

João Miguel Namorado Clímaco Henggeler Antunes

BUILDING AND EVALUATING SOFTWARE VULNERABILITY

DATASETS
Combining Static Analysis Alerts and Software Metrics to

Automatically Detect Vulnerable C/C++ Functions

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Intelligent Systems, advised by Professors José D'Abruzzo Pereira and Marco Vieira, and

presented to the
Faculty of Sciences and Technology / Department of Informatics Engineering.

October 2021

This page is intentionally left blank.

Faculty of Sciences and Technology

Department of Informatics Engineering

Building and Evaluating Software
Vulnerability Datasets

Combining Static Analysis Alerts and Software Metrics to
Automatically Detect Vulnerable C/C++ Functions

João Miguel Namorado Clímaco Henggeler Antunes

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Intelligent Systems advised by Professors José D’Abruzzo Pereira and Marco Vieira, and

presented to the
Faculty of Sciences and Technology / Department of Informatics Engineering.

October 2021

This page is intentionally left blank.

This work is within the informatics security specialization area and was carried out in the
Software and Systems Engineering (SSE) Group of the Centre for Informatics and Systems
of the University of Coimbra (CISUC).

This work has been supported by the projectAIDA - Adaptive, Intelligent and Distributed
Assurance Platform (reference POCI-01-0247-FEDER-045907) leading to this work is co-
financed by the ERDF and COMPETE 2020 and by the FCT under CMU Portugal.

Entidade

Designação do projeto

Objetivo

Programa Operacional
Competitividade e Internacionalização

Cofinanciado por:

Fundo Europeu
de Desenvolvimento Regional

Cofinanciado por:

iii

This page is intentionally left blank.

Acknowledgements

I would like to thank my advisors, José D’Abruzzo Pereira and Marco Vieira, for their
guidance, insight, and availability throughout this entire work’s development.

To my family and friends, for their unconditional love and support during the COVID-19
pandemic.

v

This page is intentionally left blank.

Abstract

Software vulnerabilities can have serious consequences when exploited, such as unautho-
rized authentication, data breaches, and financial losses. Manually reviewing an entire
codebase for weaknesses is cumbersome, time-consuming, and sometimes impossible de-
pending on a project’s size. Due to the nature of this industry, companies are increasingly
pressured to deploy and update software as quickly as possible. Automated tools called
Static Analysis Tools (SATs) can generate security alerts that highlight potential vulnera-
bilities in an application’s source code, though they are prone to misidentified vulnerabili-
ties called false positives.

In this work, we present an automated process capable of collecting new vulnerabilities from
the CVE Details website, retrieving affected files, functions, and classes from a project’s
repository, generating software metrics and security alerts (i.e. potential vulnerabilities),
and building robust datasets capable of being fed to machine learning algorithms. We put
this mechanism into practice by creating vulnerable code unit datasets for five large and
widely known C/C++ projects: Mozilla, Linux Kernel, Xen Hypervisor, Apache HTTP
Server, and GNU C Library.

Additionally, the created vulnerable function dataset is validated using a wide assortment
of machine learning parameters, so as to build and find the best classifiers capable of
labeling functions as vulnerable, neutral, or belonging to a specific vulnerability category.
Results show that it is possible to use both software metrics and security alerts to detect
vulnerable function code, with precision, recall, and F-score values as high as 93.7%, 95.1%,
and 93.9%, respectively. Moreover, further analysis into the influence of a vulnerability’s
detection year on the classifiers’ performance was carried out. However, it could not be
determined if using static data from previous years could be used to detect vulnerable
functions in later ones.

Keywords

Software Security, Vulnerability Detection, Static Code Analysis, Software Metrics, Ma-
chine Learning

vii

This page is intentionally left blank.

Resumo

As vulnerabilidades de software podem ter consequências graves caso sejam exploradas,
incluindo acessos não autorizados, violações de dados, e perdas financeiras. O processo de
rever código manualmente é tanto complexo como demorado, sendo por vezes inviável de
aplicar dependendo do tamanho de um projeto. Por outro lado, as empresas de software
são cada vez mais encorajadas a publicar e atualizar os seus produtos o mais rapidamente
possível. Apesar de existirem ferramentas que encontram potenciais vulnerabilidades au-
tomaticamente no código fonte, estas geraram um número elevado de falsos positivos, ou
vulnerabilidades mal classificadas. Para além disso, este tipo de técnicas nem sempre são
suficientemente fiáveis para detetar vulnerabilidades.

No presente trabalho apresentamos um processo automatizado capaz de recolher novas
vulnerabilidades a partir do website CVE Details, selecionar ficheiros, funções, e classes
afetadas do repositório de cada projeto, gerar métricas de software e alertas de segurança
(i.e. potenciais vulnerabilidades), e construir datasets robustos de modo a serem proces-
sados por algoritmos de aprendizagem computacional. Este mecanismo foi usado para
desenvolver datasets de unidades de código vulneráveis para cinco projetos implementados
em C/C++: Mozilla, Linux Kernel, Xen Hypervisor, Apache HTTP Server, e GNU C
Library.

Adicionalmente, o dataset relativo a funções vulneráveis foi validado através de modelos de
aprendizagem computacional, de modo a determinar quais os parâmetros que geravam os
melhores classificadores. Os resultados experimentais demonstram que é possível usar tanto
métricas de software como alertas de segurança para detetar funções vulneráveis, tendo sido
obtidos valores de precisão, revocação, e F-score de 93.7%, 95.1%, e 93.9%, respetivamente.
Foi também feita uma análise sobre a influência do ano em que as vulnerabilidades foram
descobertas no desempenho destes classificadores. No entanto, não foi possível determinar
se o uso de dados de anos anteriores permite a deteção de funções vulneráveis nos anos
seguintes.

Palavras-Chave

Segurança de Software, Deteção de Vulnerabilidades, Análise Estática de Código, Métricas
de Software, Aprendizagem Computacional

ix

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Document Outline . 3

2 State of the Art 6
2.1 Static Vulnerability Discovery Techniques 7

2.1.1 Static Analysis . 7
2.1.2 Vulnerability Discovery Models . 8

2.2 Dynamic Vulnerability Discovery Techniques 10
2.2.1 Dynamic Analysis . 10
2.2.2 Penetration Testing . 10
2.2.3 Fuzzing . 12

2.3 Software Metrics . 12
2.4 Related Work: Software Vulnerability Detection Techniques 16
2.5 Related Work: Application of Machine Learning Techniques to Software

Vulnerability Detection . 18

3 Building the Vulnerable Code Unit Datasets 23
3.1 Overview . 23
3.2 Retrieving Reported Vulnerabilities from Online Platforms 25
3.3 Retrieving Vulnerable Source Files from Version Control 28
3.4 Generating Security Alerts and Software Metrics 30
3.5 Storing the Collected Data in a Database 32
3.6 Creating and Validating the Dataset . 34

4 Validating the Vulnerable Function Dataset 38
4.1 Overview . 38
4.2 Research Question 1: Exploratory Experiments 41
4.3 Research Question 2: Temporal Window Experiments 44
4.4 Threats to Validity . 47

5 Work Execution 48

6 Conclusion 51

xi

This page is intentionally left blank.

Acronyms

AME Alhazmi-Malaiya Effort-Based Model. 9

AML Alhazmi-Malaiya Logistic Model. 8

AST Abstract Syntax Tree. 29, 47

AT Anderson Thermodynamic Model. 8

CBO Coupling Between Objects. 13, 20, 60, 64

CCC Complexity, Coupling, and Cohesion. 13

CK Chidamber and Kemerer. 13, 16, 17, 31

CSV Comma-Separated Values. xvi, 28, 30, 49, 62–67, 71, 72

CVE Common Vulnerabilities and Exposure. xix, 1, 3, 19, 25–27, 30, 32–35, 40, 41, 62

CVSS Common Vulnerability Scoring System. 25, 32, 62

CWE Common Weakness Enumeration. xvi, xix, 18, 21, 23, 25, 31–36, 62–64, 68

DBMS Database Management System. 32

DIT Depth of Inheritance Tree. 13, 60, 64

DLL Dynamic Link Library. 62, 72

ER Entity–Relationship. xvi, 32–35

FANIN Fan-In. 14–16, 31, 36, 60

FANOUT Fan-Out. 14–16, 20, 31, 36, 60

FN False Negative. 39

FP False Positive. 39

HK Henry Kafura Size. 14, 15, 20, 60

HTTP Hypertext Transfer Protocol. 68

IDE Integrated Development Environment. 42

IEEE Institute of Electrical and Electronics Engineers. 1

JSON JavaScript Object Notation. 67, 71, 73, 79

LCOM Lack of Cohesion in Methods. 14, 20, 60, 64

LOC Lines of Code. 12, 14–16, 20, 31, 36, 60

xiii

Chapter 0

LP Logarithmic Poisson Model. 9

MFSA Mozilla Foundation Security Advisories. 19

ML Machine Learning. xxii

NIST National Institute of Standards and Technology. 1

NOC Number of Children. 13, 60, 64

NVD National Vulnerability Database. 1, 17

OWASP Open Web Application Security Project. 21

QMOOD Quality Model for Object-Oriented Design. 17

RE Rescorla Exponential Model. 9

RF Random Forest. 39, 42–44, 52, 66

RFC Response for a Class. 13, 60, 64

RL Rescorla Linear Model. 9

ROC Receiver Operating Characteristic. 16, 17

RQ Research Question. 37, 38, 40, 41, 44, 47, 51, 52

SAT Static Analysis Tool. vii, xvi, xix, xxii, 2, 3, 7, 15–18, 21–23, 30–36, 38, 41, 44, 47,
51, 52, 62, 65, 67, 68, 72–74

SCA Static Code Analysis. 2, 3, 7, 12, 18, 21–24, 26, 28–30, 51, 67, 68

SLOC Source Lines of Code. 60

SM Software Metric. xxii

SMOTE Synthetic Minority Oversampling Technique. 20

SQL Structured Query Language. 63, 67, 72

SQLi SQL Injection. 16

SVM Support Vector Machine. 17, 18, 20, 47

TN True Negative. 39

TP True Positive. 39

URL Uniform Resource Locator. 26, 32, 62, 67

VDM Vulnerability Discovery Model. xvi, 8–10

WMC Weighted Methods Per Class. 13, 60

XGB Extreme Gradient Boosting. 39, 44

XSA Xen Security Advisories. xvi, 19, 27

XSS Cross-Site Scripting. 16, 17

xiv

This page is intentionally left blank.

List of Figures

2.1 A diagram of the vulnerability discovery methodology. Taken from [37]. . . 6
2.2 The cumulative number of detected vulnerabilities in Windows 95 over time

and various time-based Vulnerability Discovery Models (VDMs) that at-
tempt to fit this data. Taken from [3]. 9

2.3 A diagram of the penetration testing methodology. Adapted from [9]. 11

3.1 A diagram showing the full dataset creation and validation pipeline. This
process begins with retrieving the reported vulnerabilities’ metadata, and
ends with validating the generated dataset. 25

3.2 A screenshot of the score table for CVE-2018-1000199 in the CVE Details
website1, last accessed on January 2021. 26

3.3 A screenshot of the references table for CVE-2019-15215 in the CVE Details
website2, last accessed on January 2021. 26

3.4 A screenshot of the commit message associated with the advisory identified
by Xen Security Advisories (XSA)-87 from the Xen project, in the GitHub
website3, last accessed on October 2021. 27

3.5 A screenshot of the commit message associated with the bug identified by
13656 from the Glibc project, in the GitHub website4, last accessed on
October 2021. 28

3.6 An example of the Comma-Separated Values (CSV) file generated after col-
lecting the vulnerability metadata from CVE Details and other referenced
websites for the Mozilla project. 28

3.7 A screenshot of the differences in the file affected by CVE-2019-15215, before
and after it was patched, in the GitHub website5, last accessed on January
2021. 29

3.8 An example of the CSV file generated after finding the files affected by
vulnerabilities from the Mozilla project. 30

3.9 An example of the CSV file generated after building a topological timeline
of every file in the Xen project. 30

3.10 An example of the Flawfinder tool’s output after analyzing the source code
from the Mozilla project. 31

3.11 An example of the Understand tool’s output after analyzing the source code
from the Xen project. 32

3.12 The Entity–Relationship (ER) diagram of the original database as designed
by Alves et al. Publicly available in [7]. 34

3.13 The ER diagram designed for the tables that store Static Analysis Tool
(SAT) information, their rules, generated security alerts, and descriptions
for each Common Weakness Enumeration (CWE). Any tables that existed
in the original schema are shown in grey and only with the relevant columns. 35

3.14 An example of the function dataset containing the software metrics and
security alert occurrences for the Mozilla, Linux Kernel, and Xen projects. . 37

xvi

List of Figures

4.1 A diagram showing the temporal sliding window dividing the training (in
blue) and testing (in orange) function data for several years until 2019. using
a window size of five years. 40

4.2 The confusion matrix showing the predictions of the classifier trained with
configuration C5. 44

4.3 The evolution of the performance metrics for each window size along each
testing year for configuration C1. 45

5.1 A screenshot of various tasks represented as issues in our GitHub repository. 49

1 The confusion matrix showing the predictions of the classifier trained with
configuration C1. 81

2 The confusion matrix showing the predictions of the classifier trained with
configuration C2. 81

3 The confusion matrix showing the predictions of the classifier trained with
configuration C3. 82

4 The confusion matrix showing the predictions of the classifier trained with
configuration C4. 82

5 The confusion matrix showing the predictions of the classifier trained with
configuration C6. 83

6 The confusion matrix showing the predictions of the classifier trained with
configuration C7. 83

7 The confusion matrix showing the predictions of the classifier trained with
configuration C8. 84

8 The confusion matrix showing the predictions of the classifier trained with
configuration C9. 84

9 The evolution of the performance metrics for each window size along each
testing year for configuration C2. 86

10 The evolution of the performance metrics for each window size along each
testing year for configuration C3. 87

11 The evolution of the performance metrics for each window size along each
testing year for configuration C5. 87

12 The evolution of the performance metrics for each window size along each
testing year for configuration C6. 88

13 The evolution of the performance metrics for each window size along each
testing year for configuration C9. 88

xvii

This page is intentionally left blank.

List of Tables

2.1 The values of several software metrics collected from the code in Listing 2.1.
These were generated using a SAT called Understand6. 15

3.1 A summary of the five large C/C++ projects used in our work. The total
number of lines of code was taken from the Open Hub website7on January
2021. 24

3.2 A summary of the bug tracker and security advisory websites considered for
the C/C++ projects, as well as the regular expressions used to retrieve a
commit’s hash via its message. The tokens <CVE>, <BUG_ID>, and <ADV_ID>
refer to the Common Vulnerabilities and Exposure (CVE), bug tracker, and
security advisory identifiers, respectively. 27

3.3 The vulnerability categories considered for this work and their respective
CWEs. Adapted from [40]. 36

4.1 The target labels, classification algorithms, dimensionality reduction tech-
niques, and data balancing methods used to validate the function dataset
in Propheticus. 39

4.2 The hyperparameters of the classification algorithms used to validate the
function dataset in Propheticus. 39

4.3 Traditional performance metrics for assessing a classifier’s quality. 40
4.4 The number of samples in the function dataset in each year, as determined

by a vulnerability’s CVE identifier. 41
4.5 A description of the machine learning parameter configurations that yielded

the best results for each target label and performance metric. 42
4.6 The best results for the precision, recall, and F-score performance metrics

for each configuration described in Table 4.5, rounded to four decimal places.
The relevant metric value for each configuration is shown in bold. 43

4.7 The performance metric values for configuration C1 using the three temporal
sliding windows. 46

1 A summary of the software metrics present in the code unit datasets. This
includes metrics generated by the Understand tool [28] version 4.0.837 and
any new ones aggregated using our scripts. 60

2 The performance metric values for configuration C2 using the three temporal
sliding windows. 89

3 The performance metric values for configuration C3 using the three temporal
sliding windows. 89

4 The performance metric values for configuration C5 using the three temporal
sliding windows. 90

5 The performance metric values for configuration C6 using the three temporal
sliding windows. 90

xix

Chapter 0

6 The performance metric values for configuration C9 using the three temporal
sliding windows. 91

xx

This page is intentionally left blank.

Chapter 0

List of Publications

This dissertation contributed to the following publication which was submitted and ac-
cepted by a workshop:

– José D’Abruzzo Pereira, João Henggeler Antunes, and Marco Vieira. On building
a vulnerability dataset with static information from the source code. In Safety,
Security, and Privacy in Complex Artificial Intelligence based Systems (SAFELIFE
2021), 2021. (accepted).

– Abstract: Software vulnerabilities are weaknesses in software systems that
can have serious consequences when exploited. Examples of side effects include
unauthorized authentication, data breaches, and financial losses. Due to the
nature of the software industry, companies are increasingly pressured to deploy
software as quickly as possible, leading to a large number of undetected software
vulnerabilities. Static code analysis, with the support of SATs, can generate se-
curity alerts that highlight potential vulnerabilities in an application’s source
code. Software Metrics (SMs) have also been used to predict software vul-
nerabilities, usually with the support of Machine Learning (ML) classification
algorithms. Several datasets are available to support the development of im-
proved software vulnerability detection techniques. However, they suffer from
the same issues: they are either outdated or use a single type of information.
In this paper, we present a methodology for collecting software vulnerabilities
from known vulnerability databases and enhancing them with static informa-
tion (namely SAT alerts and SMs). The proposed methodology aims to define
a mechanism capable of more easily updating the collected data.

xxii

This page is intentionally left blank.

Chapter 1

Introduction

Securing one’s information from foreign entities only becomes more important with time.
According to a 2020 technical report by IBM Security [44], data breaches averaged a total
of $3.86 million worldwide, with more than half being caused by malicious user attacks.
More worrying still, the healthcare industry accounted for the highest average cost of $7.13
million, just as the COVID-19 pandemic spread around the globe. This may only become
exacerbated with time as the majority of companies predicted that remote work, a staple
of the pandemic, would increase both the cost and response time of dealing with a data
breach.

Software systems are prone to bugs, or accidental faults which can themselves lead to er-
rors [19, 37]. According to the Institute of Electrical and Electronics Engineers (IEEE),
these errors range from following a wrong set of instructions to producing an unexpected
outcome during human interaction [17]. Software vulnerabilities are a subset of bugs that
can be maliciously used to compromise a system and undermine its security. This can
be accomplished, for example, by running an application and performing certain steps in
a given order, by changing its environment, or by taking advantage of a system’s inher-
ently insecure behavior. The act of using vulnerabilities for these malicious ends is called
exploiting [19].

The CVE system, a widely used list of publicly known security vulnerabilities, also defines
software vulnerabilities as “a flaw in a software, firmware, hardware, or service compo-
nent resulting from a weakness that can be exploited, causing a negative impact to the
confidentiality, integrity, or availability of an impacted component or components” [18].
Likewise, the National Vulnerability Database (NVD), a vulnerability database that col-
lates information from CVE and that is managed by the National Institute of Standards
and Technology (NIST), borrows this same definition for their operations [39].

In addition to the loss of sensitive user data and disruption of service, software vulnera-
bilities may lead to a significant financial impact. A 2016 security report published by the
Kaspersky Labs [29] found that zero-day vulnerabilities (previously unknown vulnerabili-
ties that have yet to be patched, meaning they can be exploited by malicious users) were
the most expensive security incidents for both enterprises and small and medium-sized
businesses. While rare, these vulnerabilities cost an estimated $149 thousand for small
and medium-sized businesses and $2 million for enterprises. Small and medium-sized busi-
nesses also ranked vulnerabilities in in-house software as the sixth most expensive incident
and known unpatched exploits in off-the-shelf software and hardware as the eighth. The
amount was $115,000 and $101,000 in financial losses, respectively.

1

Chapter 1

Much like in other industries, the announcement of defects has a negative influence on a
software vendor’s market value. Telang and Wattal [48] found that vendors lose on average
0.63% of their value, or an estimated $0.86 billion loss, on the day that the vulnerability is
announced. This effect is worsened by other factors, including the market’s competition, a
small vendor size, the vulnerability’s severity, and the time it takes to patch it. A vendor
that does not provide a patch when the vulnerability is disclosed to the public suffers a
0.82% greater loss than others that did so. Vulnerabilities that violate confidentiality were
found to also result in greater losses. As a whole, this cost comes from having to patch the
vulnerability, and from the loss of a vendor’s reputation and future sales.

By successfully exploiting a vulnerability one may potentially affect the following key
information security properties [19]:

• Confidentiality: the act of keeping information private and preventing any unau-
thorized access. Software systems often store and interface with sensitive user data
like personal files, credentials, or financial information. Failing to fulfill this attribute
could allow third parties to use the data for unlawful purposes. It is expected that
the system is able to maintain a high level of privacy for the end-user, regardless of
who they are;

• Integrity: the act of ensuring the correctness of data and preventing any unwanted
modifications to their source or contents. This may be accomplished by stopping any
unauthorized changes to the former and establishing integrity detection mechanisms
for the latter. Should this property be circumvented, third parties may impersonate
a user or tamper with their information;

• Availability: the act providing uninterrupted access to the system and preventing
any attacks that could affect its service. Not doing so would violate a user’s expec-
tations, and would render the system’s functionalities and resources inaccessible.

As software becomes more complex and interconnected, so too does the difficulty and cost
in creating secure systems increase [22]. Moreover, developers often have to maintain legacy
codebases, and cannot afford to rebuild them from the ground up [19]. Application security
thus becomes a necessity and, for big companies with equally large software codebases,
there must exist mechanisms to detect any vulnerabilities that they might contain.

One way of doing this is by using what are called software vulnerability discovery tech-
niques, which divide themselves into two categories depending on how they perform their
analysis: static techniques that merely check an application’s source files, and dynamic
techniques that execute a program in a controlled environment [32]. A traditional exam-
ple of Static Code Analysis (SCA) would be code inspections, where people review code
manually by referencing predefined guidelines [20]. Likewise, a related dynamic approach
would be test cases, where a set of inputs and steps are fed into a system, in hopes that an
expected output is produced. In this first category sits static analysis, a technique that can
be particularly useful for detecting weaknesses in large projects as it is fast, scalable, and
easy to integrate into their development process. Unlike manual SCA, this technique can
be automated using what are called SATs. These tools highlight potential vulnerabilities
in specific code locations by generating security alerts. This type of approach, however, is
subject to a high number of misidentified vulnerabilities, called false positives. As such,
relying solely on static analysis to find vulnerabilities may not be advisable [40].

In a similar vein are constructs called software metrics, which describe static code properties
that can be used to gauge a software project’s quality during its life cycle [38]. These

2

Introduction

metrics have been used successfully in the past to distinguish between vulnerable and
non-vulnerable code, though there is no single metric that applies to all cases [35]. More
specifically, other studies have combined and investigated the usage of software metrics
with machine learning algorithms in order to detect vulnerabilities [6, 47].

1.1 Contributions

Alves et al. [5] created a database of vulnerabilities from five large C/C++ projects, where
each affected file, function, and class is associated with an assortment of software metrics
collected using a SAT. However, this information only pertains to the years 2000 until
2016, meaning it is now out of date. As such, we developed an automated process capable
of collecting new vulnerabilities from online platforms, retrieving each affected file from
a project’s version control system, generating software metrics using the same tools, and
updating the original database. Moreover, this data is enriched with security alerts, which
represent potential vulnerabilities, also generated via SCA.

Having collected this new information, we developed three datasets composed of software
metrics and security alert occurrences in each project’s files, functions, and classes. These
were made specifically to be ingested by machine learning algorithms, so as to create classi-
fiers capable of labeling unseen code units as vulnerable or not. Because we complemented
the database with each vulnerability’s category, we are also able to classify these code units
as belonging to specific categories.

Indeed, we trained and tested machine learning models using a wide array of parameters in
order to assign functions a binary label (vulnerable or not), or a multiclass label (vulnerable
with a given category). By exploring different configurations, we were able to find the
parameters that yielded the best results along the well-known precision, recall, and F-
score performance metrics [50] for both labels. Results showed that it is possible to use
both software metrics and security alerts to identify vulnerable functions, with precision,
recall, and F-score values as high as 93.7%, 95.1%, and 93.9%, respectively.

We took this opportunity to analyze the influence of certain properties in vulnerable func-
tions and chose to focus on a vulnerability’s discovery date. Since the year a vulnerability
was published is encoded in the CVE identifier, we were able to divide each function into
groups from 2002 to 2019. By using a temporal sliding window, which considered functions
in a given year range for the training subset and the year immediately after as the testing
data, we checked whether this time component could influence the detection of vulnerable
function code. Although some results showed values as high as the previous exploration
stage, there was also a significant drop in performance for the years between 2017 and 2019.
We also found that different sliding window sizes resulted in very similar values for the
same performance metric. We reached the conclusion that the data partitioning scheme
likely led to a worse testing subset in terms of size and representation. Thus, it was not
possible to determine whether using static data from earlier vulnerability years could be
used to predict if a function was vulnerable or not.

1.2 Document Outline

The rest of this document is organized as follows: Chapter 2 introduces some software
vulnerability discovery techniques as well as various traditional software metrics. This
chapter also showcases other related studies by describing their methodologies and results.

3

Chapter 1

In Chapter 3, we provide an in-depth explanation of how each code unit dataset was built,
from collecting vulnerabilities from online platforms to preparing the data so it could
be fed to machine learning models. Chapter 4 describes how the function dataset was
validated in practice. This includes listing which classification algorithms, data processing
techniques, and hyperparameters were used, as well as presenting the performance metrics
obtained after running the exploratory and year-based experiments. Any threats to validity
that may have hindered our work are also shown here. Next, Chapter 5 describes the
work’s environment, including how its files and tasks were organized between the student
and advisors, and how some important implementation problems were solved. Lastly, we
present our main conclusions and any future work in Chapter 6.

4

This page is intentionally left blank.

Chapter 2

State of the Art

This chapter introduces vulnerability discovery techniques, including static techniques (like
static analysis and vulnerability discovery models) and dynamic techniques (like dynamic
analysis, penetration testing, and fuzzing). Software metrics that can be collected from
procedural and object-oriented code using static techniques are also described. Finally, we
overview existing studies and articles that are related to our work.

One way of detecting vulnerabilities is by using software vulnerability discovery techniques.
These focus on discovering undetected vulnerabilities where a key principle is that, the
longer it takes to find one, the more expensive it is to fix it [27]. The diagram in Figure
2.1 shows a graphical representation of the vulnerability discovery process using some of
the concepts introduced in Chapter 1. Here, one may see how the previously mentioned
errors can compromise a system by opening it to outside malicious users.

Figure 2.1: A diagram of the vulnerability discovery methodology. Taken from [37].

Some of these detection methods are described in the next few subsections, including
static analysis, vulnerability discovery models, dynamic analysis, penetration testing, and
fuzzing. As we will see, these approaches fall under one of two categories: static techniques
and dynamic techniques.

6

State of the Art

2.1 Static Vulnerability Discovery Techniques

In this type of vulnerability discovery technique, an application’s vulnerabilities and weak-
nesses are assessed without running it. Below, two specific static techniques are presented:
static analysis and vulnerability discovery models [32].

2.1.1 Static Analysis

Static analysis is a process where the behavior of an application is analyzed, without
executing it, in order to discover any defects or weaknesses [13]. One traditional example is
manual code inspection, where source code is reviewed by people and certain predetermined
properties are verified [20]. Since methods like these are time-consuming and require prior
knowledge of the vulnerabilities to detect, automated tools are created to aid Static Code
Analysis (SCA) [32]. These are called Static Analysis Tools (SATs), though they are not
fully automated as their output must be verified by a human.

Because running the program is not required, the main advantages of this type of technique
are its fast execution time and ease of integration into the software development cycle
[32]. Additionally, this method is considered sound, i.e., its analysis holds for all program
executions. It does, however, have some drawbacks, such as a high number of false positives
(misidentified vulnerabilities), being prone to false negatives (undetected vulnerabilities),
and requiring human validation at some level. Moreover, it is unable to detect design flaws
or vulnerabilities caused by software configurations.

More specific static analysis techniques also exist, including:

• Pattern Matching: a process where a potentially dangerous textual pattern is
searched for in the source code [27]. For example, locating a function call that is
inherently unsafe and whose usage is no longer recommended. Due to its simplicity,
this technique is very limited and generates a high number of false positives;

• Lexical Analysis: a process where a program’s source code is subdivided into a set
of identifiers with a given meaning in its language (tokens), which are then compared
to a database of known defects [27, 31]. This process also suffers from a high number
of false positives given that it doesn’t take the program’s syntax or semantics into
account;

• Type Inference: a process where the data types of variables and functions are
inferred and checked to see if they’re in accordance with the rules defined in the
programming language [31];

• Syntactic Pattern Matching: a process where an application is broken down into
a structure called the abstract syntax tree, which represents the program’s constructs
and rules [23]. The analysis is then conducted by searching for a set of potentially
dangerous operations in this structure. This static analysis technique is one of the
fastest, but can also generate many false positives while providing little insight into
a program’s correctness;

• Data Flow Analysis: a process where a program is converted into a graph, called
the control flow graph, that represents every path that may be traversed during its
execution [23, 31]. Each node shows a sequence of instructions, where any connecting
edges represent a branch in execution, allowing us to determine the possible values
a variable or expression can take during its lifetime. This process can be used for

7

Chapter 2

several purposes like finding the most recent assignment to a variable, removing un-
used assignments, removing redundant operations, or optimizing reusable arithmetic
results. One special use case of this technique is taint analysis, where untrusted data
is monitored as it propagates through the graph’s nodes [27]. This may be used to
check if any potentially dangerous input ever reaches a critical part of the application
without being properly transformed into trustworthy data (sanitized);

• Constraint-Based Analysis: a process in which a set of constraints that describe
the program’s information and behavior are created [23, 31]. This system of con-
straints is then solved, and any relevant information is extracted from its solution;

• Symbolic Execution: a process where the program’s input is converted to symbols
that represent arbitrary values rather than actual data [23, 31]. These are associ-
ated with algebraic expressions, meaning the application’s output values are now
computed as a function of these formulas. By applying constraints to these input
symbols, it’s possible to build a tree structure that represents the program’s execution
paths. Constraint solvers can then be used to determine which set of inputs result
in certain execution paths, potentially detecting errors. This method is prone to
scalability problems as a large number of execution states can exceed the constraint
solvers’ problem-solving abilities. Moreover, issues with consistency may arise if the
program interacts with components outside its environment [30];

• Theorem Proving: a process in which the program is converted into logic formulas
based on its preconditions and post-conditions [23, 31]. The validity of this program
theorem is then proved by using axioms and inference rules.

2.1.2 Vulnerability Discovery Models

A Vulnerability Discovery Model (VDM) shows the evolution of the number of detected
vulnerabilities in a given software during its life cycle, allowing end-users to assess its
security risks [32]. These models attempt to best reflect reality by estimating the rate
of vulnerability discovery and the cumulative number of vulnerabilities discovered. As
such, their purpose is to evaluate a software’s security as a whole, instead of detecting
specific vulnerable components [33]. Their results are then subject to statistical tests that
examine how well the models tracked the discovery process. VDMs can be categorized as
time-based or effort-based given their domain. Time-based VDMs are parametric functions
that estimate the total number of vulnerabilities at a particular instance since the software
was released, whereas effort-based VDMs base this value on the software’s testing effort.
Below, several VDMs are described [3]:

• Anderson Thermodynamic Model (AT): a time-based model that assumes that
any detected vulnerabilities are removed and that no more are reintroduced in the
process. The cumulative number of vulnerabilities grows as a logarithmic function.
One of its parameters represents the lower failure rate of the software’s user beta
testing phase as compared with alpha testing;

• Alhazmi-Malaiya Logistic Model (AML): a time-based model that bases itself
on three stages of an operating system’s usage during its life cycle: 1) the learning
phase, where the attention to the newly released software grows slowly, resulting
in few reported vulnerabilities; 2) the linear phase, where the number of reported
vulnerabilities increases as more and more people become familiar with the software;
3) the saturation phase, where the number of detected vulnerabilities starts declining

8

State of the Art

due to decreased user interest and a reduced vulnerability pool. The evolution of the
cumulative number of vulnerabilities is represented as an S-shaped (sigmoid) curve;

• Alhazmi-Malaiya Effort-Based Model (AME): an effort-based VDM that es-
timates its value based on the number of users in a system instead of relying on
calendar time [4]. The reasoning behind this model is that a greater effort for dis-
covering vulnerabilities, both inside and outside an organization, would go towards
a system with a large userbase;

• Rescorla Linear Model (RL): a time-based model that attempts to estimate the
vulnerability detection rate linearly with time, rather than using the cumulative num-
ber of vulnerabilities. As time increases, this cumulative amount grows polynomially.
Another similar model is the Rescorla Exponential Model (RE) which presents
an exponential growth where this cumulative value approaches the total number of
vulnerabilities in the system as time increases;

• Logarithmic Poisson Model (LP): a time-based model where the cumulative
number of vulnerabilities increases indefinitely with a logarithmic growth. In this
case, finding a physical interpretation for both the model and its parameters is com-
plex. Despite this, it can present better results than other models in many cases.

The graph in Figure 2.2 plots different time-based VDMs whose parameters have been
specified so that their curve best approximates the real number of detected vulnerabilities
in the Windows 95 operating system.

Figure 2.2: The cumulative number of detected vulnerabilities in Windows 95 over time
and various time-based VDMs that attempt to fit this data. Taken from [3].

This technique is advantageous as it can theoretically predict both the rate of vulnerability
discovery and the total amount of vulnerabilities, allowing organizations to identify current
trends and make future projections of a given software’s life cycle [32]. Their prediction ca-
pabilities can also be improved if more information is known about a system’s environment
since their parameters can be constrained to specific values. As models, however, they can
only approximate reality, meaning their performance could be poor if certain factors aren’t
properly accounted for. It should also be noted that VDMs ignore a system’s architecture
and assume that vulnerabilities can be found in any of its components. All vulnerabilities
are treated equally, regardless of how severe each one may be. Moreover, VDMs assume
that different software releases are independent, while in practice a significant amount of

9

Chapter 2

components are reused [33]. Using a single VDM may also lack generality for a system’s
entire lifespan, requiring more than one model to describe the same software at different
periods in time.

2.2 Dynamic Vulnerability Discovery Techniques

In this type of vulnerability discovery technique, the analysis is conducted by executing
and interfacing with software in a controlled environment. Below, three specific dynamic
techniques are presented: dynamic analysis, penetration testing, and fuzzing [32].

2.2.1 Dynamic Analysis

Dynamic analysis is a process in which a program is analyzed by running it inside a
controlled environment and monitoring its behavior [30]. In this approach, defects are
found by producing test cases that allow the analyzers to cover as many different execution
paths as possible. Since it is performed in a running application, vulnerability detection is
generally more accurate and generates fewer false positives than static analysis [1].

Despite this, however, dynamic analysis may require a high level of human involvement
with strong technical skills. As such, this process can have poor scalability and result in
slower vulnerability detection. Due to their nature, the discovery process also suffers from
runtime overhead. Moreover, defects present in unexecuted paths are not found, requiring
a large number of test cases to ensure a certain confidence level in detecting vulnerabilities.
No conclusions can then be made about code that wasn’t executed during the analysis [43].
Because of this, some methodologies combine both static and dynamic analysis to improve
code coverage and detection speed while reducing the number of false positives [1, 51].
Like static analysis, this technique also supports taint analysis, where untrustworthy data
is tracked throughout the program’s execution in order to verify if it reaches any critical
components [51]. However, this method still suffers from the previous drawbacks, including
not being able to detect latent weak spots.

2.2.2 Penetration Testing

Penetration testing is a method for evaluating the security of a system by simulating attacks
from malicious users and assessing their success [32]. This is accomplished by planning and
reproducing an unauthorized user attack on the system, where the goal is to identify any
vulnerabilities before a real attacker can make use of them. In this technique, vulnerability
discovery is the same as exploiting them. Penetration testing can be divided into three
categories based on the amount of information made available to the testers [32]:

• Black-Box Penetration Testing: assumes no prior knowledge of the infrastructure
to be tested. This simulates an attack from someone unfamiliar with the system;

• White-Box Penetration Testing: provides the testers with complete knowledge
of the infrastructure to be tested. This simulates an attack from someone with insider
knowledge of the system (e.g an “inside job” or security leak);

• Gray-Box Penetration Testing: a variation that is somewhere between the pre-
vious two categories. This simulates an attack where there may have been a partial

10

State of the Art

disclosure of the system’s inner workings, meaning testers will need to gather more
information before employing this technique.

This technique can be further categorized based on how it’s performed. Manual penetra-
tion testing is done without the aid of an automated tool, whereas automated penetration
testing tools can be used to execute repetitive tasks and reduce testing time [8]. The first
category can also be divided into systematic manual testing, where a predefined plan is
followed, and exploratory manual testing, where this method is conducted with only the
testers’ instinct and experience. The diagram in Figure 2.3 provides an overview of pene-
tration testing, illustrating the steps that are carried out by the testers while performing
this technique.

Figure 2.3: A diagram of the penetration testing methodology. Adapted from [9].

This process has several advantages including having no false positives, detecting design
flaws, taking social engineering factors into account, and being able to expose vulnerabilities
that can be hard to detect with other tools. Penetration testing can also focus on the
workflow at all levels of an organization, allowing its members to know which parts of the
system to prioritize and apply corrective measures [9]. These may prevent security breaches
that would otherwise damage an organization’s reputation which, as previously mentioned,
could have significant customer loyalty and financial repercussions. On the other hand, it
depends heavily on human interaction, whose results vary greatly depending on a person’s

11

Chapter 2

abilities, skills, and technical experience. Moreover, it may cause damage to the system in
question while failing to detect vulnerabilities (false negatives). As new security threats
and tools evolve, penetration testing must also be performed multiple times in the future
to prevent more recent vulnerabilities from being exploited.

2.2.3 Fuzzing

Fuzzing is a technique that generates a semi-valid or random stream of data that is then
sent to a running target application in order to test its resistance [32]. This semi-valid data
is correct enough to pass input examinations, but still invalid enough to cause problems.
The tool that generates this data, called fuzzer, has two proposed methods for doing so:

• Data-Generation: creates the data according to a given format or specification.
This requires knowledge of the latter and needs a high amount of human involvement
in the process. Additionally, this method traverses a high amount of program states
(high code coverage) as it tries to create test cases for as many execution paths as
possible [30];

• Data-Mutation: modifies the contents of valid input data, requiring little knowl-
edge of any format or specification. When these are complex, data-mutation is fa-
vored over data-generation. However, data-mutation is not good enough for highly
sensitive situations and heavily depends on the initial values, which means that dif-
ferent values may lead to very different code coverage rates and effects.

Detecting vulnerabilities with fuzzing can be advantageous as it has a high degree of au-
tomation while having no false positives. It also doesn’t require access to the source code
and can be easily scaled up to large applications. However, some drawbacks exist, includ-
ing a large false negative rate, a low degree of generalization, and the long development
cycle of fuzzing tools. Additionally, inputs may be processed with signature, encryption,
or compression algorithms, requiring the fuzzer to also have the ability to perform these
operations. Validating file formats and protocols can also be an obstacle to input genera-
tion.

2.3 Software Metrics

One other related construct used for detecting software faults and managing a project’s
quality over time would be software metrics. In order to keep track of the overall quality
during software development, it becomes necessary to establish a process for quantifying
and evaluating the project’s performance. One way of accomplishing this is by measuring
the intermediate product according to specific criteria so as to assess both a developer and
their work [38]. This can take the form of values that characterize the source code itself
(e.g. the number of Lines of Code (LOC) in a file), or whoever developed it (e.g. the
number of defects introduced by a programmer per thousand LOCs) [21]. We will focus
on the former, and will henceforth use “software metrics” to refer to source code metrics.
Much like in SCA, their value can be determined without running the software.

As the programming languages used to create software were designed using different
philosophies, called paradigms, there also exist distinct types of software metrics that ac-
commodate each one [38]. The two most relevant paradigms in regard to software metrics

12

State of the Art

are procedural and object-oriented programming. In the former, a program’s instructions
are carried out sequentially and may be contained inside procedures, which can be called
at any point during the execution (e.g. the C programming language). In the latter, a
program uses the concept of objects, which contain their own data and procedures as de-
fined by a class, to model a problem according to the relationship and interaction between
other objects (e.g. the Java programming language). Some languages support both and
are thus multi-paradigm, allowing the user to choose their own coding style (e.g. the C++
programming language). The three main software metrics properties from object-oriented
literature, Complexity, Coupling, and Cohesion (CCC), are described below [14]:

• Complexity: where an object’s complexity is described by the cardinality of its
set of properties. For example, the number of inherited data in an object from its
parents, or the number of different execution paths in a method. If either of these
values were large enough, their respective object could be considered complex;

• Coupling: where two objects are considered coupled if at least one acts upon the
other. For example, if one object accesses the data or invokes a method from the
other;

• Cohesion: which describes the degree of similarity between two objects, i.e., the
intersection between their sets of properties. For example, the similarity between
two methods in an object can be seen as the number of common member variables
that they access.

The same authors, Chidamber and Kemerer, used these properties to develop [14] and later
improve [15] the following suite of object-oriented software metrics. These became some
of the most used metrics in other studies [38], and are called the Chidamber and Kemerer
(CK) metrics.

• Weighted Methods Per Class (WMC): the sum of the complexities of every
method in a class. This complexity is assumed to be one, and the sum equals the
total number of methods in a class. This metric reflects an object’s complexity since a
higher value imply a greater amount of time developing and maintaining the class. It
also means that any subclass will inherit a large number of methods, thus increasing
their complexity;

• Depth of Inheritance Tree (DIT): the number of parent classes that are inherited
by a class. This metric reflects an object’s complexity since the deeper its class is in
the inheritance hierarchy, the greater the number of methods it can inherit;

• Number of Children (NOC): the number of immediate subclasses that inherit a
class. This metric reflects an object’s complexity since the higher it is, the greater the
number of children that will inherit the parent class’ methods, requiring additional
work to test them;

• Coupling Between Objects (CBO): the number of other non-inherited classes
that are coupled to a class. This metric reflects an object’s coupling and how hard
it would be to test it;

• Response for a Class (RFC): the number of methods in a class that can potentially
be executed, including inherited methods. This metric reflects an object’s complexity
since the greater the number of methods that may be invoked by other objects, the
harder it is to test and debug;

13

Chapter 2

• Lack of Cohesion in Methods (LCOM): the number of disjoint sets formed
by intersecting the sets of used member variables in every method in a class. This
metric reflects an object’s cohesion since fewer disjoint sets implies a larger degree of
similarity between methods. If there are no used member variables in common, this
value is zero.

For both procedural and object-oriented programming languages, one other equally famous
complexity metric is McCabe’s Cyclomatic Complexity [34]. This value counts the
number of linearly independent execution paths of a procedure, and is computed by using
the number of edges, nodes, and connected components from the program’s control flow
graph. By setting an upper limit to this metric, developers are forced to reduce the
number of path combinations the execution may take, thus decreasing the amount of
testing required to validate a program. Other variants of this metric also exist, including
[16]:

• Modified Cyclomatic Complexity: identical to cyclomatic complexity, except
that each switch statement (a construct where one branch is selected from several
possible values) is assumed to have a complexity of one, instead of counting each
individual case branch;

• Strict Cyclomatic Complexity: identical to cyclomatic complexity, except that,
in each binary logical operator (AND and OR), every operand is also counted and is
assumed to have a complexity of one;

• Essential Cyclomatic Complexity: measures the cyclomatic complexity by it-
eratively replacing well-structured control structures (e.g. IF-ELSE and WHILE
constructs) with a single statement. This shows how much complexity remains once
these well-structured constructs have been removed.

As was previously seen in the static and dynamic analysis sections, 2.1.1 and 2.2.1, it can
be advantageous to keep track of how information flows through different components in a
program. Henry and Kafura [26] proposed a complexity metric called the Henry Kafura
Size (HK) which measures the interconnectivity of a procedure with its environment.
This metric is computed by using the following three software metrics [26]:

• Fan-In (FANIN): the number of inputs that a procedure takes, plus the number
of global data structures that it reads information from;

• Fan-Out (FANOUT): the number of outputs that a procedure emits, plus the
number of global data structures that it writes information to;

• A metric that represents the length or complexity of the procedure such as LOC or
cyclomatic complexity. This value may also be omitted from the metric’s formula.

Where the final value of the HK metric is calculated using the formula:

Length× (FANIN × FANOUT)2

This metric uses the product of FANIN and FANOUT to represent the total number of
combinations from an input source to an output destination. This can be interpreted as

14

State of the Art

measuring the complexity of both the procedure and the relationship with its environment.
Just as this value increases, so too does the number of implemented functionalities and the
amount of information that flows through a procedure. A procedure of a large enough size
could have too much influence on a system and may need to be broken down into smaller
ones.

An example of a procedure and the values of its software metrics are presented in Listing
2.1 and in Table 2.1, respectively.

1 // This program solves the N-Queens Problem , where N queens must be
2 // placed on an NxN chessboard so that no two queens share the same
3 // row , column , or diagonal , i.e., they don't threaten each other.
4

5 int num_solutions = 0;
6 void solve_n_queens(int board_size , int column , int *column_history) {
7

8 if(column == board_size) {
9 printf("\nNo. %d\n-----\n", ++ num_solutions);

10

11 for(int i = 0; i < board_size; i++, putchar('\n'))
12 for(int j = 0; j < board_size; j++)
13 putchar(j == column_history[i] ? 'Q' : ((i + j) & 1) ? ' ' : '.');
14

15 return;
16 }
17

18 #define UNDER_ATTACK(i, j) (column_history[j] == i || abs(column_history[
j] - i) == column - j)

19

20 for(int i = 0, j = 0; i < board_size; i++) {
21 for(j = 0; j < column && !UNDER_ATTACK(i, j); j++);
22 if(j < column) continue;
23

24 column_history[column] = i;
25 solve_n_queens(board_size , column + 1, column_history);
26 }
27 }

Listing 2.1: A program written in the C programming language that finds and shows
the solutions to the N-Queens problem. This code was adapted from the Rosetta Code
website1.

Metric Value
LOC 15

Cyclomatic Complexity 9
Modified Cyclomatic Complexity 9
Strict Cyclomatic Complexity 11

Essential Cyclomatic Complexity 4
FANIN 5

FANOUT 5
HK 5625

Table 2.1: The values of several software metrics collected from the code in Listing 2.1.
These were generated using a SAT called Understand2.

Despite their simplicity and age, these types of metrics have been used to model software
1https://www.rosettacode.org/wiki/N-queens_problem#C
2https://www.scitools.com/

15

https://www.rosettacode.org/wiki/N-queens_problem#C
https://www.scitools.com/

Chapter 2

faults and defects [46, 49]. Software metrics that are easy to compute and understand are
also favored over more academic metrics that are harder to collect in a real-world system
[21]. Nuñez-Varela et al. [38] found that the ten previously mentioned metrics (LOC,
the six CK metrics, FANIN, FANOUT, and cyclomatic complexity) were part of the top
twelve most used software metrics from 226 different studies. In spite of their ubiquity,
these metrics are defined at a micro-level, meaning they only apply to procedures or classes.
These must be extended to the macro-level to draw conclusions about larger components
such as entire source files [49]. One way to accomplish this is to aggregate them using
operations like the sum, mean, median, maximum, and minimum functions. Although
this may be done for any metric, if their distribution is skewed then the interpretation
of the final result becomes unreliable. Additionally, software metrics may also differ in
performance depending on what programming language is used [46].

2.4 Related Work: Software Vulnerability Detection Tech-
niques

This section presents and summarizes other work related to detecting vulnerabilities with
or without software metrics. In particular, we pay close attention to articles whose method-
ology tries to find vulnerabilities by using static analysis, machine learning algorithms, or
both.

Harer et al. [25] presented a technique for detecting vulnerabilities in C/C++ code from De-
bian releases and GitHub repositories by generating machine learning models that classify
functions as “good” or “buggy” by looking at both the source code and intermediate build
files. The first approach uses natural language processing, which has no knowledge about
the semantics of the languages, to analyze the source files, while the latter relies on the
intermediate representation that is created when the programs are compiled. The source-
based models used the following algorithms: the extremely random trees (extra-trees)
classifier, a convolutional neural network called the TextCNN model, and a combination of
these where the output of TextCNN is passed to the extra-trees classifier. Random forests
were used for the build-based model.

These were evaluated using the Receiver Operating Characteristic (ROC) and the precision-
recall curves, where the authors found that the best performance came from the model that
combines both TextCNN and the extra-trees classifier. Both individual models had similar
performances in the ROC metric. Additionally, build-based classifiers generally performed
worse than source-based ones. The former also saw a very similar performance on the
Debian and GitHub datasets. However, a model that combines both sets of source and
build features was found to yield better results than either one, as the classifier had extra
information to work with.

Algaith et al. [2] analyzed the performance of various SAT configurations when detecting
SQL Injection (SQLi) and Cross-Site Scripting (XSS) vulnerabilities in 134 PHP plugins
of the WordPress Content Management System. The goal was to run multiple SATs for
the same source code, which would maximize and diversify the number of reported security
alerts and thus result in a more complete vulnerability detection heuristic. Since separate
SATs may be designed using different types of analysis, these tools’ strengths and weak-
nesses would complement each other. In each studied configuration, the combination of N
SATs could raise an alarm using one of the following three methods: 1-out-of-N, where the
code is classified as vulnerable if at least one SAT classifies it as such; N-out-of-N, where
the code is classified as vulnerable if all SATs classify it as such; or a simple majority vote.

16

State of the Art

This was done for the possible two, three, four, and five SAT combinations, where the tools
used were RIPS, Pixy, phpSAFE, WAP, and WeVerca.

The metrics sensitivity, specificity, and ROC plots were used to measure this binary clas-
sifier’s performance. Results showed that the RIPS and phpSAFE tools detected almost
exclusively different vulnerabilities, meaning the usage of these two SATs would be ad-
vantageous as running both would cover a broader category of vulnerabilities than each
one individually. Classifiers that used the 1-out-of-N detection method had better sen-
sitivity when compared to individual SATs (0.96, 0.90, and 0.91 when using two, three,
and five tools, respectively), whereas the N-out-of-N strategy presented better specificity
(1.0 or very close for most tool configurations). For 1-out-of-N, this observation improved
with the value of N, though this also resulted in worse specificity on average. Every XSS
vulnerability was detected when all five SATs were considered in a 1-out-of-N approach.
The majority voting classification showed a more balanced in-between version of these
two methods. This last setup performed better than N-out-of-N in terms of sensitivity
(0.342 for three tools), but worse for specificity (though with values still close to 1.0).
Additionally, the ROC plots showed how most configurations have extremes of either high
sensitivity (1-out-of-N) or specificity (N-out-of-N), as choosing one metric comes at the
expense of the other. As the authors point out, choosing a configuration for the optimal
classifier depends on an entity’s use case. A 1-out-of-N approach is useful for detecting a
wide array of vulnerabilities, though filtering true from false positives requires additional
time and resources. Specifically, an organization may be interested in combining the tools
RIPS, phpSAFE, and WAP, as they resulted in diverse vulnerability detection.

Chernis and Verma [12] researched how certain textual features performed when building
classifiers that could label functions written in C as vulnerable or non-vulnerable. These
functions were found by searching the National Vulnerability Database (NVD)3 for open-
source GitHub projects containing buffer overflow vulnerabilities and selecting one hundred
for each label. Additionally, this information was complemented with functions from the
top twenty most well-known Linux utilities. Two datasets were built, one mixed dataset
which contained information from both sources, and one non-mixed which comprised solely
of GitHub projects. The source files of these programs were parsed and two types of natural
language processing features were extracted from their functions: trivial (function length,
nesting depth, string entropy, etc) and non-trivial (n-grams and suffix trees). In this last
category, the n-grams’ statistics were fed to traditional machine learning algorithms, while
the suffix trees were used to create a “stand-alone” classifier which assigned each function
a vulnerable and non-vulnerable score and compared both values.

These other algorithms included naive bayes, k-nearest neighbors, k-means clustering, neu-
ral networks, Support Vector Machines (SVMs), decision trees, and random forests. For
the trivial features, 5-fold cross-validation was used. This study found that word and
character n-grams of lengths 1-4 and 1-5, respectively, resulted in an accuracy of 69%.
On the other hand, the best suffix tree classifier only achieved 60% accuracy, even with
ideal parameterization. When trivial features were considered, these reached a best of 75%
accurate classifications. The SVM and k-means classifiers performed as well as naive bayes
for character n-grams and character diversity, respectively. Moreover, by using the trivial
features, the authors claimed that vulnerable functions were easier to be distinguished in
the Linux tools than non-vulnerable ones were in the GitHub projects.

Siavvas et al. [45] investigated whether software metrics could discriminate between dif-
ferent vulnerability types and if there existed any interdependencies between them. The
authors used the CKJM Extended tool to extract the CK and Quality Model for Object-

3https://nvd.nist.gov/

17

https://nvd.nist.gov/

Chapter 2

Oriented Design (QMOOD) [10] metrics from the top one hundred most popular Java li-
braries in the Maven repository. This last metrics suite looks at an object-oriented system’s
design (e.g. its class definitions and hierarchies) and measures its functionality, effective-
ness, understandability, extendability, reusability, and flexibility. The rules generated by a
SAT called PMD4 were combined with Common Weakness Enumerations (CWEs) to group
weaknesses into eight security-specific and five design-specific categories. Correlation anal-
ysis showed that the selected metrics were more closely related to security problems, and
may be able to discriminate between vulnerabilities and quality-related issues. However,
it was also observed that the correlation was weak or moderate within security-specific
categories, meaning the selected software metrics may not be good indicators of specific
vulnerabilities. This study also found that statistically significant correlations, and thus
interdependencies, may exist between vulnerability categories.

Sultana [47] proposed a vulnerability prediction model that focused on traceable code
patterns found in Java classes and methods, called micro and nano-level patterns, respec-
tively. This classifier would be able to label classes and methods as vulnerable or neutral
(where a previously reported vulnerability was patched) based on their patterns and soft-
ware metrics. These features were collected from different versions of the Apache Tomcat
and Apache CXF projects, and also from other open-source J2EE web applications in the
Stanford Securibench dataset. A SAT called the Early Security Vulnerability Detector
was used to identify vulnerable classes in this last dataset, while the tools JiraExtractor
and Understand extracted nano-level patterns and software metrics, respectively, from the
code. The author built the classifiers using the logistic regression and SVM algorithms
with 10-fold cross-validation and analyzed their performance separately for the traceable
patterns and software metrics features. The performance metrics used were false negative
rate, precision, recall, and F-score. For patterns, the best results were 89.6% in recall and
83.1% in F-score (for SVMs using micro patterns), and 74.4% in precision (for logistic re-
gression using nano-patterns). For software metrics, logistic regression using class metrics
saw the best results for precision, recall, and F-score, with the values of 88.8%, 87.5%, and
87.8%, respectively.

This study found that some micro patterns had a greater statistically significant relation
with neutral classes than with vulnerable ones. In a related example, a pattern where
a class only has abstract methods and three or more static final fields of the same type
had a more prominent presence in vulnerable code. By using the phi coefficient measure
between pairs of patterns, several associated pairs were observed in both vulnerable and
neutral code. Classifiers trained with the pattern features resulted in better vulnerability
prediction with regards to recall and false negative rate, while this was only observed for
the precision values when software metrics were considered instead.

2.5 Related Work: Application of Machine Learning Tech-
niques to Software Vulnerability Detection

Until now, we have presented works that are generally related to detecting vulnerabilities
using software metrics, SCA, or machine learning methods. This next section is of special
importance as it lists papers whose contributions, be they a dataset or a framework, are
directly applied to our methodology.

Alves et al. [5] explored the relationship between software metrics and the source code’s
vulnerabilities. The goal was to determine if these metrics can discriminate between vul-

4https://pmd.github.io/

18

https://pmd.github.io/

State of the Art

nerable and neutral (non-vulnerable) code, and which ones were more prominent. Five
large and widely used C/C++ projects were analyzed: the Linux Kernel, the software de-
veloped by Mozilla, the Xen Hypervisor, the Apache HTTP Server (httpd), and the GNU
C Library (Glibc). These were chosen as they represent a broad class of software that
are a common attack vector with a significant impact, allowing the authors to draw more
general conclusions that would apply to similar applications. They are also open-source
projects, meaning that software metrics can be extracted from their public repositories.
The following methodology was used to build this dataset of software metrics and reported
vulnerabilities from 2000 to 2016:

1. Retrieve information about the five project’s vulnerabilities from various online plat-
forms. These include CVE Details5, which stores a wide array of Common Vulnerabil-
ities and Exposures (CVEs), and project-specific security reports in websites like the
Mozilla Foundation Security Advisories (MFSA)6 and the Xen Security Advisories
(XSA)7;

2. Analyze the previous metadata to find and obtain the correct version of the vulnerable
source code in each project’s version control system (e.g. Git, Subversion, CVS);

3. Run the tool Understand to collect software metrics from the source code at both
a macro-level (files) and micro-level (functions and classes), before and after the
vulnerability was fixed (patched);

4. Store the previously obtained metrics and vulnerability information in a database
that was specifically designed to hold and relate this type of data;

5. Perform statistical analysis in this newly built dataset in order to find any relation-
ships between the collected metrics and vulnerabilities.

This study found that some software metrics were highly correlated, meaning they con-
tain redundant information and should be reduced to a single one. Not doing so could
otherwise be an issue when building predictive models in the future. By applying sta-
tistical tests with two hypotheses, the authors showed that vulnerable code has different
properties than neutral code. Thus, software metrics are able to represent vulnerable func-
tions. The study also looked at the correlation between software metrics and individual
functions, and obtained no high correlations (positive or negative). This means that there
is no single metric that is able to determine if a function will have more vulnerabilities.
Future predictive models must then combine multiple metrics in order to produce reliable
results. Finally, functions with vulnerabilities were shown to have a tendency to repeat
since the probability of the same function having two vulnerabilities was fifty-five times
higher than the same probability if these vulnerabilities were not correlated. As such,
vulnerable functions are more prone to obtain more vulnerabilities.

The same authors later [6] used this dataset to evaluate various machine learning techniques
to detect vulnerabilities, so as to find the best models to predict them. The results varied,
with the best algorithms being decision trees (when prioritizing by high precision) and
logistic regression (when prioritizing by high recall). The accuracy metric did not prove
to be very useful for portraying the effectiveness of these kinds of techniques. Due to
bias limitations of precision and recall, the informedness and markedness unbiased metrics

5https://www.cvedetails.com/
6https://www.mozilla.org/en-US/security/advisories/
7https://xenbits.xen.org/xsa/

19

https://www.cvedetails.com/
https://www.mozilla.org/en-US/security/advisories/
https://xenbits.xen.org/xsa/

Chapter 2

were analyzed. Tree-based approaches, such as random forests, performed better than the
others in terms of informedness.

Medeiros et al. [35] studied whether software metrics could be used to distinguish vulnerable
and non-vulnerable code at a file and function level, and showed how a near best subset
of these metrics could be found. This was done by performing a heuristic search, which
combined genetic algorithms with random forest classifiers, using the previously mentioned
dataset [5] of software metrics and vulnerabilities in five major C/C++ projects. In this
search, a population of software metrics (features) was iterated a number of times, and
metrics were selected and removed in order to maintain or improve the classifier’s overall
performance. The accuracy and Cohen’s Kappa metrics are used for this purpose, where
this last one represents how much better or worse the classifier is versus random chance.
The information from individual and collective projects was used, allowing for the creation
of models that are accurate for specific software.

By using the Pearson and Spearman correlation coefficients, this study found that the
sum of the essential cyclomatic complexity and CBO metrics had a very strong positive
relationship with the number of vulnerabilities at a project level. Others, like the number
of functions, FANOUT, HK, and the sum of the modified cyclomatic complexity also had a
strong monotonic relation with this value. Similarly, the LCOM metric presented a strong
positive linear relationship with vulnerable code. At a file level, the genetic algorithm
converged to the best accuracy of 97.66% seven out of ten times. Here, complexity metrics
were in the majority of solutions. Conversely, at the function level, volume metrics such
as LOC and the number of commented lines were in the majority. For this code unit, the
Kappa values were lower than at a file level, where the best accuracy and Kappa results
were 97.30% and 37.03%, respectively.

Campos et al. [11] addressed the problem of having a cumbersome experimental machine
learning workflow by presenting their own generalizable framework called Propheticus8.
Because researchers may be forced to spend time implementing potentially error-prone
validation code, this tool allows them to more easily try out different combinations of ma-
chine learning algorithms and preprocessing techniques, and choose the best configuration
according to a given performance metric. Although showcasing this framework was the
authors’ main purpose, this paper uses part of the dataset developed in [5] as one of two
case studies. Moreover, as is later discussed in Chapter 3, our work also makes use of this
tool.

The authors considered only software metrics in files from the Mozilla project and chose a
combination of techniques that would improve the previously mentioned informedness per-
formance metric. The Propheticus tool was executed using the following machine learning
algorithms: SVMs, gradient boosting, bagging, decision trees, AdaBoost, extra trees, neu-
ral networks, random forests, and k-nearest neighbors. Results yielded a correct prediction
of 82% and 75% for random forests and bagging when predicting vulnerable and non-
vulnerable samples, respectively, and using random undersampling as the data balancing
approach. As the precision was low, a combination of the Synthetic Minority Oversam-
pling Technique (SMOTE) data balancing technique with feature selection by correlation
changed the previous percentages to 88% and 69%, respectively, with fewer false positives
for the random forests algorithm. By experimenting with different hyperparameters, the
best prediction results ended with 81% and 77%, respectively, when balancing the dataset
with Instance Hardness Threshold and using random forests with feature selection by vari-
ance and correlation.

8http://www.joaorcampos.com/ISSRE-2019/

20

http://www.joaorcampos.com/ISSRE-2019/

State of the Art

Pereira and Vieira [40] explored the results of two SATs, Cppcheck and Flawfinder, in a
large C/C++ codebase developed by Mozilla by measuring their performance and applica-
bility across different vulnerability categories. The authors used the previously mentioned
dataset from [5]. In this study, numeric identifiers known as CWEs were assigned differ-
ent categories based on the best security practices defined by the Open Web Application
Security Project (OWASP), allowing the authors to better group and understand multiple
vulnerability types.

The authors found that the two SATs were not able to detect about a quarter of the
vulnerabilities, meaning that relying solely on SCA is not enough. As is expected of SATs,
they also reported a high number of false positives, with Flawfinder reaching 94% of all
generated alerts. However, it was noted that some false positives may actually be real
undetected vulnerabilities that were not reported in Mozilla’s bug tracker or on the CVE
Details website. The number of these alerts increased over time, which was expected since
Mozilla’s codebase implemented more functionalities over time.

The performance metrics precision, recall, and F-score were used. Cppcheck had better
results than Flawfinder when taking into account all vulnerabilities. When looking at
specific categories, these values fluctuated but were still low, meaning none of the SATs
could effectively detect vulnerabilities of different types. As such, this study concluded
that SATs were not effective for detecting different categories of vulnerabilities in large-
scale projects.

Pereira et al. [41] combined software metrics with security alerts generated by SATs to
create machine learning models capable of distinguishing between vulnerable and non-
vulnerable files, or assigning them a specific vulnerability category. Once again, the dataset
developed by [5] was used, though only files from the Mozilla project were considered. The
aim of this study was to check whether using both metrics and alerts could improve the
trained models, to see if categorizing vulnerabilities would improve the machine learning
algorithms, and to explore which code properties helped or hindered the classification
process. Three datasets were defined, using just software metrics as their features, just
security alerts, or both. This same number of experiments were conducted using the
following labels: binary (vulnerable or non-vulnerable), binary within each vulnerability
category, and multiclass (vulnerable in a specific category, non-vulnerable, or vulnerable
without a category).

The aforementioned Propheticus tool was used to train the machine learning models, where
the decision tree, random forest, extreme gradient boosting, and bagging algorithms were
selected. For the binary class, the best precision was 0.9404 when only software metrics
were considered, while the highest recall was 0.9019 for the dataset containing both alerts
and metrics. In the binary per category class, the best precision was obtained when
considering only software metrics for the memory management and permission categories
(0.8447 and 0.8889, respectively). For the remaining input validation class, this value was
at its highest (1.0) when using both metrics and alerts. In a similar manner, the best
recall values for all categories (0.8826, 0.8956, and 0.8852, respectively) were observed
when the metrics-only dataset was used. The bagging algorithm yielded all the previously
mentioned results, with the exception of the recall value in memory management, where
extreme gradient boosting was employed. Finally, for the multiclass classifiers, the highest
precision and recall (not counting the non-vulnerable class which comprised most of the
dataset) were 0.8347 and 0.6202 for the system configuration and no category classes,
respectively.

The authors concluded that, not only could security alerts not be used to predict vul-
nerable Mozilla files, but also that combining them with software metrics did not yield

21

Chapter 2

any significantly different results. Additionally, the trained machine learning models did
not perform any better when using categories rather than just a binary label. This was
explained by there existing more samples, and thus more information to train the models,
with a binary label as opposed to cases with multiple possible categories. By exploring
the files themselves, the authors also noted that 20.37% of non-vulnerable samples shared
at least eleven metric values with their vulnerable counterparts, potentially impacting the
observed results.

Although SCA alone may not be enough to robustly discover vulnerabilities [40], the usage
of SATs has assisted their detection both directly and indirectly with varying degrees of
success [2, 40, 41, 45, 47]. Likewise, though no single software metric is able to determine
if a given function is more vulnerable [5], these static properties have been used to identify
vulnerable code or distinguish between different types of vulnerabilities [5, 6, 35, 45, 47].
While the software metrics and vulnerabilities dataset developed by Alves et al. [5] has
been applied to some of these studies [6, 11, 35, 40, 41], the information it contains as since
been out of date. Just as new vulnerabilities are disclosed and made available in online
platforms, so too does the need to gather and apply this information in a timely fashion
increase. Therefore, we describe a process in Chapter 3 that automates the collection
of both software metrics and security alerts reported by different SATs from open-source
projects. The dataset presented by these authors is then updated and extended, allowing
newly gathered vulnerabilities to be used to build models capable of identifying vulnerable
and non-vulnerable code.

22

Chapter 3

Building the Vulnerable Code Unit
Datasets

This chapter presents each step that was carried out in order to implement a mechanism
capable of aiding vulnerability detection by automating the collection of resources available
in online platforms and in an application’s source code. This includes retrieving vulnera-
bility metadata from websites, interfacing with a C/C++ project’s version control system,
generating software metrics and security alerts through Static Code Analysis (SCA), and
aggregating the collected information into a dataset capable of being processed by machine
learning algorithms.

Although we saw different kinds of Static Analysis Tools (SATs) in Sections 2.4 and 2.5, the
term SAT is henceforth used to refer exclusively to tools that report possible vulnerabilities
in source code, otherwise known as security alerts. Tools that generate software metrics
from code units (files, functions, classes) using SCA are employed in our work, but they
are referred to by name rather than using the term SAT.

3.1 Overview

The series of steps implemented during this work’s development are similar to what was
done by Alves et al. [5] to develop their own dataset. This dataset contains information
from five large and widely used C/C++ projects: the Linux Kernel, the software developed
by Mozilla, the Xen Hypervisor, the Apache HTTP Server (httpd), and the GNU C Library
(Glibc). However, as its vulnerability metadata ranges from 2000 to 2016, it is now out of
date. As modern applications require continuous security testing throughout their life cycle
[22], a fast and automated mechanism for detecting software vulnerabilities is necessary.
To ensure that any current and future data is added to this knowledge base, our process
was developed with automation in mind.

Additionally, this dataset’s design is extended to allow the introduction of new entities,
namely security alerts, SAT properties, and other security related concepts like Common
Weakness Enumerations (CWEs). This is akin to what was seen in Pereira and Vieira
[40] and Pereira et al. [41]. By validating the resulting dataset with machine learning
techniques, not only will we be able to assess our own work, but we will also be creating
classifiers capable of quickly labeling a code unit as vulnerable or non-vulnerable. In a real-
world scenario, having to review every single file, function, or class can be cumbersome,
especially in large codebases. By narrowing down this number to a select few potentially

23

Chapter 3

vulnerable code units, a great deal of development time and resources can be saved.

The five C/C++ projects used by both the previously mentioned authors and our imple-
mentation are summarized in Table 3.1. These projects were chosen by the original authors
as they represent a broader class of software that are usually attack vectors exploited by
malicious users (such as operating systems, web servers, web browsers, standard libraries,
etc) meaning their data should apply to similar software. Although this table makes a
reference to the SVN version control system (for Apache only), in practice we only inter-
faced with the Git mirror of each project. Unless noted otherwise, any future mention of
a commit or repository refers to the Git version control system.

Project Language Version Control Lines of Code Website
Mozilla C++ Git1 22.7 million Mozilla.org

Linux Kernel C Git2 20 million Kernel.org
Xen Hypervisor C Git3 0.6 million XenProject.org

Apache HTTP Server C SVN4and Git5 1.5 million Apache.org
GNU C Library (Glibc) C Git6 1.2 million Gnu.org

Table 3.1: A summary of the five large C/C++ projects used in our work. The total
number of lines of code was taken from the Open Hub website7on January 2021.

In this chapter, we will show how datasets composed of security alerts and software metrics
obtained via SCA techniques can be built. This data structure is developed based on
information that is first collected from online sources and later analyzed by third-party
tools. A very brief overview of these steps, all of which are explained in depth in the
subsequent sections, is described below:

i. Retrieve reported vulnerabilities present in open-source projects by querying online
vulnerability databases and parsing their responses;

ii. Use this metadata to find and retrieve the correct vulnerable source files from each
project’s version control system (e.g. Git, Subversion, CVS);

iii. Run specific tools to collect security alerts and software metrics, before and after the
vulnerability was fixed;

iv. Store these alerts, metrics, and any other information in a database designed specifi-
cally to house and relate these entities;

v. Aggregate the previously collected data into datasets and validate them by developing
machine learning models capable of labeling a code unit (a file, function, or class) as
vulnerable, non-vulnerable, or belonging to a specific vulnerability category.

A graphical representation of this process can be seen in Figure 3.1. We will be referring to
this image throughout each section for the reader’s convenience. This chapter will not go
into specific implementation details. For a complete description of every script developed
for this work, refer to the documentation in Appendix 6.

1https://github.com/mozilla/gecko-dev
2https://github.com/torvalds/linux
3https://xenbits.xen.org/gitweb/?p=xen.git;a=summary
4https://svn.apache.org/repos/asf/httpd/httpd/trunk/
5https://github.com/apache/httpd
6https://sourceware.org/git/glibc.git
7https://www.openhub.net/

24

https://www.mozilla.org/
https://www.kernel.org/
https://xenproject.org/
https://httpd.apache.org/
https://www.gnu.org/software/libc/
https://github.com/mozilla/gecko-dev
https://github.com/torvalds/linux
https://xenbits.xen.org/gitweb/?p=xen.git;a=summary
https://svn.apache.org/repos/asf/httpd/httpd/trunk/
https://github.com/apache/httpd
https://sourceware.org/git/glibc.git
https://www.openhub.net/

Building the Vulnerable Code Unit Datasets

Figure 3.1: A diagram showing the full dataset creation and validation pipeline. This pro-
cess begins with retrieving the reported vulnerabilities’ metadata, and ends with validating
the generated dataset.

3.2 Retrieving Reported Vulnerabilities from Online Plat-
forms

In this stage, we start by querying the CVE Details website8 to obtain a list of reported
vulnerabilities for the five projects. This is done by first requesting a table of Common
Vulnerabilities and Exposure (CVE) entries from the vulnerability list endpoint9 using
each project’s parameters, where each row contains a hyperlink to the vulnerability itself.
Since each of these tables only lists a set number of CVEs, we must traverse to the next
page and repeat this data scraping process.

For each vulnerability, its page is analyzed and any relevant fields in the metadata are
saved. As can be seen in Figure 3.2, vulnerabilities contain, among other details: a unique
identifier called the CVE; a value known as the Common Vulnerability Scoring System
(CVSS) score which represents how severe it is given its properties and environment [52];
how much it impacts the confidentiality, integrity, and availability of a system; how hard
it is to exploit; whether or not authentication is required to exploit it; zero or more vul-
nerability types; and an optional numerical identifier known as a CWE which maps a

8https://www.cvedetails.com/
9https://www.cvedetails.com/vulnerability-list.php

25

https://www.cvedetails.com/
https://www.cvedetails.com/vulnerability-list.php

Chapter 3

vulnerability to a specific category.

Figure 3.2: A screenshot of the score table for CVE-2018-1000199 in the CVE Details
website10, last accessed on January 2021.

Figure 3.3: A screenshot of the references table for CVE-2019-15215 in the CVE Details
website11, last accessed on January 2021.

Additionally, each CVE page lists several relevant external references, including the soft-
ware’s changelog, discussion boards, the project’s bug tracker, and the version control. An
example of this can be seen in Figure 3.3, where this section presents the references of a
vulnerability in the Linux Kernel that was published in 2019 and whose identifier is CVE-
2019-15215. In this image, notice how the CVE page links to a Git repository and how
its Uniform Resource Locator (URL) contains a unique identifier called a commit hash.
This value allows us to locate any files affected by this vulnerability in a given version
(i.e. commit) of the software. As such, they are necessary in order to retrieve the files
themselves and apply SCA. For this example, CVE-2019-15215 affects a single file in the
version represented by the hash “eff73de2b1600ad8230692f00bc0ab49b166512a” from the
Linux Kernel’s Git repository. For other projects, if this identifier is not readily available
then it is necessary to consult other references. Two systems that can be used to extract
additional data are bug trackers and security advisories.

Bug trackers help developers keep track of bugs in their software, allowing users to submit
and discuss reports. As these bug reports often point to the previously mentioned commit
hashes, we can make use of them if they are linked in a CVE’s external references. In
particular, we noticed how, in some projects, the bug tracker identifier is present in the
message of the commit that addresses the respective bug. Because of this, we are able to
find any commit hashes related to a vulnerability given its bug tracker identifier. Table 3.2

10https://www.cvedetails.com/cve/CVE-2018-1000199/
11https://www.cvedetails.com/cve/CVE-2019-15215/

26

https://www.cvedetails.com/cve/CVE-2018-1000199/
https://www.cvedetails.com/cve/CVE-2019-15215/

Building the Vulnerable Code Unit Datasets

shows the projects where this process could be applied, as well as the regular expression
patterns that were used to retrieve a commit’s hash from its message.

A security advisory is a system that publishes information about vulnerabilities regarding
a specific developer or product. From these platforms, we can extract more specific infor-
mation that may be absent from CVE Details, including what particular applications and
versions are vulnerable, a brief description of the vulnerability, any known workarounds to
avoid them, other closely associated CVEs, and additional references such as bug reports.
Much like with bug trackers, the advisory identifier associated with each entry can be used
to find a commit’s hash given its message. As can be seen in Table 3.2, this process can
only be applied to the Xen Security Advisories (XSA).

Examples of the commit messages mentioned in the previous two use cases can be seen
in Figures 3.4 and 3.5. Notice how the text in both screenshots matches the pattern of
the respective project in Table 3.2. The Linux Kernel project does not have a bug tracker
or security advisory listed since its commit hashes are all retrieved using the references
section in the CVE Details website.

Project Bug Tracker Security Advisory Commit Message Pattern
Mozilla Mozilla.org Mozilla.org ^Bug \b<BUG_ID>\b
Linux - - -
Xen - Xen.org This is.*\b(<CVE>|<ADV_ID>)\b

Apache Apache.org Apache.org SECURITY:.*\b<CVE>\b
Glibc Sourceware.org - ((BZ|Bug).*\b<BUG_ID>\b)|(\bBZ<BUG_ID>\b)

Table 3.2: A summary of the bug tracker and security advisory websites considered for the
C/C++ projects, as well as the regular expressions used to retrieve a commit’s hash via
its message. The tokens <CVE>, <BUG_ID>, and <ADV_ID> refer to the CVE, bug tracker,
and security advisory identifiers, respectively.

Figure 3.4: A screenshot of the commit message associated with the advisory identified by
XSA-87 from the Xen project, in the GitHub website12, last accessed on October 2021.

Before moving to the next step, we finish the vulnerability collection process by removing
any commit hashes that are not valid (because they may belong to a different project),
as well as any commits outside of the repository’s main branch. Part of the information
collected via this mechanism can be seen in Figure 3.6, where a file containing the previously
mentioned metadata is shown. The process described in this section is represented by the
“Retrieve Vulnerability Metadata” action in the top left corner of the diagram in Figure
3.1.

12https://github.com/xen-project/xen/commit/9c7e789a1b60b6114e0b1ef16dff95f03f532fb5
13https://github.com/bminor/glibc/commit/7c1f4834d398163d1ac8101e35e9c36fc3176e6e

27

https://bugzilla.mozilla.org/
https://www.mozilla.org/en-US/security/advisories/
https://xenbits.xen.org/xsa/
https://bz.apache.org/bugzilla/
https://httpd.apache.org/security/vulnerabilities_24.html
https://sourceware.org/bugzilla/
https://github.com/xen-project/xen/commit/9c7e789a1b60b6114e0b1ef16dff95f03f532fb5
https://github.com/bminor/glibc/commit/7c1f4834d398163d1ac8101e35e9c36fc3176e6e

Chapter 3

Figure 3.5: A screenshot of the commit message associated with the bug identified by
13656 from the Glibc project, in the GitHub website13, last accessed on October 2021.

Figure 3.6: An example of the Comma-Separated Values (CSV) file generated after col-
lecting the vulnerability metadata from CVE Details and other referenced websites for the
Mozilla project.

3.3 Retrieving Vulnerable Source Files from Version Control

Following the previous stage, we use the Git commit hashes obtained when collecting
vulnerability metadata to find the location of any affected files in each project’s repository.
This is done by interfacing with its version control system and requesting the files for
a specific version. Although this method would still apply to different version control
systems, our work only considered the Git repositories listed in Table 3.1. Git’s rev-list14

command is used to list every file path affected by a vulnerability, as well as each commit’s
tag name, author date, and a set of line number ranges that show where each file was
modified. This file list is then shortened by only considering the following C/C++ source
file extensions: .c, .cpp, .cc, .cxx, .c++, .cp, .h, .hpp, .hh, .hxx.

After finding both the vulnerable software version and location of the affected files, these
must now be retrieved from their repository in order to conduct any kind of SCA. One may
accomplish this step by first cloning the repository, which recreates its original directory
structure and copies every file it contains. Following that, the commit hash identifiers
found in Section 3.2 are used to restore the repository to specific versions (commits) using
the Git checkout15 command. Finally, we use the same approach as Alves et al. [5] and
Pereira and Vieira [40], and obtain one version of the repository where the vulnerability
was corrected (patched) and another immediately before this patch.

14https://git-scm.com/docs/git-rev-list
15https://git-scm.com/docs/git-checkout

28

https://git-scm.com/docs/git-rev-list
https://git-scm.com/docs/git-checkout

Building the Vulnerable Code Unit Datasets

By following both of these steps, we now have two versions of the affected files, one vulner-
able (before it was patched) and one non-vulnerable (after it was patched, i.e., neutral).
An example of a file in a Git repository, before and after it was patched, is shown in Figure
3.7. Notice how we can also see where the file was modified in the vulnerable and neutral
commits (the lines 905 and 913-914, respectively).

Figure 3.7: A screenshot of the differences in the file affected by CVE-2019-15215, before
and after it was patched, in the GitHub website16, last accessed on January 2021.

Given that we have retrieved the files themselves at this point, we take this opportunity
to also enrich the data we have been collecting with a list of functions and classes in each
source file. This is done by running the Clang compiler17 which will parse the C/C++
source files and generate an Abstract Syntax Tree (AST) comprised of nodes that represent
code constructs. By traversing this structure while using the line number ranges obtained
above, we can create a list of functions and classes that show whether each of these code
units is vulnerable or not.

Any file present in a neutral commit or a commit not affected by a vulnerability is assumed
to be neutral. Likewise, its code units would also be non-vulnerable. For a vulnerable
commit, each affected file is assumed to be vulnerable, but the same might not be true
of its code units. For example, a vulnerable file that has five functions may have only
been patched in one of them. Because of this, we take extra care in checking whether the
commit’s line number ranges overlap with any code units inside vulnerable files.

To ease any future SCA operation, we follow one final step and generate what we call
a file timeline. This structure lists every single file path of every commit (affected by a
vulnerability or not) according to the main branch’s topological order. While the informa-
tion in this timeline is essentially a copy of what was already mentioned in this section,
the process of going through every commit in order helps in removing any erroneous file
paths. Consider the case of two successive pairs of vulnerable and neutral commits where
the same vulnerability was patched twice. Here, the first neutral commit is the same as
the second vulnerable commit. If no adjustments are done, then we may be listing files
that turned out to be vulnerable at a later date as being neutral.

Examples of the affected file metadata as well as the file timeline can be seen in Figures
3.8 and 3.9, respectively. The process of retrieving a vulnerable and neutral version of each

1https://github.com/torvalds/linux/commit/eff73de2b1600ad8230692f00bc0ab49b166512a
17https://clang.llvm.org/

29

https://github.com/torvalds/linux/commit/eff73de2b1600ad8230692f00bc0ab49b166512a
https://clang.llvm.org/

Chapter 3

file affected by a vulnerability is represented by the “Version Control Systems” source of
information on the top right corner of the diagram in Figure 3.1.

Figure 3.8: An example of the CSV file generated after finding the files affected by vulner-
abilities from the Mozilla project.

Figure 3.9: An example of the CSV file generated after building a topological timeline of
every file in the Xen project.

3.4 Generating Security Alerts and Software Metrics

At this stage, we have the vulnerable and neutral versions of the files affected by CVEs
that were reported for the five projects. As such, we are now able to use third-party tools
to perform SCA in C/C++ code units (files, functions, classes), and extract security alerts
and software metrics.

To generate alerts, the SATs Cppcheck18 version 1.82 and Flawfinder19 version 2.0.10 are
used. These applications take the source files as their input and output their analysis in a

18http://cppcheck.sourceforge.net/
19https://dwheeler.com/flawfinder/

30

http://cppcheck.sourceforge.net/
https://dwheeler.com/flawfinder/

Building the Vulnerable Code Unit Datasets

textual file format. This output is composed of alerts that highlight potential weaknesses
or vulnerabilities, and which are located on a specific line of a source file. How these
tools find different types of alerts is defined by a set of potentially dangerous patterns
called rules. For the C/C++ programming languages, two rule examples include accessing
uninitialized variables or calling known deprecated functions.

An example of an output file generated by the Flawfinder SAT is presented in Figure 3.10.
Notice how the buffer overflow category is related to rules whose names are that of unsafe
string manipulation functions, like strcpy or sprintf. Additionally, this SAT also displays
any CWEs associated with a rule, mapping it to a vulnerability category.

By following the timeline created in Section 3.3, each file version could be easily retrieved
and analyzed. Although both Cppcheck and Flawfinder were used to generate security
alerts, time constraints only allowed the data from the latter to be used in the next sections.

Figure 3.10: An example of the Flawfinder tool’s output after analyzing the source code
from the Mozilla project.

To generate software metrics, we use a single tool called Understand20 version 4.0.837.
The reason this application was chosen is that it was used to collect the metrics for any
vulnerabilities reported between the years 2000 and 2016 in the work by Alves et al. [5].
In order to maintain the dataset’s integrity, we must also use it in our work.

Understand is capable of generating over seventy metrics [28] for C/C++ code, including
the ones presented in Section 2.3: Lines of Code (LOC), the Chidamber and Kemerer
(CK) suite, Fan-In (FANIN), Fan-Out (FANOUT), and variants of McCabe’s Cyclomatic
Complexity. To see the full list of metrics used in our work along with a detailed description
of each one, refer to Appendix 6.

This tool generally groups metrics into three categories21 based on their nature. These
are complexity metrics (e.g. cyclomatic complexity), volume metrics (e.g. LOC, FANIN,
FANOUT), and object-oriented metrics (e.g. the CK suite). Moreover, Understand aggre-
gates metrics in micro-level code units (functions and classes) to create metrics for entire
files at a macro-level. The tool accomplishes this by using the average, sum, and maximum
functions. Because some metrics in the original dataset were aggregated by Alves et al. [5]
and not by Understand, we also had to emulate this behavior by adding more information
to the output files.

Much like with security alerts, these software metrics were generated by following the file
timeline. An example of Understand’s output is shown in Figure 3.11. Notice how some
cells are empty as certain metrics only apply to specific code units and must be aggregated

20https://www.scitools.com/
21https://support.scitools.com/support/solutions/articles/70000582289-metrics-overview

31

https://www.scitools.com/
https://support.scitools.com/support/solutions/articles/70000582289-metrics-overview

Chapter 3

to extend them to others (e.g. the Cyclomatic column in functions and the AvgCyclomatic
column in files). Note also that the struct, union, and class C/C++ constructs are all
considered to be part of the “classes” category.

Figure 3.11: An example of the Understand tool’s output after analyzing the source code
from the Xen project.

The process of generating both security alerts and software metrics is represented by the
“Extract Alerts and Software Metrics” action in the right and middle sides of the diagram
in Figure 3.1.

3.5 Storing the Collected Data in a Database

After collecting the vulnerability metadata and generating the security alerts and software
metrics before and after each patch, this data was stored on disk to more easily relate
and analyze it. To accomplish this, the authors of the original dataset designed a rela-
tional database where entities like vulnerabilities, code units, and patch information are
related to one another based on their attributes. We inherit this design and augment it
with additional fields and tables so as to store other types of data, namely the previously
generated security alerts, SAT properties, vulnerability categories, and CWEs. The orig-
inal dataset is stored in a MySQL22 database, though the specific Database Management
System (DBMS) is not particularly important as the resulting data can be migrated or
exported to a different format. As such, we also use this DBMS to insert and update
vulnerabilities, security alerts, and software metrics. More specifically, we used MySQL
versions 8.0.22 (on Windows) and 8.0.26 (on Ubuntu).

An Entity–Relationship (ER) diagram of the original database is presented in Figure 3.12.
What follows is a brief description of the most relevant tables in this database’s schema,
as well as the data we inserted or updated in each one:

• VULNERABILITIES: stores the vulnerabilities collected in Section 3.2 which are
identified by their CVEs. Other information includes their publish date, CVSS score,
how it impacts different security properties, vulnerability types, CWE identifier, and
any URLs that link to the project’s bug tracker platform. The original table structure
was changed to include the vulnerability’s CWE;

• PATCHES: stores any information regarding the neutral and vulnerable commits
found in Section 3.3, i.e., a vulnerability’s patch. This includes the Git commit

22https://www.mysql.com/

32

https://www.mysql.com/

Building the Vulnerable Code Unit Datasets

hash where a vulnerability was patched (neutral), the commit hash immediately
before (vulnerable), the commit’s author date and tag name, and a reference to any
associated CVEs from the VULNERABILITIES table;

• FILES_*, FUNCTIONS_*, and CLASSES_*: various tables that store the
metadata and software metrics of code units in a project, combining the information
collected in Section 3.3 with the metrics generated in Section 3.4. While the origi-
nal database schema specified distinct tables for different modules within a project
(e.g. FILES_1_javascript and FUNCTIONS_2_kernel, where the identifiers 1 and
2 represent the Mozilla and Linux Kernel projects), it was more practical to merge
these for each pair of project and code unit kind (using the previous example, this
would be FILES_1 and FUNCTIONS_2). Note that these tables represent code
unit versions, rather than unique files, functions, or classes in a repository. As such,
each record may be associated with one or more rows from the PATCHES table;

• EXTRA_TIME_FILES, *_FUNCTIONS, and *_CLASS: each vulnerabil-
ity is associated with specific code unit versions by using the PATCHES table, which
maps CVEs to the commit hashes. To then map this commit hash with a specific
primary key in the FILES_*, FUNCTIONS_*, and CLASSES_* tables, the inter-
mediary tables known as EXTRA_TIME_FILES, EXTRA_TIME_FUNCTIONS,
and EXTRA_TIME_CLASS are used. These tables exist due to the high volume
of files in the projects’ repositories, and are used to facilitate the process of mapping
a vulnerability or patch to a particular code unit version by speeding up the search
query’s execution time;

• REPOSITORIES_SAMPLE: a smaller table that lists each project, along with
its numeric identifier and a hyperlink to its repository.

In order to store data relative to security alerts and SATs, it was necessary to update the
original design with new tables. Figure 3.13 presents these additions in the form of an ER
diagram. These newly added tables are described below.

• SAT: stores the name and identifier of each SAT. For our work, only Cppcheck and
Flawfinder were inserted;

• RULE: stores each SAT’s rules, including their names and the vulnerability category
derived from its associated CWEs. This table does not contain an exhaustive list of
every rule as they are only added as new alerts are inserted;

• ALERT: stores any security alerts generated by SATs in Section 3.4, including their
location in a source file, level of severity, a warning message emitted by the tool, and
which rule was responsible for generating it;

• ALERT_FUNCTION and ALERT_CLASS: intermediate tables that map an
alert to one or more functions or classes, therefore listing which alerts also appear
in these micro-level code units. This is accomplished by checking for any overlap
between the alert’s line number and the function and class ranges found in Section
3.3;

• VULNERABILITY_CATEGORY: stores a set of vulnerability categories that
may be associated with zero or more CWEs;

• CWE_INFO: stores any CWEs associated with the CVEs in VULNERABILI-
TIES or the categories in VULNERABILITY_CATEGORY. The complete list of

33

Chapter 3

Figure 3.12: The ER diagram of the original database as designed by Alves et al. Publicly
available in [7].

categories and their CWEs used for this work were adapted from Pereira and Vieira
[40] and are shown in Table 3.3;

• RULE_CWE_INFO: an intermediate table that maps a SAT’s rule to a CWE,
and thus a vulnerability category.

Due to time constraints during this work’s development, only security alerts generated
by Flawfinder are considered. Even though Cppcheck was also used to emit alerts, the
insertion process could not be completed for the Linux Kernel project in a timely fashion.
Moreover, only around 56% and 73% of Flawfinder’s output files were inserted for the
Linux Kernel and Mozilla projects, respectively. No security alerts were generated for the
Glibc project, though its software metrics were collected and inserted into the database.

With these new additions to the database’s schema, we can now easily export a dataset
comprised of every code unit’s software metrics, security alert occurrences, vulnerability
category, and whether or not it was affected by a CVE. The act of storing the collected
vulnerability, security alert, and software metric information in a database is represented
by the “Database” icon in the middle of the diagram in Figure 3.1.

3.6 Creating and Validating the Dataset

Finally, we reach a stage where we can transform the vulnerabilities, security alerts, and
software metrics into a dataset capable of being fed into machine learning algorithms. For
this work, we built classifiers that take a code unit (file, function, class) as their input,

34

Building the Vulnerable Code Unit Datasets

Figure 3.13: The ER diagram designed for the tables that store SAT information, their
rules, generated security alerts, and descriptions for each CWE. Any tables that existed in
the original schema are shown in grey and only with the relevant columns.

and output whether that unit is vulnerable or not. The final dataset is composed of many
code units (samples) whose attributes (features) are used by the trained model to classify
them.

These features belong to two categories: 1) values that count the number of times that a
given SAT rule was responsible for generating a security alert in a code unit; 2) software
metrics of the code unit in question. As we saw in 3.4, these metrics can sometimes only
exist for a given code construct. With that being the case, we created three different
datasets for detecting vulnerable files, functions, and classes. Due to time constraints,
however, we will focus solely on training classifiers using the function dataset.

Much like the work of Pereira et al. [41] described in Section 2.5, we considered two types
of target classes: 1) a binary label, where the code unit is either neutral or vulnerable
(regardless of its vulnerability category); 2) a multiclass label, where the code unit is
either neutral, vulnerable without a category, vulnerable in one of the categories specified
in Table 3.3, or part of a special class that groups specific categories with fewer than
10% of vulnerable samples into a single label. We refer to this last class as the grouped
multiclass label, whose purpose is to divide code units into vulnerability categories but
also improve the machine learning results by aggregating categories that fall under a given
sample threshold.

We create this dataset by enumerating every function and software metrics in the FUNC-
TIONS_* tables, while counting the occurrences of security alerts by their SAT rules
via the SAT, RULE, ALERT, and ALERT_FUNCTION tables. To map a function to
a vulnerability category we first find the CVE associated with its file’s commit using the
EXTRA_TIME_FILES, PATCHES, and VULNERABILITIES tables. Because each vul-
nerability may be associated with a CWE, we can use the CWE_INFO and VULNERA-

35

Chapter 3

Category CWEs

Memory Management 119, 362, 399, 416, 476, 824

Input Validation 20, 78, 79, 91, 94, 134, 189

Permission 255, 264, 269, 284, 287, 352

Data Protection 199, 200

Coding Practices 17, 19, 254

Cryptography 310

System Configuration 16

File Management 22, 59

Output Encoding -

Error Handling and Logging -

Communication Security -

Database Security -

Table 3.3: The vulnerability categories considered for this work and their respective CWEs.
Adapted from [40].

BILITY_CATEGORY tables to determine the category or lack thereof. Only the Mozilla,
Linux Kernel, and Xen projects were used to build the dataset as Glibc does not have any
alerts associated with it while Apache has very few to be considered significant.

In order for the dataset to have some internal consistency regarding its labels, this data
export process excluded two kinds of samples. First, any functions or classes whose lines
numbers could not be determined in Section 3.3 are skipped since it would otherwise be
impossible to associate them with any security alerts. Secondly, any code units whose
commit had not yet gone through the alert insertion process were also excluded. This was
done because not every Flawfinder output file (generated per commit) could be inserted
into the database, as explained in Section 3.5.

An example of the final function dataset used experimentally can be seen in Figure 3.14.
A function is considered neutral if its label is zero and vulnerable otherwise. Note how
the features shown between the vulnerability category and labels represent some of the
software metrics described in Section 2.3 (FANIN, LOC, FANOUT, McCabe’s Cyclomatic
Complexity), and the number of security alerts generated by the Flawfinder SAT. More
specifically, these alerts were emitted based on the rules regarding the unsafe usage of
the C functions strcpy, strcat, sprintf, and memcpy. Note also how the vulnerability
category column is always mapped to the same multiclass label for vulnerable samples.
This column was used as an intermediate value when computing the grouped multiclass
label, where any category whose number of samples was too small was assigned a different
value (in this case, the value 14).

Before validating the dataset by running machine learning experiments, we applied some
preprocessing operations to improve the trained models. To start with, the dataset is highly
imbalanced since 99.1% of the samples are neutral. Therefore, 79% of these were removed
to lower this percentage to 95%, allowing the vulnerable labels to occupy the remaining
5%. Additionally, the creation of the grouped multiclass label mentioned above was done
by assigning a different class to any vulnerability category with fewer than 10% of the

36

Building the Vulnerable Code Unit Datasets

Figure 3.14: An example of the function dataset containing the software metrics and
security alert occurrences for the Mozilla, Linux Kernel, and Xen projects.

vulnerable samples. This step affected every category in Table 3.3 with the exception of
memory management. In the end, the function dataset was left with 85,915 total samples
and four grouped multiclass values, with the following class distributions: 94.9% neutral,
2.2% vulnerable without a category, 1.7% vulnerable in the memory management category,
and 1.2% vulnerable in the remaining categories. For the binary label, this would translate
into 94.9% neutral and 5.1% vulnerable samples.

The process of creating datasets for each code unit is represented by the “Create Datasets”
action in the middle left corner of the diagram in Figure 3.1.

Having applied all of the previously mentioned operations, we have now arrived at the final
function dataset which we subject to machine learning experiments in Chapter 4. Here,
we show the experimental results of training and testing classifiers with different kinds of
parameters. Moreover, we answer specific Research Questions (RQs) while identifying any
threats to validity that might have hindered our work. In particular, we explore how the
year these vulnerabilities were published affects the models’ performance metrics, and thus
if this temporal data may be used to detect vulnerable function code.

37

Chapter 4

Validating the Vulnerable Function
Dataset

This chapter describes the experimental steps followed in order to validate the function
dataset developed in Chapter 3. The previously collected security alerts and software
metrics are used as features when creating machine learning models capable of detecting
vulnerable function code. A first stage is used to explore different classifier parameter con-
figurations so as to determine which combination best excels at this task. After determining
the most apt parameters, a temporal sliding window is applied to the data partitioning
step in order to check if we can predict whether a function is vulnerable or not using data
from previous years.

4.1 Overview

After completing the process outlined in Chapter 3 and building the function dataset we
move onto the validation stage, where it will be used experimentally to train and test
machine learning models so as to assess its quality in regards to detecting vulnerable code.
This stage was divided into two main steps: 1) trying out various combinations of machine
learning techniques and parameters in order to find the best performing configurations; 2)
selecting the best configurations and using them to create classifiers trained on a version
of the dataset that has been partitioned according to each vulnerability’s year.

More concretely, these previous steps are used to answer the following Research Questions
(RQs):

• RQ1: Can we use Static Analysis Tool (SAT) alerts and software metrics to predict
vulnerable functions?

• RQ2: Can we predict whether a function is vulnerable or not using static data from
previous years?

For the former step, we used the Propheticus1 tool version 2021-03-03 [11] mentioned in
Section 2.5 to automate this process. In order to train the models, we first had to define
which configurations of classification algorithms, dimensionality reduction techniques, data
balancing methods, and target labels to use. Because we want to explore the highest

1http://www.joaorcampos.com/ISSRE-2019/

38

http://www.joaorcampos.com/ISSRE-2019/

Validating the Vulnerable Function Dataset

possible number of configurations, we used every combination of the techniques shown in
Table 4.1 with the algorithm hyperparameters specified in Table 4.2. This resulted in a
total of 848 configurations, or 424 for both the binary and grouped multiclass labels. All
of these values were used by Pereira et al. [41], though we chose a smaller subset due to
time constraints. Internally, Propheticus used stratified 5-fold cross-validation, where the
training and testing data is randomly divided into five subsets (four for training and one
for testing) with the same class distribution as the dataset [50]. This specific number of
folds was chosen to lower the execution time. For this same reason, we also only ran each
configuration five times.

Parameter Values

Target Labels Binary, Grouped Multiclass

Algorithms Random Forest (RF), Bagging, Extreme Gradient Boosting
(XGB)

Dimensionality Reduction Variance, Variance and Correlation

Data Balancing None, Random Undersampling, Random Oversampling,
Random Undersampling and Random Oversampling

Table 4.1: The target labels, classification algorithms, dimensionality reduction techniques,
and data balancing methods used to validate the function dataset in Propheticus.

Algorithm Hyperparameters

RF
n_estimators: [100, 200], criterion: [gini], min_samples_split:
[0.001, 2], min_samples_leaf : [0.001, 1], max_features: [none],
bootstrap: [true]

Bagging n_estimators: [100, 200],max_features: [0.1, 0.55, 1.0], bootstrap:
[true]

XGB
n_estimators: [100, 300], learning_rate: [0.1, 0.3], gamma: [0],
subsample: [1], max_depth: [10, 30], min_samples_split: [2, 5],
min_samples_leaf : [1, 4]

Table 4.2: The hyperparameters of the classification algorithms used to validate the func-
tion dataset in Propheticus.

This process is represented by the “Train and Test Classifiers Using Different Configura-
tions” action on the left side of the diagram in Figure 3.1. After doing so, we arrive at the
following basic performance metrics for each configuration:

• True Positive (TP): a code unit was correctly classified as vulnerable;

• False Positive (FP): a neutral code unit was incorrectly classified as vulnerable;

• True Negative (TN): a code unit was correctly classified as neutral;

• False Negative (FN): a vulnerable code unit was incorrectly classified as neutral.

These can in turn be used to compute performance metrics that were seen in the majority
of the related work in Sections 2.4 and 2.5. They include precision, recall, and F-score
[50], and are described in Table 4.3. In order to apply these metrics to classes with more
than two labels, they are aggregated using a weighted average which takes into account
the proportion of each label [24].

By comparing the precision, recall, and F-score metrics for every configuration executed
by Propheticus, we can select the best performing combination of parameters per label and

39

Chapter 4

Performance Metric Formula Description

Precision TP
TP+FP Percentage of cases classified as positive that are truly positive

Recall TP
TP+FN Percentage of positives cases that are correctly classified

F-score 2×precision×recall
precision+recall Harmonic mean of the precision and recall metrics

Table 4.3: Traditional performance metrics for assessing a classifier’s quality.

metric. We take this opportunity to explore some other questions regarding the detection
of vulnerable function code. More concretely, we tackle RQ2 by checking whether data
from previous years can be used to predict if a function is vulnerable or not. Instead of
letting Propheticus partition the data randomly, we compose each training and testing
subset such that the first one contains vulnerabilities that were detected before the ones
in the testing set.

As can be seen in the dataset in Figure 3.14, each function is associated with the year when
its vulnerability was published given that this value may be extracted from the Common
Vulnerabilities and Exposure (CVE) identifier. To perform such a data split, we make use
of what we called a temporal sliding window. The years chosen for the training set are
determined by the size of this window, while any testing samples are retrieved from the
single year immediately after. This window starts at a given year and “slides” until we
reach 2019 as the testing year. For example, a five-year window beginning in 2008 would
result in the following list of tuples, where the first element represents the range of training
years, and the second the testing year: (2008-2012, 2013), (2009-2013, 2014), and so on
until (2014-2018, 2019). A visual representation of this temporal partitioning can be seen
in Figure 4.1.

Figure 4.1: A diagram showing the temporal sliding window dividing the training (in blue)
and testing (in orange) function data for several years until 2019. using a window size of
five years.

The total number of samples per vulnerability year can be seen in Table 4.4. Note that,
although one of the main goals in Chapter 3 was to update the database with data from
2016 to 2019, our automated process also collected vulnerabilities from earlier years that
were not scraped by Alves et al. [5]. Due to the low amount of samples in the earlier years,
we considered 2013 as the first testing year. Additionally, three window sizes were chosen:
five years, ten years, and a variable-length window where every previous year is used for
training. Given that we only reran the best configurations, the number of executions per
classifier was increased to thirty.

This process is represented by the “Choose the Best Configurations”, “Partition the Func-
tions Using a Temporal Sliding Window”, and “Train and Test Classifiers Using the Best
Configurations” actions at the bottom of the diagram in Figure 3.1.

40

Validating the Vulnerable Function Dataset

Vulnerability Year Number of Samples

2002 95

2003 0

2004 47

2005 308

2006 353

2007 141

2008 466

2009 3074

2010 1243

2011 3745

2012 8455

2013 10292

2014 15845

2015 12495

2016 16357

2017 6838

2018 3014

2019 3147

Table 4.4: The number of samples in the function dataset in each year, as determined by
a vulnerability’s CVE identifier.

4.2 Research Question 1: Exploratory Experiments

In Section 4.1, we outlined the classification algorithms, hyperparameters, and data pre-
processing techniques that were combined to form 424 different classifier configurations per
target label. Similar to other authors [11, 41], the process of using them to train and test
machine learning models capable of identifying vulnerable functions was automated using
the Propheticus tool. This section will present the obtained results and analyze them so
as to answer RQ1.

A list describing the best configuration parameters for each performance metric and target
label mentioned in Section 4.1 is presented in Table 4.5, with the highest values for each
metric shown in Table 4.6. In total, nine configurations were found to yield the best
performance metrics, with three pairs referring to the same label and metric (C3 and C4,
C6 and C7, C8 and C9).

In all cases, variance threshold appears as the dimensionality reduction technique used by
the best configurations. The final function dataset consisted of 154 features, with 28 being
software metrics and 126 the number of SAT alert occurrences. With this method, any
feature with a variance under a specific threshold (zero for the Propheticus tool) would
be removed from the training and testing data [50]. In other words, this meant that any
column that always had the same value was discarded. In practice, this only applied to
features representing the Flawfinder SAT’s rules. This can be justified by the fact that,
while these additional rules existed in the database, the considered function samples did not
contain any alert associated with them. After applying this feature selection technique, 74
features were discarded leaving only 52 alert rules and a total of 80 features in the dataset.

41

Chapter 4

Name Label Algorithm Data Balancing Dim. Reduc. Hyperparameters

C1 Binary RF Undersampling Variance

bootstrap: true,
criterion: gini,
max_features: auto,
min_samples_leaf : 1,
min_samples_split: 2,
n_estimators: 100

C2 Binary Bagging None Variance
bootstrap: true,
max_features: 0.55,
n_estimators: 200

C3 Binary Bagging None Variance
bootstrap: true,
max_features: 1.0,
n_estimators: 100

C4 Binary Bagging None Variance
bootstrap: true,
max_features: 1.0,
n_estimators: 10

C5 Multiclass RF Undersampling Variance

bootstrap: true,
criterion: gini,
max_features: auto,
min_samples_leaf : 1,
min_samples_split: 2,
n_estimators: 100

C6 Multiclass Bagging None Variance
bootstrap: true,
max_features: 0.55,
n_estimators: 100

C7 Multiclass Bagging None Variance
bootstrap: true,
max_features: 0.55,
n_estimators: 200

C8 Multiclass RF None Variance

bootstrap: true,
criterion: gini,
max_features: none,
min_samples_leaf : 1,
min_samples_split: 2,
n_estimators: 200

C9 Multiclass Bagging None Variance
bootstrap: true,
max_features: 1.0,
n_estimators: 200

Table 4.5: A description of the machine learning parameter configurations that yielded the
best results for each target label and performance metric.

Similarly, it is interesting to note that, despite the dataset only having 85,915 samples,
the data balancing techniques associated with the best configuration either removed data
(with random undersampling) or did nothing to the class distribution.

To get a better understanding of the performance metrics presented in Table 4.6, let us
consider what they would mean in practice when detecting vulnerable code. As mentioned
in Section 3.1, a mechanism such as a trained classifier would in useful when analyzing a
large codebase, where searching for vulnerabilities expends both time and resources. One
may consider, for example, a plugin in an Integrated Development Environment (IDE)
that reports potentially vulnerable functions that should be revised by a person. Here, the
higher the recall, the more relevant functions would be marked as potentially vulnerable.
Similarly, the higher the precision, the more these marked functions would actually be
vulnerable. To measure how both of these evolve at once, the harmonic mean given by the
F-score is used.

In terms of precision (C1, C5), the best results for both binary and grouped multiclass

42

Validating the Vulnerable Function Dataset

Name Description Precision Recall F-score

C1 Best Precision (Binary) 0.9373 0.6935 0.7796

C2 Best Recall (Binary) 0.9369 0.9511 0.9383

C3 Best F-score (Binary) 0.9366 0.9503 0.9394

C4 Best F-score (Binary) 0.9366 0.9503 0.9394

C5 Best Precision (Multiclass) 0.9362 0.5906 0.7095

C6 Best Recall (Multiclass) 0.9342 0.9505 0.9367

C7 Best Recall (Multiclass) 0.9341 0.9505 0.9367

C8 Best F-score (Multiclass) 0.9344 0.9500 0.9379

C9 Best F-score (Multiclass) 0.9344 0.9500 0.9379

Table 4.6: The best results for the precision, recall, and F-score performance metrics for
each configuration described in Table 4.5, rounded to four decimal places. The relevant
metric value for each configuration is shown in bold.

labels (0.9373 and 0.9362, respectively) were observed for the RF algorithm using random
undersampling, where the samples from the majority class (i.e. neutral functions) are
discarded until they reach the proportions of the second majority label [36]. Conversely,
the recall for both configurations suffered a significant drop in value, reaching only 0.6935
and 0.5906 for the binary and multiclass labels, respectively. Consequently, the F-score for
these configurations is the worst on Table 4.6.

A confusion matrix showing how a classifier trained with C5 predicted a function’s vulner-
ability status during the testing phase is presented in Figure 4.2. The markers refer to the
following four grouped multiclass labels: Memory Management (MM), Neutral (N), Vul-
nerable With No Category (V(NC)), and Vulnerable With A Category (V(WC)). Values
that fall in the diagonal cells correspond to correct predictions. Note that this matrix is
computed once for all testing results after performing the five runs. The confusion matrices
for the remaining configurations are presented in Appendix 6.

Regarding the recall metric (C2, C6, C7), similar results can be seen for both binary and
multiclass labels. In this case, two configurations for the multiclass showed the exact same
highest value, 0.9505, with the binary configuration being very close at 0.9511. Much like
C1 and C5, these three configurations also share the same classification algorithm and
and data balancing technique (Bagging and no sampling). On the other hand, unlike the
recall in the C1 and C5, these configurations have a substantially higher precision value
associated with them: 0.9369, 0.9342, and 0.9341 for C2, C6, and C7. Note also that this
precision is only a mere 0.004 and 0.020 apart from the best overall precision in C1 and
C5, respectively. This shows that, for these three configurations, a compromise between
precision and recall does not have to be made, allowing for a high value of approximately
0.94 for the F-score.

Finally, by taking a look at both precision and recall at once using the F-score metric (C3,
C4, C8, C9), we can see equally high values. All four configurations used no data balancing,
with every one but C8 using the Bagging classification algorithm. The values for each pair,
0.9394 and 0.9379, respectively, are both close to each other, while also being similar to
the F-score values for the best recall configurations above.

43

Chapter 4

Figure 4.2: The confusion matrix showing the predictions of the classifier trained with
configuration C5.

Although the XGB classification algorithm was responsible for 512 of the 848 configura-
tions, it did not appear once in the best results for any performance metric shown in Table
4.6. RFs and Bagging were considered for 128 and 96 configurations, respectively. Follow-
ing the structure of this same table, the best results for XGB only appear at: the 22nd
and 14th places (for a precision 0.9364 and 0.9353 in the binary and grouped multiclass
labels), 4th place (for a recall of 0.9504 for both labels), and 8th place (for an F-score of
0.9391 for both labels).

Despite obtaining poor results for the recall and F-score in C1 and C5, the remaining best
configurations show how one does not have to necessarily compromise precision for recall
when detecting vulnerable function code. For these other configurations, the F-score was
greater than 93% for cases when functions had to be classified as either vulnerable or
neutral, and for cases when more vulnerability categories were at play. As such, we can
answer RQ1 in the affirmative given that we were able to use both software metrics and
security alerts generated by SATs to predict vulnerable functions with high performance
metrics. Moreover, particular emphasis seems to have been given to the RF and Bagging
classification algorithms, along with the random undersampling or no sampling techniques,
and the variance threshold feature selection method.

4.3 Research Question 2: Temporal Window Experiments

In Section 4.2, we explored 848 different machine learning configurations before arriving at
the nine best configurations across both target labels and all three performance metrics.
We are now able to focus solely on these parameters in order to analyze more specific
situations regarding vulnerability detection. In particular, this section reruns the best
configurations by first partitioning the training and testing subsets according to their year,
so as to answer RQ2. Because Propheticus does not offer a way to split the data in a
custom way, every classifier generated for this section was trained and tested using our
scripts. For more technical details on these, refer to Appendix 6.

The results for the best binary classifier with regards to precision, C1, are presented in
Table 4.7, with a graphical representation of the same values in Figure 4.3. For brevity’s

44

Validating the Vulnerable Function Dataset

sake, the same tables and figures for the remaining configurations are shown in Appendix
6. Note, however, that C4, C7, and C8 are omitted from this temporal analysis as they
refer to duplicate pairs of target labels and performance metrics. Moreover, due to the
limited number of years, a set of training years may be the same for different window sizes,
meaning they would essentially represent the same results. In this case, a window size of
ten years is the same as the variable-length window when using 2013 as the testing year.
As such, this repeated year range is only listed under the “Variable” window in Table 4.7.

Figure 4.3: The evolution of the performance metrics for each window size along each
testing year for configuration C1.

By taking a look at Figure 4.3 and the remaining plots in the Appendix, we notice that the
evolution for each performance metric is very similar for different window sizes. Although
there exist nine lines in each plot (three metrics for three windows), we can consider them
as only three line groups, each referring to a different performance metric. In practice, this
means that, for the same configuration, the sliding window size has little impact.

All figures also show an interesting behavior in specific year ranges. When testing with
function data between 2014 and 2016, there is an increase in performance for all metrics.
These metrics then decrease from 2017 onwards, never reaching the previous high values.
The only exception to this is for the precision metric in C1 and C5, where their values remain
between 0.9 and 1.0. This can be explained by the fact that both of these configurations
yielded the best precision in Section 4.2, while showing the lowest recall and F-score. As
such, a trade-off between precision and recall is to be expected.

One possible explanation for the discrepancy in performance between 2014-2016 and 2017-
2019 may be related to the training percentages shown in Table 4.7 and the remaining
ones in the Appendix. Because of the vulnerability year distribution seen in 4.4, when the
sliding window includes 2016 it increases the training subset from around 76% to 90% or
more. This means that only 10% or fewer samples are used in the testing phase. Due to
the rigid nature of this data partitioning step, techniques such as stratified cross-validation
used by Propheticus in Section 4.2 can not be applied. In turn, this may mean that the
classifier is left with a small testing subset that is not representative of the samples in the
complete dataset. Although the experiments in this section were executed thirty times

45

Chapter 4

Window Training Testing Training % Precision Recall F-score
10 2004-2013 2014 64% 0.9222 0.7347 0.8062
10 2005-2014 2015 78% 0.9391 0.7204 0.8027
10 2006-2015 2016 77% 0.9393 0.6791 0.7745
10 2007-2016 2017 91% 0.9098 0.5414 0.6508
10 2008-2017 2018 96% 0.9137 0.5130 0.6298
10 2009-2018 2019 96% 0.9027 0.4638 0.5756
5 2008-2012 2013 62% 0.9362 0.7173 0.8004
5 2009-2013 2014 63% 0.9207 0.7294 0.8025
5 2010-2014 2015 76% 0.9394 0.7110 0.7961
5 2011-2015 2016 76% 0.9403 0.6626 0.7624
5 2012-2016 2017 90% 0.9127 0.5599 0.6665
5 2013-2017 2018 95% 0.9169 0.5234 0.6387
5 2014-2018 2019 95% 0.9035 0.4719 0.5835

Variable 2002-2012 2013 64% 0.9364 0.7357 0.8129
Variable 2002-2013 2014 64% 0.9209 0.7391 0.8091
Variable 2002-2014 2015 78% 0.9387 0.7234 0.8047
Variable 2002-2015 2016 78% 0.9402 0.6753 0.7717
Variable 2002-2016 2017 91% 0.9075 0.5688 0.6747
Variable 2002-2017 2018 96% 0.9169 0.5295 0.6442
Variable 2002-2018 2019 96% 0.9022 0.4771 0.5887

Table 4.7: The performance metric values for configuration C1 using the three temporal
sliding windows.

for each configuration (as opposed to only five like in Section 4.2), the lack of a more
sophisticated partitioning technique means that each run would yield very similar results.

Since the temporal sliding windows’ effect seems to be minimal, we can try looking at the
overall performance of each pair of configurations here as opposed to the one in Section
4.2. As mentioned before, both C1 and C5 offered good precision at the expense of recall,
reaching the highest values of 0.9403 and 0.9387, respectively. Despite using the windows
sizes of five and ten years, these best results were observed when 2016 function data was
used for testing.

For C2 and C6 (best recall for binary and multiclass labels), the recall was higher than
precision for all cases. Much like in Section 4.2, the trade-off between precision and recall
was not as substantial as with C1 and C5, resulting in a better F-score. With that being
said, the precision was lower than 0.90 in some cases. The best recall was 0.9564 for the
window sizes of five and ten in C2, and also 0.9564 for a five-year window in C6. Like C1

and C5, this was observed for the 2016 testing year.

Finally, similar results can be seen for C3 and C9 (best F-score for binary and multiclass
labels), where the F-score was over 0.9 (or very close to it) while prioritizing recall over
precision. The highest value for C9, 0.9358, was the same for all three window sizes using
the 2016 data. The same is true of C3, though only for a variable-length window with the
value 0.9373.

Despite splitting the training and testing subsets according to their vulnerability years
using a sliding window, the impact of this process seems to have been minimal. Firstly,
the window size did not yield any substantially different results for each performance
metric. Moreover, the strict nature of this partitioning appears to have hindered the

46

Validating the Vulnerable Function Dataset

testing phase, as there was a big jump in the number of training samples when data from
2016 was included. The samples chosen for the testing data may have been few and not
representative of the distribution in the complete dataset. In order words, this essentially
meant that we applied a less robust mechanism than the one used in Section 4.2 at no
greater benefit. As such, we cannot answer RQ2 in the affirmative using this fixed year
partitioning scheme, as it is not possible to conclude that we can predict whether a function
is vulnerable or not given static data from earlier years.

4.4 Threats to Validity

This section will cover any weaknesses that might have influenced the results presented in
Sections 4.2 and 4.3, and thus hindered the conclusions drawn for RQ1 and RQ2. The
following are some identified threats to this work’s validity:

• Only one SAT, Flawfinder, was used to generate security alerts due to time con-
straints. Not only does this reduce the number of features significantly, but it also
makes any created classifier heavily dependant on this tool’s quality;

• All machine learning algorithms specified in Section 4.1 are based on decision trees
[41]. Thus, better results may have been achieved had other types of classifiers been
used in conjunction, such as the Support Vector Machines (SVMs) or neural networks
mentioned in Sections 2.4 and 2.5;

• The function dataset only contained 85,915 samples, many of which may have been
further removed when generating the classifiers due to the data balancing techniques
specified in Section 4.1. In particular, the Glibc project was not used due to time con-
straints when generating alerts. By considering this project, the number of function
samples would have increased;

• Due to the output format of Understand and the Clang compiler, it is very possible
that many security alerts were not properly assigned to functions. Understand does
not emit line numbers, meaning any code units had to be associated by name. More-
over, it was noted that Clang does not always include certain functions or classes
in the Abstract Syntax Tree (AST) output. Put together this means that, while
a SAT may have generated alerts for a function, the corresponding entry in the
database might be missing its line numbers. Thus, vulnerable functions can become
associated with zero alerts, when in fact they existed and could represent potential
vulnerabilities. To combat the lack of line numbers in Understand, we computed a
ratio that measured the difference between each function or class signature, allowing
us to compare the strings reported by both tools. All code units over a specific ratio
threshold were logged and reviewed. No outright incorrect cases were found during a
testing session, though it is possible that some wrong values may have existed when
considering the millions of code unit rows in the database.

In the next chapter, we will describe the work environment in more detail, while explaining
certain key moments during development. This includes how version control was handled,
how tasks were outlined, and how any major implementation roadblock was tackled.

47

Chapter 5

Work Execution

This chapter describes how the work presented in previous sections was conducted, includ-
ing how its code and tasks were managed, what the work environment looked like, and any
notable moments during development that required special attention.

This project began on September 14th, 2020, and ran until October 30th, 2021, the date
when this very document was finalized and submitted for evaluation. During this time,
a total of 63 weekly meetings took place between the student and the advisors. Due to
the COVID-19 pandemic, the vast majority of these were held remotely using the Google
Meet1 and Zoom2 video teleconferencing services. In order to improve communication, the
instant messaging software Telegram3 was used to quickly resolve any issues and iterate
over the developed code.

All code created during this project, as well as any artifacts generated by our scripts, are
kept in a GitHub repository4. This repository was shared with the advisors, allowing for
any code to be reviewed before having it generate the final results. Various tasks (e.g.
developing scripts used in Chapters 3 and 4, researching specific questions, writing parts
of this document, etc) were represented as issues in GitHub. This allowed the student to
adopt the following process: 1) develop the necessary code for each task in a separate Git
branch; 2) create a pull request which would associate that code with a given issue; 3)
have an advisor review it before merging the changes to the main branch. Some completed
tasks can be seen in GitHub’s issues tab presented in Figure 5.1. Notice how tasks are
labeled according to different topics, such as static analysis or scraping data. The complete
documentation of each script can be found in Appendix 6.

These developed scripts were executed in two different environments: the student’s personal
Windows 10 machine, and a remotely accessible Ubuntu 20.04 machine provided by the
university. We will refer to these as the local and remote machines, respectively. For the
majority of this project, the local machine was used to develop and test the scripts for
small input data. After finalizing each script, these would then be left running anywhere
from a few minutes to a few days in the remote machine. The progress and estimated time
to completion were measured by using log files which would be periodically written to by
each script. Towards the end of our work, the temporal window experiments described in
Section 4.3 were executed solely on the local machine.

1https://meet.google.com/
2https://zoom.us/
3https://web.telegram.org/
4https://github.com/joaohenggeler/uc-masters-software-vulnerabilities

48

https://meet.google.com/
https://zoom.us/
https://web.telegram.org/
https://github.com/joaohenggeler/uc-masters-software-vulnerabilities

Work Execution

Figure 5.1: A screenshot of various tasks represented as issues in our GitHub repository.

One of the major tasks executed on the remote machine was the software metrics collection
mechanism using the Understand tool, as described in Section 3.4. There, we mentioned
that a specific version (4.0.837) was used by Alves et al. [5] to create the original database.
Because part of our work revolved around extending this data, we too had to use this
version. However, Understand version 4.0 could no longer be accessed with an academic
license through SciTools’ website5. As such, we contacted SciTools’ support and were
issued a 30-day promotional code to be used with older versions. This process had to be
done twice so that our scripts could execute Understand for more than thirty days.

After generating software metrics using Understand 4.0, these were inserted in each C/C++
project’s code unit table in the database. However, due to a property of the original
database schema and the high amount of data generated for the Mozilla and Linux Ker-
nel projects, a critical error occurred and prevented the MySQL database from being
accessed correctly. The original schema used the INT data type (4 bytes) to store each
primary key in the FILES_*, FUNCTIONS_*, CLASSES_*, EXTRA_TIME_FILES,
EXTRA_TIMES_FUNCTIONS, and EXTRA_TIME_CLASS tables. Since the last two
digits of this key are reserved for the project’s identifier, its value would increment by one
hundred with each inserted code unit. In turn, this meant that the primary key was ex-
hausted after reaching the maximum signed 4-byte integer value (2147483647) in MySQL6.

A conversion from the INT data type to BIGINT (8 bytes) was attempted but failed due to
the large amounts of data present in an already populated EXTRA_TIMES_FUNCTIONS
table. Additionally, this failure resulted in what was possibly a corrupted database, pre-
venting any future reads or writes. Because of this, the only solution was to discard the
database, change any relevant primary keys to the BIGINT data type, and reimport ev-
erything a second time. This entire process cost us about two weeks’ worth of execution
time in the remote machine, though this was not as severe as it could have been given that
we had also saved any newly generated data in Comma-Separated Values (CSV) files on
disk.

In the next chapter, we draw conclusions based on the validation experiments conducted
and questions posed in Sections 4.2 and 4.3. Additionally, the contributions of this work
are summarized, including the C/C++ function dataset composed of both software metrics

5https://licensing.scitools.com/download
6https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

49

https://licensing.scitools.com/download
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

Chapter 5

and security alerts whose build steps were described in Chapter 3.

50

Chapter 6

Conclusion

In this work, we presented a process through which one can build datasets of vulnerable
code units along with data collected using Static Code Analysis (SCA). We explained
how online platforms could be scraped for vulnerabilities reported for multiple products,
as well as how we could then associate each one of them with specific file versions in a
software project’s version control system. An already existing but out-of-date database
of vulnerabilities was updated with information from 2016 to 2019. We showed how tools
such as Understand or the Clang compiler could be used to generate software metrics
at a C/C++ file, function, and class level, while also locating these last two code units’
line numbers. This data was then combined with security alerts from a Static Analysis
Tool (SAT) called Flawfinder, allowing us to tally the number of potential vulnerabilities
associated with each code unit.

We created three datasets for files, functions, and classes, each one composed of specific
software metrics and enriched with security alerts related to potentially unsafe code pat-
terns. Not only are these datasets capable of being fed to a wide array of machine learning
algorithms, but we also built an automated process that may be used to collect future
vulnerabilities in the years to come. Moreover, we made strategic improvements to the
original database schema that resulted in a language-agnostic mechanism, leaving room
for analyzing other programming languages in the future.

In order to assess the created datasets’ quality, we focused on detecting vulnerable function
code. We generated a dataset composed of 85,915 function samples, each being labeled
one of two ways: 1) using a binary label, where a function may be neutral or vulnerable;
2) using a multiclass label, where a function may be neutral or belonging to one of several
categories. In practice, we adapted this last label to the size of our dataset and created a
grouped multiclass label with four possible values: neutral, vulnerable with no category,
vulnerable in the memory management category, or vulnerable with a category with fewer
than 10% of the samples. In total, our function dataset contained 80 relevant features,
with 28 being software metrics and 52 being alert rules.

We posed two Research Questions (RQs) that served as a foundation for validating the
function dataset using machine learning algorithms: 1) whether SAT alerts and software
metrics could predict vulnerable functions; 2) whether we can predict if functions are
vulnerable or not using static data from earlier years. An exploration of as many as possible
machine learning parameter combinations took place, where we used the Propheticus tool
to train and test classifiers using different configurations. A total of 848 configurations were
tried, with the best ones demonstrating that it was indeed possible to predict vulnerable
functions using metrics and alerts for both kinds of labels.

51

Chapter 6

Results showed precision, recall, and F-score values as high as 93.7%, 95.1%, and 93.9%,
respectively. Moreover, we saw that one did not have to trade off precision to still attain
high recall values. The Random Forest (RF) and Bagging classification algorithms, as well
as the variance threshold, random undersampling, and no sampling techniques stood above
the rest in regards to performance.

When partitioning the dataset using a temporal sliding window in vulnerability years, we
confirmed the previous performance metric values, though we were unable to adequately
answer the second RQ. Results showed that splitting data using a window of five, ten, or
every previous year had virtually no effect for the same performance metrics. In addition
to this, we explained how this rigid data partitioning could lead to a testing subset that
would be too small and not representative of the complete dataset for years between 2017
and 2019. In general, most metrics reached lower values than the best configurations in
the exploratory experiments. Having said that, we saw how all performance metrics could
still reach as high as 93% in certain scenarios.

As future work, other SATs could be used to generate security alerts and thus increase the
number of features in the dataset, such as the Cppcheck tool whose output was omitted due
to time constraints. In the same vein, projects in programming languages other than C and
C++ could also be analyzed. Moreover, a more in-depth investigation of the influence of
static data from previous years in code units could take place. This should be accompanied
by a more robust data partitioning scheme that takes into account each subset’s class
distribution. Future studies should also periodically retrieve new vulnerabilities from the
CVE Details website in order to update the database, given that this process is automated.
Finally, the file and class datasets could also be subject to a similar kind of analysis.

52

References

[1] Ashish Aggarwal and Pankaj Jalote. Integrating static and dynamic analysis for
detecting vulnerabilities. In 30th Annual International Computer Software and Ap-
plications Conference (COMPSAC’06), volume 1, pages 343–350. IEEE, 2006.

[2] Areej Algaith, Paulo Nunes, Fonseca Jose, Ilir Gashi, and Marco Vieira. Finding sql
injection and cross site scripting vulnerabilities with diverse static analysis tools. In
2018 14th European Dependable Computing Conference (EDCC), pages 57–64. IEEE,
2018.

[3] Omar H Alhazmi and Yashwant K Malaiya. Modeling the vulnerability discovery
process. In 16th IEEE International Symposium on Software Reliability Engineering
(ISSRE’05), pages 10–pp. IEEE, 2005.

[4] Omar H Alhazmi and Yashwant K Malaiya. Quantitative vulnerability assessment
of systems software. In Annual Reliability and Maintainability Symposium, 2005.
Proceedings., pages 615–620. IEEE, 2005.

[5] Henrique Alves, Baldoino Fonseca, and Nuno Antunes. Software metrics and security
vulnerabilities: dataset and exploratory study. In 2016 12th European Dependable
Computing Conference (EDCC), pages 37–44. IEEE, 2016.

[6] Henrique Alves, Baldoino Fonseca, and Nuno Antunes. Experimenting machine learn-
ing techniques to predict vulnerabilities. In 2016 Seventh Latin-American Symposium
on Dependable Computing (LADC), pages 151–156. IEEE, 2016.

[7] Henrique Alves, Baldoino Fonseca, and Nuno Antunes. Schemaspy analysis of
software - all relationships. https://eden.dei.uc.pt/~nmsa/metrics-dataset/
relationships.html, 2016. Accessed: 2020-10-29.

[8] Andrew Austin, Casper Holmgreen, and Laurie Williams. A comparison of the effi-
ciency and effectiveness of vulnerability discovery techniques. Information and Soft-
ware Technology, 55(7):1279–1288, 2013.

[9] Aileen G Bacudio, Xiaohong Yuan, Bei-Tseng Bill Chu, and Monique Jones. An
overview of penetration testing. International Journal of Network Security & Its
Applications, 3(6):19, 2011.

[10] J. Bansiya and C.G. Davis. A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on Software Engineering, 28(1):4–17, 2002.

[11] João R. Campos, Marco Vieira, and Ernesto Costa. Propheticus: Machine learning
framework for the development of predictive models for reliable and secure software.
In 2019 IEEE 30th International Symposium on Software Reliability Engineering (IS-
SRE), pages 173.–182, 2019.

53

https://eden.dei.uc.pt/~nmsa/metrics-dataset/relationships.html
https://eden.dei.uc.pt/~nmsa/metrics-dataset/relationships.html

Chapter 6

[12] Boris Chernis and Rakesh Verma. Machine learning methods for software vulnerability
detection. In Proceedings of the Fourth ACM International Workshop on Security and
Privacy Analytics, pages 31–39, 2018.

[13] Brian Chess and Jacob West. Secure programming with static analysis, pages 3–4,
21–24. Pearson Education, 2007.

[14] Shyam R Chidamber and Chris F Kemerer. Towards a metrics suite for object oriented
design. In Conference proceedings on Object-oriented programming systems, languages,
and applications, pages 197–211, 1991.

[15] Shyam R Chidamber and Chris F Kemerer. A metrics suite for object oriented design.
IEEE Transactions on software engineering, 20(6):476–493, 1994.

[16] Istehad Chowdhury and Mohammad Zulkernine. Can complexity, coupling, and cohe-
sion metrics be used as early indicators of vulnerabilities? In Proceedings of the 2010
ACM Symposium on Applied Computing, pages 1963–1969, 2010.

[17] IEEE Computer Society. Standards Coordinating Committee, Institute of Electrical,
Electronics Engineers, and IEEE Standards Board. IEEE Standard Glossary of Soft-
ware Engineering Terminology, page 31. IEEE Std. IEEE, 1990. ISBN 9781559370677.

[18] The MITRE Corporation. Cve mitre - terminology. https://cve.mitre.org/about/
terminology.html, 10 2020. Accessed: 2020-11-21.

[19] Mark Dowd, John McDonald, and Justin Schuh. The art of software security as-
sessment: Identifying and preventing software vulnerabilities, pages 18–24. Pearson
Education, 2006.

[20] Michael Fagan. Design and code inspections to reduce errors in program development.
In Software pioneers, pages 575–607. Springer, 2002.

[21] Norman E Fenton and Martin Neil. Software metrics: successes, failures and new
directions. Journal of Systems and Software, 47(2-3):149–157, 1999.

[22] The Open Web Application Security Project Foundation. Owasp top 10 - 2017
- the ten most critical web application security risks. https://owasp.org/
www-project-top-ten/2017/, 2017. Accessed: 2020-11-21.

[23] Anjana Gosain and Ganga Sharma. Static analysis: A survey of techniques and tools.
In Intelligent Computing and Applications, pages 581–591. Springer, 2015.

[24] Margherita Grandini, Enrico Bagli, and Giorgio Visani. Metrics for multi-class clas-
sification: an overview. ArXiv, abs/2008.05756, 2020.

[25] Jacob A Harer, Louis Y Kim, Rebecca L Russell, Onur Ozdemir, Leonard R Kosta,
Akshay Rangamani, Lei H Hamilton, Gabriel I Centeno, Jonathan R Key, Paul M
Ellingwood, et al. Automated software vulnerability detection with machine learning.
arXiv preprint arXiv:1803.04497, 2018.

[26] Sallie Henry and Dennis Kafura. Software structure metrics based on information
flow. IEEE transactions on Software Engineering, 7(5):510–518, 1981.

[27] Willy Jimenez, Amel Mammar, and Ana Cavalli. Software vulnerabilities, prevention
and detection methods: A review1. Security in model-driven architecture, 215995:
215995, 2009.

54

https://cve.mitre.org/about/terminology.html
https://cve.mitre.org/about/terminology.html
https://owasp.org/www-project-top-ten/2017/
https://owasp.org/www-project-top-ten/2017/

References

[28] SciTools Kevin Groke. What metrics does understand have?
https://support.scitools.com/support/solutions/articles/
70000582223-what-metrics-does-understand-have-, 2021. Accessed: 2021-
10-25.

[29] Kaspersky Lab. Measuring financial impact of it security on businesses - it security
risks report 2016. Technical report, Kaspersky Lab, 2016.

[30] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cybersecurity, 1(1):6,
2018.

[31] Peng Li and Baojiang Cui. A comparative study on software vulnerability static
analysis techniques and tools. In 2010 IEEE international conference on information
theory and information security, pages 521–524. IEEE, 2010.

[32] Bingchang Liu, Liang Shi, Zhuhua Cai, and Min Li. Software vulnerability discovery
techniques: A survey. In 2012 fourth international conference on multimedia infor-
mation networking and security, pages 152–156. IEEE, 2012.

[33] Fabio Massacci and Viet Hung Nguyen. An empirical methodology to evaluate vul-
nerability discovery models. IEEE Transactions on Software Engineering, 40(12):
1147–1162, 2014.

[34] Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineer-
ing, 2(4):308–320, 1976.

[35] Nádia Medeiros, Naghmeh Ivaki, Pedro Costa, and Marco Vieira. Software metrics as
indicators of security vulnerabilities. In 2017 IEEE 28th International Symposium on
Software Reliability Engineering (ISSRE), pages 216–227. IEEE, 2017.

[36] Satwik Mishra. Handling imbalanced data: Smote vs. random undersampling. Inter-
national Research Journal of Engineering and Technology (IRJET), 4(8), 2017.

[37] Nuno Neves, Joao Antunes, Miguel Correia, Paulo Verissimo, and Rui Neves. Us-
ing attack injection to discover new vulnerabilities. In International Conference on
Dependable Systems and Networks (DSN’06), pages 457–466. IEEE, 2006.

[38] Alberto S Nuñez-Varela, Héctor G Pérez-Gonzalez, Francisco E Martínez-Perez, and
Carlos Soubervielle-Montalvo. Source code metrics: A systematic mapping study.
Journal of Systems and Software, 128:164–197, 2017.

[39] National Institute of Standards and Technology. National vulnerability database -
vulnerabilities. https://nvd.nist.gov/vuln, 2020. Accessed: 2020-11-21.

[40] José D’Abruzzo Pereira and Marco Vieira. On the use of open-source c/c++ static
analysis tools in large projects. In 2020 16th European Dependable Computing Con-
ference (EDCC), pages 97–102. IEEE, 2020.

[41] José D’Abruzzo Pereira, João R. Campos, and Marco Vieira. Machine learning to
combine static analysis alerts with software metrics to detect security vulnerabili-
ties: An empirical study. In 2021 17th European Dependable Computing Conference
(EDCC), 2021.

[42] José D’Abruzzo Pereira, João Henggeler Antunes, and Marco Vieira. On building a
vulnerability dataset with static information from the source code. In Safety, Security,
and Privacy in Complex Artificial Intelligence based Systems (SAFELIFE 2021), 2021.
(accepted).

55

https://support.scitools.com/support/solutions/articles/70000582223-what-metrics-does-understand-have-
https://support.scitools.com/support/solutions/articles/70000582223-what-metrics-does-understand-have-
https://nvd.nist.gov/vuln

Chapter

[43] Andrey Petukhov and Dmitry Kozlov. Detecting security vulnerabilities in web ap-
plications using dynamic analysis with penetration testing. Computing Systems Lab,
Department of Computer Science, Moscow State University, pages 1–120, 2008.

[44] IBM Security. Cost of a data breach report 2020. Technical report, Ponemon Institute,
2020.

[45] Miltiadis Siavvas, Dionysios Kehagias, and Dimitrios Tzovaras. A preliminary study
on the relationship among software metrics and specific vulnerability types. In 2017
International Conference on Computational Science and Computational Intelligence
(CSCI), pages 916–921. IEEE, 2017.

[46] Ramanath Subramanyam and Mayuram S. Krishnan. Empirical analysis of ck met-
rics for object-oriented design complexity: Implications for software defects. IEEE
Transactions on software engineering, 29(4):297–310, 2003.

[47] Kazi Zakia Sultana. Towards a software vulnerability prediction model using traceable
code patterns and software metrics. In 2017 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pages 1022–1025. IEEE, 2017.

[48] Rahul Telang and Sunil Wattal. An empirical analysis of the impact of software
vulnerability announcements on firm stock price. IEEE Transactions on Software
engineering, 33(8):544–557, 2007.

[49] Bogdan Vasilescu, Alexander Serebrenik, and Mark Van den Brand. By no means:
A study on aggregating software metrics. In Proceedings of the 2nd International
Workshop on Emerging Trends in Software Metrics, pages 23–26, 2011.

[50] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and
Techniques, pages 149–151, 171–173. Morgan Kaufmann Series in Data Management
Systems. Morgan Kaufmann, 2nd edition, 2005.

[51] R. Zhang, S. Huang, Z. Qi, and H. Guan. Combining static and dynamic analysis to
discover software vulnerabilities. In 2011 Fifth International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing, pages 175–181, 2011.

[52] Serkan Özkan. Current cvss score distribution for all vulnerabilities. https://www.
cvedetails.com/cvss-score-distribution.php, 2020. Accessed: 2021-01-02.

56

https://www.cvedetails.com/cvss-score-distribution.php
https://www.cvedetails.com/cvss-score-distribution.php

Appendices

57

This page is intentionally left blank.

Appendix A - Software Metrics Summary

Table 1 lists every software metric used in the created datasets. While most metrics
were generated using Understand1 version 4.0.837, some had to be aggregated in our own
scripts using the sum, mean, and maximum functions. Additionally, some metrics only
exist in specific datasets depending on the kind of code unit. These distinctions, along
with a description adapted from the Understand tool’s website [28], are also included in
this summary table.

1https://www.scitools.com/

59

https://www.scitools.com/

Appendix

Name File Metric Function Metric Class Metric Description

AltAvgLineBlank X X Average number of blank lines for all nested functions or methods, including
inactive regions.

AltAvgLineCode X X Average number of lines containing source code for all nested functions or methods,
including inactive regions.

AltAvgLineComment X X Average number of lines containing comment for all nested functions or methods,
including inactive regions.

AltCountLineBlank X X X Number of blank lines, including inactive regions.
AltCountLineCode X X X Number of lines containing source code, including inactive regions.

AltCountLineComment X X X Number of lines containing comment, including inactive regions.
AvgCountInput X Average Fan-In (FANIN). Aggregated by our scripts.
AvgCountOutput X Average Fan-Out (FANOUT). Aggregated by our scripts.
AvgCyclomatic X X Average cyclomatic complexity for all nested functions or methods.

AvgCyclomaticModified X X Average modified cyclomatic complexity for all nested functions or methods.
AvgCyclomaticStrict X X Average strict cyclomatic complexity for all nested functions or methods.

AvgEssential X X Average Essential complexity for all nested functions or methods.
AvgLine X X Average number of lines for all nested functions or methods.

AvgLineBlank X X Average number of blank for all nested functions or methods.
AvgLineCode X X Average number of lines containing source code for all nested functions or methods.

AvgLineComment X X Average number of lines containing comment for all nested functions or methods.
AvgMaxNesting X Average maximum nesting level of control constructs. Aggregated by our scripts.
CountClassBase X Number of immediate base classes.

CountClassCoupled X Number of other classes coupled to. Also known as Coupling Between Objects
(CBO).

CountClassDerived X Number of immediate subclasses. Also known as Number of Children (NOC).
CountDeclClass X Number of classes.

CountDeclClassMethod X Number of class methods.
CountDeclClassVariable X Number of class variables.

CountDeclFunction X Number of functions.
CountDeclInstanceMethod X Number of instance methods.
CountDeclInstanceVariable X Number of instance variables.

CountDeclInstanceVariablePrivate X Number of private instance variables.
CountDeclInstanceVariableProtected X Number of protected instance variables.
CountDeclInstanceVariablePublic X Number of public instance variables.

CountDeclMethod X Number of local methods.

CountDeclMethodAll X Number of methods, including inherited ones. Also known as Response for a Class
(RFC).

CountDeclMethodConst X Number of local const methods.
CountDeclMethodFriend X Number of local friend methods.
CountDeclMethodPrivate X Number of local private methods.

CountDeclMethodProtected X Number of local protected methods.
CountDeclMethodPublic X Number of local public methods.

CountInput X Number of calling subprograms plus global variables read. Also known as FANIN.
CountLine X X X Number of all lines. Also known as Lines of Code (LOC).

CountLineBlank X X X Number of blank lines.

CountLineCode X X X Number of lines containing source code. Also known as Source Lines of Code
(SLOC).

CountLineCodeDecl X X X Number of lines containing declarative source code.
CountLineCodeExe X X X Number of lines containing executable source code.
CountLineComment X X X Number of lines containing comment.
CountLineInactive X X X Number of inactive lines.

CountLinePreprocessor X X X Number of preprocessor lines.
CountOutput X Number of called subprograms plus global variables set. Also known as FANOUT.
CountPath X Number of possible paths, not counting abnormal exits or gotos.

CountSemicolon X X Number of semicolons.
CountStmt X X X Number of statements.

CountStmtDecl X X X Number of declarative statements.
CountStmtEmpty X X X Number of empty statements.
CountStmtExe X X X Number of executable statements.
Cyclomatic X Cyclomatic complexity.

CyclomaticModified X Modified cyclomatic complexity.
CyclomaticStrict X Strict cyclomatic complexity.

Essential X Essential complexity.

HenryKafura X
Sum of the number of combinations from an input source to an output destination
in a function. Also known as the Henry Kafura Size (HK). Aggregated by our
scripts using the metrics CountInput, CountOutput, and CountLineCodeExe.

Knots X Measure of overlapping jumps.
MaxCountInput X Maximum FANIN. Aggregated by our scripts.
MaxCountOutput X Maximum FANOUT. Aggregated by our scripts.
MaxCyclomatic X X Maximum cyclomatic complexity of all nested functions or methods.

MaxCyclomaticModified X X Maximum modified cyclomatic complexity of nested functions or methods.
MaxCyclomaticStrict X X Maximum strict cyclomatic complexity of nested functions or methods.

MaxEssential X X Maximum essential complexity of all nested functions or methods.
MaxEssentialKnots X Maximum Knots after structured programming constructs have been removed.
MaxInheritanceTree X Maximum Depth of Inheritance Tree (DIT).

MaxMaxNesting X Maximum maximum nesting level of control constructs. Aggregated by our
scripts.

MaxNesting X X X Maximum nesting level of control constructs.
MinEssentialKnots X Minimum Knots after structured programming constructs have been removed.

PercentLackOfCohesion X 100% minus the average cohesion for package entities. Also known as Lack of
Cohesion in Methods (LCOM).

RatioCommentToCode X X X Ratio of comment lines to code lines.
SumCountClassBase X Sum of the number of immediate base classes. Aggregated by our scripts.

SumCountClassCoupled X Sum of the CBO. Aggregated by our scripts.
SumCountClassDerived X Sum of the NOC. Aggregated by our scripts.
SumCountDeclMethodAll X Sum of the RFC. Aggregated by our scripts.

SumCountInput X Sum of the FANIN. Aggregated by our scripts.
SumCountOutput X Sum of the FANOUT. Aggregated by our scripts.

SumCountPath X Sum of the number of possible paths, not counting abnormal exits or gotos. Ag-
gregated by our scripts.

SumCyclomatic X X Sum of cyclomatic complexity of all nested functions or methods. Also known as
Weighted Methods Per Class (WMC).

SumCyclomaticModified X X Sum of modified cyclomatic complexity of all nested functions or methods.
SumCyclomaticStrict X X Sum of strict cyclomatic complexity of all nested functions or methods.

SumEssential X X Sum of essential complexity of all nested functions or methods.
SumMaxInheritanceTree X Sum of the maximum DIT. Aggregated by our scripts.

SumMaxNesting X Sum of the maximum nesting level of control constructs. Aggregated by our
scripts.

SumPercentLackOfCohesion X Sum of the LCOM. Aggregated by our scripts.

Table 1: A summary of the software metrics present in the code unit datasets. This
includes metrics generated by the Understand tool [28] version 4.0.837 and any new ones
aggregated using our scripts.

60

This page is intentionally left blank.

Appendix

Appendix B - Code and Configuration Files Documentation

The following list describes the purpose of each Python script developed during the course
of our work. These include scraping information from online platforms, interfacing with
each C/C++ project’s version control system, inserting and updating rows in the MySQL
vulnerability database, and running any third-party tools such as Static Analysis Tools
(SATs), Understand, or Propheticus.

All scripts and any other files used throughout development can be found in this project’s
GitHub repository2. Each item below represents the path of a script relative to the “scripts”
directory inside this repository. Though every script uses underscore characters to separate
words in its filename, we may sometimes replace them with hyphens here for ease of
formatting in LATEX.

These were developed using Python version 3.8 while making use of the third-party modules
listed in the “scripts/requirements.txt” file. The scripts were executed in machines running
Windows 10 and Ubuntu 20.04. Because various scripts depend on the output of previous
ones, the list below presents each item in the order of execution. Other miscellaneous
scripts or general-purpose modules appear at the end.

• collect_vulnerabilities.py: collects any vulnerabilities associated with the C/C++
projects by scraping the CVE Details website. The collected vulnerability data in-
cludes the Common Vulnerabilities and Exposure (CVE) identifier, publish date,
Common Vulnerability Scoring System (CVSS) score, how it impacts different secu-
rity properties, vulnerability types, Common Weakness Enumeration (CWE) iden-
tifier, and any Uniform Resource Locators (URLs) that link to relevant websites
such as a project’s bug tracker or security advisory platforms. For each project, this
information is saved to a Comma-Separated Values (CSV) file;

• find_affected_files.py: finds any files affected by vulnerabilities associated with
the C/C++ projects by querying their version control systems. This information
includes the file’s path, a list of CVEs, the Git commit hash where the vulnerability
was patched (neutral file), the commit hash immediately before (vulnerable file), a
list of line ranges where the file modifications occurred, and a list of functions and
classes present in the file. Any data regarding functions and classes is collected using
the Clang compiler3 via a third-party Python module. This script uses the CSV files
generated by collect_vulnerabilities.py to create its own CSVs. On a Windows
machine, the correct Python version (32 or 64-bit) must be used so that it matches
Clang’s Dynamic Link Library (DLL);

• create_file_timeline.py: creates a timeline of files starting at each project’s first
commit and going through every commit that was affected by a vulnerability. The
script only retrieves information about files that were actually modified in each com-
mit (and not every file in the repository), reducing the time it takes to execute. This
information includes the file’s path, vulnerability status, the commit’s hash, author
date and tag name, a list of line ranges where the file modifications occurred, and
a list of functions and classes present in the file. This script uses the CSV files
generated by find_affected_files.py to create its own CSVs;

• fix-neutral-code-unit-status-in-affected-files-and-file-timeline.py:

2https://github.com/joaohenggeler/uc-masters-software-vulnerabilities
3https://clang.llvm.org/

62

https://github.com/joaohenggeler/uc-masters-software-vulnerabilities
https://clang.llvm.org/

updates the CSV files generated after running find-affected-files.py and create-
file-timeline.py by fixing the vulnerability status of any neutral code units. This
was done to fix a mistake introduced by a bug in the previous two scripts without
having to run them again;

• alter_engines_in_database.py: converts the engine from any table using My-
ISAM to InnoDB in the vulnerability database. The Structured Query Language
(SQL) scripts used to import the original dataset developed by Alves et al. [5] spec-
ify MyISAM as the default engine for every table. This change is advantageous since
this type of engine does not support foreign keys or transactions4, while InnoDB
does;

• import_extra_time_files_functions_classes_in_database.py: imports the
data from the original EXTRA_TIME_FILES, EXTRA_TIME_FUNCTIONS, and
EXTRA_TIME_CLASS tables into the database. This operation is provided sepa-
rately as it can take a long time to complete;

• merge_files_functions_classes_in_database.py: merges the FILES_*, FUNC-
TIONS_*, and CLASSES_* tables into a single one for each project and code unit
type. For example, the original tables for any files belonging to the Xen project
are kept in the tables FILES_3_ARCH, FILES_3_TOOLS, and FILES_3_XEN,
where the value 3 is the project’s identifier. After running this script, a new table
called FILES_3 containing all this data is created;

• collect_missing_cwes.py: collects any missing CWE values associated with the
vulnerabilities in the C/C++ projects by scraping the CVE Details website. This is
done to enrich the vulnerabilities in the original dataset with a specific category. For
each project, this information is saved to a CSV file;

• alter_vulnerabilities_in_database.py: makes the following structural changes
to the VULNERABILITIES table in the database: adds columns to represent each
vulnerability’s CWE and project identifier; sets the values of this last identifier
and adds a foreign key relationship that references the projects in the REPOSITO-
RIES_SAMPLE table; creates a new numeric primary key column that increments
itself automatically; applies this last process to the PATCHES table to preserve the
foreign key relationship with the VULNERABILITIES table;

• insert_vulnerabilities_in_database: inserts the data from any CSV files gen-
erated by collect_vulnerabilities.py into the VULNERABILITIES table into the
database. Before running this script, this table must be first modified using al-
ter_vulnerabilities_in_database.py;

• update_missing_cwes_in_database.py: updates any missing CWE values as-
sociated with the vulnerabilities in the C/C++ projects. Before running this script,
this data must be first collected using collect_missing_cwes.py;

• insert_patches_in_database: inserts the data from any CSV files generated
by create_file_timeline.py into the PATCHES table in the database. Before
running this script, the previously collected vulnerabilities must be first inserted
using insert_vulnerabilities_in_database;

• generate_metrics.py: generates the software metrics for any files affected by vul-
nerabilities associated with the C/C++ projects using the Understand tool. This

4https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html

63

https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html

Appendix

information includes the file’s path, whether it was vulnerable or not, the associated
commit hash where this specific file version originated from, and various different
software metrics at a file, function, and class level. The metrics generated by this
script are specified in Appendix 6. This script uses the CSV files generated by cre-
ate_file_timeline.py to create its own CSVs;

• verify_output_metrics.py: verifies the output of generate_metrics.py by
checking if each commit has at least one CSV file associated with it. This was done
to find a list of commit hashes that were missing their respective software metrics
due to an occasional runtime error when executing the Understand tool;

• split_and_update_metrics: splits the software metrics generated by gener-
ate_metrics.py according to their code units types (files, functions, or classes),
and computes new ones by aggregating them. The following file-level metrics are cre-
ated using the function and class-level ones: SumCountPath, MaxCountInput, Avg-
CountInput, SumCountInput, MaxCountOutput, AvgCountOutput, SumCountOut-
put, MaxMaxNesting, AvgMaxNesting, SumMaxNesting, and HenryKafura. This
script outputs three CSV files (file, function, and class metrics) for each CSV gener-
ated by generate_metrics.py;

• compare_metrics_in_database.py: compares the file-level metrics generated
by split_and_update_metrics with the ones previously inserted in the database.
This was done to determine if Understand 6.0.1046 computed software metrics the
same way as version 4.0.837, which was used by Alves et al. [5] when creating the
original dataset;

• alter-functions-and-classes-in-database.py: adds two columns (BeginLine and
EndLine) to the FUNCTIONS_* and CLASSES_* tables in the database, ensuring
that the line ranges these code units occupy can be stored. Before running this
script, the code unit tables must be merged using merge-files-functions-classes-
in-database.py;

• insert_metrics_in_database.py: inserts the data from any CSV files gener-
ated by split_and_update_metrics.py into the FILES_*, FUNCTIONS_*,
CLASSES_*, and EXTRA_TIME_* tables. Before running this script, the follow-
ing scripts must be first executed: insert-patches-in-database.py, alter-functions-
and-classes-in-database.py, and (previously) alter-int-primary-keys-to-big-int-
in-database.py;

• aggregate-ck-file-metrics-in-database.py: updates six software metric columns
in the FILES_* tables whose value was not previously aggregated by split-and-
update-metrics due to an oversight during development. The file-level metrics
in question are the aggregates of the following class-level metrics: DIT, NOC, RFC,
CBO, LCOM, and CountClassBase. These are computed by applying the sum, mean,
and maximum functions to the corresponding rows in the CLASSES_* table. Before
running this script, the previously generated metrics must be first inserted using
insert_metrics_in_database.py;

• create_alert_and_cwe_tables_in_database.py: creates any tables which are
necessary to insert security alerts and additional information about CWEs in the
database. These include the following tables: VULNERABILITY_CATEGORY,
CWE_INFO, SAT, RULE, RULE_CWE_INFO, ALERT, ALERT_FUNCTION,
and ALERT_CLASS. The tables VULNERABILITY_CATEGORY, CWE_INFO,

64

and SAT are populated with values specified in the static configuration file. Be-
fore running this script, the code unit tables must be merged using merge-files-
functions-classes-in-database.py;

• generate_alerts.py: generates the security alerts for any files affected by vulner-
abilities associated with the C/C++ projects using specific SATs. This information
includes the file’s path, whether it was vulnerable or not, the associated commit
hash where this specific file version originated from, and various different security
alerts. This script uses the CSV files generated by create_file_timeline.py to
create its own CSVs. Although this script was supposed to be run alongside gen-
erate_metrics.py, the security alerts used for this work were generated by one of
the advisors using their own scripts. This script is currently only configured to run
the Cppcheck SAT but may be easily expanded to include others;

• list_neutral_commits.py: lists any neutral commit hashes affected by vulnera-
bilities associated with the C/C++ projects. This simple script was used to specify
which commits should be processed by the SATs in order to generate security alerts.
This script uses the CSV files generated by find_affected_files.py to create its
own CSVs;

• create_indexes_in_database.py: adds two indexes to the PATCHES and ALERT
tables in the database in order to improve the performance when inserting alerts and
later generating the raw dataset. Before running this script, the security alerts table
must be created using create_alert_and_cwe_tables_in_database.py;

• insert_alerts_in_database.py: inserts the alert data from any CSV files present
in the directory specified in the dynamic configuration file into the RULE, CWE_INFO,
RULE_CWE_INFO, ALERT, ALERT_FUNCTION, and ALERT_CLASS tables
in the database. Before running this script, the following scripts must be first exe-
cuted:

insert-metrics-in-database.py, create-alert-and-cwe-tables-in-database.py,
and create-indexes-in-database.py;

• build_raw_dataset_from_database.py: exports a raw dataset composed of
every project’s code unit from the database. A CSV file is created for each code
unit kind. Each dataset is composed of samples containing software metrics and
security alert occurrences of different files, functions, or classes. Before running this
script, the following scripts must be first executed: insert-metrics-in-database.py,
aggregate-ck-file-metrics-in-database.py, and insert-alerts-in-database.py;

• merge_raw_datasets: merges any raw datasets generated by build-raw-dataset-
from-database.py into a single one for each code unit kind. This script exists to
allow the creation of a dataset containing samples from all projects without running
into disk space exhaustion problems when exporting a large number of rows from the
database. It is also used to remove a specific percentage of neutral samples, and to
group any vulnerable multiclass labels that fall under a given threshold;

• build_propheticus_dataset_from_raw_dataset.py: converts any raw dataset
merged by merge_raw_datasets.py to a specific version that can be parsed by
the Propheticus tool. For each processed dataset, three files are created: one listing
the total number of samples (.info.txt), one specifying the dataset’s columns and
their data types (.headers.txt), and another containing the data itself (.data.txt);

The following two scripts are kept in “propheticus/instances/vulnerability-prediction-
final” due to a requirement of the Propheticus tool:

65

Appendix

• InstanceConfig.py: defines a class that overrides any default configurations used
by Propheticus when processing the datasets generated by build-propheticus-
dataset-from-raw-dataset.py;

• InstanceBatchExecution.py: defines a class that specifies how Propheticus should
batch process the datasets generated by build-propheticus-dataset-from-raw-
dataset.py. This includes choosing which class labels to consider and listing the
dimensionality reduction techniques, data balancing methods, and classification al-
gorithms to apply. After training and testing classifiers using every possible combi-
nation of these values, Propheticus will output various prediction results and perfor-
mance metrics to disk. Must be run on the 64-bit version of Python since Propheticus
depends on the Tensorflow module. An older version of the xlrd module (e.g. 1.2.0)
is also required for some functionalities. On a Linux machine, the unixodbc package
must be installed so that the pypyodbc Python module can be imported correctly by
Propheticus;

• export_propheticus_result_comparison.py: exports the most relevant values
from a given Propheticus results comparison Excel log to a CSV file. Also shows the
best results for each label and performance metric. Before passing the Excel file to
this script, it must be first generated by running the experiments in Propheticus and
then telling it to compare all results;

• validate_datasets_using_temporal_windows.py: validates any datasets cre-
ated by merge_raw_datasets by rerunning the best Propheticus configurations
with a new data partitioning strategy: use a range of vulnerability years as the train-
ing subset, and the next year as the testing subset. For example, the following list
of tuples where the first element represents the training range, and the second the
testing year: (2008-2012, 2013), (2009-2013, 2014), and so on until (2014-2018, 2019).
Here, a sliding window of five years is considered. Because we only had to use the
algorithms and parameters that yielded the best results when run in the Propheticus
tool, this script only implements the following machine learning techniques:

– Classification Algorithms: Random Forest (RF), Bagging;

– Dimensionality Reduction: variance threshold;

– Data Balancing: random undersampling.

• plot_temporal_windows_results.py: plots the performance metrics generated
after rerunning the best Propheticus configurations using temporal sliding windows
with validate-datasets-using-temporal-windows.py. For each configuration,
the following two files are created: 1) a text file containing part of a table with
the performance metric values; 2) an image containing nine lines (for three metrics
and three window sizes).

• modules/common.py: defines any general-purpose functionalities used by all scripts,
including functions for logging information, loading configuration files, and serializing
data;

• modules/cve.py: defines a class that represents a software vulnerability and that
contains methods for scraping its data from the CVE Details website;

• modules/database.py: defines a class that represents a MySQL database connec-
tion and that contains methods for querying its information;

66

• modules/project.py: defines a class that represents a C/C++ project and that
contains methods for interfacing with its vulnerabilities and source files. Multiple
subclasses are defined given each project’s requirements, such as scraping information
from security advisories and its version control system in different ways;

• modules/sats.py: defines any classes that represent third-party tools used to per-
form Static Code Analysis (SCA) on a project’s source files. This includes the Un-
derstand tool and the Cppcheck and Flawfinder SATs;

• modules/scraping.py: defines any methods and classes that are used to download
and parse vulnerability metadata from websites;

• split_csv.py: splits a CSV file into multiple ones. This script was meant to bypass
the 100 MB file limit in this work’s Git repository. However, it was left unused since
the resulting CSV files could be easily compressed due to their nature.

In the previously documented Python scripts, the terms static and dynamic configura-
tion files are used. These refer to two files that store parameters that influence how most
scripts behave. Their names are derived from the fact that some values are permanent
(static) while others depend on the scripts’ environment or desired outcome (dynamic).
This information is kept in two files, static_config.json and dynamic_config.json in
the scripts/modules/config directory, using the JavaScript Object Notation (JSON)
format. The dynamic configuration file is kept private since it contains paths that de-
pend on the machine it’s located on, as well as sensitive data (e.g. the MySQL database
credentials and GitHub personal access tokens). As such, a generic template file called
dynamic_config_template.json was included in this work’s repository in its place.

The contents of the static configuration file and an adaptation of the dynamic template
one can be found in Listings 1 and 2, respectively. What follows is a description of each
parameter stored in the static configuration file.

• projects: maps each project’s full name to a JSON object that contains the follow-
ing parameters. The class defined in modules/project.py stores these values as
attributes.

– short_name: a shorter and lowercase version of the project’s full name. Used
to name the resulting CSV files created by the scripts;

– database_id: the primary key value that identifies the project in the database.
Known as the R_ID column in the various tables;

– database_name: the suffix that identifies each project’s views in the database.
Also used as the name of the subdirectory that contains each project’s SQL
import scripts;

– github_data_name: the name of the directory in an external repository that
stores this project’s security alerts;

– vendor_id and product_id: two values that together uniquely identify a
project in CVE Details. Used to list and scrape vulnerabilities from this website.
The value of product_id may be null if all software from the vendor is to be
considered;

– url_pattern: a regular expression used to remove any URLs unrelated to the
project when scraping the references section from each vulnerability’s page in
the CVE Details website;

67

Appendix

– master_branch: the name of the main branch in the project’s repository.
Used to filter commit hashes if the option scrape_all_branches is disabled;

– language: the project’s programming language. Only “c” and “c++” are sup-
ported;

– include_directory_path: the path to the project’s header files, relative to
the repository’s root directory. May be null if no such directory exists.

• sats: maps each SAT’s full name to an object that contains the following parameters.
The classes defined in modules/sats.py store these values as attributes. These are
set to null for Understand since this tool is not used to generate alerts, even though
it performs SCA.

– database_name: the SAT’s name as shown in the SAT_NAME column of
the SAT table in the database;

– github_data_name: the name of the subdirectory in an external repository
that stores the security alerts generated by this SAT.

• vulnerability_categories: maps a vulnerability category to a list of CWEs that
belong to it, as is also defined in Table 3.3. These values are inserted in the VUL-
NERABILITY_CATEGORY and CWE_INFO tables in the database when the alert
tables are first created. This object is also used to assign each class label a numeric
value (the category’s index) when building the code unit datasets;

• target_labels: a list of every target label considered in the datasets. Used to
stop their respective columns from being interpreted as features when validating the
dataset;

• http_headers: a collection of Hypertext Transfer Protocol (HTTP) headers belong-
ing to different web browsers. These are used by the ScrapingManager class defined
in modules/scraping.py to download web pages without having the requests be
rejected by the server.

1 {
2 "projects":
3 {
4 "Glibc":
5 {
6 "short_name": "glibc",
7 "database_id": 5,
8 "database_name": "glibc",
9 "github_data_name": "glibc",

10 "vendor_id": 72,
11 "product_id": 767,
12 "url_pattern": "sourceware",
13 "master_branch": "master",
14 "language": "c",
15 "include_directory_path": "include"
16 },
17

18 "Apache HTTP Server":
19 {
20 "short_name": "apache",
21 "database_id": 4,
22 "database_name": "httpd",
23 "github_data_name": "httpd",
24 "vendor_id": 45,

68

25 "product_id": 66,
26 "url_pattern": "apache",
27 "master_branch": "trunk",
28 "language": "c",
29 "include_directory_path": "include"
30 },
31

32 "Xen":
33 {
34 "short_name": "xen",
35 "database_id": 3,
36 "database_name": "xen",
37 "github_data_name": "xen",
38 "vendor_id": 6276,
39 "product_id": null ,
40 "url_pattern": "xen",
41 "master_branch": "master",
42 "language": "c",
43 "include_directory_path": "xen/include"
44 },
45

46 "Linux Kernel":
47 {
48 "short_name": "kernel",
49 "database_id": 2,
50 "database_name": "kernel",
51 "github_data_name": "linux",
52 "vendor_id": 33,
53 "product_id": 47,
54 "url_pattern": "linux|kernel|redhat",
55 "master_branch": "master",
56 "language": "c",
57 "include_directory_path": "include"
58 },
59

60 "Mozilla":
61 {
62 "short_name": "mozilla",
63 "database_id": 1,
64 "database_name": "mozilla",
65 "github_data_name": "mozilla",
66 "vendor_id": 452,
67 "product_id": null ,
68 "url_pattern": "mozilla",
69 "master_branch": "master",
70 "language": "c++",
71 "include_directory_path": null
72 }
73 },
74

75 "sats":
76 {
77 "Understand":
78 {
79 "database_name": null ,
80 "github_data_name": null
81 },
82

83 "Cppcheck":
84 {
85 "database_name": "Cppcheck",
86 "github_data_name": "cppcheck"
87 },

69

Appendix

88

89 "Flawfinder":
90 {
91 "database_name": "Flawfinder",
92 "github_data_name": "flawfinder"
93 }
94 },
95

96 "vulnerability_categories":
97 {
98 "Memory Management": [119, 362, 399, 416, 476, 824],
99 "Input Validation": [20, 78, 79, 91, 94, 134, 189],

100 "Permission": [255, 264, 269, 284, 287, 352],
101 "Data Protection": [199, 200],
102 "Coding Practices": [17, 19, 254],
103 "Cryptography": [310],
104 "System Configuration": [16],
105 "File Management": [22, 59],
106

107 "Output Encoding": [],
108 "Error Handling and Logging": [],
109 "Communication Security": [],
110 "Database Security": []
111 },
112

113 "target_labels": ["binary_label", "grouped_multiclass_label"],
114

115 "http_headers":
116 {
117 "Chrome":
118 {
119 "Accept": "text/html ,application/xhtml+xml ,application/xml;q=0.9,

image/avif ,image/webp ,image/apng ,*/*;q=0.8, application/signed -exchange;
v=b3;q=0.9",

120 "Accept -Encoding": "identity",
121 "Accept -Language": "en -US ,en;q=0.9",
122 "Sec -Fetch -Dest": "document",
123 "Sec -Fetch -Mode": "navigate",
124 "Sec -Fetch -Site": "none",
125 "Sec -Fetch -User": "?1",
126 "Upgrade -Insecure -Requests": "1",
127 "User -Agent": "Mozilla /5.0 (Windows NT 6.1; Win64; x64) AppleWebKit

/537.36 (KHTML , like Gecko) Chrome /86.0.4240.75 Safari /537.36"
128 },
129

130 "Firefox":
131 {
132 "Accept": "text/html ,application/xhtml+xml ,application/xml;q=0.9,

image/webp ,*/*;q=0.8",
133 "Accept -Encoding": "identity",
134 "Accept -Language": "en -US ,en;q=0.5",
135 "Dnt": "1",
136 "Referer": "https :// duckduckgo.com/?q=test&t=h_&ia=web",
137 "Sec -Gpc": "1",
138 "Upgrade -Insecure -Requests": "1",
139 "User -Agent": "Mozilla /5.0 (Windows NT 10.0; Win64; x64; rv :86.0)

Gecko /20100101 Firefox /86.0"
140 },
141

142 "Edge":
143 {
144 "Accept": "text/html ,application/xhtml+xml ,application/xml;q=0.9,

image/webp ,image/apng ,*/*;q=0.8, application/signed -exchange;v=b3;q=0.9"

70

,
145 "Accept -Encoding": "identity",
146 "Accept -Language": "en -US ,en;q=0.9",
147 "Sec -Fetch -Dest": "document",
148 "Sec -Fetch -Mode": "navigate",
149 "Sec -Fetch -Site": "none",
150 "Sec -Fetch -User": "?1",
151 "Upgrade -Insecure -Requests": "1",
152 "User -Agent": "Mozilla /5.0 (Windows NT 10.0; Win64; x64) AppleWebKit

/537.36 (KHTML , like Gecko) Chrome /88.0.4324.182 Safari /537.36 Edg
/88.0.705.74"

153 },
154

155 "Internet Explorer":
156 {
157 "Accept": "text/html , application/xhtml+xml , image/jxr , */*",
158 "Accept -Encoding": "identity",
159 "Accept -Language": "en -US",
160 "User -Agent": "Mozilla /5.0 (Windows NT 10.0; WOW64; Trident /7.0; rv

:11.0) like Gecko"
161 }
162 }
163 }

Listing 1: The static configuration JSON file used by the Python scripts.

The parameters of the dynamic configuration file are documented below.

• debug: a collection of debug options used to validate certain scripts before executing
them to generate the final results;

– enabled: whether the following debug parameters are used;
– min_hub_pages: the minimum number of hub pages in CVE Details for a

given project that have to exist to consider the following option. These “hub
pages” list and link to a set number of vulnerabilities using a pagination process;

– hub_page_step: defines a step size that skips some hub pages that were
collected from CVE Details, provided there were enough of them. For example,
a step of three would only consider the first, fourth, seventh, etc, pages. Used
to test the vulnerability collection script with a smaller sample size;

– max_cves_per_hub_page: the maximum number of vulnerabilities to col-
lect from each hub page;

– use_random_sampling: whether to draw a random sample of vulnerabilities
from each hub page or to only consider the first ones. This is done using the
sample size defined above;

– verify_different_unit_names: whether to apply a verification step to the
software metrics generation process using the parameter below;

– different_unit_names_ratio_limit: defines a threshold that, if crossed
during the metrics generation process, logs a debug message to the script’s log
file. The limit represents how close two code unit (function or class) names
have to be before issuing a warning with both units’ properties (the higher the
computed ratio, the more similar the names). This is done because Understand
only shows a code unit’s name (and not its line range), meaning we have to
associate them with the names in our previously created timeline CSV. Dur-
ing development, there was some concern that the script could be mishandling
names that were very similar, but failed a strict equality condition.

71

Appendix

• recursion_limit: sets the maximum number of recursive calls allowed by a Python
function before halting a script. This is used to bypass this restriction in third-partly
modules, such as Clang;

• allowed_projects: an object that specifies whether a given project should be con-
sidered when running a script;

• output_directory_path: the path to the directory where any input and output
CSV files should be read or written to. May be relative to the script’s working
directory;

• start_at_cve_hub_page: which hub page to start from when collecting vulner-
abilities from CVE Details. Used to continue scraping information if the script had
to be stopped for whatever reason. May be set to null to start from the beginning;

• scrape_all_branches: whether to consider all commit hashes (true) or only the
ones from the master branch of the project’s repository (false) when collecting vul-
nerabilities. This was set to false throughout this work’s development;

• affected_files_csv_write_frequency: how often to update the CSV files to disk
when running find_affected_files.py and create_file_timeline.py. Measured
in the number of commits;

• neutral_after_author_date and neutral_before_author_date: two param-
eters that specify a commit’s author date range. Used to only list source files that
were modified between these dates;

• start_at_timeline_index: which commit index to start from when creating the
file timeline. Used to resume the execution of the script if it had to be stopped for
whatever reason. May be set to null to start from the beginning;

• start_at_checkout_commit_index: which commit index to start from when
performing the Git checkout operation in order to generate software metrics and
security alerts. Used to resume the execution of the script if it had to be stopped for
whatever reason. May be set to null to start from the beginning;

• checkout_commit_index_list: a list of commit indexes that should only be
processed when performing the same operation as mentioned above. Used to retry
the execution of Understand or SATs if they failed to generate results for specific
commits, but succeeded for others. May be set to null to skip this commit filtering
process;

• clang_lib_path: the path to the directory containing Clang’s DLL (Windows) or
shared library (Linux) file. May also be the path to the file itself;

• dataset_path: the path to the directory containing the original dataset and its
SQL import scripts, as provided by Alves et al. [5];

• extra_time_tables_to_import: a list of suffixes for the EXTRA_TIME_* ta-
bles to import into the database;

• data_repository_path: the path to the directory containing the files from the
security alert CSV repository mentioned above;

• allowed_code_units: an object that specifies whether a given code unit (file,
function, or class) should be considered when running a script;

72

• allowed_sats: an object that specifies whether a given SAT (excluding Understand)
should be considered when running a script;

• dataset_neutral_sample_removal_ratio: defines a percentage of neutral sam-
ples to remove from the dataset. Used as a preliminary data balancing technique
when merging the raw datasets;

• dataset_vulnerable_label_threshold: defines a percentage of vulnerable sam-
ples for when to change each vulnerability category label to the grouped multiclass
label. For example, if set to 0.05, then any vulnerability category that falls under
5% of the total number of vulnerable samples is converted to this new label. Used
when merging the raw datasets;

• dataset_filter_samples_ineligible_for_alerts: whether to remove any func-
tion or class samples that could never be mapped to security alerts due to missing
line numbers. Used when building the raw datasets;

• dataset_filter_commits_without_alerts: whether to remove samples associ-
ated with a commit without any inserted alerts. Used when building the raw datasets;

• account_username and account_password: the credentials of a user with root
privileges. Used very sparingly for situations such as changing the file permissions
and ownership of the raw dataset exported by the MySQL Daemon. Only used in a
Linux environment;

• propheticus: a collection of parameters that are passed to the Propheticus tool
when creating classifiers using the generated dataset. The total number of executed
configurations is equal to the product of the number of labels, dimensionality reduc-
tion and data balancing techniques, and classification algorithm hyperparameters.

– max_thread_count: the maximum number of threads to use when training
and testing the models;

– labels: which class labels from the dataset to consider as the target;

– seed_count: the number of times each configuration is executed. The final
performance metrics of a configuration are the average of this number;

– data_split: an object containing the parameters for how the dataset should
be partitioned. The n_splits option specifies the number of folds in the k-fold
cross-validation technique;

– dimensionality_reduction: a list of dimensionality reduction techniques as
specified in the file propheticus/configs/DimensionalityReduction.py from
the Propheticus source code;

– data_balancing: a list of data balancing techniques as specified in the file
propheticus/configs/Sampling.py from the Propheticus source code;

– classification_algorithms: an object mapping each classification algorithm
to a list of hyperparameters objects. This list must contain either null or JSON
objects whose values are lists. If a hyperparameter list element is an object, then
the cartesian product of these list values is used to build several configurations.
Otherwise, if a list element is null, then a configuration with default hyperpa-
rameter values is assumed. These algorithms and their parameters are speci-
fied in the file propheticus/configs/Classification.py from the Propheticus
source code.

73

Appendix

• temporal_window: a collection of parameters that are passed to our own valida-
tion script when creating classifiers by partitioning the generated dataset according
to each sample’s vulnerability year (i.e. by using a temporal sliding window).

– num_runs: the number of times each configuration is executed. The final
performance metrics of a configuration are the average of this number;

– data_split: an object containing the parameters for how the dataset should be
partitioned. The begin_test_year option specifies the first year to consider
as the testing subset. The previous years are considered as the training subset,
where the number of years in this set is defined by the list of sizes in the
window_size option. A size of null is interpreted as a variable-length window
that includes every year before the testing one;

– default_algorithm_parameters: an object mapping each classification al-
gorithm to a set of parameters that should be assumed by default. Used to
emulate the behavior of Propheticus where some classifiers have default param-
eters that are not explicitly set in each configuration;

– configurations: a list of the best classifier configurations obtained after us-
ing the Propheticus tool to explore a wide array of parameter combinations.
Note that, unlike the classification_algorithms option in the propheticus
object, each configuration is executed as is, and no combination of parameters
is performed;

• projects: maps each project’s full name to an object that contains any dynamic
parameters. Currently, the only supported option is repository_path, which points
to the directory containing the project’s repository;

• sats: maps each SAT’s full name to an object that contains any dynamic parameters.
Currently, the only supported option is executable_path, which points to the tool’s
executable binary. This value may be an absolute path, or the just the filename
(provided this command is recognized by the operating system). It may also be null
if a given tool is not installed;

• database: the credentials used to connect to the database, as well as any other
additional options. All parameters defined in this object are passed as is to the
MySQL connector class in Python5. For example, the option sql_mode may also
be specified to change a session variable of the same name.

– host: the hostname or address of the MySQL server;

– port: the port of the MySQL server;

– user: the username used to authenticate the connection;

– password: the password used to authenticate the connection;

– database: the name of the database where the queries will be executed.

1 {
2 "debug":
3 {
4 "enabled": false ,
5

6 "min_hub_pages": 6,
7 "hub_page_step": 5,

5https://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html

74

https://dev.mysql.com/doc/connector-python/en/connector-python-connectargs.html

8 "max_cves_per_hub_page": 5,
9 "use_random_sampling": true ,

10

11 "verify_different_unit_names": true ,
12 "different_unit_names_ratio_limit": 90
13 },
14

15 "recursion_limit": 1000000,
16

17 "allowed_projects":
18 {
19 "glibc": false ,
20 "apache": false ,
21 "xen": true ,
22 "kernel": true ,
23 "mozilla": true
24 },
25

26 "output_directory_path": "output",
27

28 "start_at_cve_hub_page": null ,
29 "scrape_all_branches": false ,
30

31 "affected_files_csv_write_frequency": 10,
32 "neutral_after_author_date": "1990 -01 -01",
33 "neutral_before_author_date": "2022 -01 -01",
34

35 "start_at_timeline_index": null ,
36

37 "start_at_checkout_commit_index": null ,
38 "checkout_commit_index_list": null ,
39

40 "clang_lib_path": "/usr/lib/x86_64 -linux -gnu/libclang -10.so.1",
41

42 "dataset_path": "/home/admin/dataset",
43

44 "extra_time_tables_to_import": ["files", "functions", "class"],
45

46 "data_repository_path": "/home/admin/repositories/repository -name",
47

48 "allowed_code_units":
49 {
50 "file": false ,
51 "function": true ,
52 "class": true
53 },
54

55 "allowed_sats":
56 {
57 "Cppcheck": false ,
58 "Flawfinder": true
59 },
60

61 "dataset_neutral_sample_removal_ratio": 0.80,
62 "dataset_vulnerable_label_threshold": 0.05,
63 "dataset_filter_samples_ineligible_for_alerts": true ,
64 "dataset_filter_commits_without_alerts": true ,
65

66 "account_username": "<Username >",
67 "account_password": "<Password >",
68

69 "propheticus":
70 {

75

Appendix

71 "max_thread_count": 6,
72 "labels": ["binary_label", "grouped_multiclass_label"],
73

74 "seed_count": 5,
75 "data_split": {"n_splits": 5},
76

77 "dimensionality_reduction": [["variance"], ["variance", "correlation"
]],

78 "data_balancing": [[], ["RandomUnderSampler"], ["RandomOverSampler"], [
"RandomUnderSampler", "RandomOverSampler"]],

79

80 "classification_algorithms":
81 {
82 "random_forests":
83 [
84 null ,
85 {
86 "n_estimators": [100, 200],
87 "criterion": ["gini"],
88 "min_samples_split": [0.001, 2],
89 "min_samples_leaf": [0.001, 1],
90 "max_features": [null],
91 "bootstrap": [true]
92 }
93],
94

95 "bagging":
96 [
97 null ,
98 {
99 "n_estimators": [100, 200],

100 "max_features": [0.1, 0.55, 1.0],
101 "bootstrap": [true]
102 }
103],
104

105 "xgboost":
106 [
107 null ,
108 {
109 "n_estimators": [100, 300],
110 "learning_rate": [0.1, 0.3],
111 "gamma": [0],
112 "subsample": [1],
113 "max_depth": [10, 30],
114 "min_samples_split": [2, 5],
115 "min_samples_leaf": [1, 4]
116 }
117]
118 }
119 },
120

121 "temporal_window":
122 {
123 "num_runs": 30,
124 "data_split": {"begin_test_year": 2013, "window_size": [null , 5, 10]},
125

126 "default_algorithm_parameters":
127 {
128 "random_forests": {"n_jobs": -1},
129 "bagging": {"n_jobs": -1}
130 },
131

76

132 "configurations":
133 [
134 {
135 "name": "Best Precision (Binary) - Default", "target_label": "

binary_label",
136 "dimensionality_reduction": ["variance"], "data_balancing": ["

RandomUnderSampler"],
137 "classification_algorithm": "random_forests", "algorithm_parameters

": {"bootstrap": true , "criterion": "gini", "max_features": "auto", "
min_samples_leaf": 1, "min_samples_split": 2, "n_estimators": 100}

138 },
139

140 {
141 "name": "Best Recall (Binary)", "target_label": "binary_label",
142 "dimensionality_reduction": ["variance"], "data_balancing": [],
143 "classification_algorithm": "bagging", "algorithm_parameters": {"

bootstrap": true , "max_features": 0.55, "n_estimators": 200}
144 },
145

146 {
147 "name": "Best F-score (Binary) 1 of 2", "target_label": "

binary_label",
148 "dimensionality_reduction": ["variance"], "data_balancing": [],
149 "classification_algorithm": "bagging", "algorithm_parameters": {"

bootstrap": true , "max_features": 1.0, "n_estimators": 100}
150 },
151

152 {
153 "name": "Best F-score (Binary) 2 of 2 - Default", "target_label": "

binary_label",
154 "dimensionality_reduction": ["variance"], "data_balancing": [],
155 "classification_algorithm": "bagging", "algorithm_parameters": {"

bootstrap": true , "max_features": 1.0, "n_estimators": 10}
156 },
157

158 {
159 "name": "Best Precision (Multiclass) - Default", "target_label": "

grouped_multiclass_label",
160 "dimensionality_reduction": ["variance"], "data_balancing": ["

RandomUnderSampler"],
161 "classification_algorithm": "random_forests", "algorithm_parameters

": {"bootstrap": true , "criterion": "gini", "max_features": "auto", "
min_samples_leaf": 1, "min_samples_split": 2, "n_estimators": 100}

162 },
163

164 {
165 "name": "Best Recall (Multiclass) 1 of 2", "target_label": "

grouped_multiclass_label",
166 "dimensionality_reduction": ["variance"], "data_balancing": [],
167 "classification_algorithm": "bagging", "algorithm_parameters": {"

bootstrap": true , "max_features": 0.55, "n_estimators": 100}
168 },
169

170 {
171 "name": "Best Recall (Multiclass) 2 of 2", "target_label": "

grouped_multiclass_label",
172 "dimensionality_reduction": ["variance"], "data_balancing": [],
173 "classification_algorithm": "bagging", "algorithm_parameters": {"

bootstrap": true , "max_features": 0.55, "n_estimators": 200}
174 },
175

176 {
177 "name": "Best F-score (Multiclass) 1 of 2", "target_label": "

77

Appendix

grouped_multiclass_label",
178 "dimensionality_reduction": ["variance"],"data_balancing": [],
179 "classification_algorithm": "random_forests", "algorithm_parameters

": {"bootstrap": true , "criterion": "gini", "max_features": null , "
min_samples_leaf": 1, "min_samples_split": 2, "n_estimators": 200}

180 },
181

182 {
183 "name": "Best F-score (Multiclass) 2 of 2", "target_label": "

grouped_multiclass_label",
184 "dimensionality_reduction": ["variance"],"data_balancing": [],
185 "classification_algorithm": "bagging", "algorithm_parameters": {"

bootstrap": true , "max_features": 1.0, "n_estimators": 200}
186 }
187]
188 },
189

190 "projects":
191 {
192 "Glibc":
193 {
194 "repository_path": "/home/admin/repositories/glibc"
195 },
196

197 "Apache HTTP Server":
198 {
199 "repository_path": "/home/admin/repositories/httpd"
200 },
201

202 "Xen":
203 {
204 "repository_path": "/home/admin/repositories/xen"
205 },
206

207 "Linux Kernel":
208 {
209 "repository_path": "/home/admin/repositories/linux"
210 },
211

212 "Mozilla":
213 {
214 "repository_path": "/home/admin/repositories/gecko -dev"
215 }
216 },
217

218 "sats":
219 {
220 "Understand":
221 {
222 "executable_path": "/home/admin/sats/understand /4.0.837/ scitools/bin/

linux64/und"
223 },
224

225 "Cppcheck":
226 {
227 "executable_path": "cppcheck"
228 },
229

230 "Flawfinder":
231 {
232 "executable_path": null
233 }
234 },

78

235

236 "database":
237 {
238 "host": "127.0.0.1",
239 "port": "3306",
240 "user": "<Username >",
241 "password": "<Password >",
242 "database": "software",
243 "sql_mode": "ONLY_FULL_GROUP_BY ,NO_ZERO_IN_DATE ,NO_ZERO_DATE ,

ERROR_FOR_DIVISION_BY_ZERO ,NO_ENGINE_SUBSTITUTION"
244 }
245 }

Listing 2: An example of a possible dynamic configuration JSON file used by the Python
scripts.

79

This page is intentionally left blank.

Appendix C - Results for the Exploratory Experiments

This Appendix contains confusion matrices showcasing how the best configurations pre-
sented in Section 4.2 predicted each function’s vulnerability status. All configurations in
this Appendix are specified in Table 4.5. The matrix associated with configuration C5 is
shown in Figure 4.2 of this previous section. The markers in each figure refer to the follow-
ing grouped multiclass labels: Memory Management (MM), Neutral (N), Vulnerable With
No Category (V(NC)), and Vulnerable With A Category (V(WC)). For a binary target
label, only N and V(NC) are considered. All figures were generated by the Propheticus
tool.

Figure 1: The confusion matrix showing the predictions of the classifier trained with con-
figuration C1.

Figure 2: The confusion matrix showing the predictions of the classifier trained with con-
figuration C2.

81

Appendix

Figure 3: The confusion matrix showing the predictions of the classifier trained with con-
figuration C3.

Figure 4: The confusion matrix showing the predictions of the classifier trained with con-
figuration C4.

82

Figure 5: The confusion matrix showing the predictions of the classifier trained with con-
figuration C6.

Figure 6: The confusion matrix showing the predictions of the classifier trained with con-
figuration C7.

83

Appendix

Figure 7: The confusion matrix showing the predictions of the classifier trained with con-
figuration C8.

Figure 8: The confusion matrix showing the predictions of the classifier trained with con-
figuration C9.

84

This page is intentionally left blank.

Chapter 6

Appendix D - Results for the Temporal Window Experiments

This Appendix contains the performance metric values obtained after rerunning the best
configurations shown in Section 4.3 with three temporal sliding windows: ten years, five
years, and a variable-length window that includes every year before the testing one. An
additional figure showing how the performance metrics evolve over time is also presented
for each configuration. All configurations in this Appendix are specified in Table 4.5. Note
that C4, C7, and C8 are omitted from this temporal analysis as they refer to duplicate
pairs of target labels and performance metrics. The results for C1 are shown in Figure
4.3 and Table 4.7 of this previous section. All figures and tables were generated by the
plot_temporal_windows_results script documented in Appendix 6.

Figure 9: The evolution of the performance metrics for each window size along each testing
year for configuration C2.

86

Figure 10: The evolution of the performance metrics for each window size along each
testing year for configuration C3.

Figure 11: The evolution of the performance metrics for each window size along each
testing year for configuration C5.

87

Chapter 6

Figure 12: The evolution of the performance metrics for each window size along each
testing year for configuration C6.

Figure 13: The evolution of the performance metrics for each window size along each
testing year for configuration C9.

88

Window Training Testing Training % Precision Recall F-score
10 2004-2013 2014 64% 0.9083 0.9446 0.9203
10 2005-2014 2015 78% 0.9306 0.9552 0.9356
10 2006-2015 2016 77% 0.9316 0.9564 0.9380
10 2007-2016 2017 91% 0.8872 0.9339 0.9054
10 2008-2017 2018 96% 0.9001 0.9404 0.9141
10 2009-2018 2019 96% 0.8954 0.9312 0.9012
5 2008-2012 2013 62% 0.9315 0.9543 0.9369
5 2009-2013 2014 63% 0.9089 0.9449 0.9203
5 2010-2014 2015 76% 0.9296 0.9551 0.9354
5 2011-2015 2016 76% 0.9321 0.9564 0.9381
5 2012-2016 2017 90% 0.8881 0.9341 0.9056
5 2013-2017 2018 95% 0.8981 0.9404 0.9138
5 2014-2018 2019 95% 0.9005 0.9317 0.9016

Variable 2002-2012 2013 64% 0.9305 0.9540 0.9366
Variable 2002-2013 2014 64% 0.9084 0.9446 0.9203
Variable 2002-2014 2015 78% 0.9308 0.9552 0.9357
Variable 2002-2015 2016 78% 0.9313 0.9563 0.9380
Variable 2002-2016 2017 91% 0.8873 0.9338 0.9055
Variable 2002-2017 2018 96% 0.9000 0.9404 0.9141
Variable 2002-2018 2019 96% 0.8966 0.9314 0.9012

Table 2: The performance metric values for configuration C2 using the three temporal
sliding windows.

Window Training Testing Training % Precision Recall F-score
10 2004-2013 2014 64% 0.9043 0.9411 0.9193
10 2005-2014 2015 78% 0.9274 0.9533 0.9358
10 2006-2015 2016 77% 0.9270 0.9539 0.9372
10 2007-2016 2017 91% 0.8906 0.9329 0.9060
10 2008-2017 2018 96% 0.9003 0.9388 0.9143
10 2009-2018 2019 96% 0.8836 0.9285 0.8997
5 2008-2012 2013 62% 0.9297 0.9527 0.9370
5 2009-2013 2014 63% 0.9043 0.9412 0.9194
5 2010-2014 2015 76% 0.9244 0.9532 0.9348
5 2011-2015 2016 76% 0.9267 0.9535 0.9371
5 2012-2016 2017 90% 0.8897 0.9327 0.9058
5 2013-2017 2018 95% 0.8971 0.9382 0.9135
5 2014-2018 2019 95% 0.8828 0.9280 0.8995

Variable 2002-2012 2013 64% 0.9292 0.9522 0.9368
Variable 2002-2013 2014 64% 0.9047 0.9411 0.9194
Variable 2002-2014 2015 78% 0.9267 0.9531 0.9356
Variable 2002-2015 2016 78% 0.9272 0.9538 0.9373
Variable 2002-2016 2017 91% 0.8908 0.9328 0.9061
Variable 2002-2017 2018 96% 0.8975 0.9385 0.9136
Variable 2002-2018 2019 96% 0.8838 0.9288 0.8997

Table 3: The performance metric values for configuration C3 using the three temporal
sliding windows.

89

Chapter 6

Window Training Testing Training % Precision Recall F-score
10 2004-2013 2014 64% 0.9179 0.6664 0.7642
10 2005-2014 2015 78% 0.9358 0.6511 0.7637
10 2006-2015 2016 77% 0.9387 0.5980 0.7262
10 2007-2016 2017 91% 0.9043 0.4557 0.5947
10 2008-2017 2018 96% 0.9123 0.4198 0.5629
10 2009-2018 2019 96% 0.8934 0.3461 0.4818
5 2008-2012 2013 62% 0.9352 0.6311 0.7464
5 2009-2013 2014 63% 0.9184 0.6495 0.7527
5 2010-2014 2015 76% 0.9356 0.6611 0.7708
5 2011-2015 2016 76% 0.9381 0.5889 0.7194
5 2012-2016 2017 90% 0.9045 0.4588 0.5975
5 2013-2017 2018 95% 0.9107 0.4164 0.5594
5 2014-2018 2019 95% 0.8872 0.3365 0.4689

Variable 2002-2012 2013 64% 0.9311 0.6030 0.7242
Variable 2002-2013 2014 64% 0.9195 0.6748 0.7706
Variable 2002-2014 2015 78% 0.9355 0.6787 0.7829
Variable 2002-2015 2016 78% 0.9375 0.6038 0.7304
Variable 2002-2016 2017 91% 0.9041 0.4500 0.5892
Variable 2002-2017 2018 96% 0.9047 0.3871 0.5314
Variable 2002-2018 2019 96% 0.8917 0.3463 0.4825

Table 4: The performance metric values for configuration C5 using the three temporal
sliding windows.

Window Training Testing Training % Precision Recall F-score
10 2004-2013 2014 64% 0.9023 0.9451 0.9200
10 2005-2014 2015 78% 0.9173 0.9548 0.9342
10 2006-2015 2016 77% 0.9236 0.9563 0.9369
10 2007-2016 2017 91% 0.8886 0.9344 0.9052
10 2008-2017 2018 96% 0.8886 0.9403 0.9132
10 2009-2018 2019 96% 0.8736 0.9316 0.8991
5 2008-2012 2013 62% 0.9197 0.9532 0.9343
5 2009-2013 2014 63% 0.9013 0.9452 0.9200
5 2010-2014 2015 76% 0.9174 0.9548 0.9341
5 2011-2015 2016 76% 0.9238 0.9564 0.9370
5 2012-2016 2017 90% 0.8891 0.9346 0.9053
5 2013-2017 2018 95% 0.8879 0.9402 0.9131
5 2014-2018 2019 95% 0.8801 0.9318 0.8994

Variable 2002-2012 2013 64% 0.9194 0.9530 0.9342
Variable 2002-2013 2014 64% 0.9024 0.9452 0.9200
Variable 2002-2014 2015 78% 0.9175 0.9548 0.9341
Variable 2002-2015 2016 78% 0.9234 0.9563 0.9369
Variable 2002-2016 2017 91% 0.8888 0.9343 0.9052
Variable 2002-2017 2018 96% 0.8896 0.9404 0.9134
Variable 2002-2018 2019 96% 0.8686 0.9316 0.8990

Table 5: The performance metric values for configuration C6 using the three temporal
sliding windows.

90

Window Training Testing Training % Precision Recall F-score
10 2004-2013 2014 64% 0.9010 0.9427 0.9192
10 2005-2014 2015 78% 0.9197 0.9524 0.9333
10 2006-2015 2016 77% 0.9218 0.9539 0.9358
10 2007-2016 2017 91% 0.8818 0.9332 0.9050
10 2008-2017 2018 96% 0.8875 0.9388 0.9124
10 2009-2018 2019 96% 0.8751 0.9293 0.8983
5 2008-2012 2013 62% 0.9194 0.9512 0.9339
5 2009-2013 2014 63% 0.9009 0.9426 0.9192
5 2010-2014 2015 76% 0.9178 0.9528 0.9333
5 2011-2015 2016 76% 0.9218 0.9539 0.9358
5 2012-2016 2017 90% 0.8813 0.9331 0.9048
5 2013-2017 2018 95% 0.8877 0.9386 0.9123
5 2014-2018 2019 95% 0.8728 0.9291 0.8981

Variable 2002-2012 2013 64% 0.9195 0.9507 0.9337
Variable 2002-2013 2014 64% 0.9011 0.9427 0.9192
Variable 2002-2014 2015 78% 0.9200 0.9525 0.9334
Variable 2002-2015 2016 78% 0.9217 0.9539 0.9358
Variable 2002-2016 2017 91% 0.8818 0.9331 0.9049
Variable 2002-2017 2018 96% 0.8877 0.9389 0.9125
Variable 2002-2018 2019 96% 0.8728 0.9293 0.8981

Table 6: The performance metric values for configuration C9 using the three temporal
sliding windows.

91

	Introduction
	Contributions
	Document Outline

	State of the Art
	Static Vulnerability Discovery Techniques
	Static Analysis
	Vulnerability Discovery Models

	Dynamic Vulnerability Discovery Techniques
	Dynamic Analysis
	Penetration Testing
	Fuzzing

	Software Metrics
	Related Work: Software Vulnerability Detection Techniques
	Related Work: Application of Machine Learning Techniques to Software Vulnerability Detection

	Building the Vulnerable Code Unit Datasets
	Overview
	Retrieving Reported Vulnerabilities from Online Platforms
	Retrieving Vulnerable Source Files from Version Control
	Generating Security Alerts and Software Metrics
	Storing the Collected Data in a Database
	Creating and Validating the Dataset

	Validating the Vulnerable Function Dataset
	Overview
	Research Question 1: Exploratory Experiments
	Research Question 2: Temporal Window Experiments
	Threats to Validity

	Work Execution
	Conclusion

