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• Large-scale patterns of fungal diversity
in freshwaters are unknown.

• Our study is based on fungi colonized on
plant litter in 19 globally distributed
streams.

• Hump-shaped distribution of fungal
richness along the absolute latitude
was seen.

• Community composition of fungi was
grouped according to thermal
preferences.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 31 October 2018
Received in revised form 9 January 2019
Accepted 11 January 2019
Available online 14 January 2019

Editor: Sergi Sabater
Global patterns of biodiversity have emerged for soil microorganisms, plants and animals, and the extraordinary
significance of microbial functions in ecosystems is also well established. Virtually unknown, however, are large-
scale patterns of microbial diversity in freshwaters, although these aquatic ecosystems are hotspots of biodiver-
sity and biogeochemical processes. Herewe report on the first large-scale study of biodiversity of leaf-litter fungi
in streams along a latitudinal gradient unravelled by Illumina sequencing. The study is based on fungal commu-
nities colonizing standardized plant litter in 19 globally distributed stream locations between 69°N and 44°S.
Fungal richness suggests a hump-shaped distribution along the latitudinal gradient. Strikingly, community com-
position of fungi was more clearly related to thermal preferences than to biogeography. Our results suggest that
identifying differences in key environmental drivers, such as temperature, among taxa and ecosystem types is
critical to unravel the global patterns of aquatic fungal diversity.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

The role of freshwater ecosystems as components of the global car-
bon cycle is being increasingly acknowledged (Perkins et al., 2012;
Martínez et al., 2014). Streams are hotspots of CO2 emission (Perkins
et al., 2012; Battin et al., 2009) as they receive organic carbon of terres-
trial origin and its in-stream decomposition releases CO2 to the atmo-
sphere. The underlying processes, including the decomposition of
riparian plant litter, are strongly driven by the activities of fungi
(Cornut et al., 2010; Duarte et al., 2015, 2016; Seena et al., 2017), al-
though other microbes and invertebrates can also play a role (Hieber
and Gessner, 2002). Importantly, decomposition rates of litter in
streams can be affected by fungal diversity, either directly or through
trophic effects (Lecerf et al., 2005; Srivastava et al., 2009; Jabiol et al.,
2013a). Therefore, it is essential to understand the global distribution
and diversity patterns of aquatic fungi, to allow predicting ecosystem
responses to global change (Violle et al., 2014).

There has been considerable debate as to whether microbes follow
similar global distribution patterns as plants and animals (Fuhrman
et al., 2008; Fierer et al., 2011; Azovsky and Mazei, 2013; Tedersoo
et al., 2014). Issues include the questionswhethermicrobes follow a lat-
itudinal diversity gradient characterized by increasing richness from the
poles to the tropics (Hillebrand, 2004; Mittelbach et al., 2007; Fuhrman
et al., 2008; Andam et al., 2016), and to what extent biogeographic his-
tory structures present-day species distributions. The importance of
plate tectonics in governing the global distribution of plants and animals
is well established (Briggs, 1995; Holden, 2012; C.B. Cox et al., 2016),
with many taxa following either the Laurasian or Gondwanan
distribution patterns (Holden, 2012). In contrast, one of themost endur-
ing tenets in microbial ecology is Baas-Becking's hypothesis, initially
proposed primarily for bacteria, that “everything is everywhere, but the
environment selects” (Bass-Becking, 1934; De Wit and Bouvier, 2006).
Extending this to eukaryotes, Fenchel (1993) suggested that smaller or-
ganisms tend to have wider or more even cosmopolitan distribution, a
higher efficiency of dispersal, a lower rate of allopatric speciation and
lower rates of local and global extinction than do larger organisms.
Foissner (1999) proposed the ‘moderate endemicitymodel’ ofmicrobial
biogeography for free-living protists, which suggests that a substantial
portion of these taxa have a restricted distribution, i.e., they are not cos-
mopolitan despite suitable habitats at many locations.

Importantly, however, even a global reach of microbial propagules
does not preclude latitudinal patterns of microbial diversity and partic-
ipation in ecosystem processes: distance from poles may be an impor-
tant proxy for various ecological drivers such as precipitation and
temperature. For example, soil fungal communities clearly differ
among bioregions, even though soil extracellular activities are highly
convergent (Talbot et al., 2014). This suggests that dispersal limitation
or climatic patterns could be primary drivers determining fungal com-
munities in soils. Taylor et al. (2006) concluded that certain well-
characterized fungal complexes (Neurospora, Saccharomyces,
Schizophyllum, Lentinula) have a true biogeography with
phylogentically distinct groups in different regions. On the other hand,
Aspergillus fumigatus has maintained a globally homogeneous popula-
tion, possibly due to recent expansion of its preferred environment.

The richness of soil fungi generally decreases towards the poles
(Tedersoo et al., 2014), and fungi with strong dispersal abilities
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dominate at high latitudes (F. Cox et al., 2016). By contrast, the species
richness of aquatic hyphomycetes, a polyphyletic group of stream
fungi that assume dominant roles in litter decomposition, was found
to peak at mid-latitudes and to be lowest towards the extremes of the
latitudinal gradient on the northern hemisphere in a study comparing
five locations at latitudes ranging from the subarctic to the tropics
(Jabiol et al., 2013b). A survey of published studies confirmed that
aquatic hyphomycete species diversity peaks in temperate streams,
and high community similarities were found between geographically
distant locations in comparable climatic zones (Duarte et al., 2016).
However, given the limited scope of previous investigations and their
reliance on spore morphotypes, the presence of globally congruent pat-
terns of stream fungal diversity remains uncertain.

The objective of the present study was to determine fungal diversity
and community composition based onmolecular analyses of communi-
ties associated with decomposing leaf litter. The global-scale study
stretched over a 113° latitudinal gradient of 19 stream locations on
five continents. Given that latitude is widely recognized as a broad cli-
mate surrogate (Parmesan and Yohe, 2003; Jetz et al., 2008; Boyero
et al., 2011a; Jabiol et al., 2013b), we tested the hypothesis that fungal
richness decreases with latitude, similar to the pattern described for
most plants and animals (Hillebrand, 2004; Kinlock et al., 2018). Fur-
thermore, we investigated whether the global distribution of specific
fungal taxa follows the well-established biogeographic realms, eight of
which are generally recognized to be based on distributional patterns
of terrestrial species resulting from the isolation of populations by con-
tinental drift (Olson et al., 2001).

2. Materials and methods

2.1. Stream sites and field work

A total of 19 streamswere chosen for a coordinatedmulti-site exper-
iment. The streams were distributed across both hemispheres with lo-
cations extending from 69° N to 44° S (Table 1, Fig. 1). Mean annual
air temperature (°C) and rainfall (mm) data were obtained from
climate-data.org (http://en.climate-data.org/; accessed February 2016)
and AIC (Autoridad Interjurisdiccional de Cuencas de los Ríos Limay,
Neuquén y Negro, Bureau of Water Resources Management,
Argentina; http://www.aic.gov.ar/aic/default.aspx#v; accessed Febru-
ary 2016). The following conditions of the study sites were chosen:
Table 1
Geographical locations and environmental characteristics of the 19 stream sites on five
continents.

Location Latitude Longitude Altitude
(m)

Annual
mean air
temperature
(°C)

Annual
mean
rainfall
(mm)

Norway (NOR) 69°18′N 20°25′E 77 0.9 542
Germany (DEU) 51°42′N 10°23′E 528 8.0 734
Canada (CAN) 45°43′N 64°09′W 88 5.2 1215
Italy (ITA) 44°45′N 7°17′E 406 12.4 769
France (FRA) 43°28′N 2°13′E 548 13.2 739
Spain (ESP) 43°18′N 3°15′W 134 14.1 1174
Portugal (PRT) 40°5′N 8°14′W 276 15.8 958
United States of
America (USA)

39°14′N 76°44′W 75 12.6 1091

Azores (AZO) 37°44′N 25°28′W 300 17.4 988
Japan (JPN) 35°49′N 138°31′E 1076 11.2 1296
Hong Kong (HKN) 22°25′N 114°10′E 197 22.8 2080
India (IND) 12°28′N 75°35′E 173 26.8 4273
Guinea (GIN) 8°38′N 9°30′W 571 24.0 2750
Malaysia (MYS) 3°10′N 101°46′E 167 27.1 2492
Ecuador (ECU) 0°14′S 78°0′W 3061 9.6 1204
Brazil (BRA) 12°57′S 39°26′W 285 22.9 960
Australia (AUS) 13°6′S 130°47′E 129 27.4 1694
Argentina (ARG) 41°14′S 71°16′W 1204 8.8 1500
New Zealand (NZL) 44°49′S 170°30′E 285 10.6 527
experimental streams were low order (1–3 according to Strahler,
1957), had a depth b 50 cm and width b 5 m, were characterized by
coarse substrate, generally by cobbles, and lacked major anthropogenic
impacts and invasive tree species. Streamphysico-chemical characteris-
tics, including concentrations of dissolved nutrients (nitrogen [N] and
phosphorus [P]), were determined (APHA, 1995) when the leaf litter
was deployed and retrieved.

Alnus glutinosa (L.) Gaertn. (black alder; Betulaceae) leaveswere col-
lected at a single site on the banks of theMondego River at Lages, Coim-
bra, Portugal (40°11′21″N, 8°25′30 W″). Alder was chosen because the
genus is widespread in the Holarctic and also occurs in the Neotropics
(Boyero et al., 2011a) and because it has high-quality leaves (e.g.
Hladyz et al., 2009; Fernandes et al., 2014). Although alder trees do
not occur in some of the study regions, their soft texture and high nitro-
gen concentrations do not impose any colonization impediment to mi-
crobial communities (Fernandes et al., 2014; Chauvet et al., 2016) and
the leaves are also readily consumed by tropical detritivores (Graça
et al., 2001). Moreover, the species has been previously used as a stan-
dard litter in large-scale decomposition studies (e.g. Boyero et al.,
2011a; Woodward et al., 2012).

Kits containing air-dried alder leaves (three replicates, each contain-
ing 2 g of leaves), fine-mesh (0.5 mm) nylon bags, DNAgard®
(Biomatrica, San Diego, CA, USA) and protocols were shipped from Co-
imbra, Portugal, to the other 18 locations distributed across the globe.
DNAgard®was used to collect, ship and store leaf discs at ambient tem-
perature. Ten leaf discs (12 mm diameter) were cut from randomly se-
lected alder leaves before shipping. DNA was extracted and pooled and
composition of the initial (control) microbial community was deter-
mined by Illumina MiSeq sequencing. Leaves were not sterilized before
colonization to avoid changes in litter chemistry (Howard and
Frankland, 1974); microbes initially present on the litter have little in-
fluence on fungal colonization dynamics (Bärlocher and Kendrick,
1974), since stream fungi are rapid colonizers that quickly outcompete
terrestrial taxa (Nikolcheva et al., 2005; Frossard et al., 2013).

Strictly standardized litter colonization experiments were con-
ducted in the 19 study streams during the dry season in tropical and
during autumn in temperate and subarctic streams. At each site, litter
bags were deployed in riffle areas rich in oxygen (Table 2), at water
depths of b30 cm. Experiments were terminated when an estimated
40–50% of the initial litter mass was lost, as inferred from previous de-
composition studies (Boyero et al., 2011a, 2015). The exact colonization
period at each site is given in Table S1. Three litter bags were retrieved
and 10 leaf discs (12mmdiameter) were cut per bag with a sterile cork
borer, immediately placed in 3 sterile screw-cap tubes containing 1 ml
of DNAgard® solution and sent to the laboratory at the University of Co-
imbra, Portugal, for DNA extraction.

2.2. DNA extraction, Miseq sequencing and bioinformatics analysis

From each replicate set of 10 leaf discs, microbial DNAwas extracted
with the PowerSoil® DNA isolation kit (MoBio laboratories, Carlsbad,
CA, USA) according to the manufacturer's instructions. The concentra-
tion of extracted DNA (N20 ng/μl) was confirmed with a NanoDrop
2000c spectrophotometer (Wilmington, DE, USA) before storing the
DNA at −20 °C. The DNA of all replicate samples from each site was
pooled and then amplified for sequencing at RTLGenomics (Lubbock,
TX, USA) in a two-step process. The forward primer was made with
the (5′-3′) Illumina i5 sequencing primer (TCGTCGGCAGCGTCAGATG
TGTATAAGAGACAG) and the ITS3F primer (GCATCGATGAAGAACG
CAGC) (White et al., 1990). The reverse primer was generated with
the (5′-3′) Illumina i7 sequencing primer (GTCTCGTGGGCTCGGAGAT
GTGTATAAGAGACAG) and the ITS4R primer (TCCTCCGCTTATTGAT
ATGC) (White et al., 1990). Amplifications were done in 25 μl reactions
with the Qiagen HotStar Taq master mix (Qiagen Inc., Valencia, CA,
USA), 1 μl of each 5 μM primer, and 1 μl of DNA template. Reactions
were executed on ABI Veriti thermocyclers (Applied Biosytems,

http://climate-data.org
http://en.climate-data.org
http://www.aic.gov.ar/aic/default.aspx#v


Fig. 1.Distribution of the 19 stream sites across the globe. Norway (NOR), Germany (DEU), Canada (CAN), Italy (ITA), France (FRA), Spain (ESP), Portugal (PRT), United States of America
(USA), Azores (AZO), Japan (JPN), Hong Kong (HKN), India (IND), Guinea (GIN) Malaysia (MYS), Ecuador (ECU), Brazil (BRA), Australia (AUS), Argentina (ARG), New Zealand (NZL).
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Carlsbad, CA, USA) under the following PCR conditions: 95 °C for 5 min,
25 cycles of 94 °C for 30 s, 54 °C for 40 s, 72 °C for 1min, followed by one
cycle of 72 °C for 10 min and 4 °C hold.

Products from the first stage amplification were subjected to a sec-
ond round of amplification with similar PCR conditions except that
only 10 cycles were run. The Illumina Nextera PCR primers for the sec-
ond PCR runs were AATGATACGGCGACCACCGAGATCTACAC[i5index]
TCGTCGGCAGCGTC (forward) and CAAGCAGAAGACGGCATACGAGAT
[i7index]GTCTCGTGGGCTCGG (reverse). Amplification products were
visualized with eGels (Life Technologies, Grand Island, NY, USA) and
then pooled at equimolar concentrations. Size selection of each pool
was done in two rounds of SPRI select (BeckmanCoulter, Indianapolis,
IN, USA) in a 0.7 ratio for both rounds. The pooled amplification prod-
ucts were run on a Fragment Analyzer, quantified on a Qubit 2.0
Table 2
Average physico-chemical characteristics and nutrient concentrations of the 19 streams across

Location* Water temperature (°C) Conductivity (μS·cm−1) Dissolved

NOR 3.1 65.9
DEU 6.9 59.5
CAN 10.8 45.3
ITA 3.8 143.0
FRA 8.1 86.4
ESP 8.6 92.4
PRT 14.7 47.8
USA 9.5 96.2
AZO 15.2 141.2
JPN 9.7 57.0
HKN 19.8 40.5
IND 23.7 257.0
MYS 26.2 25.6
GIN 22.3 31.0
ECU 10.2 82.9
BRA 21.3 39.9
AUS 25.0 9.2
ARG 4.0 110.9
NZL 6.3 79.7

* For full country names and geographical locations see Table 1.
fluorometer (Life Technologies, Grand Island, NY, USA), then loaded
on an Illumina MiSeq (Illumina, Inc., San Diego, CA, USA) 2 × 300 flow
cell (10pM) and finally sequenced to minimum 10,000 reads for an en-
tire sample with a minimum of 7500 reads per sample.

Quality trimming was performed on the fastq using the SolexaQA+
+ dynamictrim utility (version 3; Cox et al., 2010) with a minimum
threshold of 25. If length of a read dropped below 50 bp after quality
trimming, it was removed. The retained forward and reverse reads of
the dataset were merged by using FLASH (version 1.211; Magoč and
Salzberg, 2011). A dereplication step followed to remove duplicate
reads using VSEARCH software (version3; Rognes et al., 2016). Chi-
meras were removed by using Mothur (version1.39.5; Schloss et al.,
2009) with the unified system for DNA-based fungal species (UNITE)
and international nucleotide sequence database collaboration (INSDC)
the globe.

oxygen (mg·L−1) pH Nitrate-N (mg·L−1) Phosphate-P (mg·L−1)

13.2 8.4 0.074 0.001
11.5 7.4 0.805 0.004
10.0 6.8 0.080 0.010
9.9 8.4 0.300 0.040
10.3 6.8 1.058 0.040
11.6 7.7 0.219 0.005
9.7 7.0 0.062 0.002
10.2 6.9 0.095 0.001
8.5 7.3 0.050 0.011
9.9 7.0 0.286 0.014
8.1 6.8 0.137 0.015
7.2 7.3 1.150 0.005

10.74 6.7 0.650 0.001
8.7 7.6 0.880 0.073
8.5 8.2 0.004 0.010
8.2 5.0 0.670 0.040
8.0 6.0 0.018 0.002
10.8 7.3 0.112 0.005
12.8 7.8 0.094 0.032



Fig. 2. Linear regressions (n = 19;● Ecuador,○ other locations) of the relationships be-
tween absolute latitude of stream sites and the natural logarithm of mean annual rainfall
(a), mean streamwater temperature (b), mean annual air temperature (c) and mean dis-
solved oxygen (d).
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for fungal ITS databases (version released on 28-06-2017) used as a ref-
erence (Koljalg et al., 2013). The resulting operational taxonomic units
(OTUs) were clustered by using Swarm (version 2.2.2; Mahé et al.,
2014). The longest sequence from eachOTUwas selected as representa-
tive of that OTU. Singletonswere removed from the analyses and assign-
ment of taxonomy was performed with a BLAST of the OTU
representatives against theUNITE+INSDC fungal ITS databases (version
released on 28-06-2017; https://unite.ut.ee). Robust assignments to the
fungal kingdom were made for the sequences with an expected
(E) value b e−50 and a sequence similarity N75%. Moreover, query se-
quences with an E-value between e−08 and e−50 with sequence sim-
ilarity N75% were manually checked against the 100 best-matching
sequences for accurate assignment (Li et al., 2016). Raw sequences
from the alder leaves before exposure in the stream and after retrieval
of the leaves were deposited in the National Center for Biotechnology
Information (NCBI) database (Sequence Read Archives; SRA) under ac-
cession numbers SRP072752 and SRP100503, respectively.

2.3. Data analysis

Weused linear regressionmodels (Zuur et al., 2007) to assess the re-
lationship between physico-chemical characteristics of the streams and
latitude. Rarefaction curves showing the number of sequences versus
the number of fungal OTUs in all locations were computed to check
whether OTUs were close to saturation. The OTUs of the initial commu-
nity were then removed from the OTUs of the samples for further anal-
yses and rarefaction curves were generated. The relative abundances of
theOTUs and rarefiedOTU richnesswere calculated using theR (version
3.5; R Core Team, 2018) package vegan (version 2.5-2; Oksanen et al.,
2018).

The relationship between rarefied OTU richness and latitude, other
physico-chemical and environmental parameters were determined by
linear regression; a quadratic term was added to the model if data sug-
gested a nonlinear relationship. All regressions were performed using R
(version 3.5; R Core Team, 2018). All data were checked for normality
and homoscedasticity; when necessary, a natural log transformation
was applied to meet these assumptions. Barplots of fungal OTUs were
generated based on average relative abundances. A Bray–Curtis similar-
ity matrix (Bray and Curtis, 1957) was calculated based on the log-
transformed relative abundance data. Patterns in fungal community
structure across stream locations were displayed using Canonical Anal-
ysis of Principal Coordinates (CAP; Anderson andWillis, 2003) based on
relative abundances of OTUs. Permutational multivariate analysis of
variance (PERMANOVA; Anderson et al., 2008) was used to test for dif-
ferences between sample clouds separated by two CAP axes. Unre-
stricted permutation of the raw data (9999 permutations) was used
for PERMANOVA. PERMANOVA and CAP analyses were performed
using PRIMER 6 (Primer-E Ltd., Plymouth, UK; Clarke and Gorley,
2006). A Venn diagram was generated with Venny 2.1 (Oliveros,
2015) to determine the percentage of shared OTUs between the sample
clouds separated along the two CAP axes.

3. Results

3.1. Physico-chemical stream characteristics

Mean stream water temperature during the study (3.1–26.2 °C),
mean annual air temperature (0.9–27.4 °C), and mean annual rainfall
(527–4273mm) at the 19 sites (Tables 1, 2) were all negatively related
to absolute latitude (Fig. 2a–c). Only a high-altitude (3061 m asl) site
near the equator in Ecuador emerged as an outlier of this general latitu-
dinal trend (Table 1; Fig. 2a–c). There were no latitudinal patterns in
mean pH, conductivity or concentrations of phosphate or nitrate (p =
0.73–0.14 and R2= 0.01–0.12). The concentrations of dissolved oxygen
were positively related to latitude (Fig. 2d).
3.2. Illumina MiSeq sequencing

IlluminaMiSeq sequencing of colonized alder leaves initially yielded
1,093,416 reads. These were reduced to 859,892 after filtering for qual-
ity and length. Joining the forward and reverse reads reduced the num-
ber to a total of 229,194 reads, of which 44,138 remained after
dereplication and 42,618 after removing chimeras (Table S2). All ‘no
hits’ and OTUs belonging to the kingdom Plantae (14.6%) were also re-
moved. Finally, removal of OTUs of the initial community from the sam-
ples yielded 1311 OTUs (Table S3).

https://unite.ut.ee
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3.3. Relative abundance of aquatic fungi

Fungal OTUs were assigned primarily to the phylum Ascomycota
(79.7%), followed by Mucoromycota (16.8%), Basidiomycota (0.4%)
and Chytridiomycota (0.2%). The remaining 10.6% of the fungal OTUs
were unidentified. The relative abundances of fungal classes varied
among locations: streams with water temperature ≥8.6 °C (except in
Japan) contained mainly Eurotiomycetes and Mucormycetes (Azores,
Brazil, Canada, Ecuador, Hong Kong, Malaysia, Portugal, Spain, USA),
Saccharomycetes (India, Guinea), or Sordariomycetes and unknown
fungi (Australia) and the streams with temperature ≤8.1 and Japan
consisted mainly of Leotiomycetes, Dothideomycetes and
Rhizophydiomycetes (Fig. 3).

3.4. Fungal richness

The rarefaction curve of the initial community was very different
from those of the streams (Fig. S1a). Rarefaction curves of the streams
had clearly distinct and separate trajectories, suggesting that they real-
istically represented inherent diversity patterns (Fig. S1b). After remov-
ing the OTUs of the initial community and singletons from the OTUs of
the samples, the rarefaction curve approached asymptotes (Fig. S2a).
Rarefaction curves of the rarefiedOTUs are depicted in Fig. S2b. Rarefied
OTU richnesswas lowest at latitudinal extremes, peaked atmid-latitude
regions (Fig. 4, Table S4), andwas insensitive to altitude, water physico-
chemical and other environmental characteristics of the streams sites
(Table S4). The species richness in Ecuador (25.6) was almost the
same as in Guinea (24.2) at 8.6° latitude of (Fig. 4), whereas the species
richness in Malaysia at a latitude of 3.2° was exceptionally high (61.9).

3.5. Endemism and ubiquity

In total, the relative abundance of OTUs that were unique to single
locations and identified as exclusive endemicswere 29%, showingmod-
erate endemism. The relative abundance of these endemic fungal taxa
did not follow any well-defined geographical trend (Fig. S3, Table S5).
The relative abundance of endemic OTUs was highest in Ecuador and
Hong Kong (97%) closely followed by Malaysia (72%), Portugal (55%)
and Japan (54%). Australia and Guinea did not have any exclusive en-
demics. The average relative abundance of the endemic OTUs was
highest in the Neotropic realm (55%), followed by the Indo-Malayan
(40%), Palaearctic (35%), Australasian (21%) and Nearctic realms
(19%). The Afrotropic realm did not have any endemic OTUs
(Table S6). In total, the relative abundance of aquatic hyphomycetes
Fig. 3. Relative abundances of fungal operational taxonomic units (OTUs). For locations of str
(i.e. Ingoldian fungi) was 17%; however, in France (48.0%), Germany
(47.5%) and Italy (46.8%) almost half of all fungiwere aquatic hyphomy-
cetes. The aquatic hyphomycete Lemonniera aquatica was the most
widespread species, occurring in 8 of the 19 locations (Table S7).

3.6. Relationship with water temperature

The fungal communities were separated into three distinct groups
based on stream temperature ranges observed during the study (≤8.1
°C, 8.6–19.8 °C and ≥21.3 °C). The only exception was Japan, which
was included in the coolest group (Fig. 5). The overall classification ac-
curacy rate based on these three temperature groups was 83.3%, 87.5%
and 80.0%, respectively. Both the first (δ2 = 0.94) and the second (δ2

= 0.80) squared canonical correlations were large. The first canonical
axis separated the communities of the tropical streams (≥21.3 °C)
from those of the other two groups, and the second axis separated the
communities in streams experiencing temperatures of 8.6–19.8 °C
from the others. PERMANOVA established that the relationship with
stream water temperature was significant (F2,18 = 2.19, P = 0.0001).
The percentage of OTUs that exclusively belonged to the temperature
groups ≤8.1 °C, 8.6–19.8 °C and ≥21.3 °C was 19.8, 47.6 and 18.8%, re-
spectively. Streams with water temperatures ≤8.1 °C and between 8.6
and 19.8 °C shared 3.2% of the OTUs, whereas streams with tempera-
tures ≤8.1 °C and ≥21.3 °C, and 8.6–19.8 °C and ≥21.3 °C shared 2.4%
and 6.9% of the OTUs, respectively (Fig. 6).

4. Discussion

A decrease in species richness with latitude is the best studied and
mostwidely documentedpattern of the distribution of life on earth, par-
ticularly in plants and animals (Peay et al., 2016). Many environmental
factors, including temperature and rainfall, change systematically with
latitude, and may therefore be primary drivers of global diversity pat-
terns. A key discovery of our global study is that fungal taxon richness
diverges from the conventional macroecological pattern, showing a
clear decline towards the equator. It appears to form a hump-shaped re-
lationship with latitude, with a peak in temperate streams at mid-
latitudes (Fig. 4).

A high-altitude (3061m asl) site near the equator (0.25°) in Ecuador
emerged as an outlier in the general latitudinal trend reflecting air tem-
perature, water temperature, dissolved oxygen concentration and an-
nual rainfall; the fungal species richness in Ecuador was almost the
same as in Guinea at 8.63°. Malaysia (3.2° latitude) exhibited a very
high species richness (61.9) when compared to Ecuador (25.6) and
eam sites see Fig. 1. The countries are arranged in increasing order of absolute latitude.



Fig. 4. Quadratic regression (n= 19;● Ecuador,○ other locations) between absolute lat-
itude and fungal OTU richness.

Fig. 6. Venn diagram showing the percentage of unique and shared OTUs between the
three stream water temperature groups. Mean stream water temperature bands were
≤8.1 °C, 8.6–19.8 °C and ≥21.3 °C.
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Guinea (24.2), but was closer to the species richness (49.9) in India
(12.5° latitude). Malaysia has been identified as a global hotspot of
plant species richness and endemism, in part due to its high diversity
in habitat types and soil characteristics (Sodhi et al., 2004). Over
10,000 species of flowering plants occur in Malaysia, including 2830
tree species in Peninsular Malaysia (Bidin and Latiff, 1995). Among the
tree species, 155 of Dipterocarpaceae (the dominant forest trees) have
been recorded from Peninsular Malaysia, and 267 dipterocarps have
been recorded from Borneo (Brearley et al., 2016). The high habitat,
soil and plant diversity and variability in leaf litter characteristics with
respect to nutrients, secondary compounds and toughness, could be
conducive to supporting a high diversity of fungal decomposers in
streams.

Our study included only a single location above latitude 60, which
limits the power of inference for subarctic sites. However, declining di-
versity at higher latitudes was also suggested in two previous reviews
based on morphotypes and conidium production of aquatic hyphomy-
cetes (Wood-Eggenschwiler and Bärlocher, 1985; Duarte et al., 2016),
both of which included several subarctic streams (e.g., Müller-Haeckel
Fig. 5. Canonical analysis of principal coordinate (CAP) ordinations of the relative
abundances of fungal OTUs. Locations are colour coded according to mean water
temperature. Mean stream water temperature bands were ≤8.1 °C, 8.6–19.8 °C and
≥21.3 °C. For locations of stream sites see Fig. 1.
and Marvanová, 1977). Since aquatic hyphomycetes are an important
component of fungal communities in streams, this pattern of low diver-
sity at high-latitudes may also hold for stream fungi in general.

The apparent diversity peak we observed in temperate streams
could be due to greater niche differentiation along the temperature
axis, associatedwith awider range andmore pronounced seasonal fluc-
tuations (Allan and Castillo, 2007; Shearer et al., 2007; Jabiol et al.,
2013b). The resulting hump-shaped pattern of stream fungal diversity
strikingly deviates from that of a global study on soil fungal diversity
(Tedersoo et al., 2014), which demonstrated macroecological patterns
similar to those of other organisms. Distance from equator had the
strongest effect on richness of soil fungi, with the diversity of most fun-
gal groups peaking in the tropics, although ectomycorrhizal fungi and
certain fungal classes were most diverse in temperate or boreal ecosys-
tems. Which mechanisms could account for this discrepancy in large-
scale diversity patters of fungi in streams and soils? Environmental con-
ditions and fungal communities in these ecosystems differ inmany fun-
damental ways (Vinson and Hawkins, 2003; Allan and Castillo, 2007;
Gessner et al., 2010; Bärlocher and Boddy, 2016), implying that global
diversity patterns of different taxa in different habitats need not
match, as was also found for litter-consuming detritivores in streams
(Boyero et al., 2011b).

A key difference lies in the effects of precipitation: in terrestrial con-
ditions, where fungal diversity strongly correlates with mean annual
precipitation (Tedersoo et al., 2014). The effect of water availability
may be straightforward and direct by a lack of moisture inhibiting fun-
gal activity or indirect by affecting the level of primary productivity
(Hawkins et al., 2003; Hawkins and Diniz-Filho, 2004). In contrast,
since all the streams in our study were permanent, water scarcity was
unlikely to have had a direct influence. Fungal diversity may neverthe-
less be affected by hydrological disturbances such as floods (which
may displace fungi and their substrates) and droughts (which may
dry stream beds, or, deplete oxygen and concentrate substrates and nu-
trients in the remaining pools; Allan and Castillo, 2007; Larned et al.,
2010).

An important result of our study is the finding that litter-associated
fungi in streams tend to occur in thermal bands, independent of biogeo-
graphic realms. The three fungal clusterswe identified fromdifferent lo-
cations corresponded to distinct ranges of water temperature,
indicating that temperature is key in determining the occurrence and
composition of litter-associated fungi in streams across the globe. This
pattern reflects differences in the preferred thermal ranges of aquatic
hyphomycete species established in laboratory studies for growth
(Suberkropp, 1984), reproduction (Chauvet and Suberkropp, 1998)
and activity (Ferreira and Chauvet, 2011; for a review, see Canhoto
et al., 2016). Thus, given the importance of fungi in litter decomposition
in streams (Cornut et al., 2010; Duarte et al., 2015, 2016), large-scale
variation and temperature shifts due to climate change are likely to
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influence not only the composition of fungal communities but also rates
of carbon and nutrient cycling (Dang et al., 2009; Martínez et al., 2014).

The reason for the dominance of aquatic hyphomycetes in temper-
ate regions (Table S7), and their relative scarcity in tropical regions, is
unknown. In part, this outcome could be an artefact, due to differences
in research efforts and resulting in more limited knowledge of aquatic
hyphomycetes in warmer climates. In addition, aquatic hypomycetes,
even those of tropical origin, are relatively sensitive to elevated temper-
atures (Singh and Musa, 1977; Bärlocher and Boddy, 2016).

Our study suggests that stream fungi associated with decomposing
leaf litter appear to follow the ‘moderate to pronounced endemicity
model’ of microbial biogeography initially proposed for small eukary-
otes (Foissner, 1999), meaning that few species are truly cosmopolitan.
However, this conclusion needs further backing by collections from a
wider range of streams before generalisations about global distribution
patterns can be confidently made. Therefore, future research needs to
include comparisons of a much larger number of distinct locations
under similar climates and at similar latitudes to substantiate whether
community similarity across regions is typically temperature-driven,
as our results suggest.

Published evidence indicates that the biogeography of freshwater
fungi classified as aquatic hyphomycetes is species-specific (Duarte
et al., 2012), and that, as reported here, community composition in geo-
graphically distant locations within comparable climatic zones can be
similar (Duarte et al., 2016). A caveat to such generalisations about bio-
geographic diversity patterns is the fact that fungi undergo distinct suc-
cessions during litter decomposition (Suberkropp, 1984; Gessner et al.,
1993). Evenwithin a stream, leaves collected at different decomposition
stages or in different seasons may harbour different fungal communi-
ties. However, our choice to characterize fungal communities at a de-
fined stage of litter decomposition (i.e. 40–50% of initial litter mass
remaining), when aquatic hyphomycete communities have well
established on decomposing leaves (Gessner et al., 1993), suggests
that consideration of successional changes of fungal communities on
decomposing litter is unlikely to shift the general geographic pattern
observed in our comparative analysis across multiple globally distrib-
uted sites.

The fungal communities in our globally distributed streamswere in-
variably dominated by Ascomycota, as has also been observed in soils
(Schneider et al., 2012). However, fast-growing moulds such as Penicil-
lium and Mucor, yeasts and chytrids were the most abundant fungi in
streamswherewater temperaturewas ≥8.6C (Fig. 3). The one exception
was a stream in Japan which was dominated by aquatic hyphomycetes
(63%; Table S7) located at higher altitude (1076m) than the other loca-
tions (75 to 300 m) within that same water temperature range
(Table 1). This may reflect that altitude in addition to latitude plays a
significant role in structuring fungal communities in streams
(Chauvet, 1991; Shearer et al., 2015), as it also does in sediments (Wu
et al., 2013) and soils (Siles et al., 2017).

Our results point to an overwhelming influence of water tempera-
ture on the overall diversity distribution of litter-associated fungi in
streams and also a strong influence on fungal community composition.
This lends some support to the hypothesis by Bass-Becking (1934),
though there is no evidence that the regions we identified were deter-
mined by continental drift. When looking at aquatic hyphomycetes as
an important subset of stream fungi, it becomes clear that the ability
to widely disperse and colonize geographically distant streams varies
widely and is species-specific.

Global warming is likely to induce shifts in microbial communities
colonizing decomposing litter in streams, particularly in communities
dominated by species adapted to cool environments (Christiansen
et al., 2017) or in those that currently experience minimal temperature
fluctuations, such as streams near the equator (Perez et al., 2016). A cor-
ollary of such community shifts that may involve the loss of key species
is that expression patterns of enzymes essential in litter decomposition
may lead to cascading adverse effects on food webs, alter
biogeochemical cycles (Christiansen et al., 2017) and compromise eco-
system services and human well-being (Chapin III et al., 2000; Sandifer
et al., 2015).

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2019.01.122.
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