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A B S T R A C T

Oceanic freshwater communities tend to be species poor but rich in endemism due to their physical isolation.
The ecology of endemic freshwater species is, however, poorly known. This study assessed allometric
relationships, feeding preferences, growth and survival of larvae of the endemic stream insect Limnephilus
atlanticus (Trichoptera, Limnephilidae) exposed to four leaf species differing in their physical and chemical
characteristics (Ilex perado, Morella faya, Alnus glutinosa and Clethra arborea), in laboratory trials. All regression
models used to estimate L. atlanticus dry mass from body and case dimensions and wet mass were significant, but
wet mass and body length were the best predictors. Limnephilus atlanticus consumed all the four leaf species
offered, but when given a choice, shredders significantly preferred A. glutinosa over the other three leaf species.
Relative larval growth rate was significantly higher when L. atlanticus fed on A. glutinosa and I. perado leaves in
comparison with the other leaf species. Survival of 95% was found when individuals fed on A. glutinosa leaves
while it decreased to 75% when they fed on the other leaf species. Our results suggest that L. atlanticus can be an
active shredder and that it exhibits the same basic patterns of food exploitation as its continental counterparts.
The lack of an effect of shredders on litter decomposition in Azorean streams revealed by previous studies may
thus be due to low densities or to a preference for food resources other than the low quality native litter species.

1. Introduction

Organic matter derived from the riparian vegetation is a key source
of energy for forest streams (Cummins et al., 1989; Wallace et al., 1997;
Webster and Benfield, 1986). Once in water, this organic matter,
generally in the form of leaf litter (Abelho, 2001), is decomposed by
microbial decomposers and macroinvertebrate detritivores (Graça,
2001; Graça and Canhoto, 2006; Webster and Benfield, 1986). Microbes
colonize leaf litter soon after leaf immersion and as microbial biomass
accumulates the nutrient concentration in the litter increases (Gulis
et al., 2006; Gulis and Suberkropp, 2003), which improves its nutri-
tional value to invertebrate consumers (Graça, 2001; Graça and Cressa,
2010). Also, the activities of fungal exoenzymes promote leaf softening
making feeding activities by invertebrates easier (Arsuffi and
Suberkropp, 1989). In continental temperate streams, macroinverte-
brate detritivores generally play an important role in leaf decomposi-
tion (Cornut et al., 2010; Gulis et al., 2006; Hieber and Gessner, 2002),
while in islands leaf decomposition seems to be essentially driven by

microbes (Benstead et al., 2009; Ferreira et al., 2016; Raposeiro et al.,
2014). The low contribution of the macroinvertebrate community to
leaf decomposition in island streams may be related with the overall
depauperate and disharmonic nature of the insular assemblages
(Raposeiro et al., 2012; Smith et al., 2003).

The caddisfly Limnephilus atlanticus Nybom (1948) (Trichoptera,
Limnephilidae) was described during the Finnish expedition to the
Azores islands in 1938 (Nybom, 1948) and was found to be endemic of
this archipelago. This taxon is known to be well distributed in the
Azores archipelago (Borges, 2010; Raposeiro et al., 2012), especially in
streams at high elevations flowing through native vegetation
(Raposeiro et al., 2013). Because it belongs to the Limnephilidae family
and has typical detritivore mouthparts, it is expected that this taxon be
a shredder. Although shredders are less abundant and diverse in
oceanic islands (Raposeiro et al., 2012) than in mainland streams,
there is no a priori reason why insular shredders should have a feeding
strategy much different from their continental counterparts. However,
stream macroinvertebrate have little influence on the decomposition of
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leaf litter in insular freshwater ecosystems (Ferreira et al., 2016;
Raposeiro et al., 2014). One possible explanation could be that most
native plant species (e.g. Lauraceae, Aquifoliaceae) synthesize a large
number of secondary substances that act as natural insecticide and
likely diminish the palatability of the leaves to consumers (Rosa et al.,
2010). Also, native species, especially the endemic ones, have a waxy
cuticle and a thick palisade cell layer that protect the leaf mesophyll
from consumers (Raposeiro et al., 2014).

Due to the difficulty of finding good quality leaves (i.e. soft with
high nutrient concentration) in island streams, would L. atlanticus have
adapted to poor quality food resources or is it using alternative food
resources? The aim of this study was to determine whether L. atlanticus
individuals use coarse organic matter as a food resource by assessing
food preferences, consumption and growth rates and survival of L.
atlanticus individuals fed with distinct leaf species.

2. Materials and methods

2.1. Collection of Limnephilus atlanticus larvae

Experiments were performed with early-stage larvae of L. atlanticus,
a stream caddisfly endemic to the Azores archipelago and common in
the upstream sections of some Azorean streams (Raposeiro et al., 2012,
2013). Individuals were collected in a single day from depositional
areas in a first order reach of Ribeira do Folhado, São Miguel Island
(37°48′48′′N, 25°14′47′′W; 729 m above sea level), in spring 2015, and
transported to the laboratory in a cooler. Ribeira do Folhado is a narrow
(1 m wide) and short (∼7 km long) stream that drains an area<10
km2. Predominant substrates comprise mixed gravel/cobbles with
occasional large, submerged boulders. The stream water is circumneu-
tral, has low conductivity and low nutrient concentration (Table 1). The
riparian forest is dominated by Cryptomeria japonica (L.f) D. Don and
Clethra arborea Aiton trees.

2.2. Estimation of Limnephilus atlanticus dry mass

Individuals were maintained in plastic containers with aerated
stream water and sediment, at 12 °C, and measured within 48 h after
collection. Five case and body dimensions were taken with a stereo-
microscope and used as predictors of biomass: case length (CL), case
opening width (CW), body length (BL), head length (HL) and intero-
cular distance (ID). Additionally, wet mass (body + case; WM) was
determined after drying the individuals with paper (0.1 mg precision).
Then, individuals were removed from their cases, placed individually in
pre-weighed aluminum cups, dried at 60 °C for 24 h and weighed
(0.1 mg precision) to determine the dry mass (DM). CW, BL and HL
measurements were obtained for 74 larvae; CL, ID, WM and DM were
obtained from 120 larvae.

Three regression models were used to determine the relationships
between case and body measurements and DM. The data were fitted to
the following models in order to determine which best described the
relationship: linear (y = a + b× x), power (y = a × xb; in linear

form: ln(y) = ln(a) + b × ln(x)) and exponential (y = a × exb; in
linear form: ln(y) = ln(a) + b × x), where y is DM (mg), x is case or
body measurement (mm; mg for WM) and a and b are regression
constants.

2.3. Leaves

Leaves from four tree species were used: Ilex perado Aiton and
Morella faya Aiton are two native broadleaf perennial tree species
commonly present in the riparian area of streams flowing through
native vegetation, Clethra arborea Aiton is an invasive broadleaf
perennial tree species also common in the riparian vegetation of
Azorean streams, and Alnus glutinosa (L) Gaertn. is an exotic broadleaf
deciduous tree species. Alnus glutinosa trees are rare in the Azores
archipelago but previous studies have shown this to be a highly
palatable leaf species to shredders (Friberg and Jacobsen, 1994;
Graça and Cressa, 2010) and thus it was used here for comparative
purposes. Leaves from the perennial species were collected directly
from the trees since these shed leaves at a low rate, incompatible with
the experimental needs for leaf litter. Alder leaves were collected after
natural senescence in autumn. All leaves were transported to the
laboratory where they were air dried at ambient conditions and stored
in the dark until used.

Leaf species were characterized regarding toughness and chemical
composition. Leaf toughness was determined using a penetrometer after
leaves had been soaked in distilled water for 1 h and results were
expressed as the force (g/mm2) needed to perforate the leaves with an
iron rod (Graça et al., 2005). Subsamples of dry leaves were ground to
fine powder (< 1 mm) and used for the determination of nitrogen
(IRMS Thermo Delta V advantage with a Flash EA − 1112 series),
phosphorus (Apha, 1995), lignin (Goering and Van Soest, 1970) and
polyphenol concentration (Graça et al., 2005). Results were expressed
as % DM. Comparison of physical and chemical characteristics among
leaf species were done by one-way ANOVA, followed by Tukey’s test.

Leaves were offered to individuals as 12 mm diameter leaf discs,
extracted with a cork borer avoiding the main vein. Leaf discs were
enclosed in 0.5 mm mesh bags (3.5 × 4.0 cm) and incubated for seven
days in 25-L laboratory containers filled with water from Ribeira do
Folhado that was continuously aerated. The water was renewed each
3 days to ensure the leaching of leaf soluble compounds and the
colonization of leaf discs by microbial decomposers that increase litter
palatability to shredders (Graça and Cressa, 2010; Graça et al., 2001).
Discs were oven dried (60 °C for 48 h) and weighed (0.1 mg precision)
to determine initial mass before being used in the experiments.

2.4. Experimental chambers

Experimental chambers consisted of 8.5 × 8.0 × 6.5 cm containers
with 250 mL of filtered water (0.45 μm-pore membrane filter; GF/C,
Whatman) and 10 g of ignited (8 h at 500 °C) sand (200 μm) from
Ribeira do Folhado. Chambers were kept inside a Sanyo versatile
Environmental Test Chamber, MLR-351-H (Japan), maintained at
12.0 ± 0.5 °C with a 10:14 h light:dark photoperiod, and aerated for
the duration of the experiments. A single individual was weighed (WM;
0.1 mg precision) and added to each chamber. Larvae with similar size
(40.0–50.0 mg) were selected to be used.

2.5. Feeding preferences

Limnephilus atlanticus were presented with: (i) a choice among the
four leaf species, to provide a direct comparison of species preferences,
and (ii) a no-choice situation with each leaf species being given
individually. Twenty chambers were set up for the choice (total
n = 20) and 40 chambers for the no-choice experiment (10 cham-
bers × 4 species). In the choice experiment, each chamber received the
four leaf species with the four leaf discs (one per leaf species) being

Table 1
Physical and chemical characteristics of Ribeira do Folhado between 2014 and 2015
(n = 5).

Water variables Mean ± SE

Temperature (°C) 9.3 ± 0.3
pH 6.7 ± 0.4
Conductivity (μS/cm) 53.7 ± 3.1
Nitrate (μg NO3

−/L) 119.1 ± 21.6
Nitrite (μg NO2

−/L) 0.4 ± 0.4
Total nitrogen (μg N/L) 190.4 ± 36.3
Soluble reactive phosphorus (μg PO4

2–/L) 37.3 ± 11.5
Total phosphorus (μg P/L) 14.6 ± 44.9
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pinned in a circle near the boundary of the chamber, 2.5 cm apart. In
the no-choice experiment, each chamber received a single leaf species
with four conspecific discs being pinned in the center of the arena.
Additionally, control chambers, similar to test chambers but without
the individual, were set up to allow the estimation of leaf discs mass
loss due to leaching and microbial activities in order to correct mass
loss in test chambers for the loss due to leaching and microbial activity
(Graça et al., 2005). The choice experiment ran until at least one of the
exposed discs was consumed to half in at least one chamber, and the no-
choice experiment ran until half of the discs were consumed in at least
one chamber. Leaf discs (exposed and control) were oven dried (60 °C
for 48 h) individually per species and weighed (0.1 mg precision) to
determine remaining dry mass (DM).

The initial DM (mg) of each larva was determined from WM (mg) by
the regression model DM =−0.963 + 0.124 × WM (R2 = 0.87,
p < 0.001). Relative consumption rate (RCR) was expressed as g leaf
DM/g individual DM/day. Comparison among leaf species in the choice
experiment was made using Friedman’s test followed by the appropriate
non-parametric post hoc comparisons (Wilcoxon Signed Rank Test).
This test allows for comparing multiple non-independent treatments as
long as replication equals or exceeds the number of treatments
compared (Graça et al., 2005). Comparison of consumption among leaf
species in the no-choice experiment was done using a one-way ANOVA
model, followed by a Tukey post hoc test. Data were checked for
heteroscedasticity (Cochran’s test) prior to analysis.

2.6. Consumption, growth and survival

A similar experiment was carried out to assess L. atlanticus
consumption and growth on each of the four leaf species. As we wanted
to assess growth rate, this experiment lasted for 4 weeks. Ten micro-
cosms were set up for each leaf species (total n = 40). Control
microcosms with four discs of the same species and no individual were
used to estimate mass loss that can occur in the absence of consumers.
Every seven days, the sediment and water were replaced with freshly
ignited sediment and filtered stream water, and the leaf discs (exposed
and control) were sampled and replaced with newly conditioned leaf
discs. Each group of four leaf discs was weighted at the start of each
week and at the end discs (exposed and control) were oven dried (60 °C
for 48 h) and weighted (0.1 mg precision) to determine remaining DM.
At the end of the experiment larvae were also dried at 60 °C for 48 h
and weighed (0.1 mg precision).

The initial DM of each larva was determined as described above.
Relative consumption rates (RCR) were estimated for each feeding
period as described above. Relative growth rates (RGR, mg DM/g DM/
day) were estimated as DMg/(DMf × t), where DMg is the DM gained
during the incubation period given by the difference between the initial
and the final DM (mg) and DMf is the final DM (g) (Ferreira et al.,
2010). Survival was determined as the percentage of individuals still
alive at the end of the experiment. Comparison of consumption and
growth rates over time among the four leaf species was done by two-
way repeated measures ANOVA. Bonferroni’s test was applied for post-
hoc multiple comparisons.

3. Results

3.1. Leaves

The four leaf species selected differed in toughness and chemical
characteristics (Table 2). Alnus glutinosa leaves were the softest and had
the lowest polyphenols and the highest nutrient (both nitrogen and
phosphorus) concentrations (Table 2). Alnus glutinosa and M. faya
leaves had the highest lignin concentration (Table 2). Morella faya
leaves had intermediate softness and intermediate polyphenols and
nitrogen concentrations (Table 2). Ilex perado leaves were the toughest,
had the lowest lignin concentration and low nutrients concentrations
(Table 2). Clethra arborea leaves had intermediate softness and lignin
concentration, the highest polyphenols concentration and low nutrients
and carbon concentrations (Table 2).

3.2. Estimation of Limnephilus atlanticus dry mass

Limnephilus atlanticus larvae collected from Ribeira do Folhado
varied in size and mass (Table 3). All regression models used to
estimate L. atlanticus DM from body and case dimensions and WM
were significant (P < 0.001). The best fit between body or case
dimensions and DM was provided by the power models, followed by
the exponential and the linear models (Table 4). WM − DM relation-
ship was better fitted by the linear model (R2 = 0.87), followed by the
power (R2 = 0.86) and the exponential model (R2 = 0.73). DM was
best predicted from WM (R2 = 0.73–0.87, across models) and BL
(R2 = 0.78–0.83) (Table 4). As the relationship between DM and WM
was stronger than that between DM and BL for two out of three models,
and WM is easier to determine on live individuals than BL, DM on
experimental individuals was determined using the linear model DM −
WM.

3.3. Feeding preferences

Limnephilus atlanticus consumed all four leaf species. When given a
choice, relative consumption rates were in the order A. glutinosa > I.
perado > C. arborea > M. faya (Fig. 1A), but significant differences
were found only between A. glutinosa and the other three leaf species
(Wilcoxon Signed Rank Test, P < 0.005). When individuals were given
no choice, relative consumption rates were in the order A. glutinosa >
C. arborea > I. perado > M. faya, with significant differences being
found between A. glutinosa and M. faya (Tukey’s test, P = 0.01)
(Fig. 1B).

3.4. Consumption, growth and survival

Relative consumption rates significantly differed among leaf species
(two-way repeated measures ANOVA, P < 0.001) and over the
incubation period (P = 0.019). Litter consumption rates were relatively
constant over time for A. glutinosa, C. arborea and M. faya, while it
increased over the first three weeks for I. perado (Fig. 2A). Overall
consumption rates were in the order A. glutinosa > I. perado > C.
arborea > M. faya, but significant differences were found only be-

Table 2
Physical and chemical characteristics of the four leaf species used in the laboratory experiments (mean ± SE). Different letters indicate significant differences (one-way ANOVA followed
by Tukey’s test, P < 0.05).

Leaf species n A. glutinosa C. arborea I. perado M. faya

Force (g/mm2) 10 56.81 ± 4.56a 199.41 ± 14.06b 564.91 ± 13.23c 224.01 ± 8.40b
Lignin (% DM) 3 35.79 ± 0.38c 27.78 ± 1.41b 22.38 ± 1.43a 38.85 ± 0.62c
Polyphenols (% DM) 3 3.52 ± 0.26a 13.09 ± 0.22c 6.63 ± 0.23b 6.36 ± 0.25b
Phosphorus (% DM) 3 0.14 ± 0.01b 0.09 ± 0.01a 0.07 ± <0.01a 0.06 ± <0.01a
Nitrogen (% DM) 3 2.48 ± 0.10c 0.71 ± 0.03a 0.80 ± 0.02a 1.91 ± 0.03b
Carbon (% DM) 3 47.47 ± 0.96ab 45.07 ± 0.56a 49.45 ± 0.34b 49.85 ± 0.17b
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tween the first two and the last two species (Bonferroni post-hoc test,
P < 0.010) (Fig. 3A).

Relative growth rates significantly differed among leaf species (two-
way repeated measures ANOVA, P < 0.001) but did not significantly
vary over time for any leaf species (P = 0.536) (Fig. 2B). Overall
growth rates were in the order A. glutinosa > I. perado > M. faya >
C. arborea, but were significantly higher when individuals fed on A.
glutinosa and I. perado than on M. faya and C. arborea (Bonferroni post-
hoc test, P < 0.050) (Fig. 3B). Survival was higher (95%) when
individuals were fed on A. glutinosa leaves than when they were fed
the other three leaf species (75%).

4. Discussion

The best predictors of dry mass for L. atlanticus larvae were wet
mass and body length, explaining a maximum of 87% and 83% of dry
mass variation, respectively. Body length has been found to be a good
predictor of dry mass for aquatic insect larvae in many previous studies
(e.g. Benke et al., 1999; Burgherr and Meyer, 1997; Johnston and
Cunjak, 1999; Meyer, 1989; Smock, 1980). However, our results
suggested that wet mass is an equally good predictor of dry mass for
L. atlanticus larvae. Also, it is advantageous to use wet mass over body
length to estimate dry mass in studies using live case-building organ-

isms. These organisms have to be removed from their cases for body
length measurement, which is time consuming and has a higher risk of
stressing the organisms and breaking body structures compared with
determination of wet mass (body + case).

It is widely accepted that shredders, including Limnephilus spp., feed
preferentially on certain leaf types based on their physical and chemical
characteristics with soft leaves with high nutrient concentration gen-
erally being preferred over tough leaves (Canhoto and Graça, 1995;
Cronin et al., 1998; Leberfinger and Bohman, 2010; Swan and Palmer,
2006). In agreement, L. atlanticus larvae, when given a choice, preferred
A. glutinosa leaves over the others leaf species (I. perado, C. arborea and
M. faya), suggesting that this endemic shredder has feeding preferences
similar to its mainland counterparts. When individuals did not have a
choice, consumption rate was higher on A. glutinosa leaves than on M.
faya. Feeding preferences of L. atlanticus can be explained by the
intrinsic characteristics of the leaves.

Alnus glutinosa leaves were the softest and had the highest nutrient
concentration, and the lowest concentration of polyphenols, making it a
palatable substrate for L. atlanticus. On the other hand, M. faya had the
highest lignin concentration and was tough. Surprisingly, consumption
on I. perado, when it was offered individually, was not significantly

Table 3
Body and case dimensions and body mass of L. atlanticus larvae collected from Ribeira do
Folhado.

Body dimensions and mass Range Mean n

Body dimensions (mm)
Body length (BL) 4.70–13.13 9.14 74
Interocular distance (ID) 0.07–0.80 0.22 120
Head length (HL) 0.86–1.86 1.50 74

Case dimensions (mm)
Case length (CL) 6.13–14.75 10.7 120
Case width (CW) 1.50–3.40 2.55 74

Body mass (mg)
Wet mass (WM) 6.70–93.50 32.34 120
Dry mass (DM) 0.10–12.20 3.47 120

Table 4
Linear, exponential and power models for the relationship between body and case
dimensions (mm) and wet and dry mass (mg) of L. atlanticus. Dry mass (DM), wet mass
(WM), interocular distance (ID), case length (CL), case width (CW), body length (BL),
head length (HL).

Function Models a ± SE b ± SE R2 n

Linear
WM − DM −0.96 ± 0.17 0.12 ± 0.02 0.87 120
ID − DM 0.93 ± 0.40 9.54 ± 1.56 0.24 120
CL − DM −5.15 ± 0.89 0.77 ± 0.09 0.43 120
CW − DM −7.89 ± 1.06 4.70 ± 0.42 0.65 74
BL − DM −6.70 ± 0.72 1.22 ± 0.09 0.78 74
HL − DM −4.95 ± 1.46 6.03 ± 0.96 0.36 74

Exponential
WM − DM −0.62 ± 0.10 0.05 ± 0.01 0.73 120
ID − DM 0.08 ± 0.17 3.38 ± 0.64 0.20 120
CL − DM −3.05 ± 0.29 0.36 ± 0.04 0.62 120
CW − DM −1.79 ± 0.24 1.20 ± 0.10 0.72 74
BL − DM −1.48 ± 0.17 0.30 ± 0.03 0.81 74
HL − DM −1.23 ± 0.33 1.66 ± 0.22 0.46 74

Power
WM − DM −4.05 ± 0.20 1.46 ± 0.07 0.86 120
ID − DM 2.47 ± 0.28 1.03 ± 0.17 0.25 120
CL − DM −8.11 ± 0.60 3.80 ± 0.26 0.67 120
CW − DM −1.52 ± 0.21 3.00 ± 0.22 0.73 74
BL − DM −4.77 ± 0.34 2.75 ± 0.16 0.83 74
HL − DM 0.30 ± 0.14 2.44 ± 0.31 0.48 74

P < 0.001 for all models.

Fig. 1. Leaf litter consumption (mean ± SE) by L. atlanticus individuals fed with A.
glutinosa, I. perado, C. arborea and M. faya leaves, when shredders were given a choice
(four leaf species available) (A) and when shredders were fed on individual leaf species
(B). Different letters indicate significant differences (Wilcoxon Signed Rank (A) and
Tukey test (B), P < 0.05).
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different from that observed on A. glutinosa despite I. perado being the
toughest leaf species and having low nutrient concentration. However,
in I. perado, the tough cuticle detached from the leaf mesophyll during
incubation and larvae could directly assess the mesophyll overcoming
the potentially inhibiting effect of the tough cuticle. This suggests that
leaf toughness is a key leaf characteristic determining shredder feeding,
as observed before (Graça and Cressa, 2010). This agrees with previous
studies that suggest that litter toughness and the concentration of
structural compounds may be more important than nutrient concentra-
tions in determining biological colonization and litter decomposition
rates (Li et al., 2009; Schindler and Gessner, 2009). Thus, L. atlanticus
preferred soft leaves with low concentration of lignin and polyphenols
and high nutrient concentration, showing a similar feeding behavior to
other Trichoptera species (Rincón and Martínez, 2006).

In the four weeks experiment, consumption rates by L. atlanticus
varied between 0.05–0.35 g leaf DM/g individual DM/day and were in
the range observed previously for other shredders (Triplectides sp.:
Casotti et al., 2014; Sericostoma vittatum: Ferreira et al., 2010). Ranges
of growth rates were higher in our study (0.5–12.0 mg ind DM/g ind
DM/day) compared to those obtained for S. vittatum in a similar
laboratory experiment (Ferreira et al., 2010; 6.0–8.0 mg ind DM/g

ind DM/day) likely due to the stronger differences in leaf quality among
leaf species in our study.

Limnephilus atlanticus had higher consumption and growth rates
when fed A. glutinosa or I. perado than when fed C. arborea or M. faya,
which are explained by differences in food quality. As discussed above,
A. glutinosa was the best quality leaf species. Although I. perado leaves
did not have such a high nutrient concentration as A. glutinosa,
shredders experienced a similar consumption and growth. Ilex perado
had lower concentration of polyphenols and lignin that may have
facilitate its digestibility and therefore larval growth (note that the
higher toughness was alleviated by the cuticle detaching from the leaf
mesophyll). Previous studies have shown that high growth rates not
only occur with a high nutrient concentration, but that other intrinsic
leaf properties such as texture or secondary compounds may affect
digestion and thus influence growth (Carvalho and Graça, 2007; Friberg
and Jacobsen, 1999). Also, previous studies have shown that shredders
may exhibit compensatory feeding by which they compensate for lower
food quality by increasing their consumption rates (Arsuffi and
Suberkropp, 1989; Iversen, 1974).

Survival of L. atlanticus was higher (95%) when individuals fed on
A. glutinosa than when they fed on the other leaf species (75%). Alnus
glutinosa is well known as a high-quality resource for stream detritivores
(Canhoto and Graça, 1995; Friberg and Jacobsen, 1994; Graça and
Cressa, 2010), while the other three species have secondary compounds

Fig. 2. Relative consumption rate (RCR; A) and relative growth rate (RGR; B)
(mean ± SE) of L. atlanticus individuals fed with A. glutinosa, I. perado, C. arborea and
M. faya leaves over four weeks.

Fig. 3. Relative consumption rate (RCR; A) and relative growth rate (RGR; B)
(mean ± SE) of L. atlanticus individuals fed with A. glutinosa, I. perado, C. arborea and
M. faya leaves. Different letters indicate significant differences (Bonferroni test,
P < 0.05).
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that may be toxic.
Our results suggest that L. atlanticus can act as an active shredder

and that it exhibits the same basic patterns of food exploitation as its
continental counterparts. Although, macroinvertebrates generally play
a key role in leaf litter decomposition in temperate aquatic streams in
continental habitats (Graça and Canhoto, 2006), recent studies
(Ferreira et al., 2016; Raposeiro et al., 2014) found that macroinverte-
brates had no major effect on litter decomposition in Azorean streams,
and that leaf litter decomposition was driven by microbial activity.

Similar results on the low importance of macroinvertebrates on
litter decomposition were found in streams with low abundance of
shredders in tropical islands as Hawaii and eastern Caroline Islands
(Benstead et al., 2009; Larned, 2000). However, when shredders are
present, litter decomposition in island streams can be stimulated over
that observed due to microbial activity only (Crowl et al., 2006; Larned
et al., 2003; Rincón and Covich, 2014; Wright and Covich, 2005a,b).
Macroconsumers in particular (e.g. decapods) have been shown to
highly contribute to litter decomposition in tropical island streams
(Wright and Covich, 2005a,b; Crowl et al., 2001, 2006). The lack of
shredder influence in litter decomposition in Azorean streams may be
explained by the fact that predominant riparian vegetation is composed
by hard leaf species with low nutrient concentration. In this condition,
shredders may return to alternative food sources since their feeding
plasticity is well known (Carvalho and Graça, 2007; Friberg and
Jacobsen, 1994). The role these organisms play in island stream
ecosystems is still unclear.
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