is composed by

three types of agents, each one with its own graphical representation. The food resources

are represented by yellow circles. The Boids (predators and preys) are represented by the

same shape, triangles, wherein the predators are graphically represented by red triangles
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and the preys by green triangles. As referred before, the preys are also characterised

by features of its tails (size and brightness). However, due the small size of each Boid

(triangle), those features of the tails are not graphically represented.

It is supposed that the movement of the Boids will evolve over generations, making the

preys more efficient to catch the food resources and to run away from predators. While

the predators will be more efficient to catch and steal energy from preys. The own

energy of each agent will dictate their size, when they gain energy their size will become

bigger but when they lose energy their size will decrease.

Also in the previous picture, it is possible to observe six captions in white text. The

first two captions inform the user of the representation used to represent the motion

rules and of the number of the current run and generation. The remaining captions

provide information on the number of preys and predators alive at the moment and on

the number of preys and predators that died during the current run.



Appendix B

Research Plan

The software development methodology used in this dissertation is a lightweight vari-

ation of extreme programming (XP), picture B.1, which is intended for only one

person. This methodology, the XP, is intended to improve the software quality and

responsive capacity to change of customer’s requirements.

Figure B.1: Extreme Programming life cycle

The XP is an agile process and therefore it is a software development model open to

future changes. It is an interactive process by having multiple short development cycles,

rather than a long one. It considers that changes in the planning are natural and so the

software process should be prepare to changes rather than trying to define a stable set
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of requirements. To minimise the risk of incorrect decisions can be carried experiments

(prototypes).

It aims to provide the highest value for a client in the fastest possible way, by prioritising

the development of the most important features. XP was developed behind four core

values: communication, simplicity, feedback and courage. Twelve values were derived

from the core values: planning game, small releases, metaphor, simple design, testing,

re-factoring, pair programming, collective code ownership, continuous integration, 40

hours a week, on-site customer and coding standards.

As described in some papers [69, 70], not all the core values and the derived values are

suitable for a team of only one man. In lone programmer scenarios, the developer may

be the own customer and since the team consists of only one element, he has the liberty

to use only the characteristics of XP which he finds necessary. The practises that cannot

be easily adopted by a single programmer are two: pair programming (since that the

team is constituted by only one programmer) and collective code ownership (but even if

there isn’t a benefit of sharing code between the team, there are advantages in having a

version control, such as Git or SVN, which facilitate the search and control of versions).

The reasons which led the author of this dissertation to choose this software development

process are hereafter enumerated:

• Changes in the project are regarded as natural

• Prioritisation of feature at the moment

• Frequent releases of new versions

• Uses systems of version control

• Test driven development

• Acceptance Tests

• Quick feedback

Since this dissertation is a research project changes can easily occur, distorting the

prioritisation of functionalities. Flaws in the logic of some functionalities can also occur

and they usually take some time until they are discovered. So, since various versions are

released it’s important to have a system to control the several versions, in order to find

the source of those errors.



Appendix B Research Plan 95

Planning

In this section, the planning for this dissertation is presented. The planning was divided

in two parts, according to the semesters. It should be noted, that for the first semester

a week of work corresponds to 12 hours, but in the second semester, it corresponds to

30 hours of work.

The software development process used is an agile process and so the requirements can

change, it is likely that the proposed plan won’t be strictly equal to the planning that

will be followed. Also, the comparison of the planning of the two semesters may suggest

that the planning for the first half is heavier, but that is far from the reality. Since that

in the first semester is proposed the development of simple versions of the simulator. In

the second semester, the simulator will be completed and validated, also, in this semester

a considerable number of experiments will be held.

Another important aspect in the second half is the inclusion of tasks for analysis of the

results. These tasks are intended to find and correct possible errors in the simulator,

and so, it is intended that the beginning of the next tasks is practically free of bugs.

Those tasks are not a replacement but rather an addition to the tests at the end of each

functionality.
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Figure B.2: Gantt chart representing the allocated time for first semester



A
p
p
en

d
ix

B
R
esea

rch
P
lan

97

Figure B.3: Gantt chart representing the allocated time for second semester
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[12] Thomas Bäck, D.B. Fogel, and Z. Michalewicz. Evolutionary Computation 1: Basic

Algorithms and Operators. IOP press, 2000.
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