

Daniel da Silva Palaio

DEEPRL-BASED MOTION PLANNING FOR

INDOOR ROBOT NAVIGATION

Dissertation supervised by Professor Doctor Urbano José Carreira Nunes and

submitted to the Electrical and Computer Engineering Department of the Faculty

of Science and Technology of the University of Coimbra, in partial fulfillment of

the requirements for the Master Degree in Electrical and Computer Engineering,

specialization in Automation.

October of 2021

DeepRL-Based Motion Planning for
Indoor Robot Navigation

Daniel da Silva Palaio

Coimbra, October of 2021

DeepRL-Based Motion Planning for Indoor Robot
Navigation

Dissertation supervised by Professor Doctor Urbano José Carreira Nunes and submitted to
the Electrical and Computer Engineering Department of the Faculty of Science and

Technology of the University of Coimbra, in partial fulfillment of the requirements for the
Master Degree in Electrical and Computer Engineering, specialization in Automation.

Supervisor:
Prof. Dr. Urbano José Carreira Nunes

Co-Supervisor:
Master Luís Carlos Artur da Silva Garrote

Jury:
Prof. Dr. Hélder de Jesus Araújo

Prof. Dr. Rui Paulo Pinto da Rocha
Prof. Dr. Urbano José Carreira Nunes

Coimbra, October of 2021

Acknowledgments

This dissertation marks the end of a six-year academic journey, only possible to conclude
with some people’s fundamental support, to whom I have to thank.

First and foremost, I am genuinely grateful to Prof. Dr. Urbano Nunes for entrusting me
with this challenging dissertation subject and providing all the necessary resources to achieve the
established objectives. A word to Master Luis Garrote for the shared knowledge and constant
assistance during this work. For their availability, guidance, and helpful advice, the utmost
appreciation.

A very heartfelt thanks to my family, especially to my mother, father, brother, and grand-
parents, for the unconditional support, motivation, and faith in every decision that ultimately
led me to where and what I am today.

To the colleagues that I was fortunate to meet and naturally became my closest friends,
Daniel Craveiro, Francisco Alves, Gonçalo Lopes, Guilherme Carvalho, Hugo Figueiras, and
João Duarte, a big thank you. Together we made an incredible team, shared great experiences,
and created unforgettable memories. To the years to come!

A particular acknowledgment to Bosch Thermotechnology, Engineering Controls team, for
in times of uncertainty have believed in my ability to reconcile the work I set myself and the
completion of this dissertation. To the people of this great institution who have always expressed
their support, concern, and curiosity for this project, among whom I have to single out my
workmates Luís Simões, Maria João Loureiro, and Rafael Gaspar, my sincere gratitude.

Lastly, a special thanks to Milene Lopes, my main source of inspiration, for the unparalleled
and endless support, standing by my side through the ups and downs along the way.

This work has been supported by MATIS-CENTRO-01-0145- FEDER-000014, Portugal,
and by ISR-UC FCT through grant UIDB/00048/2020.

i

ii

Abstract

Robots, driven by substantial technological advances, are no longer confined to executing
industrial-related duties. Among the several subclasses of the widespread robotics field, mo-
bile robotics - answerable for developing non-stationary platforms capable of navigating indoor
and outdoor environments - has been one of the extents responsible for the diffusion of robot
applications across various domains.

Within robot navigation, motion planning is the primitive that establishes a route from
an initial to a target point. In uncharted environments, however, the path definition can be
a significantly more challenging task. Due to the inability to delineate a course based on map
knowledge, a local navigation resolution is settled instead, with short-term paths being outlined
according to the observed surrounding environment.

This dissertation presents an original local motion planning strategy for unexplored in-
door environments based on Deep Reinforcement Learning (DeepRL), a contemporary Machine
Learning field. Typically, DeepRL navigation applications use raw data directly as input to
their framework’s Artificial Neural Networks (ANNs), which may format them towards the in-
trinsic properties of the robot’s onboard cameras/lasers. Contrarily, in an effort to create a
sensor-agnostic navigation approach, the proposed method pre-processes the collected sensory
data into normalized environment representations named costmaps. To comply with the imple-
mented variations and system requirements, the employed ANNs and complementary models
were designed from scratch.

The introduced path planning algorithm is partitioned into two distinct stages: training
and testing. In the training phase, an intelligent mobile platform learns, via trial-and-error,
which actions must be adopted to attain its target without colliding with obstacles. Optimally,
training generates at least one fine-tuned model, further tested in an online stage, that empowers
the robot to effectively perform a collision-free motion.

To validate the presented local motion planning approach, a virtual robot - the Turtlebot
- was applied in multiple simulation environments, with and without obstacles. Using the
developed framework to sustain the Turtlebot’s decision-making, promising results were yielded
over several trials in both types of domains.

Keywords: Motion Planning, Autonomous Indoor Robot Navigation, Deep Reinforcement
Learning, Artificial Neural Networks, Costmaps

iii

iv

Resumo

Robôs, impulsionados por consideráveis avanços tecnológicos, têm vindo a ser progressiva-
mente integrados nas mais diversas áreas, contrariando a conceção de serem apenas ferramentas
de suporte industrial. De entre as várias subdivisões da robótica, a robótica móvel - encarregue
da criação de plataformas com a habilidade de navegar em ambientes interiores e exteriores - é
uma das que mais tem contribuído para a expansão e disseminação de aplicações robotizadas.

No que se refere a navegação robótica autónoma, o planeamento de caminho é a premissa
responsável pela definição de um trajeto entre um ponto inicial/atual até um ponto final. No
entanto, em ambientes desconhecidos ou não mapeados, a complexidade de definir um caminho
aumenta significativamente, sendo necessário recorrer a informação sensorial para estabelecer
um princípio de navegação local.

Nesta dissertação é apresentada uma estratégia de planeamento de caminhos, projetada
para ambientes interiores inexplorados, baseada em Deep Reinforcement Learning (DeepRL).
Contrariando as aplicações de navegação DeepRL que utilizam imagens do ambiente circundante
diretamente como entrada das suas Redes Neuronais Artificiais, o método sugerido pré-processa
os dados recolhidos em representações normalizadas do ambiente, denominadas costmaps. Numa
tentativa de criar uma abordagem independente do tipo de sensor usado, tanto a rede neuronal
como os restantes modelos computacionais empregados foram concebidos de raiz para atender
às variações implementadas e aos requisitos do sistema.

O algoritmo de planeamento de caminho apresentado pode ser decomposto em dois estágios
distintos: treino e teste. Na fase de treino, um robô sob a influência do método de navegação
local desenvolvido aprende, através de tentativa e erro, que ações deve eleger para atingir o seu
ponto objetivo sem colidir com obstáculos. Durante o processo de treino é gerado, otimamente,
um modelo regulado da rede neuronal responsável por suster, numa fase de testes posterior, a
tomada de decisões de vertente navegacional do robô.

Com o intuito de validar o planeador de caminho proposto, uma plataforma virtual apeli-
dada de Turtlebot foi aplicada em vários ambientes de simulação, com e sem obstáculos. Adotando
o algoritmo de planeamento de caminho concebido, o Turtlebot evidenciou comportamentos
bastante promissores nos mais diversos meios virtuais, legitimando deste modo o sistema de
navegação DeepRL desenvolvido.

Palavras-chave: Planeamento de Caminho, Navegação Robótica Autónoma Interior, Deep
Reinforcement Learning, Redes Neuronais Artificiais, Costmaps

v

vi

“Nothing will work unless you do.”
Maya Angelou

vii

viii

Contents

Acknowledgments i

Abstract iii

Resumo v

List of Acronyms xiii

List of Figures xv

List of Tables xix

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Proposed Framework . 2
1.3 Objectives and Key Contributions . 3

2 Background Material 5
2.1 Motion Planning . 5

2.1.1 Motion Planners . 5
2.1.2 Environment Representations . 5

2.2 Reinforcement Learning . 6
2.2.1 Policy Evaluation . 7
2.2.2 Exploration vs. Exploitation . 8
2.2.3 Q-Learning . 9

2.3 Deep Learning . 10
2.3.1 Convolutional Neural Networks . 11
2.3.2 Recurrent Neural Networks . 11
2.3.3 Artificial Neural Network Training . 12

2.4 Deep Reinforcement Learning . 13
2.4.1 Value-based and Policy-based Learning 13
2.4.2 Deep Q-Learning . 14
2.4.3 Dueling Deep Q-Network Architectures 16

2.4.3.1 Double Deep Q-Network and Dueling Double Deep Q-Network . 17

ix

DeepRL-based Motion Planning for Indoor Robot Navigation

3 State of the Art 19
3.1 Motion Planning . 19

3.1.1 Global Path Planning . 19
3.1.2 Local Path Planning . 20

3.1.2.1 Reinforcement Learning in Indoor Navigation 20
3.2 Deep Reinforcement Learning . 21

3.2.1 Deep Reinforcement Learning in Indoor Navigation 21

4 Developed Work 23
4.1 Proposed DeepRL-based Pipeline . 23
4.2 Artificial Neural Networks . 26
4.3 State, Action and Reward Models . 27

4.3.1 State Models . 27
4.3.2 Action Sets . 29
4.3.3 Reward Models . 29

5 Software Tools and Hardware Materials 33
5.1 Operating System . 33
5.2 Robot Operating System . 33

5.2.1 ROS Resources . 34
5.3 Gazebo . 35

5.3.1 Virtual Environments . 36
5.4 RViz . 37
5.5 Turtlebot . 37
5.6 Python and Pycharm . 38

5.6.1 TensorFlow . 39
5.7 NVIDIA GeForce GTX 1060 . 39
5.8 OpenAI Gym . 40

6 Results and Discussion 43
6.1 DQN Frameworks Validation . 43

6.1.1 CartPole-v0 OpenAI Gym Environment 44
6.1.2 MountainCar-v0 OpenAI Gym Environment 45
6.1.3 LunarLander-v2 OpenAI Gym Environment 47
6.1.4 Pong-v4 OpenAI Gym Environment . 49

6.2 Motion Planning in Obstacle-free Environments 50
6.2.1 DQN, Dueling DQN, and D3QN Comparison 51
6.2.2 Non-Pure-Rotational Turnings . 56
6.2.3 Generalization . 57

6.2.3.1 Training Towards a Target Located to the Left of the Agent . . 58
6.2.3.2 Training Towards a Target Located to the Right of the Agent . 59
6.2.3.3 Training Towards a Target Located Behind the Agent 59

6.2.4 Obstacle-Oriented Model . 60

x

Contents

6.3 Motion Planning in Environments with Obstacles 62
6.3.1 Gazebo’s World Environment . 63
6.3.2 Gazebo’s Stage 4 Environment . 65

6.3.2.1 Scenario 1 . 65
6.3.2.1.1 Action Space with 6 Actions 67
6.3.2.1.2 Action Space with 12 Actions 70

6.3.2.2 Network’s Trainable Parameters 73
6.3.2.3 Scenario 2 . 74
6.3.2.4 Scenario 3 . 75

6.3.2.4.1 Action Space with 12 Actions 77

7 Conclusion 81
7.1 Future Work . 83

Bibliography 85

A DQN Pseudo-codes 93

B Artificial Neural Network Inference 95

xi

xii

List of Acronyms

ANN Artificial Neural Network

APF Artificial Potential Field

CNN Convolutional Neural Network

D3QN Dueling Double Deep Q-Network

DDQN Double Deep Q-Network

DL Deep Learning

DP Dynamic Programming

DQN Deep Q-Network

DeepRL Deep Reinforcement Learning

DWA Dynamic Window Approach

MC Monte Carlo

ML Machine Learning

RL Reinforcement Learning

RNN Recurrent Neural Network

ROS Robot Operating System

RRT Rapidly-Exploring Random Trees

TD Temporal Difference

TEB Time Elastic Bands

xiii

xiv

List of Figures

1.1 Proposed DeepRL-based local navigation framework. 3

2.1 Metric, topological, and hybrid environment representations. 6
2.2 Reinforcement Learning framework. 6
2.3 Q-Learning block diagram. 9
2.4 Q-Table. 9
2.5 Deep Artificial Neural Network architecture. 10
2.6 Sigmoid, ReLU, and Hyperbolic Tangent activation functions. 11
2.7 Convolutional Neural Network architecture. 11
2.8 Recurrent Neural Network architecture. 12
2.9 Deep Reinforcement Learning framework. 13
2.10 Value-based and Policy-based Deep Reinforcement Learning. 14
2.11 Deep Q-Learning training stage. 14
2.12 Deep Q-Learning block diagram. 16
2.13 Single and dual-stream network architectures. 17

4.1 Training stage overview. 24
4.2 Proposed ANN architectures. 26
4.3 Costmap representation. 27
4.4 CStack data structure. 28
4.5 Robot-target-relative data representation. 28

5.1 ROS publisher-subscriber communication protocol. 34
5.2 ROS topics subscribed and published by the proposed DeepRL-based system’s

node. 34
5.3 Gazebo empty environment. 36
5.4 Obstacle-free target configurations. 36
5.5 Gazebo’s World and Stage 4 environments. 37
5.6 Gazebo environments and respective Rviz costmap representations. 37
5.7 Turtlebot burger. 38
5.8 OpenAI Gym benchmark environments. 40

6.1 ANN configurations employed in the implemented DQN frameworks’ validation
process. 43

xv

DeepRL-based Motion Planning for Indoor Robot Navigation

6.2 CartPole-v0 OpenAI Gym environment. 44
6.3 CartPole-v0 DQN-based framework’s training scores (episode total rewards). . . 45
6.4 MountainCar-v0 OpenAI Gym environment. 45
6.5 MountainCar-v0 DQN-based framework’s training scores (episode total rewards). 46
6.6 LunarLander-v2 OpenAI Gym environment. 47
6.7 LunarLander-v2 DQN-based framework’s training scores (episode total rewards). 48
6.8 Pong-v4 OpenAI Gym environment. 49
6.9 Pong-v4 DQN-based framework’s training performances (episode total rewards). 50
6.10 Gazebo obstacle-free environment. 51
6.11 Fig. 5.4 (e) obstacle-free training and testing scenario. 51
6.12 Network architectures employed in the proposed DeepRL-based motion planning

framework’s validation process. 52
6.13 Training scores and final episode distances, and robot post-training paths resul-

tant from employing the developed DeepRL-based local motion planning strategy,
with the Deep Q-Learning algorithm, over the obstacle-free scenario 6.11. Action
and Reward Sets from Tables 4.2 and 4.3, respectively. 53

6.14 Training scores and final episode distances, and robot post-training paths resul-
tant from employing the developed DeepRL-based local motion planning strategy,
with the Dueling Deep Q-Learning algorithm, over the obstacle-free scenario 6.11.
Action and Reward Sets from Tables 4.2 and 4.3, respectively. 54

6.15 Training scores and final episode distances, and robot post-training paths resul-
tant from employing the developed DeepRL-based local motion planning strategy,
with the Dueling Double Deep Q-Learning algorithm, over the obstacle-free sce-
nario 6.11. Action and Reward Sets from Tables 4.2 and 4.3, respectively. 55

6.16 Training scores and final episode distances, and robot post-training paths resul-
tant from employing the developed DeepRL-based local motion planning strategy
with the Action Set 2 (Table 4.2), over the obstacle-free scenario 6.11. Reward
Sets from Table 4.3. 57

6.17 Fig. 5.4 (c) and Fig. 5.4 (e) obstacle-free training and testing scenarios. 58
6.18 Training scores and final episode distances, and robot post-training paths resul-

tant from training the agent in the Fig. 5.4 (c) scenario. Online phase executed
in the Fig. 5.4 (e) arrangement. 58

6.19 Fig. 5.4 (d) and Fig. 5.4 (e) obstacle-free training and testing scenarios. 59
6.20 Training scores and final episode distances, and robot post-training paths resul-

tant from training the agent in the Fig. 5.4 (d) scenario. Online phase executed
in the Fig. 5.4 (e) arrangement. 59

6.21 Fig. 5.4 (b) and Fig. 5.4 (e) obstacle-free training and testing scenarios. 59
6.22 Training scores and final episode distances, and robot post-training paths resul-

tant from training the agent in the Fig. 5.4 (b) scenario. Online phase executed
in the Fig. 5.4 (e) arrangement. 60

6.23 Proposed Dueling Deep-Q Network, designed towards environments with obstacles. 61

xvi

List of Figures

6.24 Training scores and final episode distances, and robot post-training paths resul-
tant from validating the developed obstacle-oriented DeepRL-based local motion
planning strategy over the obstacle-free Fig. 6.11 scenario. 61

6.25 Gazebo’s World and Stage 4 environments. 62
6.26 Gazebo’s World environment and innate scenarios defined to trial the developed

DeepRL-based local motion planning approach. 63
6.27 Training scores and final episode distances, and robot post-training paths resul-

tant from employing the DeepRL-based local motion planning strategy over the
Gazebo’s World environment. 64

6.28 Gazebo’s Stage 4 environment and scenarios’ initial and target points. 65
6.29 Gazebo’s Stage 4 Scenario 1. 65
6.30 Training scores and final episode distances, and robot post-training paths resul-

tant from employing the DeepRL-based local motion planning strategy over the
Gazebo’s Stage 4 Scenario 1. 66

6.31 Training scores and final episode distances resultant from employing the DeepRL-
based local motion planning strategy, with the Fig. 6.23 ANN and Action Set 4
(Table 4.2), over Gazebo’s Stage 4 Scenario 1. 67

6.32 Fig. 6.23 obstacle-oriented Dueling Deep Q-Network with one additional hidden
layer, fc4. 68

6.33 Training scores and final episode distances resultant from employing the DeepRL-
based local motion planning strategy, with the Fig. 6.32 ANN (different number
of fc4 neurons) and Action Set 4 (Table 4.2), over Gazebo’s Stage 4 Scenario 1. . 69

6.34 Fig. 6.23 obstacle-oriented Dueling Deep Q-Network with two additional hidden
layers, fc4 and fc5. 70

6.35 Training scores and final episode distances, and robot’s post-training paths resul-
tant from employing the DeepRL-based local motion planning strategy, with the
Fig. 6.34 ANN (fc4 = 128; fc5 = 64) and Action Set 4 (Table 4.2), over Gazebo’s
Stage 4 Scenario 1. 70

6.36 Fig. 6.23 obstacle-oriented Dueling Deep Q-Network with three additional hidden
layers, fc4, f5, and fc6. 71

6.37 Training scores and final episode distances, and robot’s post-training paths resul-
tant from employing the DeepRL-based local motion planning strategy, with the
Fig. 6.36 ANN (different layer configurations) and Action Set 5 (Table 4.2), over
Gazebo’s Stage 4 Scenario 1. 72

6.38 Gazebo’s Stage 4 Scenario 2. 74
6.39 Training scores and final episode distances, and robot post-training paths resul-

tant from employing the DeepRL-based local motion planning strategy over the
Gazebo’s Stage 4 Scenario 2. 75

6.40 Gazebo’s Stage 4 Scenario 3. 75
6.41 Training scores and final episode distances, and robot post-training paths resul-

tant from employing the DeepRL-based local motion planning strategy over the
Gazebo’s Stage 4 Scenario 3. 76

xvii

DeepRL-based Motion Planning for Indoor Robot Navigation

6.42 Scenario 3 arrangement, and training scores and final episode distances resultant
from employing the DeepRL-based local motion planning strategy, with the Fig.
6.36 ANN ({fc4; fc5; fc6} = {256; 256; 256}) and Action Set 5 (Table 4.2), over
Gazebo’s Stage 4 Scenario 3. 77

6.43 Scenario 3 arrangement and online-stage testing (post Fig. 6.42 training). 78
6.44 Fig. 6.42 post-training experiments in Gazebo’s obstacle-free, World, and Stage

4 environments. 79

7.1 End-to-end DeepRL-based socially aware motion planning block diagram. 84

B.1 Obstacle-free target configurations. 95
B.2 Fig. B.1 (d) obstacle-free training scenario. 96
B.3 Shallow ANN and respective layer configuration. 96
B.4 Training final episode distances from employing the Deep Q-Learning algorithm

with the Fig. B.3 Shallow ANN (different number of fc1 neurons) over the Fig.
B.1 (d) training scenario. Experiments carried out with the Table B.1 simulation
variables. 97

B.5 Deep ANN and respective layer configuration. 98
B.6 Training final episode distances from employing the Deep Q-Learning algorithm

with the Fig. B.5 Deep ANN (different number of fc1 and fc2 neurons) over
the Fig. B.1 (d) training scenario. Experiments carried out with the Table B.1
simulation variables. 98

B.7 Proposed Deep Q-Network. 99
B.8 Fig. B.1 (c) and Fig. B.1 (e) obstacle-free training and testing scenarios. 100
B.9 Training final episode distances from employing the Deep Q-Learning algorithm

with the Fig. B.7 proposed ANN over the Fig. B.1 (c) training scenario. Exper-
iments carried out with the Table B.1 simulation variables. 100

B.10 Online stage robot paths over the Fig. B.1 (e) testing scenario. Agent controlled
by a fine-tuned model saved from Fig. B.9 training. 100

B.11 Fig. B.1 (e) obstacle-free training and testing scenario. 101
B.12 Training final episode distances from employing the Deep Q-Learning algorithm

with the Fig. B.7 proposed ANN over the Fig. B.1 (e) training scenario. Exper-
iments carried out with the Table B.1 simulation variables. 101

B.13 Online stage robot paths over the Fig. B.1 (e) testing scenario. Agent controlled
by a fine-tuned model saved from Fig. B.12 training. 101

xviii

List of Tables

2.1 Reinforcement Learning parameters. 7

3.1 RL-based motion planning strategies and respective models, adapted from [1]. . . 20
3.2 DeepRL-based motion planning strategies and respective software and hardware

materials. 22

4.1 Layer configurations of the proposed ANNs (Fig. 4.2). 27
4.2 Action sets. 29
4.3 Reward sets. 31

5.1 ROS topics description. 35
5.2 TurleBot hardware specifications [2]. 38
5.3 360 Laser Distance Sensor LDS-01 [3]. 38
5.4 Python packages. 39
5.5 NVIDIA GeForce GTX 1060 specifications [4]. 40

6.1 CartPole-v0 episode termination and solved requirement. 44
6.2 Layer configuration (number of neurons and activation functions) of the ANNs

used in the DQN-based frameworks’ validation towards the OpenAI Gym CartPole-
v0 environment. 44

6.3 CartPole-v0 model hyperparameters. 45
6.4 MountainCar-v0 episode termination and solved requirement. 46
6.5 Layer configuration (number of neurons and activation functions) of the ANNs

used in the DQN-based frameworks’ validation towards the OpenAI Gym MountainCar-
v0 environment. 46

6.6 MountainCar-v0 model hyperparameters. 46
6.7 LunarLander-v2 episode termination and solved requirement. 47
6.8 Layer configuration (number of neurons and activation functions) of the ANNs

used in the DQN-based frameworks’ validation towards the OpenAI Gym LunarLander-
v2 environment. 48

6.9 LunarLander-v2 model hyperparameters. 48
6.10 Pong-v4 episode termination and solved requirement. 49
6.11 Pong-v4 model hyperparameters. 49

xix

DeepRL-based Motion Planning for Indoor Robot Navigation

6.12 Layer configuration (number of neurons, filters, kernel size, strides, and activation
functions) of the ANNs used in the DQN-based frameworks’ validation towards
the OpenAI Gym Pong-v4 environment. 50

6.13 Simulation variables and framework hyperparameters utilized to validate the Deep
Q-Learning, Dueling Deep Q-Learning, and Dueling Double Deep Q-Learning
algorithms in obstacle-free environments. 52

6.14 Deep Q-Learning (Fig. 6.13) training details. 53
6.15 Dueling Deep Q-Learning (Fig. 6.14) training details. 54
6.16 Dueling Double Deep Q-Learning (Fig. 6.15) training details. 55
6.17 Fig. 6.16 training details. 56
6.18 Simulation variables, DQN framework, Artificial Neural Network architecture and

parametrization, state, action and reward models, and system hyperparameters
utilized in the generalization trials. 58

6.19 Generalization experiments (Figures 6.18, 6.20, 6.22) training details. 60
6.20 Simulation variables, DQN framework, Artificial Neural Network architecture,

action and reward models, and system hyperparameters utilized to validate the
obstacle-oriented DeepRL-based navigation approach in empty environments. . . 61

6.21 Figure 6.24 training details. 62
6.22 Simulation variables, DQN framework, Artificial Neural Network architecture and

parametrization, state, action and reward models, and system hyperparameters
utilized in Gazebo’s World experiment. 63

6.23 Fig. 6.27 training details. 64
6.24 Simulation variables, DQN framework, Artificial Neural Network architecture and

parametrization, state, action and reward models, and system hyperparameters
utilized in the short-distance path scenario of Gazebo’s Stage 4 environment (Fig.
6.29). 66

6.25 Fig. 6.30 training details. 66
6.26 Simulation parameters, adjusted from Table 6.24, for an action space of 6 commands. 67
6.27 Fig. 6.35 training details. 70
6.28 Simulation parameters, adjusted from Table 6.24, for an action space of 12 com-

mands. 71
6.29 Fig. 6.37 training details. 72
6.30 Network’s trainable parameters. 73
6.31 Simulation variables, DQN framework, Artificial Neural Network architecture and

parametrization, state, action and reward models, and system hyperparameters
utilized in Gazebo’s Stage 4 Scenario 2 (Fig. 6.38). 74

6.32 Fig. 6.39 training details. 74
6.33 Simulation variables, DQN framework, Artificial Neural Network architecture and

parametrization, state, action and reward models, and system hyperparameters
utilized in Gazebo’s Stage 4 Scenario 3 (Fig. 6.40). 76

6.34 Fig. 6.41 training details. 76

xx

List of Tables

6.35 Simulation parameters, adjusted from Table 6.33, for an action space of 12 com-
mands. 77

6.36 Fig. 6.42 training details. 78

B.1 Simulation parameters. 96
B.2 Proposed DQN base layer configurations. 99

xxi

xxii

1
Introduction

This chapter introduces the concepts explored to implement the proposed work. The moti-
vation for the project development is also addressed, along with the a priori outlined objectives
and key contributions.

1.1 Context and Motivation

Robotics is a wide-ranging scientific field accountable for studying, designing, producing,
and applying autonomous/human-assisted programmable machines named robots. Due to sig-
nificant software advances and gradual cost reduction of hardware, robotic systems are gradually
expanding their scope, enhancing numerous sectors’ productivity, efficiency, and work environ-
ment safety [5]. Despite the progress made, indoor mobile robots, a subset of robots able to
navigate structured environments, remain absent from daily human routines. For robots to
be introduced in human-populated domains, they must showcase the capability to model the
different and unexpected human conducts and operate accordingly [6], a demanding feature
progressively matured by the robotics community [5].

One of the main challenges in developing indoor mobile robots is designing a flawless and
robot-employment-appropriate navigation method. Commonly, navigation techniques are par-
titioned into three stages [7]: localization, map building, and motion planning. The latter, also
known as path planning, establishes an optimal/near-optimal collision-free path between two
locations. The optimal path definition varies according to the requirements of each application:
it can be the path that minimizes turning, braking, or the distance between the source and goal
destination. Several strategies have been formulated over the past years to solve the motion
planning computational problem, with Machine Learning-based approaches being some of the
methodologies that have exhibited the most promising results [8].

Machine Learning (ML) [9] is a subset of Artificial Intelligence that produces self-improving
algorithms through experience and is organized into Supervised Learning [10], Unsupervised
Learning [11], and Reinforcement Learning (RL) [12]. In supervised algorithms, learning is
generating pattern-finding models through human prearranged clusters of data named datasets.
On the other hand, unsupervised learning methods create predictive models after hidden features
of unlabelled input data [11]. Reinforcement Learning, in turn, is a general framework for
studying sequential decision-making. In RL, an intelligent agent, its primary intervenient, learns
via trial-and-error which actions must adopt to attain a predetermined objective. The goal

1

DeepRL-based Motion Planning for Indoor Robot Navigation

of Reinforcement Learning is that the agent, over time and guided by a reward system that
evaluates the quality of its actions, gathers sufficient experience to select the commands that
maximize the expected sum of rewards.

Reinforcement Learning algorithms, nonetheless, face some limitations regarding sample,
memory, and computational complexity [13]. These problems, however, can be surpassed using
Deep Learning (DL) [14]. Deep Learning aims to construct computational systems capable of
identifying compact features in high-level abstractions. Their most common architectures are
Artificial Neural Networks (ANNs), multi-layered configurations inspired in biological neural
networks. Applications resultant from the merge of RL and DL are under an innovative and
contemporary Machine Learning division defined as Deep Reinforcement Learning (DeepRL)
[13], a field that has been enabling the institution of methods capable of facing previously
intractable problems [13].

Concerning indoor navigation, traditional approaches rely on an obstacle map to establish
a plan of action [7]. Notwithstanding, in unfamiliar or dynamic domains, motion planning
strategies must be flexible so that a mobile platform adapts its behavior to unforeseen conditions.
With Deep Reinforcement Learning sustaining the navigation’s motion planning mission, the
system’s agent in the form of a robot assumes an improved ability to assess environmental
stimuli and consequently appoint ideal actions, invaluable qualities in unknown environment
navigation [15, 16].

1.2 Proposed Framework

The main purpose of this dissertation was to formulate and develop a motion planning
algorithm for indoor robot navigation. Based on Deep Q-Network (DQN) frameworks [17],
the projected methodology is structured to use only retrieved sensory data to control the mo-
bile platform, not requiring upfront information of the environment (planning decoupled from
mapping).

The presented DeepRL-based local navigation pipeline, shown in Fig. 1.1, is divided into
two stages: training and testing. In training, the agent is given a certain amount of episodes
e, sets of discrete time steps t ϵ T , to learn which actions contribute to enclosing the distance
to a target point. In each iteration t, the agent observes its surroundings and converts the
gathered data into an environment state st. The employed Artificial Neural Network then maps
st into a speed command at, triggering an environment variation. A new sensory observation
is performed, and a state st+1 subsequently computed. In this stage, after each action and
resultant state transition st→st+1, a reward rt - a scalar value indicative of the quality of the
action based on the originated transition - is generated. The framework’s ANN is then fed with
transition tuples (st, at, st+1, rt) of past experiences to tune its parameters, an operation that
determines, over time, if the action at is viable to be executed on similar st states. This process
continues until a terminal condition is attained.

2

1. Introduction

Sensory

Observation

Action

Environment

Agent

Reward

Reward
Model

Artificial Neural Network

DQN framework
1 1 1

1

1 110

0 0

0

0 0

0 0

01 1 1

1

1 110

0 0

0

0 0

0 0

01 1 1

1

1 110

0 0

0

0 0

0 0

01 1 1

1

1 110

0 0

0

0 0

0 0

0

Costmap

Representation

Processing

Unit

States

Training Stage

Online Stage

Figure 1.1: Proposed DeepRL-based local navigation framework.

Each defined state s comprises a stack of 4 sequential costmaps CStack and additional robot-
pose-relative data p: robot-target Euclidean distance, robot-nearest obstacle Euclidean distance,
and robot-target orientation disparity. The sensor findings are converted into costmaps - grid-
like representations of the robot’s surroundings - in order to reduce the impact of the sensor’s
intrinsic properties on the framework’s network inputs.

Training aims to generate at least one ANN model that maximizes the total episode rewards.
For an accurately designed DeepRL system, such models also promote the best possible agent’s
behavior. In the present conjuncture, the optimal behavior corresponds to a compelling collision-
free motion towards the target.

In the online phase, the fine-tuned models obtained from training are utilized to conduct
the agent’s decision-making. Ideally, in this stage, the mobile platform successfully navigates
throughout its environment until the goal location arrives.

1.3 Objectives and Key Contributions

To develop the proposed DeepRL-based motion planning for indoor robot navigation, several
objectives, listed in chronological order of execution, were established and subsequently fulfilled:

1. Implementation of the original DQN approach and dueling variations [18];

2. Validation of the implemented DQN methods in benchmark environments;

3. Design of the RL inherited state, action, and reward models;

4. Design of suitable Artificial Neural Network architectures;

5. Validation of the DeepRL-based local navigation method in obstacle-free environments;

6. Validation of the DeepRL-based local navigation method in environments with obstacles.

3

DeepRL-based Motion Planning for Indoor Robot Navigation

The main implementations and contributions of the project are addressed in the following
chapters:

Developed Work (Chapter 4)

Presents the strategy behind the development of each and every component of the proposed
DeepRL local navigation system.

Software and Hardware Materials (Chapter 5)

Describes the software and hardware materials exploited to fulfill the defined objectives.

Results and Discussion (Chapter 6)

Documents the validation of the developed DeepRL-based local motion planning approach
for indoor robot navigation in virtual environments, with and without obstacles.

DQN Implementation (Appendix A)

Presents the pseudo-codes of the original Deep Q-Learning and dueling variations imple-
mented, validated, and employed in the suggested DeepRL navigation system.

Artificial Neural Network Architecture Deduction (Appendix B)

Outlines the structure building process of the primary Artificial Neural Network utilized in
the DeepRL motion planning pipeline.

4

2
Background Material

This chapter covers the fundamentals of robot motion planning, Reinforcement Learning,
and Deep Learning. Deep Reinforcement Learning is likewise addressed, with a particular em-
phasis on Deep Q-Network-based frameworks.

2.1 Motion Planning

Motion planning, in robotics, is the process of breaking down a movement task, such as
following a path or moving from an initial to a goal point, into discrete actions [5, 19]. Since an
effective methodology can save a considerable amount of time and reduce a mobile robot’s wear
and capital investment [20], motion planning presents itself as a significant navigation primitive.

2.1.1 Motion Planners

Motion planning can be divided into global and local planning, according to whether all en-
vironment information is accessible or not [20]. Global planners generate optimal/near-optimal
paths under the completely known environment. Further updates are performed on the estab-
lished global map model. Local planners, on the other hand, do not operate with the entire
environment knowledge. Alternatively, short-term paths are designed based on local represen-
tations built from sensory retrieved data.

2.1.2 Environment Representations

Each class of planners needs either the a priori knowledge of the environment or to gather
data throughout the robot’s motion. In both instances, the known data is converted into a
feature map [20]. This resultant representation can be categorized under two main paradigms
[21, 22]:

• Metric (Fig. 2.1a) - decomposition of the environment into a grid-based arrangement;

• Topological (Fig. 2.1b) - decomposition of the environment into a simplified graphical
model of nodes and arcs. Nodes define different obstacle-free places and landmarks. Arcs,
in turn, are the connections between nodes, portraying a path between locations.

5

DeepRL-based Motion Planning for Indoor Robot Navigation

(a) Metric [1] (b) Topological (c) Hybrid

Figure 2.1: Metric, topological, and hybrid environment representations.

While grid-based methods produce accurate metric renderings, their complexity often in-
hibits efficient planning in large-scale indoor environments. Topological maps, on the other
hand, are precise representations often challenging to learn and maintain [21, 22]. Nevertheless,
it is possible to combine both decompositions at an increased complexity cost, surpassing the
downsides of each and originating a more robust environment model. An hybrid exemplar is
presented in [22], where local grid-based representations are used on top of a global topological
map.

2.2 Reinforcement Learning

Reinforcement Learning (RL) [12] is a Machine Learning (ML) sub-field entrusted to solve
optimization problems. Structure-wise, RL frameworks (Fig. 2.2) are composed of an agent and
its environment. A bi-directional communication is established between both, enabling the agent
to learn by trial-and-error using the feedback, in the form of scalar rewards, from the outcomes
of its executed actions. The elements of conventional Reinforcement Learning methodologies
are presented in Table 2.1. Amongst them, it is possible to underline the states, actions, and
rewards:

• States - environment representations;

• Actions - commands executed by the agent;

• Rewards - scalar values, evaluations of the adopted actions considering the triggered state
transitions.

Environment
Agent

Reward
Model

Q-Table

Q(1,1) Q(1,n)

Q(m,1) Q(m,n)

... ...

...

...

...

Action1 ... Actionn

State1

Statem

...

Sensory
Observation States

Reward

Action

Training Stage

Online Stage

Figure 2.2: Reinforcement Learning framework.

6

2. Background Material

Reinforcement Learning algorithms are iterative methods divided into episodes, sets of
discrete time steps. In each step t, the agent performs an environment observation, converts
its findings into a state st, and selects an action at based on it. The agent then perceives the
following state st+1 and receives a reward rt from the environment. This process continues
until the agent reaches a terminal state or a step limit T , after which the environment resets,
and a new episode starts. The return of each episode e is the total accumulated step rewards,
discounted by a factor γ:

Re =

T∑
i=0

γi · rt+i (2.1)

The goal of learning is that the intelligent agent, using its experience, improves its decision-
making ability to maximize the accumulated rewards R.

Table 2.1: Reinforcement Learning parameters.

Parameter Designation Description

at Action Command executed by the agent, selected from a set of valid actions A

st State Instantiation of the state space S, a set of environment representations

rt Reward
Immediate scalar reward returned according to a state transition st → st+1

provoked by an executed action at

P (st+1|st, at) Transition Model
Representation of how the environment changes in response to the agent’s
actions

π(st) Policy
Mapping function that specifies which action the agent must adopt in each
state

γ Discount Factor
Sets the balance between immediate and future rewards. The higher the
value, higher the influence of long-term rewards

V (st) Value Function Expected total return that an agent can receive from the state st onward

Q(st, at) Action-Value Function Expected total return for selecting the action at in the state st

α Learning Rate Sets the impact of past experiences in the learning process

2.2.1 Policy Evaluation

As previously noted, Reinforcement Learning aims to maximize the total expected rewards.
Therefore, the best state-action policy π, a value function that maps states into actions, must
be inferred. According to the best-policy deduction and further practice, RL methods can be
categorized as follows:

• Model-free - the agent operates by refining a value function directly from experience,
relying exclusively on a trial-and-error logic;

• Model-based - the agent adjusts, according to the environment observations, a dynamic
transition model P (st+1|st, at) that returns which action to take based on each transition
probability.

To assess and improve a policy, Reinforcement Learning resorts to various algorithms re-
ferred to as Policy Evaluation techniques [12]. Dynamic Programming (DP), Monte Carlo (MC),
and Temporal Difference (TD) are their most noteworthy methodologies.

7

DeepRL-based Motion Planning for Indoor Robot Navigation

Dynamic Programming

Model-based methods predominantly use Dynamic Programming (DP) [12] to improve the
followed policy/value function. The transition and reward models are known entities, enabling
an accurate computation of the expected reward sum over future states. The value function
V (st) is updated according to the following equation:

V (st)← rt + γ ·
∑

st+1∈S
P (st+1|s, at) · V (st+1) (2.2)

The last term of (2.2) is the discounted total future rewards. It results from the sum, for
every possible state st+1, of the products of the transition model P with the estimated returns
V (st+1). The concept of using the expectation of successor states to update V (st) is designated
bootstrapping.

Monte Carlo

Monte Carlo (MC) [12] methods, unlike DP, do not bootstrap. Instead, the value function
updates are computed tuple-by-tuple (st, at, st+1, rt) from a sampled environment:

V (st)← V (st) + α · [rt − V (st)] (2.3)

Temporal Difference

Temporal Difference (TD) [12] approaches can be defined as Dynamic Programming and
Monte Carlo hybrids. TD updates the value function by combining the environment’s sam-
pling to approximate an expectation over-states (next-state distribution) from MC, and the
bootstrapping notion to estimate the discounted sum of future rewards from DP:

V (st)← V (st) + α · [rt + γ · V (st+1)− V (st)] (2.4)

2.2.2 Exploration vs. Exploitation

One fundamental dilemma in Reinforcement Learning is the exploration versus exploitation
trade-off [13]. Exploration refers to the probing process of experimenting random actions to
explore the environment. As it may take several time steps to evaluate which action is optimal
at each state, exploration is recommended to determine the long-term actions that lead to
high rewards. Exploitation, in turn, is the operation of selecting the actions with the highest
estimated values, Q∗(s, a) (see Table 2.1), to encourage the best possible outcome.

In model-free Reinforcement Learning algorithms, the transition between exploration and
exploitation is established by ϵ-greedy strategies. In these techniques, actions are chosen ran-
domly with a probability of ϵ. Reciprocally, actions with the highest estimated value, Q∗(s, a),
are chosen with complementary probability. Herewith, by decaying ϵ over time, the agent pro-
gresses from exploration towards exploitation [13].

8

2. Background Material

2.2.3 Q-Learning

Q-Learning [12, 13] is a RL model-free Temporal Difference algorithm used to optimize, by
trial-and-error, the intelligent agent’s decision-making aptitude.

Initialize
Q-Table

Environment
Observation

Action
Selection

Reward
Computation

Update
Q-Table

Figure 2.3: Q-Learning block diagram.

As illustrated in Fig. 2.3, Q-Learning starts by initializing a Q-Table (Fig. 2.4), each row
corresponding to a state, s ∈ S, and each column to an action, a ∈ A.

Q(1,1) Q(1,n)

Q(m,n)

... ...
...

...

...

Action1 ... Actionn
State1

Statem

...

Q(m,1)
......

...
...

Figure 2.4: Q-Table.

In an initial phase, the agent interacts with the environment exploring new states and
actions using an ϵ-greedy exploration method. In this period, the Q-Table is filled with each
state-action pair Qvalue. Qvalues, Q(s, a), as previously described in Table 2.1, represent the
agent’s expected total rewards from taking the action a in the state s. Each Qvalue results from
the computation of the Bellman equation:

Q(st, at)← Q(st, at) + α · [r(st, at) + γ ·maxaQ(st+1, a)−Q(st, at)] (2.5)

• r(st, at): Immediate reward for transitioning from the state st to the state st+1;

• maxaQ(st+1, a): Rewards that may be returned several time steps deeper into the se-
quence, in the form of the optimal Qvalue of the successor state st+1;

• Q(st, at): TD prediction;

• r(st, at) + γ ·maxaQ(st+1, a): TD target;

• r(st, at) + γ ·maxaQ(st+1, a)−Q(st, at): TD error (δt).

The objective of exploration can be interpreted as subjecting the agent to various environ-
ment states to fill the Q-Table. The more diversified environment representations the agent gets
exposed to, the more comprehensive the table grows. Once the agent progresses from explo-
ration to exploitation, it consults the Q-Table and chooses the actions that maximize the total
accumulated rewards, Q∗(s, a):

at ← argmaxa∈Q(s,:)(Q(st, a)) ≡ Q∗(st, a) (2.6)

9

DeepRL-based Motion Planning for Indoor Robot Navigation

2.3 Deep Learning

Deep Learning (DL) [23, 14] is a subset of ML that uses Artificial Neural Networks (ANNs)
to extract essential features from data structures [24]. ANNs are computational models inspired
by biological neural networks, and similarly, their core elements are called neurons. An artificial
neuron can be characterized as a function, as it takes input data, processes it, and returns
an output signal. In DL, neurons are linked and organized into layers, which in turn can be
categorized according to their placement within ANN architectures:

• Input layer - the very beginning of an ANN workflow. Acquires data from the outer DL
system and forwards it for further processing;

• Output layer - termination of an ANN workflow. Returns the data treated by prior layers
back to the DL system;

• Hidden layers - input and output in-between layers designed to identify and process data
features. ANNs restricted to one hidden layer are termed Shallow Networks. Architectures
with two or more hidden layers are named Deep Networks.

N

...

...

...

...

...

...

Input

Layer

Output

LayerHidden Layers

. .
 .

+

. .
 .

n = number of neurons

Figure 2.5: Deep Artificial Neural Network architecture.

The output signal of each neuron, ŷi, results from the computation, performed by a non-
linear activation function fx, of the sum of a bias b with the product between the signals of
active neurons in previous layers xj and the weights associated with the channels that establish
the neuron connections wj (see Fig. 2.5):

ŷi = fx(b+
n∑

j=1

xj · wj) (2.7)

The terminology behind activation functions precedes their operating principle, as they
determine if a neuron signal is transmitted. As activations in one layer affect activations in
succeeding ones, activation functions (Fig. 2.6) are crucial elements of Deep Learning algorithms.

10

2. Background Material

(a) Sigmoid (b) ReLU (c) tanh

Figure 2.6: Sigmoid, ReLU, and Hyperbolic Tangent activation functions.

2.3.1 Convolutional Neural Networks

Convolutional Neural Networks [14, 24] are specialized networks for processing grid-like
data [25]. Stage-wise, CNNs can be disassembled into feature extraction and classification (Fig.
2.7). Feature extraction is composed of several convolution layers with non-linear activation
functions, followed by pooling layers. Each convolution layer acts as a filter, extracting features
from the input data or previous layered neuron signals. The pooling layers are used to compress
the convolution layers’ outputs. The return of the last feature extraction layer serves as input
to the fully connected layers of the classification phase, the stage responsible for processing the
high-level features and ultimately generating the CNNs outputs.

... ...

Classification

conv1

conv2

convn

Flatten

Layer

fc1

Output
Layer

Feature Extration

Figure 2.7: Convolutional Neural Network architecture.

2.3.2 Recurrent Neural Networks

Networks in which neuron signals are broadcasted uniquely to next-layered neurons are de-
fined as Feedforward ANNs. Contrarily, networks that allow connections and signal propagation
between neurons in the same or previous layers are determined as Recurrent Neural Networks
(RNNs) [14, 24]. RNNs (Fig. 2.8) are a class of ANNs where connections between nodes form
a directed graph along a temporal sequence. Derived from Feedforward networks, RNNs have
a particular architecture that enable information to persist over time due to its internal state
(memory). These configurations are well suited for sequence modeling tasks, being, for exam-
ple, the backbone of many Neural Machine Translation applications [26], like Google Translator
[27, 28].

11

DeepRL-based Motion Planning for Indoor Robot Navigation

Figure 2.8: Recurrent Neural Network architecture.

2.3.3 Artificial Neural Network Training

Artificial Neural Networks are the core constituents of Deep Learning frameworks. However,
when designed and firstly initialized, their weights w and biases b are randomly generated,
raising the need to be fine-tuned before being applied towards their intents.

In supervised learning, the procedure of tuning the ANN parameters θ ≡ (w;b), also termed
training, is executed with labelled datasets. These sets of structured input-output data give the
system the means to compare the network’s output signals ŷi with expected values from the
dataset yi. In each training iteration, the difference between yi and ŷi serves as object to a loss
function L(θ) that, in turn, yields a loss value, an indication of the global disparity between the
network and dataset outputs. The higher the loss value, the worse the network performance is.
Thereby, in supervised learning, training is inferring the optimal set of weights and biases that
minimize the cost function L(θ):

L(θ) =
1

n

n∑
i=1

(yi − ŷi)
2 (2.8)

The predominant methodologies utilized to reduce the loss value are the gradient descent
approaches [23, 24]: the representation of how the weights and biases need to change to decrease
the loss is set by the negative gradient of L(θ). Under these techniques, the most applied
algorithm to train multi-layer networks is Backpropagation [29]. Backpropagation efficiently
computes, by the chain rule, the gradient of L(θ) given the loss, weights, and biases. This
operation is done one layer at a time, iterating backward from the output to the input layer,
avoiding redundant calculations of intermediate terms.

While supervised learning algorithms tend to be more accurate than unsupervised ones, they
require upfront human intervention to label the data appropriately. In contrast, unsupervised
learning methods are presented with unlabeled data only. Thus, without prior knowledge nor
datasets to lead the training process, the goal of unsupervised DL architectures is to uncover,
extract, analyze, and model hidden data patterns to adjust the network parameters θ.

12

2. Background Material

Whether developing supervised or unsupervised systems, the utmost objective of training
ANNs is that the resultant tuned model performs well when tested towards both training and
similar data. However, during experimental trials, some behavioral issues can surface from the
intricate and possibly inaccurate learning process. The most common problems encountered
while training Deep Artificial Neural Networks are overfitting and underfitting [30, 25]:

• Overfitting - the network achieves good performances under training data only;

• Underfitting - the network training proves insufficient [30]. The network exhibits poor
performances for both training and similar data.

Several approaches have been proved to solve overfitting, such as regularization techniques
[25], network hyperparameter regulation [31], and data augmentation [30]. To deal with under-
fitting, the best methods are to increase the model complexity and train longer.

2.4 Deep Reinforcement Learning

Reinforcement Learning is an efficient way to learn control models without referencing the
ground truth [32]. However, RL algorithms tend to grow computationally costly over extensive
and dynamic environments due to their tabular frameworks. Such problem can be overcome by
introducing the hierarchical data processing of Deep Learning into RL architectures. Methods
that embrace this type of structure (Fig. 2.9) are within the scope of Deep Reinforcement
Learning (DeepRL), an innovative field that has been producing applications across the entire
spectrum of science [33].

Environment

Agent

Reward
Model

Artificial Neural Network

DQN framework

Reward

Sensory

Observation
 States

Action

Training Stage

Online Stage

Figure 2.9: Deep Reinforcement Learning framework.

2.4.1 Value-based and Policy-based Learning

One of the problems involving Reinforcement Learning is that the amount of memory re-
quired to store data rapidly expands as the number of states increases. Deep Reinforcement
Learning tries to tackle this well-defined problem by using Artificial Neural Networks as func-
tion approximators [33], generalizing from seen to unseen states when the state space is large or
continuous.

13

DeepRL-based Motion Planning for Indoor Robot Navigation

State

Value-based DeepRL
 Policy-based DeepRL

State

...

...

...

...

...

...

...

...

...

...

...

...

Figure 2.10: Value-based and Policy-based Deep Reinforcement Learning.

DeepRL strategies follow one of two methodologies: Value-based or Policy-based (see Fig.
2.10). In Value-based learning, ANNs act as action-value functions, Q(s, a; θ). Upon fine-tuned,
they estimate the state-action Qvalues and infer a deterministic signal of which action to take
given the current state [34]. Contrarily, Policy-based approaches employ ANNs to parameterize
the policy π(s, a; θ) and optimize the action space using Policy Gradient techniques [35, 36].

2.4.2 Deep Q-Learning

Deep Q-Learning [17], also denoted as Deep Q-Network (DQN) due to its architecture, is a
Value-based learning method designed upon the Q-Learning algorithm described in Section 2.2.3.
Both approaches share the same principle of computing the state-action Qvalues, diverging
however in the modus operandi: while Q-Learning resorts to a Q-Table to guide the training
process and consequent agent’s decision-making, in DQN such tasks are conducted by Artificial
Neural Networks.

s1

a1

s2

r1

sN

aN

sN+1

rN

...

...

...

...

State

Action

New State

Reward

Random

Batch

Replay Buffer

Gradient descent step with loss

Policy-Net

Target-Net

...

...

...

...

...

...

N = Replay Buffer Size

Update

...

...

...

...

...

...

Update

+

Figure 2.11: Deep Q-Learning training stage.

14

2. Background Material

As shown in Figure 2.11, Deep Q-Learning has three main components: a policy network,
a target network, and a replay buffer. The policy network (θ) is responsible for estimating the
Qvalues for the current state transition, whereas the target network (θ−) computes the optimal
Qvalue of the successor state. In DQN, each Qvalue is calculated using the Bellman optimal
equation (2.5, α = 1):

Q(st, at)← r(st, at) + γ ·maxaQ(st+1, a) (2.9)

The replay buffer [37], in turn, is a tabular arrangement that stores the transition tuples
(st, at, st+1, rt) witnessed in each training step t.

Analogously to Q-Learning, in Deep Q-Learning the agent starts by interacting with the
environment, exploring new states using an ϵ-greedy exploration method and filling the replay
buffer with transition tuples. At the end of each step, a random batch of tuples (sj , aj , sj+1,
rj) is sampled and subsequently fed to the policy and target networks. A loss value is further
calculated based on the networks’ output Qvalues:

L(θ) = ||yt(a)−Q(sj , aj ; θ)||2≡ ||rj + γ ·maxaQ(sj+1, a; θ
−)−Q(sj , aj ; θ)||2 (2.10)

The error between the targets yt(a) and predictions Q(sj , aj ; θ) of (2.10) is then backprop-
agated to tune the policy network parameters θ:

△θ = α · L(θ) · ∇θQ(sj , aj ; θ) (2.11)

With the employment of a replay buffer, the policy network updates do not depend ex-
clusively on the last environment observation. Instead, random state-transition tuples (sj , aj ,
st+1, rj) are utilized to adjust θ, ensuring that the agent keeps training over its new behavior,
consolidating it rather than over circumstances that might no longer be relevant.

Unlike the policy network parameters θ - tuned at every training step - the target’s weights
and biases θ− are updated periodically by inheriting the policy network parameter values, θ− ←
θ. This operation prevents the target function from rapidly changing, improving the robustness
of the training process.

Optimally, after several steps, episodes, and network updates, the learning process generates
a refined network model (θ∗). In the online stage, this model sustains by itself the agent’s
decision-making. Therefore, the DQN framework no longer needs the replay buffer nor the
target network (see Fig. 2.12), engineering a significant computational cost reduction. In this
testing phase, the system operating mode is reasonably straightforward. The employed network
(θ∗), in each step t, processes the input state representation st and computes the Qvalues

Q(st, a; θ
∗) accordingly. The action at chosen to be executed is the one associated with the

highest expected total return, Q∗(st, a; θ
∗):

at ← argmaxa∈Q(s,:;θ∗)(Q(st, a; θ
∗)) ≡ Q∗(st, a; θ

∗) (2.12)

15

DeepRL-based Motion Planning for Indoor Robot Navigation

Testing

Reward
Model Replay

Buffer

Update

New
Observation States ANN Action

Store

Training

Store

Figure 2.12: Deep Q-Learning block diagram.

2.4.3 Dueling Deep Q-Network Architectures

Due to the groundbreaking results of DQN-based algorithms, several adjustments to the
original method naturally arose to further improve its functioning [38, 18]. One of the modi-
fications that proved to increase the reliability and learning rate of Deep Q-Learning was the
replacement of the single-stream network architectures with dueling structures [18]. Dueling
networks (Fig. 2.13b), within Value-based algorithms, decouple the estimation of Qvalues into
two streams to compute the state value V (st) and the advantage affection A(st, at). The ad-
vantage portrays the benefit of selecting a specific action compared to the others available. Its
value is calculated by subtracting the predicted state value V (st) from the optimal state-action
Q∗(st, at):

A(st, at) = Q∗(st, at)− V (st) = rt + γ · V ∗(st+1)− V (st) (2.13)

The Qvalue Q(st, at) estimation in dueling models results from the advantage of taking the
action at in the state st, A(st, at), subtracted by the mean of the advantages of all actions, plus
the state value V (st):

Q(st, at) = A(st, at)−
1

k

k∑
a=1

A(st, a) + V (st) k = action space size (2.14)

The advantage mean plays a regularization role, as it is applied to the advantage stream
output values to reduce the existent noise.

The superiority of dueling network architectures is revealed during training. As shown in
Fig. 2.13 (b), the value stream layer fcV is composed of a single neuron, whereas the number
of neurons of the advantage stream fcA is equal to the action space size k. In DQN, only the
output neuron corresponding to the highest Qvalue contributes to the network backpropagation
updates. Dueling DQN, in turn, has the advantage stream reproducing this single-stream DQN
functioning and the additional state value neuron, adjusted in each iteration, that provides the
intakes of every experience to the policy network tuning.

In conclusion, the difference between DQN and its dueling variation resides in the Qvalue

computation. If complemented with identical Deep Reinforcement Learning modules, such as
the action, state, and reward models, both implementations can be represented with the same
Algorithm 2 of Appendix A.

16

2. Background Material

...

...
fc1 fc2

Output
Layer

Input
Layer

Q(st,at)

...

...

fc1 fc2

Output
Layer

Input
Layer

...

fcA

fcV

Q(st,at)

(a) Single-stream DQN (b) Dueling DQN

Figure 2.13: Single and dual-stream network architectures.

2.4.3.1 Double Deep Q-Network and Dueling Double Deep Q-Network

A study by van Hasselt et al. [38] uncovered that DQN, despite its innovative functioning
and unprecedented outcomes, tends to suffer from substantial state-action value overestimations
that ultimately lead to impoverished policies. To prevent this possible issue, researchers proposed
a variant named Double DQN. Double Deep Q-Learning aims to reduce overestimations by
decomposing the Deep Q-Learning target into action selection and evaluation:

yt(a) =

rt + γ ·maxaQ(st+1, a, θ
−), if DQN

rt + γ ·Q(st+1, argmaxaQ(st+1, a; θ); θ
−), if Double DQN

(2.15)

The selection of the action in the argmax operation is executed by the policy network (θ).
The target network (θ−) is then employed to fairly evaluate the value of the policy.

By combining the technique proposed by van Hasselt et al. with dueling architectures, the
Dueling Double Deep Q-Network (D3QN) algorithm can be deduced. D3QN [18] preserves the
dueling DQN configuration to extract its attested benefits (enhanced training strategy) and
utilizes the action selection and evaluation methodology of Double DQN to resolve the DQN
overestimation problem. With this formulation, D3QN can easily be constructed upon DQN
with minimal computational overhead, as shown in Algorithm 3.

17

18

3
State of the Art

In this chapter, some of the most renowned robot motion planning algorithms are covered
while giving particular emphasis to navigation approaches based on RL and DeepRL. A brief
report of the DeepRL field evolution is also presented.

3.1 Motion Planning

The motion planning problem in robotics has motivated multiple implementations, each
characterized according to the used planner, environmental modeling, and path search algorithm.

3.1.1 Global Path Planning

The predominant global path search methods in indoor navigation are classified as heuristic-
search algorithms [20]. Under this category are methodologies such as Dijkstra [39, 40], Floyd-
Warshall [40], A* [20, 41, 42], and Rapidly-Exploring Random Trees (RRT) [43].

In Dijkstra, paths are created through the selection of neighbor nodes in topological en-
vironment representations. Each formulated path has an associated cost resultant from the
weighted arcs that establish the route’s node connections. The path selected is the one with
the minimum cost. While Dijkstra calculates the shortest path from one node to all nodes,
Floyd-Warshall determines the shortest path between all pairs of nodes. A*, in turn, follows an
heuristic evaluation function to determine the shortest path between the initial and final nodes
[41]:

f(i) = g(i) + h(i) (3.1)

• i - robot current localization;

• g(i) - past-cost function from the starting node to i;

• h(i) - Euclidean distance from i to the target node.

The RRT is a sampling-based method notably implemented in large low-dimensional state
spaces. In each iteration, a random node is selected within a maximum range and is connected to
the nearest one from a congregation termed tree. As node choices are purely random, several tree
branches (path representations) are generated. Conceptually, at least one route progressively
converges towards the goal area.

19

DeepRL-based Motion Planning for Indoor Robot Navigation

3.1.2 Local Path Planning

Alongside global path planning, robust motion planning methodologies can be implemented
using local path search algorithms over dynamic metric feature maps.

Induced by the Artificial Potential Field (APF) [20, 44] strategy, a platform is subject to
an artificial force field. Attractive and repulsive forces are applied to the robot by the goal
destination and surrounding objects, respectively, originating a resultant force that defines the
movement course. Dynamic Window Approach (DWA) [45], in turn, reduces the search space
to a dynamic window centered around the current velocities of a mobile platform. Guided by
an objective function, DWA aims to approximate a robot to its desired destination by selecting,
iteratively, the optimal solution within the window composed of reachable/admissible speeds.
The Time Elastic Bands (TEB) [39, 46] approach has a similar working principle: with the
knowledge of the vehicle’s geometric, kinetic, and dynamic constraints, this methodology gen-
erates a sequence of speed commands that allow a robot to navigate through an established set
of intermediate waypoints.

3.1.2.1 Reinforcement Learning in Indoor Navigation

RL-based navigation frameworks fit under local path planning. These motion planning
approaches are instrumental in unknown or dynamic environments, where a continuous learning
process is required to comply with the changes verified over time.

One of the most challenging tasks to optimize Reinforcement Learning methods is the
definition of their state, action, and reward models. A list of RL navigation implementations
and respective models is shown in Table 3.1.

Table 3.1: RL-based motion planning strategies and respective models, adapted from [1].

Article States Actions Rewards

Zuo et al. [47]
Robot-obstacle
distances

Linear-angular speed
turns

State-action based

G. Yen and T.
Hickey [48]

3x3 costmap environ-
ment representations

Unknown
Penalties for each step and collision;
Reward for reaching the goal

Garrote et al. [1]

Environment and
path representation
data
(binary strings)

Linear-angular speed
pairs

Defined according to:
– distance to target;
– distance to the nearest obstacle;
– deviation from the predefined path

20

3. State of the Art

3.2 Deep Reinforcement Learning

DeepMind [49], in 2013, revolutionized the Artificial Intelligence field by using Deep Q-
Learning to develop methods capable of beating human experts at Atari Video Games [17, 50].
Driven by the unmatched results observed at the time, the AlphaGo [51], AlphaZero [52], and
AlphaStar [53] applications were subsequently invented. In 2015, AlphaGo achieved remarkable
performances in the game of Go by combining Deep CNNs to represent the Go knowledge and
RL to train from self-play. In 2017, a similar approach of AlphaGo, named AlphaZero, was
released that mastered besides Go, the games of Chess and Shogi. In 2019, AlphaStar, using
DeepRL, dominated the complex game of StarCraft II, beating some of the best teams in the
world in real-time gameplay.

Following the success of Deep Reinforcement Learning in the gaming field, and inspired by
the results of its frameworks when directly trained from raw images, a new era of research in
autonomous navigation using visual information started.

3.2.1 Deep Reinforcement Learning in Indoor Navigation

Deep Reinforcement Learning-based navigation techniques, similarly to RL, fit under the
category of local path planning. As mentioned in Section 3.1.2, RL algorithms feature the
demanding task of determining the action, state, and reward models that reveal the best training
performances and post-training agent behavior. On top of such endeavor, in DeepRL systems
developers also need to structurize the framework’s ANNs appropriately. The fine-tuning of these
DeepRL modules can be an intricate and lengthy process. However, once they complement each
other properly, excellent applications with an improved sense of adaptation and generalization
towards unknown states can be attained, as shown in this sub-section.

An example of a DQN-based strategy towards cognitive exploration in unknown indoor
environments is presented by Lei Tai and Ming Liu in [32]. With a CNN processing the raw depth
images obtained from a Kinect RGB-D camera, the operated mobile platform successfully learned
to execute a collision-free exploration in unfamiliar virtual scenarios. The same researchers
proposed in [54] a mapless motion planner approach using a single SICK TiM570 laser mounted
on a robot. With a state model composed of ten sparse laser findings and the relative target
position (concerning the mobile robot coordinate frame), the mobile platform managed to attain
the desired targets without colliding with any obstacles. The DeepRL method utilized to sustain
the training routine was an asynchronous Deep Deterministic Policy Gradient (DDPG) based
algorithm [55].

In [56], Liang et al. present an application that enables a mobile robot to perform real-time
collision avoidance in dense crowds. Using a Policy-based DeepRL procedure named Proximal
Policy Optimization (PPO) [57], the agent implicitly learns from different kinds of interactions
with dynamic and static obstacles.

21

DeepRL-based Motion Planning for Indoor Robot Navigation

Xie et al. [58] and Ruan et al. [7] propose comparable works using the state-of-the-art
D3QN architecture to establish an end-to-end mobile robot navigation with dynamic obstacle
avoidance. While Ruan et al. use a platform equipped with a Kinect RGB-D camera in both
simulated and real domains to perform the respective validations, Xie et al. utilize this type of
sensor only in virtual environments. With a monocular RGB camera mounted on a real mobile
robot instead, the depth images in training had to be corrupted with random noise to ensure
that the resultant fine-tuned models were transferable to reality.

Chen et al. [15], in turn, suggest a method that enables a fully autonomous robotic nav-
igation using a DeepRL Value-based approach, V-Learning. The platform, moving at human
walking speed in a crowded environment, manages to detect and track up to three other agents
while executing a socially aware motion planning. By adjusting the method’s reward model, the
robot proves capable of adopting the right or left-hand social norms.

To face the aforementioned agent’s detection and tracking number limitation, Michael Ev-
erett, Yu Fan Chen, and Jonathan P. How [16] propose a solution with a RNN architecture to
observe an arbitrary number of agents. The presented DeepRL-based motion planning among
decision-making agents employs a Policy-based GPU/CPU Asynchronous Advantage Actor-
Critic (GA3C) [59, 36] learning approach, a strategy that uses a system of queues and a dynamic
scheduling technique for training Deep Artificial Neural Networks.

As evidenced, Deep Reinforcement Learning accomplishes considerable results with different
paradigms, frameworks, and ANN architectures. The simulators, Machine Learning libraries,
and platforms used in the covered applications are listed, per article, in Table 3.2.

Table 3.2: DeepRL-based motion planning strategies and respective software and hardware
materials.

Article Simulator ML Library Platform

Lei Tai and Ming
Liu [32]

Gazebo [60]
Caffe [61], on a NVIDIA
GeForce GTX 690

Turtlebot with a Kinect RGB-D camera

Lei Tai and Ming
Liu [54]

V-REP [62] Unknown Turtlebot a single SICK TiM570 laser

Liang et al. [56] Gazebo [60]
Tensorflow [63], on a Nvidia
GeForce RTX 2080Ti GPU

Turtlebot and ClearPath Jackal robots, with a
2D Lidar and RGB-D camera

Xie et al. [58] Gazebo [60] Unknown Turtlebot with a Kinect RGB

Ruan et al. [7] Gazebo [60] Unknown Turtlebot with a Kinect RGB-D camera

Chen et al. [15] Unknown
Tensorflow [63], on an i7-
5820K CPU

Platform equipped with a 2D Lidar, three Intel
Realsense cameras, and four webcams

Michael Everett,
Yu Fan Chen,
and Jonathan P.
How [16]

Unknown
Tensorflow [63], on a NVIDIA
GTX 1060

Platform equipped with a 2D Lidar and three
Intel Realsense R200 cameras

22

4
Developed Work

This chapter presents in-depth the strategy behind the development of the DQN-based
training framework, employed ANNs, and state, action, and reward models of the proposed
DeepRL local navigation system.

4.1 Proposed DeepRL-based Pipeline

The developed DeepRL-based local motion planning strategy, sketched in Fig. 1.1 (Proposed
Framework - Section 1.2), incorporates a new feature responsible for mapping the retrieved
sensory data into costmaps, grid-like environment representations. To comply with such novelty,
the employed ANN and the state, action, and reward models had to be planned and subsequently
created from scratch. The methodology behind their inference is discussed in the following
sections.

The suggested approach unfolds into two different stages: training and testing. Training
is the procedure of tuning the framework’s ANN according to past experiences. The Deep Q-
Learning and its dueling variations addressed, respectively, in Sections 2.4.2 and 2.4.3, were the
methods exploited to accomplish such important task in the proposed pipeline. An overview of
the executed training stage is illustrated in Fig. 4.1 and delineated step-by-step in Algorithm 1.

In the training stage, whenever the robot reaches its target, a network model - a copy of
the employed DQN architecture and its current weights and biases - is saved. For a correctly
designed DeepRL navigation framework, it is expected that at least one fine-tuned model gets
saved during the learning process.

After the training completion, the system progresses to an online stage in which a mobile
platform, controlled by a saved network exemplar, is introduced into a virtual environment to
attest its decision-making policy. Optimally, training generates one or more regulated models
that empower the agent to perform an effective motion planning towards its target, avoiding
obstacles.

23

DeepRL-based Motion Planning for Indoor Robot Navigation

Environment
Observation

Get State
Representation

Action

Selection

Store Transition
Tuple

New
Environment
Observation

Get New State
Representation

Sample Random
Transition Tuples

Compute
Reward

If

Episode

Limit

Update Policy

Network

If

Step Limit

or

Terminal

False

True

False

Environment
Setup

If

Step % Update

Rate == 0

True

True

Update Target

Network

Figure 4.1: Training stage overview.

24

4. Developed Work

Algorithm 1: DeepRL-based Motion Planning for Indoor Robot Navigation
Define the initial and target points
Define the number of training episodes e and respective steps t
Define the network’s hyperparameters and the state, action, and reward models
Initialize the system’s ROS node and establish its subscriptions and publishers
Initialize the policy DQN (θ) and the target DQN (θ−)
Initialize the replay buffer D to capacity N and define the batch size Nb

Define the target network update frequency N−

for episode e ϵ {1, , M} do
Environment setup, s0
for step t ϵ {1, , T} do

Take action at from st using an ϵ-greedy exploration method
Get the robot’s odometry data (/odom Odometry callback)
Get the sensor readings (/scan Scan callback)
Construct the local costmap and compute CStack

Compute the Euclidean distance to the goal dT and nearest obstacle dO

Compute the orientation disparity between the robot and the target, ϕ
Define st+1

if st+1 is terminal then

if dT ≤ dmin then
Reward the agent, rt = RD

Save DQN model
end
else

Penalize the agent, rt = PO

end
break

end
else

Compute the reward value rt following the exploited reward model
end
Store transition tuple (st, at, st+1, rt) in D

Sample a random minibatch of Nb tuples (sj ,aj , sj+1, rj) from D

Compute yt(a) (2.15)
Compute the policy network Qvalues, Q(sj , a; θ)
Perform a gradient descent step with loss ||yt(a) – Q(sj , aj ; θ)||2, updating θ

if t % N− is equal to 0 then
Replace the target DQN parameters θ− ←− θ

end
st ← st+1

end
end

25

DeepRL-based Motion Planning for Indoor Robot Navigation

4.2 Artificial Neural Networks

Alongside common DeepRL applications, the core unit of the developed local motion plan-
ning algorithm is the employed Artificial Neural Network. In this project, the architecture used
in the standard Deep Q-Learning implementations and validations was the DQN presented in
Fig. 4.2 (a). Alternatively, for the Dueling and Dueling Double Deep-Q Learning approaches,
the dueling network depicted in Fig. 4.2 (b) was utilized instead.

The Deep Q-Network shown in Fig. 4.2 (a), an obstacle-oriented architecture based on the
empirical study covered in Appendix B, can be interpreted as a merge of two different Artificial
Neural Networks: a Convolutional Neural Network and a Deep Feedforward Network. The
CNN segment is inspired by the exemplar proposed by Mnih et al. [17]. Structure-wise, it is
composed of an input layer arranged to receive the costmap grid-like structure (CStack), followed
by three convolutional, one flatten, and one fully connected layers. Parallel to the CNN, a two
hidden-layered Deep Feedforward Network is used to handle the system’s target-relative data
p = {dT , dO, ϕ}:

• dT : Robot-target Euclidean distance;

• dO: Robot-nearest obstacle Euclidean distance;

• ϕ: Robot-target orientation disparity.

Its k-neuron output layer, k being the action space size, results from the concatenation of
the preceding CNN and Feedforward’s fully connected layers.

The dueling DQN illustrated in Fig. 4.2 (b), compared to the standard and previously
described DQN of Fig. 4.2 (a), features one additional advantage fcA (k-neuron) and value fcV
(1-neuron) dual-stream layer. This extra layer is fed with the signals from the concatenation of
the preceding CNN and Feedforward’s fully connected layers, and computes the outputs of the
dueling architecture according to the (2.14) expression.

conv1

conv2

conv3

Flatten

Layer

fc1

Output
Layer

fc3fc2
Input

Layer

conv1

conv2

conv3

Flatten

Layer

fc1

Output
Layer

fc3fc2
Input

Layer

fcA

fcV

(a) Deep Q-Network (b) Dueling Deep Q-Network.

Figure 4.2: Proposed ANN architectures.

To test the developed system with large action spaces, more elaborate ANN models - based
upon the structures shown in Fig. 4.2 - were required to be designed in order to comply with
the system complexity increase.

26

4. Developed Work

Table 4.1: Layer configurations of the proposed ANNs (Fig. 4.2).

Layer Parameters

Input {CStack, p} ≡ {CStack, dT , dO, ϕ}

conv1 Filters = 32, Kernel size = 8, Strides = 4, Activation = relu

conv2 Filters = 64, Kernel size = 4, Strides = 2, Activation = relu

conv3 Filters = 64, Kernel size = 3, Strides = 1, Activation = relu

fc1 Neurons = 256, Activation = relu

fc2 Neurons = 64, Activation = relu

fc3 Neurons = 64, Activation = relu

fcV Neurons = 1, Activation = None

fcA Neurons = Number of actions, Activation = relu

Output Neurons = Number of actions

4.3 State, Action and Reward Models

Aside from the Artificial Neural Network design, the definition of appropriate state, action,
and reward models are equally important to optimize the functioning of Deep Reinforcement
Learning applications.

4.3.1 State Models

As shown in the proposed DeepRL-based local motion planning pipeline pictured in Fig. 1.1,
Deep Reinforcement Learning is formulated upon the interaction between an intelligent agent
and its environment. This bi-directional relation provides the agent with prominent information
regarding its surroundings, which is then converted into states, specific data structures supported
by the framework’s ANN.

In conventional DeepRL motion planning methods, the sensor-captured images/2D laser
findings of the environment are used directly as ANN inputs. Consequently, network updates
can be affected by intrinsic and extrinsic features such as image resolution and blurring, sensor
distance range and angular resolution, sensor positioning, environment lighting and brightness,
etc [64, 65]. To minimize these potential prejudicial generalization factors, a solution based on
costmaps is presented. In this work, a costmap (see Fig. 4.3) is arranged as a robot-centric
1-meter length 40x40 grid, being each one of its cells initialized to 0 in every discrete step, and
set to 1 if overlapped by any scan reading.

1 1 1

0

1 111

0 0

0

0 0

0 0

0

Costmap

Figure 4.3: Costmap representation.

27

DeepRL-based Motion Planning for Indoor Robot Navigation

A costmap, as it only portrays the mobile platform’s vicinity, fails to represent the robot’s
short-term paths and the continuous environment variations. For the agent to learn from this
training-relevant data, the established state model S (4.1), formulated upon the robot’s pose/lo-
calization information and onboard 2D laser observations (data acquisition process described in
Section 5.2.1), was composed in part of a stack of 4 sequential costmaps CStack (Fig. 4.4) to
represent the environment local mapping.

1 1 1

1

1 110

0 0

0

0 0

0 0

01 1 1

1

1 110

0 0

0

0 0

0 0

01 1 1

1

1 110

0 0

0

0 0

0 0

00 0 0

0

0 100

0 0

0

0 0

0 0

1
1 1 1

0

1 111

0 0

0

0 0

0 0

1 11 1 1

0

1 011

0 0

0

0 0

0 0

0 0 0 0

0

0 000

0 0

0

0 0

0 0

0

Costmap Stack t

0 0 0

0

0 100

0 0

0

0 0

0 0

1

Costmap t-3 Costmap t-2 Costmap t-1 Costmap t

t-3 t-2 t-1 t timestep

Figure 4.4: CStack data structure.

Complementing the agent’s surrounding awareness through CStack, data concerning the
robot-target and robot-nearest obstacle correlations p = {dT , dO, ϕ} (spatial offsets, see Fig.
4.5) was defined as the final integrating resource of the state model S:

S = {CStack, p} ≡ {CStack, dT , dO, ϕ}


dT : Robot-target Euclidean distance (m)
dO: Robot-nearest obstacle Euclidean distance (m)
ϕ: Robot-target orientation disparity (rad)

(4.1)

Xref

Yref

Target

Figure 4.5: Robot-target-relative data representation.

A reduced state model S = {CStack, dT , ϕ} directed towards obstacle-free environments was
also applied to validate the developed DeepRL-based framework on a starting experimental
phase.

28

4. Developed Work

4.3.2 Action Sets

In Deep Reinforcement Learning, actions are the agent’s response to an environment ob-
servation. Transposing such definition to the present navigation scope, actions are the agent’s
response, in the form of linear and angular speeds pairs (v, w), to sensory-based environment
state representations. The action sets defined to control the robot’s movement are presented in
Table 4.2.

Table 4.2: Action sets.

Action Set {Linear vel. (m/s); Angular vel. (rad/s)} Description

Set 1 (3 Actions)

{0.1; 0.0} Forward movement

{0.0; 0.4} Left turn

{0.0; -0.4} Right turn

Set 2 (3 Actions)

{0.1; 0.0} Forward movement

{0.025; 0.4} Left turn w/ linear component

{0.025; -0.4} Right turn w/ linear component

Set 3 (3 Actions)

{0.15; 0.0} Forward movement

{0.0; 0.5} Left turn

{0.0; -0.5} Right turn

Set 4 (6 Actions)

[{0.1; 0.0}, {0.15; 0.0}] Forward movements

[{0.025; 0.5}, {0.0375; 0.7}] Left turns w/ linear component

[{0.025; -0.5}, {0.0375; -0.7}] Right turns w/ linear component

Set 5 (12 Actions)

[{0.16; 0.0}, {0.185; 0.0}, {0.21; 0.0}, {0.235; 0.0}] Forward movements

[{0.053; 0.5}, {0.062; 0.625}, {0.07; 0.75}, {0.078; 0.875}] Left turns w/ linear component

[{0.053; -0.5}, {0.062; -0.625}, {0.07; -0.75}, {0.078; -0.875}] Right turns w/ linear component

4.3.3 Reward Models

In DeepRL frameworks, actions are evaluated qualitatively based upon the triggered envi-
ronment variation: given the resultant environment state transition st → st+1, a scalar reward
value rt is estimated according to the engaged linear reward model. rt is the sole feedback that
the agent receives regarding its decision-making, and is acknowledged as an indication whether
the action at is advised to be executed on similar st states.

To fulfill the goal of driving a mobile robot towards its target with an obstacle-avoidance
policy, three distinct reward models were outlined under the following premises:

• Reward the agent for every action that contributes to reducing the Euclidean distance to
the target, dT . Penalize it otherwise;

• Reward the agent for every action that contributes to decreasing the robot’s orientation
and target angular difference, ϕ. Penalize it otherwise;

• Reward the agent if the target is attained, dT < dTmin;

• If navigating on environments with obstacles, reward the agent for every action that con-
tributes to increasing the Euclidean distance to the nearest obstacle, dO. Penalize it
otherwise;

29

DeepRL-based Motion Planning for Indoor Robot Navigation

• If navigating on environments with obstacles, penalize the agent in case of collision, dO <

dOmin.

In a preliminary experimental stage, a straightforward linear formula was utilized to help
designing an ANN architecture capable of processing the state model inputs and accurately
converting its features into Qvalues:

rt = kD
dmin

dTt+1

+ kϕ
δ

δ + |ϕt+1|


kD = Target distance const.

kϕ = Orientation const.

δ = Angular const.

(4.2)

This procedure (described in Appendix B) was performed in obstacle-free environments
with the reduced state model S = {CStack, dT , ϕ}.

The reward model (4.2) generates positive rewards based on the system’s prompt target-
related resources dTt+1 and |ϕt+1|. Contrarily, the reward model used to validate the developed
navigation module in obstacle-free environments only transmits to the agent negative rewards:

rt = −kD · dTt+1 − kϕ · |ϕt+1| (4.3)

The main idea behind the inference of both reward models is that the agent determines
which actions contribute to the highest episode reward sum. However, when following the
model (4.3), due to the rewards being negative regardless of the provoked state transition, the
agent is further encouraged not to take redundant actions and reach its target in the minimum
number of episode steps.

A more complex reward model was employed to validate the algorithm in environments
with static obstacles. This model can be interpreted as a confluence of three separated units,
each one producing a reward value based on the target-related and obstacle-related attributes’
transitions of the complete state model S = {CStack, dT , dO, ϕ}:

rD = kD
dTt − dTt+1

dTt+1

rϕ = kϕ
|ϕt − ϕt+1|
|ϕt+1|

rO = kO
dOt+1 − dOt

dOt+1

(4.4)

Each scalar value rD, rϕ, and rO can either be positive, representing an improvement of
the respective state resource, or negative otherwise. The step reward for non-terminal states is
obtained from the summation of rD, rϕ, and rO. For terminal states, the agent is granted with a
substantial reward RD if the target point is attained or a severe penalty PO in case of collision:

rt =


RD, if dT < dTmin

PO, if dO < dOmin

rD + rϕ + rO, otherwise

(4.5)

30

4. Developed Work

The reward sets utilized to shape the robot’s decision-making faculty towards favorable
actions are displayed in Table 4.3.

Table 4.3: Reward sets.

Reward Set Reward Model {Parameter: Value}

Set 1 Eq. 4.2 {kD: 70, dmin: 0.1, kϕ: 900, δ: 0.1}

Set 2.1 Eq. 4.3 {kD: 5.0, kϕ: 0.05}

Set 2.2 Eq. 4.3 {kD: 5.0, kϕ: 0.1}

Set 2.3 Eq. 4.3 {kD: 5.0, kϕ: 0.8}

Set 3.1 Eq. 4.5 {RD: 0.0, PO: 0.0, kD: 6.0, kϕ: 0.003, kO: 0.0}

Set 3.2 Eq. 4.5 {RD: 4.0, PO: -4.0, kD: 9.0, kϕ: 0.001, kO: 0.008}

Set 3.3 Eq. 4.5 {RD: 2.0, PO: -2.0, kD: 6.0, kϕ: 0.001, kO: 0.0075}

Set 3.4 Eq. 4.5 {RD: 2.0, PO: -2.0, kD: 8.0, kϕ: 0.001, kO: 0.005}

31

32

5
Software Tools and Hardware Mate-
rials

This chapter presents and briefly describes the software and hardware materials explored
to fulfill the established objectives.

5.1 Operating System

Ubuntu [66] is a free and open-source operating system that enables unconditional develop-
ment privileges and has official long-term support, constant maintenance, and a built-in firewall
that helps reduce every possible security risk. Due to its compatibility with most hardware
and software releases, and by offering the necessary instruments to easily combine various mod-
ules such as robot frameworks, simulators, and Integrated Development Environments (IDEs),
Ubuntu has naturally become the conventional operating system to implement and simulate
robotic applications.

For meeting all the requirements of this project, Ubuntu 20.04 was the stable version utilized
to set up the proposed DeepRL-based motion planning approach. Its installation procedure was
reported and can be found at https://github.com/DanielPalaio/Ubuntu_Setup.

5.2 Robot Operating System

The Robot Operating System (ROS) [67] is an open-source multi-language robot software
framework that provides a vast collection of tools, libraries, and protocols for building, writing,
and running code across multiple machines. The main resources of ROS are entitled as nodes,
messages, topics, and services. Nodes are software units responsible for the computation of tasks,
and they interact with each other by sending and receiving clusters of data named messages.
The communication between nodes follows one of two protocols:

• Topics - publisher-subscriber protocol. A node publishes a message to a specific topic,
being received by nodes subscribed to that same resource;

• Services - synchronous procedure calls defined by a pair of messages: a request and the
respective reply.

33

DeepRL-based Motion Planning for Indoor Robot Navigation

Master

Publisher SubscriberTopic

4. Message

Communication

Registration

Publish
 Subscribe

localhost:11311

2. Publishing
 1. Subscribe

3. Message Published

Figure 5.1: ROS publisher-subscriber communication protocol.

In this project, the protocol exploited was the publisher-subscriber. This routine, illustrated
in Fig. 5.1, has a Master server that keeps track of the publishers and subscribers of each
topic, topic addresses, services, and published messages. The registration and communication
operations respect, in sequence, the subsequent steps:

1. Subscribers report to the Master that they wish to subscribe to a topic with a determined
address;

2. Publisher informs the Master that it is publishing on that same topic;

3. Subscribers are notified by the Master;

4. Subscribers establish a connection with the publisher to receive the message.

ROS, running on Ubuntu 20.04, was the key framework connecting the various developed
DeepRL navigation modules with the used robotics simulator. Its installation setup and an
introductory navigation guideline to rapidly start exploring ROS to control a mobile robot are
documented at https://github.com/DanielPalaio/ROS_Navigation_Guidelines.

5.2.1 ROS Resources

/scan

/odom

/cmd_vel

/tf2

/map_metadata

/costmap

DeepRL Local Control ModuleSubscribes to Publishes in

Transform
Broadcaster

Figure 5.2: ROS topics subscribed and published by the proposed DeepRL-based system’s
node.

34

5. Software Tools and Hardware Materials

Table 5.1: ROS topics description.

Topic Message Type Description

/odom nav_msgs/Odometry Robot position and orientation (world coordinates)

/scan sensor_msgs/LaserScan Cluster of scanned points (world coordinates)

/cmd_vel geometry_msgs/Twist Linear and angular robot velocities

/costmap nav_msgs/OccupancyGrid Grid occupation data (int. array)

/map_metadata nav_msgs/MapMetaData Grid width and height

/tf2 tf2_msgs/TFMessage Translation and rotation between frames

The ROS topics published and subscribed by the proposed DeepRL-based system’s node
are presented in Figure 5.2 and described in Table 5.1.

From the /scan topic, the agent collects the distance sensor findings to construct the en-
vironment metric representations CStack. Such readings, combined with the virtual robot’s
odometric data fetched from /odom, provide the necessary inputs to compute the target-related
and obstacle-related state assets p = {dT , dO, ϕ}. Throughout the DeepRL algorithm implemen-
tation, the data acquired from /scan was also converted into nav_msgs/OccupancyGrid ROS
messages and published to a created /costmap topic to visualize and troubleshoot the making
of the costmaps.

As described in Section 4.3.2, actions were defined as linear and angular speed pairs (v, w).
To transmit such commands to the robot, they were arranged to match the ROS message type
format geometry_msgs/Twist and further published to /cmd_vel, the topic responsible for
controlling the mobile platform’s actuators.

5.3 Gazebo

Robotics simulation software constitutes a simple and economical alternative to validate
complex systems, platforms, and prototypes [68]. With simulators, applications can be tested in
controlled low-risk environments, avoiding incidents with real robots. Additionally, it is possible
to evaluate the simulated experimental outcomes and adjust the necessary parameters to pursue
better results.

Contemporary robotics simulators offer various physics engines, a vast library of robots,
sensors, and actuators, advanced programmatic and graphical interfaces, and multiple plugins
enabling robot locomotion and sensor readings’ simulations [69]. After analyzing several options
[70, 62, 71], Gazebo [72] was the robotics simulator selected to perform as a baseline to the de-
veloped navigation framework experiments. Gazebo is the most diffused software in the mobile,
humanoid, and service robot research areas [69], and as portrayed in Table 3.2, it was used in
numerous state-of-the-art DeepRL-based motion planning implementations.

35

DeepRL-based Motion Planning for Indoor Robot Navigation

5.3.1 Virtual Environments

The results presented in this dissertation were obtained from applying a mobile platform,
controlled by the developed DeepRL-based motion planning strategy, into small-scale Gazebo
virtual environments, with and without obstacles.

Figure 5.3: Gazebo empty environment.

Each environment contributed to the project by producing reciprocal results that com-
missioned a more embracing validation of the proposed DeepRL-based algorithm. The first
and simpler virtual environment utilized to test the navigation system was the empty Gazebo
domain displayed in Fig. 5.3, with the target configurations of Fig. 5.4.

Xref

Yref Robot

Xobj, Yobj

Xref

Yref

Xobj, Yobj

Robot

Xref

Yref Robot

Xobj, Yobj

Initial Position: (0.0, 0.0) Initial Position: (0.0, 0.0)

Target: (0.8, 0.0) Target: (-0.8, 0.0)

Initial Position Target

(X,Y) (Xobj ,Yobj)

(0.0, 0.0)

(0.8, 0.0)

(0.5, 5.0)

(0.0, 0.8)

(-0.5, 0.5)

(-0.8, 0.0)

(-0.5, -0.5)

(0.0, -0.8)

(0.5, -0.5)

(a) Move forward (b) Move backward

Xref

Yref Robot

Xobj, Yobj

Xref

Yref Robot

Xobj, Yobj

Initial Position: (0.0, 0.0) Initial Position: (0.0, 0.0)

Target: (0.0, 0.8) Target: (0.0, -0.8)

(c) Turn left (d) Turn right (e) Generalization scenario

Figure 5.4: Obstacle-free target configurations.

36

5. Software Tools and Hardware Materials

To try out the DeepRL-based system in environments with static obstacles, specific Gazebo
domains - the Gazebo’s World and Stage 4 environments shown in Fig. 5.5 - were selected due
to their obstacle arrangements. Within the same environments, the mobile robot was exposed
to distinct scenarios in order to verify its capability to surpass the imposed challenges.

Gazebo’s World environment Gazebo’s Stage 4 environment

Figure 5.5: Gazebo’s World and Stage 4 environments.

5.4 RViz

Robots, in order to observe their surroundings, generally resort to sensors such as cameras
or laser scanners. In computational science and computer graphics, a persistent requirement
is representing the gathered sensory data to help the user understand any input information
hidden insights [73]. RViz [73], an abbreviation of Robot Visualization, is a 3D visualization
tool for the Robot Operating System framework that provides, among others, a view of robot
models, sensor data, and map representations.

In this project, RViz proved to be a noteworthy support instrument, being used to visualize
and troubleshoot the modulation of the collected virtual environment data into local costmaps
(see Fig. 5.6).

Figure 5.6: Gazebo environments and respective Rviz costmap representations.

5.5 Turtlebot

To develop the proposed DeepRL-based algorithm, robot frameworks, environment visual-
ization tools, and navigation simulators were, as described in this chapter thus far, indispensable
materials to fulfill the outlined objectives.

37

DeepRL-based Motion Planning for Indoor Robot Navigation

Figure 5.7: Turtlebot burger.

Nonetheless, the central element of the system that ac-
quires and transmits all sorts of data to the software control
modules, making the complete navigation pipeline work in
consonance, is the mobile robot. Following the models used
in the state-of-the-art covered applications, the platform uti-
lized in this project was the standard Turtlebot burger de-
picted in Fig. 5.7.

Turtlebot is available in ROS turtlebot3 [74, 2], a pack-
age that enables users to promptly develop robotic appli-
cations without the need to construct robots or virtual en-

vironments. A pointer to the installation tutorial of the turtlebot3 package is accessible at
https://github.com/DanielPalaio/ROS_Navigation_Guidelines.

The Turtlebot’s main hardware specifications are presented in Table 5.2, and its onboard
laser properties listed in Table 5.3.

Table 5.2: TurleBot hardware specifications [2].

Maximum translational velocity 0.22 m/s

Maximum rotational velocity 2.84 rad/s (162.72 deg/s)

Maximum payload 15kg

Size (L x W x H) 138mm x 178mm x 192mm

Laser Distance Sensor 360 Laser Distance Sensor LDS-01 [3]

Table 5.3: 360 Laser Distance Sensor LDS-01 [3].

Distance Range 120 - 3,500mm

Distance Accuracy (120mm - 499mm) ±15mm

Distance Accuracy (500mm - 3,500mm) ±5.0%

Distance Precision (120mm - 499mm) ±10mm

Distance Precision (500mm - 3,500mm) ±3.5%

Scan Rate 300±10 rpm

Angular Range 360°

Angular Resolution 1°

5.6 Python and Pycharm

The programming language elected to develop the software modules of this project was
Python [75], version 3.8. Python is the preferred language for creating Machine Learning appli-
cations, having various tools and an extensive maintained package library to assist developers.
The packages utilized in this work to support the implementation of the designed pipeline are
presented in Table 5.4.

The IDE used to endorse the scripting was the Ubuntu-compatible PyCharm Community
Edition 2020.3.3 [76]. PyCharm provides a wide range of features such as a built-in debugger, test
runner, and terminal, all tightly integrated to create a productive programming environment.

38

5. Software Tools and Hardware Materials

Table 5.4: Python packages.

Package Version Description

Tensorflow-GPU [77] 2.4.1 Machine Learning library

Numpy [78] 1.19.5 Package for computation of arrays, matrices, and linear algebra

Pandas [79] 1.2.3 Data analysis and manipulation tool

Rospy [80] 1.3.0
Client library for ROS that enables Python to interface with topics, services,
and parameters

Mathplotlib [81] 3.1.2 Library for creating static, animated, and interactive visualizations

Virtualenv 20.0.17
Tool that keeps project dependencies isolated from other projects and envi-
ronments

5.6.1 TensorFlow

TensorFlow [63] is an open-source library for Machine Learning that offers the necessary
tools to create, parameterize, train, and optimize Artificial Neural Networks. Among the avail-
able ML libraries for Python, Tensorflow was the one selected to use in this project due to its
development support, information and tutorial accessibility, hardware compatibility, and prior
utilization in some of the most distinguished DeepRL applications, such as the Deep Mind works
addressed in Section 3.2.

Within Tensorflow, Keras [82], a built-in high-level and object-oriented API that provides
user-friendly solutions to create and train network architectures, was also used to assemble the
framework’s ANNs.

5.7 NVIDIA GeForce GTX 1060

Training multilayer Artificial Neural Networks is a lengthy process that can rapidly escalate
in conformity with the complexity of the networks and their input states, action space size,
environment dimension, and task difficulty. However, this setback can be appeased by assigning
the computation of the network updates to a GPU.

For ML libraries to run on a GPU, the graphics card must access the latest drivers and
support CUDA [83] and its respective libraries. CUDA, short for Compute Unified Device
Architecture, is an NVIDIA parallel computing framework that enables developers to utilize
the full potential of the GPU’s graphics processors, also termed CUDA cores. The NVIDIA
CUDA Deep Neural Network library (cuDNN) [84], in sequence, is a GPU-accelerated library of
primitives for Deep ANNs. cuDNN provides highly-tuned implementations for standard network
routines, allowing calculations to be completed on the GPU.

Setting up the GPU can be an elaborated task, compensated nonetheless with the improved
overall performance of the Deep model. The GPU utilized in this project was an NVIDIA
GeForce GTX 1060 [4]. Its principal specifications are presented in Table 5.5.

39

DeepRL-based Motion Planning for Indoor Robot Navigation

Table 5.5: NVIDIA GeForce GTX 1060 specifications [4].

Card Length 210mm x 128mm

CUDA Cores 1280

Video Memory 6GB GDDR5

Memory Bus 192-bit

Engine Clock Base:1556 MHz, Boost:1771 MHz

Memory Clock 8 GHz

Power Consumption 120W

Supported OS Windows, Linux

For both Windows and Linux operative systems, the step-by-step guide to install the latest
GPU drivers, set up CUDA and cuDNN, and prove the workability of Tensorflow-GPU, is
documented at https://github.com/DanielPalaio/CUDA_cuDNN_Setup.

5.8 OpenAI Gym

OpenAI Gym [85] is an arrangement of benchmark problems formulated in line with the
episodic design of RL to validate Machine Learning methodologies. It provides a variety of
configured agents and domains in a convenient software package, permitting developers to focus
exclusively on algorithm development and testing. More than one hundred different benchmark
environments are available in the toolkit package under the following categories [85]:

• Algorithmic, classic control, and toy text - small-scale tasks from RL literature;

• Atari - classic Atari games, with screen images or RAM as input;

• Box2D - continuous control tasks using the 2D physics engine Box2D [86];

• 2D and 3D robots - robot control using the MuJoCo physics engine [87].

In this project, the OpenAI Gym classic control CartPole-v0 and MountainCar-v0, the
Box2D LunarLander-v2, and the Atari Pong-v4 benchmark environments, pictured in Fig. 5.8,
were utilized to validate the implemented Deep Q-Learning algorithm and its dueling variations
before their introduction in the more complex DeepRL-based navigation architecture.

(a) CartPole-v0 (b) MountainCar-v0 (c) LunarLander-v2 (d) Pong-v4

Figure 5.8: OpenAI Gym benchmark environments.

40

5. Software Tools and Hardware Materials

An in-depth description of the environments’ state, action, and reward models, episode ter-
mination conditions, solved requirements, employed ANN structure and hyperparameters, and
validation evidences are presented in Section 6.1. These materials can be further complemented
with the developed source code and video results accessible at:

• https://github.com/DanielPalaio/CartPole-v0_DeepRL

• https://github.com/DanielPalaio/MountainCar-v0_DeepRL

• https://github.com/DanielPalaio/LunarLander-v2_DeepRL

• https://github.com/DanielPalaio/Pong-v4_DeepRL

41

42

6
Results and Discussion

This chapter presents the results from testing the developed DeepRL-based motion plan-
ning strategy in virtual domains, with and without obstacles. The validation process of the
implemented DQN frameworks in benchmark environments is also demonstrated and discussed.

6.1 DQN Frameworks Validation

The first task performed within the project scope was the implementation and validation of
the original Deep Q-Learning and respective dual variations (Dueling Deep Q-Learning and Duel-
ing Double Deep Q-Learning) in the OpenAI Gym CartPole-v0, MountainCar-v0, LunarLander-
v2, and Pong-v4 benchmark environments. This stage was fundamental to facilitate later trou-
bleshoots by reducing the extent of possible errors in the more complex pipeline.

In these experiments, the mainstream ANN architectures shown in Fig. 6.1 were adapted
to comply with the different environment’s state, action, and reward models.

......

fc1 fc2

Output
Layer

Input
Layer

conv1

conv2
conv3

Flatten

Layer

fc1

Output
LayerStacked

Frames

(a) Feedfoward Neural Network (b) Convolutional Neural Network

...

...

fc1 fc2

Output
Layer

Input
Layer

...

fcA

fcV

fc1
conv1

conv2
conv3

Flatten

Layer

fcA

Output
LayerStacked

Frames

fcV

(c) Dueling Feedfoward Neural Network (d) Dueling Convolutional Neural Network

Figure 6.1: ANN configurations employed in the implemented DQN frameworks’ validation
process.

43

DeepRL-based Motion Planning for Indoor Robot Navigation

On an important note, the simulations presented in this DQN Frameworks Validation section
had the sole purpose of validating the implemented DQN methodologies towards different system
configurations. Further analysis to assess which framework demonstrates a superior training
aptitude was performed in Section 6.2.1.

6.1.1 CartPole-v0 OpenAI Gym Environment

Figure 6.2: CartPole-v0 OpenAI Gym environment.

CartPole-v0 (Fig. 6.2) is a virtual environment where the agent - a cart with a pole -
learns which actions to take in order to maintain the pole in a vertical position during the entire
episode length. According to the cart position, cart velocity, pole angle, and pole velocity at its
top, the cart moves to the left or right, being rewarded for every step that the pole angle and
the cart position do not exceed defined limits. The episode termination conditions and solved
requirement are presented in Table 6.1.

Table 6.1: CartPole-v0 episode termination and solved requirement.

Episode Termination 12° < Pole angle < -12° 2.4 < Cart position < -2.4 Episode length > 200 steps

Solved Requirement Average reward of 195.0 over 100 consecutive trials

As shown in Fig. 6.3, every DQN architecture, prompted by the networks parameterized
per Table 6.2 and the hyperparameters defined in Table 6.3, was able to surpass the solved
requirement.

Table 6.2: Layer configuration (number of neurons and activation functions) of the ANNs
used in the DQN-based frameworks’ validation towards the OpenAI Gym CartPole-v0

environment.

Framework ANN Input fc1 fc2 fcV fcA Output

DQN Fig. 6.1 (a) 4
256 256

- - 2
’relu’ ’relu’

Dueling DQN Fig. 6.1 (c) 4
128 128

1 2 2
’relu’ ’relu’

D3QN Fig. 6.1 (c) 4
128 128

1 2 2
’relu’ ’relu’

44

6. Results and Discussion

Table 6.3: CartPole-v0 model hyperparameters.

Parameter Value Parameter Value

Buffer Size 100000 Epsilon 1.0

Batch Size 64 Epsilon Decay (per step) 0.001

Discount Factor γ 0.99 Epsilon Final Value 0.01

TargetNet Update Rate (DQN) 100 Learning Rate lr (DQN) 0.001

TargetNet Update Rate (Dueling DQN) 120 Learning Rate lr (Dueling DQN) 0.00075

TargetNet Update Rate (D3QN) 120 Learning Rate lr (D3QN) 0.00075

The learning rate lr, first mentioned at this point, is a hyperparameter that controls how
much to change the model in response to the estimated error each time its weights are updated
[88].

(a) DQN (b) Dueling DQN (c) D3QN

Figure 6.3: CartPole-v0 DQN-based framework’s training scores (episode total rewards).

6.1.2 MountainCar-v0 OpenAI Gym Environment

Figure 6.4: MountainCar-v0 OpenAI Gym environment.

MountainCar-v0 (Fig. 6.4) is a benchmark environment where the agent - a four-wheel
vehicle - has as objective climbing a mountain to reach its summit. However, the car does
not have enough momentum to attain the mountain’s top simply by moving in one direction
from its resting position. To succeed, the agent must learn the right combination of actions
(move left, right, or no action) having the car’s position and velocity as the state representation.
This learning process is guided by a reward model that penalizes the agent for each step taken,
encouraging it to solve the problem in the least possible iterations. The episode termination
conditions and solved requirement are presented in Table 6.4.

45

DeepRL-based Motion Planning for Indoor Robot Navigation

Table 6.4: MountainCar-v0 episode termination and solved requirement.

Episode Termination Car position == 0.5° Episode length > 200 steps

Solved Requirement Average reward of -110.0 over 100 consecutive trials

As demonstrated in Fig. 6.5, the implemented DQN, Dueling DQN, and D3QN algorithms,
using the network structures and hyperparameters of Tables 6.5 and 6.6, respectively, managed
to satisfy the environment’s completion condition.

Table 6.5: Layer configuration (number of neurons and activation functions) of the ANNs
used in the DQN-based frameworks’ validation towards the OpenAI Gym MountainCar-v0

environment.

Framework ANN Input fc1 fc2 fcV fcA Output

DQN Fig. 6.1 (a) 2
256 256

- - 3
’relu’ ’relu’

Dueling DQN Fig. 6.1 (c) 2
128 128

1 3 3
’relu’ ’relu’

D3QN Fig. 6.1 (c) 2
128 128

1 3 3
’relu’ ’relu’

Table 6.6: MountainCar-v0 model hyperparameters.

Parameter Value Parameter Value

Buffer Size 100000 Epsilon 1.0

Batch Size 64 Epsilon Decay (per step) 0.001

Discount Factor γ 0.99 Epsilon Final Value 0.01

TargetNet Update Rate (DQN) 100 Learning Rate lr (DQN) 0.001

TargetNet Update Rate (Dueling DQN) 120 Learning Rate lr (Dueling DQN) 0.00075

TargetNet Update Rate (D3QN) 150 Learning Rate lr (D3QN) 0.001

(a) DQN (b) Dueling DQN (c) D3QN

Figure 6.5: MountainCar-v0 DQN-based framework’s training scores (episode total rewards).

46

6. Results and Discussion

6.1.3 LunarLander-v2 OpenAI Gym Environment

Figure 6.6: LunarLander-v2 OpenAI Gym environment.

LunarLander-v2 (Fig. 6.6) is a substantially more complex environment compared to
CartPole-v0 and MountainCar-v0. In LunarLander-v2, the agent - a bipedal spaceship - must
execute a controlled landing in a marked area by actuating its right, left, and main engines
based on the state model’s lander position, angle, speed, and touchdown status.

To harmlessly land in the delimited pad, a learning proceeding is required to adjust the
agent’s behavior. This training process is led by an intricate model that rewards the lander ac-
cording to the state transitions, episode termination condition (Table 6.7), and action selection,
as follows:

• Moving towards the landing pad gives a scalar reward between 100 and 140;

• Moving away from the landing pad gives a scalar reward between -140 and -100;

• If the lander crashes, a scalar reward of -100 is given;

• If the lander comes to rest, a scalar reward of 100 is given;

• Each leg with ground contact corresponds to a scalar reward of 10;

• Firing the main engine corresponds to a scalar reward of -0.3 per frame;

• Firing the side engines corresponds to a scalar reward of -0.3 per frame.

Table 6.7: LunarLander-v2 episode termination and solved requirement.

Episode Termination Lander crashes Lander comes to rest Episode length > 400 steps

Solved Requirement Average reward of 200.0 over 100 consecutive trials

Empowered by the network architectures and the hyperparameters defined in Tables 6.8 and
6.9, respectively, the intelligent agent, as shown in Fig 6.7, was able to wrap up LunarLander-v2,
producing greater scores than the environment’s solved requirement.

47

DeepRL-based Motion Planning for Indoor Robot Navigation

Table 6.8: Layer configuration (number of neurons and activation functions) of the ANNs
used in the DQN-based frameworks’ validation towards the OpenAI Gym LunarLander-v2

environment.

Framework ANN Input fc1 fc2 fcV fcA Output

DQN Fig. 6.1 (a) 8
256 256

- - 4
’relu’ ’relu’

Dueling DQN Fig. 6.1 (c) 8
128 128

1 4 4
’relu’ ’relu’

D3QN Fig. 6.1 (c) 8
128 128

1 4 4
’relu’ ’relu’

Table 6.9: LunarLander-v2 model hyperparameters.

Parameter Value Parameter Value

Buffer Size 100000 Epsilon 1.0

Batch Size 64 Epsilon Decay (per step) 0.001

Discount Factor γ 0.99 Epsilon Final Value 0.01

TargetNet Update Rate 120 Learning Rate 0.00075

(a) DQN (b) Dueling DQN (c) D3QN

Figure 6.7: LunarLander-v2 DQN-based framework’s training scores (episode total rewards).

48

6. Results and Discussion

6.1.4 Pong-v4 OpenAI Gym Environment

Figure 6.8: Pong-v4 OpenAI Gym environment.

The OpenAI Gym Pong-v4 (Fig. 6.8), based on the renowned Atari Pong game, was the
last benchmark environment in which the implemented DQN frameworks underwent a validation
process. In Pong-v4, the agent - the green racket displayed in Fig. 6.8 - is intended to learn via
trial-and-error which actions to adopt in order to beat the opposing orange racket.

The state model of this particular OpenAI Gym problem is composed of a stack of 4 (80,
80) cropped grey-scaled images, representations of the four latest game iterations. According to
these observations, and having at its disposal six distinct actions (move down, up, or remain in
the same position - 2 actions per event), the agent has to perfect its action selection to outclass
the opposing racket. In Pong-v4, rewards are originated in agreement with each rally’s winner.

Using a CNN structured per Table 6.12 and the hyperparameter combination of Table 6.11,
the DQN frameworks managed perfect performances in the game of Pong (21-0 scores), thus con-
cluding successfully a vast validation process in the CartPole-v0, MountainCar-v0, LunarLander-
v2, and Pong-v4 OpenAI Gym benchmark environments.

Table 6.10: Pong-v4 episode termination and solved requirement.

Episode Termination Total score of 21 is reached Episode length > 400000

Solved Requirement Average score of 17 over 100 consecutive trials

Table 6.11: Pong-v4 model hyperparameters.

Parameter Value Parameter Value

Buffer Size 100000 Epsilon 1.0

Batch Size 64 Epsilon Decay (per step) 0.001

Discount Factor γ 0.99 Epsilon Final Value 0.01

TargetNet Update Rate 1000 Learning Rate lr 0.0001

49

DeepRL-based Motion Planning for Indoor Robot Navigation

Table 6.12: Layer configuration (number of neurons, filters, kernel size, strides, and
activation functions) of the ANNs used in the DQN-based frameworks’ validation towards the

OpenAI Gym Pong-v4 environment.

Framework ANN Input conv1 conv2 conv3 fc1 fcV fcA Output

DQN Fig. 6.1 (b) (4,80,80)

filters=32 filters=64 filters=64

512 - - 6
kernel size=8 kernel size=4 kernel size=3

strides=4 strides=2 strides=1

’relu’ ’relu’ ’relu’

Dueling DQN Fig. 6.1 (d) (4,80,80)

filters=32 filters=64 filters=64

512 1 6 6
kernel size=8 kernel size=4 kernel size=3

strides=4 strides=2 strides=1

’relu’ ’relu’ ’relu’

D3QN Fig. 6.1 (d) (4,80,80)

filters=32 filters=64 filters=64

512 1 6 6
kernel size=8 kernel size=4 kernel size=3

strides=4 strides=2 strides=1

’relu’ ’relu’ ’relu’

(a) DQN (b) Dueling DQN (c) D3QN

Figure 6.9: Pong-v4 DQN-based framework’s training performances (episode total rewards).

6.2 Motion Planning in Obstacle-free Environments

As pointed out throughout this dissertation, the proposed local motion planning approach
differs from the conventional DeepRL-based navigation methodologies. Being an original strat-
egy with no working guarantees from the outset, a thorough experimentation phase was con-
ducted in a low-scale obstacle-free environment (Fig. 6.10) to validate the developed system.

This section also delivers evidence of which DQN framework demonstrated a superior train-
ing competence to further lead this routine in the more complex environments with obstacles.

50

6. Results and Discussion

Figure 6.10: Gazebo obstacle-free environment.

6.2.1 DQN, Dueling DQN, and D3QN Comparison

The primary executed task on Gazebo’s plain-type environment was the deduction of a Deep
Q-Network capable of handling the reduced state model S = {CStack, dT , ϕ} and accurately
computing the output Qvalues. This probing process is reported in Appendix B, and the
resultant obstacle-oriented architectures are addressed in Section 4.2.

After the network inference, the complete DeepRL-based motion planning navigation system
was tested in the scenario illustrated in Fig. 6.11 to validate, evaluate, and compare the training
performances of the DQN, Dueling DQN, and D3QN learning methodologies. This operation
was executed equitably, being each framework embodied with the same networks (pictured in
Fig. 6.12), hyperparameters, and simulation variables (Table 6.13).

Xref

Yref Robot

Xobj, Yobj

Initial Position Targets

(X,Y) (Xobj ,Yobj)

(0.0, 0.0)

(0.8, 0.0)

(0.5, 5.0)

(0.0, 0.8)

(-0.5, 0.5)

(-0.8, 0.0)

(-0.5, -0.5)

(0.0, -0.8)

(0.5, -0.5)

Figure 6.11: Fig. 5.4 (e) obstacle-free training and testing scenario.

The Fig. 6.11 scenario has a total of eight different targets. Each one was selected with
a periodicity of eight episodes. As a result, the replay buffer was constantly filled with het-
erogeneous data, stimulating the agent in the training phase to attain every target rather than
focusing only on a singular goal.

51

DeepRL-based Motion Planning for Indoor Robot Navigation

The networks used on this obstacle-free validation stage, presented in Fig. 6.12, are adap-
tations from the architectures considered in Section 4.2. Apart from the state inputs (input
layer parameterization - reduced state model), the remaining structure stayed authentic to the
Table 4.1 layer configuration.

conv1

conv2

conv3

Flatten
Layer

fc1

Output
Layer

fc3fc2Input
Layer

conv1

conv2

conv3

Flatten
Layer

fc1

Output
Layer

fc3fc2Input
Layer

fcA

fcV

(a) Deep Q-Network (b) Dueling Deep Q-Network.

Figure 6.12: Network architectures employed in the proposed DeepRL-based motion
planning framework’s validation process.

Table 6.13: Simulation variables and framework hyperparameters utilized to validate the
Deep Q-Learning, Dueling Deep Q-Learning, and Dueling Double Deep Q-Learning algorithms

in obstacle-free environments.

Parameter Value Parameter Value

Number of Episodes 800 Number of Steps 80

Buffer Size 64000 Learning Rate lr 0.001

Batch Size 256 Discount Factor γ 0.99

Epsilon 1.0 Epsilon Decay (per step) 0.001

Epsilon Final Value 0.01 TargetNet Update Rate 40

Besides the employed state model S = {CStack, dT , ϕ}, different Reward Sets from Table 4.3
were utilized to analyze each framework’s learning aptitude given different dT and ϕ associated
weights. The action model used was the Set 1 of Table 4.2, an elementary arrangement composed
of three commands: move forward, turn left, and turn right (turns with angular speed only). In
compliance with these engaged state, action, and reward models, a post-training robot motion,
to be considered optimal, must reveal, in order, the following behavioral pattern:

1. Adjust the orientation (minimize ϕ) to the target with a pure rotation over its center point;

2. Advance with a linear motion (forward action) towards the target (minimize dT).

The following Figures 6.13, 6.14, and 6.15 present relevant training and post-training data
that corroborate the developed DeepRL-based local motion planning strategy operability on
empty environments, using every implemented DQN framework.

52

6. Results and Discussion

Deep Q-Learning

(a) Artificial Neural Network: Fig. 6.12 (a) w/ Table 4.1 Parameterization
S = {CStack, dT , ϕ}; Action Set 1; Reward Set 2.1 {kD: 5.0, kϕ: 0.05}

(b) Artificial Neural Network: Fig. 6.12 (a) w/ Table 4.1 Parameterization
S = {CStack, dT , ϕ}; Action Set 1; Reward Set 2.2 {kD: 5.0, kϕ: 0.1}

(c) Artificial Neural Network: Fig. 6.12 (a) w/ Table 4.1 Parameterization
S = {CStack, dT , ϕ}; Action Set 1; Reward Set 2.3 {kD: 5.0, kϕ: 0.8}

Figure 6.13: Training scores and final episode distances, and robot post-training paths
resultant from employing the developed DeepRL-based local motion planning strategy, with
the Deep Q-Learning algorithm, over the obstacle-free scenario 6.11. Action and Reward Sets

from Tables 4.2 and 4.3, respectively.

Table 6.14: Deep Q-Learning (Fig. 6.13) training details.

Training/Testing Training Duration Saved Models Test Model Test Model’s Training Target

Fig. 6.13 (a) ≥ 4 h ≥ 500 116/800 (0.5, 0.5)

Fig. 6.13 (b) ≥ 4 h ≥ 500 100/800 (0.5, 0.5)

Fig. 6.13 (c) ≥ 4 h ≤ 5 81/800 (0.0, -0.8)

53

DeepRL-based Motion Planning for Indoor Robot Navigation

Dueling Deep Q-Learning

(a) Artificial Neural Network: Fig. 6.12 (b) w/ Table 4.1 Parameterization
S = {CStack, dT , ϕ}; Action Set 1; Reward Set 2.1 {kD: 5.0, kϕ: 0.05}

(b) Artificial Neural Network: Fig. 6.12 (b) w/ Table 4.1 Parameterization
S = {CStack, dT , ϕ}; Action Set 1; Reward Set 2.2 {kD: 5.0, kϕ: 0.1}

(c) Artificial Neural Network: Fig. 6.12 (b) w/ Table 4.1 Parameterization
S = {CStack, dT , ϕ}; Action Set 1; Reward Set 2.3 {kD: 5.0, kϕ: 0.8}

Figure 6.14: Training scores and final episode distances, and robot post-training paths
resultant from employing the developed DeepRL-based local motion planning strategy, with
the Dueling Deep Q-Learning algorithm, over the obstacle-free scenario 6.11. Action and

Reward Sets from Tables 4.2 and 4.3, respectively.

Table 6.15: Dueling Deep Q-Learning (Fig. 6.14) training details.

Training/Testing Training Duration Saved Models Test Model Test Model’s Training Target

Fig. 6.14 (a) ≥ 4 h ≥ 500 128/800 (0.8, 0.0)

Fig. 6.14 (b) ≥ 4 h ≥ 350 75/800 (-0.5, -0.5)

Fig. 6.14 (c) ≥ 4 h ≤ 100 39/800 (-0.8, 0.0)

54

6. Results and Discussion

Dueling Double Deep Q-Learning

(a) Artificial Neural Network: Fig. 6.12 (b) w/ Table 4.1 Parameterization
S = {CStack, dT , ϕ}; Action Set 1; Reward Set 2.1 {kD: 5.0, kϕ: 0.05}

(b) Artificial Neural Network: Fig. 6.12 (b) w/ Table 4.1 Parameterization
S = {CStack, dT , ϕ}; Action Set 1; Reward Set 2.2 {kD: 5.0, kϕ: 0.1}

(c) Artificial Neural Network: Fig. 6.12 (b) w/ Table 4.1 Parameterization
S = {CStack, dT , ϕ}; Action Set 1; Reward Set 2.3 {kD: 5.0, kϕ: 0.8}

Figure 6.15: Training scores and final episode distances, and robot post-training paths
resultant from employing the developed DeepRL-based local motion planning strategy, with
the Dueling Double Deep Q-Learning algorithm, over the obstacle-free scenario 6.11. Action

and Reward Sets from Tables 4.2 and 4.3, respectively.

Table 6.16: Dueling Double Deep Q-Learning (Fig. 6.15) training details.

Training/Testing Training Duration Saved Models Test Model Test Model’s Training Target

Fig. 6.15 (a) ≥ 4 h ≥ 500 404/800 (0.5, -0.5)

Fig. 6.15 (b) ≥ 4 h ≥ 500 78/800 (-0.5, 0.5)

Fig. 6.15 (c) ≥ 4 h ≥ 300 34/800 (0.0, -0.8)

55

DeepRL-based Motion Planning for Indoor Robot Navigation

As shown in Figures 6.13, 6.14, and 6.15, each implemented DQN learning algorithm gen-
erated no less than one fine-tuned model that conferred the robot the ability to attain, in a
post-training extent, every Fig. 6.11 scenario targets.

As expected, based on the concepts covered in Section 2.4, the original Deep Q-Learning
method was the learning technique that delivered the least favorable training performances
(Fig. 6.13). On the other hand, accrediting once more the theoretical analysis covered in
Background Material, the state-of-the-art D3QN proved to be the superior DQN-based training
methodology. This last statement is mainly supported by the results of Figures 6.13 (c), 6.14
(c), and 6.15 (c), evidence obtained from trials carried out with the Reward Set 2.3. Only the
D3QN framework, fitted with this sharp orientation-regulated reward set combination, managed
to converge towards high episode rewards and maintain such behavior long-term (Fig. 6.15).

From this point onward, advocated by the presented outcomes and theoretical standards,
every application of the proposed DeepRL-based navigation approach had as learning strategy
the D3QN algorithm.

6.2.2 Non-Pure-Rotational Turnings

The previous DQN, Dueling DQN, and D3QN Comparison (Section 6.2.1) experiments were
setted up having an action space composed of three commands: move forward, turn left, and
turn right. Those turns were arranged with angular speed only, giving the virtual robot the
feature of changing its orientation by rotating on itself.

To witness different robot behaviors from the ones observed, for example, in Fig 6.15, the
proposed DeepRL-based motion planning approach was tested with the Action Set 2 of Table
4.2, a model composed in part of non-pure-rotational turnings (linear-angular speed pairs). The
obstacle-free training and testing scenarios (Fig. 6.11), simulation variables, and framework’s
hyperparameters (Table 6.13) utilized in the prior section trials remained unchanged.

The results of this experiment are presented in Fig. 6.16. It is noticeable that the robot
to attain some of the targets had to perform a wide turn, a reasonable behavior according to
the actions available, but that in these types of empty domains is not entirely fitting. Despite
the flawless learning process and the acceptable robot’s post-training movement, subsequent
employments of the developed DeepRL-based navigation approach on obstacle-free environments
were conducted with the Action Set 1 instead, due to the robot’s straightforward motion revealed
with this model in Section 6.2.1.

Table 6.17: Fig. 6.16 training details.

Training/Testing Training Duration Saved Models Test Model Test Model’s Training Target

Fig. 6.16 (a) ≥ 4 h ≥ 500 87/800 (-0.8, 0.0)

Fig. 6.16 (b) ≥ 4 h ≥ 500 773/800 (-0.8, 0.0)

56

6. Results and Discussion

(a) Artificial Neural Network: Fig. 6.12 (b) w/ Table 4.1 Parameterization
S = {CStack, dT , ϕ}; Action Set 2; Reward Set 2.2 {kD: 5.0, kϕ: 0.1}

(b) Artificial Neural Network: Fig. 6.12 (b) w/ Table 4.1 Parameterization
S = {CStack, dT , ϕ}; Action Set 2; Reward Set 2.3 {kD: 5.0, kϕ: 0.8}

Figure 6.16: Training scores and final episode distances, and robot post-training paths
resultant from employing the developed DeepRL-based local motion planning strategy with

the Action Set 2 (Table 4.2), over the obstacle-free scenario 6.11. Reward Sets from Table 4.3.

6.2.3 Generalization

As described in Sections 2.4.2 and 2.4.3, in DQN frameworks the agent’s behavior is adjusted
through random transition tuples of past experiences in each training step. Consequently, its
decision-making proficiency is progressively shaped based upon the entire training scope. As
shown in previous experiments and respective results, using multiple targets in training gave the
intelligent agent the capability to reach every defined objective under the control of a fine-tuned
network model.

To verify the authentic generalization aptitude of the developed DeepRL-based agent, trials
with different training and testing scenarios were executed. In the training phase, the mobile
platform was stimulated to attain a single target. On the online stage, guided by a saved network
model, the robot was subjected to a more complex scenario to reach multiple objective points.

The following subsections present the results of three individual generalization tests: train-
ing towards left, right, and backside located targets, and testing over the Fig. 6.11 scenario
composed of eight goals, seven of them never acknowledged by the agent in the training routine.
All experiments shared the same system configurations disclosed in Table 6.18.

57

DeepRL-based Motion Planning for Indoor Robot Navigation

Table 6.18: Simulation variables, DQN framework, Artificial Neural Network architecture
and parametrization, state, action and reward models, and system hyperparameters utilized in

the generalization trials.

Parameter Value Parameter Value

DQN framework D3QN ANN Fig 6.12 (b)

State Model {CStack, dT , ϕ} ANN Parametrization Table 4.1

Action Set (Table 4.2) Set 1 Reward Set (Table 4.3) Set 2.2

Number of Episodes 200 Number of Steps 80

Buffer Size 16000 Learning Rate lr 0.001

Batch Size 256 Discount Factor γ 0.99

Epsilon 1.0 Epsilon Decay (per step) 0.001

Epsilon Final Value 0.01 TargetNet Update Rate 40

6.2.3.1 Training Towards a Target Located to the Left of the Agent

Xref

Yref Robot

Xobj, Yobj

Xref

Yref Robot

Xobj, Yobj

Fig. 5.4 (c) Fig. 5.4 (e)
Gazebo obstacle-free environment Training scenario Testing scenario

Figure 6.17: Fig. 5.4 (c) and Fig. 5.4 (e) obstacle-free training and testing scenarios.

Figure 6.18: Training scores and final episode distances, and robot post-training paths
resultant from training the agent in the Fig. 5.4 (c) scenario. Online phase executed in the

Fig. 5.4 (e) arrangement.

58

6. Results and Discussion

6.2.3.2 Training Towards a Target Located to the Right of the Agent

Xref

Yref Robot

Xobj, Yobj

Xref

Yref Robot

Xobj, Yobj

Fig. 5.4 (d) Fig. 5.4 (e)
Gazebo obstacle-free environment Training scenario Testing scenario

Figure 6.19: Fig. 5.4 (d) and Fig. 5.4 (e) obstacle-free training and testing scenarios.

Figure 6.20: Training scores and final episode distances, and robot post-training paths
resultant from training the agent in the Fig. 5.4 (d) scenario. Online phase executed in the

Fig. 5.4 (e) arrangement.

6.2.3.3 Training Towards a Target Located Behind the Agent

Xref

Yref

Xobj, Yobj

Robot

Xref

Yref Robot

Xobj, Yobj

Fig. 5.4 (b) Fig. 5.4 (e)
Gazebo obstacle-free environment Training scenario Testing scenario

Figure 6.21: Fig. 5.4 (b) and Fig. 5.4 (e) obstacle-free training and testing scenarios.

59

DeepRL-based Motion Planning for Indoor Robot Navigation

Figure 6.22: Training scores and final episode distances, and robot post-training paths
resultant from training the agent in the Fig. 5.4 (b) scenario. Online phase executed in the

Fig. 5.4 (e) arrangement.

Table 6.19: Generalization experiments (Figures 6.18, 6.20, 6.22) training details.

Training/Testing Training Duration Saved Models Test Model Test Model’s Training Target

Fig. 6.18 ≥ 1 h ≥ 150 37/200 (0.0, 0.8)

Fig. 6.20 ≥ 1 h ≥ 150 26/200 (0.0, -0.8)

Fig. 6.22 ≥ 1 h ≥ 125 26/200 (-0.8, 0.0)

As evidenced in Figures 6.18, 6.20, and 6.22, every single-target training produced at least
one fine-tuned model capable of commanding the robot towards every Fig. 5.4 (e) scenario goal,
an undisputed evidence of the agent’s exceptional adaptation ability. As anticipated from Arti-
ficial Neural Network Training (Section 2.3.3), when tuning ANNs with this constricted setups,
the longer the training process, the more the network gets overfitted towards the unique target.
This issue is noted in Table 6.19, as the models that revealed a praiseworthy generalization
aptitude were saved early in the training stage.

6.2.4 Obstacle-Oriented Model

The final implementation of the proposed DeepRL-based local motion planning approach
in obstacle-free environments was carried out to prove its functioning when employing a net-
work architecture designed towards domains with obstacles (Fig. 6.23, configured per Table
4.1). In this particular case, the agent, utilizing for the first time the complete state model
S = {CStack, dT , dO, ϕ} and the Reward Set 3.1 based on the obstacle-direct formula (4.5),
had to learn by itself to neglect the obstacle-avoidance-related state inputs, as such data has a
null/detrimental effect on the learning process.

This new framework arrangement was trained and tested in the familiar Fig. 6.11 obstacle-
free scenario. The additional system variables are presented in Table 6.20, and the validation
results of the obstacle-oriented navigation approach in empty environments are denoted in Fig.
6.24.

60

6. Results and Discussion

conv1

conv2

conv3

Flatten

Layer

fc1

Output
Layer

fc3fc2
Input

Layer

fcA

fcV

Figure 6.23: Proposed Dueling Deep-Q Network, designed towards environments with
obstacles.

Table 6.20: Simulation variables, DQN framework, Artificial Neural Network architecture,
action and reward models, and system hyperparameters utilized to validate the
obstacle-oriented DeepRL-based navigation approach in empty environments.

Parameter Value Parameter Value

DQN framework D3QN ANN Fig 6.23

Action Set (Table 4.2) Set 1 Reward Set (Table 4.3) Set 3.1

Number of Episodes 500 Number of Steps 80

Buffer Size 40000 Learning Rate lr 0.001

Batch Size 256 Discount Factor γ 0.99

Epsilon 1.0 Epsilon Decay (per step) 0.001

Epsilon Final Value 0.01 TargetNet Update Rate 20

Figure 6.24: Training scores and final episode distances, and robot post-training paths
resultant from validating the developed obstacle-oriented DeepRL-based local motion planning

strategy over the obstacle-free Fig. 6.11 scenario.

61

DeepRL-based Motion Planning for Indoor Robot Navigation

Table 6.21: Figure 6.24 training details.

Training/Testing Training Duration Saved Models Test Model Test Model’s Training Target

Fig. 6.24 ≥ 2 h ≥ 300 85/500 (0.5, 0.5)

From the results exhibited in Fig. 6.24, it is possible to confirm that the developed DeepRL-
based local navigation system, resorting to an ANN explicitly designed to handle data from
domains with obstacles, was able to perform a robust training procedure in an obstacle-free
environment regardless. This tryout concluded what was an exhaustive testing phase on virtual
open environments. In retrospect, a considerable amount of tasks were successfully executed in
this experimentation stage:

• Validation of each implemented DQN framework;

• Assessment of the various action and rewards sets’ impact on the agent’s training perfor-
mances and post-training motion;

• Evaluation of the DeepRL agent’s generalization aptitude;

• Validation of the designed obstacle-oriented system in obstacle-free environments.

6.3 Motion Planning in Environments with Obstacles

Finalized the validation of the developed DeepRL-based local motion planning strategy in
obstacle-free domains, the logical subsequent step was to test the system towards environments
with obstacles. As mentioned in Section 5.3.1, two established domains were chosen to sustain
such implementations: the World and Stage 4 Gazebo environments displayed in Fig. 6.25.

Gazebo’s World environment Gazebo’s Stage 4 environment

Figure 6.25: Gazebo’s World and Stage 4 environments.

62

6. Results and Discussion

6.3.1 Gazebo’s World Environment

The primary application of the DeepRL-based navigation methodology in occupied domains
was based on the experiment addressed in Section 6.2.4. Using the same learning method
(D3QN), network architecture, and Reward Set, the agent was set up to be introduced in
Gazebo’s World stage to undertake two scenarios (Fig. 6.26). In each arrangement, two targets
were defined (selected apart episode-wise) to have obstacles purposely blocking the ideal paths
between them and the resting point. To attain such endpoints, the robot is bound to learn,
through trial-and-error, to execute an efficient and collision-free path planning.

The first indications of the developed motion planning strategy’s capability to effectively
train and posteriorly endorse the agent’s decision-making policy in environments with obstacles
are presented in Fig. 6.27. Further simulation variables and framework hyperparameters utilized
in these Gazebo’s World trials are reported in Table 6.22.

Fig. 6.27 (a) scenario

Initial Position Targets

(-0.5, 0.0)
(-1.5, 0.0)

(0.5, 0.0)

Fig. 6.27 (b) scenario

Initial Position Targets

(0.0, -0.5)
(0.0, -0.5)

(0.0, 1.5)

Figure 6.26: Gazebo’s World environment and innate scenarios defined to trial the developed
DeepRL-based local motion planning approach.

Table 6.22: Simulation variables, DQN framework, Artificial Neural Network architecture
and parametrization, state, action and reward models, and system hyperparameters utilized in

Gazebo’s World experiment.

Parameter Value Parameter Value

DQN framework D3QN ANN Fig 6.23

State Model {CStack, dT , dO, ϕ} ANN Parametrization Table 4.1

Action Set (Table 4.2) Set 3 Reward Set (Table 4.3) Set 3.2

Number of episodes 500 Number of steps 150

Buffer size 75000 Learning rate lr 0.001

Batch size 256 Discount factor γ 0.99

Epsilon 1.0 Epsilon decay per step 0.001

Epsilon final value 0.01 Target net update rate 50

63

DeepRL-based Motion Planning for Indoor Robot Navigation

(a) Initial position: (-0.5, 0.0); Targets: {(-1.5, 0.0), (0.5, 0.0)}

(b) Initial position: (0.0, -0.5); Targets: {(0.0, -0.5), (0.0, 1.5)}

Figure 6.27: Training scores and final episode distances, and robot post-training paths
resultant from employing the DeepRL-based local motion planning strategy over the Gazebo’s

World environment.

Table 6.23: Fig. 6.27 training details.

Training/Testing Training Duration Saved Models Test Model Test Model’s Training Target

Fig. 6.27 (a) ≥ 14 h ≥ 800 1360/1500 (0.5, 0.0)

Fig. 6.27 (b) ≥ 14 h ≥ 1000 906/1500 (0.0, 1.5)

The Fig. 6.27 results show a very sharp learning curve with the agent converging towards
high episodic rewards in both exploited scenarios. Regarding the robot’s post-training behavior,
it is also proved that at least one saved model was generated from each training proceeding
that conferred to the agent the aptitude to continuously and autonomously adapt its motion to
prevent any collision with obstacles and ultimately reach the intended targets.

64

6. Results and Discussion

6.3.2 Gazebo’s Stage 4 Environment

As demonstrated in Section 6.3.1, the Turtlebot, fitted with the suggested motion planning
approach, managed to learn how to navigate in the obstacle-populated World stage expedi-
tiously. Fulfilled the basic primitives of robot navigation in the World arrangement, the in-
vented DeepRL-based system was then set to be tested in Gazebo’s Stage 4 environment. Three
different Stage 4 instances (Fig. 6.28) were defined with targets deliberately positioned to be
reached, from the resting pose, only by a platform employing an obstacle-avoidance approach.

In addition to the method’s validation in these scenarios, a survey on the agent’s training
and post-training behavior with larger action spaces is also presented in this section. The neces-
sary modifications to the network’s structure to comply with the resultant system’s complexity
augmentation are also reported.

Scenario 1 (Subsection 6.3.2.1)

Initial Position Target

(-0.5, -0.2) (1.0, 0.0)

Scenario 2 (Subsection 6.3.2.3)

Initial Position Target

(-0.5, -0.2) (1.7, 0.0)

Scenario 3 (Subsection 6.3.2.4)

Initial Position Target

(-0.5, -0.2) (1.7, -0.5)

Figure 6.28: Gazebo’s Stage 4 environment and scenarios’ initial and target points.

6.3.2.1 Scenario 1

As the name implies, Scenario 1 (Fig. 6.29) was the first arrangement that the Turtlebot
was subjected to in Gazebo’s Stage 4 environment. Following the notable results in the World
domain, the preliminary experiment in this Stage 4 scene was sustained with the same network
architecture and framework hyperparameters. The remaining simulation variables and Reward
Set were adjusted according to the Scenario 1 properties (Table 6.24).

Figure 6.29: Gazebo’s Stage 4 Scenario 1.

65

DeepRL-based Motion Planning for Indoor Robot Navigation

Table 6.24: Simulation variables, DQN framework, Artificial Neural Network architecture
and parametrization, state, action and reward models, and system hyperparameters utilized in

the short-distance path scenario of Gazebo’s Stage 4 environment (Fig. 6.29).

Parameter Value Parameter Value

DQN framework D3QN ANN Fig. 6.23

State Model {CStack, dT , dO, ϕ} ANN Parametrization Table 4.1

Action Set (Table 4.2) Set 3 Reward Set (Table 4.3) Set 3.3

Number of Episodes 1000 Number of Steps 180

Buffer Size 180000 Learning Rate lr 0.001

Batch Size 256 Discount Factor γ 0.99

Epsilon 1.0 Epsilon Decay (per step) 0.001

Epsilon Final Value 0.01 TargetNet Update Rate 10

Figure 6.30: Training scores and final episode distances, and robot post-training paths
resultant from employing the DeepRL-based local motion planning strategy over the Gazebo’s

Stage 4 Scenario 1.

Table 6.25: Fig. 6.30 training details.

Training/Testing Training Duration Saved Models Test Model

Fig. 6.30 ≥ 8 h ≥ 550 446/1000

The results from this leading tryout, shown in Fig. 6.30, were once again very satisfactory.
As the training scores indicate, the agent, under the control of the developed path planning ap-
proach, managed to learn which actions maximize the accumulated rewards. However, between
episodes 700 and 900, the agent had consecutive attempts in which collided with the nearest wall
from its resting point, causing a severe decline of the average episodic reward. This setback can
be attributed, among other causes, to the randomness of the sampled transition tuples which can
momentarily worsen the training performances. Nonetheless, the agent autonomously corrected
its demeanor rapidly.

Despite the collision-free navigation evidenced in the online stage, the traced trajectories
suffered from an excessive deviation from the first encountered obstacle, causing an overturn
that nearly induced a collision with a second wall. With still margin to improve the robot’s
motion, tests with larger action spaces, reported in the following subsections, were performed
in an effort to eradicate this issue.

66

6. Results and Discussion

6.3.2.1.1 Action Space with 6 Actions

Gazebo’s Stage 4 Scenario 1 - the simpler rest-target outline amongst the considered Fig.
6.28 scenarios - was further utilized to test the navigation method with extended action spaces.
The results exhibited heretofore, in both obstacle-free and obstacle-populated environments
(Sections 6.2 and 6.3, respectively), were obtained from the implementation of the DeepRL-based
local motion planning strategy with Action Sets composed of three actions (move forward, turn
left, and turn right). After validating the developed navigation pipeline with reduced action sets
- a statement corroborated by the results demonstrated up to this point - a variety of tests was
subsequently defined to verify the system’s response when the agent is provided with a larger
set of available commands to choose from.

Under this extent, the action space progressed from three to six commands (with non-
pure-rotational turns), giving rise to the Action Set 4 (Table 4.2). By preserving the majority
of the prior Fig. 6.30 Scenario 1 stint system configuration, a trial was executed with the
newly established six-command action space in order to assess the obstacle-oriented network’s
capability to conduct the learning process with this expanded set. The correspondent results
are presented in Fig. 6.31.

Table 6.26: Simulation parameters, adjusted from Table 6.24, for an action space of 6
commands.

Parameter Value Parameter Value

DQN framework D3QN State Model {CStack, dT , dO, ϕ}

Action Set (Table 4.2) Set 4 Reward Set (Table 4.3) Set 3.3

Number of Episodes 1200 Number of Steps 80

Buffer Size 96000 Learning Rate lr 0.001

Batch Size 256 Discount Factor γ 0.99

Epsilon 1.0 Epsilon Decay (per step) 0.001

Epsilon Final Value 0.01 TargetNet Update Rate 10

Figure 6.31: Training scores and final episode distances resultant from employing the
DeepRL-based local motion planning strategy, with the Fig. 6.23 ANN and Action Set 4

(Table 4.2), over Gazebo’s Stage 4 Scenario 1.

67

DeepRL-based Motion Planning for Indoor Robot Navigation

The Fig. 6.31 results prove, unequivocally, that an adjustment to the network’s structure is
required to comply with the complexity augmentation resultant from the action space enlarge-
ment. In an attempt to fulfill this necessity, an additional hidden layer, fc4, was added into
the designed obstacle-oriented DQN (see Fig. 6.32). Using once more the system parameters
defined in Table 6.26, the results from trying out a different number of fc4 neurons are given in
Fig. 6.33.

conv1

conv2

conv3

Flatten
Layer

fc1

Output
Layer

fc3fc2

fcA

fcV

fc4

Input
Layer

Figure 6.32: Fig. 6.23 obstacle-oriented Dueling Deep Q-Network with one additional hidden
layer, fc4.

From the training scores and final episode distances presented in Fig. 6.33, it is possible to
conclude that one additional hidden layer was still not enough to address the system’s complexity
augmentation caused by the utilization of a larger action set. Consequently, continuing the study
in question, two hidden layers were introduced instead of one (see Fig. 6.34). As demonstrated
by the generated outcomes of Fig. 6.35, this last-mentioned architecture was eventually able
to engender fine training performances. However, the robot’s behavior exhibited in the post-
training phase was nearly identical to the reflected when trained with only three possible actions
(Fig. 6.30), an outcome that in hindsight did not compensate for the network’s increased
complexity and training difficulties/challenges that come from such extension.

68

6. Results and Discussion

(a) fc4 neurons = 64

(b) fc4 neurons = 128

(c) fc4 neurons = 256

(d) fc4 neurons = 512

(e) fc4 neurons = 1024

Figure 6.33: Training scores and final episode distances resultant from employing the
DeepRL-based local motion planning strategy, with the Fig. 6.32 ANN (different number of

fc4 neurons) and Action Set 4 (Table 4.2), over Gazebo’s Stage 4 Scenario 1.

69

DeepRL-based Motion Planning for Indoor Robot Navigation

conv1

conv2

conv3

Flatten
Layer

fc1

Output
Layer

fc3fc2

fcA

fcV

fc4 fc5

Input
Layer

Figure 6.34: Fig. 6.23 obstacle-oriented Dueling Deep Q-Network with two additional hidden
layers, fc4 and fc5.

Layer neurons: {fc4; fc5} = {128; 64}

Figure 6.35: Training scores and final episode distances, and robot’s post-training paths
resultant from employing the DeepRL-based local motion planning strategy, with the Fig. 6.34
ANN (fc4 = 128; fc5 = 64) and Action Set 4 (Table 4.2), over Gazebo’s Stage 4 Scenario 1.

Table 6.27: Fig. 6.35 training details.

Training/Testing Training Duration Saved Models Test Model

Fig. 6.35 ≥ 8 h ≥ 250 1145/1200

6.3.2.1.2 Action Space with 12 Actions

In line with the overall system’s complexity augmentation attributable to the ANN re-
work (hidden layers addition) and the action space increment, an agent’s post-training motion
improvement was reasonably expected, a predicament that in practice was not verified. In a
last attempt to mitigate the observed over-turning and promote a smoother and more effective
movement on the online stage, the action space was further extended to twelve linear-angular
speed pairs (Action Set 5 of Table 4.2). A new layer configuration inference was performed to
secure an ANN capable of supporting such output composition accordingly.

70

6. Results and Discussion

conv1

conv2

conv3

Flatten
Layer

fc1

Output
Layer

fc3fc2

fcA

fcV

fc4 fc5 fc6

Input
Layer

Figure 6.36: Fig. 6.23 obstacle-oriented Dueling Deep Q-Network with three additional
hidden layers, fc4, f5, and fc6.

The aforementioned Artificial Neural Network remodeling procedure resulted in the archi-
tecture sketched in Fig. 6.36, a structure based on the Fig. 6.23 obstacle-oriented DQN, with
three additional hidden layers.

Among the various trials executed with the Table 6.28 system’s configuration, three imple-
mentations stood out, both in training and testing, using the following network arrangements:
{fc4; fc5; fc6} = {256; 256; 256}, {fc4; fc5; fc6} = {512; 512; 256}, and {fc4; fc5; fc6} = {512;
512; 512}. The outcomes of these experiments are presented in Fig. 6.37.

Table 6.28: Simulation parameters, adjusted from Table 6.24, for an action space of 12
commands.

Parameter Value Parameter Value

DQN framework D3QN ANN Fig 6.36

Action Set (Table 4.2) Set 5 Reward Set (Table 4.3) Set 3.3

Number of Episodes 1500 Number of Steps 70

Buffer Size 105000 Learning Rate lr 0.001

Batch Size 256 Discount Factor γ 0.99

Epsilon 1.0 Epsilon Decay (per step) 0.001

Epsilon Final Value 0.01 TargetNet Update Rate 10

71

DeepRL-based Motion Planning for Indoor Robot Navigation

(a) Layer neurons: {fc4; fc5; fc6} = {256; 256; 256}

(b) Layer neurons: {fc4; fc5; fc6} = {512; 512; 256}

(c) Layer neurons: {fc4; fc5; fc6} = {512; 512; 512}

Figure 6.37: Training scores and final episode distances, and robot’s post-training paths
resultant from employing the DeepRL-based local motion planning strategy, with the Fig. 6.36

ANN (different layer configurations) and Action Set 5 (Table 4.2), over Gazebo’s Stage 4
Scenario 1.

Table 6.29: Fig. 6.37 training details.

Training/Testing Training Duration Saved Models Test Model

Fig. 6.37 (a) ≥ 8 h ≥ 280 1198/1500

Fig. 6.37 (b) ≥ 8 h ≥ 170 1174/1500

Fig. 6.37 (c) ≥ 8 h ≥ 150 1358/1500

The Fig. 6.37 results show that one particular layer configuration, {fc4; fc5; fc6} = {256;
256; 256}, managed to produce training and online-stage performances that satisfy the fun-
damental objective of this stage: improve the post-training robot’s motion, eliminating the
previously denoted Figures 6.30 and 6.35 shortcomings.

72

6. Results and Discussion

6.3.2.2 Network’s Trainable Parameters

Throughout this dissertation, the ANN complexity and its effect on the training process
were always a subject that kept being mentioned, especially when utilizing larger actions spaces
that required architectures with more layers and neurons. To better understand the implication
of each network in the respective training, Table 6.30 presents the trainable parameters of every
Artificial Neural Network utilized up to this point.

The more layers/neurons a network possesses, the greater its capacity to learn how to solve
more complicated tasks. Antagonistically, when employed towards simple challenges, elaborate
ANNs often perform poorly. Such affirmations can be corroborated with the Table 6.30 data:
for a simple navigation scenario and having only three output neurons (number of actions),
a network with 100324 trainable parameters was competent enough to produce great results
(Fig. 6.30). However, by increasing the action space to six commands, the navigation task
becomes much harder to sustain, and the same network (101287 neurons - variation resultant
from the output layer’s direct association with the action space) proves incapable of learning.
Such assignment with six actions was eventually fulfilled with a network with 148839 trainable
parameters partially spread over two additional hidden layers (Fig. 6.35). Arrangements with
only one additional hidden layer, although having 120039 up to 434919 neurons, also revealed
inept to conduct an effective training (Fig. 6.33).

In conclusion, the number of neurons and trainable parameters are meaningless if the net-
work layers do not shape a well-balanced architecture. When working with a properly planned
ANN, however, the more trainable parameters, the better the network’s aptitude for learning
elaborate tasks, but the more difficult and time-consuming training becomes, a trade-off that
must be taken into account when designing DeepRL frameworks.

Table 6.30: Network’s trainable parameters.

ANN Architecture Results. Trainable Parameters

Fig. 6.23 Fig. 6.30 100.324

Fig. 6.23 Fig. 6.31 101.287

Fig. 6.32

{fc4} = {64} Fig. 6.33 (a) 120.039

{fc4} = {128} Fig. 6.33 (b) 141.031

{fc4} = {256} Fig. 6.33 (c) 183.015

{fc4} = {512} Fig. 6.33 (d) 266.983

{fc4} = {1024} Fig. 6.33 (e) 434.919

Fig. 6.34

{fc4; fc5} = {128; 64} Fig. 6.35 148.839

Fig. 6.36

{fc4; fc5; fc6} = {256; 256; 256} Fig. 6.37 (a) 316.141

{fc4; fc5; fc6} = {512; 512; 256} Fig. 6.37 (b) 660.717

{fc4; fc5; fc6} = {512; 512; 512} Fig. 6.37 (c) 795.373

73

DeepRL-based Motion Planning for Indoor Robot Navigation

6.3.2.3 Scenario 2

Scenario 1 was the arrangement that endorsed the initial validation of the developed DeepRL-
based motion planning approach in the Gazebo’s Stage 4 domain. Following this comprehensive
testing term, an intermediate trial was performed in Scenario 2 (Fig. 6.38), a similar envi-
ronment setup with a slightly more distant target from the resting point. This scenario - a
preparatory scene to the more complex and final experimental stage, Gazebo’s Stage 4 Scenario
3 (Fig. 6.40) - served mainly to adjust the reward weights towards a faraway target.

Figure 6.38: Gazebo’s Stage 4 Scenario 2.

For this implementation, the more straightforward network structure (Fig. 6.23) with an
action set composed of three actions (Set 3 of Table 4.2) was sufficient to adjust the reward
weights towards a bigger scenario. The results of this intervening trial are presented in Fig.
6.39.

Table 6.31: Simulation variables, DQN framework, Artificial Neural Network architecture
and parametrization, state, action and reward models, and system hyperparameters utilized in

Gazebo’s Stage 4 Scenario 2 (Fig. 6.38).

Parameter Value Parameter Value

DQN framework D3QN ANN Fig 6.23

State Model {CStack, dT , dO, ϕ} ANN Parametrization Table 4.1

Action Set (Table 4.2) Set 3 Reward Set (Table 4.3) Set 3.4

Number of Episodes 1000 Number of Steps 180

Buffer Size 180000 Learning Rate lr 0.001

Batch Size 256 Discount Factor γ 0.99

Epsilon 1.0 Epsilon Decay (per step) 0.001

Epsilon Final Value 0.01 TargetNet Update Rate 10

Table 6.32: Fig. 6.39 training details.

Training/Testing Training Duration Saved Models Test Model

Fig. 6.39 ≥ 10 h ≥ 350 955/1000

74

6. Results and Discussion

Figure 6.39: Training scores and final episode distances, and robot post-training paths
resultant from employing the DeepRL-based local motion planning strategy over the Gazebo’s

Stage 4 Scenario 2.

The agent’s post-training behavior revealed, as expected, the same previously noted prob-
lems caused by low-scale action spaces: obstacle over-deviation and discrete-type motion. Re-
gardless of the far-from-ideal observed paths, the virtual robot managed to attain its target
employing the newly deduced Reward Set 3.4 (Table 4.3), a resolution planned for environments
with outlying targets.

6.3.2.4 Scenario 3

Of all environments and scenarios utilized in prior validations and experiments, Gazebo’s
Stage 4 Scenario 3 (Fig. 6.40) is the arrangement that has the greatest distance between initial
and final points. With the target being further located from the robot’s resting point, more steps
per episode are necessary to permit the agent to explore its surroundings and ultimately attain
its objective point. The more the steps, the more obstacle-avoidance and orientation-amendment
situations the agent is subject to, and consequently more varied state representations it has to
learn from, making the training more difficult and time-consuming. Due to these challenging
training particularities, Scenario 3 was elected to uphold the dissertation’s final testing phase.

Figure 6.40: Gazebo’s Stage 4 Scenario 3.

75

DeepRL-based Motion Planning for Indoor Robot Navigation

An initial trial was carried out with the simpler network designed towards obstacles (Fig.
6.23) and the reduced Action Set 3 of Table 4.2. This procedure, backed by the simulation
configuration defined in Table 6.33 (with the Reward Set inferred in Scenario 2), was executed
to evaluate if the agent, guided by the developed DeepRL-based motion planning method, was
qualified to overcome the Scenario 3 navigation challenge.

The results obtained from this motion planning mission, presented in Fig. 6.41, show that
the agent, in a post-training phase, was able to conduct a curve and counter-curve motion,
constantly adjusting its orientation according to the nearest obstacle and target point. This
online-stage behavior, along with the decent training performance, demonstrates once again the
robustness of the proposed navigation system in environments with obstacles.

Table 6.33: Simulation variables, DQN framework, Artificial Neural Network architecture
and parametrization, state, action and reward models, and system hyperparameters utilized in

Gazebo’s Stage 4 Scenario 3 (Fig. 6.40).

Parameter Value Parameter Value

DQN framework D3QN ANN Fig 6.23

State Model {CStack, dT , dO, ϕ} ANN Parametrization Table 4.1

Action Set (Table 4.2) Set 3 Reward Set (Table 4.3) Set 3.4

Number of Episodes 1000 Number of Steps 200

Buffer Size 200000 Learning Rate lr 0.001

Batch Size 256 Discount Factor γ 0.99

Epsilon 1.0 Epsilon Decay (per step) 0.001

Epsilon Final Value 0.01 TargetNet Update Rate 10

Figure 6.41: Training scores and final episode distances, and robot post-training paths
resultant from employing the DeepRL-based local motion planning strategy over the Gazebo’s

Stage 4 Scenario 3.

Table 6.34: Fig. 6.41 training details.

Training/Testing Training Duration Saved Models Test Model

Fig. 6.41 ≥ 13 h ≥ 200 995/1000

76

6. Results and Discussion

6.3.2.4.1 Action Space with 12 Actions

Confirmed the feasibility of Gazebo’s Stage 4 Scenario 3, the ultimate experiment to attest
the adeptness and potentiality of the proposed DeepRL-based motion planning for indoor robot
navigation was then outlined: train the agent (embodied with the Fig. 6.36 network architecture)
in Scenario 3 with an action space of twelve actions (Set 5 of Table 4.2), and perform a series of
tests on every previously exploited Gazebo virtual environment.

This last trial was designed to aggregate the validations and studies held in a single ex-
periment. The objective was to verify, from a sole training, the agent’s ability to learn how to
navigate in obstacle-populated environments with a wide range of available actions, and later,
in an online stage, validate its generalization aptitude by subjecting it to unknown scenarios.

The final learning procedure was executed having the Table 6.35 system and simulation pa-
rameters as configuration. The resulting training scores and final episode distances are shown in
Fig. 6.42, the respective test in Gazebo’s Stage 4 Scenario 3 (training arrangement) is displayed
in Fig. 6.43, and lastly, the motion executed by the agent over unfamiliar environments, i.e.,
virtual domains unobserved in training, are presented in Fig. 6.44.

Table 6.35: Simulation parameters, adjusted from Table 6.33, for an action space of 12
commands.

Parameter Value Parameter Value

DQN framework D3QN ANN Fig 6.36

State Model {CStack, dT , dO, ϕ} ANN Parametrization Table 4.1 w/ {fc4; fc5; fc6} = {256; 256; 256}

Action Set (Table 4.2) Set 5 Reward Set (Table 4.3) Set 3.4

Number of Episodes 3000 Number of Steps 180

Buffer Size 250000 Learning Rate lr 0.001

Batch Size 256 Discount Factor γ 0.99

Epsilon 1.0 Epsilon Decay (per step) 0.001

Epsilon Final Value 0.01 TargetNet Update Rate 10

Figure 6.42: Scenario 3 arrangement, and training scores and final episode distances
resultant from employing the DeepRL-based local motion planning strategy, with the Fig. 6.36
ANN ({fc4; fc5; fc6} = {256; 256; 256}) and Action Set 5 (Table 4.2), over Gazebo’s Stage 4

Scenario 3.

77

DeepRL-based Motion Planning for Indoor Robot Navigation

Table 6.36: Fig. 6.42 training details.

Training/Testing Training Duration Saved Models Test Model

Fig. 6.42 ≥ 20 h ≥ 100 2936/3000

The fact that the agent attained all the targets it was instructed for is utterly impressive.
In Gazebo’s Stage 4 scenarios, due to their resemblance/parity to the training arrangement
(Gazebo’s Stage 4 Scenario 3), the Turtlebot managed to conduct a remarkable collision-free
navigation in the online phase, never jeopardizing its primary objective of reaching the target
point (Figures 6.43, 6.44b, 6.44c, and 6.44d). The same occurrence was verified in the Gazebo
World trajectories (Figures 6.44e and 6.44f). However, in Gazebo’s empty environment, a domain
completely different from the one used in training, the robot behavior diverged somewhat from
the acceptable standards (Fig. 6.44a). Even so, the Turtlebot managed to reach the threshold
of all targets.

This experiment put an end to the navigation system testing. Noticeably, substantiated by
the results presented in this dissertation, it is possible to conclude that the developed DeepRL-
based local motion planning approach for indoor robot navigation, designed from scratch, not
only operates effectively in environments with and without obstacles, but also demonstrates an
immense potential to be prospectively applied in real domains. Nonetheless, it is essential to
continue improving the suggested strategy to materialize this supposition.

Figure 6.43: Scenario 3 arrangement and online-stage testing (post Fig. 6.42 training).

78

6. Results and Discussion

Xref

Yref Robot

Xobj, Yobj

(a) Gazebo’s obstacle-free Fig. 5.4 (e) scenario.

(b) Gazebo’s Stage 4 Scenario 1.

(c) Gazebo’s Stage 4 Scenario 2.

(d) Gazebo’s Stage 4 Scenario 1, 2, and 3.

(e) Gazebo’s World Scenario (a). (f) Gazebo’s World Scenario (b).

Figure 6.44: Fig. 6.42 post-training experiments in Gazebo’s obstacle-free, World, and Stage
4 environments.

79

80

7
Conclusion

In this dissertation, a Deep Reinforcement Learning-based motion planning approach, re-
volved around the Deep Q-Learning algorithm, is proposed. The urge to conceive such system
came from the noted lack of existing strategies that take into consideration the straightfor-
ward transferability to different sensor-equipped mobile platforms. In an attempt to address
this deficit in the DeepRL-based indoor robot navigation scope, the suggested technique was
developed with each of its components (DQN framework and state, action, and reward mod-
els) specifically designed from scratch to establish a differentiated sensor-agnostic local motion
planning method. A survey on robot motion planning and Machine Learning’s Reinforcement
Learning, Deep Learning, and the contemporary Deep Reinforcement Learning fields was atten-
tively consummated to support, conceptually, this innovative framework intent.

The starting point of the development process was the implementation of the Deep Q-
Learning, Dueling Deep Q-Learning, and the state-of-the-art Dueling Double Deep Q-Learning
algorithms based on their respective pseudo-codes. These Deep Q-Network-based learning
methodologies were later validated in referenced OpenAI Gym benchmark environments with
the assistance of prevailing ANN structures and hyperparameters.

After validating the implemented Deep Q-Network-based methodologies, the proposed sys-
tem’s state, action, and reward models - essential elements of RL and DeepRL architectures -
were devised. The defined state model was composed of continuous features that portray the
robot’s orientation and distance to the target, and distance to the nearest obstacle. A costmap
stack, the distinguishing factor of the suggested navigation framework, was further outlined as a
state integral part, representing the agent’s surrounding environment and the short-term paths
resultant from its decision-making. Different reward models were also designed, some of them
oriented towards obstacle-free environments, and others more intricate to compute appropriate
rewards in the more complex obstacle-populated domains. Moreover, several sets of actions were
profiled with various linear-angular speed pair combinations.

Upon implementing and validating the DQN-based learning algorithms and establishing the
state, action, and reward models, the only missing element to complete the proposed local motion
planning pipeline was a Deep Q-Network capable of properly converting the state representations
into Qvalues. Such architecture was inferred on an open environment, via trial-and-error, using
the networks utilized in the OpenAI Gym validation stage as a basis.

81

DeepRL-based Motion Planning for Indoor Robot Navigation

With every module created, the proposed motion planning algorithm was finally set to be
applied to a virtual robot - the Turtlebot - to ultimately conduct its action-selection policy.
Being a framework plotted entirely from scratch, the testing/validation phase was launched
without any working guarantees (apart from the response shown when deducting the base ANN
structures).

The preliminary experiments of the proposed local motion planning approach were carried
out in a Gazebo obstacle-free environment. The system was validated in these types of domains
using each implemented DQN framework. The Dueling Double Deep Q-Network, in line with
the acknowledged theoretical concepts retained from the Background Material and State of the
Art sections, was the learning methodology that revealed the best overall training executions.
D3QN was therefore chosen to integrate the arranged DeepRL-based local motion planning
system onward.

In addition to the validation step on obstacle-free domains, individual studies were con-
ducted to assess the agent’s generalization aptitude. An obstacle-oriented ANN architecture
was also introduced into the suggested navigation pipeline to corroborate the system’s function-
ing in open domains, even when designed towards obstacle-populated environments. From the
outcomes of these trials - strong indicators of the great potential of the presented framework -
some conclusions were inferred:

• The utilized ANN must have the ability to map its state inputs into output commands;

• The employed state model must meticulously represent the robot’s environment surround-
ings and provide the agent with essential data regarding the robot-target and robot-
obstacles relation;

• The reward model must reward or penalize the agent in a fair and balanced way according
to the outcomes provoked by its actions;

• The used action set must be composed of commands that the agent can execute;

• The employed reward model and action set directly influence the quality of training and
the resultant post-training robot motion;

• The larger the state representation (number of network inputs), the more difficult training
becomes;

• The number of episodes and steps must be defined to provide the agent enough exploration
room, and must be sufficient to permit the agent to reach its goal;

• The size of the utilized replay buffer should be enough to preserve the transition data of
every step, allowing the agent to learn from a broad domain of past experiences. However,
the larger the replay buffer, the greater the computational training cost;

82

7. Conclusion

• The training batch - the set of past experiences used in each step to tune the network -
should be as large as possible. The larger the batch size, the more robust and all-inclusive
the training turns, but the longer the elapsed step time becomes, making the agent less
responsive. The employed GPU also influences this trade-off: the more powerful the
GPU, the larger the batch that can be processed between steps without compromising the
integrity of training. For the NVIDIA GeForce GTX 1060 (GPU utilized in this project),
the dimension of the batch was settled at 256;

• Regarding the target ANN update rate, the shorter the update step period, the more
volatile the learning process becomes.

Once the proposed navigation system was validated in obstacle-free environments, a natural
subsequent testing stage was instituted in domains with static obstacles. The DeepRL-based
framework was also tested with enlarged sets of speed commands, allowing the agent to select
actions from a more comprehensive extent. For these latter tests, it was necessary to rethink
and adjust the framework’s network to comply with the system’s evolution.

The results obtained from this alignment were again outstanding, as the agent exhibited
the capability to safely navigate in obstacle-populated scenarios and reach the proposed targets,
even in environments different from those experienced in training. This set of trials concluded
what was a thorough experimental stage. Further arguments were deduced during its execution:

• The larger the action space (number of network outputs), the more difficult training be-
comes;

• Following an overall system’s complexity growth, resultant for instance from the state
model or action space augmentation, the employed network should be revised and, in case
of need, updated by increasing the number of layers’ neurons or adding hidden layers to
its architecture;

• A more complex network inherently has more trainable parameters that must be adjusted
throughout training, making it more challenging and time-consuming.

The Turtlebot, exercising the developed DeepRL-based local motion planning for indoor
robot navigation, proved capable of learning via trial-and-error, with no datasets nor a priori

knowledge of the environment, to execute a collision-free motion and attain its defined targets.
The fact that this project was endorsed without any guarantees of the proposed navigation
method’s functioning makes the substantiated results and validations doubly remarkable and
satisfactory.

7.1 Future Work

The results presented in this dissertation demonstrate the full potential of the developed
navigation framework. Nonetheless, it is recognized that there is still a wide range of improve-
ments that can be made.

83

DeepRL-based Motion Planning for Indoor Robot Navigation

Dynamic Obstacles

Introduce the trained agent in an environment with dynamic obstacles.

Final Orientation

Restructure both the neural networks and the reward models to enable the specification of
the robot’s final orientation (at the target location).

Superior Hardware

Test the developed navigation framework having a superior GPU sustaining training.

Sensor-Agnostic Framework

The presented navigation framework was designed to be independent of the type of robot
and sensor. One of the points to be worked on in the future would be to verify this premise.

Real-World Validation

Validate the developed DeepRL-based motion planning algorithm in real mobile platforms
and environments.

Socially Aware Motion Planning

Adjust the proposed navigation method to enable a human-sensible motion planning. In
order to achieve a socially aware conduct, the developed DeepRL-based path planning approach
would need to be complemented with a DL-based perception module. With the merge of both
perception and navigation units, an end-to-end DeepRL-based socially aware motion planning
strategy could be attained (sketch in Fig 7.1). When applied to a mobile robot, it would detect
and track labeled real-world elements, such as people and other robots, and use that data to
tune the platform’s behavior.

Perception Module

Object Tracking

Motion Estimation

Data Association

Feature Positioning
Prediction

Object Recognition

DeepRL-based Motion
Planning ModuleOnboard Sensors

Figure 7.1: End-to-end DeepRL-based socially aware motion planning block diagram.

84

Bibliography

[1] Luís Garrote, Diogo Temporão, Samuel Temporão, Ricardo Pereira, Tiago Barros, and Ur-
bano J. Nunes. Improving Local Motion Planning with a Reinforcement Learning Approach.
In 2020 IEEE International Conference on Autonomous Robot Systems and Competitions
(ICARSC), pages 206–213, April 2020.

[2] Turtlebot3 features. https://emanual.robotis.com/.

[3] 360 laser distance sensor lds-01. https://www.robot-advance.com/EN/art-360-laser-
distance-sensor-lds-01-2352.htm.

[4] Nvidia geforce gtx 1060. https://www.zotac.com/us/product/graphics_card/zotac-geforce-
gtx-1060-amp-editionspec.

[5] A Roadmap for US Robotics: From Internet to Robotics, 2020.

[6] Jiyu Cheng, Hu Cheng, Max Q.-H. Meng, and Hong Zhang. Autonomous Navigation by
Mobile Robots in Human Environments: A Survey. In 2018 IEEE International Conference
on Robotics and Biomimetics (ROBIO), pages 1981–1986, December 2018.

[7] Xiaogang Ruan, Dingqi Ren, Xiaoqing Zhu, and Jing Huang. Mobile Robot Navigation
based on Deep Reinforcement Learning. In 2019 Chinese Control And Decision Conference
(CCDC), pages 6174–6178, June 2019. ISSN: 1948-9447.

[8] Szilárd Aradi. Survey of deep reinforcement learning for motion planning of autonomous
vehicles, 2020. arXiv: 2001.11231.

[9] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[10] Vladimir Nasteski. An overview of the supervised machine learning methods. HORI-
ZONS.B, 4:51–62, December 2017.

[11] Ibm - unsupervised learning. www.ibm.com/cloud/learn/unsupervised-learning.

[12] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

[13] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath.
Deep Reinforcement Learning: A Brief Survey. IEEE Signal Processing Magazine, 34(6):26–
38, November 2017. Conference Name: IEEE Signal Processing Magazine.

85

DeepRL-based Motion Planning for Indoor Robot Navigation

[14] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizutani. State-
of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomorrow’s Intelligent
Network Traffic Control Systems. IEEE Communications Surveys Tutorials, 19(4):2432–
2455, 2017. Conference Name: IEEE Communications Surveys Tutorials.

[15] Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P. How. Socially aware motion
planning with deep reinforcement learning. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1343–1350, September 2017. ISSN: 2153-
0866.

[16] Michael Everett, Yu Fan Chen, and Jonathan P. How. Motion Planning Among Dynamic,
Decision-Making Agents with Deep Reinforcement Learning. In 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 3052–3059, October
2018. ISSN: 2153-0866.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, February 2015.

[18] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and
Nando de Freitas. Dueling Network Architectures for Deep Reinforcement Learning.
arXiv:1511.06581 [cs], April 2016. arXiv: 1511.06581.

[19] Robotis - motion planning. https://robotics.umich.edu/research/focus-areas/motion-
planning/.

[20] Han-ye Zhang, Wei-ming Lin, and Ai-xia Chen. Path Planning for the Mobile Robot: A
Review. Symmetry, 10(10):450, October 2018. Number: 10 Publisher: Multidisciplinary
Digital Publishing Institute.

[21] Sebastian Thrun. Learning metric-topological maps for indoor mobile robot navigation.
Artificial Intelligence, 99(1):21–71, February 1998.

[22] Nicola Tomatis, I. Nourbakhsh, and Roland Siegwart. Combining Topological and Metric:
A Natural Integration for Simultaneous Localization and Map Building. January 2001.

[23] Juergen Schmidhuber. Deep Learning in Neural Networks: An Overview. Neural Networks,
61:85–117, January 2015. arXiv: 1404.7828.

[24] Md. Zahangir Alom, Tarek Taha, Chris Yakopcic, Stefan Westberg, Paheding Sidike, Mst
Nasrin, Mahmudul Hasan, Brian Essen, Abdul Awwal, and Vijayan Asari. A State-of-the-
Art Survey on Deep Learning Theory and Architectures. Electronics, 8:292, March 2019.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

86

http://www.deeplearningbook.org

Bibliography

[26] Zhixing Tan, Shuo Wang, Zonghan Yang, Gang Chen, Xuancheng Huang, Maosong Sun,
and Yang Liu. Neural machine translation: A review of methods, resources, and tools,
2020.

[27] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva
Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff
Hughes, and Jeffrey Dean. Google’s neural machine translation system: Bridging the gap
between human and machine translation, 2016.

[28] Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen,
Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, Macduff Hughes, and
Jeffrey Dean. Google’s multilingual neural machine translation system: Enabling zero-shot
translation. Transactions of the Association for Computational Linguistics, 5:339–351, 2017.

[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998. Conference
Name: Proceedings of the IEEE.

[30] H. Zhang, L. Zhang, and Y. Jiang. Overfitting and underfitting analysis for deep learn-
ing based end-to-end communication systems. In 2019 11th International Conference on
Wireless Communications and Signal Processing (WCSP), pages 1–6, 2019.

[31] Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part 1 –
learning rate, batch size, momentum, and weight decay, 2018.

[32] Lei Tai and Ming Liu. Towards Cognitive Exploration through Deep Reinforcement Learn-
ing for Mobile Robots. arXiv:1610.01733 [cs], October 2016. arXiv: 1610.01733.

[33] Yuxi Li. Deep reinforcement learning: An overview, 2018.

[34] Muhammad Mudassir Ejaz, Tong Boon Tang, and Cheng-Kai Lu. Autonomous Visual
Navigation using Deep Reinforcement Learning: An Overview. In 2019 IEEE Student
Conference on Research and Development (SCOReD), pages 294–299, October 2019. ISSN:
2643-2447.

[35] Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods:
Global optimality and rates of convergence, 2019.

[36] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P.
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for
Deep Reinforcement Learning. arXiv:1602.01783 [cs], June 2016. arXiv: 1602.01783.

[37] Shangtong Zhang and Richard S. Sutton. A deeper look at experience replay, 2018.

[38] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with
Double Q-learning. arXiv:1509.06461 [cs], December 2015. arXiv: 1509.06461.

87

DeepRL-based Motion Planning for Indoor Robot Navigation

[39] Pablo Marín, Ahmed Hussein, David Martín Gómez, and Arturo de la Escalera. Global and
Local Path Planning Study in a ROS-Based Research Platform for Autonomous Vehicles.
Journal of Advanced Transportation, 2018:1–10, February 2018.

[40] Risald, Antonio E. Mirino, and Suyoto. Best routes selection using Dijkstra and Floyd-
Warshall algorithm. In 2017 11th International Conference on Information Communication
Technology and System (ICTS), pages 155–158, October 2017. ISSN: 2338-185X.

[41] Xiang Liu and Daoxiong Gong. A comparative study of A-star algorithms for search and
rescue in perfect maze. April 2011.

[42] Anthony Stentz. The Focussed D* Algorithm for Real-Time Replanning. In In Proceedings
of the International Joint Conference on Artificial Intelligence, pages 1652–1659, 1995.

[43] Luis Garrote, Cristiano Premebida, Marco Silva, and Urbano Nunes. An RRT-based navi-
gation approach for mobile robots and automated vehicles. In 2014 12th IEEE International
Conference on Industrial Informatics (INDIN), pages 326–331, July 2014. ISSN: 2378-363X.

[44] Qidan Zhu, Yongjie Yan, and Zhuoyi Xing. Robot Path Planning Based on Artificial
Potential Field Approach with Simulated Annealing. In Sixth International Conference on
Intelligent Systems Design and Applications, volume 2, pages 622–627, October 2006. ISSN:
2164-7151.

[45] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The Dynamic Window Approach to
Collision Avoidance. Robotics & Automation Magazine, IEEE, 4:23–33, April 1997.

[46] Martin Keller, Frank Hoffmann, Carsten Hass, Torsten Bertram, and Alois Seewald. Plan-
ning of Optimal Collision Avoidance Trajectories with Timed Elastic Bands. IFAC Proceed-
ings Volumes, 47(3):9822–9827, January 2014.

[47] B. Zuo, J. Chen, L. Wang, and Y. Wang. A reinforcement learning based robotic navigation
system. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
pages 3452–3457, October 2014. ISSN: 1062-922X.

[48] G. Yen and T. Hickey. Reinforcement learning algorithms for robotic navigation in dy-
namic environments. In Proceedings of the 2002 International Joint Conference on Neural
Networks. IJCNN’02 (Cat. No.02CH37290), volume 2, pages 1444–1449 vol.2, 2002.

[49] Deepmind. https://deepmind.com/.

[50] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning.
page 9.

[51] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Has-

88

Bibliography

sabis. Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587):484–489, January 2016. Number: 7587 Publisher: Nature Publishing Group.

[52] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy
Lillicrap, Karen Simonyan, and Demis Hassabis. Mastering Chess and Shogi by Self-Play
with a General Reinforcement Learning Algorithm. arXiv:1712.01815 [cs], December 2017.
arXiv: 1712.01815.

[53] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk
Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai,
John P. Agapiou, Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen,
Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gul-
cehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch,
Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu,
Demis Hassabis, Chris Apps, and David Silver. Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature, 575(7782):350–354, November 2019. Number:
7782 Publisher: Nature Publishing Group.

[54] Lei Tai, Giuseppe Paolo, and Ming Liu. Virtual-to-real deep reinforcement learning: Con-
tinuous control of mobile robots for mapless navigation, 2017.

[55] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-
val Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning, 2019.

[56] Jing Liang, Utsav Patel, Adarsh Jagan Sathyamoorthy, and Dinesh Manocha. Realtime
Collision Avoidance for Mobile Robots in Dense Crowds using Implicit Multi-sensor Fusion
and Deep Reinforcement Learning. arXiv:2004.03089 [cs], April 2020. arXiv: 2004.03089.

[57] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

[58] Linhai Xie, Sen Wang, Andrew Markham, and Niki Trigoni. Towards Monocular Vision
based Obstacle Avoidance through Deep Reinforcement Learning. arXiv:1706.09829 [cs],
June 2017. arXiv: 1706.09829.

[59] Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, and Jan Kautz.
Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU.
arXiv:1611.06256 [cs], March 2017. arXiv: 1611.06256.

[60] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-
robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE Cat. No.04CH37566), volume 3, pages 2149–2154 vol.3, 2004.

89

DeepRL-based Motion Planning for Indoor Robot Navigation

[61] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-
shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast
feature embedding, 2014.

[62] E. Rohmer, S. P. N. Singh, and M. Freese. V-rep: A versatile and scalable robot simulation
framework. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1321–1326, 2013.

[63] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[64] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-Real
Transfer of Robotic Control with Dynamics Randomization. arXiv:1710.06537 [cs], March
2018. arXiv: 1710.06537.

[65] B. Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab,
Senthil Yogamani, and Patrick Pérez. Deep Reinforcement Learning for Autonomous Driv-
ing: A Survey. arXiv:2002.00444 [cs], February 2020. arXiv: 2002.00444.

[66] Mark G Sobell. A practical guide to Ubuntu Linux. Pearson Education, 2015.

[67] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Ng. ROS: an open-source Robot Operating System, volume 3. January
2009. Journal Abbreviation: ICRA Workshop on Open Source Software Publication Title:
ICRA Workshop on Open Source Software.

[68] M. Santos Pessoa de Melo, J. Gomes da Silva Neto, P. Jorge Lima da Silva, J. M. X. Natario
Teixeira, and V. Teichrieb. Analysis and comparison of robotics 3d simulators. In 2019
21st Symposium on Virtual and Augmented Reality (SVR), pages 242–251, 2019.

[69] Serena Ivaldi, Vincent Padois, and Francesco Nori. Tools for dynamics simulation of robots:
a survey based on user feedback, 2014.

[70] Webots. http://www.cyberbotics.com. Open-source Mobile Robot Simulation Software.

[71] Rosen Diankov. Automated Construction of Robotic Manipulation Programs. PhD thesis,
Carnegie Mellon University, Robotics Institute, August 2010.

[72] Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong Planning A∗. Artificial Intelli-
gence, 155(1):93–146, May 2004.

90

Bibliography

[73] HyeongRyeol Kam, Sung-Ho Lee, Taejung Park, and Chang-Hun Kim. Rviz: a toolkit for
real domain data visualization, 10 2015.

[74] Turtlebot. https://www.turtlebot.com/.

[75] Python. https://www.python.org/.

[76] Pycharm. https://www.jetbrains.com/pycharm/.

[77] Tensorflow. https://www.tensorflow.org/.

[78] Numpy. https://numpy.org/.

[79] Pandas. https://pandas.pydata.org/.

[80] Rospy. http://wiki.ros.org/rospy.

[81] Matplotlib. https://matplotlib.org/.

[82] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[83] Cuda. https://developer.nvidia.com/cuda-zone.

[84] cudnn. https://developer.nvidia.com/cudnn.

[85] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016.

[86] Box2d. https://box2d.org/.

[87] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5026–5033, 2012.

[88] Ann learning rate. https://machinelearningmastery.com/.

91

https://github.com/fchollet/keras

92

A
DQN Pseudo-codes

Deep Q-Learning and Dueling Deep Q-Learning

Algorithm 2: Deep Q-Learning and Dueling Deep Q-Learning pseudo-code [17]
Define the initial and target points
Define the number of training episodes e and respective steps t
Define the network’s hyperparameters and the state, action, and reward models
Initialize the policy DQN (θ) and the target DQN (θ−)
Initialize the replay buffer D to capacity N and define the batch size Nb

for episode e ϵ {1, , M} do
Environment setup, s0
for step t ϵ {1, , T} do

Select action at from st using an ϵ-greedy exploration method
Take action at

Observe st+1

Compute reward value rt

Store transition tuple (st, at, st+1, rt) in D

Sample a random minibatch of Nb tuples (sj ,aj , sj+1, rj) from D

yt(a) = rj + γ · maxaQ(sj+1, a; θ−)
Perform a gradient descent step with loss ||yt(a) – Q(sj , aj ; θ)||2, updating θ

if t % N− is equal to 0 then
Replace the target DQN parameters θ− ←− θ

end
st ← st+1

end
end

93

DeepRL-based Motion Planning for Indoor Robot Navigation

Dueling Double Deep Q-Learning

Algorithm 3: Dueling Double Deep Q-Learning pseudo-code, adapted from [7]
Define the initial and target points
Define the number of training episodes e and respective steps t
Define the network’s hyperparameters and the state, action, and reward models
Initialize the policy DQN (θ) and the target DQN (θ−)
Initialize the replay buffer D to capacity N and define the batch size Nb

for episode e ϵ {1, , M} do
Environment setup, s0
for step t ϵ {1, , T} do

Select action at from st using an ϵ-greedy exploration method
Take action at

Observe st+1

Compute reward value rt

Store transition tuple (st, at, st+1, rt) in D

Sample a random minibatch of Nb tuples (sj ,aj , sj+1, rj) from D

amax(sj+1; θ) = argmaxaQ(sj+1, a; θ)
yt(a) = rj + γ · Q(sj+1, amax(sj+1; θ); θ−)
Perform a gradient descent step with loss ||yt(a) – Q(sj , aj ; θ)||2, updating θ

if t % N− is equal to 0 then
Replace the target DQN parameters θ− ←− θ

end
st ← st+1

end
end

94

B
Artificial Neural Network Inference

Training and Testing Scenarios

Xref

Yref Robot

Xobj, Yobj

Xref

Yref

Xobj, Yobj

Robot

Xref

Yref Robot

Xobj, Yobj

Initial Position: (0.0, 0.0) Initial Position: (0.0, 0.0)

Target: (0.8, 0.0) Target: (-0.8, 0.0)

Initial Position Target

(X,Y) (Xobj ,Yobj)

(0.0, 0.0)

(0.8, 0.0)

(0.5, 5.0)

(0.0, 0.8)

(-0.5, 0.5)

(-0.8, 0.0)

(-0.5, -0.5)

(0.0, -0.8)

(0.5, -0.5)

(a) Move forward (b) Move backward

Xref

Yref Robot

Xobj, Yobj

Xref

Yref Robot

Xobj, Yobj

Initial Position: (0.0, 0.0) Initial Position: (0.0, 0.0)

Target: (0.0, 0.8) Target: (0.0, -0.8)

(c) Turn left (d) Turn right (e) Generalization scenario

Figure B.1: Obstacle-free target configurations.

95

DeepRL-based Motion Planning for Indoor Robot Navigation

Table B.1: Simulation parameters.

Parameter Value Parameter Value

DQN framework DQN State Model {CStack, dT , ϕ}

Action Set (Table 4.2) Set 2 Reward Set (Table 4.3) Set 1

Number of Episodes 500 Number of Steps 80

Buffer Size 50000 Learning Rate lr 0.001

Batch Size 256 Discount Factor γ 0.99

Epsilon 1.0 Epsilon Decay (per step) 0.001

Epsilon Final Value 0.01 TargetNet Update Rate 40

Shallow Artificial Neural Network

Xref

Yref Robot

Xobj, Yobj

Fig. B.1 (d)
Gazebo obstacle-free environment Training and testing scenario

Figure B.2: Fig. B.1 (d) obstacle-free training scenario.

Input
Layer

Output
Layer

fc1

Layer Parameters

Input {dT , ϕ}

fc1
Neurons = Different arrangements (Fig. B.4)

Activation = relu

Output Neurons = Number of Actions

Figure B.3: Shallow ANN and respective layer configuration.

96

B. Artificial Neural Network Inference

(a) fc1 neurons = 64

(b) fc1 neurons = 128

(c) fc1 neurons = 256

Figure B.4: Training final episode distances from employing the Deep Q-Learning algorithm
with the Fig. B.3 Shallow ANN (different number of fc1 neurons) over the Fig. B.1 (d)
training scenario. Experiments carried out with the Table B.1 simulation variables.

97

DeepRL-based Motion Planning for Indoor Robot Navigation

Deep Artificial Neural Network

Input
Layer

Output
Layer

fc2fc1

Layer Parameters

Input {dT , ϕ}

fc1 & fc2
Neurons = Different arrangements (Fig. B.6)

Activation = relu

Output Neurons = Number of Actions

Figure B.5: Deep ANN and respective layer configuration.

(a) Layer neurons: {fc1; fc2} = {64; 64}.

(b) Layer neurons: {fc1; fc2} = {128; 128}.

(c) Layer neurons: {fc1; fc2} = {256; 256}.

Figure B.6: Training final episode distances from employing the Deep Q-Learning algorithm
with the Fig. B.5 Deep ANN (different number of fc1 and fc2 neurons) over the Fig. B.1 (d)

training scenario. Experiments carried out with the Table B.1 simulation variables.

98

B. Artificial Neural Network Inference

CNN and Deep ANN Merge-Resultant Deep Q-Network

conv1

conv2

conv3

Flatten
Layer

fc1

Output
Layer

fc3fc2Input
Layer

Figure B.7: Proposed Deep Q-Network.

Table B.2: Proposed DQN base layer configurations.

Layer Parameters

Input {CStack, dT , ϕ}

conv1 Filters = 32, Kernel size = 8, Strides = 4, Activation = relu

conv2 Filters = 64, Kernel size = 4, Strides = 2, Activation = relu

conv3 Filters = 64, Kernel size = 3, Strides = 1, Activation = relu

fc1 Neurons = 256, Activation = relu

fc2 Neurons = 64, Activation = relu

fc3 Neurons = 64, Activation = relu

fcV Neurons = 1, Activation = None

fcA Neurons = Number of actions, Activation = relu

Output Neurons = Number of actions

99

DeepRL-based Motion Planning for Indoor Robot Navigation

Xref

Yref Robot

Xobj, Yobj

Xref

Yref Robot

Xobj, Yobj

Fig. B.1 (c) Fig. B.1 (e)
Gazebo obstacle-free environment Training scenario Testing scenario

Figure B.8: Fig. B.1 (c) and Fig. B.1 (e) obstacle-free training and testing scenarios.

Figure B.9: Training final episode distances from employing the Deep Q-Learning algorithm
with the Fig. B.7 proposed ANN over the Fig. B.1 (c) training scenario. Experiments carried

out with the Table B.1 simulation variables.

Figure B.10: Online stage robot paths over the Fig. B.1 (e) testing scenario. Agent
controlled by a fine-tuned model saved from Fig. B.9 training.

100

B. Artificial Neural Network Inference

Xref

Yref Robot

Xobj, Yobj

Initial Position Targets

(X,Y) (Xobj ,Yobj)

(0.0, 0.0)

(0.8, 0.0)

(0.5, 5.0)

(0.0, 0.8)

(-0.5, 0.5)

(-0.8, 0.0)

(-0.5, -0.5)

(0.0, -0.8)

(0.5, -0.5)
Fig. B.1 (e)

Figure B.11: Fig. B.1 (e) obstacle-free training and testing scenario.

Figure B.12: Training final episode distances from employing the Deep Q-Learning algorithm
with the Fig. B.7 proposed ANN over the Fig. B.1 (e) training scenario. Experiments carried

out with the Table B.1 simulation variables.

Figure B.13: Online stage robot paths over the Fig. B.1 (e) testing scenario. Agent
controlled by a fine-tuned model saved from Fig. B.12 training.

101

	Acknowledgments
	Abstract
	Resumo
	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Proposed Framework
	Objectives and Key Contributions

	Background Material
	Motion Planning
	Motion Planners
	Environment Representations

	Reinforcement Learning
	Policy Evaluation
	Exploration vs. Exploitation
	Q-Learning

	Deep Learning
	Convolutional Neural Networks
	Recurrent Neural Networks
	Artificial Neural Network Training

	Deep Reinforcement Learning
	Value-based and Policy-based Learning
	Deep Q-Learning
	Dueling Deep Q-Network Architectures
	Double Deep Q-Network and Dueling Double Deep Q-Network

	State of the Art
	Motion Planning
	Global Path Planning
	Local Path Planning
	Reinforcement Learning in Indoor Navigation

	Deep Reinforcement Learning
	Deep Reinforcement Learning in Indoor Navigation

	Developed Work
	Proposed DeepRL-based Pipeline
	Artificial Neural Networks
	State, Action and Reward Models
	State Models
	Action Sets
	Reward Models

	Software Tools and Hardware Materials
	Operating System
	Robot Operating System
	ROS Resources

	Gazebo
	Virtual Environments

	RViz
	Turtlebot
	Python and Pycharm
	TensorFlow

	NVIDIA GeForce GTX 1060
	OpenAI Gym

	Results and Discussion
	DQN Frameworks Validation
	CartPole-v0 OpenAI Gym Environment
	MountainCar-v0 OpenAI Gym Environment
	LunarLander-v2 OpenAI Gym Environment
	Pong-v4 OpenAI Gym Environment

	Motion Planning in Obstacle-free Environments
	DQN, Dueling DQN, and D3QN Comparison
	Non-Pure-Rotational Turnings
	Generalization
	Training Towards a Target Located to the Left of the Agent
	Training Towards a Target Located to the Right of the Agent
	Training Towards a Target Located Behind the Agent

	Obstacle-Oriented Model

	Motion Planning in Environments with Obstacles
	Gazebo's World Environment
	Gazebo's Stage 4 Environment
	Scenario 1
	Action Space with 6 Actions
	Action Space with 12 Actions

	Network's Trainable Parameters
	Scenario 2
	Scenario 3
	Action Space with 12 Actions

	Conclusion
	Future Work

	Bibliography
	DQN Pseudo-codes
	Artificial Neural Network Inference

