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Abstract

This thesis introduces the spectro-computational complexity (SC) ana-
lysis of communication signal algorithms. The SC analysis stems from a
novel mathematical model that unifies indicators of performance of the

information theory, such as capacity, throughput, and spectral efficiency (SE),
along with indicators of the theory of computational complexity (CC), such
as processing runtime, the number of computational instructions and asymp-
totic lower bound. The proposed analysis exploits the fact that both classes
of performance indicators can be written as a function of the signal’s spectral
bandwidth W .

This thesis defines the SC throughput SC(W ) of a communication signal al-
gorithm as the ratio between the number of modulated bits B(W ) and the
CC T (W ) required to turn the bits into the signal. Thus, an asymptotic analysis
on W reveals the necessary CC (or SE improvement) to prevent the nullification
of SC(W ) as W grows. Based on SC(W ), novel definitions derived from and
homologous to concepts of the CC and information theory fields are defined,
such as SC capacity, SC efficiency, optimal SC algorithm, and comp-limited
signals (from computation-limited, as a reference to the homologous power- and
band-limited signal regimes). With the assistance of the SC analysis, novel
capacity-complexity scaling laws are presented for Orthogonal Frequency Divi-
sion Multiplexing (OFDM) and some variants.

In a case study, an optimal mapper for OFDM with Index Modulation (IM) was
designed, implemented, and evaluated. Such ideal mapper reaches the maximal
SE gain over OFDM but its complexity had been considered computationally
intractable by the OFDM-IM literature. Based on the SC analysis, the exact
asymptotic complexity required to sustain the maximal SE gain was demon-
strated as linear (rather than exponential) on the number of subcarriers.

In other case study, it was shown that the complexity of the FFT algorithm
causes the throughput of OFDM to nullify on the number of subcarriers N . The
FFT constraint that N must grow as a power of two 2i (i > 0) translates into
an exponential complexity on i as spectrum widens. In general, it is shown that
the throughput of FFT-based waveforms (e.g. OFDM) nullifies on N unless the
lower bound complexity of the Fourier transform problem verifies as linear on
N , which implies in faster-than-FFT algorithms and remains an open question
in computer science. Based on the SC analysis, an algorithm is proposed to
an alternative formulation in which an N -point transform is replaced by several
smaller transforms. This formulation is employed by OFDM in its vectorized
form (V-OFDM) in order to mitigate the cyclic prefix overhead of OFDM. Thus,
the proposed algorithm can replace FFT in V-OFDM. By relaxing the power
of two constraint of N and, with the parameterization of the number of smaller
transforms, it was verified that the complexity of the proposed algorithm can



grow linearly on N rather than exponentially on i.

The presented case studies illustrate how the SC analysis can guide waveform
designers towards the optimal balance between capacity and complexity in the
extremely large signals expected for future wireless networks.

Keywords: Wireless Signal Performance, Computational Complexity, Chan-
nel Capacity, Index Modulation, Vector OFDM.



Resumo

A presente tese introduz a análise da complexidade eSpectro-
Computacional (SC) para algoritmos de sinais de comunicação. A
análise SC baseia-se em um novo modelo matemático que unifica in-

dicadores de desempenho da teoria da informação como capacidade, débito de
sinal e eficiência espectral (SE), com indicadores da teoria da complexidade com-
putacional (CC) como tempo de execução, número de instruções computacionais
e cota assimptótica inferior de um problema computacional. A análise proposta
explora o facto de que ambas classes de indicadores de desempenho podem ser
escritas como função da largura espectral do sinal W .

Nesta tese, o débito SC SC(W ) de um algoritmo de sinal de comunicação como
a razão entre o número de bits modulados B(W ) e a CC T (W ) necessária para
transformar os bits em sinal. Assim, uma análise assimptótica em W revela a
CC mínima (ou a melhoria de SE) necessária para impedir que SC(W ) tenda
a zero a medida que W cresce. Baseado no débito SC(W ), novas definições
derivadas e homólogas a conceitos dos campos da CC e da teoria da informação
são apresentadas como capacidade SC, a eficiência SC, algoritmo SC óptimo e
sinais comp-limited (do inglês “computation-limited”, em referência aos regimes
homólogos power- e band-limited). Com a assistência da análise SC, novas
leis de escalabilidade conjungando capacidade e complexidade são apresentadas
para a forma de onda OFDM e algumas de suas variantes.

Em um estudo de caso, um mapeador óptimo para OFDM com modulação por
índice (IM) é projetado, implementado e avaliado. O referido mapeador óptimo
maximiza o ganho SE do OFDM-IM sobre o OFDM mas a complexidade result-
ante tem sido conjecturada como intratável pela literatura. Baseado na análise
SC, a complexidade assimptótica exacta necessária para assegurar o ganho SE
máximo foi demonstrada como linear (em vez de exponencial) no número de
subportadoras.

Em outro estudo de caso, verificou-se que a complexidade do algoritmo FFT
faz com que o débito do OFDM tenda a zero a medida que o número de sub-
portadoras N cresce. A limitação da FFT em que N deve crescer como uma
potência de dois 2i (i > 0) leva a uma complexidade exponencial em i a medida
que a largura do espectro aumenta. De forma geral, é mostrado que o débito
de formas de onda baseadas na FFT (e.g. OFDM) tende a zero a menos que
a cota inferior do problema da transformada de Fourier de N pontos verifique-
se como linear, exigindo-se, assim, algoritmos mais rápidos que a FFT, o que
permanece uma questão em aberto da ciência da computação. Com o suporte
da análise SC, um algoritmo é proposto a uma formulação alternativa em que
uma transformada de N pontos é substituida por várias transformadas menores.
Tal abordagem é empregada pela forma de onda OFDM vectorial (V-OFDM)
a fim de mitigar a sobrecarga do prefixo cíclico do OFDM. Assim, o algoritmo
proposto é uma alternativa à FFT no V-OFDM. Pelo relaxamento de N como



potência de dois e com a parametrização do número de transformadas menores,
verificou-se que a complexidade do algoritmo proposto cresce linearmente em N
em vez de exponencialmente em i.

Os estudos de casos apresentados ilustram como a análise SC pode conduzir
projetistas de formas de onda rumo ao balanceamento óptimo entre a capacidade
e a complexidade de sinais extremamente largos esperados nas redes sem fio do
futuro.

Palavras-chave: Desempenho de Sinais Sem Fios, Complexidade Computa-
cional, Capacidade de Canal, Modulação por Índice, OFDM Vectorial.
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Chapter 1
Introduction

“This is life, life is beautiful
and beautiful.”

(Gonzaguinha)

Contents
1.1 Motivation and Problem Statement . . . . . . . . . . 1
1.2 Objectives and Contributions . . . . . . . . . . . . . 3
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . 5

This thesis aims to propose a mathematical model for the joint analysis of in-
dicators of computational complexity – such as processing runtime, number of
computational instructions, and asymptotic lower bound – and information the-
ory – such as capacity, throughput, and spectral efficiency – for communication
signal algorithms and their associated waveforms. This introductory chapter
is organized as follows. Section 1.1 presents motivation and the problem state-
ment. Section 1.2 lists the objectives and summarizes the achieved contributions
and Section 1.3 presents the organization of the thesis.

1.1 Motivation and Problem Statement

Throughput is a classic performance indicator of wireless networks. In general
terms, it captures how many units of information a given solution is able to
transfer within a period of time. In the case of wireless network channels, the
number of units of information (i.e., bits) depends on the range of electromag-
netic waves assigned to the network (i.e., the spectrum bandwidth) and the
ability of the physical layer to put more bits in the spectrum.

The support for faster data rates has been a continuous design target for
wireless network standards. The fifth generation of wireless cellular networks
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CHAPTER 1. INTRODUCTION

Figure 1.1: Growth of the widest supported bandwidth across the evolution
of the IEEE 802.11 WLAN standard [IEEE 802.11, 2016], [802.11,
2013].

(5G) [3GPP, 2018], for example, standardizes the enhanced mobile broadband
(eMBB) data traffic service for applications that demands high data rates. Sim-
ilarly, the evolution of the IEEE 802.11 family of Wireless Local Area Networks
(WLANs) standards has been characterized by the support of faster and faster
wireless services. As one can observe in Fig. 1.1, the widest supported band-
width has doubled across different amendments of the WLAN standard in order
to assure faster data rates.

Despite the recent evolution of the wireless networks, forecasts based on the past
observed data indicate that the mobile traffic will keep growing exponentially
over the next decade, requiring wider spectrum bandwidths to support faster
data rates [Tariq et al., 2020]. In addition to wider bandwidths, clever phys-
ical layer designs are expected to modulate more bits per spectrum in order to
increase the efficiency of the spectrum resources. In order words, the improve-
ment of data rate and spectral efficiency improvement will increase the volume
of data to be processed. Since the computational complexity of communica-
tion signal processing algorithms grow on the number of bits, unprecedented
spectrum bandwidth brings not only faster data rates but also unprecedented
signal processing complexity. This side effect can prevent the achievement of
other performance targets pursued by future communication radio devices such
as portability and power consumption, since these indicators are direct related
to computational complexity [Blume et al., 2002].

The computational complexity resulting from pursuing faster wireless networks
can lead to physical layer designs of unfeasible cost-benefit. In face of that,
it is consensual in the literature that less complex algorithms need to be de-
vised [Zhao et al., 2019]. Indeed, a search by the term “low complexity” in the
IEEE Xplorer digital library reports more than twenty thousand papers in the
broad field of communication signal processing. In spite of that, term “low com-
plexity” seems not to be precisely formalized in the literature. A closer look,
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for instance, reveals that the term can be employed even for exponential-time
algorithms [Siddiq, 2016], [Zheng et al., 2015], [Zhang et al., 2017].

Moreover, because the classic capacity/throughput analysis taught by commu-
nication signal textbooks [Proakis and Salehi, 2008] does not consider complexity
as a component of throughput, it is hard – not to say impossible – for current
mathematical models to calculate the optimal asymptotic balance between com-
plexity and throughput. In other words, it is not possible to calculate the signal
processing lower bound complexity required to sustain the maximum asymptotic
throughput. Similarly, the lack of a unified model also prevents one to answer
whether complexity creates a bottleneck on throughput as the spectrum band-
width gets arbitrarily large. These questions become more critical as wireless
communication standards need to adopt wider bandwidths and more complex
algorithms.

In summary, the central problem of this thesis is that of investigating the math-
ematical relationship between the computational complexity of communication
signal processing algorithms and the throughput of the processed signal. By ad-
dressing that central problem, other related questions can be also formulated
and answered, for example,

• What is the minimal asymptotic complexity required to sustain the max-
imal spectral efficiency of a given waveform?

• How the time complexity of a signal processing algorithm does relate to
(or affect the) capacity of its corresponding communication channel?

• What lower bound asymptotic complexity is required to prevent the nul-
lification of the throughput of the signal as it gets arbitrarily large?

1.2 Objectives and Contributions

In this thesis, we argue that the data rate analysis of wireless communication
signals should encompass indicators of the computational complexity overhead
in order to support the design of faster wireless communication waveforms under
minimal computational complexity. In this sense, we propose a mathematical
model that considers indicators of computational complexity (such as processing
runtime, number of computational instructions and asymptotic lower bound)
and indicators of data rate (such as channel throughput, spectral efficiency and
capacity). Such a joint model can fill gaps left by current heterogeneous view of
the indicators. For example, at times, novel physical layer proposals reach faster
throughput at the expensive of complexity. This hinders the conclusion of com-
parative performance studies of waveforms because the heterogeneous analysis
is unable to reflect the impact of complexity on throughput. Thus, a joint model
can answer whether an increase in complexity does pay off throughput.

In other cases, standardization bodies and spectrum management protocols focus
on a larger spectrum to provide novel wireless communication standards with
faster signal throughput. Conversely, wider signals demand higher processing
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runtime. From this, a waveform designer may wonder whether the throughput
gain implied by spectrum widening suffices to compensate for the processing
time overhead as the spectrum gets arbitrarily larger. In summary, the specific
goals of this thesis can be described as follows:

Goal 1 – Proposing a mathematical model that enable the joint analysis of
indicators of computational complexity and indicators of data rate for
wireless communication signal waveforms;

Goal 2 – Proposing a method to calculate the asymptotic lower bound com-
plexity required by a given physical layer waveform in order to sustain the
maximum asymptotic throughput as spectrum gets arbitrarily large;

Goal 3 – Demonstrating the application of the proposed model by

Goal 3.1 calculating the minimal computational complexity required by
one or more existing physical layer waveforms;

Goal 3.2 re-designing, if necessary, the analyzed physical layer wave-
forms in order to achieve the optimal balance between complexity
and throughput.

As a consequence of meeting the aforementioned goals, this thesis achieved the
following contributions:

• Contribution 1, The Spectro-Computational (SC) Complexity
Analysis
The SC analysis results from a novel mathematical model that unifies
the throughput of signal waveform to the computational complexity of its
associated algorithms. After reviewing the related work, we identified such
homogeneous model lacks in the literature. The SC analysis is based on the
SC throughput SC(W ) = B(W )/T (W ) of a signal processing algorithm
(subsection 3.2.1) which stands for the computational complexity T (W )
spent to modulate B(W ) bits into a W -Hertz wireless symbol. Based on
that, we identify that a signal algorithm is asymptotically scalable if its
throughput does not nullify as the spectrum grows, i.e., limW →∞ SC(W ) >
0. The conditions of scalability for the throughput of algorithms and
waveforms are detailed in subsection 3.2.4. The entire SC complexity
model is presented in chapter 3;

• Contribution 2, Novel Definitions Towards a Unified Theory of
Waveform Throughput and Computational Complexity
By performing an asymptotic analysis on the SC throughput (having W as
variable), Section 3.2.1 presents novel definitions homologous to concepts
of the theory of computational complexity and information theory, such
as SC capacity, SC efficiency and computation-limited signals. We believe
these definitions can serve as foundation for a future unified theory of
capacity and complexity.

• Contribution 3, The Optimal Mapper for OFDM with Index
Modulation
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In Chapter 4, the SC analysis is employed to drive the design of an op-
timal mapper for OFDM with Index Modulation (OFDM-IM). Under its
ideal mapping setup, OFDM-IM reaches its maximum spectral efficiency
(hence, throughput) gain over OFDM. However, such an optimal setup
has been conjectured as computationally intractable by the OFDM-IM
literature [Lu et al., 2018], [Basar et al., 2017]. We employ the SC model
to capture the trade-off between complexity and spectral efficiency and to
calculate the minimum complexity under which the OFDM-IM throughput
maximizes. The minimal complexity can be achieved by means of look-up
tables but subsection 4.5.1 shows that an N -subcarrier OFDM-IM symbol
requires an exponential amount of Θ(2N/

√
N) entries. Subsection 4.5.1

presents an optimal OFDM-IM mapper setup under polynomial (rather
than exponential) storage complexity. However, that polynomial storage
is still asymptotic larger than OFDM’s. Then, subsection 4.5.2 demon-
strates an optimal OFDM-IM mapper running at the same asymptotic
time and storage complexities of an OFDM mapper.

• Contribution 4, Asymptotic Formalization of the Sampling-
Complexity Trade-Off
This thesis formalizes what we refer to as the sampling-complexity (or
Nyquist-Fourier) trade-off, which accounts for the fact that the complex-
ity of batch-oriented signal algorithms (such as FFT) increases as the
Nyquist interval decreases (to improve symbol throughput by gathering
more samples per symbol in multicarrier waveforms). By considering the
time constraint imposed on the sampling theorem, a novel asymptotic com-
plexity lower bound is presented for the frequency-time transform problem
and a practical solution is discussed.

• Contribution 5, Spectro-Computational Analysis of OFDM and
Novel Asymptotic Limits for Fourier Transform Algorithms
This contribution consists of the SC analysis of the OFDM waveform. We
show that the throughput of the asymptotically dominant algorithm of
OFDM (i.e., the Fast Fourier Transform FFT algorithm) nullifies on N .
We analyze an alternative formulation of frequency-time transform and
identified its conditions of scalability as the number of points grow.

1.3 Thesis Outline

The remainder of this thesis is organized in five chapters, as described be-
low.

• Chapter 2 – General Background and Literature Review
Presents the concepts, definitions and basic assumptions of the thesis. The
background comes from computational complexity, analysis of algorithms,
communication signals and information theory. The chapter also reviews
an analyzes the related literature in performance evaluation of signal wave-
forms. A summary points to the need of a joint model between compu-
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tational complexity and indicators of data rate such throughput, spectral
efficiency and capacity;

• Chapter 3 – The Spectro-Computational Complexity Model
Introduces the novel definitions and methodology for the joint model of
computational complexity and indicators of data rate of signals waveforms.
A step-by-step illustrative analysis is performed on the basic OFDM wave-
form;

• Chapter 4 – Optimal Mapper for OFDM with Index Modulation
Studies the problem of enabling the ideal mapping setup of the OFDM-
IM waveform in order to maximize spectral efficiency gain over OFDM.
Reviews the literature showing that OFDM-IM mappers are restricted to
compromise approaches that either sacrifices spectral efficiency or com-
putational complexity. Employs the SC model to calculate the minimum
complexity under which the spectral efficiency maximizes and presents two
designs of optimal mappers;

• Chapter 5 – Is FFT Fast Enough for Beyond 5G Communica-
tions?
Reports a detailed joint study of capacity and complexity for the OFDM
waveform under arbitrarily large signals. Demonstrates that the through-
put scalability of the basic OFDM waveform requires a lower bound com-
plexity of Ω(N) to the N -point Fourier transform problem, which remains
an open question in computer science. This implies that the FFT al-
gorithm prevents the scalability of the OFDM throughput as N grows.
Presents an alternative and scalable Fourier transform solution for OFDM
in its vectorized form.

• Chapter 6 – Conclusion and Future Work
Presents the conclusions of this thesis, as well as the research directions
for future work.
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Chapter 2
General Background and Literature
Review

“A journey of a thousand
miles begins with a single
step.”

(Lao Tzu)
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This chapter introduces the theoretical background and the related liter-
ature of the mathematical model proposed in this thesis. The chapter
is organized as follows.

Section 2.1 presents the reference radio architecture and the information theory
performance indicators referred to along this thesis. Section 2.2 reviews the
main concepts and terminologies of computational complexity employed in the
mathematical model introduced in this work. Section 2.3 reviews and analyzes
the literature in performance evaluation of communication signal algorithms and
waveforms. Finally, section 2.4 summarizes the chapter.
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CHAPTER 2. GENERAL BACKGROUND AND LITERATURE REVIEW

Figure 2.1: Basic In-Phase/Quadrature (I/Q) radio architecture model.

2.1 System and Terminology

In this section, we review the basic terminology, notation and definitions that
comes from communication signal and the information theory fields. In subsec-
tion 2.1.1, we present the reference radio architecture model for the work. In
subsection 2.1.2, we review the OFDM waveform that constitutes the base for
the multicarrier waveforms studied in the remainder of this work. In subsec-
tion 2.1.3, we review information theory performance indicators for communic-
ation signals such as capacity, throughput and spectral efficiency.

2.1.1 Radio Architecture Model

Nowadays wireless telecommunication signal waveforms such as Wi-Fi and cellu-
lar networks are based on the basic In-phase/Quadrature (IQ) radio architecture
illustrated in Fig. 2.1. This architecture has also been considered for future wire-
less communication standards [Huang et al., 2019], [Madanayake et al., 2020a].
Next, we overview this architecture for multicarrier signals studied throughout
this work.

At the IQ transmitter, the radio reads a sequence of data bits from the upper
layers of the network stack. The bits undergo several computations by a sequence
of communication signal algorithms that forms the so-called digital back-end
of the radio. The radio back-end can be defined either by software – through
General Purpose Processors (GPP) or Field Programmable Gate Array (FPGA)
– or hardware through, for instance, Application-Specific Integrated Circuits
(ASICs).

The outcome of the radio back-end is the digital time domain baseband signal,
i.e., a sequence of complex numbers whose real and imaginary parts are labeled
as in-phase (I) and quadrature (Q), respectively. Each of these components goes
through a particular Digital-to-Analog Converter (DAC) to be translated to the
analog domain aiming to modulate the carrier frequency. The modulation con-
sists in multiplying the I and Q components of the baseband signal to the cosine
and sine waves generated from the Local Oscillator (LO), respectively.

The LO generates a carrier frequency fc Hz of a real-valued magnitude cos(2πfct)
at each time instant t seconds. This carrier is meant to be the real part of the
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Figure 2.2: Basic waveform of OFDM transmitter that can implement the digital
back-end of the radio architecture shown in Fig. 2.1).

final complex RF signal and is modulated by the in-phase component of the
analog baseband signal. Another copy of the carrier produced by the LO is shif-
ted by 90◦ degrees, yielding a signal of magnitude sin(2πfct) that is modulated
by the component Q of the baseband signal and is added to the in-phase part
of the waveform. The magnitude of the final complex-valued RF signal s(t) is,
therefore,

s(t) = I cos(2πfct) + Qj sin(2πfct) (2.1)

The resulting shape of the modulated signal waveform and number of bits it
carries depend on the logic implemented in the digital back-end. For this reason,
the sequence of communication signal algorithms of the radio’s back-end are
popularly referred to as “waveform” in comparative studies of future standards
e.g. [Doré et al., 2017]. We adopt this terminology throughout this work.

At the receiver, homologous reverse steps are performed to recover the digital
baseband signal from the analog carrier. Particularly, two Analog-to-Digital
Converters (ADCs) sample the complex W -Hz analog signal at a sample rate
fs and an inter-sample time interval TNY Q according to the so-called Shannon-
Nyquist sampling theorem [Nyquist, 1928], [Shannon, 1949]. Considering the
double DAC/ADC architecture, these quantities are such that

fs ≥ W samples/second (2.2)
TNY Q = 1/fs seconds (2.3)

For comprehensive explanation about the IQ radio architecture, please refer to
classic textbooks in the field such as [Proakis and Salehi, 2008], [Luzzatto and
Shirazi, 2016].

2.1.2 OFDM Waveform

The basic digital back-end of an OFDM radio is illustrated in Fig. 2.2. It is
an example of waveform that fills the digital back-end of Fig. 2.1. Because of
its cost-benefit between computational/transceiver complexity and throughput
performance, OFDM is not only the dominant waveform of nowadays wireless
network standards but it has also been considered as reference for future stand-
ards [Zaidi et al., 2016].

The sequence of communication signal algorithms of the basic OFDM waveform
transmitter are Mapper, Inverse Discrete Fourier Transform (IDFT) and Cyclic
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Prefix (CP) insertion. The OFDM mapper maps bits into complex symbols
taken from a M -point constellation diagram. The “translation” task of the
mapper is usually performed in parallel but some particular implementations
can be serialized. This is the case of software-defined radio implementations
in which the number of available processors is usually less than the number of
subcarriers to map. Each complex point mapped to a subcarrier represents a
sequence of log2 M bits (M = 2p, p > 0) and the number of bits in the N -
subcarrier OFDM symbol is

BOF DM = N log2 M bits (2.4)

The Table 2.1 exemplifies the bit-to-point correspondence of the Quadrature
Phase Shift Keying (QPSK) constellation diagram that is adopted by the IEEE
802.11 standard [802.11, 2013].

The IDFT algorithm translates the discrete OFDM symbol from frequency
domain to time domain. Denoting i =

√
−1 and e = limx→∞(1 + 1/x)x =

2.718281 . . . , IDFT computes N time domain samples Yt (t = 0, 1, · · · , N − 1)
from N frequency domain samples Xk (k = 0, 1, · · · , N − 1) as follows

Yt =
N−1∑
k=0

Xkej2πkt/N t = 0, 1, · · · , N − 1 (2.5)

At the receiver, a DFT algorithm takes the signal back from time to the fre-
quency domain by performing

Xk =
N−1∑
t=0

Yte
−j2πkt/N k = 0, 1, · · · , N − 1. (2.6)

To avoid that a symbol overlaps with delayed copies of prior transmitted sym-
bols – which lasts distinct periods by traveling over the different paths of the
multipath propagation effect – OFDM introduces a guard time at the beginning
of each time domain symbol that consists of its last Ncp samples. Considering
that TSY M time domain samples are produced by IDFT, the overall duration
TOF DM of the OFDM symbol enlarges by Tcp seconds as follows [Viswanathan
and Mathuranathan, 2018],

TOF DM = TSY M + Tcp seconds (2.7)
Tcp = NcpTSY M/N seconds (2.8)

At the OFDM receiver, the signal is processed in the inverse sequence of the
transmitter for homologous algorithms, namely, CP remover and DFT and
demapper. The demapping task is assisted by a detection algorithm to com-
pute the most likely bit sequence from each received frequency domain noisy
symbol.
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Table 2.1: Bit-to-point correspondence of IEEE 802.11 QPSK constellation dia-
gram.

Transmission
Bits I Q

00 −1 −1
01 −1 +1
10 +1 −1
11 +1 +1

2.1.3 Information Theory Performance Indicators

The throughput achieved by a given B-bit TSY M -seconds symbol waveform pro-
posal is determined from the symbol data rate R in bits per seconds (bps), which
is

R = B/TSY M bits/seconds (2.9)

The channel capacity C is the maximum error-free transmission rate achieved by
a communication channel [Shannon, 1948] which is also known as the Shannon-
limit. That work is among the founding pillars the information theory research
field. Under a Signal-to-Noise Ratio (SNR) of SNR (unitless), the capacity of
a W Hertz (Hz) channel disturbed by additive white Gaussian noise (AWGN)
is given by

C = W log2(1 + SNR) bits/seconds (2.10)

Assuming an average received power of P and a noise power density of N0 in
the spectrum bandwidth W , the SNR is given by

SNR = P
WN0

(2.11)

When SNR is much larger than zero (SNR ≫ 0 dB) in Eq. 2.10, the channel
follows the so-called bandwidth-limited regime (a.k.a. band-limited) in which
the capacity grows approximately linearly on the bandwidth. Indeed, spectrum
widening has been commonly adopted to enable faster wireless communication
standards over the past few years [802.11, 2013], [IEEE 802.11, 2012]. Moreover,
spectrum management techniques have been exploited as well e.g. cognitive
radios [Akyildiz et al., 2006].

To enable the desired linear performance of band-limited regime in future ex-
tremely wide bandwidth waveforms, the SNR must be kept sufficiently large
as W grows. This means that the received power P must improve to com-
pensate the overall resulting noise WN0 and to assure at least a constant SNR as
W →∞. Towards that, novel techniques such as massive Multiple Input, Mul-
tiple Output (MIMO) [Maruta and Falcone, 2020], adaptive power control [Chi-
ang et al., 2008] and multiuser MIMO [Liao et al., 2016] have been envisioned to
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provide the SNR implied by the band-limit regime. Hence, for a real constant
k ≥ 1, it is assumed that

lim
W →∞

log2

(
1 + P

WN0

)
= k ≥ 1, (2.12)

from which,

C = Wk (2.13)

By contrast, under SNR ≪ 0 dB, capacity becomes insensitive to bandwidth
leading to the so-called the power-limited regime. We assume the band-limited
regime in the remainder of this work unless differently mentioned.

The division of R by the amount W Hz of spectrum consumed by the symbol,
one gets the spectral efficiency of the waveform – a.k.a. bandwidth efficiency or
spectral bit rate – which is

S = R/W bits/seconds/Hz (2.14)

In OFDM and its variants, the subcarrier orthogonality imposes

∆f = 1/TSY M Hz, (2.15)

which yields a bandwidth of

WOF DM = N∆f (2.16)
= N/TSY M Hz (2.17)

Under a sampling rate fs = W samples per second, and considering Eq. 2.17,
the Eq. 2.3 for OFDM rewrites as

TNY Q = 1/W seconds, (2.18)

which results in an overall OFDM symbol duration of

TSY M = NTNY Q seconds (2.19)

Considering the number of bits per symbol (Eq. 2.4), the respective data rate
ROF DM and spectral efficiency SOF DM of an N -subcarrier OFDM symbol mod-
ulated by an M -ary constellation diagram can be written as [Basar et al.,
2013],

ROF DM = BOF DM/TOF DM bits/seconds (2.20)
SOF DM = BOF DM/(N + Ncp) bits/seconds/Hz (2.21)
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2.2 Computational Complexity

In this section, we present the main notations and definitions related to the
asymptotic analysis of algorithms. These definitions will support the develop-
ment of the spectro-computational complexity analysis of algorithms we propose
throughout this thesis.

2.2.1 Asymptotic Analysis

The asymptotic notation due to [Landau, 1909], [Bachmann, 1894] enables one
to compare the order of growth of two given functions f(N) and g(N). In the
analysis of algorithms, these functions capture the “complexity” of a given al-
gorithm meaning that they quantify the amount of consumed computational re-
sources upon an input of length N . Common resources are storage or number of
computational instructions, usually referred to as “space” and “time” complex-
ities, respectively. These measures are taken based on a given computational
model. In this work, we assume the classic Random-Access Machine (RAM)
model which is shown to be equivalent to the universal Turing machine [Cook
and Reckhow, 1972].

The RAM model focus on counting the amount of basic computational instruc-
tions (e.g., data reading, data writing, basic arithmetic, data comparison) re-
gardless of the technology of the underlying computational apparatus. For ex-
ample, based on the RAM model, one verifies that a classic N -subcarrier BPSK-
modulated OFDM mapper needs to map N bits into N real numbers. Thus, the
overall time computational resources of any implementation requires N compu-
tational instructions, be them implemented sequentially on a software-defined
radio or in parallel on a dedicate circuit.

The asymptotic analysis of algorithms concerns about classifying the order of
growth of the complexity functions. Thus, the analysis considers N →∞ rather
than specific values of N . Besides, it is assumed non-negative increasing func-
tions whose limits limN→∞ f(N)/g(N) and limN→∞ g(N)/f(N) do exist.

The main asymptotic notations to describe and compare the performance of
algorithms are big O (O(g(N))), big omega (Ω(g(N))), big theta (Θ(g(N))),
little o (o(g(N))) and little omega (ω(g(N))). These notations are sets of func-
tions that satisfy a property related to the order of growth g(N) given in the
parenthesis of the notation. As usual, we adopt the popular version of the nota-
tion in which the symbol “∈” is replaced by the symbol “=”. For example,
in f(N) = O(g(N)), f(N) belongs to the set O(g(N)) because it satisfies a
property related to the order of growth of g(N). In particular,

f(N) = O(g(N))⇔
O(g(N)) = {f(N)|∃c0 > 0, N0 > 0|f(N) ≤ c0g(N),∀N ≥ N0} (2.22)

The property of the set 2.22 states that f(N) is asymptotic equal or less than
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g(N). Informally, this means that it is possible to find out a curve with the
same order of growth of g(N) (i.e. c0g(N)) that remains larger than f(N) from
the constant N0 on the abscissa axis. This rationale applies inversely to the big
omega notation, meaning that

f(N) = Ω(g(N))⇔
Ω(g(N)) = {f(N)|∃c0 > 0, N0 > 0|f(N) ≥ c0g(N), ∀N ≥ N0}, (2.23)

and

f(N) = O(g(N)) ⇔ g(N) = Ω(f(N)) (2.24)

Assuming that f(N) and g(N) are monotonically increasing functions and that
the limits below do exist, both big O and big Omega notations can be intuitively
expressed as follows [Cormen et al., 2009]

f(N) = O(g(N))⇔
O(g(N)) = {f(N)| lim

N→∞
f(N)/g(N) > 0} (2.25)

f(N) = Ω(g(N))⇔
Ω(g(N)) = {f(N)| lim

N→∞
g(N)/f(N) > 0} (2.26)

In the case of f(N) = o(g(N)) notation, the property demands that all non-
negative increasing functions with the same order of growth of g(N) must be
larger than f(N) from their respective constant N0 on the abscissa axis. This
means that the order of growth of f(N) is strictly less than g(N) and can be
formalized as

f(N) = o(g(N))⇔
o(g(N)) = {f(N)|∀c0 > 0,∃N0 > 0|f(N) < c0g(N),∀N ≥ N0} (2.27)

Demonstrating the inequality f(N) < c0g(N) for all possible functions with
the same order of growth of g(N) may be cumbersome. An alternative way to
prove the property of Eq.1 2.27 consists in solving the limit limN→∞ f(N)/g(N)
(assuming it does exist). In particular,

f(N) = o(g(N)) ⇔ lim
N→∞

f(N)/g(N) = 0 (2.28)

This rationale applies inversely to the little omega notation, meaning that

f(N) = ω(g(N))⇔
ω(g(N)) = {f(N)|∀c0 > 0, ∃N0 > 0|f(N) > c0g(N),∀N ≥ N0}, (2.29)

1The signal ‘=’ means ‘∈’ in asymptotic notation. Thus, the term “Equation” is abuse of
term.
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Table 2.2: Asymptotic notations: c0, c1, N0 and k are non-negative constants
and f(N) and g(N) non-negative increasing functions.

Notation Property Description

f(N) = o(g(N)) limN→∞ f(N)/g(N) = 0 Order of growth of f(N)
less than g(N)

f(N) = ω(g(N)) limN→∞ f(N)/g(N) =∞ Order of growth of f(N)
larger than g(N)

f(N) = O(g(N)) {f(N) ≤ c0g(N) ∀N0 ≥ N} Order of growth of f(N)
less than or equal to g(N)

f(N) = Ω(g(N)) {f(N) ≥ c0g(N) ∀N0 ≥ N} Order of growth of f(N)
larger than or equal to g(N)

f(N) = Θ(g(N))
{c0g(N) ≥ f(N) ≥ c1g(N)
∀N0 ≥ N} or
limN→∞ f(N)/g(N) = k

Order of growth of f(N)
equal to g(N)

and

f(N) = ω(g(N)) ⇔ lim
N→∞

f(N)/g(N) =∞ (2.30)

f(N) = o(g(N)) ⇔ g(N) = ω(f(N)) (2.31)

The big theta notation relates functions of the same order of growth. This can
be formalized as

f(N) = Θ(g(N)) ⇔ f(N) = O(g(N)) ∧ f(N) = Ω(g(N)) (2.32)

Considering c as a non-negative constant, the property of the big theta notation
can be alternatively written as

f(N) = Θ(g(N)) ⇔ lim
N→∞

f(N)/g(N) = c > 0 (2.33)

Other useful properties of asymptotic notations are given below considering c
as a non-negative constant. In Table 2.2, we summarize the properties and
description of the main asymptotic notations.

c ·O(f(N)) = O(f(N)) (2.34)
f(N)± g(N) = Θ(max {f(N), g(N)}), (2.35)

max {· · · } gives the largest order of growth among the listed
functions.

g(N) · f(N) = O(f(N) · g(N)) (2.36)
(2.37)
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2.2.2 Useful Definitions

The asymptotic notation is employed in the analysis of algorithms to formal-
ize some basic definitions related to computational complexity such as “optimal
algorithm”, “complexity lower bound”, “tractable algorithm” and “intractable
algorithm”. These definitions are formalized having computational complexity as
the unique performance indicator of the analysis. For the class of communication
signal processing algorithms considered in this work, indicators of communica-
tion performance such as signal capacity, throughput and spectral efficiency are
also as relevant as the signal processing complexity. However, these performance
indicators are not considered in the classic asymptotic definitions of the analysis
algorithms. To support the specialization of these definitions throughout this
thesis proposal, in this subsection we review some key definitions of asymptotic
complexity.

Based on the properties of asymptotic notation, one verifies that the asymptotic
complexity of a procedure consisted of a sequence of subroutines – as is the
case of sequence of DSP algorithms that compose a waveform – is big theta of
the most complex subroutine. Such routine is named the asymptotic dominant
algorithm of the entire routine. Formally, if G subroutines have complexities
T1(N), · · · , TG(N), respectively, and Ti(N) (0 ≤ i ≤ N) is the complexity of the
asymptotic dominant algorithm, then the overall asymptotic complexity T (N)
is

T (N) = T1(N) + · · ·+ TG(N)
= Θ(max{T1(N), · · · , TG(N)})

T (N) = Θ(Ti(N)) (2.38)

The asymptotic lower bound of a computational problem corresponds to the order
of growth of the fastest possible algorithm for the problem and can be described
with the notation Ω. It is the intrinsic minimum complexity holding not only
for existing algorithms but also for the ones to be devised. For this reason, a
precise lower bound may be hard to identify. In these cases, loose lower bounds
can serve as reference by considering that at least N computational instructions
are needed to read an N -size input yielding a lower bound of Ω(N)2.

In other cases, the lower bound of a computational problem can demand a num-
ber of instructions that is asymptotic larger than the length of the input. For
example, the problem of sorting an N -size array by means of comparisons has a
lower bound of Ω(N log2 N) [Cormen et al., 2009]. By contrast, the lower bounds
for other problems still remain open in the literature, leading to some conjec-
tures. For example, the “Fast Fourier Transform” (FFT) algorithm popularly
assigned to [Cooley and Tukey, 1965]3 remains the fastest procedure to handle

2Not all problems demand a minimum of N instructions to read the input. For instance,
the problem of finding a key in a given N -node self-balanced tree demands no more than
O(log2(N)) steps.

3The current oldest reference to the FFT method is due to Carl F. Gauss [Heideman et al.,
1985]. The work due to [Cooley and Tukey, 1965] is recognized as an independent redis-
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the Discrete Fourier Transform (DFT)4 since 1965. This leads some to conjec-
ture that the lower bound of the problem is Ω(N log2 N) [Ailon, 2015].

For other problems, the lower bounds are proved to be exponential (usually
denoted as Ω(2N) for an N -length input problem). In this case, the problem is
defined as intractable whereas problems that can be decided under polynomial
complexity are classified as tractable [Cormen et al., 2009].

In the field of communication signal processing, optimal signal detectors are
typical example of computationally intractable problems. This stems from the
fact that some optimal detector formulations e.g, [Basar et al., 2012] must com-
pute a maximum likelihood metric between the received signal and each possible
signal modulation shape of the system. Since the search space grows exponen-
tially on the spectral bandwidth in those systems, no polynomial algorithm can
meet the formal definition of such optimal detection. These situations are usu-
ally overcome by means of heuristics, that slightly relax optimality on behalf of
complexity. In the case of communication signal detectors, several near-optimal
polynomial time heuristics have been proposed [Guerreiro et al., 2013], [Ochiai,
2003].

An asymptotically optimal algorithm is such that its worst-case computational
complexity runs as fast as the lower bound verified for its corresponding compu-
tational problem. Note that, in theory, this definition also encompasses intract-
able problems. However, in practice, the terminology is usually employed only
for tractable algorithms. The definition of optimal algorithm considered in this
thesis refers to algorithms of tractable problems unless otherwise stated.

2.3 Related Work

In this section, we review the literature on signal communication performance
indicators. In subsection 2.3.1, we report some research efforts towards the joint
analysis of distinct communication signal processing performance indicators. In
subsections 2.3.2 and 2.3.3, we summarize the literature and identify the need
for a unified model between computational complexity and indicators of capacity
(such as throughput and spectral efficiency), respectively.

2.3.1 Hybrid Signal Performance Indicators

The design of a novel waveform is a complex task that targets several distinct
performance indicators. An ideal waveform would score best in all of them. How-
ever, in practice, the performance ranking among distinct waveforms varies de-
pending on the assessed indicator. In this context, some research efforts propose
analytical methodologies that relate distinct performance indicators through a

covery of that work.
4Assuming that the length of the input is a power of two.
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single mathematical model. These joint analyses are specially useful to calculate
the ideal balance between performance indicators that face a trade-off.

We find out that unified proposals of computational complexity and indicators
of communication speed such as capacity, throughput, and spectral efficiency
are scarce in the literature. By contrast, the relevance of unified models can
be verified through other signal waveform performance indicators. Next, we
review and summarize some of these proposals and discuss the need for a joint
capacity-complexity model.

2.3.1.1 Fundamental Information Theory Metrics and Derivations

In his classic work that originated the information theory, [Shannon, 1948] es-
tablishes the relationship between the bandwidth W of a continuous-time analog
Gaussian channel and its maximum capacity in bits per seconds. This imposes
a theoretical upper bound for the capacity C(W ) bps of a communication sig-
nal. For the family of N -subcarrier signals considered throughout this work, the
intercarrier space ∆f Hz is usually a fixed configuration parameter whereas N
varies depending on the channel conditions. Thus, the signal capacity C(W )
can be conveniently described as function of N rather than W .

[Nyquist, 1928] identified the foundations for the so-called sampling theorem5,
which relates the bandwidth of a signal to its minimum required sampling rate
that ensures a sufficiently precise translation between the analog and digital ver-
sions of the signal. According to [Luke, 1999], the fundamental work of [Shannon,
1949] brought the sampling theorem to the broad attention of communication
engineers.

Ever since, several other works build upon the works of Shannon and Nyquist.
In [Chen et al., 2013], [Chen et al., 2014], for example, authors concern about
the maximum achievable analog channel capacity under different sub-Nyquist
sampling regimes for constant frequencies with perfect known information.
In [Chen et al., 2017], the authors study the relationship between maximum
capacity and sub-Nyquist rates for scenarios where the active range of frequen-
cies is not known in advance e.g. cognitive radios.

2.3.1.2 Spatial Area, Energy Efficiency and Deployment Metrics

In [Alouini and Goldsmith, 1999] and [Alouini and Goldsmith, 1997], authors
identify a trade-off between channel reuse efficiency – which measures the ability
of a cellular system to use the same frequency at spatially separated locations
– and link quality per user. Because neighboring base stations may partially
overlap coverage area, mobile devices might experience distinct maximum data

5The foundations for the sampling theorem was independently reported by several distinct
researchers. Throughout this work, we adopt the widely known label “Nyquist sampling
theorem”. Please, refer to the entry “Nyquist–Shannon sampling theorem ” of Wikipe-
dia [Wikipedia, 2020] for a historic overview.
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rates depending on their location in the cell, thereby there is a relationship
between maximum spectral efficiency and area of coverage. Thus, the authors
define the Area Spectral Efficiency (ASE) (in bits/Hertz/meters) as the sum of
the maximum average data rates per unit bandwidth per unit area supported
by a cell’s base station.

ASE is further enhanced to account trade-offs with other performance indic-
ators such as energy efficiency [Lanhua et al., 2017] and delay sensitive net-
works [Makki et al., 2017]. [Richter et al., 2009] introduce the notion of area
power consumption which is given in Watts per square kilometer. The metric is
defined as the ratio between the average transmission power consumed in a cell
and the corresponding average cell area measured.

[Chen et al., 2011] focus on unifying the study of performance indicators for green
networks considering mainly transmission power (Watts) and energy efficiency
(bits/Joule). They propose a joint trade-off analysis between the following pairs
of metrics: deployment efficiency vs. energy efficiency, spectral efficiency vs.
energy efficiency, bandwidth capacity vs. power consumption, and delay vs.
power consumption.

Some studies specialize the joint spectral and energy efficiency analyses for par-
ticular scenarios of Multiple Input and Multiple Output (MIMO) systems. This
is the case of [Salh et al., 2019], [Hei et al., 2019], [Mukherjee and Mohammed,
2015], and [Heliot et al., 2012] for downlink MIMO, massive MIMO, power-
constrained MIMO and Rayleigh MIMO channels, respectively.

2.3.1.3 Computational Complexity and Power Consumption

The complexity of an algorithm measures its performance regarding a given
metric such as the number of computational instructions, runtime or storage
(a.k.a “space”). According to [Fortnow and Homer, 2003], the main definitions
for the formal expression of the complexity of algorithms are due to [Hart-
manis and Stearns, 1965]. The analysis of an algorithm is the process through
which its complexity is obtained. The introduction of the term “analysis of al-
gorithms” is popularly assigned to Donald Knuth that mentions it the 1968’s
edition of [Knuth, 1997].

Studies concerning computational complexity and energy consumption consider
either Very Large-Scale Integration (VLSI) circuits or software implementations
that correspond to low and high level implementations of an algorithm, respect-
ively.

[Jain et al., 2005] started the discussion towards an energy complexity model for
algorithms inspired by the classic asymptotic analysis of algorithms. The au-
thors present an enhanced version of the Turing machine to account the energy
cost to switch between different units of the processor. The proposed machine
parameterizes the amount of computation, communication and memory of an
algorithm – as well as the trade-offs among them – to measure the energy con-
sumption. The authors also present a case study demonstrating the trade-off
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between energy and space memory in the FFT algorithm.

2.3.1.4 Other Studies

Other studies somehow merge communication and complexity aspects but
without capturing the asymptotic growth of complexity and throughput of a
waveform.

[Thompson, 1979] relate the asymptotic complexity of Discrete Fourier Trans-
form (DFT) algorithms to the asymptotic silicon area required to deploy them
on a chip. In [Thompson, 1980], the analysis is applied to derive the asymptotic
bounds of other kind of algorithmic problems, such as sorting.

Some theoretical proposals employ the term “complexity” to study aspects of
communication other than the amount of consumed computational resources, as
is the case of this thesis. This is the case of the communication complexity the-
ory and the Kolmogorov complexity. The communication complexity [Rao and
Yehudayoff, 2020] concerns about the minimum number of message exchanges
to solve a problem whose input parameters are distributed among entities of
a network. Thus, although that theory concerns about communication, the
term “complexity” stands for the number of messages transmitted in the net-
work.

In turn, the algorithmic information theory [Chaitin, 1987], [Kolmogorov,
1998], [Solomonoff, 1960], also known as Kolmogorov complexity, relates the
Shannon’s information theory to the Turing’s computational model aiming to
identify the irreducible form of an information, i.e., the shortest computer pro-
gram that produces the information. In this case, the term “complexity” stands
for the shortest length of a string that represents the information. The string
can be either the transmission information or the algorithmic source code of a
computer program that generates the information. For example, assuming a
computer model in which the string “x^y” returns the result of the real number
“x” raised to the real number power “y”, the 4-length algorithmic string “10^6”
shortens the 7-length string representation “1000000” of the decimal number
‘one million’.

Therefore, nor the communication complexity theory nor the Kolmogorov com-
plexity concern about the relation between the communication signal throughput
and the computational complexity required to process the signal.

2.3.2 Summary of Literature

We categorize the performance analysis metrics of waveforms into two broad cat-
egories that we refer to as Channel Performance Indicators (CPIs) and Device
Performance Indicators (DPIs), respectively. The choice for this categorization
approach reflects the performance indicators we concern throughout this thesis.
More precisely, CPIs refer to the performance metrics assessed from or related
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Figure 2.3: Map of research efforts towards joint analysis of distinct signal per-
formance indicators.

to the communication channel. Metrics of this category are link delay, spa-
tial reuse, signal strength and indicators of capacity such as throughput and
spectral efficiency. In turn, DPI refer to performance indicators assessed at the
communication device. The main metrics of this category are computational
complexity and sampling rate which also directly affect the power consumption
of the device.

In Fig. 2.3, we present a conceptual map illustrating how the performance ana-
lysis proposals derive from CPI and DPI metrics. We dispose DPI and CPI
metrics on the left- and right-hand sides of the map, respectively, and the
joint performance analysis proposals based on both categories in-between. Such
graphical disposal highlights that few works of the reviewed literature concern
about a joint analytical model between CPI and DPI metrics. For example, we
identified that only [Chen et al., 2013], [Chen et al., 2014], [Chen et al., 2017]
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concern about the joint analysis of two performance indicators of distinct cat-
egories, namely, sampling rate from DPI and capacity from CPI. In particular,
we find no unified model embracing the indicators of performance considered in
this thesis, namely, computational complexity and indicators of capacity such
as spectral efficiency and throughput.

2.3.3 Why a Joint Throughput-Complexity Model?

The fact that few progress has been achieved towards a model that supports
the joint throughput-complexity analysis can also be verified by looking at re-
cent comparative studies about the performance of different waveform propos-
als.

The expectation for massive channel bandwidths in future millimeter waves and
Terahertz wireless networks aims to unleash unprecedented data rates. As a
side effect, the augmented complexity required to process extremely wide signals
leads to a capacity-complexity trade-off that has gained increasing attention in
the communication signal processing literature.

[Letaief et al., 2019], for instance, argue that the scenario of mmWave wireless
networks will “significantly affect the transceiver architecture and algorithm
design” of future waveforms. The authors argue that the hardware changes
required to achieve Terabytes per second data rates will affect the design of
signal processing techniques.

[Zaidi et al., 2016] remark that computational complexity imposes a major chal-
lenge for small form-factor mobile base stations, in which the energy and com-
putational constraints limit the computational complexity budget for the digital
back-end. Thus, complexity should be considered a cost-effective metric in the
implementation of waveforms modulated in digital domain.

[Rappaport et al., 2019] argue that the power consumption induced by the pro-
cessing overheads of future massive channel bandwidth may lead the classic Fast
Fourier Transform (FFT) algorithm to be replaced by approximate FFT (AFFT)
variants, in which the fidelity of the frequency/time conversion is penalized –
causing the impairment of Signal-to-Noise Ratio (SNR) – to save computations.
In a sense, this argument envisions scenarios in which computational complexity
becomes more relevant than other classic waveform design performance indicat-
ors such as Bit Error Rate (BER). [Xiao et al., 2017] opine that “fully digital
mmWave MIMO implementations are currently infeasible from a cost-efficiency
perspective”. They argue that signal processing techniques must be redesigned
to enable good trade-off between the spectral efficiency and energy consump-
tion/hardware cost.

Despite the intrinsic connection between capacity and computational complex-
ity for communication signal waveforms, both indicators have been considered
aside from each other by current studies [Gerzaguet et al., 2017], [Doré et al.,
2017], [Zaidi et al., 2016]. This may reflect the fact that these performance in-
dicators come from heterogeneous fields of knowledge. Besides, with the release
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of extremely wide bandwidths, the joint capacity-complexity waveform compar-
ison need to be performed asymptotically on the spectrum. In other words,
comparisons need also to be performed under the assumption of arbitrarily large
spectrum rather than on particular limited values of spectrum.

2.4 Summary

In this chapter, we presented the background and related literature of this thesis.
We reviewed the IQ radio architecture model and classic concepts based on which
we derive the analytical model proposed and applied throughout this work. From
the field of communication signal processing, we reviewed the concepts of symbol
throughput, spectral efficiency, channel capacity, signal sampling and band- and
power-limited signal regimes. In turn, from the field of computational complex-
ity, we reviewed concepts of computational complexity lower bound, asymptotic
optimal algorithm, tractable and intractable algorithms. We also reviewed the
basic OFDM waveform to exemplify the analytical model proposed in this thesis.
Moreover, the joint throughput-complexity optimizations proposed in chapters 4
and 5 are for variants of OFDM. Besides, we also analyzed the literature in per-
formance evaluation of communication signal waveforms to motivate the need
for a joint capacity-complexity model.
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Chapter 3
The Spectro-Computational
Complexity Analysis

“You can’t connect the dots
looking forward; you can only
connect them looking
backwards.”

(Steve Jobs)
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This chapter builds on [Queiroz et al., 2019] and [Queiroz et al., 2020] to introduce
a mathematical model for the Spectro-Computational complexity (SC) analysis
of communication signal algorithms and waveforms. The model considers in-
dicators of performance from the theory of computational complexity (such as
number of computational instruction, processing runtime and lower bound com-
plexity) along with indicators of performance from the theory of information
such as capacity, throughput and spectral efficiency. Based on that, the model

— 25 —



CHAPTER 3. THE SPECTRO-COMPUTATIONAL COMPLEXITY
ANALYSIS

can capture the intrinsic relation between both classes of indicators thereby en-
abling one to identify whether the impairment of time complexity does pay off
for the improvement of throughput as the signal spectrum gets arbitrarily large.
Moreover, the model enables one to calculate the minimum computational com-
plexity required to achieve maximal asymptotic throughput for a given waveform
design.

The chapter is organized as follows. Section 3.1 and Section 3.2 present a ra-
tionale and the formalization of the SC analysis, respectively. Section 3.3 ex-
plain how the presented definitions relate and derive from the definitions of
computational complexity and information theory. Section 3.4 presents a step-
by-step SC analysis of the basic OFDM waveform and Section 3.5 summarizes
the chapter.

3.1 Rationale of the Proposal

Typical communication signal performance indicators such as symbol through-
put and capacity capture the number of transported bits per unit of time without
considering the necessary signal processing overhead. Usually, signal throughput
metrics and computational complexity have traditionally been handled as hetero-
geneous and uncorrelated performance indicators by signal processing [Proakis
and Salehi, 2008] and algorithms textbooks [Cormen et al., 2009], [Knuth, 1997],
respectively. This assumption can be verified even in performance models that
capture the throughput above the physical layer in which the signal processing
computational complexity is assumed as negligible e.g. [Bianchi, 2000], [Queiroz,
2013], [Daneshgaran et al., 2008]. The implicit assumption in those analyses is
that radio engineers scale the hardware processing capabilities such that the sig-
nal baseband runtime is bounded by a constant value as the symbol throughput
grows.

In practice, the overall digital signal processing runtime must not be longer
than the symbol period TSY M imposed by the sampling theorem. Formally, if
the total amount of computational instructions to assembly an N -subcarrier
baseband symbol is T (N) and each instruction takes κ seconds in average, then
the radio design must ensure that

κT (N) ≤ TSY M (3.1)

Therefore, based on the sampling theorem [Shannon, 1949] [Nyquist, 1928], clas-
sic waveform capacity measures (such as symbol throughput and spectral effi-
ciency) assume that all signal baseband computations take no more than the
symbol period, irrespective of the number of performed computational instruc-
tions. As channel width gets wider across novel wireless network standards, the
number of computational instructions grows, requiring more expensive designs
to keep the runtime within the symbol period.

Moreover, by considering computational complexity aside from capacity meas-
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Figure 3.1: Die micrograph comparison of OFDM with 64-point FFT [Thom-
son et al., 2002] (left-hand side) and 512-point FFT [Davila et al.,
2015] (right-hand side). If the transceiver computational complexity
does not grow on the number of points then the processing runtime
can nullify the signal throughput improvement. This throughput-
complexity trade-off is not captured by the classic symbol data rate
analysis.

ures, current analytical methodologies are unable to establish a fair cost-benefit
comparison among candidate waveforms in the race towards future wireless net-
work standards. Indeed, to outperform a given waveform design from the per-
spective of the spectral efficiency analysis, a novel proposal must manage to con-
vey more bits in the same amount of spectrum during the same symbol period.
In turn, the assignment of more spectrum to a given waveform suffices to cause
the channel throughput to increase. In any of these cases, the analyses ignore
the side-effect of capacity improvement on computational complexity.

To illustrate the prior explanation, consider the following example. In an IEEE
802.11a radio [IEEE 802.11, 2012], a 64-subcarrier OFDM symbol is processed
in up to TSY M = 3.2 µs. Under this same symbol period deadline, an IEEE
802.11ac radio finishes the entire baseband computation of a 512-subcarrier
OFDM symbol, yielding a gain of eight times from the perspective of the classic
symbol throughput analysis. However, such analysis does not capture the extra
complexity cost of the IEEE 802.11ac solution. If one considers, for instance, the
O(N log2 N) complexity of the FFT algorithm, the 512-subcarrier solution needs
roughly (512 log2 512)/(64 log2 64) = 12× more computational instructions than
the 64-subcarrier solution.

With the end of the Moore’s law, it is no more possible to keep improving the pro-
cessing capabilities without penalizing cost and area [Chen et al., 2019], [Haron
and Hamdioui, 2008], [Moore, 2003]. Indeed, Fig. 3.1 presents the OFDM radio
transceiver die micrograph of a 64-point FFT [Thomson et al., 2002] and a 512-
point FFT [Davila et al., 2015], respectively. Clearly, the 64-point FFT solution
corresponds to circa one fourth of the chip area whereas the faster 512-point one
is nearly half the entire project.

More efficient signal processing algorithms can alleviate the hardware design
budget but, in some cases, minimum complexity prevents both the spectral ef-
ficiency and the throughput maximization [Queiroz et al., 2020]. Finding the
minimum asymptotic complexity for a given waveform setup might be hard to
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accomplish if throughput and complexity are handled as uncorrelated perform-
ance indicators as usual in comparative studies of future waveforms [Conceição
et al., 2020], [Schaich and Wild, 2014].

3.2 Proposed Mathematical Model

In this section, we introduce the fundamental definitions and concepts of the SC
model. Since the main goal of the SC model is to support the joint throughput-
complexity analysis of communication signal algorithms and waveforms, we also
refer to it as “SC analysis” in a reminiscence to the term “asymptotic analysis”
in the theory of computational complexity.

3.2.1 Spectro-Computational Throughput, Capacity and Effi-
ciency

In Fig. 3.2, we illustrate the general system model of the SC analysis. In the
analog part of the radio, the transmitted N -subcarrier symbol has W Hz of
spectrum bandwidth and takes TSY M seconds to carry B(W ) bits through the
wireless channel. The DAC takes one complex sample every TNY Q seconds fol-
lowing the sampling theorem thereby leading to TSY M = NTNY Q seconds. As
reviewed in Section 2.1.3, these variables compose the classic signal performance
analysis such as symbol throughput (Eq. 2.9), capacity (Eq. 2.10) and spectral
efficiency (Eq. 2.14).

3.2.1.1 Spectro-Computational Throughput

The digital back-end of the radio architecture shown in Fig. 3.2 comprises a
sequence of G communication signal processing algorithms. These algorithms
work to turn the B(W ) transmission bits into the equivalent digital complex
baseband signal. The computational complexity of the i-th(1 ≤ i ≤ G) al-
gorithm is denoted as Ti(B(W )). Both B(W ) and Ti(B(W )) are assumed as
non-null, non-negative monotonically increasing functions1 of W .

From this, we define the SC throughput of the i-th signal processing algorithm
as

SCi(W ) = B(W )
Ti(B(W ))

bits/instructions (3.2)

The SC throughput is reminiscent to the classic symbol throughput R =
B/TSY M (Eq. 2.9) with the difference that the B bits “propagates” through
the algorithm rather than through the channel. Thus, the time complexity
Ti(B(W )) replaces the channel symbol duration TSY M .

1If 0 < x ≤ y then 0 < B(x) ≤ B(y).
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Figure 3.2: General scheme of the spectro-computational complexity analysis.

As in the analysis of algorithms, in the SC analysis the computational complexity
Ti(B(W )) measures the number of computational instructions demanded by a
particular algorithm under an input of length B(W ). Hence, the throughput2 is
given in bits per computational instructions. Note, however, that the conversion
to bits/seconds is straightforward if the wall-clock time spent by each computa-
tional instruction on the particular baseband processor is given. For this reason,
we consider both units as interchangeable and the entire waveform throughput
SC(W ) accounts not only the time TSY M spent by the symbol duration but also
the computational complexity overhead. Therefore,

SC(W ) = B(W )∑G
i=1 Ti(B(W )) + TSY M

bits/seconds (3.3)

Note that the Eq. 3.3 is the classic symbol throughput R (Eq. 2.9) with the time
duration added by the overhead of the computational complexity.

Eq. 3.3 captures the fact that a signal going through the channel does necessar-
ily need a pre-processing, hence a computational overhead is inevitable. Thus,
from the perspective of a layer immediate above the physical layer, there is no
difference whether the overall time to transmit/receive the bits is due to signal
processing overhead or symbol duration time. This way, the signal processing
and the channel transmission time can be seen as a single extended entity. Con-
sequently, if the computational complexity overhead is sufficiently large, the
throughput or capacity efficiencies can be nullified. This possibility will be cap-
tured by the formalism we introduce next.

The SC study of a waveform is an asymptotic analysis on the variable spec-
trum bandwidth3 In other words, we are concerned about the symbol throughput
and the computational complexity of the waveform as W → ∞. Thus, based

2Hereafter, the term “throughput” stands for spectro-computational throughput unless oth-
erwise stated.

3Our choice for the term “spectro-computational” analysis comes from the fact that both the
spectrum bandwidth is the common element for the symbol’s computational complexity
and number of modulation bits.
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on the properties of the asymptotic notation, the asymptotic dominant signal
processing algorithm of the waveform can be denoted as

T (B(W )) = O(
G∑

i=1
Ti(B(W ))) (3.4)

and the waveform asymptotic throughput results

SC(W ) = lim
W →∞

B(W )
T (B(W )) + TSY M

bits/seconds (3.5)

To ensure increasing symbol throughput as W grows, the overall symbol duration
must not grow on W (as previously discussed in Subsection 3.1) In this context,
we assume

TSY M = Θ(1) seconds (3.6)

As usual in asymptotic analysis, constants can be neglected. Thus, differently
from the classic symbol throughput analysis, we focus on the computational
complexity overhead to define the throughput in the SC analysis. From Eqs. 3.5
and 3.6, in Def. 1, we introduce the throughput of a particular communication
signal processing algorithm whereas in Def. 2, we define the throughput of an
entire waveform.

Definition 1 (Spectro-Computational Complexity Algorithmic Throughput). Let
Ti(B(W )) be the computational complexity of the i-th communication signal
processing algorithm of a waveform whose digital back-end comprises a sequence
of G algorithms (1 ≤ i ≤ G) and the transmission symbol carries B(W ) bits on
W Hz of spectra. We define its spectro-computational (SC) complexity through-
put as

SCi(W ) = B(W )
Ti(B(W ))

bits/seconds (3.7)

and its SC asymptotic throughput as

SCi(W →∞) = lim
W →∞

B(W )
Ti(B(W ))

bits/seconds (3.8)

Definition 2 (Spectro-Computational Complexity Waveform Throughput). Let
T (B(W )) (Eq. 3.4) be the asymptotically dominant algorithm of the waveform
referred to by Def. 1. Then, we define the spectro-computational complexity
throughput of the waveform as

SC(W ) = B(W )
T (B(W ))

bits/seconds (3.9)
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and its SC asymptotic throughput as

SC(W →∞) = lim
W →∞

B(W )
T (B(W ))

bits/seconds (3.10)

3.2.1.2 Remarks

About the limits of Defs. 1 and 2, it is important to remark that we are not
assuming signals of infinite bandwidth. Instead, we are concerned about both
the symbols’ number of bits and computational complexity as the spectrum
bandwidth tends to infinity. In this case, assuming the limit SC(W ) exists, the
SC throughput analysis can reflect whether the increase of the spectrum causes
a time complexity bottleneck that nullifies the algorithmic throughput.

One may also remark that the existence of the limit in Eq. 3.5 may conflict with
the assumptions about B(W ) and T (B(W )) (i.e., increasing functions). Indeed,
by definition of calculus, the solution of the limit requires the same result for
both W → +∞ and the W → −∞. From this, one may wonder about a symbol
of negative number of bits and computational instructions. This is the same
dilemma faced by the computer scientists when classifying the complexity of
algorithms with the limit property of the little o, little omega or bit theta nota-
tions. Of course, those properties assume neither input problems of negative
lengths nor algorithms that perform a negative quantity of computational in-
structions. Actually, the negative quantities are implicitly assumed only for the
sake of the proof of the limit. Alternatively, one may consider only the one-sided
left-handed limit under which W → +∞.

3.2.1.3 Spectro-Computational Efficiency

The spectral efficiency formula (Eq. 2.14) can be enhanced to account the sig-
nal processing overhead similarly to Eq. 3.3 for the classic symbol throughput
formula. We refer to it as the SC efficiency (SCE) that is given as

SCE(W ) =

B(W )∑G
i=1 Ti(B(W )) + TSY M

W
bits/seconds/Hz (3.11)

In the case of waveforms running under the Nyquist sampling theorem, the
entire signal processing runtime overhead ∑G

i=1 Ti(B(W )) (Eq. 3.3) must respect
the Nyquist time interval TNY Q. Some waveforms requires at least one batch-
oriented algorithm whose unit of operation is a set of signal samples. This is
the case, for instance, of an N -subcarrier OFDM symbol, in which the FFT
algorithm operates on a batch of N samples (i.e., symbols) before feeding the
DAC sampler. Since the symbol occupies W Hz of spectrum during TSY M =
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NTNY Q seconds, then

G∑
i=1

Ti(B(W )) ≤ TSY M = NTNY Q (3.12)

In the case of batch-oriented waveforms, the spectral efficiency metric (Eq. 2.14)
fails to reflect the time/spectrum performance experienced by a particular sym-
bol because the symbol cannot occupy the spectrum before it finishes being
processed. By accounting the signal processing overhead along with the symbol
duration, one gets the spectro-computational efficiency (Eq. 3.11). The impact
of accounting the computational complexity is specially relevant for implement-
ations of waveforms whose overall processing runtime is nearly as high as the
symbol duration, i.e., ∑G

i=1 Ti(B(W )) = TSY M (e.g. [Tan et al., 2011], [Zacheo
et al., 2012]). In that case, the SC efficiency reveals that the complexity over-
head impairs the classic spectral efficiency S (Eq. 2.14) by a factor of two, as
shown in the ratio

S

SCE(W )
= B(W )/WTSY M

B(W )/(2WTSY M)
= 2 (3.13)

The Eq. 3.13 implies that the complexity causes the symbol to experience a
bandwidth twice narrower. This is the same result obtained by the traditional
spectral efficiency analysis when the time occupying spectrum doubles but the
number of points remains the same.

3.2.1.4 Spectro-Computational Complexity Capacity

Similarly to the concept of channel capacity, the SC asymptotic capacity stands
for the upper bound SC throughput of a signal processing algorithm or wave-
form. The maximum number of bits given by a channel capacity model can be
employed to determine the SC capacity of a communication signal algorithm
and, consequently, of an entire waveform. However, since the SC throughput
also depends on the computational complexity, faster algorithms also translate
into better throughput. Therefore, in the SC analysis, the definition of asymp-
totic capacity depends both on the bits computed from the channel capacity
as well as the asymptotic complexity lower bound of the implied waveform al-
gorithms.

Assuming waveform algorithms that work on a symbol-by-symbol basis, one
needs to calculate the maximum number of bits BMAX(W ) a single TSY M -second
W -Hz symbol can convey. Taking as reference the Shannon’s channel capacity
model [Shannon, 1948], the symbol capacity CSY M(W ) is readily obtained from
Eq. 2.10, which is

CSY M(W ) = TSY MW log2

(
1 + P

WN0

)
bits/seconds (3.14)
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Thus, since an algorithm cannot modulate more than the number of bits given
by the symbol capacity (Eq. 3.14, assuming the Shannon limit), the maximum
number of bits given as input to a waveform is

BMAX(W ) = TSY MW log2

(
1 + P

WN0

)
bits, (3.15)

in the duration of one symbol, i.e., TSY M seconds.

Assuming that the capacity grows linearly under the band-limited regime
(Eq. 2.13) and the fact that the symbol duration must remain as W grows
(Eq. 3.6), the following asymptotic relationship results

BMAX(W ) = O(W ) bits (3.16)

From Eq. 3.15, we introduce two different concepts of SC capacity that differ
slightly from each other, namely, the SC algorithmic capacity and the SC
waveform capacity. These concepts are are formalized in Defs. 3 and 4 and
establish bounds for the SC throughput of a communication signal algorithm
and a particular implementation of a waveform, respectively. Please, recall
that both definitions assume band-limited signals such that the Signal-to-Noise
Ratio (SNR) is sufficiently large (Eq. 2.12) to enable the linear growth of the
channel capacity.

Definition 3 (Spectro-Computational Algorithmic Capacity). Let Li(B(W )) be
the asymptotic complexity lower bound of the computational problem handled
by the i-th signal processing algorithm of a given G-algorithm waveform. Let
also BMAX(W ) (Eq. 3.15) be the maximum number of bits given as input to
the waveform. Then, the SC asymptotic capacity SCi(W ) of the i-th waveform
algorithm (Def. 1) is upper bounded as follows

SCi(W ) = O

(
BMAX(W )
Li(BMAX(W ))

)
(3.17)

Based on the Shannon theorem, Def. 3 tells us that a communication signal
processing algorithm cannot reach its SC capacity in practice unless i) the
asymptotic number of modulated bits grows at least linearly on the bandwidth
(Shannon limit) ii) the algorithm runs in optimal complexity, i.e., lower
bound complexity. In turn, the spectro-computational complexity capacity
of a waveform is obtained from the maximum number of bits supported by a
symbol and the most complex lower bound among the computational problems
associated to the waveform signal processing.

Definition 4 (Spectro-Computational Waveform Asymptotic Capacity). Let
Li(B(W )) be as in Def. 3 and L(B(W )) = Θ(∑G

i=1 Li(B(W ))) be the asymptotic
dominant complexity lower bound among the algorithms of a G-algorithm wave-
form. Then, the SC waveform throughput SC(W ) (Def. 2) is upper bounded as
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follows

SC(W ) = O

(
BMAX(W )
L(BMAX(W ))

)
(3.18)

3.2.2 Optimal Spectro-Computational Algorithm and Waveform

Based on Def. 3, we specialize the concept of asymptotically optimal algorithm
for the class of communication signal algorithms. The specialization stems
from the fact that our definition is based on the SC capacity (Def. 3) which
comprises not only the lower bound time complexity requisite but also the
upper bound throughput.

Definition 5 (Asymptotically Optimal Spectro-Computational Algorithm). The
i-th communication signal processing algorithm referred to by Def. 3 is SC op-
timal if, and only if, its SC throughput SCi(W ) is such that

SCi(W ) = Θ
(

BMAX(W )
Li(BMAX(W ))

)
(3.19)

Note that, as the definition of asymptotically optimal algorithms of the theoret-
ical computer science, the definition of asymptotically optimal SC algorithm also
comprises exponential time algorithms. This is the case of intractable algorithms
whose asymptotic lower bound is exponential on the input length.

In some cases, an exponential complexity may be required to meet a given tar-
get of signal communication performance. This is the case, for instance, of the
optimal signal detection problem in some waveforms [Basar et al., 2012]. As ex-
plained in Subsection 2.2.2, some optimal detectors must compute a maximum
likelihood metric between the received signal shape and each possible signal
modulation of the system. If the detection search space grows exponentially on
a variable of the system (e.g., spectral bandwidth [Mao et al., 2018], number of
antennas [Albreem et al., 2019]) then the complexity required by the optimal
detection grows accordingly. The exponential complexity of detection can be
handled by heuristics that relaxes optimality of the detection. In these cases,
very good heuristics reach near-optimal detection while preserving polynomial
time complexity and minimum impact on the overall system performance [San-
dell et al., 2016].

Other more exotic alternative towards the efficient execution of complex
algorithms is the development of beyond-Turing (yet-under-debate) com-
putational models [Deutsch, 1985],[Traversa et al., 2015]. These models
inspire computational apparatus that are expected to handle the intrinsic
complexity of some signal processing problems (e.g., detection [Botsinis et al.,
2013]) in future wireless communications standards [Nawaz et al., 2019]. Def. 6
formalizes the optimal implementation of a waveform in terms of SC throughput.
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Definition 6 (Asymptotically Optimal Spectro-Computational Waveform). The
waveform implementation referred to by the Def. 4 is SC-optimal if, and only if,
its SC waveform throughput SC(W ) is such that

SC(W ) = Θ
(

BMAX(W )
L(BMAX(W ))

)
(3.20)

This means that a waveform implementation must abide to achieve an asymp-
totic throughput as fast as SC capacity which also is equivalent to say that the
implementation modulates the maximum number of bits of the waveform spend-
ing the minimum possible asymptotic computational complexity. This differs
from Def. 3 by the fact that the asymptotic throughput of the waveform imple-
mentation can grow slower than the SC capacity as the spectrum gets wider.

3.2.3 Computation-Limited Signals

The concepts of throughput and capacity rely on the ratio bits/complexity of
the SC throughput. If the computational complexity is asymptotically larger
than the number of bits, the computational overhead becomes a bottleneck that
nullifies the throughput as spectrum bandwidth W widens. However, the fact
that the throughput of a particular algorithm nullifies on W does not neces-
sarily mean that the waveform throughput nullifies as well. Indeed, if a more
efficient algorithm or modulation technique is found, a better throughput can
be achieved. Conversely, if the SC capacity nullifies on W then no algorithm
is able to achieve better SC throughput. In this case, the waveform need to be
redesigned to rely on less complex computational problems or to modulate an
asymptotically larger number of bits per spectrum.

The fact that the asymptotic capacity of some signal algorithms and waveforms
can be null as W grows gives room for a novel category of waveforms that
complements the classic band- and power-limited classes of signals. We refer
to this novel class of waveform as comp-limited signal (from computational
complexity-limited signals) whose description is given in Def. 8 based on the
Def. 7.

Definition 7 (Comp-Limited Signal Algorithm). Let SCi(W ) be the throughput
of an optimal SC algorithm (i.e., SCi(W ) is as efficient as the SC algorithmic
capacity). Then, such communication signal algorithm is limited by computation
(i.e., comp-limited signal algorithm) if

SCi(W ) = lim
W →∞

B(W )
Ti(B(W ))

≤ 0, (3.21)

where Ti is the computational complexity of the i-th communication signal pro-
cessing algorithm of the waveform.

Recalling that the throughput of an optimal SC algorithm is as efficient as its
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corresponding upper bound throughput (i.e., it is as fast as the SC algorithmic
capacity, Def. 3), Eq. 3.21 can be alternatively written as

lim
W →∞

BMAX(W )
Li(BMAX(W ))

≤ 0, (3.22)

where Li(BMAX(W )) is the computational complexity lower bound of the
computational problem handled by the i-th communication signal processing
algorithm of the waveform.

Definition 8 (Comp-Limited Signal Waveform). A waveform is limited by com-
putation (i.e., comp-limited) if at least one of its algorithms is comp-limited
(Def. 7).

From the properties of asymptotic notation, a comp-limited signal whose optimal
asymptotic dominant algorithm is as complex as T (W ) can be alternatively
expressed as

B(W ) = o(Ti(B(W )), (3.23)

i.e., the number of bits B(W ) modulated in a W -Hz symbol grows slower than
the symbol processing complexity Ti(B(W )) as the spectrum bandwidth W gets
wider.

3.2.4 Condition for the Scalability of Throughput

In a comp-limited signal waveform, the complexity constitutes a bottleneck for
the throughput because it grows faster than the number of modulated bits.
To prevent the throughput nullification, an asymptotic higher number of bits
should be modulated in the signal or less complex algorithms should be devised.
This leads to the condition of throughput scalability given by the Proposition 1.

Proposition 1 (Condition for Scalable Throughput). The asymptotic throughput
SC(W ) of a signal waveform does not scale unless it meets Ineq. 3.24.

SC(W ) = lim
W →∞

B(W )
T (B(W ))

> 0 (3.24)

Proof. In essence, the above proposition concerns about which quantity grows
asymptotically faster on the spectrum bandwidth W towards infinity, namely,
the number of modulated bits B(W ) or the computational complexity T (B(W ))
required to process the bits. If T (B(W )) grows asymptotically faster than
B(W ) (i.e., B(W ) = o(T (B(W ))) then increasing W does not translate into
larger throughput as usually expected. Indeed, if B(W ) = o(T (B(W )) then
B(W )/T (B(W )) = 0 as W → ∞ (Eq. 2.28) meaning that the SC throughput
nullifies on W . By contrast, if B(W ) grows faster or as fast as T (B(W )) (i.e.,
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B(W ) = Ω(T (B(W ))), from Eq. 2.26, it follows that the SC throughput does
not nullify on W . ■

Proposition 1 can constitute a practical design target for designers of on-demand
spectrum waveforms. In other words, the proposition can formally identify the
best throughput/complexity cost-benefit among distinct candidate waveforms
of standards that aim to support very fast data rate applications such as the
enhanced Mobile Broadband (eMBB) traffic service of 5G [Yu et al., 2017].

3.3 Relation to Complexity and Information Theory

In Fig. 3.3, we present a conceptual map that illustrates how the novel defin-
itions (rectangles) of the SC analysis relate to (links) the basic concepts of
computational complexity and information theory and communication signal
analysis. The basic concepts from computational complexity are disposed on
the left-hand side of the map and are algorithm (for communication signal),
asymptotic complexity, problem complexity lower bound and optimal complex-
ity algorithm. In turn, the basic concepts from the communication signal field
are disposed at the right-hand side of the map and are waveform (given by a
sequence of algorithms), spectral bandwidth, symbol throughput, channel ca-
pacity and both the channel capacity regimes, namely, band-limited and power
limited regimes.

The definitions introduced by the SC analysis are placed in-between the con-
cepts of computational complexity and communication signal processing. The
central definition of the SC analysis is the SC throughput (in bold) that can be
employed as a performance indicator for a particular communication signal pro-
cessing algorithm or a sequence of communication signal processing algorithms
(link 0). The SC throughput is built on the concept of asymptotic complex-
ity from the field of computational complexity and on the concepts of spectral
bandwidth and symbol throughput from the field of signal processing (link 1).
The SC throughput is bounded by the SC capacity (link 2), which is the ratio
between the maximum number of bits given by the channel capacity and the
problem complexity lower bound (link 3). The SC capacity can be employed
to characterize the comp-limited regime (link 4) which stands for the class of
algorithms whose throughput nullifies as the spectrum bandwidth grows. Be-
sides, the SC capacity also does stand for the SC throughput of an an optimal
SC algorithm (link 5).

The map of Fig. 3.3 also identifies some homologous concepts between the SC
analysis and its reference fields. The comp-limited signal regime introduced by
the SC analysis is homologous to the band- and power-limited signal regimes of
the information theory and communication signal processing field. The defini-
tion of an optimal SC algorithm is a specialization of the optimal complexity
algorithm of the computational complexity theory. Finally, the SC capacity is
reminiscent to the concept of channel capacity.
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Figure 3.3: How novel definitions of the SC analysis derive from and relate to ba-
sic concepts of computational complexity and communication signal
processing fields.
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3.4 Step-by-Step SC Analysis of OFDM

In this section, we illustrate the application of the SC asymptotic analysis
through a step-by-step example based on the basic OFDM transmitter.

3.4.1 Asymptotic Growth of Basic OFDM Parameters

The SC asymptotic study of a waveform is performed having the signal band-
width W as variable. In the family of OFDM waveforms, the bandwidth WOF DM

is given by N∆f Hz, in which ∆f Hz is the inter-carrier space. Letting W →∞
for the sake of the asymptotic analysis, it follows that

lim
WOF DM →∞

WOF DM = lim
N∆f→∞

N∆f Hz (3.25)

To ensure that an increasing number N of subcarriers translates into larger
symbol throughput, the system must produce more time samples per OFDM
symbol without enlarging the symbol duration. This means that the inter-
sample time interval TNY Q decreases on N whereas N is kept constant. In
asymptotic notation, this means

TNY Q = Θ(1/N) (3.26)
TSY M = Θ(1) (3.27)

In OFDM and variants that keep subcarrier orthogonality, it is known that
the symbol duration is inverse to the inter-carrier space, i.e., ∆f = 1/TSY M .
Therefore, from Eq. 3.27, one gets,

∆f = Θ(1) (3.28)

Thus, by considering that both ∆f (Eq. 3.28) and TSY M (Eq. 3.27) are Θ(1) with
relation to the number N of subcarriers, the asymptotic bandwidth of OFDM
rewrites as

lim
WOF DM →∞

WOF DM = ∆f lim
N→∞

N Hz (3.29)

WOF DM = Θ(N) (3.30)

In other words, the adoption of N as the variable of the asymptotic analysis is
equivalently to W .

To determine the number of bits per symbol B(N), we refer to the band-limited
regime in which the growth of capacity is dominated by bandwidth rather than
SNR. In particular, SNR is bounded by a constant (Eq. 2.12)

SNR = P
N∆fN0

= Θ(1) (3.31)
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otherwise either the Shannon capacity (Eq. 2.10 ) nullifies or the regime switches
to power-limited. This means that the linear growth of the OFDM capacity in
the band-limited regime is due to the raise of N rather than the number of bits
per subcarrier. Thus, the size of the constellation diagram M = 2p (p ≥ 0) that
modulates each subcarriers is such that

M = Θ(1), (3.32)

from which the number of bits per subcarrier follows,

B(1) = log2 M

B(1) = Θ(1) (3.33)

Therefore, the total number of bits in a N -subcarrier OFDM symbol is such
that

B(N) = Θ(N) (3.34)

Let TMAP (N), TDF T (N) and TCP (N) denote the complexities of the OFDM
mapper, IDFT and the CP adder, respectively (see Section 2.1.2). Then, the
overall spectro-computational throughput of the OFDM waveform is

SC(N) = B(N)
TMAP (N) + TDF T (N) + TCP (N) + TSY M

bits/instructions

(3.35)

One may wish to enhance Eq. 3.35 to account the computational complexity
overhead in order to assess the point-to-point SC analysis. This would double the
overall time computational complexity. However, our focus goes to an asymp-
totic analysis on N aiming to understand the SC limit of the waveform as band-
width grows across novel generation of wireless networks. In this case, constants
can be neglected as usual in asymptotic analysis. Denoting T (N) as the asymp-
totic dominant algorithm of OFDM, the SC asymptotic throughput of OFDM
finally rewrites as

T (N) = O(TMAP (N) + TDF T (N) + TCP (N) + TSY M) instructions

SC(N) = lim
N→∞

B(N)
T (N)

bits/instructions (3.36)

Table 3.1 summarizes the asymptotic growth of the OFDM parameters with
relation to the spectral bandwidth W .

3.4.2 Spectro-Computational Complexity Capacity of OFDM

To determine the maximum asymptotic throughput of an OFDM transmitter one
may refer both to the maximum number of bits per symbol and the asymptotic
complexity lower bound associated to the computational problems handled by
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Table 3.1: Asymptotic growth of OFDM parameters with relation to the number
of subcarriers N .

OFDM
Variable

Asymptotic
Relation to N

WOF DM Θ(N)
∆f Θ(1)

TNY Q O(1/N)
TSY M Θ(1)

SNR Θ(1)
M Θ(1)
B(N) Θ(N)

OFDM. Both performance indicators are respectively analyzed next. Then, we
discuss the conditions to classify OFDM either as a comp-limited or a non comp-
limited signal.

3.4.2.1 Maximum Asymptotic Number of Bits of OFDM

The maximum asymptotic number of bits BMAX can be given by the num-
ber of bits of the Shannon capacity. Under the band-limited regime, it is
BMAX = O(WOF DM) (Eq. 3.16). Recalling that WOF DM = N∆f and ∆f =
Θ(1) (Eq. 3.28), N is asymptotic equivalent to W , then,

BMAX = O(N) bits (3.37)

3.4.2.2 Asymptotic Complexity Lower Bound of OFDM

The asymptotic lower bound of OFDM is readily obtained from the asymptotic
lower bound of each computational problem it handles with, namely, mapping,
Fourier transform and CP addition. Of these, we found only discussions about
the Fourier transform problem lower bound. This may reflect the fact that the
Fourier transform problem covers a broad range of applications of distinct input
lengths, whereas symbol mapping and CP addition are particular to OFDM.
Besides, OFDM algorithms have usually standardized to operate on inputs of
small fixed lengths, which dispenses the need for asymptotic studies such as the
derivation of their asymptotic lower bounds. Conversely, we discuss the Ω classes
of these problems having in mind the unprecedented growth of their inputs in
future terahertz wide waveforms.

• Symbol mapping problem lower bound: By operational definition,
any OFDM mapper must take N sequences of log2 M bits as input and
must give N complex baseband frequency domain samples (from an M -
point constellation diagram) as output measuring O(log2 M) bits each.
Thus, at least N log2 M bits must be read at the input and NO(log2 M)
bits are written at the output, yielding a complexity lower bound of
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Ω(N log2 M). Under the band-limited regime, one gets M = Θ(1)
(Eq. 3.32), yielding a final complexity lower bound of Ω(N) for the OFDM
symbol mapping problem;

• Fourier transform problem lower-bound: The FFT al-
gorithm [Cooley and Tukey, 1965] is currently the fastest known
algorithm for the Fourier transform problem. It outperforms the basic
Fourier algorithm from O(N2) to O(N log2 N) if N is a power of two.
That is the reason why communication standards adopt a power of two
for the number of OFDM subcarriers [IEEE 802.11, 2012]. Since at least
O(N) computational instructions must be performed, a natural question
is whether any to-be-invented algorithm is able to operate on O(N)
complexity in practice. Because there is no proof that such an algorithm
is impossible to devise, whether the exact asymptotic lower bound of the
Fourier problem is Ω(N) or Ω(N log2 N) remains an open question in the
literature [Lokam, 2009].

• CP Addition problem lower-bound: by operational definition, the CP
addition read a fraction N/c (for a constant c > 0) of an N -point symbol
as input and gives N + N/c points as output. Since N/c = O(N), the
complexity lower bound of any implementation is Ω(N).

From the prior analysis, the asymptotic complexity lower bound of OFDM
LOF DM(N) is

LOF DM(N) = Ω(N) + Ω(FT ) + Ω(N), (3.38)

in which Ω(FT ) is the yet unknown asymptotic lower bound of the Fourier
transform problem. Considering the maximum asymptotic number of bits in
the OFDM symbol (Eq. 3.37), the SC capacity that bounds the SC throughput
SC(N) of OFDM is such that

SC(N) = O

(
BMAX(N)
LOF DM(N)

)
bits, (3.39)

i.e., the asymptotic SC throughput of the N -subcarrier OFDM waveform grows
slower or, at most, as fast as the ratio between the maximum asymptotic number
of bits per symbol BMAX(N) and the computational complexity lower bound
LOF DM(N) required to process the bits.

3.4.3 Is OFDM a Comp-Limited Signal?

Because the asymptotic complexity lower bound Ω(FT ) of the Fourier problem
remains unknown, so does the asymptotic growth of LOF DM(N) and, therefore,
it is still not possible to determine whether the OFDM throughput is limited
by computation as N grows. However, because the hypothesis for Ω(FT ) are
either Ω(N) (i.e., faster or as fast as linearly on N) or ω(N), (i.e., faster than
linearly on N), the lower bound of OFDM is restricted either to Ω(N) or ω(N).
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If, for instance, FFT is confirmed as the asymptotically fastest algorithm ever,
then Ω(FT ) = Ω(N log2 N). Based on the unique mutually exclusive hypothesis
for Ω(FT ), we formulate the Proposition 2.

Proposition 2 (Condition for Non Comp-limited OFDM Signal). The basic
OFDM waveform is limited by computation (i.e., comp-limited signal, Def. 8)
unless the asymptotic lower bound of the Fourier transform algorithm verifies
as Ω(N), i.e., the complexity of the fastest possible Fourier transform algorithm
grows linearly on N .

Proof. Let us assume that FFT is confirmed as the fastest Fourier transform
algorithm ever. In that case, Ω(FT ) verifies as N log2 N = ω(N) and the SC
asymptotic capacity bounding the OFDM throughput is given by a limit that
nullifies as N grows, namely,

SC(N) = lim
N→∞

N

N + N log2 N + N
= 0 (3.40)

Otherwise, the minimum possible order of growth of any is Ω(N). In that case,
the SC capacity of OFDM does not nullify as N gets arbitrarily large, being
bounded by a non null constant c as follows

SC(N) = lim
N→∞

N

N + N + N
= c > 0 (3.41)

Therefore, the OFDM waveform is a comp-limited signal unless the asymptotic
lower bound of the Fourier transform problem verifies as Ω(N). ■

Proposition 2 tells us that one might devise a faster-than-FFT algorithm to
enable the scalability of OFDM SC throughput. As a workaround for that, one
may concern on re-designing the OFDM waveform in a way to pack more bits
per symbol – as pursued by OFDM with Index Modulation (OFDM-IM) [Basar
et al., 2013] – or requiring less complex algorithms – as is the case of the Vector
OFDM waveform (V-OFDM) [Xiang-Gen Xia, 2001].

In this sense, in chapters 4 and 5, we perform the SC analysis of OFDM-IM and
V-OFDM, respectively. In each chapter, we demonstrate that the SC throughput
of each waveform nullifies on N and show the conditions to turn them into non
comp-limited signals.

3.5 Summary

In this chapter, we introduced the spectro-computational (SC) complexity ana-
lysis for wireless communications waveforms. In the SC analysis, we defined the
SC throughput of an N -subcarrier waveform and their communication signal
algorithms as the ratio of the number of bits carried by the symbol and the
computational complexity to process the symbol. Based on that, we derived
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novel definitions from (and homologous to) concepts of computational complex-
ity and information theory.

We defined the asymptotic capacity of a communication signal algorithm as the
ratio between the maximum number of bits it can modulate – taken from the
channel capacity – and the asymptotic complexity lower bound of its correspond-
ing computational problem. From that, we classified an algorithm as SC-optimal
if its asymptotic throughput grows as fast as its asymptotic capacity. From these
novel concepts, we also identified a peculiar class of signal waveforms in which
the complexity lower bound grows asymptotically faster than the number of bits
in the symbol. In this case, capacity nullifies as bandwidth grows. We referred
to this novel category of signals as comp-limited signals in a reminiscence to the
classic capacity regimes of band- and power-limited signals.

This way, to pursue novel non comp-limited signal waveforms is synonym of
scalable SC throughput. Finally, we presented a step-by-step SC analysis of the
basic OFDM waveform and demonstrated it is a comp-limited signal unless the
N -point Fourier transform problem verifies as Ω(N), which remains an open
conjecture in theoretical computer science.

— 44 —



Chapter 4
Optimal Mapper for OFDM with
Index Modulation

“Everyone knew it was
impossible, until a fool who
didn’t know came along and
did it.”

(Albert Einstein)
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In this chapter, the SC analysis is applied for the design of an optimal map-
per for OFDM with Index Modulation (OFDM-IM). The ideal setup of
OFDM-IM outperforms the basic OFDM in terms of spectral efficiency

but the resulting complexity of mapping has been considered computationally
intractable by the specialized literature. The SC analysis is employed to find out
the minimum complexity that maximizes the spectral efficiency gain of OFDM-
IM over OFDM and for the design of an optimal mapper. This chapter is
organized as follows. Section 4.2 presents the system model and the underlying
assumptions. Section 4.3 calculates the complexity scaling laws of the OFDM-
IM mapper. Section 4.4 analyzes the SC throughput of the original OFDM-IM
mapper. Section 4.5 presents two mappers for OFDM-IM. Both are asymptot-
ically optimal in terms of time complexity but only one is also optimal in terms
of asymptotic storage. Section 4.6 validates the reported theoretical findings
by the implementation and evaluation through an open source library that was
developed. Finally, Section 4.7 summarizes the chapter.

4.1 Introduction to the Index Modulation Mapping

Index Modulation (IM) is a physical layer technique that can improve the spec-
tral efficiency (SE) of OFDM. IM’s basic idea for OFDM consists in activat-
ing k ∈ [1, N ] out of N subcarriers of the symbol to enable extra C(N, k) =(

N
k

)
= N !/(k!(N − k)!) waveforms [Frenger and Svensson, 1999], [Basar et al.,

2012]. Of these waveforms, 2⌊log2 C(N,k)⌋ are employed by OFDM-IM to map
P1 = ⌊log2

(
N
k

)
⌋ bits. Besides by modulating the k active subcarriers with an

M -ary constellation diagram as in the classic OFDM, the OFDM-IM symbol can
transmit more P2 = log2 M bits along with P1. Thus, the OFDM-IM mapper
takes a total of m = P1 +P2 bits as input and gives k complex baseband samples
as output for the modulation of the k subcarriers.

The distinct idea of OFDM-IM is illustrated in Table 4.1 for k = 4 active
subcarriers out of N = 6. The setup yields a total of C(6, 4) = 15 waveform
patterns out of which only 8 patterns are employed to modulated all possible
binary values of P1 = ⌊log2(6, 4)⌋ = 3 bits. In each row of the table, active
and deactive subcarriers are denoted as × and ✓, respectively. In the example,
the active subcarriers are BPSK-modulated, hence each of them carries one bit
and the number of bits carried by the demodulation of active subcarriers is
P2 = 4 bits. Thus, in the example, the OFDM-IM symbol modulates a total
of m = P1 + P2 = 3 + 4 = 7 bits on six subcarriers against six bits carried by
a typical OFDM symbol in the same spectrum. Besides this spectral efficiency
gain, the deactivation of the N − k = 6 − 4 = 2 subcarriers decreases the
average symbol energy in comparison to OFDM symbol and can be exploited
for the implementation of energy-constrained wireless networks [Salah et al.,
2019].
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Table 4.1: Example of index modulation mapping for k = 4 BPSK-modulated
active subcarriers out of N = 6 subcarriers. Active and deactive
subcarriers are denoted as × and ✓, respectively.

P1 Bits Subcarrier Indexes
Decimal Binary 1 2 3 4 5 6

0 000 × × ✓ ✓ ✓ ✓
1 001 × ✓ × ✓ ✓ ✓
2 010 × ✓ ✓ × ✓ ✓
3 011 × ✓ ✓ ✓ × ✓
4 100 × ✓ ✓ ✓ ✓ ×
5 101 ✓ × × ✓ ✓ ✓
6 110 ✓ × ✓ × ✓ ✓
7 111 ✓ × ✓ ✓ × ✓

In the OFDM-IM block diagram (Fig. 4.1a), the index selector (IxS) algorithm
determines the k-size list of indexes – out of 2P1 possibles – from the P1-bit
input (more details about the OFDM-IM diagram are given in Section 4.2.1).
The other DSP steps follow as usual in OFDM, except for the signal detector
at the receiver. In this sense, several research efforts have been done to improve
the receiver’s bit error rate at low computational complexity [Hu et al., 2018;
Siddiq, 2016; Zheng et al., 2015; Basar et al., 2013]. Since our focus is on the
OFDM-IM mapper, we refer the reader to the survey works [Mao et al., 2018;
Basar et al., 2017; Sugiura et al., 2017; Ishikawa et al., 2016] for other aspects
of the index modulation technique.

4.1.1 Problem

In this chapter, we concern about whether the OFDM-IM mapper can reach the
maximal SE gain over its OFDM counterpart keeping the same computational
complexity (CC) asymptotic constraints. The SE maximization of OFDM-IM
over OFDM happens when the IM technique is applied on all N subcarriers of
the symbol with k = N/2 and the active subcarriers are BPSK-modulated, i.e.,
M = 2 [Fan et al., 2014, 2015]. We refer to this setup as the optimal OFDM-IM
configuration.

The computational complexity of the OFDM-IM mapper under the optimal SE
configuration has been considered an “impossible task” up to date [Lu et al.,
2018], [Basar et al., 2017]. This belief comes from the fact that the number of
OFDM-IM waveforms that can be mapped grows as fast as O(

(
N
k

)
), which be-

comes exponential if the optimal SE configuration is allowed. Indeed, according
to the theory of computation, a problem of size N is computationally intractable
if its time complexity lower bound is Ω(2N). Despite that, as far as we know, the
CC lower bound required to sustain the maximal SE gain of OFDM-IM remains
an open question across the literature. Consequently, no prior work can answer
whether the OFDM-IM mapper indeed needs more asymptotic computational
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resources than its OFDM counterpart to sustain the maximal SE gain.

4.1.2 Related Work

In this subsection, we review the literature related to the design and computa-
tional complexity of the OFDM-IM mapper.

4.1.2.1 Early Attempt

The earliest mapper for OFDM-IM we find is due to [Frenger and Svensson,
1999]. The authors suggest a Look-Up Table (LUT) to map P1 bits into one
out of 2P1 unique waveforms for relatively small P1. To avoid the exponential
increase in storage implied by the optimal SE configuration, the authors employ
a Johnson association scheme [MacWilliams and Sloane, 1978] to map P1 based
on the recursive matrix AN,k = [[1 0]T [AN−1,k−1 AN−1,k]T ], in which ZT is the
transpose of a given matrix Z. Those authors remark that the matrix indexes
decrease linearly with N towards the base case of recursion. However, we remark
that the overall CC to write all rows of AN,k is exponential under the optimal SE
configuration. To verify that, consider firstly that AN,k can be lower-bounded
by Ak,k, since k ≤ N . To build Ak,k, one needs at least two computational
instructions to write the numbers 1 and 0 and two other independent and distinct
recursive calls Ak−1,k−1 and Ak−1,k. In the worst-case analysis, the number
of computational steps T to write all entries of Ak,k can be captured by the
recurrence T (k) = 2 + 2T (k− 1), which is trivially verified as Ω(2k). Under the
optimal SE setup, the proposed recursive scheme is Ω(2N).

4.1.2.2 Sub-block Partitioning

To handle the OFDM-IM mapping overhead, Basar et al. [Basar et al., 2013,
2012] propose the subblock partitioning (SP) approach. According to the survey
work of [Basar et al., 2017], SP and the IxS algorithm presented by [Basar
et al., 2013, 2012] were (along with a low complexity detector) the distinctive
methods responsible to release the true potential of the IM scheme, thereby
shaping the family of index modulation waveforms as we know today. The
key idea of SP is to attenuate the mapper CC by restricting the application
of the IM technique to smaller portions of the symbol called “subblocks”. The
length n = ⌊N/g⌋ of each subblock depends on the number g of subblocks,
which is a configuration parameter of OFDM-IM. Increasing g, decreases n,
which causes the complexity of the IxS algorithm to decrease too. This way,
SP introduces a trade-off between SE and CC, since the number of OFDM-IM
waveforms increases for lower g [Basar et al., 2013, 2012]. Thus, setting g = 1
(i.e., deactivating SP) means maximizing the SE efficiency. SP has represented
the state of the art approach to balance SE and CC across the family of IM-
based multi-carrier waveforms [Yoon et al., 2019], [Li et al., 2019b], [Li et al.,
2019a], [Kim and Park, 2019], [Shi et al., 2019], [Jaradat et al., 2018], [Mao
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et al., 2018], [Lu et al., 2018], [Aldirmaz et al., 2018], [Wen et al., 2018], [Wen
et al., 2018], [Mao et al., 2017b], [Wen et al., 2017], [Ozturk et al., 2017], [Zhang
et al., 2017], [Mao et al., 2017a], [Gokceli et al., 2017], [Basar et al., 2017; Fan
et al., 2016], [Fan et al., 2014], [Fan et al., 2015].

4.1.2.3 (Un)Ranking Algorithms

The IxS algorithm is a mandatory part for the asymptotic analysis of the OFDM-
IM mapper. As observed by authors in [Basar et al., 2013, 2012], the IxS task
at the OFDM-IM transmitter (receiver) can be implemented as an unranking
(ranking) algorithm. By reviewing the literature in combinatorics, one can find
out several different (un)ranking algorithms, running at different time complex-
ities [Parque and Miyasita, 2018; Shimizu et al., 2014; McCaffrey, 2004; Martínez
and Molinero, 2001; Kreher and Stinson, 1999; Kokosiński, 1995; H. Chen and
Chern, 1986; Er, 1985; Buckles and Lybanon, 1977]. At a first glance, build-
ing the optimal OFDM-IM mapper may just be a matter of adopting the IxS
algorithm that establishes the complexity upper-bound for the (un)ranking prob-
lem, i.e., the fastest currently known algorithm. However, in the particular do-
main of OFDM-IM, k represents a trade-off between SE and CC. Thus, because
the literature in pure combinatorics does not concern about SE as a perform-
ance indicator, it does not suffice to guide the design of an optimal OFDM-IM
mapper. Therefore, to the best of our knowledge, no prior analysis concerns
about the OFDM-IM mapper complexity minimization under the constraint of
SE maximization.

4.1.2.4 Novel SP-Free OFDM-IM Mappers

In [Salah et al., 2019], the authors propose the concept of sparsely indexing
modulation to improve the trade-off between SE and energy efficiency of OFDM-
IM. Because this concept imposes k to be much less than N , the authors rely
on [Kokosiński, 1995] to perform IxS in O(k log N) time. With the achieved
time complexity reduction, the authors present the first SP-free OFDM-IM
mapper. However, the constraint on the value of k prevents the SE maxim-
ization. we refer to the SC analysis to identify the largest tolerable computa-
tional complexity to enable the maximal SE. We define the SC throughput of
an N -subcarrier mapper as the ratio m(N)/T (N) (in bits per computational in-
structions1), where T (N) is the mapper’s asymptotic complexity to map m(N)
bits into an N -subcarrier complex OFDM symbol. From this, the largest com-
putational complexity T (N) must satisfy limN→∞ m(N)/T (N) > 0, i.e., the
SC throughput must not nullify as the system is assigned an arbitrarily large
amount of spectrum.

This chapter builds on the practical case studies of [Queiroz et al., 2020]
and [Queiroz et al., 2020] to present the first asymptotically optimal OFDM-IM

1or seconds, given the time each instruction takes in a particular computational apparatus
e.g. FPGA, ASIC.
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mapper. By optimal, we mean our mapper enables all 2⌊log2 ( N
N/2)⌋ waveforms of

OFDM-IM under the same asymptotic time and space complexities of the classic
OFDM mapper. In summary, we report the following contributions:

• We derive the general OFDM-IM mapper lower-bound Ω(k log2 M +
log2

(
N
k

)
+ k) and show it becomes the same of the classic OFDM mapper

under the optimal configuration (i.e., g = 1, k = N/2, M = 2). This form-
ally proves that enabling all OFDM-IM waveforms is not computationally
intractable, as previously conjectured [Lu et al., 2018], [Basar et al., 2017];

• We show that the optimal OFDM-IM mapper must run in exact Θ(N)
asymptotic complexity. An implementation running above this complexity
(i.e. T (N) = ω(N)) nullifies the SC throughput for arbitrarily large N ,
whereas one running below that (i.e., T (N) = o(N)) prevents the SE
maximization;

• We present an OFDM-IM mapper that runs in Θ(N) time in the same
asymptotic storage required by the classic OFDM waveform. Based on
that, we show that if OFDM is a non comp-limited signal then OFDM-IM
is non comp-limited too;

• We implement an open-source C++ library that supports all steps to
map/demap an N -subcarrier complex frequency-domain OFDM-IM sym-
bol.

4.2 System Model and Assumptions

In this section, we review the OFDM-IM mapper (Subsection 4.2.1) and present
its required design for SE maximization (Subsection 4.2.2). The symbols and
notation adopted throughout this Chapter are presented in Table 4.2.

4.2.1 OFDM-IM Background

The SP mapping approach [Basar et al., 2012], [Basar et al., 2013] is respons-
ible for the main changes OFDM-IM causes to the classic OFDM transmitter
block diagram (as illustrated in Fig. 4.1a). SP is characterized by the config-
uration parameter g ≥ 1, which stands for the number of subblocks within the
N -subcarrier OFDM-IM symbol. Each subblock has n = ⌊N/g⌋ subcarriers out
of which k must be active. Considering an M -point modulator for the active
subcarriers, each subblock maps p = p1 +p2 = k log2 M +⌊log2

(
n
k

)
⌋ bits and the

entire symbol has gp bits. The IxS algorithm of the β-th subblock (β = 1, . . . , g)
is fed with p1 = ⌊log2

(
n
k

)
⌋ bits and outputs vector Iβ, the k-size vector contain-

ing the indexes of the subcarriers that must be active in the β-th subblock. To
modulate the k active subcarriers, the “M -ary modulator” step takes the re-
mainder p2 = k log2 M bits as input and outputs the vector sβ, which consists
of k complex baseband signals taken from an M constellation diagram. Then,
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Table 4.2: Notation and symbols of the chapter.

Symbol Description
ci Index of the i-th active subcarrier in the symbol
g Number of subblocks per symbol
N Number of subcarriers per symbol
M Constellation size of the modulation diagram
k Number of active subcarriers
m Total number of bits per symbol

m(N) Asymptotic number of bits per symbol as function of N
n Number of subcarriers per subblock
p Total number of bits per subblock
p1 Number of index modulation bits per subblock
p2 Number of bits per active subcarriers in a subblock
P1 Number of index modulation bits per symbol
P2 Number of bits per active subcarriers in a symbol
δ Half-width of the confidence interval
x Number of samples of the steady-state mean
s List of baseband samples per symbol
sβ List of baseband samples in the β-th subblock

AN,k N × k Johnson association scheme
I List of active subcarrier indexes per symbol
Iβ List of active subcarrier indexes in the β-th subblock
X Decimal representation of the P1-bit mapper input

T (N) (De)Mapper computational complexity as function of N
m(N)/T (N) (De)Mapper spectro-computational throughput(

N
k

)
N !/(k!(N − k)!)

κ Wall-clock runtime of a computational instruction
o(f) Order of growth asymptotically smaller than f
ω(f) Order of growth asymptotically larger than f
O(f) Order of growth asymptotically equal or smaller than f
Ω(f) Order of growth asymptotically equal or larger than f
Θ(f) Order of growth asymptotically equal to f
ZT Transpose of the matrix Z
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(a) OFDM-IM Waveform.

(b) Optimal Mapper: k = N/2 and g = 1.

Figure 4.1: The OFDM-IM block diagram (Fig. 4.1a) mitigates the mapping
computational complexity by subdividing the symbol into g small
subblocks. To maximize the spectral efficiency (SE) gain over
OFDM, the mapper has to set g = 1 and k = N/2 (Fig. 4.1b).
We prove such optimal mapper can be implemented under the same
time and space asymptotic complexities of the classic OFDM map-
per.

each subblock forwards 2k values (i.e., |sβ| + |Iβ| ) to the “OFDM block cre-
ator”, which refers to sβ and Iβ to modulate the k active subcarriers in each
subblock and build the full N -subcarrier frequency domain OFDM-IM symbol.
The remaining steps proceed as usual in OFDM [Proakis and Salehi, 2008].

4.2.2 SE Optimal OFDM-IM Mapper Design

A requirement to maximize the OFDM-IM SE is to deactivate SP (i.e., set
g to 1) and k to N/2 [Basar et al., 2013]. In theory, achieving the maximal
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SE is just a matter of setting OFDM-IM with the proper parameters. Indeed,
by setting g to 1 (i.e., deactivating SP) and k to N/2, the resulting mapper
(Fig. 4.1b) enables all 2P1 waveforms of OFDM-IM [Basar et al., 2013]. However,
the authors of the original OFDM-IM waveform recommend avoiding the ideal
setup because of the resulting computational complexity (compared with the
classic OFDM mapper). In fact, by looking at Fig. 4.1b, one may observe
that the ideal OFDM-IM mapper can be seen as a classic OFDM mapper with
the addition of the IxS step. Because of this extra-step, the optimal OFDM-
IM mapper requires more computational steps than its OFDM counterpart.
However, our rationale is that, if one can design an OFDM-IM mapper under
the same asymptotic computational complexity of the classic OFDM mapper, then
the extra computational operations required by the OFDM-IM mapper (compared
to OFDM’s) are bounded by a constant even for arbitrarily large N . Since
the IxS complexity is not affected by M , without loss of generality, in this
chapter we adopt M = 2 to achieve the largest gain in comparison to the OFDM
counterpart [Fan et al., 2014, 2015]. We refer to this as the optimal OFDM-IM
setup.

We study the scaling laws of the OFDM-IM mapper as a function of the number
N of subcarriers. In particular, for an N -subcarrier OFDM-IM symbol, we
study the number m(N) of bits per symbol and the mapper’s computational
complexity T (N) to map these bits into N complex baseband samples. We
concern about the minimum and maximum asymptotic number of computational
instructions required by any OFDM-IM mapper implementation.

4.3 Index Modulation Mapping Complexity Bounds

In this section, we derive the CC lower and upper bounds for an OFDM-IM
mapper implementation through asymptotic analysis as a function of the number
of subcarriers N .

4.3.1 Lower and Upper Bound Complexities

To derive the general asymptotic lower bound for any OFDM-IM implementa-
tion, we refer to Fig. 4.1b. Recall we are considering an SP-free mapper design
(i.e., g = 1) to enable the IM principle on the entire N -subcarrier OFDM-IM
symbol. In this case, the lower bound is readily derived by observing that any
implementation needs at least m basic computational steps to read the binary
input to be mapped. Also, O(k) basic computational steps are required to write
the baseband samples in the mapper’s output. Based on this, we derive the
general CC lower bound for any OFDM-IM mapper implementation as follows.

Lemma 1 (OFDM-IM Mapper General CC Lower Bound). The minimum
number of computational steps of any OFDM-IM mapper implementation is
Ω(k log2 M + ⌊log2

(
N
k

)
⌋+ k).
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Proof. In the optimal OFDM-IM mapper, g = 1. Thus, the minimum number
of computational steps to read the input is m = P1 +P2 = ⌊log2

(
N
k

)
⌋+k log2 M .

Further, the OFDM-IM mapper must feed the “OFDM block creator” DSP step
with the vectors of the active subcarriers indexes Iβ and their corresponding
baseband samples sβ (β = 1, . . . , g). Since the optimal mapper requires g = 1,
there is only a single k-size vector I1 and another k-size vector s1, yielding to the
total output size of 2k = O(k). Thus, any OFDM-IM mapper implementation
must write at least O(k) units of data in its output. Therefore, because of
the computational effort to read (input) and write (output) units of data, any
OFDM-IM mapper solution will demand at least Ω(k log2 M + ⌊log2

(
N
k

)
⌋ + k)

computational steps.

When the optimal OFDM-IM setup is allowed, the general asymptotic lower
bound of Lemma 1 becomes Ω(N), as shown next.

Corollary 1 (OFDM-IM Mapper CC Lower Bound under Maximal Spectral Ef-
ficiency). Under the optimal spectral efficiency setup, the general mapping CC
lower bound of OFDM-IM (Lemma 1) becomes Ω(N + P1), which is the same
of OFDM, i.e., Ω(N).

Proof. Since P1 approaches N − log2
√

N = O(N) for arbitrarily large N
(Lemma 2), the general asymptotic lower-bound Ω(N + P1) becomes Ω(N),
which is the minimum asymptotic number of computational steps performed by
the classic OFDM mapper.

Corollary 1 stems from the fact that the number of index modulated bits P1
approaches N − log2

√
N as N →∞, as one can verify in the following lemma.

Lemma 2 (Maximum Number P1 of Index Modulation Bits). The maximum
number of index modulated bits P1 approaches N − log2

√
N for arbitrarily

large N .

Proof. By definition, P1 = ⌊log2

(
N
k

)
⌋. If the maximum SE gain of OFDM-IM

over OFDM is allowed,
(

N
k

)
becomes the so-called central binomial coefficient(

N
N/2

)
, whose well-known asymptotic growth is O(2N/

√
N) [OEIS Foundation

Inc., 2018]. From this, it follows that P1 approaches log2(2NN−0.5) = N −
log2
√

N = O(N) as N →∞.

Therefore, although the number of waveforms of the optimal OFDM-IM setup
grows exponentially on N , the CC of the IM mapping problem is not intractable
(i.e., Ω(2N)) as previously conjectured [Lu et al., 2018], [Basar et al., 2017].

Lemma 1 and Corollary 1 imply that it is not possible to implement an
OFDM-IM mapper with less than Ω(N) computational steps without sacrificing
the SE optimality (Corollary 2). This conclusion is summarized in the following
corollary.

Corollary 2 (OFDM-IM Mapper Spectro-Computational Lower-Bound
Trade-Off). No OFDM-IM mapper implementation can maximize the spectral
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efficiency (SE) gain over OFDM while running in o(N) computational steps.

Proof. The asymptotic number of steps of any OFDM-IM mapper is subject
to the general lower bound of Ω(k log2 M + ⌊log2

(
N
k

)
⌋ + k) (Lemma 1). Thus,

the only way to improve that bound consists of changing the OFDM-IM con-
figuration parameters M and k. Out of all possible values of M and k, the
maximum SE gain of OFDM-IM over OFDM is achieved only when M = 2 and
k = N/2 [Fan et al., 2014, 2015]. Also, under such optimal SE configuration, the
general CC lower bound becomes Ω(N) (Corollary 1). Therefore, an OFDM-IM
implementation cannot run bellow this bound (i.e., in sub-linear time) unless a
non-optimal SE configuration is adopted for k.

In essence, Corollary 2 states that any OFDM-IM mapper running in sub-linear
complexity, i.e., k = o(N) (which excludes the ideal k = N/2), prevents the
maximal SE gain over OFDM. However, sub-optimal SE setups can be useful
for sparse OFDM-IM systems, in which one gives up the maximal throughput
on behalf of energy consumption minimization [Salah et al., 2019].

The CC upper bound of a problem is usually defined as the complexity of the
fastest currently known algorithm that solves it [Harel, 1987]. This definition
does not suffice to our study because our asymptotic analysis is further
constrained by the SE maximization. In fact, if the fastest known algorithm
does not suffice to avoid an increasing bottleneck in the mapping throughput as
N grows, then its complexity cannot be considered suitable to scale the mapper
throughput on N . From this, we define the spectro-computational mapper
throughput (Def. 9) and, based on its condition of scalability (Def. 10), we
derive the required computational complexity upper bound for any OFDM-IM
mapper implementation (Lemma 3).

Definition 9 (The Spectro-Computational (SC) Throughput). Let T (N) be the
computational complexity (CC) to map m(N) input bits into an N -subcarrier
OFDM-IM symbol. We define m(N)/T (N) in bits per computational steps (or
seconds), as the spectro-computational (SC) throughput of the mapper.

As a side note about our Def. 10, we call attention to the fact that it consists
of the asymptotic analysis. As such, “time complexity” means “amount
of computational instructions” which can be translated to (but does not
necessarily mean) wall clock runtime. That said, we recognize that a radio
implementation that does not meet our Def. 10 can achieve the same wall
clock runtime of another one that does. However, in this case, the CC T (N)
will translate into other relevant radio’s design performance indicators. For
example, suppose that the largest complexity T (N) to satisfy our Def. 10 in
a particular DSP study is O(N). A design that violates such a requirement
by employing a more complex algorithm, let us say O(N2), can still reach the
same wall clock runtime of a design that does not. However, since the overall
number of performed computational instructions depends on the algorithm’s
CC rather than the hardware technology, the average wall clock time to run a
single computational instruction must be (much) lower in the O(N2) solution
in comparison to the O(N) counterpart. This pushes the algorithm’s CC to
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the hardware design rather than to the wall clock runtime. Therefore, the SC
throughput of a radio design that violates our Def. 10 can scale with N but
at the expense of impairing other relevant design performance indicators, such
as the number of hardware components (e.g., logic gates), circuit area, energy
consumption and manufacturing cost [Blume et al., 2002].

Definition 10 (Spectro-Computational Throughput Scalability). The SC
throughput m(N)/T (N) of a mapper is not scalable unless the inequality (4.1)
does hold.

lim
N→∞

m(N)
T (N)

> 0 (4.1)

4.3.2 Required Complexity for Maximal SE

Based on Def. 10, in Lemma 3 we show that the upper bound complexity
any OFDM-IM mapper implementation must meet to ensure the optimal SE
configuration is O(N).

Lemma 3 (OFDM-IM Mapper Upper Bound under Optimal SE Configuration).
Under the optimal SE configuration, the OFDM-IM mapper CC must be upper
bounded by O(N).

Proof. To meet the inequality 4.1 of Def. 10, T (N) must be asymptotically less
or equal than m(N), i.e., T (N) = O(m(N)) = O(P1+P2). Under the optimal SE
configuration, k = N/2 and P1 = log2

(
N

N/2

)
= O(N) bits (Lemma 2). Therefore,

T (N) must be O(N).

Based on the fact that the required OFDM-IM mapper upper bound complexity
matches its lower bound in the optimal SE configuration, Theorem 1 tells us
that the OFDM-IM mapper must run in Θ(N) time complexity.

Theorem 1 (Required OFDM-IM Mapping Complexity). If the configuration
that maximizes the OFDM-IM spectral efficiency gain over OFDM is allowed
(i.e., g = 1, k = N/2, M = 2), the OFDM-IM mapper block of [Basar et al.,
2012, 2013] must run in Θ(N) computational steps.

Proof. Corollaries 1 and 2 show that any OFDM-IM mapper implementation
running with less than Ω(N) computational steps cannot achieve the optimal
SE gain over OFDM. In turn, Lemma 3 tells us that the mapper through-
put nullifies for arbitrarily large N if its complexity requires more than O(N)
steps. Therefore, the exact asymptotic number of computational steps for any
OFDM-IM mapper implementation under the optimal SE configuration must be
Θ(N).

A solution running asymptotically slower than the complexity of Theorem 1 (i.e.,
ω(N)) nullifies the mapper throughput as N grows, whereas one running faster
(i.e., o(N)) prevents the SE gain maximization, as shown in Corollary 2.
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Although the OFDM-IM symbol can carry more bits than OFDM’s under the
ideal setup, Lemma 2 shows that the the number of bits grows linearly in both
cases. In terms of signal processing, OFDM-IM has the IxS algorithm as an ex-
tra step at the transmitter and a more complex signal detector at the receiver.
Considering that optimal detectors such as maximum likelihood are computa-
tionally intractable, heuristics are necessary in practice to balance BER and
complexity. [Hu et al., 2018], for instance, evaluates the performance of the
max-log detector [Sandell et al., 2016] in the context of OFDM-IM getting a
complexity of O(M).

Thus, under the SNR required by low complexity detection heuristics, OFDM-
IM has the same overall asymptotic computational complexity of OFDM unless
by the IxS algorithm. Therefore, the classification of OFDM-IM as a comp-
limited signal is conditioned to the classification of OFDM as a comp-limited
signal and to the implementation of an OFDM-IM mapper that runs in Θ(N)
time complexity. As discussed in Section 3.4.3, the characterization of OFDM as
a comp-limited signal is conditioned to the existence of an O(N) time algorithm
for the N -point Fourier transform, which remains an open question in theoretical
computer science.

4.4 Throughput Analysis of the OFDM-IM Mapper

The original OFDM-IM mapper (and its variants) refer to the (un)ranking
algorithm named “Combinadic” [Buckles and Lybanon, 1977; McCaffrey,
2004]2.

The Combinadic algorithm relies on the fact that each decimal number X in
the integer range [0,

(
N
k

)
− 1] has an unique representation (ck, · · · , c2, c1) in

the combinatorial number system[Knuth, 2011] (Eq. 4.2). For OFDM-IM, X
represents the P1-bit input (in base-10) and the coefficients ck > · · · > c2 >
c1 ≥ 0 represent the indexes of the k subcarriers that must be active in the
subblock.

X =
(

ck

k

)
+ · · ·+

(
c2

2

)
+
(

c1

1

)
(4.2)

Combinadic may refer to two distinct tasks, namely, unranking and ranking. The
Combinadic unranking (shown in Alg. 4.1) consists in computing the array of
coefficients ci, i ∈ [1, k], of Eq. (4.2) from the input X (along with N and k). The
Combinadic unranking takes place in the IxS of the OFDM-IM transmitter. The
reverse process, i.e., computing X given all k coefficients ci, i ∈ [1, k], is known as
ranking and is performed by the IxS of the OFDM-IM receiver (Alg. 4.2).

2In [Crouse, 2007], the author points a fix to the algorithm of [Buckles and Lybanon, 1977].
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Algorithm 4.1. Combinadic Un-
ranking (OFDM-IM IxS Transmit-
ter).

1: {Inputs: X, N , and k ∈ [1, N ]}
2: {Output: Array ci (i ∈ [1, k])

such that X = ∑k
i=1

(
ci

i

)
(Eq. 4.2)}

3: cc ← N ;{the current next can-
didate for ci};

4: for i from k downto 1 do
5: repeat
6: cc ← cc − 1; {the first can-

didate for ck is N − 1};
7: ccBinCoef ←

(
cc
i

)
;

8: until ccBinCoef ≤ X
9: ci ← cc;

10: X ← X − ccBinCoef ;
11: end for
12: return array c;

Algorithm 4.2. Combinadic Rank-
ing (OFDM-IM IxS Receiver).

1: {Inputs: Array ck > · · · > c2 >
c1 ≥ 0, N > ck, and k ∈ [1, N ]}

2: {Output: X = ∑k
i=1

(
ci

i

)
(Eq. 4.2)};

3: X ← 0;
4: for i from 1 to k do
5: X ← X +

(
ci

i

)
;

6: end for
7: return X;

Combinadic unranking and ranking algorithms referred to by the IxS block of
original OFDM-IM mapper. In the maximal spectral efficiency OFDM-IM map-
per (Fig. 4.1b), these algorithms run in O(N2), surpassing the computational
complexity of the Fourier transform algorithm.

4.4.1 Combinadic (Un)ranking Algorithm

The Combinadic unranking is shown in Alg. 4.1. It takes N , k and X as in-
put parameters and outputs the array ci, i ∈ [1, k] such that X = ∑k

i=1

(
ci

i

)
(Eq. 4.2). The candidate values for the coefficients ci considered by the al-
gorithm are 0, 1, · · · , N − 1, which represent the indexes of the N subcarriers.
The coefficients are determined from ck until c1 and the variable cc (line 3) stores
the next candidate value for the current coefficient being computed. The first
coefficient to be computed is ck and its first candidate is N − 1. This is the
value of cc in the very first execution of line 6. For every candidate value cc, the
corresponding binomial coefficient

(
cc
i

)
is computed and stored in the variable

ccBinCoef (line 7). If condition ccBinCoef ≤ X is satisfied (line 8), then the
candidate value cc is confirmed as the value of ci (line 9) and X is updated
accordingly (line 10). This entire process repeats until all the remainder k − 1
coefficients are determined.

In a particular worst-case instance of Combinadic unranking (Alg. 4.1), the logic
test of the inner loop (line 8) fails for cc = N−1, N−2, · · · , k in the first iteration
of the outer loop, i.e. when the first coefficient ck is being determined. Thus, ck

is assigned to k− 1. This narrows the list of candidates (for the remainder k− 1
coefficients) to the values k−2, k−3, · · · , 1, 0 . Since the combinatorial number
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system ensures that all k coefficients are distinct and that ck is the largest one, a
candidate value that fails for ck can be discarded for ck−1 and so on. Thus, after
ck is determined, there must be at least k−1 candidate values for the remainder
k − 1 coefficients. Because of this, there is only one logic test per candidate
value in the inner loop regardless of the number of coefficients. Since there are
N candidate values, the inner loop takes O(N) time regardless of the outer loop.
In each test of the inner loop, Combinadic relies on the multiplicative identity
(Eq. 4.3) to compute the binomial coefficient value in O(k) time.(

N

k

)
=

k∏
i=1

N − i + 1
i

(4.3)

Therefore, the overall CC of the Combinadic unranking algorithm is O(Nk).
Considering the optimal SE configuration, k = N/2 and the complexity becomes
O(N2), which is asymptotically higher than the O(N log N) complexity of the
FFT block.

The Combinadic ranking is shown in Alg. 4.2. It takes the array of coefficients
ci, i ∈ [1, k] from the OFDM-IM detector and performs a summation of the
k binomial coefficients

(
c1
1

)
+
(

c2
2

)
+ · · · +

(
ck

k

)
(Eq. 4.2). Since each binomial

coefficient
(

ci

i

)
can be calculated in O(i) time by the multiplicative formula

(Eq. 4.3), and i ranges from 1 to k, the total number of multiplications performed
by the algorithm is 1 + 2 + · · · + k = k(k + 1)/2 = O(k2). Considering the
optimal OFDM-IM setup, k = N/2, the overall complexity becomes O(N2) as
with Combinadic unranking.

4.4.2 OFDM-IM Mapper Throughput with Combinadic

We now analyze the SC throughput of the OFDM-IM mapper assuming the IxS
block is implemented by the Combinadic algorithm [McCaffrey, 2004; Buckles
and Lybanon, 1977] as in the original OFDM-IM design [Basar et al., 2013].
Considering the optimal OFDM-IM setup, the total number of bits per symbol is
N/2+⌊log2

(
N

N/2

)
⌋, whereas the IxS complexity is O(N2), as previously analyzed.

Thus, according to Def. 10, the resulting SC throughput must satisfy Ineq. (4.4)
as follows, otherwise it nullifies over N .

lim
N→∞

N/2 + ⌊log2

(
N

N/2

)
⌋

O(N2)
?
> 0 (4.4)

According to the theory of computational complexity, the wall-clock time taken
by a particular implementation of a O(N2) algorithm is bounded by the function
κN2, in which the constant κ > 0 captures the wall-clock runtime taken by
the asymptotic dominant instruction of the algorithm3 on a real machine. In

3The instruction we choose to count in the analysis. Mostly, real or complex arithmetic
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turn, the number of index modulated bits tends to N − log2
√

N as N grows
(Lemma 2). With basic calculus, one can verify that the limit in Ineq. (4.4) tends
to zero for arbitrarily large N regardless of the value of κ, as follows.

lim
N→∞

N/2 + N − log2
√

N

κ ·N2 = 0 (4.5)

Therefore, referring to the original Combinadic algorithm to implement the IxS
block in the optimal SE configuration causes the SC throughput of the OFDM-
IM mapper to nullify as N grows.

4.5 Optimal OFDM-IM Mapper

Our theoretical findings summarized in Theorem 1, disclose the conditions for
the computational feasibility of the optimal OFDM-IM mapper. The theorem
requires exactly Θ(N) steps for the mapper. Since the M -ary LUT block of
the OFDM-IM mapper (Fig. 4.1b) already runs in N/2 = O(N) computational
steps, to meet the theorem we just need to demonstrate the IxS block can be
implemented with Θ(N) computational steps.

In this subsection, we demonstrate two distinct designs for an SC optimal
OFDM-IM mapper. The first design reported in [Queiroz et al., 2020] and
discussed in Subsection 4.5.1, solves the trade-off between time complexity and
storage faced by current LUT-based OFDM-IM mappers. It meets optimal-
ity without requiring an exponential amount of LUT entries. Yet, that mapper
design still requires more table entries than OFDM’s. Then, in Subsection 4.5.2,
we show how the original OFDM-IM mapper can run in the same time and stor-
age complexity of OFDM. This design is published in [Queiroz et al., 2020].
Based on that, in Subsection 4.5.3, we demonstrate that the OFDM-IM trans-
mitter is comp-limited.

4.5.1 Optimal Mapper under Polynomial Storage Complexity

Theorem 1 points the OFDM-IM mapper must be as fast as OFDM’s. In
Lemma 4, we show that a LUTs can provide OFDM-IM mappers with the same
asymptotic complexity efficiency of OFDM’s. However, up to date designs
LUTs require an exponential amount of entries under the maximal SE. For
this reason, the literature recommends LUTs only for ‘small’ N [Lu et al.,
2018],[Basar et al., 2017]. We calculate the order of growth of LUT entries for
the optimal setup in Lemma 5.

Lemma 4 (LUT-Based OFDM-IM Mapper Complexity). A 2P1-entry LUT en-
ables the OFDM-IM IxS to run in O(N).

instructions for DSP algorithms.
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Proof. Let 0 ≤ X ≤ 2P1 − 1 be the decimal representation of the P1-bit
input given to the IxS DSP block. If the IxS is a 2P1-entry LUT indexed
from 0 to 2P1 − 1, then the k-list of active indexes corresponding to X is
stored in the X-th entry of the table. Since LUTs are based on random
access storage technology, any data can be retrieved in O(1) time after the
LUT index is read (which is X, in this case). Therefore, the time com-
plexity of a LUT-based IxS is determined by the time to read X, which is
O(P1) = O(log2 C(N, N/2)) = O(N − log2

√
N) = O(N) (Lemma 2). Also,

since the modulation of the k = N/2 active subcarriers follows as in the classic
OFDM for M = 2, more O(N/2) computations are required. Thus, if the IxS
is implemented as a 2P1-entry LUT, the overall OFDM-IM mapper runs in
O(N) + O(N/2) = O(N) time.

Lemma 5 (OFDM-IM LUT Size Under Maximal SE). Under the ideal OFDM-
IM setup, a LUT-based OFDM-IM mapper requires Θ(2N/

√
N) entries.

Proof. A LUT-based OFDM-IM mapper has one entry per each one of all
possible 2P1 = 2⌊log2 C(N,k)⌋ symbol waveforms. Since P1 approaches N− log2

√
N

as N grows (Lemma 2), the number of LUT entries approaches Θ(2N−log2
√

N) =
Θ(2N/

√
N).

In other words, the OFDM-IM mapping literature faces a trade-off between
computational time and space complexities. Conversely, we note that the time-
storage trade-off faced by current OFDM-IM mappers can be improved if the
OFDM-IM mapper is assisted by the so-called Pascal’s triangle (PT) instead
of being implemented as a 2P1-entry LUT. Based on that, we propose the SC
optimal mapper illustrated in Fig. 4.2. It consists of the original OFDM-IM
mapper set to a single subblock and having the IxS algorithm assisted by a PT
table. The PT table can be viewed as an N × k matrix that stores the result
of C(ci, i) in row ci and column i (Table 4.3). This way, the O(i) iterations
required to compute a single binomial coefficient C(ci, i) is replaced by a single
query to the PT table. Therefore, the O(k2) iterations performed by the IxS
algorithm to compute the k binomial coefficients C(ck, k), · · · , C(c1, 1) can be
replaced by O(k) queries to the PT table.

Note that the time complexity improvement achieved by the PT table does
not change the k binomial coefficients selected by the IxS algorithm. Hence,
both the vector of active indexes and the vector of complex baseband samples
(denoted as I and s in Fig. 4.2, respectively) remain the same as in the original
OFDM-IM mapper. In Lemma 6, we show that the number of binomial
coefficient entries of the PT table grows polynomially on N even if all 2P1

OFDM-IM waveforms are enabled.

Lemma 6 (Binomial Coefficients under Maximal SE). Under the ideal SE setup,
the OFDM-IM Index Selector algorithm computes O(N2) distinct binomial coef-
ficients. Thus, a Θ(N2)-entry PT table can be employed to reduce the IxS time
complexity from O(N2) to O(N).

Proof. Under the ideal OFDM-IM setup, the variables ci and i of Combinadic
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Figure 4.2: First proposed OFDM-IM mapper. Under maximal spectral effi-
ciency, the value of any binomial coefficient C(ci, i) required in line 7
of the IxS block (Algorithm 4.1) matches an entry of the PT table
shown in Table 4.3. By querying the table for each C(ci, i) instead of
calculating them from scratch, the mapper achieves the same time
complexity of the Θ(2N/

√
N)-entry OFDM-IM look-up table but

requiring only Θ(N2) entries.

(Algorithm 4.1) decrease by 1 starting from N − 1 and k = N/2, respect-
ively. Hence, the algorithm needs to compute no binomial coefficient other than
C(ci, i), 0 ≤ ci ≤ N − 1 and 1 ≤ i ≤ N/2. Therefore, the Θ(N2)-entry PT
of Table 4.3 enables any binomial coefficient required by the IxS algorithm to
be returned in O(1) time. Thus, the inner loop of Combinadic reduces from
O(k)×O(i) to O(k)×O(1), yielding to an overall complexity of O(k) = O(N)
in the ideal OFDM-IM setup.

Next, the Theorem 2 builds on Lemma 6 to show that the PT table can enable
all 2P1 OFDM-IM waveforms at the same time complexity of the OFDMmapper.

Theorem 2 (OFDM-IM Mapper under Polynomial Space). All 2P1 OFDM-IM
waveforms can be mapped at the same asymptotic time of an OFDM mapper
at the expense of polynomial space complexity.

Proof. From Lemma 6, a PT table storing Θ(N2) binomial coefficients enables
the IxS algorithm to run in O(N) time. This is the same asymptotic number
of steps performed by the OFDM mapper. To achieve such time complexity
keeping the ideal setup, a traditional LUT-based OFDM-IM mapper requires
Θ(2N/

√
N) entries (Lemma 5). Thus, by replacing a LUT with an IxS algorithm

assisted by the PT table, one enables the OFDM-IM mapper to achieve its ideal
SE setup in O(N) time at the expense of polynomial (rather than exponential)
space.

It is worthy to remark that the PT table dates back from ancient times, even
before Blaise Pascal4. Thus, the improvement it provides for the calculation of
binomial coefficients is not a novelty for the field of combinatorial algorithms.

4for works prior to Blaise Pascal please, refer to en.wikipedia.org/wiki/Pascal’s_triangle#History.
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Table 4.3: Pascal’s triangle of the Proposed OFDM-IM mapper (Fig. 4.2).

ci|i 1 2 3 · · · N/2
0 0 0 0 · · · 0
1 1 0 0 · · · 0
2 2 1 0 · · · 0
3 3 3 1 · · · 0
4 4 6 4 · · · 0
... ... ... ... . . . ...
N − 1

(
N−1

1

) (
N−1

2

) (
N−1

3

)
· · ·

(
N−1
N/2

)

Nonetheless, how this result turns out to affect the comparative SE performance
of OFDM-IM and OFDM is beyond the scope of that literature.

4.5.2 Linear-time Combinadic (Un)ranking

In this subsection, we concern about improving Combinadic to Θ(N) time com-
plexity under the same storage complexity of OFDM. It is worthy to remark that
the literature in combinatorics report algorithms faster than the complexity re-
quired by our Theorem 1 e.g., [Parque and Miyasita, 2018], [Shimizu et al., 2014].
Such a performance, however, demands the number of active subcarriers k to be
bounded by o(N). Translated to the OFDM-IM domain, this means that such
algorithms prevent the SE maximization (Corollary 2). Besides, In [Kokosiński,
1995], the author presents four unranking algorithms, out of which one (called
“unranking-comb-D”) can meet that requirement. Therefore, one can consider
that algorithm to validate our theoretical findings. However, we remark that
the Combinadic algorithm (referred to by the original OFDM-IM design) can
benefit from the same properties of unranking-comb-D to run in Θ(N) rather
than O(N2). Similarly, the ranking algorithm (not discussed in [Kokosiński,
1995]) can also run in Θ(N) as well. Next, we explain how to adapt Combinadic
to enable the minimum possible CC when the maximal SE is allowed.

The main bottleneck in the time complexity of Combinadic (un)ranking
(Alg. 4.1) is the inner loop. As previously explained, the inner loop takes k
iterations, each of which demands further O(i) iterations to compute the bino-
mial coefficients

(
ci

i

)
. Since i ranges from k to 1 and the optimal OFDM-IM

setup imposes k = O(N), this yields k · O(i) = N/2 × O(N/2) = O(N2). To
improve this complexity without extra O(N2) storage, note that only the first
candidate binomial coefficient

(
ck

k

)
=
(

N−1
N/2

)
needs to be computed from scratch

(in O(k) time). Thus, such computation can be performed outside both loops of
Combinadic (Alg. 4.1) and stored in a variable we refer to as ccBinCoef .

The resulting modification is shown in line 4 of the Linear-time Combinadic un-
ranking (Alg. 4.3). In this algorithm, the variables cc and ccBinCoef denote the
candidate values for ci and

(
ci

i

)
, respectively. Following ccBinCoef =

(
ck

k

)
, the
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next candidate binomial coefficient, either
(

N−1
N/2−1

)
or
(

N−2
N/2−1

)
, can be computed

from ccBinCoef itself in O(1) time. In general, one can calculate
(

ci−1
i

)
and(

ci−1
i−1

)
from

(
ci

i

)
by relying on the following respective equations [Kokosiński,

1995]: (
ci − 1

i

)
= ((ci − i) ∗

(
ci

i

)
)/ci (4.6)(

ci − 1
i− 1

)
= (i ∗

(
ci

i

)
)/ci (4.7)

The Eqs. (4.6) and (4.7) are exploited by lines 9 and 18 of Alg. 4.3, respectively.
Thus, all remainder binomial coefficients within the logic test of the inner loop
are computed in O(1) time. Therefore, the complexity of Combinadic unranking
improves from k · O(i) = N/2 × O(N/2) = O(N2) to O(k) + k · O(1), yielding
N/2 + N/2×O(1) = O(N) in the optimal OFDM-IM configuration.

As with the Combinadic unranking, one can also reduce the time complexity of
the Combinadic ranking (Alg. 4.2) from O(N2) to O(N) by computing

(
ci+1

i

)
and

(
ci+1
i+1

)
from

(
ci

i

)
in O(1) time rather than from scratch in O(i) time with the

multiplicative formula (Eq. 4.3). However, these O(1)-time properties require
the values in the array c to be consecutive, which can not be the case of OFDM-
IM because these values depend on the data the user transmits. One can avoid
calculating all k binomial coefficients from scratch by relying on the fact that
the values ck > · · · > c2 > c1 are restricted to the integer range [0, N − 1].

Based on this, the linear-time Combinadic ranking (Alg. 4.4) computes from
scratch only one binomial coefficient (we refer to as ccBinCoef , line 10) from
which at most N − 1 other coefficients can be computed sequentially in O(1)
time each. Since the value of all other coefficients is computed from ccBinCoef ,
this variable cannot be initialized with null binomial coefficients i.e.,

(
ci

i

)
such

that ci < i. Thus, from lines 4 to 9, Alg. 4.4 looks for the largest i in the range
[0, · · · , i, · · · , N−1] such that ci ≥ i. These lines take O(k) iterations. In line 10,
ccBinCoef is initialized as

(
ci

i

)
in O(i) time, yielding a cumulative complexity

of O(k) + O(k) = O(k). From this, any consecutive binomial coefficient (either(
ci+1

i

)
or
(

ci+1
i+1

)
) can be computed in O(1) time from ccBinCoef =

(
ci

i

)
as in the

linear-time unranking algorithm. Since the total number of remainder binomial
coefficients ranges from i to N − 1, the loop in line 11 computes all of them in
O(N−i) = O(N) time. Therefore, the overall complexity is O(k)+O(k)+O(N)
which becomes O(N) under the optimal OFDM-IM setup (i.e., k = N/2).

4.5.3 OFDM-IM as Non Comp-Limited Signal

We now proceed with the SC analysis of the optimal OFDM-IM mapper
(Fig. 4.1b) considering an IxS implementation that meets our Theorem 1. The
analysis is as in Subsection 4.4.2, except for the fact that the IxS algorithm runs
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Algorithm 4.3. Linear-time Com-
binadic Unranking (OFDM-IM In-
dex Selector Transmitter).

1: {Inputs: X, N , and k ∈ [1, N ]}
2: {Output: Array ci (i ∈ [1, k])

such that X = ∑k
i=1

(
ci

i

)
(Eq. 4.2)}

3: cc ← N − 1; {largest candidate
for ci};

4: ccBinCoef ←
(

cc
k

)
; {candidate

value for
(

ck

k

)
};

5: for i from k downto 1 do
6: ci ← cc;
7: while ccBinCoef > X do
8: {Below,

(
ci−1

i

)
is computed

from
(

ci

i

)
in O(1)};

9: ccBinCoef←
((ci−i)*ccBinCoef)/ci;

10: ci ← ci − 1;
11: end while
12: X ← X − ccBinCoef ;
13: {Below,

(
ci−1
i−1

)
is computed

from
(

ci

i

)
in O(1)};

14: cc← ci − 1;
15: if cc = 0 then
16: return array c
17: end if
18: ccBinCoef← (i ∗

ccBinCoef)/ci;
19: end for
20: return array c

Algorithm 4.4. Linear-time Com-
binadic Ranking (OFDM-IM Index
Selector Receiver).

1: {Inputs: Array ck > · · · > c2 >
c1 ≥ 0, N > ck, and k ∈ [1, N ]}

2: {Output: X = ∑k
i=1

(
ci

i

)
(Eq. 4.2)};

3: i← 1;
4: while i ≤ k and ci < i do
5: i← i + 1;
6: end while
7: if i > k then
8: return 0;
9: end if

10: ccBinCoef ←
(

ci

i

)
; X ← 0;

11: for cc from ci to N − 1 do
12: if ci = cc then
13: X ← X + ccBinCoef ;
14: ccBinCoef←

(ccBinCoef∗(ci+1))/(i+1);
15: i← i + 1;
16: else
17: ccBinCoef←(ccBinCoef ∗

(cc + 1))/(cc + 1− i);
18: end if
19: end for
20: return X;

Adaptation of the Combinadic algorithms (unranking 4.1 and ranking 4.2) re-
ferred to by the original OFDM-IM mapper to run in O(N) time. We prove these
adaptations enable the overall OFDM-IM mapper to maximize the spectral effi-
ciency gain over OFDM while consuming the same time and space computational
complexities of the classic OFDM mapper.

in Θ(N) time complexity. Thus, the SC throughput is given by

lim
N→∞

N/2 + N − log2
√

N

κ ·N
(4.8)

As N grows, the time complexity is bounded by κN for some constant κ > 0.
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Similarly, the SC throughput of the mapper results in a non-null constant κ > 0,
meeting the Def. 10. As explained in the Subsection 4.4.2, κ > 0 is constant
that depends on the computational apparatus running the algorithm. Under the
linear-time IxS complexity, the throughput of the OFDM-IM mapper does not
nullify for arbitrarily large N ,

lim
N→∞

N/2 + N − log2
√

N

κ ·N
= 3

2κ
> 0 (4.9)

Note also that the throughput can increase with N if one achieves a o(N) map-
per. However, as demonstrated in Corollary 2, this conflicts with the optimal
SE setup, thereby preventing the SE maximization.

The scalability of the IxS algorithm as shown in Eq. 4.9, also brings implication
about the classification of the optimal OFDM-IM as a non comp-limited signal
waveform, i.e. a waveform whose throughput is not nullified by the compu-
tational complexity overhead as the spectrum bandwidth gets arbitrarily large
(Subsection 3.2.3).

The classification of a signal waveform as non comp-limited is conditioned to
the asymptotic growth of its SC asymptotic capacity (Section 3.2.1). In turn,
the SC capacity is the ratio between the maximum number of bits a waveform
can modulate per symbol and the asymptotic complexity lower bound required
to process these bits. As we explained in Subsection 4.3.2, although the
ideal OFDM-IM setup outperforms OFDM in terms of SE, the number of bits
per symbol grows at the same order on N for both waveforms. Regarding
computational complexity, it is important to note that OFDM-IM has the
same processing steps of OFDM unless by the IxS algorithm and the signal
detection. Therefore, if those extra steps can be performed without increasing
the complexity order of growth of OFDM, the classification of OFDM-IM as
a non comp-limited signal is conditioned to the classification of OFDM non
comp-limited signal. Based on that, we present the Lemma 7.

Lemma 7 (Condition for Non Comp-limited OFDM-IM Signal). If the basic
OFDM waveform is a non comp-limited signal then the OFDM-IM waveform is
a non comp-limited signal.

Proof. The classification of OFDM as a non comp-limited signal with constant
number of bits per subcarrier (i.e., M = Θ(1)) demands a Ω(N) overall asymp-
totic complexity (Proposition 2 of Subsection 3.4.3). OFDM-IM and OFDM
have the same asymptotic complexity unless by the signal detector and the IxS
algorithms. Assuming the employment of signal detection heuristics that run
in O(M) time complexity (e.g., [Hu et al., 2018], [Sandell et al., 2016]) and
the Θ(N) time complexity of the IxS Algorithm 4.3) OFDM-IM does not in-
crease the overall asymptotic complexity of OFDM. If OFDM verifies as a non
comp-limited signal, it runs in O(N) complexity. Since the extra complexity
OFDM-IM adds to OFDM can be at most linear on N , OFDM-IM is non comp-
limited too. Therefore, if the basic OFDM waveform is non comp-limited then
the OFDM-IM waveform is non comp-limited too.
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Figure 4.3: Mapper performance: Proposed vs. OFDM-IM.

4.6 Implementation and Evaluation

In this section, we present a practical case study to validate our theoretical
findings. In Subsection 4.6.1, we introduce the open-source library we develop for
the case study. In Subsection 4.6.2, we describe the methodology to assess and
reproduce the empirical values of our experiments. Finally, in Subsection 4.6.3,
we present the results of our practical case study that validate our theoretical
findings.

4.6.1 Open-source OFDM-IM Mapper Library

We wrote a C++ library that implements all OFDM-IM steps to map/demap an
N -subcarrier complex frequency-domain symbol. We implement the IxS block
with C++ callbacks to enable flexible addition of novel (un)ranking algorithms.
In the released version, we implement the original IxS algorithm [Basar et al.,
2013] and all the algorithms presented in this chapter (Algs. 4.3 and 4.4). We
do not implement (un)ranking algorithms that can reach a complexity that is
asymptotically faster than required by our Theorem 1 e.g.[Parque and Miyasita,
2018; Shimizu et al., 2014]. As previously explained (Corollary 2), perform-
ing (un)ranking faster than Θ(N) would require k ̸= N/2, thereby preventing
the SE maximization (Corollary 2). However, future works may implement
IxS algorithms that improve the original OFDM-IM using other criteria (e.g.
BER [Yoon et al., 2019], [Wen et al., 2016].) than CC and SE. These and other
IxS algorithms can also be included/evaluated in our library. The entire source
code of our library, as well as detailed instructions on how to enhance it with
novel IxS algorithms, are publicly available under the GPLv2 license in [Queiroz,
2020].
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4.6.2 Performance Assessment Methodology

We assess the runtime T (N) (in secs.) and the throughput m(N)/T (N) (in
megabits per seconds, Def. 9) for both the original OFDM-IM mapper and our
proposed mapper under the optimal SE configuration (i.e., g = 1, k = N/2 and
M = 2). For each mapper, we assess the performance indicators at both the
transmitter (mapper) and the receiver (demapper) on a 3.5-GHz Intel i7-3770K
processor.

We sampled the wall-clock runtime T (N) of each mapper with the standard
C++ timespace library [team, 2018] under the profile CLOCK_MONOTONIC. In
each execution, we assigned our process with the largest real-time priority and
employed the isolcpus Linux kernel directive to allocate one physical CPU
core exclusively for each process. We generate the input for the mappers with
the standard C++ 64-bit version of the Mersenne Twistter (MT) 19937 pseudo-
random number generator [Matsumoto and Nishimura, 1998]. We set up three
independent instances of MT19937_64 with seeds 1973272912, 1822174485 and
1998078925 [Hechenleitner and Entacher, 2002]. Every iteration, three sampled
T (N) are forwarded to the Akaroa-2 tool [McNickle et al., 2010] for statistical
treatment. Akaroa-2 determines the minimum number of samples required to
reach the steady-state mean estimation of a given precision. In our experiments,
this precision corresponds to a relative error below 5% and a confidence interval
of 95%. Besides, in all experiments the highest observed variance was below 10−3

and the average number of samples in the transient state was about 300.

Table 4.4 reports all assessed results for both the original OFDM-IM mapper
and the proposed mapper at the transmitter (mapper). The table 4.5 reports
the analogous results assessed at the receiver (demapper). From left to right,
the tables present the following columns: the number N of symbol’s subcarriers,
the number m(N) of bits per symbol, the SE gain of the original OFDM-IM
waveform against the classic OFDM mapper5, the assessed (de)mapper, the
assessed runtime T (N), the half-width of the confidence interval δ for T (N),
the achieved (de)mapping throughput, and the number x of samples needed to
achieve the required precision. The source-code of all our experiments is publicly
available under GPLv2 license in [Queiroz, 2020].

4.6.3 Results

In Fig. 4.3a and Fig. 4.3b, we respectively plot the runtime and the throughput
performances of the compared mappers for N = 2, 4, . . . , 62. Although only
particular values of N verify in industry standards (e.g. N = 48 [IEEE 802.11,
2012], N = 52 [802.11, 2013]), we range it from small to large values to il-
lustrate the asymptotic shape predicted by our throughput analysis. Detailed
information about these plots are reported on the Table 4.4. As predicted by our
theoretical analysis (Subsections 4.4.2 and 4.2.2), in the ideal setup, the runtime
order of growth of the original OFDM-IM mapper is asymptotically larger than

5The maximum SE gain is m(N)/N [Fan et al., 2015].
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Figure 4.4: Demapper performance: Proposed vs. OFDM-IM.

our proposed mapper (Fig. 4.3a). From the theoretical analysis, we know these
complexities are O(N2) and O(N), respectively. Naturally, the runtime curves
of both mappers increase monotonically towards infinite as the number N of
subcarriers grows. However, because the runtime order of growth of the original
OFDM-IM mapper is larger than the number m(N) = N/2+log2

(
N

N/2

)
= O(N)

of bits per symbol, the throughput m(N)/T (N) of this mapper nullifies as N
grows (Fig. 4.3b). This validates the theoretical analysis we show in Subsec-
tion 4.4.2.

By contrast, when our proposed mapper takes place, both the resulting com-
putational complexity T (N) and the total of bits m(N) per symbol increases
in the same order of growth. Thus, the throughput m(N)/T (N) tends to a
non-null constant. In particular, according to our theoretical analysis in Sub-
section 4.5.3, this is m(N)/T (N) = 3/(2κ). Recall that the constant κ > 0
captures the wall-clock runtime taken by the asymptotic dominant instruction
of the algorithm on a real machine. However, in our practical case study, the
assessed runtime T (N) encompasses all computational instructions performed
by each (de)mapper. Thus, κ represents an average of the runtime taken by
each kind of instruction on the machine of our testbed i.e., the Intel i7-3770K
processor. From the assessed throughput m(N)/T (N), the average value of κ
can be computed based on Eq. (4.9), which is κ = 3/2 · 1/(m(N)/T (N)). In our
testbed, the average runtime per computational instruction was 0.02 µs.

In Fig. 4.4a and Fig. 4.4b, we respectively plot the runtime and the throughput
performances of the compared demappers for different values of N . Detailed
informations of these plots are reported on the Table 4.5. As in the mapper
analysis, the throughput of the original OFDM-IM demapper tends to zero as
N grows whereas the throughput of our proposed demapper tends to a non-
null constant under the same conditions. If compared against its corresponding
mapper, we verify that our proposed demapper presents larger throughput. This
means that, although both our mapper and demapper have the same O(N)
asymptotic complexity, the demapper implementation is less complex concerning
the constant κ. Indeed, we verify an average κ = 0.015 µs for the demapper in
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contrast with the 0.02 µs for the mapper.

4.7 Summary

In this chapter, we studied the trade-off between spectral efficiency (SE) and
computational complexity (CC) T (N) of an N -subcarrier OFDM with Index
Modulation (OFDM-IM) mapper. We identified that the CC lower bound to
map any of all 2⌊log2 ( N

N/2)⌋ OFDM-IM waveforms is Ω(N). With this, we formally
proved that enabling all OFDM-IM waveforms is not computationally intract-
able, as previously conjectured [Lu et al., 2018], [Basar et al., 2017]. Besides,
we showed that any algorithm running faster than this lower bound prevents
the OFDM-IM SE maximization. Based on the SC analysis, we proved that the
worst tolerable CC for the mapper is O(N) otherwise, the mapper’s throughput
nullifies as the system is assigned more and more subcarriers. We showed that
this is the case of the original OFDM-IM mapper [Basar et al., 2013], in which
the O(N2) CC surpasses the O(N log2 N) CC of the FFT algorithm. Then, we
presented an OFDM-IM mapper that enables the largest SE under the minimum
possible CC.

We demonstrate our theoretical findings by implementing an open-source library
that supports all DSP steps to map/demap an N -subcarrier complex frequency-
domain OFDM-IM symbol. Our implementation supports different index se-
lector algorithms and is the first to enable the SE maximization while preserving
the same time and space asymptotic complexities of the classic OFDM mapper.
With our library, we showed that the OFDM-IM mapper does not need com-
promise approaches that prevail in the OFDM-IM literature such as subblock
partitioning (SP) [Mao et al., 2018; Mao et al., 2017b; Basar et al., 2017; Fan
et al., 2015; Basar et al., 2013] or adoption of few active subcarriers [Salah
et al., 2019].
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Table 4.4: Mapper performance: Proposed (‘Prop.’) vs. OFDM-IM (‘Orig.’)

N
m(N)
bits

IM
Gain

IM
Mapper

Runtime
(µs)

±δ
(µs)

Through
put (Mbps) x

4 4 1.00 Prop. 0.12 0.001 32.81 1854
Orig. 0.10 0.002 40.86 1710

6 7 1.17 Prop. 0.14 0.003 49.23 1704
Orig. 0.13 0.003 53.48 1656

8 10 1.25 Prop. 0.17 0.001 57.84 1686
Orig. 0.18 0.001 55.40 1602

10 12 1.20 Prop. 0.21 0.001 56.29 1536
Orig. 0.24 0.002 49.65 2208

12 15 1.25 Prop. 0.26 0.002 57.78 1614
Orig. 0.32 0.003 47.47 1872

14 18 1.28 Prop. 0.30 0.002 59.21 1524
Orig. 0.41 0.003 43.99 1542

16 21 1.31 Prop. 0.34 0.002 62.39 1728
Orig. 0.50 0.004 41.92 1476

18 24 1.33 Prop. 0.39 0.002 62.03 1596
Orig. 0.62 0.005 38.85 1494

20 27 1.35 Prop. 0.43 0.002 63.45 1524
Orig. 0.75 0.007 36.18 1554

22 30 1.36 Prop. 0.48 0.002 62.10 1884
Orig. 0.90 0.008 33.46 1518

24 33 1.38 Prop. 0.51 0.002 64.31 1554
Orig. 1.05 0.043 31.35 1512

26 36 1.38 Prop. 0.56 0.001 64.61 1560
Orig. 1.21 0.007 29.70 1470

28 39 1.39 Prop. 0.60 0.002 64.55 1536
Orig. 1.40 0.012 27.92 1512

30 42 1.40 Prop. 0.64 0.003 65.19 1518
Orig. 1.59 0.016 26.43 1476

32 45 1.41 Prop. 0.69 0.010 65.43 1524
Orig. 1.79 0.012 25.07 1548

34 48 1.41 Prop. 0.73 0.003 65.93 1560
Orig. 2.03 0.018 23.70 1518

36 51 1.42 Prop. 0.78 0.008 65.47 1500
Orig. 2.25 0.015 22.63 1482

38 54 1.42 Prop. 0.82 0.002 65.96 1608
Orig. 2.50 0.017 21.57 1776

40 57 1.42 Prop. 0.86 0.002 66.16 1524
Orig. 2.78 0.027 20.51 1530

42 59 1.40 Prop. 0.91 0.003 65.06 1620
Orig. 3.05 0.019 19.33 1458

44 62 1.41 Prop. 0.95 0.003 65.02 1686
Orig. 3.37 0.027 18.41 1518

46 65 1.41 Prop. 1.00 0.002 65.10 2118
Orig. 3.68 0.055 17.68 1548

48 68 1.42 Prop. 1.05 0.002 64.98 1536
Orig. 3.97 0.022 17.13 1476

50 71 1.42 Prop. 1.09 0.010 65.04 1530
Orig. 4.31 0.035 16.47 1494

52 74 1.42 Prop. 1.13 0.002 65.31 1578
Orig. 4.70 0.022 15.75 1494

54 77 1.42 Prop. 1.18 0.002 65.03 1470
Orig. 5.04 0.025 15.28 1500

56 80 1.43 Prop. 1.23 0.002 65.31 1440
Orig. 5.44 0.026 14.71 1536

58 83 1.43 Prop. 1.27 0.004 65.42 2064
Orig. 5.82 0.035 14.27 1512

60 86 1.43 Prop. 1.31 0.003 65.42 1614
Orig. 6.27 0.073 13.72 1476

...
...

...
...

...
...

...
...

∞ Θ(N) 1.5 Prop. Θ(N) 0 3/(2κ) ∞
Orig. Θ(N2) 0 0 ∞
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Table 4.5: Demapper performance: Proposed (‘Prop.’) vs. OFDM-IM (‘Orig.’).

N
m(N)
bits

IM
Gain

IM
Mapper

Runtime
(µs)

±δ
(µs)

Through
put (Mbps) x

4 4 1.00 Prop. 0.06 0.001 65.25 1674
Orig. 0.06 0.000 69.57 1620

6 7 1.17 Prop. 0.08 0.001 85.26 1758
Orig. 0.07 0.001 94.85 1746

8 10 1.25 Prop. 0.11 0.001 88.11 2208
Orig. 0.10 0.001 102.99 1626

10 12 1.20 Prop. 0.15 0.002 80.16 1518
Orig. 0.13 0.001 91.67 1704

12 15 1.25 Prop. 0.19 0.002 78.70 1524
Orig. 0.17 0.002 90.53 1536

14 18 1.28 Prop. 0.22 0.001 81.63 1536
Orig. 0.21 0.001 86.00 1614

16 21 1.31 Prop. 0.25 0.002 84.58 1512
Orig. 0.26 0.001 81.87 1758

18 24 1.33 Prop. 0.29 0.003 84.18 1536
Orig. 0.30 0.002 79.68 1524

20 27 1.35 Prop. 0.31 0.002 88.32 1542
Orig. 0.36 0.001 75.74 1614

22 30 1.36 Prop. 0.34 0.004 89.13 1596
Orig. 0.42 0.002 70.99 1542

24 33 1.38 Prop. 0.37 0.003 90.11 1488
Orig. 0.49 0.007 68.03 1704

26 36 1.38 Prop. 0.40 0.003 90.86 1500
Orig. 0.56 0.001 64.49 1530

28 39 1.39 Prop. 0.43 0.008 91.23 1482
Orig. 0.63 0.003 61.69 1626

30 42 1.40 Prop. 0.45 0.002 93.23 1566
Orig. 0.72 0.001 58.20 1548

32 45 1.41 Prop. 0.48 0.007 93.38 1464
Orig. 0.81 0.002 55.35 1476

34 48 1.41 Prop. 0.51 0.003 93.51 1602
Orig. 0.91 0.001 52.67 1560

36 51 1.42 Prop. 0.54 0.011 93.82 1548
Orig. 1.01 0.002 50.42 1878

38 54 1.42 Prop. 0.57 0.002 94.62 1500
Orig. 1.13 0.002 47.85 1512

40 57 1.42 Prop. 0.59 0.003 95.99 1464
Orig. 1.25 0.003 45.58 1548

42 59 1.40 Prop. 0.63 0.003 93.58 1548
Orig. 1.39 0.014 42.58 1722

44 62 1.41 Prop. 0.66 0.002 93.37 1464
Orig. 1.54 0.051 40.27 2259

46 65 1.41 Prop. 0.69 0.001 94.68 1512
Orig. 1.66 0.002 39.27 1656

48 68 1.42 Prop. 0.71 0.006 95.18 1554
Orig. 1.80 0.006 37.68 1548

50 71 1.42 Prop. 0.74 0.002 95.88 1458
Orig. 1.97 0.013 35.98 1488

52 74 1.42 Prop. 0.78 0.009 95.05 1530
Orig. 2.15 0.055 34.45 1506

54 77 1.42 Prop. 0.80 0.002 96.08 1542
Orig. 2.30 0.002 33.49 1548

56 80 1.43 Prop. 0.83 0.002 96.50 1572
Orig. 2.47 0.003 32.35 1512

58 83 1.43 Prop. 0.86 0.003 96.42 1566
Orig. 2.66 0.002 31.19 1524

60 86 1.43 Prop. 0.89 0.003 96.41 1482
Orig. 2.85 0.002 30.16 1506

...
...

...
...

...
...

...
...

∞ Θ(N) 1.5 Prop. Θ(N) 0 3/(2κ) ∞
Orig. Θ(N2) 0 0 ∞
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Chapter 3 demonstrates that the FFT algorithm does not enable OFDM
as a non comp-limited signal, i.e., FFT causes the throughput of the
OFDM to nullify as spectrum grows. This chapter presents a broader

SC analysis of the Discrete Fourier Transform (DFT) computational problem
in the context of OFDM waveforms. The analysis is generalized for all DFT
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algorithms and considers the implications of constraining the DFT complexity
with the runtime deadline imposed by the Nyquist sampling theorem. The
chapter pursues a non comp-limited alternative for the FFT-OFDM solution.
This chapter is organized as follows.

Section 5.1 reviews the historical roots of the DFT problem and the OFDM
waveform. Besides, it discusses how the future scenario of wireless communic-
ations introduces a case for the joint analysis of the DFT complexity and the
OFDM throughput. Section 5.2 presents a joint throughput-complexity ana-
lysis of the DFT problem and the FFT algorithm. It also states the sampling-
complexity (Nyquist-Fourier) trade-off. Section 5.3 presents the parameterized
DFT (PDFT) algorithm as a more efficient alternative to the FFT-OFDM
status-quo waveform. Section 5.4 presents a comparative performance among
FFT and the PDFT algorithms and validate the theoretical results. Section 5.5
summarizes the chapter.

5.1 FFT Complexity and OFDM Throughput: Trade-Off and
Related Work

The Fast Fourier Transform (FFT) algorithm [Cooley and Tukey, 1965] is among
the top-ten most relevant algorithm of the 20th century [Madey et al., 2005].
FFT outperforms the classic O(N2) DFT algorithm by running in O(N log2 N)
time complexity. Particularly for signal communication processing, FFT re-
volutionized the OFDM design by replacing a bank of expensive synchronized
analog oscillators by a single digital chip that requires a single oscillator. Ever
since, FFT has been employed as frequency/time transform algorithm by several
multicarrier and single carrier waveforms [Gerzaguet et al., 2017].

However, in recent discussions, scholars have doubted the performance abilit-
ies of FFT to modulate signals in the so-called future sixth generation (6G) of
wireless networks [Madanayake et al., 2020a], [Rappaport et al., 2019]. They
point that 6G waveforms are expected to leverage symbol throughput to the
order of Terabit per second (Tbit/s), which envisions signals operating in the
so-called Terahertz (THz) frequency band of the electromagnetic spectrum i.e.,
0.1-10 ×1012 Hz [Zhao et al., 2019]. To alleviate the power consumption im-
plied by the FFT complexity in such massive channel bandwidths, Rappaport
et al. [Rappaport et al., 2019] suggest to give up the “perfect fidelity” of the
DFT computation on behalf of (slightly) more error-prone approximation al-
gorithms [Madanayake et al., 2020b]. This suggests that waveform designers
should consider computational complexity as a performance indicator as relevant
as Bit-Error Rate (BER) for the post-5G generation of wireless networks.

As novel standards adopt wider and wider bandwidths to reach faster data
rates, the number of DFT points increases, causing the number of computational
instructions to grow regardless of the chosen algorithm. As starting point of
this work, we wonder about the computational complexity limits of the exact
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DFT, particularly the FFT algorithm. In other words, does the FFT complexity
nullify its throughput as the number of input points N grows? To the best of
our knowledge, a comprehensive formal answer to that question lacks in the
literature.

Usually, signal processing literature refers to the classic asymptotic analysis of
algorithms to calculate the number of computational instructions (usually, com-
plex multiplications) required to perform DFT for a given value of N . However,
predicting the number of complex multiplications for a given N cannot answer
whether the O(N log2 N) complexity of FFT is sufficiently fast to process larger
and larger signals. To fill this gap, the current complexity analysis model need
to handle certain limitations, as we explain next.

First, in the field of computational complexity, the presentation of a polynomial-
time algorithm (as is the case of FFT) suffices to assert the computational
tractability of a the problem it copes with. However, that class of algorithms
may fail to meet specific runtime constraints of the signal communication field.
When operating in the context of multicarrier waveforms such as Orthogonal
Frequency Division Multiplexing (OFDM) and variants, FFT typically must
feed a Digital-to-Analog / Analog-to-Digital (DAC/ADC) sampler within the
symbol period to ensure unmistakable discrete to/from analog conversion.

As N grows, the inter-sample time interval (hence, the N time samples that
compose the symbol period) is given by the Nyquist sampling theorem. Because
the DFT computation is constrained by the symbol period, there is a natural
relationship between asymptotic lower bound of the DFT computational prob-
lem and the Nyquist theorem. However, as far as we know, such relationship
remains uncaptured by both the signal processing and computational complexity
literature.

Second, differently from the theory of computational complexity, in the field
digital communication signals the algorithm input length is also a relevant in-
dicator of performance because it is a measure of signal throughput. However,
neither the field of analysis of algorithms concerns about the input length max-
imization as a performance target nor the communication signal theory con-
siders the relationship between asymptotic complexity and throughput. In fact,
the classic symbol throughput formula taught by signal processing textbooks
e.g., [Proakis and Salehi, 2008] measures the number of bits per symbol (over-
the-air) period of time, thereby assuming the hardware budget scales on the com-
putational complexity such that signal processing wall-clock runtime becomes
totally negligible. In baseband processors where such assumption is reasonable,
computational complexity impact other indicators. For instance, [Thompson,
1979], [Thompson, 1980] present asymptotic lower bounds relating the DFT
complexity to the silicon area required to implement DFT on a single chip
and [Ailon, 2015] present evidences that the FFT complexity is hard to beat.
However, these studies do not cover the DFT complexity limits considering the
symbol throughput. The need for such joint analysis has been pointed as relev-
ant for beyond-5G wireless networks [Zhao et al., 2019] but it still lacks in the
literature.
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This chapter builds on [Queiroz et al., 2020]. We study the capacity and com-
plexity limits of the DFT problem hence its feasibility for future extremely wide
bandwidth signals. We investigate the condition of scalability of different DFT
algorithms and enhance the SC analysis to account the Nyquist deadline con-
straint on the minimum required complexity of DFT algorithms. We identify
that the throughput of FFT nullifies on N and its power of two N = 2i (i > 0)
constraint causes the complexity to grow exponentially as spectrum widens. This
result is generalized to show that no exact DFT algorithm scales its throughput
on N (for a specific value of M) unless the asymptotic complexity lower bound of
the DFT problem verifies as Ω(N). Currently, this DFT lower bound remains
an open “fascinating” question in field of computational complexity [Lokam,
2009]. To overcome the FFT scalability issues we found out, we consider the
alternative formulation of frequency-time transform employed in Vector OFDM
(V-OFDM) [Xiang-Gen Xia, 2001], a waveform that replaces an N -point FFT
by N/n (n = 2j > 0) smaller FFTs to mitigate the cyclic prefix overhead of
OFDM. Based on that, we report the following contributions:

• We present a joint throughput-complexity study of the frequency-time
transform of the V-OFDM waveform. In this context, we replace FFT by
DFT to relax the power of two constraint on N and to provide V-OFDM
with flexible numerology (e.g. n = 3, N = 156). Besides, we apply
the parameterized complexity technique [Downey and Fellows, 2012] on
the DFT algorithm, getting what we refer to as the Parameterized DFT
(PDFT) algorithm. By setting n = Θ(1), PDFT runs linearly on N rather
than exponentially on i (as is the case of FFT);

• We identify a particular setup in which PDFT becomes multiplierless
requiring only O(N) complex sums. Although this does not solve the
Nyquist-Fourier trade-off – because Θ(N) additions are still necessary –
the solution dispenses complex multiplications, which is the most expens-
ive computational instruction of a typical DFT circuit design. This way,
we believe our results constitute a relevant step towards the practical de-
ployment of the digital baseband part of multicarrier Terahertz signals.

5.2 DFT Spectro-Computational Asymptotic Analysis

In this section, we analyze the SC throughput of the DFT problem and some of
its algorithms. In Subsection 5.2.1, we study the joint throughput-complexity
asymptotic limit of the DFT problem. Then, in Subsection 5.2.2, we analyze the
SC throughput of the FFT algorithm to respond whether it is sufficiently fast to
process signals of increasing throughput. Finally, in Subsection 5.2.3, we relate
the DFT complexity with the Nyquist sampling interval and introduce what we
refer to as the sampling-complexity (Nyquist-Fourier) trade-off. The notation
and symbols used throughout the paper are summarized in Table 5.1.
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Table 5.1: Notation and symbols of the chapter.

Symbol Usage
N Number of subcarriers (DFT points)
∆f Intercarrier space (Hz)
W Symbol bandwidth (Hz)
M Size of modulation points

B(N) Bits per N -subcarrier symbol
T (N) Complexity of an algorithm under an N -size input

SC(N) Throughput of an algorithm under an N -size input
LDF T (N) Complexity lower bound of the N -point DFT problem
LDF T (N) Complexity lower bound of the d-bit multiplication problem

TNY Q Inter sample time interval (seconds)
j Imaginary unity
X Complex frequency domain symbol
Y Complex time domain symbol
Xk k-th complex frequency domain sample
Yt t-th complex time domain sample
xl l-th frequency domain vector block
yq q-th time domain vector block
L Number of vector blocks and DFT size
M Length of vector blocks

Ω(f) Order of growth asymptotically equal or
larger than f

O(f) Order of growth asymptotically equal or
smaller than f

Θ(f) Order of growth asymptotically equal to f
[·]T transpose of the matrix [·]
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5.2.1 Throughput-Complexity Limits of the DFT Computation

The IDFT at an OFDM transmitter consists in computing the complex discrete
time samples Yt, t = 0, 1, · · · , N − 1 of a symbol given the complex samples
Xk that modulate the baseband frequencies k = 0, 1, · · · , N − 1. According
to the Fourier analysis, such relationship is given by Yt = ∑N−1

k=0 Xkej2πkt/N , t =
0, 1, · · · , N−1, in which i =

√
−1 and e = limx→∞(1+1/x)x = 2.718281 . . . . At

the receiver, a DFT algorithm takes the signal back from time to the frequency
domain by performing Xk = ∑N−1

t=0 Yte
−j2πkt/N , k = 0, 1, · · · , N−1. Since in each

transform both k and t vary from 0 to N − 1, it is easy to see that the resulting
asymptotic complexity TDF T (N) is O(N2). The FFT algorithm improves this
complexity to O(N log2 N) at the constraint of N = 2i, for some i > 0. For
this reason, the number of FFT points (hence, channel width) at least doubles
across novel wireless network standards targeting faster data rates, e.g., IEEE
802.11ax [IEEE, 2019]. For other details about DFT and FFT, please refer to
[Kumar et al., 2019].

The SC analysis described in chapter 3 defines the SC throughput SC(N) of
an N -subcarrier signal processing algorithm as the ratio between the amount of
useful transmission bits B(N) carried by the symbol and computational com-
plexity T (N) taken to build the symbol. Also, the asymptotic growth of SC(N)
is bounded by a corresponding SC capacity which results from the ratio between
the maximum number of bits BMAX(N) of the symbol and the asymptotic com-
plexity lower bound L(N) of the computational problem. Next, we discuss
BMAX(N) and L(N) for the DFT problem in the context of the OFDM wave-
form.

The SC capacity of the N -point DFT problem is built as follows. The quantity
BMAX(N) results from the maximum number of bits modulated by an OFDM
symbol. Denoting M = 2p (for some p > 0) as the length of the constellation
diagram, it is given by

BMAX(N) = N log2 M (5.1)

As usual in the analysis of algorithms, the complexity accounts for the most
recurrent and expensive computational instruction. For the DFT problem, this
is the number of complex multiplications. Then, without loss of generality,
LDF T (N) captures the minimum asymptotic number of complex multiplications
required by any existing or to-be-invented DFT algorithm. Now, let LMULT (d)
denote the asymptotic lower bond to perform a single complex multiplication
between two d-bit complex numbers. In the case of OFDM,

d = Θ(log2 M) (5.2)

Therefore, the general capacity of OFDM is given in Def. 11.

Definition 11 (General Spectro-Computational Capacity of OFDM). Let
LDF T (N) be the minimum asymptotic number of complex multiplications re-
quired by the N -point DFT problem and LMULT (d) be the complexity lower

— 78 —



CHAPTER 5. IS FFT FAST ENOUGH FOR BEYOND 5G
COMMUNICATIONS?

bound of the d-bit multiplication problem. Let also log2 M be the number of
modulated bits per subcarrier. Since LDF T (N) is not less complex than the
remainder computational problems of the basic OFDM waveform (i.e., mapping
and addition of cyclic prefix) the asymptotic throughput SCDF T (N) of the DFT
algorithm defines the asymptotic throughput of the OFDM waveform. The SC
capacity bounding this throughput is given as follows

SCDF T (N) = O

(
N log2 M

LMULT (d)LDF T (N)

)
(5.3)

Def. 11 establishes the foundations to determine whether OFDM is a comp-
limited or a non comp-limited signal. Recall that the throughput of a comp-
limited signal nullifies as N grows thereby the design of non comp-limited signals
should be pursued by waveform designers. Since N is the variable of the SC
asymptotic analysis, we need to discuss the asymptotic growth of M and d with
relation to N .

Let us firstly assume a band-limited channel regime whose Signal-to-Noise ratio
(SNR) does not grow arbitrarily on N . In this case, capacity grows linearly on
the bandwidth and both the length of the constellation diagram and the number
of bits per subcarrier are bounded by a constant. Under these conditions, the
number of bits grows linearly on the bandwidth. This gives the condition to turn
OFDM into a non comp-limited signal waveform as shown by Lemma 8.
Lemma 8 (Condition for Non Comp-Limited OFDM Signal with Bounded SNR).
The N -subcarrier OFDM signal with a constant number of bits per subcarrier
is comp-limited unless the N -point DFT problem lower bound LDF T (N) verifies
as Ω(N).

Proof. Consider Def. 11 under a band-limit channel with constant SNR, i.e.,

BMAX(N) = Nd (5.4)
M = Θ(1) (5.5)
d = Θ(log2 M) = Θ(1) (5.6)

Neglecting all constants for the sake of the asymptotic analysis and considering
the Eqs. 5.4, 5.5 and 5.6, the general SC capacity that bounds the throughput
of OFDM (Eq. 5.3) turns into the following limit

SCDF T (N) = lim
N→∞

N

LDF T (N)
(5.7)

If the minimum conjectured complexity for the N -point DFT problem (i.e.,
LDF T (N) = Ω(N) [Lokam, 2009]) does not verify as true, the SC capacity
captured by the limit in Eq. 5.7 nullifies causing OFDM to be a comp-limited
signal. Otherwise, the OFDM capacity does not nullify on N . Therefore, the
OFDM waveform is comp-limited unless LDF T (N) = Ω(N). ■

If one relaxes the assumption M = Θ(1) by considering M can grow faster or as
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fast as N (i.e., SNR grows on N), the Shannon channel capacity grows linearly
on N and logarithmically on the SNR. If M = Θ(N), for example, then the
number of bits per subcarrier grows as fast as log2 N . However, the complexity
to multiply two d-bit binary numbers grows accordingly. Based on that, we
present the Lemma 9.
Lemma 9 (Comp-Limited OFDM Signal under Unbounded SNR). The N -
subcarrier OFDM signal waveform with Ω(N) bits per subcarrier is comp-limited
unless the N -point DFT problem lower bound LDF T (N) verifies as Ω(N) and
the d-bit multiplication problem lower bound LMULT (d) verifies as Ω(d).

Proof. Consider Def. 11 under a band-limit channel with a SNR such that

M = Ω(N) (5.8)

Then, the minimum asymptotic number of bits per subcarrier is such that

d = Θ(log2 M) = Θ(log2 N) (5.9)

and the general SC capacity that bounds the throughput of OFDM (Eq. 5.3)
turns into the following limit

SCDF T (N) = lim
N→∞

N log2 N

LMULT (log2 N)LDF T (N)
(5.10)

Assuming the best-case scenario for the OFDM throughput, LDF T (N) is linear
on N and the OFDM capacity rewrites as

SCDF T (N) = lim
N→∞

log2 N

LMULT (log2 N)
(5.11)

The SC capacity of OFDM captured by limit in Eq. 5.11 nullifies on N unless
the lower bound LMULT (d) verifies as Ω(d). ■

The complexity of the current fastest known algorithm for the d-bit multiplica-
tion problem is O(d log2 d) [Harvey and Hoeven, 2020]. Although the exact lower
bound of the problem remains unknown, evidences have strongly suggested that
it is Ω(d log2 d) [Afshani et al., 2019], [Schonhage and Strassen, 1971]. Based
on that, we conjecture that the basic OFDM turns into a comp-limited signal if
the number of bits per subcarrier grows as fast N at least. For the remainder
of this work, we assume Lemma 8 in which the number of bits per subcarrier is
constant on N .

5.2.2 Spectro-Computational Analysis of the FFT Algorithm

The FFT algorithm [Cooley and Tukey, 1965] outperforms the classic O(N2)
DFT algorithm by running in O(N log2 N) time complexity. FFT performs
O(N) computational instructions to decrease an N -point DFT problem into two
N/2-DFTs per iteration (or recursive calling). This is possible by noting that
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the frequency samples Xk and Xk+N/2 (k = 0, 1, · · · , N/2− 1) can be computed
from the same following N/2-point DFTs:

Ek =
N/2−1∑

t=0
Y2te

−j2πtk
N/2 (5.12)

Ok = e−j2πk/N
N/2−1∑

t=0
Y2t+1e

−j2πtk
N/2 (5.13)

In other words, Ek (Eq. 5.12) and Ok (Eq. 5.13) are the N/2-point DFT taken
from the even-indexed and odd-indexed time samples of the N -point input array,
respectively. Based on them, the Danielson–Lanczos lemma shows that,

Xk = Ek + e−j2πk/NOk (5.14)
Xk+N/2 = Ek − e−j2πk/NOk (5.15)

This way, N/2 iterations are necessary to compute Xk and Xk+N/2, yielding a
total of O(N) computations. Each of these iterations needs to solve both the
N/2-point DFTs Ek and Ok. Denoting T (N) as the complexity of an N -point
DFT and applying the Danielson–Lanczos lemma recursively, the overall com-
plexity can be given by the recurrence relation T (N) = O(N) + 2T (N/2) which
is trivially verified as O(N log2 N). Note, however, that FFT demands N = 2i

(i > 1), yielding an exponential complexity of O(2ii) on i. The Corollary 3
follows from the O(N log2 N) complexity of FFT.
Corollary 3 (Asymptotic Null FFT Throughput). The spectro-computational
throughput of the FFT algorithm does nullify as N grows.

Proof. Let TMULT (d) be the computational complexity to multiply two d-bit
numbers and and TDF T (N) the computational complexity of the N -point FFT
algorithm. Following Def. 11, the FFT asymptotic throughput in OFDM is
readily obtained

SCF F T = lim
N→∞

Nd

TMULT (d)N log2 N
(5.16)

If the SNR channel can get arbitrarily large such that the constellation diagram
length M grows on N then d = Ω(log2 N). Recall that the complexity to
multiply two d-bit numbers grows at least linearly on d. Thus, the asymptotic
throughput of FFT is given by Eq. 5.17 at best.

SCF F T = lim
N→∞

N log2 N

N log2
2 N

= 0 (5.17)

If the number of bits per subcarrier is constant, i.e., d = Θ(1), then TMULT (d) =
Θ(1) and the resulting FFT throughput in OFDM 1/ log2 N nullifies in the same
way. Therefore, the FFT throughput nullifies as N grows. ■

Fig. 5.1 illustrates the asymptotic growth of the FFT throughput for different
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Figure 5.1: Asymptotic throughput of the FFT algorithm over distinct OFDM
signal mappers. As the number of points increases, complexity grows
faster than the number of modulated bits irrespective of the chosen
mapper.

subcarrier signal mappers assuming a total of TDF T = N log2 N complex multi-
plications, each lasting 1 picosecond. Note that, in all cases, widening symbol
spectrum by increasing the number of subcarriers causes the FFT throughput
to decrease rather than increasing. The reason is that computational complex-
ity grows asymptotically faster than the number of modulated bits on N . To
overcome this bottleneck in practice, the hardware processing capability must
scale on N .

We also note that the massive regime of subcarriers of future wireless networks
can cause FFT to become unfeasible in practice. The reason is that FFT de-
mands N = 2i, leading to an exponential complexity of O(2ii). For nowadays
narrow-width wireless networks, this complexity does not constitute a serious
concern. However, as telecommunication standards evolve towards THz bands
and beyond, such exponential complexity on i can become intractable.

5.2.3 The Sampling-Complexity Nyquist-Fourier Trade-Off

DFT algorithms face two particular issues in the context multicarrier waveforms
such as OFDM. The first comes from a mismatch between the unit of processing
of DFT algorithms and the other algorithms along the processing block diagram.
Although blocks such as “signal mapping” and “cyclic prefix insertion” process
a total of N signal samples, they can process them in a sample-by-sample basis.
Thus, the processing of a particular sample does not depend on the value of
other samples in those blocks.

By contrast, DFT algorithms can not start running before all N samples are
loaded in the input because they operate in a symbol (i.e., batch-of-samples)
basis. Hence, the unit of processing of DFT algorithms is N times higher than
their preceding and succeeding processing blocks. As N grows, such mismatch
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turns a DFT algorithm to become a bottleneck along the OFDM block dia-
gram. This problem has been described by the digital radio design literature
as a runtime deadline to be met by signal processing algorithms [Hessar et al.,
2020], [Liu et al., 2019], [Hellstrom et al., 2019], [Drozdenko et al., 2018], [Tan
et al., 2011]. By formalizing the problem as a trade-off between sampling and
computational overhead, we can calculate the required asymptotic complexity
to meet the sampling interval.

Second, DFT algorithms are responsible to feed the DAC in a classic OFDM
transmitter. To avoid signal aliasing at the receiver, the transmitter must sample
the time-domain signals produced by the IDFT algorithm within a specific time
interval. This interval is calculated from the Nyquist sampling theorem which
states that the largest time interval between two equally spaced (time-domain)
samples of a signal band-limited to W Hz must be TNY Q = 1/(2W ) seconds.
In the case of complex IQ modulators where the real and imaginary dimensions
of the signal are independently and simultaneously sampled by two parallel
samplers, TNY Q = 1/W seconds.

In IQ systems, at least W samples must feed the DAC every second – which is
known as the Nyquist sampling rate – otherwise the signal frequency can suffer
from aliasing thereby preventing its correct identification at the receiver. For an
inter-subcarrier space of ∆f Hz, the width of an N -subcarrier OFDM signal is
WOF DM = N∆f , so a complex time-domain OFDM sample must feed the DAC
every,

TNY Q = 1
N∆f

seconds (5.18)

Based on Eq. 5.18, we relate the asymptotic complexity of DFT algorithms
with the Nyquist interval. As result, we introduce the sampling-complexity
(Nyquist-Fourier) trade-Off in Def. 12.

Definition 12 (The Sampling-Complexity Nyquist-Fourier Trade-Off). In OFDM
radios with ∆f Hz of inter-subcarrier space, the N -point DFT computational
complexity TDF T (N) increases as the Nyquist period 1/(N∆f) decreases to im-
prove symbol throughput.

The sequence of discrete time samples output by the IDFT algorithm corres-
ponds to the time-domain version of the OFDM symbol that lasts TSY M = 1/∆f
seconds. In the design of a real-time OFDM radio the entire digital signal
processing must take no more TSY M , otherwise the system either suffers from
sample losses or misses the real-time communication capability [Hessar et al.,
2020], [Liu et al., 2019], [Hellstrom et al., 2019], [Drozdenko et al., 2018; Tan
et al., 2011]. We capture this condition in terms of asymptotic complexity in
Lemma 10.

Lemma 10 (DFT Upper Bound for OFDM Waveforms). The computational
complexity upper bound required to solve the DFT problem under the Nyquist
interval constraint on radios with finite processing capabilities is O(1).
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Proof. Considering that a DFT algorithm is the asymptotically most complex
procedure of the basic OFDM waveform, its complexity must satisfy

TDF T (N) ≤ TSY M = NTNY Q (5.19)

To ensure that larger N translates into faster signals, the symbol period TSY M

must remain constant as N grows. From this, it does result

lim
N→∞

TDF T (N) ≤ TSY M (5.20)

TDF T (N) = O(1) (5.21)

■

Note that one can relax the complexity lower bound predicted by Lemma 10
if the radio digital baseband processing capabilities can grow arbitrarily on
the number of subcarriers. However, with the end of the so-called “Moore’s
law” [Moore, 2003], higher processing capability translates into higher manu-
facturing cost, power consumption and hardware area, bringing doubts to the
feasibility of portable multicarrier Terahertz radios.

The Corollary 4 follows from Lemma 10.
Corollary 4 (Unfeasible Nyquist-Constrained DFT). Given that the minimum
possible lower bound complexity of the DFT problem is Ω(N) [Lokam, 2009]
and the Nyquist interval imposes an upper bound of O(1) (Lemma 10), no DFT
algorithm can meet the Nyquist interval as N grows.

To face the result of the Corollary 4, one may relax the Nyquist constraint
which results in the so-called compressive sensing systems [Qaisar et al., 2013].
However, high accuracy signal frequency prediction in such systems has been
proved to be a NP-hard problem [Mousavi et al., 2019] which turns out to much
more complex systems because only exponential time algorithms are known for
that class of problems.

Note that the sampling-complexity trade-off does not restrict to multicarrier
waveforms such as OFDM and its variants but also to single carrier signals that
rely on DFT to mitigate the peak-to-average power ratio of uplink transmissions
in wireless cellular networks [Zaidi et al., 2016]. The single carrier Frequency
Division Multiple Access (FDMA, aka DFT-s-OFDM) [Myung et al., 2006], for
example, mitigates PAPR by performing an extra DFT step before following
the typical steps of an OFDM transmitter (i.e., precode). In turn, the single
carrier Frequency Domain Equalization (FDE) waveform [Pancaldi et al., 2008]
moves the IDFT computation from the transmitter to the receiver giving sup-
port for lower PAPR and mitigation of inter-symbol interference. Of course,
the sampling-complexity trade-off is likely to be more critical in waveforms of
broadband services since they pursue wider spectrum as wireless communication
standards evolve. In any case, the entire DFT computation is batch-oriented
and must be finished within the symbol period for samplers operating under the
Nyquist sampling theorem.
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5.3 Pushing the Throughput-Complexity Limits of DFT

In this section, we consider methods to overcome the throughput bottleneck
faced by N -point DFT algorithms such as FFT (Section 5.2) and discuss a
solution to mitigate the sampling-complexity trade-off described in Subsec-
tion 5.2.3.

5.3.1 Parameterized Complexity and Signal Vectorization

To mitigate the Nyquist-Fourier trade-off in practice, we apply an algorithm
design technique inspired in the parameterized complexity [Downey and Fel-
lows, 2012]. The parameterized complexity was originally proposed to enable
the polynomial time solution of multi-parameter NP-complete problems. The
idea consists in bounding one or more parameters of the problem such that the
complexity of the solution becomes a polynomial function of the non-bounded
parameters. For example, the vertex cover of an undirected graph G consisted of
V vertices and E edges is a subset V ′ of V in which every edge of E has at least
one of its vertices in V ′. Finding out the minimum vertex cover of length |V ′| of
a given |V |-vertex graph is a classic NP-complete problem [Karp, 1972], meaning
that polynomial time algorithms are still unknown for the problem.

The parameterized complexity exploits scenarios in which |V ′| can be assumed
much less than |V | and bounded by some value (the parameter) g. Then, a
parameterized algorithm for the problem is polynomial on |V | and exponential
only on g. This is the case of [Chen et al., 2006], whose O(g|V | + 1.274g)
algorithm performs much better than O(2|V |) for scenarios of bounded g and
increasing |V |. For a comprehensive study about the parameterized complexity
please, refer to [Downey and Fellows, 2012].

We consider an alternative formulation of frequency-time transform in which
parameterization can enable faster-than FFT computations. In a typical OFDM
transmitter, the IDFT operation associates N input frequency samples Xk

(k = 0, · · · , N − 1) to N respective baseband frequencies k Hz at the time
instant t by the complex multiplication Xkej2πkt/N . The direct IDFT algorithm
repeats these N multiplications to compute N time samples, which yields a
total of O(N2) operations. To cut this complexity, we parameterize the num-
ber g ≤ N of frequency samples associated to a given baseband frequency, as
illustrated in Fig. 5.2. In the parameterized DFT scheme, all the N frequency
samples are equally divided across g baseband frequencies k, leading to n = N/g
groups (solid rectangles) of g frequency samples each. An n-point IDFT across
frequency samples of distinct groups (dashed rectangles), yields one g-sample
time domain group per time instant t = 0, 1, · · · , n − 1, resulting in a total of
ng = N time domain samples.

We identify that the waveform resulting from the parameterized DFT compu-
tation we have just described is not new. Indeed, it exactly matches OFDM in
its vectorized form (i.e., V-OFDM), a waveform originally proposed to reduce
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Figure 5.2: Frequency-time transform scheme of Vector OFDM. The N -size fre-
quency domain input is arranged into n groups (solid rectangles) of
frequency k and length g = N/n each. We rely on the classic DFT
algorithm (rather than FFT) to relax the power of two constraint
on N and n and to parameterize n to Θ(1). This way, we achieve
a flexible frequency-time transform whose complexity is effectively
linear on N rather than exponential on i.

the cyclic prefix overhead of OFDM [Xiang-Gen Xia, 2001]. Prior works have
investigated V-OFDM with respect to different aspects. Cheng et al. [Cheng
et al., 2011] study the BER performance in Rayleigh channels and Li et al. [Li
et al., 2012] identify setups in which the V-OFDM BER performs similarly or
better than OFDM for different low-complexity receivers. More recently, V-
OFDM has been merged with other signal processing techniques such as index
modulation [Liu et al., 2017] and MIMO [Zhang et al., 2020].

Despite the valuable contributions of prior V-OFDM works, we identify that
they impose the N = 2i constraint of OFDM on V-OFDM to benefit from
the O(N log2 N) complexity of FFT. That assumption was popularized by the
basic OFDM waveform in which the employment of DFT (instead of FFT) does
necessarily impair the asymptotic complexity. Thus, the spectrum numerology
flexibility is sacrificed on behalf computational complexity. Our point is that,
differently from OFDM, replacing FFT by the basic DFT in V-OFDM does not
necessarily impair the resulting asymptotic complexity as it does in OFDM. In
this sense, in Subsections 5.3.2 and 5.3.3, we review the V-OFDM signal and
discuss how to relax the N = 2i constraint of V-OFDM keeping a complexity
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that does not nullify throughput on N , respectively.

5.3.2 The Vector OFDM Signal

The V-OFDM transmitter arranges the N -sample complex frequency domain
symbol {Xi}N−1

i=0 into L complex Vectors Blocks (VBs) xl (l = 0, 1, · · · , L− 1)
having M = N/L samples each. Denoting [·]T as the transpose of the matrix [·],
the samples of {Xi}N−1

i=0 within the l-th VB xl is given by

xl = [XlM+m]T m = 0, 1, · · · , M− 1 (5.22)

The sequence of complex frequency domain samples is

X = [X0, X1, · · · , XN−1] = [x0
T , x1

T , · · · , xL−1
T ] (5.23)

The q-th time domain VB (q = 0, 1, · · · , L− 1) is denoted as

yq = [Yq·M+m]T m = 0, 1, · · · , M− 1 (5.24)

The V-OFDM literature [Zhang et al., 2020][Liu et al., 2017][Xiang-Gen Xia,
2001][Cheng et al., 2011][Li et al., 2012] perform M inverse L-point FFTs to
calculate each time domain VB. Since this contrasts to a single N -point FFT of
OFDM, we refer to it as the Parameterized FFT (PFFT). The resulting samples
within the q-th time domain VB is therefore

yq =


Yq·M+0
Yq·M+1

...
Yq·M+(M−1)

 =


X0·M+0
X0·M+1

...
X0·M+M−1

 ej2πq0/L + · · ·+


X(L−1)M+0
X(L−1)M+1

...
X(L−1)M+M−1

 ej2πq(L−1)/L

(5.25)

The time domain transmitting sequence is

Y = [Y0, Y1, · · · , YN−1] = [y0
T , y1

T , · · · , yL−1
T ] (5.26)

Both the normalized inverse DFT and DFT signals are respectively summarized
as follows

yq = 1
L

L−1∑
l=0

xle
j2πql/L q = 0, 1, · · · , L (5.27)

xl = 1
L

L−1∑
q=0

yqe
−j2πql/L l = 0, 1, · · · , L (5.28)

After the inverse DFT transform, the signal undergoes the same processing as
usual in the classic OFDM waveform. For more details about signal detection
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in V-OFDM receivers, please refer to [Xiang-Gen Xia, 2001], [Li et al., 2012]. In
what follows, we adopt the notation LM (instead of ng) that is usual across the
V-OFDM literature.

5.3.3 Parameterized DFT Algorithm for V-OFDM

In order to relax the power of two constraint on the spectrum parameters of V-
OFDM, we replace FFT by the basic DFT algorithm. Since V-OFDM performs
M L-point frequency-time transforms, the DFT and FFT complexities in V-
OFDM are O(ML2) and O(ML log2 L), respectively. However, differently from
OFDM in which the asymptotic complexity of DFT cannot be as efficient as
FFT’s, one can exploit the vectorization feature of V-OFDM to refrain the DFT
complexity.

We achieve that by parameterizing L to Θ(1), getting what we refer to as the
Parameterized DFT (PDFT) algorithm (Algorithm 5.1). The parameterization
provides DFT with non-null throughput on N as demonstrated in Lemma 11.

Lemma 11 (Scalable Throughput of the Parameterized DFT Algorithm). By set-
ting the number of points L to Θ(1), the Parameterized DFT (PDFT) algorithm
(Algorithm 5.1) achieves non-null throughput as the number of subcarriers N
gets arbitrarily large.

Proof. Since N = ML, setting L = Θ(1) leads the O(L2M) complexity of PDFT
to become O(M) = O(N). Thus, assuming the channel conditions does not
enable arbitrarily large constellation diagrams, the total number of bits per V-
OFDM symbol is N×d = N×log2 M = O(N) and the computational complexity
to perform a single complex multiplication is Θ(1). Therefore, the throughput
of the PDFT algorithm does not nullify on N , as demonstrated below:

lim
N→∞

Nd

L2M
= lim

N→∞

Nd

N
= c > 0 (5.29)

■

If N = ML is set to grow as a power of two 2i, setting L to Θ(1) leads both
FFT and PDFT to run in O(M) = O(2i/L) time complexity. However, if that
constraint is relaxed, PDFT can provide V-OFDM with flexible numerology
(e.g. n = 3, N = 156, n = 2, N = 40) while running linearly on N rather
than exponentially on i. The flexible numerology of PDFT, turns V-OFDM a
competitive waveform for spectrum allocation in fragmented frequency bands.
Besides, the reduced complexity is a step towards the enhancement of current
broadband-driven services such as the enhanced mobile broadband service of
5G [3GPP, 2018] and the very high throughput service of IEEE 802.11ac [802.11,
2013].
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Algorithm 5.1. The Parameterized inverse DFT algorithm for Vector OFDM.
We show PDFT i) can perform O(N) complex multiplications while relaxing
the N = 2i constraint that causes FFT to run in O(2ii) exponential complexity
and ii) becomes multiplierless performing only O(N) complex sums for M = 2.

1: {Xi(i = 0, 1, · · · , N − 1) is the frequency domain input}
2: {Yi(i = 0, 1, · · · , N − 1) is the time domain output}
3: {L is the number of points per vector block};
4: {M is the number of vectors such that N = LM};
5: for (i = 0; i < N ; + + i) do
6: Yi ← 0; {initialization of the entire time-domain array};
7: end for
8: for (q = 0; q < L; + + q) do
9: for (m = 0; m < M; + + m) do

10: for (l = 0; l < L; + + l) do
11: Yq·M+m = Yq·M+m + Xl·M+m · ej2πql/L;
12: end for
13: end for
14: end for

5.3.4 Multiplierless Parameterized DFT

The L = 1 and L = N setups of V-OFDM are well known cases mentioned in
the literature. The L = 1 case turns V-OFDM into a single carrier waveform
(requiring an extra N -point IFFT at the receiver) while the L = N case turns
V-OFDM into OFDM. We identify that V-OFDM under L = 2 can mitigate the
mismatch between the unit of operation of the sampler and the frequency-time
transform computation. As explained in Subsection 5.2.3, OFDM and variants
suffer from what we refer to as the sampling-complexity trade-off. This happens
because the sampler operates in a sample-by-sample basis whereas the unit of
operation of the frequency-time transform computation is an N -sample symbol.
Since the entire symbol must be sampled within the symbol period, the Nyquist
(inter-sample) time interval decreases as N gets large but the time complexity
to compute all N samples increases on N .

We identify V-OFDM can be set to mitigate the sampling-complexity trade-off.
If one parameterizes L to 2, the N -subcarrier V-OFDM symbol is vectorized
into only two VBs, leading to N/2 2-point DFTs. Since these 2-point DFTs
are completely independent from each other, they can be computed in parallel.
Each 2-point transform takes O(1) time complexity regardless of the value of N ,
therefore the entire solution requires O(N) floating point operations. Although
the final complexity is not O(1) (as required by the sampling-complexity trade-
off), the solution is multiplierless, requiring only N/2 complex sums. Indeed,
both the indexes l and q that iterate across the frequency and time VBs (lines 10
and 8 in Algorithm 5.1, respectively), vary from 0 to 1, causing the complex
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exponential to simplify to either 1 or −1. The two time domain VBs are

y0 =


X0·N/2+0
X0·N/2+1

...
X0·N/2+N/2−1

 e0 +


X1·N/2+0
X1·N/2+1

...
X1·N/2+N/2−1

 e0,

(5.30)

and

y1 =


X0·N/2+0
X0·N/2+1

...
X0·N/2+N/2−1

 e0 +


X1·N/2+0
X1·N/2+1

...
X1·N/2+N/2−1

 ejπ

(5.31)

Note that the case L = 1 of V-OFDM dispenses the DFT computation at the
transmitter but requires an extra N -point IDFT at the receiver. In turn, the
case L = 2 is multiplierless at both the transmitter and the receiver.

5.4 Evaluation

In this section, we present simulation results to compare the FFT and PDFT
algorithms and to validate our theoretical analysis. In Subsection 5.4.1, we
describe the methodology of the simulations. In Subsection 5.4.2, we discuss
the performance of both algorithms under a power of two number of points, as
required by the FFT algorithm. In Subsection 5.4.3, we discuss the performance
of the PDFT algorithm under a non power of two number of points.

5.4.1 Tools and Methodology

We compare our proposed PDFT algorithm for V-OFDM against the FFT al-
gorithm employed by both OFDM and V-OFDM state of the art. We implement
the PDFT algorithm in C++ and refer to the FFT implementation of [Press
et al., 2007] to assess the FFT algorithm. It is important to remark that the
runtime performance of our chosen FFT implementation can be outperformed
by highly optimized FFT libraries available in the literature e.g., [Frigo and
Johnson, 2005]. However, these libraries impose several preliminary runs of
distinct DFT algorithms to pick the one that perform best for the considered
platform and value of N . Hence, the chosen algorithm may vary across distinct
values of N and the assessed runtime is highly dependent on several hardware
optimizations that vary across the chosen platform. By contrast, our focus in
this work is on the asymptotic complexity improvement rather than on hardware
optimizations that can be handled in future work.
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We vary the number of points which is equivalent to the number of subcarriers N
for both algorithms. In this simulation, we vary N as powers of two considering
a relatively small number of subcarriers, as in today’s FFT-based waveforms. In
the other simulation, we consider non power of two points and a minimum of
105 subcarriers. In this simulation, we also vary the number of VBs of PDFT, as
well as the number of points per VB. For each algorithm, we assess the runtime
T (N) (seconds) and the throughput SC(N) (Megabits per second). Unless
differently stated, the throughput of each algorithm was measured considering
each subcarrier is BPSK-modulated.

We sampled the wall-clock runtime T (N) of each algorithm with the standard
C++ timespace library [team, 2018] under the profile CLOCK_MONOTONIC on
a 1.8 GHz i7-4500U Intel processor with 8 GB of memory. We repeated each
experiment as many times as needed in order to achieve a mean with relative
error below 5% with a confidence interval of 95%. Each sample of T (N) was
forwarded to the Akaroa-2 tool [McNickle et al., 2010] for statistical treatment.
Akaroa-2 determined the minimum number of samples required to reach the
transient-free steady-state mean estimation for T (N). In each execution, we
assigned our CPU process with the largest real-time priority and employed the
isolcpus Linux kernel directive to allocate one physical CPU core exclusively
for each process. We generate the input points for the algorithms with the
standard C++ 64-bit version of the Mersenne Twistter (MT) 19937 pseudo-
random number generator [Matsumoto and Nishimura, 1998] set to the seed
1973272912 [Hechenleitner and Entacher, 2002]. In Tables 5.2 and 5.3, we report
the statistics of each simulation. Both tables report the number of points, the
algorithm, the runtime in µs, the throughput, the runtime’s half-width of the
confidence interval and the runtime’s variance, respectively. No experiment
demanded more than 70000 repetitions and an average of about 500 samples
were discarded due to the transient stage.

5.4.2 Power of Two DFTs

In this subsection, we evaluate the performance of FFT and PDFT algorithms
under power of two number of points, as required by the FFT algorithm. In
Fig. 5.3, we plot the runtime of the FFT algorithm (employed by OFDM and
V-OFDM) and the multiplierless PDFT algorithm we propose for V-OFDM set
to two N/2-subcarrier vector blocks. In Fig. 5.4, we plot the total number of
arithmetic instructions predicted by the theoretical complexity analysis. The
overall number of arithmetic instructions performed by the FFT algorithm and
the PDFT algorithm are at least 5N log2 N [Frigo and Johnson, 2005] and N
(Subsection 5.3.4), respectively. The statistics of the runtime are reported in
Table 5.2. We report the throughput considering the BPSK modulation in
which one bit modulates one subcarrier. Thus, one can reproduce Fig. 5.5 and
Fig. 5.6 just by multiplying the BPSK-based throughput with the number of
bits achieved by other modulation, e.g., 6 in the case of 64-QAM.

As one can observe in Fig. 5.3 and Fig. 5.4, the exponential nature of the FFT
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Table 5.2: Runtime and throughput of PDFT (V-OFDM, L = 2) and FFT (V-
OFDM) algorithms under BPSK modulation and power of two num-
ber of points. δ is the half-width of the confidence interval with 95%
of confidence and relative error below 0.05.

N Algo-
rithm

Runtime
µs

Throughput
(Mbps) ±δ µs Variance

21 PDFT 0.05 38.02 0.001 < 0.001
FFT 0.42 4.71 0.01 < 0.001

22 PDFT 0.07 58.31 0.001 < 0.001
FFT 0.54 7.35 0.03 < 0.001

23
PDFT 0.09 84.84 0.001 < 0.001
FFT 0.72 11.06 0.03 < 0.001

24
PDFT 0.15 109.07 0.001 < 0.001
FFT 1.06 15.13 0.02 < 0.001

25
PDFT 0.26 125.05 0.01 < 0.001
FFT 1.89 16.96 0.09 < 0.001

26
PDFT 0.45 143.59 0.01 < 0.001
FFT 3.58 17.86 0.08 < 0.001

27
PDFT 0.80 159.96 0.01 < 0.001
FFT 7.54 16.97 0.37 0.02

28
PDFT 1.58 161.66 0.08 <0.001
FFT 15.65 16.36 0.51 0.05

29
PDFT 2.96 172.94 0.01 <0.001
FFT 33.97 15.07 1.26 0.29

210
PDFT 6.43 159.24 0.30 0.02
FFT 73.58 13.92 2.79 1.39

211
PDFT 12.99 157.71 0.35 0.02
FFT 158.28 12.94 0.55 0.05

212
PDFT 24.35 168.22 0.16 <0.001
FFT 362.43 11.30 2.82 1.42

213
PDFT 48.93 167.43 0.46 0.04
FFT 790.96 10.36 6.01 6.45

214
PDFT 97.60 167.87 0.18 0.01
FFT 1786.68 9.17 3.13 1.76

215
PDFT 220.81 148.40 0.13 <0.001
FFT 4193.85 7.81 3.55 2.25

216
PDFT 442.09 148.24 0.38 0.03
FFT 9154.79 7.16 60.18 647.40

217
PDFT 899.34 145.74 6.74 8.13
FFT 19805.5 6.62 54.58 532.5

218
PDFT 1845.65 142.03 11.34 23.0
FFT 54415.6 4.82 245.92 1482
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Table 5.3: Runtime and throughput of PDFT algorithm under BPSK modula-
tion and non power of two number of points. δ is the half-width of the
confidence interval with 95% of confidence and relative error below
0.05.

N Algo-
rithm

Runtime
µs

Throughput
(Mbps) ±δ µs Variance

100000

PDFT L=2 616.27 162.27 2.55 1.16
PDFT L=3 13194.70 7.58 18.36 60.25
PDFT L=4 19661.60 5.09 28.12 141.31
PDFT L=5 26566.00 3.76 130.42 3040.57

200000

PDFT L=2 1260.86 158.62 1.06 0.20
PDFT L=3 26664.20 7.50 23.73 100.66
PDFT L=4 39414.40 5.07 37.15 246.64
PDFT L=5 53084.40 3.77 39.02 272.09

300000

PDFT L=2 1933.58 155.15 7.33 9.60
PDFT L=3 40969.50 7.32 33.04 195.16
PDFT L=4 59452.20 5.05 595.27 63339.50
PDFT L=5 80230.30 3.74 57.35 587.81

400000

PDFT L=2 2556.17 156.48 5.00 4.46
PDFT L=3 52958.40 7.55 26.59 126.36
PDFT L=4 79045.20 5.06 43.66 340.75
PDFT L=5 106685.00 3.75 136.26 3318.80

500000

PDFT L=2 3250.60 153.82 2.05 0.75
PDFT L=3 67125.20 7.45 409.26 29939.60
PDFT L=4 100663.00 4.97 807.14 116450.00
PDFT L=5 134902.00 3.71 969.38 167969.00

600000

PDFT L=2 3832.85 156.54 3.06 1.68
PDFT L=3 79383.40 7.56 29.29 153.30
PDFT L=4 118633.00 5.06 57.44 589.81
PDFT L=5 159963.00 3.75 294.60 15513.50

— 93 —



CHAPTER 5. IS FFT FAST ENOUGH FOR BEYOND 5G
COMMUNICATIONS?

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

22 24 26 28 210 212 214 216 218

 5G802.11a 802.11ac

R
un

tim
e 

(s
ec

.)

Number of FFT Points

PDFT (V-OFDM L=2)
FFT (OFDM)

Figure 5.3: FFT vs. PDFT (proposed): Simulation runtime.
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Figure 5.4: FFT vs. PDFT (proposed): Complexity.

complexity becomes clear after N = 212 = 4096 points. Because the FFT
algorithm demands N to grow as a power of two 2i (for some i > 0), the
number of DFT points must at least double in novel standards that adopt more
subcarriers to improve throughput. Consequently, the complexity of the FFT
algorithm grows accordingly. We highlight the performance of FFT for the
largest number of points of different wireless communication standards. In the
case of the IEEE 802.11a [IEEE 802.11, 2012], IEEE 802.11ac [802.11, 2013] and
5G [3GPP, 2018] standards the maximum number of FFT points are 64, 512
and 4096, respectively. Considering the 5N log2 N arithmetic instructions of the
Cooley-Tukey algorithm [Frigo and Johnson, 2005], no less than 1920, 23040 and
245760 arithmetic instructions must be performed by FFT in those standards,
respectively. In our simulation, these complexities caused the FFT runtime to
grow at least one order of magnitude, which corresponded to 3.58 µs, 33.97 µs
and 363.8 µs, respectively, as reported in Fig. 5.3.
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Figure 5.5: Throughput of FFT algorithm under different signal constellation
mappers.

The wall-clock runtime of FFT can be improved if FFT is implemented on
dedicate hardware such as ASICs. However, as shown in Fig. 5.4, the overall
number of arithmetic instructions remains exponential irrespective of the imple-
mentation technology. Thus, the FFT complexity represents a serious concern
for other relevant performance indicators of future networks like manufacturing
cost, area (device portability) and power consumption.

By contrast, the proposed PDFT algorithm performed about two orders of mag-
nitude better than FFT for all scenarios, even under the power of two constraint
of FFT. Also, the FFT algorithm nullifies on N . In the simulation, this beha-
vior can be observed by noting that the FFT throughput reaches the maximum
value for N = 26 but achieves nearly the same value for N = 22 and N = 218

(Fig. 5.5). In turn, the PDFT algorithm keeps nearly the same throughput after
N = 27 (Fig. 5.6). According to our theoretical analyses, this stems from the
fact that both the PDFT complexity and the number of processed bits grows
linearly on N . Therefore, the PDFT throughput tends to a non-null constant
as N gets arbitrarily large.

5.4.3 Non Power of Two DFTs

In this subsection, we evaluate the performance of the PDFT algorithm under a
non power of two number of points N . We vary N through 1 · 105, 2 · 105, · · · , 6 ·
105. In Figs. 5.7 and 5.8, we plot the runtime and throughput performance of the
proposed PDFT algorithm, respectively. We vary the number of vector blocks
L = 2, 3, 4, 5 and plot the performance of the FFT algorithm by setting N to
the existing powers of two in the interval [1 · 105, 6 · 105], namely 217 = 131072,
218 = 262144 and 219 = 524288. PDFT requires the length N/L of each vector
block to be an integer. This requisite is met by all chosen values of N and L
except L = 3. In this case, we decrease N by N mod 3 to ensure N/L is an
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Figure 5.6: Throughput of PDFT algorithm under different signal constellation
mappers.

integer (x mod y returns the remainder of division of x by y). Thus, for L = 3
the values of N 105, 2 · 105, 4 · 105 and 5 · 105 are subtracted by −1, −2, −1
and −2, respectively. The runtime and throughput of the FFT and PDFT
algorithms are taken from Table 5.2 and Table 5.3, respectively. Both tables
have the same structure of columns, as we explained in Subsection 5.4.2.

As one can see in Fig. 5.7, the runtime performance of PDFT improves for
lower values of L. The best performance is achieved for L = 2 in which PDFT
becomes multiplierless and performs N/2 2-point transforms. Although the
PDFT performance worsens for larger L, its complexity remains linear on N for
all evaluated setups. This happens because PDFT exploits the parameterization
technique to perform M = N/L independent L-point DFTs. By setting L to
Θ(1), each independent DFT takes L2 = Θ(1) time complexity, yielding a total
of (N/L) ·Θ(1) = O(N) complexity.

The lowest complexity of PDFT (achieved with L = 2) translates into the fastest
throughput among all algorithms, which is about two orders of magnitude above
all other algorithms, as one can see in Fig. 5.8 where throughput is plotted
considering one bit per point (i.e., BPSK modulation). Despite that, PDFT
sustains a non-null throughput for all values of L whereas FFT nullifies as N
grows.

The throughput nullification happens because the complexity grows asymptotic-
ally faster than the number of modulated bits as N grows. In the case of PDFT,
the throughput remains constant as N grows even considering the fact that com-
plexity grows too. Besides, because PDFT relies on the classic DFT algorithm
rather than FFT, the number of points can grow in an unitary manner rather
than doubling. Considering the range of the experiment [1 · 105, · · · , 6 · 105] for
example, there exist 250001, 166667, 125001 and 100001 possible setup choices
of N for PDFT under L = 2, L = 3, L = 4 and L = 5, respectively. By
contrast, there are only three choices of N for the FFT algorithm in the same
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Figure 5.7: Runtime of FFT and the proposed PDFT algorithms for a number
of points N = 1 · 105, 2 · 105, · · · , 6 · 105. For FFT, only the powers
of two 217 = 131072, 218 = 262144 and 219 = 524288 are considered.

range, they are 217 = 131072, 218 = 262144 and 219 = 524288. This can provide
standardization bodies with more setup choices for future multicarrier wireless
communication standards.

5.5 Summary

In this chapter, we demonstrated that the Fast Fourier Transform (FFT) al-
gorithm can be too complex for the post-5G generation of multicarrier wave-
forms. The constraint that the number of points N must grow as a power of
two 2i (for some i > 0) along with the unprecedented growth in the number
of subcarriers, cause FFT to run in the exponential complexity O(2i · i). Also,
because this complexity grows faster than the number of modulated bits, the
FFT throughput nullifies as N grows. We generalized this result to show that
the throughput of any DFT algorithm nullifies on N unless the lower bound
complexity of the DFT problem verifies as Ω(N), which is an open conjecture
in computer science.

To overcome the scalability limitations of FFT, we consider the alternative for-
mulation of frequency-time transform of Vector OFDM (V-OFDM) [Xiang-Gen
Xia, 2001], a waveform that replaces an N -point FFT by N/n (n > 0) smaller
FFTs to mitigate the cyclic prefix overhead of OFDM. In this sense, we replace
FFT by DFT to relax the power of two constraint on N and to provide V-OFDM
with flexible numerology (e.g. n = 3, N = 156). Besides, by parameterizing
n to Θ(1), we identify that the resulting DFT-based solution (we refer to as
Parameterized DFT, PDFT) runs linearly on N rather than exponentially on
i.
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Figure 5.8: Throughput of FFT and the proposed PDFT algorithms for a num-
ber of points N = 1·105, 2·105, · · · , 6·105. For FFT, only the powers
of two 217 = 131072, 218 = 262144 and 219 = 524288 are considered.

We also formulate what we refer to as the sampling-complexity (Nyquist-Fourier)
trade-off, which stems from the fact that the N -point DFT algorithm operates
on a batch of N samples but its associated sampler operates on a sample by
sample basis. As N grows, the Nyquist inter-sample time interval demanded by
the sampler decreases but the DFT complexity to compute all samples increases.
We demonstrate that the asymptotic solution of the trade-off would require Θ(1)
DFT algorithms. Since DFT algorithms grows linearly on N at best, i.e., Ω(N),
no DFT algorithm can meet the Nyquist deadline as N grows. However, we
identify that the trade-off can be countered in practice if V-OFDM is set to two
N/2-subcarrier vector blocks (i.e., n = 2). In that case, the transform simplifies
to N/2 complex sums that can be performed in parallel both at the transmitter
and receiver. Thus, the N -point DFT becomes multiplierless and each sample
that feeds the DAC/ADC comes only from two – rather than N – other samples.
We believe these results turn V-OFDM into a competitive candidate waveform
for future broadband wireless networks.

Therefore, our results constitute a relevant step towards the practical deploy-
ment of extremely wide multicarrier signals that are expected for the post-5G
generation of waveforms. In future work, the PDFT algorithm can be coupled
to an analog Terahertz radio. Also, the optimal parameterization for the PDFT
complexity can be identified for different channel propagation conditions.
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Chapter 6
Conclusions and Future Work

“Everything that has a
beginning has an end, Neo.”

(The Oracle)
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This chapter overviews the Spectro-Computational (SC) complexity
model in terms of issues addressed, relevance for the fields of com-
putational complexity and information theory, and future possibilities.

The remainder of this chapter is organized as follows. The Section 6.1 summar-
izes this thesis. The Section 6.2 and Section 6.3 present the main contributions
and the possible future directions of this thesis, respectively.

6.1 Synthesis of the Thesis

This thesis presents a mathematical model for the unified analysis of computa-
tional complexity and throughput of a communication signal. The model ex-
ploits the fact that throughput and complexity are both functions of the signal
spectrum bandwidth. Furthermore, the ratio between the number of modulated
bits and the complexity to modulate them is a reasonable measure of through-
put for a single or a sequence of communication signal algorithms. Based on
that, novel conclusions have been achieved throughout this thesis, as we now
summarizes.

After introducing the basic concepts of the computational complexity and in-
formation theory and reviewing the related literature in performance evaluation
of signal waveforms, Chapter 2 concludes that a model enabling a joint analysis
of indicators of computational complexity and data rate (such as throughput,
spectral efficiency and capacity) still lacks in that related work.
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In Chapter 3, the underlying conclusion is that computational complexity as well
as the indicators of data rate can be, both, expressed as function of the signal’s
spectrum bandwidth. Based on that, the SC throughput of a signal processing
algorithm (or a sequence, as in the case of waveforms) can be given by the ratio
between number of modulated bits per symbol and computational complexity
to process the symbol. Also, classic concepts and definitions from both com-
putational complexity and information theory can be specialized by having the
SC throughput as performance indicator, e.g. optimal complexity algorithm,
spectral efficiency, and throughput upper-bound (i.e., capacity). Based on the
proposed specialized definitions, a novel signal regime is defined, namely, the
comp-limited signal in which the computational complexity overhead causes the
signal capacity to nullify as the bandwidth gets arbitrarily large. By means of
a step-by-step SC analysis, the chapter finishes by concluding that the N -point
Fourier transform problem causes the basic OFDM waveform to be comp-limited
unless its lower bound complexity verifies as Ω(N) (i.e., grows at least linearly on
N), which remains a “fascinating” open question in computer science [Lokam,
2009].

The main conclusion of Chapter 4 is that the ideal mapping setup of OFDM
with Index Modulation (OFDM-IM) is not computationally intractable. Under
the ‘ideal’ mapping setup OFDM-IM reaches the maximal spectral efficiency
gain over OFDM but the resulting computational complexity was conjectured
as intractable by the literature [Lu et al., 2018], [Basar et al., 2017]. Guided by
an analysis based on the SC model, the chapter calculates the exact mapping
complexity required for the ideal setup and presents an OFDM-IM mapper that
is able to reach the required complexity in practice.

Chapter 5 concludes that the SC throughput of the basic OFDM waveform nul-
lifies as the spectrum bandwidth grows, unless the lower bound complexity of
the N -point Fourier transform problem verifies as Ω(N). This means that the
Fast Fourier Transform (FFT) algorithm is not fast enough to sustain non null
throughput as the bandwidth gets arbitrarily large. Also, because FFT demands
N to be a power of two 2i (i > 0), the spectrum widening leads to an exponen-
tial complexity on i, i.e. O(2ii). Based on the SC analysis, we verify that the
scalability limitation can be solved with Vector OFDM (V-OFDM)[Xiang-Gen
Xia, 2001], a waveform that replaces an N -point FFT by N/n (n = 2j > 0) smal-
ler FFTs to mitigate the cyclic prefix overhead of OFDM. We propose to apply
the parameterized complexity technique on the classic O(N2) DFT algorithm,
getting what we refer to as the Parameterized DFT (PDFT) algorithm. By set-
ting n to Θ(1) (i.e., a constant), we show that PDFT runs linearly on N rather
than exponentially on i while relaxing the power of two constraint of FFT in
V-OFDM.

6.2 Contributions

The central contribution of this thesis consists of an unified SC analytical model
that encompasses two classes of performance indicators of wireless communic-
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ation signal waveforms, namely, indicators of data rate – such as throughput,
spectral efficiency and capacity – and indicators of computational complexity,
such as runtime processing and (mainly) number of computational instructions.
From the perspective of computer science, the SC analysis specializes the asymp-
totic analysis of signal processing algorithms guided by two performance targets,
namely, input length (i.e., throughput) maximization and complexity minimiz-
ation. From the perspective of the information theory and the communication
signal fields, the SC analysis can guide the design and comparison of waveforms
operating in extremely wide spectral bandwidths, as expected for the future
generation of wireless communications.

Other contributions derived from the application of the proposed model to op-
timize two variants of OFDM in terms complexity and throughput. In summary,
the following contributions were achieved:

• Contribution 1, The Spectro-Computational (SC) Complexity
Analysis
The SC complexity analysis unifies signal throughput and complexity
analysis through two steps. Firstly, it exploits the fact that both per-
formance indicators can be written as functions of variables of spectrum
such as bandwidth or number of subcarriers. Secondly, the SC analysis
counts complexity in the total transmission time considered by the symbol
throughput formula, yielding the SC throughput of a communication signal
algorithm (subsection 3.2.1). With the unprecedented growth of spectrum
expected for the post-5G generation of waveforms, the asymptotic analysis
of the SC throughput having the spectral bandwidth as variable (subsec-
tion 3.2.4) can reveal whether the complexity of a given waveform solution
does nullify throughput. The entire SC complexity analysis is presented
in chapter 3;

• Contribution 2, Novel Definitions Towards a Unified Theory of
Waveform Throughput and Computational Complexity
This contribution comprises a family of novel formal definitions that en-
hances classical concepts of information theory. The SC capacity (presen-
ted in subsection 3.2.1) builds on the concepts of channel capacity (from
information theory) and and lower bound complexity of a problem (from
theoretical computer science). The definition of the computation-limited
signal regime is homologous to the classic power- and band-limited signal
regimes defined from the Shannon capacity. This definition enables one
to calculate the asymptotic lower bound for the throughput of a given
waveform proposal. Based on that, the feasibility of the waveform design
for arbitrarily large number of subcarriers N can be verified;

• Contribution 3, The Optimal Mapper for OFDM with Index
Modulation
This contribution ensures that the optimal mapping setup of OFDM with
Index Modulation (OFDM-IM) is not computationally intractable, as it
has been conjectured by the literature [Lu et al., 2018], [Basar et al.,
2017]. The optimal mapping setup is such that the spectral efficiency gain
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of OFDM-IM over OFDM maximizes. Based on the SC analysis, it is
shown that the the index selector algorithm required by the N -subcarrier
OFDM-IM mapper must run in Θ(N) time complexity. OFDM-IM map-
pers running faster than such complexity cannot reach the maximal spec-
tral efficiency, whereas one running slower nullifies the mapping through-
put for arbitrarily large N . This theoretical assertion is demonstrated in
practice by means of an open source library that supports all DSP steps to
map/demap an N -subcarrier complex frequency-domain OFDM-IM sym-
bol; The entire discussion is shown in chapter 4.

• Contribution 4, Asymptotic Formalization of the Sampling-
Complexity Trade-Off
This contribution identifies the asymptotic complexity lower bound of
batch-oriented communication signal algorithms whose output must feed
Nyquist-constrained samplers. This is the case of the Fast Fourier Trans-
form (FFT) algorithm in OFDM. The problem is formalized as a trade-off
between the Nyquist inter-sample time interval and the FFT complexity:
as the Nyquist interval decreases (thereby enabling more samples in the
symbol period and increasing symbol throughput) the FFT complexity
increases. Subsection 5.2.3 shows that the Nyquist sampling constraint
demands a lower bound complexity of Ω(1) for the N -point DFT problem,
much harder than the Ω(N) lower bound which has been considered as an
open possibility by theoretical computer science. Subsection 5.3.4 demon-
strates how to achieve multiplierless DFT for OFDM in its vectorized form.
Although the multiplierless setup does not solve the sampling-complexity
trade-off in theory, the asymptotically dominant computational instruc-
tion of DFT becomes constant and only Θ(N) sums are necessary.

• Contribution 5, Spectro-Computational Analysis of OFDM and
Novel Asymptotic Limits for Fourier Transform Algorithms
This contribution shows that the Fast Fourier Transform (FFT) algorithm
can be too complex for the post-5G generation of multicarrier waveforms.
The constraint that the number of points N must grow as a power of two
2i (for some i > 0) along with the unprecedented growth in the number
of subcarriers, cause FFT to run in the exponential complexity O(2i · i).
Also, because this complexity grows faster than the number of modulated
bits, the FFT throughput nullifies as N grows. This result is generalized
to demonstrate that the throughput of any DFT algorithm nullifies on N
unless the lower bound complexity of the DFT problem verifies as Ω(N),
which is an open question in computer science. We also apply the SC
model to analyze the V-OFDM waveform and identify that the strategy
of replacing a single N -point FFT by several smaller n-point FFTs can
prevent the SC throughput nullification. However, to relax the power of
two constraint of FFT, we propose to apply the parameterized complexity
technique on the classic O(N2) DFT algorithm, getting what we refer to
as the Parameterized DFT (PDFT) algorithm. PDFT runs linearly on N
rather than exponentially on i while relaxing the power of two constraint
of FFT in V-OFDM.
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6.3 Future Directions

The SC complexity analysis proposed in this thesis considers the intrinsic re-
lationship between signal throughput and complexity. The effectiveness of the
proposal to calculate the minimum required complexity for the scalability of sig-
nal throughput was verified through practical case studies, for example, in the
design of an asymptotically optimal mapper for the OFDM-IM waveform [Basar
et al., 2013] and the design of an asymptotically optimal frequency-time trans-
form algorithm for the V-OFDM waveform [Xiang-Gen Xia, 2001]. Thus, future
work can build on the proposed theoretical analysis as well as each particular
case study.

The throughput-complexity waveform optimizations achieved by the case stud-
ies of the proposed analytic model can guide the design improvements for other
waveforms, specially variants of the proposals considered in this thesis. For ex-
ample, the optimal mapper achieved for OFDM with index modulation can be
applied to other IM systems that rely on the same index selector of the original
OFDM-IM mapper, such as spatial modulation systems [Wen et al., 2019] and
dual mode OFDM-IM [Mao et al., 2017b]. In face of the huge complexity expec-
ted for Terahertz waveforms, the proposed parameterized solution achieved for
vectorized OFDM can be coupled to an analog Terahertz radio and the optimal
parameterization complexity for different channel propagation conditions can be
investigated and implemented through automatic schemes.

Open theoretical questions of this thesis can be handled in future work. For
instance, whether OFDM and OFDM-IM are comp-limited signals depend on
whether the lower bound complexity of the Fourier transform problem is lin-
ear on the number of points. However, this remains an important open ques-
tion on theoretical computer science. The capacity-complexity scalability solu-
tion achieved in this thesis was for the parameterized Fourier transform prob-
lem, which is slightly different from the classic Fourier transform problem and
matches OFDM in its vectorized form. Approaches other than that can be ex-
ploited in future works. Instead of decreasing the asymptotic computational
complexity of the frequency-time transformation, one may concern on devising
clever mappers that increase the asymptotic number of bits modulated in the
multicarrier symbol.

This is the case, for instance, of Multiple Mode (MM) OFDM-IM [Wen et al.,
2017] that refers to permutation techniques to modulate B(N) = O(N log2 N)
bits in an N -subcarrier OFDM-like symbol. This would prevent the FFT com-
plexity T (N) = O(N log2 N) to nullify the waveform throughput B(N)/T (N)
as N gets larger. However, differently from the waveforms considered in this
work, reasonable bit error rates have been achieved only under exponential time
heuristics [Mao et al., 2018]. In this case, one may rely on algorithm design tech-
niques (like parameterization) to pursue the maximum complexity predicted by
the SC analysis for that novel waveform.

Finally, future works can exploit more general questions such as the enhance-
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ment of the mathematical model we propose. In this sense, one possible in-
vestigation can consider the Bit Error Rate (BER) performance indicator along
with complexity and throughput. This would enable one, for example, to equate
the intrinsic trade-off between complexity and the transmission error rate faced
by signal detection heuristics. Based on that, the minimum complexity for a
given BER performance target can be calculated and compared among distinct
waveforms.
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