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Abstract 
 

The increase in Autism Spectrum Disorder’s (ASD) prevalence over the last decades has 

accentuated the need to develop new and improved rehabilitation techniques that can reach a larger 

part of this population. This quest has resulted in the development of computerized alternatives, 

frequently in the form of gamified tasks that, being low cost and portable, serve as a complement 

to traditional therapy, optimizing and consolidating its effects, or, in some cases, being the only 

type of therapy that the patient can have access to. These new rehabilitation alternatives, however, 

still bear some limitations. ASD is often associated with hypersensitivity, which means that the 

presentation of the wrong stimuli can have a negative effect on the subject and lead to his 

disengagement from the computerized therapy, compromising its efficacy. That is why the next 

step must be to make the games capable to adapt to their users and their emotional responses. 

Although there are different ways through which one expresses emotion, none of them is as reliable 

as the autonomic nervous system’s (ANS) response, which cannot be simulated. 

Motivated by these issues, this dissertation focused upon the physiological measures of the 

ANS and their relationship with the individual’s emotional state, with a special focus on the ASD 

case. However, considering the association of this disorder with emotional dysregulation, the 

identification of the subject’s true emotional state is a real concern and should not be dependent 

upon other people’s interpretation, or even his own. That is why, as part of a bigger goal, our set 

of physiological signals was acquired simultaneously with functional Magnetic Resonance 

Imaging (fMRI), while the participants completed a task designed to elicit different emotions 

classified in the two dimensions of valence and arousal, with the prospect of combining biosignals 

and fMRI to create models capable of assessing the true emotional state of their users based on the 

physiological response, having as ground truth the activity of targeted brain regions. 

Focusing on the information contained in the physiological signals, to assess whether the 

simultaneous acquisition of fMRI and biosignals is feasible, we first investigated their quality and 

the interference posed by the Magnetic Resonance (MR) environment, by comparing them with 

recordings obtained outside the MR scanner, thus free of its influence, for the same experimental 

task. Then, the signals were pre-processed and segmented according to the events of interest, which 

were labelled in two different ways: according to the subject’s perception of his emotional response 

and using the pre-established emotional connotation of the stimuli, both based on the two-

dimensional space of valence and arousal. A total of 70 features were then extracted from the 

physiological signals, for each segment. The resulting dataset was used to train and test four 

different machine learning algorithms: Minimum Distance Classifier, K-Nearest Neighbours and 

Support Vector Machines with linear and Radial Basis Function kernels.  

The simultaneous acquisition of physiological signals and fMRI was validated, with the 

comparison between the recordings acquired inside and outside of the scanner not suggesting any 
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major quality differences that can be attributed to the MR. This opens the door to a wide range of 

applications involving the understanding of the relationships between brain response and its 

translation in the peripheral nervous system. Some issues related to the data acquisition setup, 

however, did compromise the quality of some of the biosignals, resulting in information loss and 

consequently also compromising the discriminative power of the extracted features. That said, 

overall, the classification outcomes were suboptimal, underlining the challenging nature of 

automatic emotion assessment. These results call for further exploration of the measured signals 

and the features extracted from them, to refine and improve their discriminative power. Moreover, 

there is the possibility that the stimuli employed were not sufficiently strong to offset significant 

emotional and physiological reactions in the participants. Hence, it would be important to try 

different stimuli with varying emotional classifications and intensities. 

 

Keywords: Autism Spectrum Disorder, Physiological Signals, Biosignals, Automatic 

Emotion Assessment 
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Resumo 
 

O aumento da prevalência da Perturbação do Espectro do Autismo (PEA) nas últimas décadas 

acentuou a necessidade de desenvolver novas e melhoradas técnicas de reabilitação que sejam 

acessíveis à maior parte desta população. Essa procura resultou no desenvolvimento de alternativas 

computorizadas, frequentemente na forma de tarefas gamificadas que, sendo portáteis e de baixo 

custo, servem como complemento à terapia tradicional, otimizando e consolidando os seus efeitos, 

sendo, em alguns casos, o único tipo de terapia à qual o paciente tem acesso. No entanto, estas 

novas alternativas de reabilitação, apresentam ainda algumas limitações. A PEA está muitas vezes 

associada à hipersensibilidade, o que significa que a apresentação do tipo de estímulos errado pode 

afetar negativamente o sujeito e levar à rejeição desta terapia, comprometendo a sua eficácia. É 

por isso que o próximo passo deve passar por tornar os dispositivos que albergam estes jogos 

educativos sensíveis aos seus utilizadores e às suas respostas emocionais. Embora existam 

diferentes canais através dos quais expressamos as nossas emoções, nenhum deles será tão fiável 

quanto a resposta do sistema nervoso autónomo (SNA), não passível de ser simulada. 

Motivada por estas questões, esta dissertação foca nas medidas fisiológicas do SNA e na sua 

relação com o estado emocional do indivíduo, com especial atenção ao caso da PEA. No entanto, 

considerando a associação desta perturbação com desregulação emocional, a identificação do 

verdadeiro estado emocional do sujeito é um fator importante e não deve depender da interpretação 

de outras pessoas, ou mesmo do próprio sujeito. É por isso que, estando este trabalho integrado 

num projeto mais abrangente, o conjunto de sinais fisiológicos utilizado aqui foi adquirido em 

simultâneo com ressonância magnética funcional (fMRI), enquanto os participantes completavam 

uma tarefa desenhada para evocar várias emoções, classificadas no espaço bidimensional de 

valência e ativação, com a perspetiva de combinar biossinais e fMRI para criar modelos capazes 

de avaliar o verdadeiro estado emocional dos seus utilizadores com base na resposta fisiológica, 

tendo como verdade fundamental a atividade cerebral. 

Ao focarmo-nos apenas nos sinais fisiológicos, para avaliar se a aquisição simultânea de fMRI 

e biossinais é viável, a sua qualidade e a influência que o ambiente da Ressonância Magnética 

(RM) teve sobre eles foi investigada e comparada com as medições obtidas, com a mesma tarefa 

experimental, fora da RM e, portanto, livre da sua influência. Em seguida, os sinais foram pré-

processados e segmentados de acordo com os eventos de interesse, os quais foram rotulados de 

duas formas diferentes: de acordo com a perceção do sujeito da sua resposta emocional e usando a 

classificação emocional pré-estabelecida de cada estímulo, ambos baseados no espaço 

bidimensional de valência e ativação. De seguida, um total de 70 features foram extraídas dos 

biossinais, para cada segmento. Os dados resultantes foram usados para treinar e testar quatro 

algoritmos de Machine Leaning: Minimum Distance Classifier, K-Nearest Neighbours e Support 

Vector Machines com os kernels de Função de Base Radial e Linear. 
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A aquisição simultânea de sinais fisiológicos e fMRI foi validada, com a comparação entre os 

sinais adquiridos dentro e fora do scanner não revelando diferenças de qualidade que possam ser 

atribuídas à RM. Isto abre portas para uma vasta gama de aplicações que envolvem a 

descodificação das interações entre a resposta cerebral e a sua tradução no sistema nervoso 

periférico. No entanto, alguns problemas relacionados com as configurações na aquisição de dados 

comprometeram a qualidade de alguns dos biossinais, resultando na perda de informação e, 

consequentemente, comprometendo também o poder discriminativo das features extraídas. Posto 

isto, em geral, os resultados da classificação foram insuficientes, pondo em evidência a natureza 

desafiante da classificação automática de estados emocionais. Estes resultados exigem uma 

exploração mais profunda dos sinais e das features extraídas, de modo a refinar e melhorar o seu 

poder discriminativo. Para além disso, devemos considerar a possibilidade de que os estímulos 

usados não tenham sido suficientemente fortes para provocar reações emocionais e fisiológicas 

significativas nos participantes. Por isso, será importante experimentar novos estímulos com 

diferentes classificações e intensidades emocionais. 
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1 Introduction 
 

In the last decades, autism has earned much attention from the general public in consequence 

of a considerable increase in prevalence estimates. As of 2014, 16.8 per 1000 children aged 8 

years were diagnosed with Autism Spectrum Disorder (ASD) in the United States of America 

(USA), which represents an increase of 150% when compared to 2000 estimates (Baio et al., 

2018). As for Portugal, in 2007 it was estimated that autism prevalence was 9.2 in every 10000 

school-aged children (Oliveira et al., 2007). Such growth may be due to a greater awareness 

regarding the condition together with an improvement in screening techniques, or it can in fact 

represent an increase in prevalence. Either way, the numbers must not be ignored. The amount 

of people that can benefit from new and improved rehabilitation techniques is enormous. That is 

why continuous research in the field is crucial, representing the possibility of a significant 

increase in the quality of life of these individuals and their families. 

 

1.1   Motivation 
 

Autism Spectrum Disorder is a neurodevelopmental condition that affects social and 

communication skills, as well as normal behavioural patterns. People diagnosed with ASD 

usually favour repetitive routines and interests and feel the most comfortable when alone, not 

pursuing or enjoying the engagement in social activities (Johnson and Myers, 2007). All these 

symptoms end up limiting the patients’ social inclusion, which further affects their development. 

Accordingly, early diagnosis and subsequent participation in rehabilitation therapies are crucial 

to obtain good results and improve the patients’ lives. However, as of now, these interventions 

entail high costs, given that they usually require one therapist per patient. Besides, a recent study 

conducted in the USA evidences the scarcity of qualified professionals to treat ASD, which 

potentially leads to overbooking (Zhang and Cummings, 2020). This situation can be very 

tiresome for the professionals and may consequently jeopardize the patients' experience and 

outcomes given that the therapist is not in his best form and the time reserved for each subject is 

small. This translates into less therapy time, which consequently lowers the training outcome. 

For patients living in remote locations, access to qualified professionals might be even more 

troublesome given that they might have to travel for several hours for receiving therapy. In 

addition to this, the Covid-19 pandemic came to highlight the need for telepresence solutions, 

that are now more relevant than ever with the urgent need to limit personal contact to stop the 

spread of the disease. Therefore, the development and improvement of viable alternative therapy 

strategies is necessary to mitigate these issues, guaranteeing that the biggest number of patients 

have access to therapy while making the most out of every single intervention. 
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In the literature, the employment of virtual reality (VR) as a therapeutic and rehabilitation 

tool has been recurrently mentioned as suitable for the ASD population (Blascovich et al., 2002; 

Goodwin, 2008; Bellani et al., 2011; Parsons and Cobb, 2011; Kandalaft et al., 2013; Didehbani 

et al., 2016; Simões et al., 2018, 2020). A key property of VR is that it allows for the creation of 

unlimited different virtual environments (VE) with shared similarities with the real world, as well 

as to easily modify them so that incremental changes can be applied to a specific scene enabling 

the repeated practice of a given task in slightly different settings which may promote the 

generalization of the learned skills to different scenarios and real-world situations (Strickland, 

1997; Parsons and Mitchell, 2002; Parsons and Cobb, 2011). By cancelling the stress, the 

confusing stimuli, and the possible dangers of the outside world, VR provides a sheltered 

environment to practice social interactions and everyday life situations such as a public transport 

ride, or even job interviews (Kandalaft et al., 2013; Didehbani et al., 2016; Simões et al., 2018). 

In addition, this technology allows the inclusion of gaming factors to increase the motivation of 

its users. Moreover, individuals with autism are commonly particularly interested in computers 

and digital gadgets due to their structure and consistency. This enthusiasm often represents a 

greater engagement in this kind of therapy when compared with traditional methods (Strickland, 

1997). 

This leads to the concept of serious gaming. A serious game is a game with an educational 

purpose, going beyond the sole purpose of entertainment. These games are a promising tool and 

have been applied and studied as a rehabilitation alternative in the ASD population mostly 

targeting emotion recognition and production, and social skills (Grossard et al., 2017). A key 

advantage of this kind of therapy is its portability. Generally, access to a computer is all that is 

required to run these games, and nowadays, when more and more people have access to tablets 

and smartphones, the dissemination of the games is even easier. This allows the patients to 

practice in the comfort of their homes, without the need for the presence of a therapist which 

facilitates access to therapy for a greater number of people.  

Serious games mostly resort to positive reinforcement mechanisms to cement the concepts 

they intend to teach (Grossard et al., 2017). However, response to reward is known to be altered 

in ASD patients (Dichter et al., 2012; Kohls et al., 2013, 2018; Watson et al., 2015) which 

invalidates the use of most of the typical rewards in this population, especially social rewards. 

Thus, investigating and comprehending the reward mechanisms and motivational factors in ASD 

is a fundamental step in the path of perfecting therapeutical interventions, virtual or not. 

Recently, researchers have been delving into the concept of biofeedback. Biofeedback 

consists of recording physiological information and using that information, in real time, usually 

represented in a clear and understandable way so that it can be easily interpreted by the user, to 

aid him endogenously alter a specific physiological response (McKee, 2008). In the case of 

serious games, however, this concept can be used to tailor them to specific clinical populations, 
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by creating models that, based on real-time physiological signals measurement, assess the 

emotional state of the user and adapt the task, the environment, or the rewards accordingly. This 

personalized paradigm might be especially interesting for the ASD population, since the game 

adapts itself to the user and not the opposite, which maximizes engagement, and consequently 

optimizes the learning process. However, even though automatic emotion recognition is a 

growing field, as well as its dissemination through various applications, it has not been 

sufficiently considered for the case of ASD, whose individuals commonly show signs of emotion 

dysregulation (Samson et al., 2014). Thus, it is necessary to understand the real emotional 

response that the individuals of this population present to a particular stimulus, and how it reflects 

on different autonomic nervous system (ANS) functions, measured through the corresponding 

biosignals.  

This leads to what is probably one of the major concerns when it comes to automatic emotion 

recognition: finding the ground truth. As already mentioned, autism is associated with emotional 

dysregulation. This means that the use of self-assessment questionnaire responses or labels based 

on the general population’s emotional perception of a stimulus as ground truth has questionable 

accuracy. Hereupon, due to its spatial resolution that allows for the precise mapping of brain 

regions or networks of interest, functional Magnetic Resonance Imaging (fMRI) may just be the 

ideal true state indicator. While researchers in the field have struggled to map different emotions 

into specific brain regions, some findings involving the analysis of whole-brain fMRI activity 

patterns suggest that it is possible to predict an emotional response based on that information 

with considerable specificity levels, which suggests the involvement of specific brain networks 

in different emotional responses (Kragel and LaBar, 2016). Sessions involving this imaging 

technique, however, are quite expensive and nonportable, which limits their applicability and 

dissemination (Sarracanie et al., 2015). Furthermore, the acquisition of physiological signals in 

the magnetic resonance (MR) environment represents a tremendous challenge. The static 

magnetic field and the gradient switch severely contaminate most of the records, which can, in 

some cases, jeopardize the appearance of changes in the signal related to the emotional state 

(Niazy et al., 2005; Oster and Clifford, 2017). It is then important to ascertain how feasible it is 

to acquire multimodal biosignals inside of the MR scanner for the purposes described above. The 

simultaneous acquisitions of fMRI and multimodal biosignals could therefore be used to find 

ANS physiological patterns that are representative of the targeted brain regions modulation so 

that it can be inferred outside the MR scanner and applied as ground truth in automatic emotion 

recognition algorithms. 
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1.2 Objectives 
 

The main goals of this dissertation are first to explore the feasibility and efficiency of 

constructing models, specifically tailored for the ASD population, capable of automatically 

discriminate between different emotional states, and then, to ascertain how much the MR 

environment affects the quality of the multimodal physiological signals and the subsequent 

performance of the classifiers. This last point can be a helpful indicator of whether the 

simultaneous acquisition of fMRI and biosignals can be useful for different research purposes, 

namely looking for patterns in the conjoined signals that can be, in some way, representative of 

brain regions modulation. 

To fulfil these goals, an experimental task took place involving the simultaneous acquisition 

of fMRI and physiological signals in both, autistic and typically developed individuals. 

Additionally, so that comparison was made possible, a similar experimental task was conducted 

outside the MR environment while acquiring a smaller set of physiological signals.  

 

1.3 Dissertation Structure 
 

This document is organized into 7 chapters. Following this introduction, the 2nd chapter 

presents a background on the physiological signals used in this study and how they respond to 

different emotional states. Subsequently, chapter 3 focuses on the state of the art of the research 

that has been carried out around them to develop and achieve automatic emotion assessment. The 

Methods section in chapter 4 describes in detail the work that was carried out in pursuing the 

main goals of the project, and chapters 5 and 6 present the findings and their analysis and 

discussion. To finalize, chapter 7 highlights the main conclusions taken out of this study and 

bears some insights into the paths that could follow the line of work presented in this dissertation 

that are yet to explore. 
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2 Background 
 

2.1  Biosignals 
 

The experience of emotion is commonly accompanied by physiological variations that may 

be perceived by the individual through bodily sensations and manifestations, or that can be so 

subtle that they go unnoticed even to the one experiencing them. Recent technological advances 

have allowed the optimization of physiological sensors, that are now smaller and cheaper than 

ever, which has permitted their dissemination through a wide array of applications that go beyond 

direct clinical practice, including their use to monitor and find relationships between different 

physiological responses and emotional states, opening new doors to the knowledge of human 

physiology and emotion recognition. This section is a summary of the main characteristics of the 

biosignals explored in the present study and their application in emotion recognition. 

 

2.1.1 Respiration 
 

Pulmonary ventilation, breathing, or respiration, refers to the rhythmic processes through 

which air is inhaled into the lungs and subsequently exhaled out.  

Inhalation or inspiration is known as the active phase of respiration since it depends on the 

contraction of the respiratory muscles. When inhaling, the diaphragm contracts to pull down the 

lungs while the intercostal muscles contract to expand the ribcage, these actions create space for 

the lungs to expand as well, increasing the intrapulmonary volume and consequently lowering 

the intrapulmonary pressure in comparison to the external pressure. This way, as air flows from 

higher pressure to lower pressure, the air naturally fills the lungs. As inspiration ceases, begins 

the passive phase of respiration, known as expiration. Expiration does not depend on any muscle 

contraction, instead, it relies on the elastic recoil of the lungs and respiratory muscles. As the 

diaphragm and intercostal muscles relax, the pulmonary volume decreases, increasing the 

intrapulmonary pressure. As follows, air flows to the exterior, reversely to what happens during 

inhalation. Expiration persists until the intrapulmonary pressure equals the external pressure, at 

which point inspiration begins and the process is restarted (De Troyer and Boriek, 2011). 

One’s emotional state has a great influence on respiratory rhythm. While it is common to 

find ourselves breathing faster when we are experiencing excitement, more calm and relaxed 

states are associated with a slow and steady rhythm. On the other hand, negative and aroused 

states, such as anger or fear, are usually accompanied by irregular breathing and even occasional 

cease of respiration (Rainville et al., 2006). A peculiarity of respiratory activity is that it can be 

voluntarily and consciously controlled, with some studies reporting that besides being influenced 

by emotions, the voluntary modulation of respiratory pattern seems to be capable of influencing 
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and altering the self-perceived emotional state, suggesting the existence of a reciprocal 

relationship that represents a powerful potential target for biofeedback interventions (Philippot, 

Chapelle and Blairy, 2002).   

Measuring and analysing these breathing fluctuations can thus potentially provide us with 

valuable information regarding the emotional status of an individual. Respiration can be recorded 

through a series of different processes, including contact and non-contact-based techniques. Since 

this study explores the feasibility and practicality of measuring physiological signals 

simultaneously with fMRI acquisitions, the specifications and limitations of the MR environment 

render some of the possibilities impracticable. However, there are some alternatives through 

which the respiratory signal can still safely be acquired inside the MR scanner. For the case of 

this research, respiration variations were tracked with the aid of a respiratory cushion connected 

to a pressure hose, and a respiratory belt (Siemens Healthcare). The working principle of such a 

sensor relies on the rise and fall movement of the rib cage caused by the respiratory muscles. As 

the chest expands during inspiration the cushion is pressed against the belt which consequently 

increases the pressure inside the cushion and hose that in turn transmits the pressure variation to 

a measurement unit which turns it into a voltage. On the other hand, during expiration, the rib 

cage decreases in volume allowing the cushion to expand between the subject’s body and the 

belt, and the pressure to drop. This gives rise to a biosignal that continuously captures the 

respiratory rhythm of the individual.  

 

2.1.2 Photoplethysmography 
 

Photoplethysmography (PPG) is an optical-based method used to measure the changes in 

blood volume that occur at the capillaries. This blood volume change is directly influenced by 

the quantity of blood that is pumped by the heart into the aortic artery during ventricular 

depolarization. Hence, the PPG signal carries valuable information about the cardiovascular 

function. 

To measure this biosignal, a probe composed of both, a source emitting light, and a 

photodetector, is placed on the person’s finger, earlobe, or toe. Given the optical properties of 

tissue and its main constituent, water, that absorb the vast majority of shorter wavelengths, the 

light source operates either at the red or near-infrared portion of the spectrum. The intensity of 

reflected light measured at the photodetector is affected by changes in the blood volume and is 

then converted into a voltage which gives rise to a pulsatile waveform. This waveform, also 

known as the ‘AC’ component of the PPG signal, accompanies a baseline (‘DC’ component) that 

oscillates slowly with physiological variations related to respiration, the sympathetic nervous 

system, or thermoregulation (Allen, 2007). 
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Different studies have focused on exploring the use of PPG for the extraction of the pulse 

rate variability (PRV), an analogous measure to the heart rate variability (HRV) that is commonly 

derived from the electrocardiogram (ECG). HRV is the term commonly used to refer to the 

variations in the interval between consecutive heartbeats and represents one of the most popular 

markers of autonomic activity (Malik et al., 1996). To infer the HRV, it is first necessary to find 

the intervals between successive heartbeats. While in the ECG signal the heart rate (HR) is 

inferred from the identification of successive R peaks, in the PPG, the HR equivalent, 

denominated as pulse rate (PR), is found by identifying the time between two consecutive 

characteristic points of the PPG waveform. Some of these characteristic points correspond to the 

onset of the pulse wave, the systolic peak, or the point corresponding to 50% of the maximum 

amplitude. The maximum value of the first and second derivative are also commonly used for 

this effect and seem to consistently provide a good agreement between the HRV and PRV (Fig. 

2.1). However, the characteristic point interval that results in the best correlation with the RR 

interval is still under investigation and no consensus has been reached yet (Elgendi, 2012; 

Pinheiro et al., 2016).  

The finding that is consistent between studies is the fact that PRV presents high correlations 

with HRV under most circumstances, even though there are signs of compromise in this 

relationship during stressful situations, physical or mental (Bolanos, Nazeran and Haltiwanger, 

2006; Pinheiro et al., 2016). 
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This evidence allied to the convenience of the measurement technique of the PPG, indicates 

it to be a suitable replacement of ECG for ambulatory monitoring. ECG is a rather sensitive signal 

to a variety of artifact sources and its acquisition in the MR environment is extremely challenging, 

since the electrically charged particles in the blood flowing through the magnetic field generate 

an additional electrical field in the subject’s body. This is known as the magnetohydrodynamic 

(MHD) effect and it produces changes in the ECG, harmless to the individual, but that 

substantially alter the morphology of the wave, with the most prominent effect being an elevation 

of the T wave, that frequently overshoots the QRS complex, making the detection of the R peaks 

a very difficult and possibly inaccurate task (Oster and Clifford, 2017). Hence, PPG might just 

be the perfect replacement to monitor cardiac activity during magnetic resonance imaging (MRI) 

and fMRI acquisitions, potentially achieving more accurate estimates of HRV than ECG under 

the static magnetic field. 

  

  

Figure 2.1 - Representation of a photoplethysmogram pulse wave, its main characteristic points, and its second 

derivative (a) Photoplethysmogram pulse wave (b) Second derivative of the pulse wave in (a). – adapted from 

Acceleration plethysmogram. (2020). https://www.maximintegrated.com/en/design/blog/what-is-in-

photoplethysmography-data-a-look-at-the-interaction-between-sensor-performance-and-algorithms.html 
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2.1.3 Pulse Oximetry 
 

Pulse oximetry is a technique used to measure the peripheral oxygen saturation (SpO2) at a 

given time. It takes advantage of the optical properties of oxygenated and deoxygenated 

haemoglobin. While the first absorbs infrared (IR) light, deoxyhaemoglobin absorbs greater 

amounts of red light instead. The sensor is composed of two light-emitting diodes, emitting red 

and IR light, which are placed on one side of the probe, and at the opposite side stands a 

photodiode with the function of detecting the quantity of light that is transmitted through the 

tissues. By determining the relative amount of light from each wavelength that was absorbed in 

between the two probe sides, the device can estimate the fraction of haemoglobin that is bound 

to oxygen in near-real-time (Chan, Chan and Chan, 2013). The sensor’s design is small, 

minimally invasive, and it can be placed on a finger or earlobe with relative ease, making it 

suitable to use outside the clinical environment, even for populations with greater sensitivity. 

The extent to which SpO2 is influenced by an individual’s emotional state is still 

underexplored. However, as mentioned in a previous section, it is well understood that breathing 

patterns are affected by stressful situations. Now, if the way our body acquires oxygen is through 

breathing, if a sudden scare will cause us to skip a breath, it is only natural that the quantity of 

oxygenated blood will momentarily drop. Thus, SpO2 can potentially represent an interesting 

physiological indicator of emotion, and its application in that context must be further explored.  

 

2.1.4 Electrodermal Activity 
 

Electrodermal activity (EDA) refers to the electrical properties of the skin which are 

constantly suffering fluctuations that are directly related to sweat secretion and, therefore, 

sudomotor neurons activity. While most bodily functions are regulated by both divisions of the 

ANS, sweat gland activity is exclusively modulated by the sympathetic nervous system (SNS), 

the SNS works in response to physical or psychological stress to make the necessary adaptations 

for the body to deal with the situation at hand, preparing it for action. The EDA signal is then a 

direct measure of sympathetic activity, which is why it is so popular and relevant for emotion 

recognition systems.  

According to Ohm’s law, which states that a conductive body’s electrical resistance (R) 

equals the voltage (V) to current (I) ratio (R = V/I), the changes in skin conductance (G), i.e. the 

reciprocal of skin resistance (G = I/V = 1/R), can be measured by applying a small constant 

voltage between two skin spots and obtaining the resultant current flow (Dawson, Schell and 

Filion, 2007).  

This biosignal is composed of a tonic response component and a phasic response component. 

The tonic response oscillates slowly and is attributed to the baseline level of EDA, i.e., the 

background activity of sweat glands. This baseline is variable from individual to individual, being 
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an indicator of general arousal and alertness, and it can be influenced by a variety of external 

factors such as temperature or humidity. The phasic component concerns the fast variations in 

the signal that are known as skin conductance responses (SCRs). An SCR is the result of a 

sudomotor burst and findings suggest that its’ amplitude is linearly dependant on the frequency 

of the action potentials and the number of activated sweat glands (Benedek and Kaernbach, 

2010).  SCRs can be observed in reaction to a stimulus that can either be external or self-induced, 

such as the recollection of a memory. A particularity of this physiological response, representing 

a limitation for some applications, is its’ latency, SCRs can arise from 1 up to 5 seconds after 

stimulus presentation and last for a few seconds. This factor must be taken into consideration in 

experimental design, not considering an appropriate inter-stimulus interval can result in SCRs 

resultant from previous events overlapping with the ones resulting from the current one which 

can lead to uncertainties. 

 

2.1.5 Electroencephalography 
 

The electroencephalogram (EEG) is the record of the electrical activity of the brain and thus 

represents a window to the central nervous system. The EEG signal is commonly acquired at the 

scalp with the aid of surface electrodes, and it is the result of the spatially averaged electrical 

activity of multiple neurons located at the cerebral cortex, with the main contribution coming 

from pyramidal cells (Nunez and Srinivasan, 2006). The cerebral cortex is the outer layer of the 

cerebrum, composed of billions of neurons, and is organized in a folded arrangement. The 

cerebral fissure crosses the cortex dividing the brain into the left and right hemispheres, which 

are joined by the corpus callosum underneath the cerebral cortex. 

The correlation of the synaptic activity captured in surface EEG with cognition and 

behaviour is widely recognized, with the biosignal changing its patterns and characteristics as 

different tasks are performed or as a response to new stimuli. These activities can be classified 

into two kinds: spontaneous rhythmic activity or event-related potentials (ERPs). 

The rhythmic oscillations of brain activity are classified into five principal frequency bands, 

named delta (0.5 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 13 Hz), beta (13 – 30 Hz), and gamma (> 

30 Hz). 

Delta 

Delta waves are low frequency, high amplitude waves and are most often found at deep 

sleep stages. Even though their presence is common during infancy, finding these waves in awake 

adults is atypical and usually a sign of disease (Rangayyan, 2015).  
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Theta 

Theta oscillations are commonly encountered in young children, and, like delta waves, their 

absolute power in wakeful states seems to be age-dependent. In adults, they are present in the 

primary stages of sleep and are also believed to show up during the encoding process of new 

memories and information (Klimesch, 1999). Additionally, evidence suggests that this activity is 

strongly connected to cognition, being particularly found at frontally located electrodes during 

mental tasks. A correlation between theta and alpha activity has been consistently pointed out 

(Nunez and Srinivasan, 2006). 

Alpha 

The alpha rhythm was the first identified type of rhythmic activity of the brain, and it is 

dominant at the occipital area in wakeful, resting states, particularly with the eyes closed which 

earned it the designation of ‘idle rhythm’. In fact, at an eye-opening cue or during complex mental 

tasks, alpha activity is significantly toned down, which leads to the theory that it is connected to 

the active blockage of sensory information. Although for the beginning of its acknowledgment it 

was thought to be a resting state oscillation, further exploration of EEG in different contexts and 

during behavioural tasks, led to the recognition that alpha is present in the course of multiple 

functions, originating from different sources. Alpha has been shown to be involved in memory 

processes (Klimesch, 1997), motor activity (Pfurtscheller et al., 1997), as well as visual and 

auditory sensory processing (Schürmann, Başar-Eroglu and Başar, 1997). What is now known 

about alpha waves, indicates that they play a much larger role in brain signalling than was once 

thought. 

Beta 

Like the alpha rhythm, also beta waves were addressed in Hans Berger's first recognition of 

the presence of rhythmic activity in the brain back in 1929. They are distinguishable from the 

first for their higher frequency and smaller amplitude. 

Beta waves are well known for their participation in sensorimotor processes. Power in this 

frequency range increases during posture maintenance in contrast to movement, the imagination 

of movement, or response to touch. Moreover, beta attenuation has been captured after a pre-go 

cue presentation, which suggests that it may play a role in motor planning (Kilavik et al., 2013). 

Additionally, recent research has shown that beta oscillations are related to working memory and 

seem to display some kind of filtering action against potential distractions that could interfere 

with the working memory contents (Lundqvist et al., 2018; Schmidt et al., 2019). Thus, as true 

for all other rhythms mentioned above, also beta waves are involved in a variety of functions, 

with their characteristics changing in a context-dependent manner. 
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Gamma 

The last and fastest of the brain rhythms is the gamma rhythm. Its frequency range spans 

from around 30 Hz to 80 Hz, and it is present in a wide array of sensorial and cognitive processes, 

such as working memory (Lundqvist et al., 2018), perception, and selective attention (Tiitinen et 

al., 1993). Additionally, some studies suggest that gamma waves arise during high arousal or 

heightened alertness (Strüber et al., 2000). Again, the gamma rhythm cannot be attributed to a 

specific function or role in brain signalling, it is instead involved in a multitude of sensory and 

cognitive functions, with different frequency sub-bands being related to different processes. 

 

Besides the above-described spontaneous rhythmic activity, EEG can exhibit yet another 

type of behaviour. This behaviour surges as a direct response to a sensory stimulus and is for this 

reason known as event-related potentials. Since this activity is usually buried in other brain 

responses, it is acquired over several trials of the same stimulus presentation so that later the 

ERPs can be obtained and analysed by averaging the waveforms, time-locked with the event cue, 

which improves the signal to noise ratio (SNR), cancelling and removing the extra activity while 

preserving the response of interest which is considered constant between trials of the same 

stimuli. The number of stimulus repetitions necessary to achieve an acceptable SNR is variable, 

but usually better results are achieved for a greater number of observations, which, to some 

extent, limits the exploration of ERPs (Nunez and Srinivasan, 2006). 

 

All in all, EEG accounts for a relatively affordable and practical alternative for accessing 

the brain and the central nervous system. The rhythms and responses recorded through this 

technique can be studied and used as markers or indicators for behavioural, cognitive, or 

physiological functions and states. Even though the spatial resolution of scalp EEG is 

considerably limited, its temporal resolution is high, which makes it an excellent solution for near 

real-time applications like biofeedback or brain-computer interfaces (BCI). 

 

2.1.6 Eye-Tracking 
 

It is a well-accepted concept that the eyes are powerful sources of information regarding 

one’s state of mind. Findings have shown that pupil size fluctuates with arousal and stress, with 

pupil diameter increasing during stressful situations and for higher arousal states, even though 

the positive or negative connotation of the stimulus seems to have no relevant contribution to this 

response (Partala and Surakka, 2003; Ren et al., 2013; Kassem et al., 2017). Together with the 

pupil diameter, also the blinking rate is influenced by emotions, with an increase in the number 

of blinks being positively correlated with stress and higher arousal (Haak et al., 2009). 

Additionally, eye-related metrics can carry clues about visual attention and cognitive load. 
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Besides pupil size variations and blinking rate, fixation on a specific target, fixation time, and 

saccadic movements are indicators of attention levels (McIntire et al., 2014; Maffei and Angrilli, 

2019), and cognitive workload (He et al., 2012). 

Now, to measure these eye activities, one must resort to an eye-tracking device. Such devices 

have suffered considerable improvements over time and, nowadays, it is possible to reliably and 

non-invasively track ocular responses with high resolution, inclusively at considerable distances 

from the subject. Technology advancements have also lowered the price of this equipment, which 

has improved their availability for applications outside of the laboratory environment. Most 

modern eye-trackers rely on video-based techniques, usually involving the use of an infrared or 

near-infrared light that produces a reflection at the cornea which is used as a reference point to 

compute the relevant measures (Chennamma and Yuan, 2013). 

Out of all the eye metrics, perhaps pupil dilation is the most popular and explored measure, 

particularly for emotion assessment. The fact that the sphincter and dilator muscles are under the 

control of the ANS (Hall and Chilcott, 2018), therefore presenting an involuntary and non-

manipulable response, maybe the reason behind its good reputation. However, when considering 

pupil size as an indicator in unpredictable environments or while designing visual emotion 

eliciting experimental tasks, there is one major concern that must be taken into consideration. 

The sphincter and dilator muscles of the iris respond fiercely to changes in luminosity. This 

response can overshadow the ones related to changes in emotional and cognitive state, 

contaminating the data with unrelated noise. Hence, it is paramount to control and prevent 

unnecessary luminance changes during the experimental task. If the acquisition takes place at 

locations where such control is not possible, like outdoor environments, caution should be taken 

while analysing and interpreting data. 
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3 State of the Art 
 

3.1 Physiological State Classification 
 

For more than a century, emotion theorists have been debating over the possibility that specific 

ANS activity patterns accompany each discrete emotion. First, arguing whether different emotions 

are effectively accompanied by distinct physiological responses, and later, whether the different 

ANS activity patterns could be utilized to automatically discriminate and classify different 

emotional states. 

The ever-growing interest and development of intelligent systems that can learn from their 

users, has led researchers to further explore the field of automatic emotion assessment for the 

optimization of applications that go from healthcare to the automobile or the video game industries. 

Some of these studies have focused on emotion classification from speech, facial expressions, body 

movements, or a combination of these (Chen et al., no date; Essa and Pentland, 1997; Wang and 

Guan, 2004; Sapiński et al., 2019). However, such physical expressions can easily be simulated to 

appear as if one is experiencing a certain emotion when, in reality, he is not, especially in artificial 

situations, such as a laboratory setup. In fact, those studies usually rely on databases of subjects 

expressing emotions “on-demand”, lacking ecological validity, which calls into question the real-

world applicability of an algorithm based on the classification of physical expressions. 

Furthermore, these approaches require the recording of the participants either in video or audio, 

which can be impractical for some applications, and besides can be perceived as invasive. 

Moreover, if the subjects are aware that they are being recorded at the outset, it can further 

influence the natural outward expression of emotion.  

Emotions, however, involve more than the external bodily expression that is usually 

associated with each one of them. Damasio and Carvalho (2013) describe them as a set of 

physiological responses that are mostly triggered by external stimuli and that result in body state 

changes that may, or may not, be consciously perceived (Damasio and Carvalho, 2013). Those 

physiological reactions can be measured with the aid of biosensors, and subsequently analysed to 

look for patterns in the signals, which can lead to correct discrimination and classification of 

different emotions without the need for a camera or an audio recorder. Besides, those reactions are 

modulated by the ANS, which means that they constitute unconscious responses that cannot be 

simulated, mirroring with greater precision the true emotional state of an individual. 

Most of the research on automatic emotion classification has focused on classifying ANS 

activity patterns into basic emotions. The issue with this approach is that no consensus has been 

reached on a universal and definite set of basic emotions. Another viewpoint, however, is that 

emotions can be sorted in relation to one or more dimensions. Two dimensions have been 

consistently mentioned as the most appropriate to differentiate and sort emotional states: valence 
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and arousal. Valence is an indicator of the pleasantness of the emotion, while arousal reflects its 

intensity (Winton, Putnam and Krauss, 1984). 

Regarding the physiological measures commonly used for emotional state classification, EDA 

and ECG are possibly the most popular. Healey and Picard (2005) found that metrics derived from 

those measures presented the highest correlations with stress levels when compared with metrics 

extracted from electromyography and respiration. Furthermore, several findings have proven that 

higher EDA levels are related to equally higher arousal states, which evidences the power of this 

measure as a psychophysiological tool (Winton, Putnam and Krauss, 1984; Lang et al., 1993; 

Dawson, Schell and Filion, 2007). A drawback of EDA, however, is its lagged response, with a 

latency of 1-3 seconds, which imposes some limits to the utility of EDA for near-real-time 

applications, cases when alternative measures may be more appropriate (Dawson, Schell and 

Filion, 2007). ECG data are used to compute the HR, which evidence suggests is primarily affected 

by the pleasantness (i.e., valence) of a stimulus rather than its’ intensity. Different experiments 

have reported a relationship between stimulus valence and heart rate (Winton, Putnam and Krauss, 

1984; Lang et al., 1993; Legrand et al., 2021). This indicates that measuring cardiac activity is 

potentially valuable for discriminating between more refined physiological states. Nevertheless, 

ECG is a quite sensitive signal, easily prone to noise contamination from a variety of sources. 

Additionally, QRS complexes usually diverge significantly, which makes their detection 

challenging and sometimes leads to errors in HR computation (Bolanos, Nazeran and Haltiwanger, 

2006). These points should be taken into consideration when handling ECG data. 

Respiration and skin temperature are also frequently associated with emotional states. A 

steady and slow respiration rate is usually present in states of low arousal, while fast and irregular 

respiration characterizes higher arousal (Rainville et al., 2006). Variations in ANS activity linked 

with emotional change cause blood vessels’ constriction to vary which leads to skin temperature 

fluctuations. Different studies suggest that a decrease in skin temperature is connected to higher 

activation, while states of calmness are accompanied by higher skin temperature (Genno et al., 

1997; Chanel et al., 2011). 

A set of measures whose relations to the physiological state have only recently started to be 

explored are eye-tracking data. Eye movements, gazing targets, and pupil size are some of the 

measures that can be recorded with eye-tracking devices, in near real-time. While voluntary 

metrics, such as gaze or eye movement, can be important indicators of cognitive states, like interest 

or alertness, involuntary metrics like pupil size are probably better suited as emotional state 

indicators. Evidence suggests that pupil size is sensitive to both, stimulus arousal and valence. 

Even though dilation invariably occurs for more arousing stimuli, size differences have been 

detected between negative and positive valences which draws special attention to the potential of 

this measure (Kassem et al., 2017). The biggest weakness of pupil size measurement, and a 

probable justification for its delayed adoption, is the major influence of luminosity in pupillary 
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response in comparison with changes associated with emotional state. This issue limits the use of 

such measure to controlled settings and stimulus luminance must be taken into consideration when 

analysing eye-tracking data. 

Electromyography (EMG) is often used in automatic emotion assessment studies, particularly 

facial EMG. It can somewhat be perceived as an alternative to emotion assessment from facial 

expressions since it measures the level of activity of a chosen muscle. Like HR, facial EMG seems 

to be more associated with the emotional dimension of valence, rather than arousal or discrete 

emotions (Larsen et al., 2008). This measure is also associated with stress levels which seem to be 

directly proportional to muscular activity (Katsis et al., 2008; Lohani, Payne and Strayer, 2019). 

Some drawbacks of facial EMG, however, are preparation time and the added discomfort, since it 

requires that electrodes be placed directly on facial muscles. These points may render EMG 

unsuitable to use in some applications, particularly when involving clinical populations like ASD. 

A promising measure, surprisingly not as popular among automatic emotion assessment 

studies using biosignals, is PPG. Different studies involving ECG and PPG measurements have 

found significant matches between HR metrics derived from both signals (Bolanos, Nazeran and 

Haltiwanger, 2006; Pinheiro et al., 2016). The positive results suggest that PPG may even be a 

more suitable solution than ECG for some applications, given that it is less prone to noise 

contaminations, and that it is easily measured by placing a sensor on the subject’s finger or earlobe, 

being less intrusive and uncomfortable. 

Finally, a measure that is a direct manifestation of the central nervous system (CNS): EEG. 

One of EEG’s main advantages is its high temporal resolution, which makes it a valuable measure 

for real-time applications. Furthermore, studies have found that, by combining EEG with 

peripheral physiological measures, the classification accuracies of emotion recognition systems 

can be improved, suggesting that the combination of peripheral signals with EEG is advantageous 

for automatic emotion assessment (Chanel et al., 2011). Despite this, the inclusion of EEG in 

multimodal emotional state recognition systems seems to be underexplored. Instead, it is more 

common to find studies using either EEG alone or a combination of peripheral signals. 

 

3.1.1 Automatic Emotion Assessment in Autism Spectrum Disorder 
 

While physiology-based automatic emotion assessment has been substantially considered and 

tested for the typically developed (TD) population, it is underexplored for ASD. To the best of the 

author’s knowledge, there are only three papers describing automatic emotion classification in 

autistic subjects. By measuring EDA, PPG, skin temperature, EMG, and ECG on children with 

ASD while they performed computerized cognitive tasks, Liu et al. (2008) successfully attempted 

to classify emotional states of liking, anxiety, and engagement in this population, achieving an 

accuracy of 82.9 % with Support Vector Machines (SVM), and possibly being the first to consider 
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affect recognition as an approach to optimize computerized rehabilitation tools (Liu et al., 2008). 

Kushki et al. (2015) classified anxiety-related arousal using metrics derived from the ECG and a 

modified Kalman filter obtaining an average specificity of 92% and sensitivity of 99% (Kushki et 

al., 2015). More recently, Sarabadani et al. (2020) automatically discriminated positive from 

negative valence during high and low arousal in ASD obtaining accuracies of 78.1% and 84.5% 

for high arousal and low arousal, respectively, using K-Nearest Neighbours (KNN), Linear 

Discriminant Analysis (LDA) and SVM, and combining the outputs of all the classifiers using a 

Majority Vote to enhance the performance (Sarabadani et al., 2020). The positive outcomes 

suggest that emotion recognition is a viable but underexplored approach in ASD. 

An issue that seems to be overlooked by the existing studies, however, is the evidence of 

emotion dysregulation in ASD. Several studies have reported discrepancies between physiological 

indicators of arousal and corresponding self-report ratings in autistic individuals, in comparison to 

matched control groups (Ben Shalom et al., 2006; Dichter et al., 2010). These findings suggest 

that either this population experiences emotions differently, or that the individuals’ interpretation 

of such emotions is impaired. It is estimated that about 50% of the ASD population is affected by 

alexithymia, a condition characterized by one’s limitation in interpreting and externalizing his own 

emotions (Hill, Berthoz and Frith, 2004). This point raises a serious question of whether the use of 

self-assessment questionnaire answers or labels based on the general population’s emotional 

perception of a stimulus is appropriate as ground truth. The application of fMRI to this population 

has revealed differences in brain function in comparison to typically developed individuals (Philip 

et al., 2012). Due to its spatial resolution that allows for the precise mapping of brain regions or 

networks of interest, fMRI might just be the ideal true state indicator. Sessions involving this 

imaging technique, however, are quite expensive and nonportable, which limits their applicability 

and dissemination. The simultaneous acquisition of fMRI and physiological signals, and 

subsequent exploration to find relationships between ANS physiological patterns and the targeted 

brain regions modulation, should be investigated under the hypothesis that using brain activation 

as the ground truth for training emotion recognition algorithms would optimize the outcomes. 

Furthermore, the knowledge of such relations could be used to infer brain activity outside the MR 

scanner, using biosignals measurements alone. 
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4 Methods 
 

To fulfil this dissertation’s objectives, which are to assess the viability of constructing 

machine learning models, tailored for the ASD population, which are efficient to automatically 

discriminate between different arousal conditions, and to investigate how much the MR 

environment affects the quality of the biosignals acquired simultaneously with fMRI, an 

experimental task took place involving the simultaneous acquisition of fMRI and physiological 

signals in both, autistic and typically developed individuals. Additionally, a similar experimental 

task was conducted outside the MR environment in a group of typically developed individuals 

while acquiring a smaller set of physiological signals. Firstly, for each setting and biosignal, the 

SNR and Percent Signal Change (PSC) was quantified. The data from each setting was then pre-

processed to correct for noise interference and artifacts. Events of interest that occurred during the 

tasks were identified so that signal features corresponding to each observation could be extracted. 

The features were next analysed to look for signs of significant differences between the studied 

conditions and groups, and finally, different classifiers were fed with the data, and their 

performance in automatically discriminating between arousal intensities was assessed.  

4.1 Participants 

 
Fifteen individuals diagnosed with ASD (2 females) were recruited to take part in this study 

with the help of the Portuguese ASD patients’ associations from Viseu and Coimbra. The Autism 

Diagnostic Observation Schedule (ADOS) was employed by an expert to confirm the diagnosis. 

To form the control group, sixteen TD individuals (4 females) were recruited. All individuals had 

a full-scale intelligence quotient (FSIQ) score above 70, assessed using the Wechsler Adult 

Intelligence Scale. Every participant (or their legal representative) signed an informed consent to 

participate in the study. Every subject completed the entire task. Table 4.1 provides a detailed 

description of the participants. 

Table 4.1 - Demographic description of the ASD and TD groups, including age, Full-Scale Intelligence Quotient 

(FSIQ), Empathy Quotient (EQ), Autism Spectrum Quotient (AQ), and the Autism Diagnostic Observation Schedule 

(ADOS-II) total score. Each score is presented in terms of group average and standard error, in brackets. Group 

differences were assessed with a two-sample T-test, with p-values on the last column. Groups are matched by age. 

 ASD TD p 

N 15 16  

Age 21.60 (1.19) 23.06 (0.87) 0.32 

FSIQ 94.87 (2.63) 111.81 (3.72) <0.01 

EQ 37.13 (3.40) 46.38 (2.57) 0.04 

AQ 24.07 (1.20) 15.38 (1.46) <0.01 

ADOS-II 11.07 (0.77)   
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4.2 Experimental Task 

 
The experimental task carried out in this study follows a block design and is divided into five 

task runs. For the first, third, and fifth runs, each block consists of a 15-second video presentation 

trailed by a self-assessment period and is preceded by a rest period of approximately the same 

duration. Each of these runs is made up of 10 video trials. The 30 videos (10 videos x 3 runs) were 

taken from the Chieti Affective Action Videos (CAAV) database and represent different actions, 

examples include hugging someone, stealing from another, or simply hanging a jacket (Di Crosta 

et al., 2020). The database comprises videos recorded from both first and third-person perspectives, 

and each video has a female actor version and a male actor version. For our experiment, we chose 

to use videos recorded in the first-person perspective and to coincide the gender of the participant 

with the main actor. Each video in the database is accompanied by the mean rating of valence and 

arousal given by an evaluation group, comprised of 444 young adults, using a 9-point Self-

Assessment Manikin (SAM). To select the appropriate videos for the task, those same ratings were 

analysed and a quick visual inspection of the two-dimensional space of the ratings revealed that 

the videos followed a V pattern: the highest levels of arousal can be found in the extreme levels of 

valence (both positive and negative), while the lowest values of arousal occurred where the valence 

is null (see Fig. 4.1). Hence, we sorted each video into one of the following 3 categories: low 

valence and high arousal (LVHA); high valence and high arousal (HVHA); neutral valence and 

low arousal (NVLA). Thus, 10 videos of each category were selected to integrate the task. For 

every participant, the order of the 30 videos was randomly shuffled at the begging of the task. 

For self-assessment, subjects were asked to rate each video they watched inside the MR also 

in the 9-point SAM scale. For this purpose, participants used a joystick. 

The SAM is a graphic self-assessment instrument that represents an alternative to other verbal 

and more complex assessment tools. For its simple characteristics and ease of use, SAM has been 

widely employed to quantify emotional responses to varied types of stimuli in different 

populations, including children and autistic individuals (Bradley and Lang, 1994; Lang, Bradley 

and Cuthbert, 1997; Bölte, Feineis-Matthews and Poustka, 2008; Sarabadani et al., 2020). It was 

then considered appropriate to use in the context of this study to gather the self-assessment ratings 

from the participants for the emotional dimensions of valence and arousal. Figure 4.2 a) presents 

a schematic representation of the video trials. 
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The second and fourth runs are an adaptation of the Balloon Analogue Risk Task (BART), a 

behavioural measure of risk-taking, where risky behaviour is rewarded up until a point when taking 

further risks represents losses for the individual. In the original version of the BART, participants 

were shown a virtual balloon and were instructed to inflate it. To inflate the balloon, without it 

popping, translated into a monetary reward wherein the amount of money earned was proportional 

to the final balloon volume. However, if the balloon popped, the participant would lose all the 

money accumulated from previous rounds (Lejuez et al., 2002). Our version consists of a further 

gamified BART with the introduction of competition, in this case, against the computer. The 

participant only sees his balloon, but knows the computer is performing the same task and his 

objective is to obtain a larger volume than the computer. Also, the monetary reward was replaced 

by two different kinds of rewards: social and interest-based rewards. The social-based reward 

consisted in the presentation of images of people with approving expressions whereas the interest-

based reward consisted of images depicting objects related to a topic of interest of the individual. 

This last kind of reward was personalized for each participant.  

So, in the second and fourth task runs, each task block consists of a game trial. A game trial 

is made up of three consecutive balloon rounds. To win the trial and level up, the participant must 

inflate the balloon further than the computer at least in two out of the three rounds, knowing that 

it may burst at any given moment. In case of a win, the participant levels up and is rewarded in one 

Figure 4.1 - Interaction between the average ratings of valence and arousal given to each video by the validation 

group. Each point corresponds to a video in the dataset. The cluster on the left corresponds to the videos rated as 

low valence and high arousal (LVHA category), closer to the bottom and slightly to the right is the cluster 

corresponding to the neutral videos (NVLA category), finally, to the right, are the data points corresponding to 

the videos that were rated high in both dimensions (HVHA category).  
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of the runs with the interest-based reward, and the other, with the social-based reward, described 

above. In each block, before the game trial, there is a rest period of approximately 15s. Finally, the 

block closes with the valence and arousal self-assessment period using the 9-point SAM scale. To 

inflate the balloon and complete the self-assessment, participants used a joystick. Figure 4.2 b) is 

a schematic representation of the adapted BART rounds. 

Before each session, the task was explained and participants were asked to rate some training 

videos as well as to play a few rounds of the BART (without rewards), to guarantee that they 

understood the task, that both concepts of valence and arousal were grasped, and that they knew 

how to operate the joystick. 

 

 

 

 

 

 

 

 

 

  

+ 

15s video Fixation cross Valence evaluation Arousal evaluation 

a) 

+ 

Fixation cross  BART (x3) Valence evaluation Arousal evaluation 
Reward 

b) 

Figure 4.2 - Schematic representation of the experimental task, including stimuli, self-assessment, and structure. a) 

Stucture of the video trials. Each trial begins with a fixation cross lasting approximately 15s followed by a video of 

that same length that is finally trailed by the valence and arousal self – assessment period. b) Stucture of the BART 

adaptation trials. Like the video trials, each BART trial starts with a fixation cross of approximately 15s that is 

followed by 3 BARTS. To win, the participant must inflate the balloon further than the computer at least in 2 out 

of the 3 tries. In case of win, the participant levels up and is rewarded in one of the runs with images relative to a 

topic of his interest and in the other with images of people with approving expressions (social reward). Finally the 

trial closes with the valence and arousal self-assessment period. 
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4.3 Data Acquisition 
 

While participants performed the task, and simultaneously with fMRI acquisition, EEG, EDA, 

SpO2, and HR were acquired using the MP150 system and AcqKnowledge 4.2 software (BIOPAC 

Systems, Inc.). Respiration and PPG were recorded using the Physiological Measurement Unit 

(PMU) of the MRI scanner (Siemens Healthcare) and pupil size was registered using the EyeLink 

1000 Plus Eye Tracker with the long-range mount (SR Research Ltd.).  

Due to the hypersensitivity of the ASD population, we tried to simplify and reduce preparation 

time as much as possible, thus, EEG was acquired using only 3 electrodes: signal channel placed 

on the forehead, reference channel on either the right or left earlobe, and the ground electrode on 

the temporal area. EDA was measured using 2 Ag/AgCl electrodes taped to the proximal phalanges 

of the index and middle fingers of the participant’s non-dominant hand. SpO2, HR, and PPG were 

measured using two different pulse finger sensors, one connected to the BIOPAC module (SpO2 

and HR) and the other to the PMU (PPG). Respiration was measured with a pneumatic respiratory 

cushion attached to the participant using a respiratory belt. EEG, EDA, SpO2, and HR were 

recorded with a sampling rate of 5000 Hz, PPG and Respiration were acquired at 400 Hz, and pupil 

size at 500 Hz. 

For results comparison purposes, besides the physiological signals acquired simultaneously 

with fMRI, a smaller set of signals including PPG, respiration, EDA, and pupil size were recorded 

in a regular laboratory setting, in a group of typically developed individuals, while the participants 

watched and rated the same videos that were used in the video runs of the fMRI experimental task. 

All biosignals, except pupil size, were acquired using the BioNomadix system (BIOPAC Systems, 

Inc.) at a sampling rate of 5000 Hz. Pupil size was recorded using the EyeLink II eye tracker (SR 

Research Ltd.) at a sampling rate of 500 Hz. 

 

4.4 Behavioural Analysis 
 

First, to understand how much the self-assessment answers of our two groups for the video 

runs were in agreement with the database labelling and with each other, a correlation analysis was 

performed recurring to Pearson’s linear correlation coefficient. The mean valence and arousal 

values for each video, and for each group, were first calculated. The results of each group were 

then compared to the database results and each other. 

Additionally, to verify if the answers reported by the two groups for each video are in 

accordance with the three categories from which they were retrieved (LVHA, HVHA, NVLA), the 

average answers from the database and the clinical and control groups were plotted and inspected 

in the two-dimensional space of valence and arousal. 



24 

 

4.5 Signal-to-Noise Ratio Quantification 
 

To ascertain the overall quality of the acquired biosignals, the average SNR was quantified. 

To do this, for each subject, the mean of every signal across the 5 runs was calculated. In the end, 

the SNR was found by averaging the mean values of each subject, and dividing it by the standard 

deviation, according to equation (4.1), where µ represents the overall mean of the signal and σ 

represents its standard deviation.  

𝑆𝑁𝑅 =  
µ

𝜎
 (4.1) 

 

4.6 Percent Signal Change 
 

To assess if the events in the experimental task induced significant changes in the 

physiological signals, percent signal change (PSC) was calculated at each event in the video runs, 

i.e., at each video, for every participant, and every biosignal. A one-sample Wilcoxon Signed Rank 

test was then performed, first for the PSC values of the events of each participant, for each signal, 

and then, combining the PSC values of every participant in a group, the same test was applied for 

each signal. PSC for each event was obtained according to equation (4.2). 

 

𝑃𝑆𝐶 =  
�̅�𝑒𝑣𝑒𝑛𝑡 −  �̅�𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

|�̅�𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒|
 

 (4.2) 

where, 

�̅�𝑒𝑣𝑒𝑛𝑡 = average value of the signal during the event of interest 

�̅�𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = average value of the signal during the baseline period, immediately preceding 

the event of interest 

 

4.7 Data Pre-processing 
 

Photoplethysmogram 

To reduce possible noise contamination coming from different sources, like movement, 

baseline drift, or the powerline, the PPG signal was bandpass filtered using a 6th order Butterworth 

filter with a lower cut-off frequency of 0.5 Hz and a higher cut-off frequency of 20 Hz. The clean 

PPG signal was then used to compute the PRV by first identifying the PPG pulse peaks, 

subsequently computing the interbeat intervals (IBI), and finally using a cubic spline interpolation 

to obtain a uniformly sampled time series with a new sampling frequency of 4 Hz. This last step is 

recommended for frequency domain analysis of the PRV (Peltola, 2012). 
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Electrodermal Activity 

The electrodermal activity data acquired simultaneously with fMRI were high-pass filtered 

with a 0.5 Hz cut-off frequency as it was collected and were later low-pass filtered using a 5th order 

Butterworth filter with a 1 Hz cut-off frequency to edit the signal regarding existing movement 

artifacts and noise. 

As for the same signal, acquired outside the MR environment, a moving average filter with a 

1s window was used to smooth the data and get rid of the high-frequency noise.    

Electroencephalogram 

As expected, the MR gradient switching considerably contaminated the EEG recordings with 

artifacts. So, to clean the signal of such artifacts, the FMRI Artifact Slice Template Removal 

(FASTR) algorithm from the FMRIB plug-in for EEGLAB (version 1.21) was used. Feeding the 

algorithm with the corrupted signal and the events for each slice acquired, it computes an average 

template for the artifact and subtracts it from the EEG, locked to each slice trigger. The corrected 

EEG was then low pass filtered using an infinite impulse response filter with a cut-off frequency 

of 80 Hz. 

Peripheral Oxygen Saturation and Heart Rate 

To get rid of the random noise that was present in the SpO2 and HR recordings, these signals 

were smoothed using a moving average filter with a window size corresponding to approximately 

12% of the sampling frequency. 

Respiration 

 The respiration signal acquired outside the MR environment was considerably noisier than 

the one obtained in the scanner. Hence, before analysis, it was low pass filtered using a Chebyshev 

Type II filter with a cut-off frequency of 1 Hz. 

Similar to what we did to obtain the PRV, the respiration signal was used to compute the 

breath rate variability (BRV) to investigate the respiratory frequency components. The respiration 

peaks, corresponding to the end of inhalation were identified and the interbreath intervals were 

subsequently computed. A cubic spline interpolation was applied to obtain a uniformly sampled 

time series with a new sampling frequency of 4 Hz.  
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4.8 Feature Extraction 
 

Signal Segmentation 

 To extract features from the acquired biosignals, the signals from each run were first divided 

into individual segments time-locked to each event of interest. 

For the video runs, where we expect a slower physiological response, evolving as the video 

progresses and even after it ends, as the information is taken in, every signal was divided into 30-

second segments, time-locked to the beginning of each video. This way, each segment includes the 

15 seconds of the video, the self-assessment period, and some seconds after. 

In another way, considering the fleeting nature of the BART events of interest, which are 

quickly replaced by others, and to avoid capturing physiological information unrelated to the 

present event, the signals for the two BART runs were segmented into 10-second epochs whose 

beginning coincides with the following events: individual balloon trials (‘balloon’ event), balloon 

pops (‘pop’ event), level up during the social reward runs (‘win_S’ event), stay on the same level 

during the social reward runs (‘loss_S’ event), level up during the interest reward runs (‘win_I’ 

event), stay on the same level during the interest reward runs (‘loss_I’ event).  

Additionally, for every video and BART run, and for every block, baseline segments, 

coinciding with the last seconds of the fixation cross, presented at the begging of each block, were 

defined for every signal. Their duration coincided with the last 5 seconds of the fixation cross, for 

the video blocks, and the last 10 seconds, for the BART blocks. 

 

Feature Extraction 

For each segment, a total of 70 features was extracted from the different biosignals. To 

account for possible carryover effects, a baseline period previous to each event was considered to 

normalize the features, so they represent event-induced fluctuations instead of absolute values. 

For each signal, a description of the extracted features is given in the following tables (Table 

4.2 to Table 4.10). 
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Table 4.2 - EDA features and their description. 

Feature Code Name Description 

Mean EDA value meanEDA 

Mean value of EDA. Evidence 

suggests that this metric is 

significantly correlated with arousal 

(Lang et al., 1993). 

Maximum EDA value maxEDA The maximum value of EDA. 

Minimum EDA value minEDA The minimum value of EDA. 

Mean absolute first difference of 

EDA 
meanAbsFdEDA 

Approximation of the first derivative, 

and thus, related to signal changes. 

Defined as: 

1

𝑁−1
 ∑ | 𝑥𝑛+1 − 𝑥𝑛|𝑁−1

𝑛=1 ,  (4.3) 

where xn represents a signal sample 

and N equals the total number of 

samples in the segment. 

Mean absolute second difference 

of EDA 
meanAbsSdEDA 

Approximation of the second 

derivative, and thus, related to signal 

changes. Defined as: 

1

𝑁−2
 ∑ | 𝑥𝑛+2 − 𝑥𝑛|𝑁−2

𝑛=1 .  (4.4) 
 

Mean Derivative of EDA for 

negative values only 
meanDerivNegEDA 

Mean of the negative values of the 

first derivative. Represents the 

average decrease rate of the signal. 

Decrease time of EDA signal decTimeEDA 
Total decrease time of EDA relative 

to the total duration of the segment. 

Number of EDA falls nFallsEDA 

Number of EDA falls per minute, 

measured by identification of local 

minima.  

Mean amplitude of SCRs meanAmpSCR 

Mean amplitude of the SCRs. Signal 

peaks were considered as SCR if 

their amplitude was higher than the 

minimum threshold of 0.01 µS. SCRs 

amplitude is positively correlated to 

the number of activated sweat glands 

(Freedman et al., 1994; Nishiyama et 

al., 2001) and hence may represent a 

good indicator of SNS activation. 

Maximum amplitude of SCRs maxAmpSCR 
The maximum amplitude of the 

SCRs. 

Rate of SCRs rateSCR Number of SCRs per minute. 

Mean rise duration of SCRs meanRiseDurSCR 
Mean rise time between SCRs onsets 

and corresponding peaks. 

Standard deviation of the rising 

duration of SCRs 
SDRiseDurSCR 

Standard deviation of the rise times 

of SCRs. 
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Table 4.3 - PPG features and their description. 

Feature Code Name Description 

Mean PPG value meanPPG Mean value of the PPG segment. 

Maximum PPG value maxPPG 
The maximum value of the PPG 

segment. 

Minimum PPG value minPPG 
The minimum value of the PPG 

segment. 

Standard deviation of the PPG 

signal 
stdPPG 

Standard deviation of the PPG 

segment values. 

Mean amplitude of the PPG pulse 

peaks 
meanPeakAmp 

The average amplitude of the PPG 

segment pulse peaks. Pulse 

amplitude is related to blood volume 

and skin temperature, and its low-

frequency fluctuations have been 

attributed to the SNS (Shaffer and 

Ginsberg, 2017). 

Standard deviation of the PPG 

pulse peaks’ amplitude 
stdPeakAmp 

Standard deviation of the PPG 

segment pulse peaks’ amplitude. 

Pulse amplitude is related to blood 

volume and skin temperature, and its 

low-frequency fluctuations have 

been attributed to the SNS (Shaffer 

and Ginsberg, 2017). 
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Table 4.4 - HRV time-domain features and their description. 

Feature Code Name Description 

Mean of Normal-to-Normal (NN) 

time intervals 
NNmean 

Average IBI. 

Minimum NN time interval NNmin Shortest IBI. 

Maximum NN time interval NNmax Longest IBI. 

Standard deviation of NN 

intervals 
SDNN 

Standard deviation of the IBI. This 

metric is a representation of the 

rhythmic components that induce 

variability in the HR (Malik et al., 

1996), and evidence suggests it is 

influenced by both, the SNS and the 

parasympathetic nervous system 

(PNS) (Shaffer and Ginsberg, 2017). 

Mean of Successive Differences 

between NN time intervals 
meanDeltaNN 

Average of the differences between 

successive IBI. 

Standard Deviation of Successive 

Differences between NN time 

intervals 

SDSD 

Standard deviation of the differences 

between successive IBI. This feature 

reflects the short-term variability of 

HR (Shaffer and Ginsberg, 2017). 

Root Mean Square of Successive 

Differences between NN time 

intervals 

RMSSD 

Root mean square of the differences 

between successive IBI. Like SDSD, 

this metric is related to the short-term 

components of HRV. RMSSD is 

known for being mainly influenced 

by the PNS and is then the principal 

time-domain measure used to assess 

vagal tone contribution to the HRV 

(Shaffer and Ginsberg, 2017). 

Number of Successive Differences 

between NN intervals greater than 

50ms 

NN50 

The number of successive IBI that 

differ in length by more than 50 ms. 

Like RMSSD, NN50 is mostly 

modulated by the HF components of 

the HRV (Shaffer and Ginsberg, 

2017). 

The ratio between NN50 and the 

total number of NN time intervals 
pNN50 

The ratio between the number of 

successive IBI that differ in length by 

more than 50 ms and the total number 

of IBI. Similarly to RMSSD and 

NN50, pNN50 is mainly influenced 

by the PNS, and thus shows 

correlations with the two previous 

measures (Shaffer and Ginsberg, 

2017). 
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Table 4.5 - HRV frequency-domain features and their description. 

Feature Code Name Description 

Relative power in the Very Low 

Frequency (VLF) band of the 

HRV 

VLF 

Power in the VLF band [0.003 – 

0.04] Hz of the HRV, normalized by 

total power [0.003 – 0.4] Hz. 

Although the physiological 

correlates of this band are unsettled, 

PNS activity seems to influence its 

power (Shaffer and Ginsberg, 2017).  

Relative power in the Low 

Frequency (LF) band of the HRV 
LF 

Power in the LF band [0.04 – 0.15] 

Hz of the HRV, normalized by total 

power. While some argue that the LF 

activity is an indicator of sympathetic 

activation, studies that resulted in LF 

power decreases during conditions 

related to SNS activation have 

suggested that LF contributions are 

more complex than initially thought 

(Malik et al., 1996). 

Relative power in the High 

Frequency (HF) band of the HRV 
HF 

Power in the HF band [0.15 – 0.4] Hz 

of the HRV, normalized by total 

power. Contrarily to the uncertain 

nature of the LF components, it is 

well established that the HF activity 

is mostly related to the PNS (Malik et 

al., 1996). Accordingly, states of 

stress and anxiety are accompanied 

by a decrease in HF power, while 

positive emotions seem to be related 

to a higher power in the HF band 

(Shaffer and Ginsberg, 2017).  

The ratio between the powers in 

the LF and HF band 
RaLH 

Despite some contestation and 

assuming that the LF activity is 

mostly related to SNS activation, 

some believe that this is a marker of 

sympathovagal balance, with a 

higher value reflecting a dominance 

of the SNS, while a lower value 

reflects parasympathetic dominance 

(Shaffer and Ginsberg, 2017).  

The ratio between the powers in 

the LF and VLF band 
RaLVL 

 

The ratio between the powers in 

the HF and VLF band 
RaHVL 
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Table 4.6 - EEG features and their description. 

Feature Code Name Description 

Relative power in the delta band 

of the EEG 
delta 

Power in the delta band [0.5 – 4] Hz 

of the EEG, normalized by total 

power [0.5 – 80] Hz. 

Relative power in the theta band 

of the EEG 
theta 

Power in the theta band [4 – 8] Hz of 

the EEG, normalized by total power. 

Relative power in the alpha band 

of the EEG 
alpha 

Power in the alpha band [8 – 13] Hz 

of the EEG, normalized by total 

power. 

Relative power in the beta band of 

the EEG 
beta 

Power in the beta band [13 – 30] Hz 

of the EEG, normalized by total 

power. 

Relative power in the gamma 

band of the EEG 
gamma 

Power in the gamma band [30 – 80] 

Hz of the EEG, normalized by total 

power. 

 

Table 4.7 - Respiration features and their description. 

Feature Code Name Description 

Mean value of respiration meanResp 
Average value of the respiration 

segment. 

Maximum value of respiration maxResp 
Highest value of the respiration 

segment. 

Minimum value of respiration minResp 
Lowest value of the respiration 

segment. 

Mean absolute first difference of 

respiration 
meanAbsFdResp 

Approximation of the first 

derivative, and thus, related to signal 

changes – Equation (4.2). 

Mean absolute second difference 

of respiration 
meanAbsSdResp 

Approximation of the second 

derivative, and thus, related to signal 

changes - Equation (4.3). 

Respiration rate respRate 

Number of breaths per minute. This 

metric was calculated by first 

identifying the signal peaks, 

corresponding to the end of 

inhalation, counting the number of 

occurrences in the segment, and 

converting it to breaths per minute. 

Mean respiration amplitude meanRespAmp 

Mean amplitude of breath. 

Calculated by first finding the signal 

peaks, corresponding to the end of 

inhalation, and the slope bases, 

considered as the inhalation onsets, 
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computing the differences between 

the corresponding signal values, and 

finally averaging the amplitude 

values. Both, the signal peaks and 

slope onsets were identified 

recurring to (MacIntyre, 2021). 

Median respiration amplitude medianRespAmp Median amplitude of breath. 

Standard deviation of respiration 

amplitude 
stdRespAmp 

Standard deviation of the breath 

amplitude. 

Mean rise duration of respiration meanRiseDurResp 
Average duration of inhalation in 

seconds. 

Standard deviation of the rise 

duration of respiration 
SDRiseDurResp 

Standard deviation of inhalation 

duration in seconds. 

Mean respiration interval meanRespInter 

Mean duration of a respiration cycle, 

in seconds. Measured by averaging 

the differences between two 

successive inhalation peaks. 

Median respiration interval medianRespInter 
Median duration of a respiration 

cycle, in seconds. 

Minimum respiration interval minRespInter 
Shortest respiration cycle in the 

segment. 

Maximum respiration interval maxRespInter 
Longest respiration cycle in the 

segment. 

Standard deviation of the 

respiration intervals 
stdRespInter 

Standard deviation of the respiration 

cycles duration. 

Absolute power in the HF band of 

the breath rate variability 
respHF 

Power in the HF band [0.15 – 0.4] 

Hz of the breath rate variability, 

correlated with parasympathetic 

activity (Soni and Muniyandi, 

2019). 

Standard deviation of respiration stdResp 
Standard deviation of the respiration 

value. 

Dynamic range of respiration DRResp 

Dynamic range of respiration, 

measured by finding the difference 

between the maximum and 

minimum value of the respiration 

segment. 

 

Table 4.8 - Pupil size features and their description. 

Feature Code Name Description 

Mean pupil size meanPupilSize Mean value of pupil size. 

Maximum pupil size maxPupilSize Maximum value of pupil size. 

Number of blinks nBlinks 
Number of eye blinks occurring 

during the segment. 
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Table 4.9 - Instantaneous HR features and their description. 

Feature Code Name Description 

Mean Heart Rate meanHR Mean value of the instantaneous HR. 

Maximum Heart Rate maxHR 
Maximum value of the instantaneous 

HR. 

Minimum Heart Rate minHR 
Minimum value of the instantaneous 

HR. 

Mean absolute first difference of 

the Heart Rate 
meanAbsFdHR 

Approximation of the first derivative, 

and thus, related to signal changes 

(Equation 4.2). 

Mean absolute second difference 

of the Heart Rate 
meanAbsSdHR 

Approximation of the second 

derivative, and thus, related to signal 

changes (Equation 4.3). 

Standard deviation of the Heart 

Rate 
stdHR 

Standard deviation of the 

instantaneous HR. 

 
 

Table 4.10 – Pulse oximetry features and their description. 

Feature Code Name Description 

Mean SpO2 meanSpO2 
Mean peripheral oxygen saturation in 

%. 

Maximum SpO2 maxSpO2 
Maximum peripheral oxygen 

saturation in %. 

Minimum SpO2 minSpO2 
Minimum peripheral oxygen 

saturation in %. 

 

4.9 Statistical Analysis 

 
Following feature extraction, a statistical analysis was conducted intending to inspect the 

features for significant differences among conditions and groups. 

 For the video runs the means of every feature for each subject were computed, for the 

conditions of High Arousal (HA), Low Arousal (LA), High Valence (HV), Neutral Valence (NV), 

and Low Valence (LV). The HA and LA conditions were obtained by condensing the 3 original 

ones (LVHA, HVHA, NVLA) and all conditions were defined and analysed twice. One for the 

database ratings and the other for the self-assessed answer values given by each participant. For 

the self-assessment, k-means clustering was performed on each participant’s answers individually 

to partition them into 2 and 3 clusters, for the arousal (high/low) and valence (high/neutral/low) 

conditions, respectively. In some rare cases, the participant did not respond in time, which resulted 

in some missing values in the answers. For these cases, a linear regression was fitted to the 

relationship between the existing answers and the database ratings of the corresponding video. The 

missing answers were then extracted by evaluating the regression at the corresponding points, 

using the database rating of the video for which an answer is missing as the independent variable. 

Finally, trials were classified based on the cluster they fell into. Wilcoxon signed-rank tests were 

then performed to look for statistically significant differences in feature values between HA and 
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LA, HV and NV, HV and LV and NV and LV, for each group, and Wilcoxon rank-sum tests were 

applied to look for differences between groups for the five conditions. 

As for the BART runs, the primal events of interest were considered winning or losing a play. 

Additionally, given the evidence of an altered reward processing in ASD, the distinction between 

winning a social or a personalized interest reward was also considered for analysis.  

The means of each feature, for each subject, were then calculated, first for the general events 

of winning and losing, and then for the particular events of winning a social reward and winning 

an interest reward. 

Wilcoxon signed-rank tests were then performed to look for statistically significant 

differences in feature values for each group between the winning and losing events and between 

winning a social reward and winning an interest reward. In addition, Wilcoxon rank-sum tests were 

applied to look for differences between groups for the four different events selected. 

4.10 Classification 

 
To explore the accuracy of automatic emotion assessment in the data acquired with our 

experimental protocol, 4 classification algorithms were tested for the classification problems 

summarized in Table 4.11. 

As ground truth for the video samples, both the ratings of the CAAV database and the self-

assessment answers were considered separately to label the data, to ascertain which case resulted 

in the best classifier performance. For the BART samples, we first considered the segments 

corresponding to the events: ‘win_S’, ‘win_I’, ‘loss_S’ and ‘loss_I’, and attempted to classify the 

observations as a win or a loss, regardless of the reward involved, and then, taking only the win 

events, each observation was labelled either as winning a social reward or an interest reward, these 

labels were then used as ground truth for the win observations. 
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Table 4.11 - Summary of the classification problems considered for analysis. 

Code Name Task Target Labels Ground Truth 

A1 Videos Arousal 
High Arousal, Low 

Arousal 

Database average 

ratings 

A2 Videos Arousal 
High Arousal, Low 

Arousal 

Self-assessment 

answers 

A3 Videos Valence 

High Valence, 

Neutral Valence, 

Low Valence 

Database average 

ratings 

A4 Videos Valence 

High Valence, 

Neutral Valence, 

Low Valence 

Self-assessment 

answers 

A5 BART Game outcome Winning, Losing Game outcome 

A6 BART Reward type 
Social Reward, 

Interest Reward 

Reward type 

 

The considered classifiers were a Euclidean Minimum Distance Classifier (MDC – 

Euclidean), a K-Nearest Neighbours (KNN), and SVM using a Radial Basis Function (SVM RBF) 

kernel and a linear (SVM Linear) kernel. Additionally, in an attempt to optimize the classifiers 

performance, Principal Component Analysis (PCA) was employed on the feature space to reduce 

redundancy and the classifiers were retrained for the new dimensionality. A brief background on 

each classifier and PCA will be given next, to help understand what characteristics may optimize 

the classification results. 

 

Principal Component Analysis 

Principal Component Analysis is a multivariate statistical analysis technique that reduces the 

dimensionality of the feature space, while minimizing redundancy between features, by finding the 

directions where data presents a greater variance and projecting it onto them, so that the axes of 

the new feature space, also known as principal components, correspond to such directions. An 

important requirement that must be met is that the principal components are uncorrelated to each 

other, and thus, mutually orthogonal.  

Now, given that we want to reduce the dimensionality of our dataset, we must keep only the 

principal components that explain the most variance. The eigenvectors of the data covariance 

matrix correspond to the principal components, and their magnitude is given by the corresponding 

eigenvalues which are correlated to the amount of variance they bear. After obtaining the 

eigenvalues, some methods can help with deciding how many dimensions to keep. Here, the Kaiser 

Criterion was considered, which states that the principal components to keep correspond to the 
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ones whose corresponding eigenvalue magnitudes are higher than 1. Finally, the transformation 

matrix that maps the dataset into the new lower-dimensional space is built using only training data, 

and then, both training and test data are projected accordingly. 

 

Minimum Distance Classifier - Euclidean Distance 

Minimum distance classifiers are linear discriminant approaches based on distance metrics. 

When considering the Euclidean distance (Equation 4.4) to evaluate the similarity, these classifiers 

consider a class’s mean vector as its representative and assign each object to the class which 

representative is nearest, i.e., has a greater similarity to the object.  

𝐷𝑖(𝑥) =  √(𝑥 −  𝑚𝑖)
𝑇(𝑥 − 𝑚𝑖) 

(4.5) 

where,  

Di = Euclidean distance to the mean vector of class i 

x = Data vector 

mi = Mean vector of class i 

 

K-Nearest Neighbours  

Contrarily to the MDC, where assumptions are made about the model that describes the 

pattern distribution, the K-Nearest Neighbours (KNN) classifier is a model-free technique, i.e. a 

non-parametric learning algorithm. It bases itself on the estimation of the probability density 

function of the pattern distributions described in Equation 5.  

𝑝(𝑥)  ≅  
𝑘

𝑛𝑉
 (4.6) 

where, 

p = Probability density function 

x = Data vector 

V = A volume surrounding x 

n = Total number of points 

k = Number of points inside V 

 

The method is applied by fixing k and then determining the minimum V that encloses k 

patterns. A low-density value is obtained when there is only a small number of points surrounding 

x, while a high density is obtained when there are many points. As a classifier, k translates to the 

k - nearest neighbours of x, and x is classified with the class label that appears most frequently on 

said neighbours.  

Since it does not generate a model from the training set, KNN is called a lazy learning 

algorithm. On the one hand, this kind of algorithms have the advantage of requiring less 
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computational costs in the training phase, hence taking less time to train. On the other hand, the 

prediction phase of such classifiers is slower, since the algorithm has to search the entire training 

data set for the k-nearest points, additionally, it also requires a lot more training observations to 

accurately make predictions. 

For this project, the ideal number of neighbours to use was determined by applying a 50/50 

partition on the training set 5 times, varying k from 1 to 20 for each partition and calculating the 

error between the predicted classes and the actual classes for each case. Finally, the k that obtained 

the smallest error for the most runs was chosen to retrain and test the classifier.  

 

Support Vector Machines 

Support Vector Machines (SVM) represent a machine learning technique based on statistical 

learning theory that owe their popularity to their good generalization performance. Originally 

binary classifiers, these algorithms working principle consists in finding the optimal hyperplane, 

i.e., the one that maximizes the margin between the training samples of the different classes. This 

margin is the hypervolume in between the hyperplanes constructed through the closest examples 

of both classes. Such examples are called support vectors and owe their name to the physical 

intuition that the margins are supported on them. 

 Even though these principles were thought primarily for linearly separable data, it is still 

possible to apply them to non-linearly separable problems. The principle behind non-linear SVM 

is to implicitly transform the dataset to a higher dimensionality space where linear separation 

becomes possible. These non-linear separations can be made with the help of kernel functions. 

For this project, both the Linear kernel and the Gaussian Radial Basis Function (Gaussian 

RBF) (4.6) were explored.  

The Gaussian RBF is one of the most popular kernels for its resemblance to the normal 

distribution. The kernel function calculates the distance between two feature vectors, i.e., how 

similar they are to each other. The Gaussian Radial Basis Function is given by: 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−
‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎2
) (4.7) 

 where,  

||xi - xj|| = Euclidean distance between feature vectors xi and xj  

σ = Variance, and the kernel hyperparameter 

 

Besides the kernel parameter in the Gaussian RBF, another parameter that can be tuned for 

optimal results is the cost (C), as it is usually named. The cost parameter determines the level of 

penalization imposed for misclassifications. The higher the cost, the higher the penalty for wrong 
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classifications and the more the algorithm tries to separate the classes. However, if the value of 

this parameter is too large, it can lead to overfitting and longer training times, thus it is important 

to find the value that optimizes the process. Like for KNN, the values of the optimal 

hyperparameters (σ and C) were determined by applying a random 50/50 partition on the training 

set 5 times, the error between the predicted classes and the actual classes was computed for each 

combination of the parameters for the Gaussian RBF and for each value of C, for the case of linear 

SVM. To classify the test samples, the combination of values and value, respectively, that obtained 

the smallest error for the most runs was used. After the hyperparameters selection, the classifiers 

were retrained with all training data with the chosen parameters. 

The classifiers were then tested for both intraparticipant and interparticipant classification. 

For the intraparticipant approach, data from each subject were randomly split using the 70:30 ratio, 

where 70% of the data were used to train the classifier and the remaining data were used for testing. 

This process was repeated 30 times to avoid outlier results. As for the interparticipant 

classification, we employed the Leave One Subject Out (LOSO) method where the data from each 

participant are used once for testing, while the rest of the participants’ data are used to train the 

classifier. The LOSO approach was selected over the 70:30 split due to the low number of subjects. 

Finally, permutation tests were employed to ascertain if the accuracies of the classifiers were 

significantly greater than the chance level. For each partition, after testing, the true labels of the 

test set were iteratively shuffled, and accuracies were calculated using the random labels as the 

predicted classes. The number of times that these random accuracies were greater than the one 

obtained with the classes predicted by the classifier were then counted, whose percentage 

corresponds to the statistical significance level of the classifier. 
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5 Results 
 

5.1 Behavioural Analysis 
 

Overall, the behavioural analysis revealed strong positive correlations between average 

database ratings and average self-assessment answers for the two dimensions of valence and 

arousal. We observed, however, that for the arousal dimension, both ASD and TD groups, tend to 

give lower ratings than those given by the CAAV database validation group, which is not observed 

for the valence dimension. Additionally, from Figures 5.2, 5.6 and 5.7, we can conclude that 

participants in the ASD group tended to give extreme valence ratings, avoiding the neutral ones, 

which is not verified for the arousal dimension.  

 Figures 5.1 and 5.2 display the relationship between the average database answers and 

average ASD answers, for the arousal and valence dimensions, respectively. Figures 5.3 and 5.4 

are analogous to Figures 5.1 and 5.2 but are in respect to the TD group. Figures 5.5 and 5.6 present 

the relationship between the average ratings of the two groups, for the arousal and valence 

dimensions, respectively. 

 

 

 

 

 

 

 

Figure 5.1 - Relationship between the average database answers and the average reported answers of the clinical 

group (ASD), for the arousal dimension. Each blue circle represents one of the videos chosen to integrate the 

experimental task. Red line represents the first-degree polynomial that is a best fit to the data. r represents the 

Pearson’s linear correlation coefficient, and p represents the statistical significance. 
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Figure 5.3 - Relationship between the average database answers and the average reported answers of the control 

group (TD), for the arousal dimension. Each blue circle represents one of the videos chosen to integrate the 

experimental task. Red line represents the first-degree polynomial that is a best fit to the data. r represents the 

Pearson’s linear correlation coefficient, and p represents the statistical significance. 

Figure 5.2 - Relationship between the average database answers and the average reported answers of the clinical 

group (ASD), for the valence dimension. Each blue circle represents one of the videos chosen to integrate the 

experimental task. Red line represents the first-degree polynomial that is a best fit to the data. r represents the 

Pearson’s linear correlation coefficient, and p represents the statistical significance. 
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Figure 5.5 - Relationship between the average answers of the clinical and control groups, for the arousal 

dimension. Each blue circle represents one of the videos chosen to integrate the experimental task. Red line 

represents the first-degree polynomial that is a best fit to the data. r represents the Pearson’s linear correlation 

coefficient, and p represents the statistical significance. 

Figure 5.4 - Relationship between the average database answers and the average reported answers of the control 

group (TD), for the valence dimension. Each blue circle represents one of the videos chosen to integrate the 

experimental task. Red line represents the first-degree polynomial that is a best fit to the data. r represents the 

Pearson’s linear correlation coefficient, and p represents the statistical significance. 
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By comparing the mean ratings of the two dimensions of valence and arousal of the three 

groups, i.e., the CAAV database validation group, the clinical group, and the control group, for the 

30 videos selected, three major clusters stand out, as expected (see Fig. 5.7). On the left, fairly 

separated from the others there is the cluster corresponding to a low valence and high arousal, 

which encompasses the videos with a negative connotation. On the bottom centre, there is another 

cluster corresponding to the no valence, low arousal group (an intermediate value of valence is 

considered neutral, hence the no valence denomination), which includes the videos depicting 

ordinary everyday actions. Lastly, on the right, slightly above the central cluster, it is possible to 

identify the third one, with the points corresponding to videos rated higher in both scales, these 

videos coincide with the HVHA category.  

 

 

 

 

 

Figure 5.6 - Relationship between the average answers of the clinical and control groups, for the valence 

dimension. Each blue circle represents one of the videos chosen to integrate the experimental task. Red line 

represents the first-degree polynomial that is a best fit to the data. r represents the Pearson’s linear correlation 

coefficient, and p represents the statistical significance. 
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Figure 5.7 - Relationship between the Valence and Arousal ratings for the three groups: CAAV dataset validation 

group, control group and clinical group. Each coloured dot corresponds to one of the 30 videos selected to integrate 

the experimental task. On the left is the cluster corresponding to the LVHA category, closer to the bottom and 

slightly to the right is the cluster corresponding to the NVLA category and, on the far right, sits the cluster that 

coincides with the HVHA category.  
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5.2 Signal-to-Noise Ratio Quantification 

 
The values resulting from the SNR calculation of the biosignals acquired in the magnetic 

resonance environment and outside are presented in table 5.1, alongside the results of an 

independent samples t-test, to determine if there are statistically significant differences between 

groups for the biosignals for which there are recordings in the MR environment and outside. 

Table 5.1 - Signal-to-Noise ratio results for the biosignals acquired inside the Magnetic Resonance environment. 

Last three columns display the results for an independent samples t-test where t is the value of the test statistic, 

df is the degrees of freedom and p is the statistical significance. 

Biosignal 
MR Environment Common Environment 

Independent Samples 

T-Test 

SNR SNR t df p 

Instantaneous Heart Rate 20.96 (8.77) N/A    

Electrodermal Activity 0.49 (0.96) 1.26 (0.78) -2.72 24.55 0.01 

Electroencephalogram 4.85 (4.22) N/A    

Photoplethysmogram 3.97 (2.52) 0.80 (0.62) 6.55 37.29 <0.01 

Respiration 3.32 (2.92) 34.12 (30.77) -3.74 13.11 <0.01 

Peripheral Oxygen Saturation 208.19 (88.71) N/A    

 

For the MR environment, every signal presents a SNR higher than 1, except for EDA, which, 

for the common environment, presents a SNR just slightly above one. This is probably due more 

to the quantification method that was applied rather than to high noise contamination given the 

morphology of this signal, which is subject and circumstance dependent. 

For the signals acquired in a common environment, besides EDA, respiration presents a SNR 

considerably higher than 1, with PPG displaying the worst results. 

The SNRs of every signal, for which we had recordings both inside and outside the MR, show 

statistically significant differences between environments, with higher SNR outside the scanner 

for EDA and respiration, and higher SNR inside the MR environment for PPG. 

 

5.3 Percent Signal Change 
 

The following tables present the PSC values and the significance levels of the one-sample 

Wilcoxon Signed Rank tests performed on such values, for each participant individually (Tables 

5.3 to 5.5) and for each group (Table 5.6). 

Pupil size presents significant changes to baseline, for every participant, for the data acquired 

simultaneously with fMRI, while it presents a similar behaviour for only 4 out of the 14 participants 

that completed the task in a common laboratory. This will be discussed in further detail in chapter 

6, however, we have reasons to believe that the pronounced changes observed for the MR 

environment owe their magnitude to existent luminosity variations rather than emotional changes, 



 

45 

 

while it is safe to believe that the results obtained for the group that performed the task outside the 

scanner are related to emotion. 

Besides pupil size, the physiological signal that presents the most consistent changes is 

instantaneous heart rate. This is especially true for the ASD group, with only 3 out of the 14 

subjects in the group which had instantaneous HR data successfully collected, not presenting 

significant changes between baseline and events of interest. The changes are less pronounced for 

the TD group with only a third of the subjects displaying significant results, however, when 

performing the group analysis, the overall changes in signal between events and the baseline seem 

to be significant. 

Furthermore, respiration and EEG also present prominent changes for a considerable number 

of subjects in both MR setting groups. However, when performing group statistics, only EEG, for 

the control group, returned significant results. Reversely, even though only 3 subjects in the ASD 

group present significant changes in PPG signal, when joining the PSC of the events of the whole 

group, the result seems to be significant. 

EDA presents promising results for the data acquired outside the MR with 75% of the 

subjects displaying significant results, which also translates into significant intragroup changes. 

Overall, only 3 subjects present significant variations for SpO2, hence, it does not seem 

reasonable to attribute any weight to these results, especially given the lack of literature relating 

this measure with emotional processes. 
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Table 5.2 – Average Percent Signal Change values, in percentage, and corresponding standard deviations, in brackets, and p-values for one-sample Wilcoxon Signed Rank Test performed for 

every biosignal, for each participant in the ASD group. Last row corresponds to the total number of subjects presenting a statistically significant result for each biosignal. 

Participant Respiration PPG SpO2 HR EDA EEG Pupil Size 

PSC (%) p PSC (%) p PSC (%) p PSC (%) p PSC (%) p PSC (%)  p PSC (%) p 

A01 0.88 (10.54) 0.50 -2.59 (9.21) 0.03 0.06 (0.45) 0.84 -3.66 (3.55) <0.01 58.77 (167.59) 0.04 -1.20 (2.28) 0.01 -34.21 (17.39) <0.01 

A02 -12.65 (19.63) <0.01 -0.02 (6.22) 0.74 -0.16 (0.46) 0.07 -2.12 (4.37) 0.03 -8.17 (32.80) 0.10 0.02 (0.46) 0.36 -35.96 (5.87) <0.01 

A03 0.75 (11.94) 0.75 1.21 (4.32) 0.19 0.03 (0.25) 0.28 -0.47 (1.47) 0.19 38.64 (146.30) 0.07 -0.12 (1.79) 0.55 -5.15 (124.52)  <0.01 

A04 10.82 (21.01) 0.01 -0.13 (2.05) 0.67 0.02 (0.25) 0.79 -0.58 (3.41) 0.25 -0.09 (4.77) 0.98 0.14 (0.28) 0.02 123.22 (284.21) 0.08 

A05 6.24 (11.79) 0.01 -0.52 (1.55) 0.07 -0.19 (0.62) 0.09 -1.72 (2.54) <0.01 193.38 (992.32) 0.56 0.26 (0.54) 0.02 -44.51 (8.65) <0.01 

A06 8.53 (24.62) 0.11 -1.45 (4.43) 0.12 -0.15 (0.31) 0.02 -4.09 (4.72) <0.01 10.01 (49.86) 0.60 -0.17 (0.57) 0.07 -45.13 (3.57) <0.01 

A07 0.47 (11.01) 0.83 -3.08 (6.01) 0.03 0.08 (0.33) 0.03 -3.83 (4.19) <0.01 -8.95 (12.46) <0.01 0.16 (0.80) 0.05 -45.18 (19.76) <0.01 

A08 -1.31 (10.61) 0.28 -1.34 (2.49) 0.03 -0.01 (0.04) 0.57 0.32 (1.91) 0.30 -2.20 (14.42) 0.50 1.55 (3.66) 0.01 -36.23 (6.72) <0.01 

A10 -1.27 (6.44) 0.47 -0.59 (3.30) 0.50 0.07 (0.43) 0.67 -2.44 (3.32) <0.01 12.56 (51.34) 0.67 -0.02 (0.18) 0.43 -26.31 (13.58) <0.01 

A11 -2.44 (13.57) 0.12 -0.59 (3.55) 0.08 -0.03 (0.15) 0.68 -1.69 (2.31) <0.01 -0.22 (9.23) 0.19 -0.03 (0.10) 0.16 -40.09 (37.56) <0.01 

A12 -7.25 (13.78) 0.01 0.09 (0.28) 0.10 0.04 (0.46) 0.72 -1.76 (2.00) <0.01 -4.51 (10.35) 0.04 -0.47 (0.99) 0.03 -48.43 (5.08) <0.01 

A13 -1.23 (11.25) 0.34 1.29 (3.83) 0.09 0.03 (0.27) 0.77 -1.30 (1.91) <0.01 15.54 (73.07) 0.83 0.95 (3.13) 0.02 -38.22 (8.48) <0.01 

A14 15.75 (39.05) 0.01 2.21 (8.60) 0.46 -0.02 (0.50) 0.94 -3.79 (3.82) <0.01 91.11 (449.03) 0.89 -0.35 (4.82) 0.94 -29.59 (71.09) <0.01 

A15 -3.76 (9.79) 0.12 0.38 (2.54) 0.56 -0.06 (0.40) 0.67   0.50 (1.93) 0.37 0.07 (2.18) 0.94 -28.88 (47.76) <0.01 

A16 1.73 (6.34) 0.26 -0.32 (2.04) 0.39 -0.04 (0.33) 0.16 -1.34 (2.80) 0.03 0.59 (6.34) 0.67 -0.05 (0.82) 0.72 11.49 (108.18) 0.04 

Total  5 3 2 11 3 6 14 
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Table 5.3 - Average Percent Signal Change values, in percentage, and corresponding standard deviations, in brackets, and p-values for one-sample Wilcoxon Signed Rank Test performed for every 

biosignal, for each participant in the TD group that performed the task in the MR environment. Last row corresponds to the total number of subjects presenting a statistically significant result for 

each biosignal. 

 

  

Participant 
Respiration PPG SpO2 HR EDA EEG Pupil Size 

PSC (%) p PSC (%) p PSC (%) p PSC (%) p PSC (%) p PSC (%) p PSC (%) p 

C01 11.37 (30.60) 0.14 -2.84 (6.94) 0.12 0.09 (0.42) 0.61 -0.61 (1.48) 0.09 75.58 (230.87) 0.04 -2.01 (7.23) 0.02 -36.35 (7.06) <0.01 

C02 10.48 (29.86) 0.32 -0.73 (3.21) 0.24 0.02 (0.17) 0.98 -1.08 (4.09) 0.11 14.06 (50.96) 0.32 -0.89 (5.63) 0.65 -36.01 (11.11) <0.01 

C03 -5.03 (10.06) 0.02 1.69 (4.27) 0.06 -0.01 (0.05) 0.58 -2.53 (5.28) 0.02 16.62 (61.39) 0.30 -0.40 (2.79) 0.13 -40.00 (11.59) <0.01 

C04 5.59 (19.94) 0.18 -0.48 (2.26) 0.22 -0.06 (0.21) 0.43 -1.54 (2.01) 0.10 -1.08 (10.69) 0.14 0.14 (0.54) 0.34 -42.87 (15.18) <0.01 

C05 9.09 (17.41) 0.02 0.48 (3.34) 0.53 -0.02 (0.35) 0.63 -1.93 (3.43) 0.01 92.28 (379.99) 0.43 -0.10 (0.63) 0.65 -48.31 (6.27) <0.01 

C06 9.56 (16.19) 0.01 -0.38 (2.41) 0.44 -0.12 (0.42) 0.12 -0.31 (2.53) 1.00 0.08 (2.04) 0.98 -0.07 (0.72) 0.68 -48.86 (5.97) <0.01 

C07 -0.44 (6.93) 0.47 0.11 (4.08) 0.94 0.05 (0.45) 0.67 -1.39 (3.65) 0.03 0.37 (4.46) 0.79 -0.11 (2.18) 0.77 -45.90 (7.60) <0.01 

C08 9.54 (17.06) <0.01 -0.97 (2.58) 0.08 0.05 (0.15) 0.61 -1.06 (2.70) 0.08 -0.18 (12.91) 0.94 0.27 (2.19) 0.65 -37.46 (35.88) <0.01 

C09 -2.86 (14.12) 0.26 1.49 (4.09) 0.11 -0.02 (0.43) 0.65 0.20 (2.82) 0.49 0.20 (6.46) 0.19 0.00 (2.34) 0.90 -44.77 (5.13) <0.01 

C10 -5.06 (14.41) 0.03 -0.56 (1.45) 0.02 0.05 (0.28) 0.61 -0.83 (3.72) 0.36 6.49 (12.66) 0.02 -0.44 (2.46) 0.12 -48.26 (6.39) <0.01 

C11 0.10 (0.79) 0.55 0.05 (1.34) 0.41 -0.13 (0.61) 0.14 -1.25 (2.51) 0.03 77.16 (422.99) 0.21 -0.36 (8.13) 0.72 -21.83 (20.06) <0.01 

C12 3.81 (12.28) 0.14 1.36 (2.86) 0.03 -0.05 (0.24) 0.03 -1.13 (3.64) 0.14 10.15 (50.91) 0.35 1.40 (12.73) 0.94 -44.28 (7.16)  <0.01 

C13 -5.63 (9.09) 0.01 0.48 (1.84) 0.11 -0.07 (0.25) 0.50 -1.23 (3.08) 0.07 1.96 (20.23) 0.37 -0.05 (0.50) 0.36 -38.44 (9.05) <0.01 

C14 -12.25 (13.15) <0.01 0.35 (2.71) 0.61 0.00 (0.41) 0.79    -0.08 (0.92) 0.35 0.15 (0.31) 0.02 -48.88 (4.22) <0.01 

C15 -3.43 (33.80) 0.32 0.10 (3.27) 0.72 -0.01 (0.37) 0.96 -1.85 (3.44) 0.01 -0.45 (16.84) 0.47 0.29 (0.73) 0.04 -41.46 (8.85) <0.01 

C16 -1.07 (14.72) 0.01 -0.18 (6.10) 0.55 0.32 (1.82) 0.91 3.18 (18.73) 0.10 15.46 (33.01) 0.06 -2.48 (7.31) 0.01 -39.12 (6.34) <0.01 

Total 8 2 1 5 2 4 16 
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Table 5.4 - Average Percent Signal Change values, in percentage, and corresponding standard deviations, in brackets, 

and p-values for one-sample Wilcoxon Signed Rank Test performed for every biosignal, for each participant in the TD 

group that performed the task in a common laboratory environment. Last row corresponds to the total number of subjects 

presenting a statistically significant result for each biosignal. 

 
 
 
 
 
 
 
 

 

 

 
 
 
 
 Table 5.5 - Average Percent Signal Change values, in percentage, and corresponding standard deviations, in brackets, and p-values for one-sample Wilcoxon Signed Rank Test 

performed for every biosignal, for each of the 3 groups: ASD, TD that performed the task in the MR environment (TD MR) and TD that performed the task in a common laboratory 

setting (TD Lab).

Participant 
Respiration PPG EDA Pupil Size 

PSC (%) p PSC (%) p PSC (%) p PSC (%) p 

S03 -0.82 (4.06) 0.31 -122.43 (274.15) 0.07 1.12 (1.59) <0.01 1.41 (36.38) 0.06 

S05 -0.33 (1.64) 0.57 -5.04 (362.90) 0.45 -12.62 (7.15) <0.01 6.37 (25.37) <0.01 

S06 0.83 (3.64) 0.31 -1.66 (102.81) 0.86 -13.84 (26.09) <0.01 -2.91 (29.07) 0.09 

S07 0.05 (0.78) 0.96 28.28 (321.61) 0.26 3.08 (24.17) 0.04 -3.60 (15.15) 0.49 

S08 0.95 (3.43) 0.21 -72.35 (196.57) 0.02 11.97 (67.66) 0.28 12.90 (7.58) <0.01 

S09 -0.01 (1.60) 0.79 -0.23 (104.77) 0.85 -12.33 (11.56) <0.01 7.19 (21.76) 0.01 

S11 -0.15 (2.15) 0.53      -7.92 (30.64) 0.61 

S12 0.01 (1.04) 0.55 47.31 (158.30) 0.26 -164.95 (603.00) 0.02 -13.55 (16.69) <0.01 

S13 -0.20 (9.39) 0.51 1.26 (94.59) 0.94 -2.75 (19.72) 0.01 1.48 (10.70)  0.34 

S14 0.39 (1.78) 0.19 40.18 (483.84) 0.73   -2.44 (25.00) 0.34 

S15 0.13 (3.12) 0.88 -47.06 (238.66) 0.31 12.15 (68.26) 0.18 1.44 (8.09) 0.51 

S16 0.04 (0.78) 0.61 13.32 (84.58) 0.51 -4.99 (8.88) <0.01 1.88 (7.01) 0.26 

S17 0.17 (0.46) 0.08 12.96 (51.71) 0.37 0.21 (15.54) 0.47 -4.30 (42.26) 0.37 

S18 0.13 (1.49) 0.35 -11.36 (43.64) 0.24 -3.16 (15.13) <0.01 5.11 (14.86) 0.17 

Total 0 1 9 4 

Group 
Respiration PPG SpO2 HR EDA EEG Pupil Size 

PSC (%) p PSC (%) p PSC (%) p PSC (%) p PSC (%) p PSC (%) p PSC (%) p 

ASD 1.06 (18.03) 0.79 -0.35 (4.86) 0.03 -0.02 (0.38) 0.13 -2.00 (3.39) <0.01 26.54 (288.52) 0.20 0.05 (2.09) 0.64 -21.57 (96.38) <0.01 

TD MR 1.50 (19.30) 0.66 0.00 (3.71) 0.94 0.00 (0.51) 0.25 -0.96 (5.24) <0.01 19.29 (156.02) 0.11 -0.29 (4.97) 0.04 -41.39 (14.49) <0.01 

TD Lab 0.09 (3.31) 0.47 -9.02 (233.06) 0.18     -15.84 (183.28) <0.01   0.20 (23.80) <0.01 
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5.4 Statistical Analysis 
 

For the video runs, differences in the distribution of each feature between High and Low 

Arousal conditions, and between each valence condition: High Valence vs. Neutral Valence, High 

Valence vs. Low Valence and Neutral Valence vs. Low Valence, were assessed. Moreover, for 

each condition, differences between groups were also investigated. For the BART runs, the features 

were inspected for differences between the events of winning versus losing and winning a social 

reward versus winning a reward based on personal interest. Differences between groups for each 

event were also assessed. 

The significance levels that resulted from this analysis are present in Tables 5.6 to 5.14. To 

simplify and facilitate the reader’s interpretation, only the features that suggest statistically 

significant differences for at least one scenario are shown in each table. Nonetheless, the tables 

with the complete results obtained with the statistical analysis can be consulted in Appendix I. 

 

Table 5.6 - p-values of pairwise comparisons from Wilcoxon Signed Rank Test, performed on the dataset 

acquired in the MR (High Arousal compared to Low Arousal). 

Feature 

Database Self-Assessment 

Clinical 

(N = 15) 

Control 

(N = 16) 

Clinical 

(N = 15) 

Control 

(N = 16) 

decTimeEDA 0.05 0.68 0.56 0.68 

meanPPG 0.60 0.18 0.02 0.35 

maxPPG 0.23 0.41 0.52 0.04 

minPPG 0.25 0.04 0.52 0.01 

stdPPG 0.03 0.33 0.45 0.01 

VLF 0.19 0.41 0.03 0.72 

HF 0.17 0.76 0.05 0.68 

RaLH 0.08 0.57 0.05 0.88 

RaLVL 0.21 0.11 0.04 0.88 

meanPeakAmp 0.02 0.64 0.89 0.06 

stdPeakAmp 0.68 0.44 0.60 0.02 

alpha 0.04 0.88 0.49 0.84 

stdRespAmp 0.76 0.21 0.04 0.33 

stdResp 0.17 0.41 0.21 0.04 

nBlinks 0.21 0.03 0.02 0.07 

meanHR 0.02 1.00 0.10 0.39 

maxHR 0.02 0.80 0.30 0.64 

minHR 0.01 0.98 0.01 0.89 
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Table 5.7 - p-values of pairwise comparisons from Wilcoxon Rank Sum Test, for the arousal conditions 

(Clinical Group compared to Control Group). 

Feature 

Database Self-Assessment 

High 

Arousal 

Low 

Arousal 

High 

Arousal 

Low 

Arousal 

decTimeEDA 0.35 <0.01 0.29 0.02 

pNN50 0.08 0.02 0.04 0.06 

delta 0.01 <0.01 0.01 0.01 

alpha 0.06 0.05 0.07 0.02 

beta 0.02 <0.01 0.01 0.01 

stdResp 0.03 0.83 0.09 0.89 

meanHR 0.02 0.91 0.02 0.08 

maxHR 0.01 0.56 0.03 0.33 

minHR 0.03 0.84 0.02 0.20 

 

 

Table 5.8 - p-values of pairwise comparisons between the different valence conditions (High Valence, No Valence, 

Low Valence) from Wilcoxon Signed Rank Test, for the ASD group. 

Feature 
Database Self - Assessment 

HV vs. NV HV vs. LV NV vs. LV HV vs. NV HV vs. LV NV vs. LV 

decTimeEDA 0.23 0.52 0.03 0.49 0.30 0.15 

meanPPG 0.85 0.30 0.36 <0.01 0.01 0.23 

maxPPG 0.01 0.17 0.39 0.06 0.09 0.49 

minPPG 0.04 0.72 0.30 <0.01 0.36 0.15 

stdPPG 0.11 0.98 0.09 0.02 0.80 0.11 

VLF 1.00 0.03 0.01 0.85 0.11 0.07 

LF 0.85 <0.01 <0.01 0.64 0.06 0.05 

HF 0.80 <0.01 <0.01 0.76 0.06 0.04 

RaLH 0.52 <0.01 <0.01 0.89 0.08 <0.01 

RaLVL 0.52 0.42 0.02 0.93 0.42 0.85 

RaHVL 0.98 0.21 0.04 0.49 0.19 0.39 

meanPeakAmp 0.04 0.89 0.06 0.03 0.60 0.06 

stdPeakAmp 0.01 0.25 0.60 0.25 0.12 0.80 

delta 0.06 0.45 0.12 0.02 0.17 0.19 

alpha 0.03 0.25 0.28 0.03 0.85 0.04 

beta 0.02 0.07 0.39 <0.01 0.19 0.30 

gamma 0.93 0.52 0.04 0.21 0.39 0.36 

maxResp 0.02 0.28 0.68 0.98 0.52 0.76 

minResp 0.21 0.39 0.93 0.03 0.52 0.06 

stdRespAmp 0.15 0.03 0.25 0.15 0.21 0.89 

meanRiseDurResp 0.85 0.06 0.25 0.76 0.02 0.01 

SDRiseDurResp 0.64 0.09 0.04 0.56 0.02 <0.01 

maxRespInter 0.28 0.01 0.19 0.89 0.49 0.39 

stdRespInter 0.98 0.06 0.19 0.89 0.05 0.12 

DRResp 0.01 0.21 0.89 0.19 0.60 0.60 

nBlinks 0.93 0.24 0.19 0.02 0.30 0.68 

meanHR 0.01 0.36 <0.01 0.58 0.01 0.33 

maxHR 0.01 0.81 0.02 0.09 0.03 0.71 

minHR <0.01 0.50 <0.01 1.00 0.01 0.24 

stdHR 0.36 0.05 0.02 0.36 0.33 0.15 
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Table 5.9 - p-values of pairwise comparisons between the different valence conditions (High Valence, No Valence, 

Low Valence) from Wilcoxon Signed Rank Test, for the TD group acquired in the MR. 

Feature 
Database Self - Assessment 

HV vs. NV HV vs. LV NV vs. LV HV vs. NV HV vs. LV NV vs. LV 

meanAbsFdEDA 0.21 0.04 0.01 0.88 0.04 0.01 

meanAbsSdEDA 0.21 0.04 0.01 0.88 0.04 0.01 

meanDerivNegEDA 0.76 0.06 0.03 0.68 0.03 0.09 

rateSCR 0.60 0.20 0.04 0.33 0.68 0.16 

SDRiseDurSCR 0.04 0.05 0.90 0.10 0.13 0.63 

maxPPG 0.84 0.02 0.08 0.84 0.21 0.07 

minPPG 0.21 0.26 0.05 0.18 0.13 0.11 

NNmean 0.72 0.13 0.07 0.76 0.21 0.05 

NNmin 0.28 0.01 0.35 0.57 0.09 0.03 

SDNN 0.04 0.20 0.57 0.07 0.08 0.53 

SDSD 0.10 0.06 0.76 0.05 0.09 0.21 

RMSSD 0.05 0.07 0.61 0.06 0.10 0.47 

pNN50 0.05 0.09 0.35 0.10 0.03 0.72 

meanPeakAmp 0.76 0.07 0.33 0.47 0.38 0.04 

meanDeltaNN 0.44 0.61 0.61 0.23 0.03 0.76 

maxResp 0.38 0.44 0.80 0.01 0.18 0.84 

meanAbsFdResp 0.20 0.28 0.92 0.04 0.03 0.64 

meanAbsSdResp 0.16 0.33 0.96 0.04 0.03 0.72 

stdRespAmp 0.04 0.53 0.02 0.15 0.53 0.21 

DRResp 0.84 0.53 0.53 0.01 0.26 0.33 

nBlinks 0.01 0.16 0.23 0.50 0.66 0.64 

meanAbsFdHR 0.64 0.02 0.05 1.00 0.07 0.14 

minSpO2 0.15 0.05 0.15 0.02 0.02 0.84 

 

Table 5.10 - p-values of pairwise comparisons from Wilcoxon Rank Sum Test, for the valence conditions (Clinical 

Group compared to Control Group). 

Feature 

Database Self - Assessment 

High 

Valence 

Neutral 

Valence 

Low 

Valence 

High 

Valence 

Neutral 

Valence 

Low 

Valence 

decTimeEDA 0.13 0.02 0.86 0.08 0.02 0.92 

SDRiseDurSCR 0.12 0.77 0.45 0.04 0.74 0.35 

minPPG 0.80 0.02 0.59 0.89 0.06 0.54 

stdPPG 0.71 0.17 0.19 0.92 0.02 0.23 

pNN50 0.92 <0.01 0.16 0.95 0.09 0.03 

meanPeakAmp 0.46 0.16 0.21 0.74 0.01 0.26 

delta 0.10 <0.01 0.01 0.09 0.01 0.01 

alpha 0.05 0.03 0.07 0.04 0.02 0.09 

beta 0.10 <0.01 <0.01 0.14 <0.01 <0.01 

meanAbsFdResp 0.01 0.57 0.62 0.02 0.74 0.92 

meanAbsSdResp 0.02 0.59 0.62 0.02 0.74 0.89 

stdResp 0.04 0.68 0.23 0.08 0.57 0.12 

nBlinks 0.58 0.18 0.15 0.89 0.01 0.28 

meanHR 0.02 0.62 0.03 0.17 0.23 0.05 

maxHR 0.12 0.90 0.03 0.74 0.39 0.03 

minHR 0.02 0.71 0.10 0.09 0.14 0.08 
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Table 5.11 - - p-values of pairwise comparisons from Wilcoxon Signed Rank Test, performed on the dataset acquired 

in a common environment (High Arousal compared to Low Arousal). 

Feature Database Self-Assessment 

decTimeEDA 0.03 0.23 

meanAmpSCR <0.01 0.42 

maxAmpSCR <0.01 0.05 

rateSCR 0.02 0.06 

meanRiseDurSCR <0.01 0.03 

meanRiseDurResp 0.04 0.42 

maxPupilSize 0.27 0.01 

 

Table 5.12 - p-values of pairwise comparisons between the different valence conditions (High Valence, No Valence, 

Low Valence) from Wilcoxon Signed Rank Test, for the TD group acquired in a common environment. 

Feature 
Database Self - Assessment 

HV vs. NV HV vs. LV NV vs. LV HV vs. NV HV vs. LV NV vs. LV 

nFallsEDA 0.03 0.34 0.18 0.35 0.83 0.33 

maxAmpSCR 0.04 0.34 0.01 0.27 0.79 0.20 

rateSCR 0.05 0.83 0.02 0.17 0.24 0.16 

meanRiseDurSCR 0.06 0.62 0.05 0.01 0.34 0.01 

NNmean 0.74 0.15 0.19 0.15 0.03 0.27 

SDNN 0.04 0.38 0.89 0.22 0.41 0.89 

minResp 0.08 0.27 0.63 0.04 0.10 0.86 

meanAbsFdResp 0.08 0.07 0.76 0.58 0.14 0.05 

meanAbsSdResp 0.08 0.07 0.76 0.58 0.14 0.05 

respRate 0.23 0.18 0.83 0.56 0.03 0.90 

minRespInter 0.94 1.00 1.00 0.11 0.63 0.05 

stdResp 0.02 0.04 0.63 0.02 0.02 0.33 

DRResp 0.15 0.08 0.39 0.17 0.02 0.33 

meanPupilSize 0.30 0.05 0.39 0.08 0.14 0.90 

maxPupilSize 0.43 0.06 0.71 0.05 0.02 0.90 
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Table 5.13 - p-values of pairwise comparisons from Wilcoxon Signed Rank Test. Second and third 

columns refer to the comparison of the winning against the losing event, fourth and fifth columns refer 

to the comparison between the social and interest rewards. 

Feature 

Winning vs. Losing Social vs. Interest Reward 

Clinical 

(N = 15) 

Control 

(N = 16) 

Clinical 

(N = 15) 

Control 

(N = 16) 

meanEDA <0.01 0.09 0.12 0.76 

minEDA 0.02 0.21 0.36 0.68 

nFallsEDA 0.25 0.04 0.01 0.33 

stdPPG 0.21 0.23 0.05 0.64 

VLF 0.39 0.04 0.98 0.88 

LF 0.39 0.04 1.00 0.96 

HF 0.89 0.04 0.42 0.96 

RaLH 0.56 0.03 0.98 0.88 

NNmax 0.02 0.76 0.30 0.68 

SDNN 0.02 0.20 0.23 0.50 

SDSD 0.04 0.28 0.19 0.53 

RMSSD 0.03 0.26 0.19 0.53 

meanPeakAmp 0.15 0.41 0.03 0.61 

gamma 0.02 0.92 0.21 0.26 

meanResp 0.49 0.80 0.05 0.16 

meanRespInter 0.02 0.20 0.21 0.64 

medianRespInter 0.03 0.50 0.25 0.68 

stdRespInter 0.64 0.35 0.76 0.05 

maxPupilSize 0.15 0.02 0.68 0.30 

meanHR 0.02 0.39 0.11 0.45 

maxHR 0.04 0.46 0.24 0.58 

meanAbsFdHR 0.27 0.19 0.09 0.05 

 

 

Table 5.14 - p-values of pairwise comparisons from Wilcoxon Rank Sum Test (Clinical Group compared 

to Control Group). 

Feature Winning Losing 
Social 

Reward 

Interest 

Reward 

SDRiseDurSCR 0.67 0.01 0.78 0.98 

minPPG <0.01 0.89 0.03 0.29 

stdPPG 0.02 1.00 0.03 0.46 

VLF 0.01 0.57 0.03 0.04 

LF 0.01 0.49 0.03 0.03 

HF 0.04 0.49 0.12 0.03 

RaLH 0.01 0.57 0.03 0.03 

RaLVL 0.14 0.51 0.11 0.04 

RaHVL 0.05 0.46 0.07 0.05 

NNmax 0.08 0.49 0.04 0.35 

SDNN 0.04 0.44 0.02 0.28 

SDSD 0.04 0.46 0.13 0.33 

meanPeakAmp 0.01 0.89 0.03 0.59 

stdPeakAmp 0.01 0.86 0.26 0.08 

gamma 0.49 0.04 0.29 0.77 

maxResp 0.03 0.19 0.06 0.09 

respRate 0.03 0.01 0.12 0.03 

meanRespInter 0.74 0.02 0.98 0.66 

medianRespInter 0.57 0.01 0.95 0.75 

minRespInter 0.29 <0.01 0.95 0.27 

stdRespInter 0.03 0.59 0.65 <0.01 

minSpO2 0.49 0.20 0.04 0.79 
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The different statistical analysis performed on the extracted features revealed their overall 

lack of discriminative power. There are, however, some cases that stand out.  

The features exhibiting the most consistent results are the ones extracted from the 

instantaneous HR signal, particularly meanHR, maxHR and minHR. These features consistently 

present statistically significant differences between conditions, for the ASD group, namely 

between HA and LA (Table 5.6), HV and NV, NV and LV (Table 5.8), and between Winning and 

Losing events (Table 5.13). Also, for the same features and the mentioned conditions, we also 

found differences between groups. It is important to point out that these differences are present 

when considering the database mean ratings to label the events, but not when considering the self-

assessment answers. The results of the statistical analysis performed between valence conditions, 

for the ASD group (Table 5.8) also revealed an interesting phenomenon pertaining the HR features. 

While significant differences are present for these features between HV and NV, and between NV 

and LV, when considering the database ratings, these differences disappear for those conditions 

and are instead found between HV and LV conditions, when considering the self-assessment 

answers to label the events. 

When considering the between group analysis for the different conditions (Tables 5.7 and 

5.10), the features corresponding to the relative power in the delta and beta bands of the EEG 

presented statistically significant differences for nearly all cases, with alpha also presenting 

significant differences for most cases. 

For the signals acquired in a common environment, the features derived from the SCRs of the 

EDA signal all present statistically significant differences between the high and low arousal 

conditions, with the exception of SDRiseDurSCR, being the only analysis for which this group of 

features presents consistent differences (Table 5.11).  

Another feature group that deserves attention is the frequency domain features of the PRV. 

These features present statistically significant differences between valence conditions, for the ASD 

group, particularly for HV vs. LV and NV vs LV, when considering the database ratings to label 

the events (Table 5.8). Also, for the control group, these features show significantly different 

values between winning and losing events. Finally, when analysing differences between groups 

for the BART events of interest, these features also returned significant results for the winning 

events (Tables 5.13 and 5.14). 

According to the PSC results for the Pupil Size measurements obtained with the task 

conducted outside the MR scanner, we expected to obtain some significant differences between 

conditions for the features derived from this signal. However, only the maxPupilSize feature 

presents some significant results, when considering the self-assessment answers, for HA vs. LA, 

HV vs. NV and HV vs. LV (Tables 5.11 and 5.12). 

 

  



 

55 

 

5.5 Classification 
 

Lastly, the features extracted from the biosignals were used to train 4 different classifiers, a 

Minimum Distance Classifier, a KNN, and SVM with linear and Radial Basis Function kernels, 

for the different classification problems mentioned in section 4.10 (see table 4.11). 

First, the classifiers were trained and tested with the original features, and later, in an attempt 

to improve performance, the process was repeated with the extra step of performing PCA on the 

dataset to reduce its dimensionality.  

The performance of the classifiers turned out to be suboptimal for all cases, even when using 

PCA as a feature reduction algorithm, with no classifier performing better than the other three. For 

this reason, and to simplify, we chose to present, for illustration purposes, only the outcome of the 

SVM with a linear kernel. SVM with a linear kernel was chosen for this purpose, for no reason 

except its popularity. Also, in this section, only the results of analysis A1, A3, A5 and A6 are 

presented. The remaining results obtained with SVM Linear can be consulted in Appendix II, 

including the outcomes obtained when performing PCA before classification, and will be 

referenced here, when relevant.  

5.5.1 Video Observations 
 

5.5.1.1 Analysis A1: High Arousal vs. Low Arousal 
 

Results for the HA vs LA classification problem, when considering database ratings as ground 

truth, are presented next. Results for the dataset acquired in the MR environment are presented in 

Figures 5.8 and table 5.6. Figure 5.9 and Table 5.7 display the results for the dataset acquired in a 

common environment.  

Considering the database mean ratings as ground truth to label the observations as either low 

or high arousal resulted in imbalanced classes since 20 of the chosen videos were considered as 

HA and only 10 as LA (see section 4.2). This helps to explain some of the outcomes, namely for 

the intersubject modalities with SVM Linear, KNN, and SVM RBF, where the classifier is simply 

assigning observations in the test set to the most frequent class. This behaviour is observed in both 

datasets, acquired in the MR and in a common lab, and did not change when performing PCA on 

the feature space (please refer to Figures 1 and 2 and Tables 10 and 11 of Appendix II). 

Changing the ground truth from the database average ratings to the self-assessment answers 

of each participant did not improve the performance of the classifiers, with all algorithms 

presenting outcomes coincident with chance level (see Figures 3 and 4 and Tables 12 and 13). 
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Table 5.15 - Performance metrics mean values and respective standard deviations, in brackets, 

achieved, on the dataset acquired in the MR environment, by SVM with a linear kernel on 

classifying HA vs LA on intra and inter subject modalities using the CAAV database ratings as 

ground truth. Last row corresponds to the p-value estimation obtained with the permutation 

tests. 

 
Intrasubject: 

TD 

Intrasubject: 

ASD 

Intersubject: 

TD 

Intersubject: 

ASD 

Intersubject: 

All 

Accuracy 0.53 (0.04) 0.54 (0.06) 0.61 (0.04) 0.62 (0.04) 0.62 (0.04) 

Sensitivity 0.78 (0.08) 0.77 (0.11) 1.00 (0.00) 0.99 (0.05) 0.99 (0.03) 

Specificity 0.21 (0.13) 0.20 (0.14) 0.00 (0.00) 0.01 (0.05) 0.00 (0.02) 

Precision 0.61 (0.05) 0.62 (0.06) 0.61 (0.03) 0.62 (0.04) 0.62 (0.04) 

F-Measure 0.65 (0.04) 0.66 (0.06) 0.76 (0.02) 0.76 (0.03) 0.76 (0.03) 

p-value 0.10 0.09 0.16 0.16 0.16 

 

 

 

 

 

 

  

Figure 5.8 - Distribution of accuracies achieved, on the dataset acquired in the MR environment, 

by SVM with a linear kernel on classifying HA vs LA on intra and inter subject modalities using 

the CAAV database ratings as ground truth. 
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Table 5.16 - Performance metrics mean values and respective standard deviations, in brackets, 

achieved, on the dataset acquired in a common environment, by SVM with a linear kernel on 

classifying HA vs LA on intra and inter subject modalities using the CAAV database ratings as 

ground truth. Last row corresponds to the p-value estimation obtained with the permutation 

tests. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 Intrasubject Intersubject 

Accuracy 0.57 (0.03) 0.63 (0.02) 

Sensitivity 0.85 (0.05) 1.00 (0.00) 

Specificity 0.17 (0.12) 0.00 (0.00) 

Precision 0.64 (0.04) 0.63 (0.02) 

F-Measure 0.70 (0.02) 0.78 (0.01) 

p-value 0.10 0.14 

Figure 5.9 - Distribution of accuracies achieved, on the dataset acquired in a common 

environment, by SVM with a linear kernel on classifying HA vs LA on intra and inter subject 

modalities using the CAAV database ratings as ground truth. 



58 

 

5.5.1.2 Analysis A3: High Valence, Neutral Valence, and Low Valence 
 

When attempting automatic classification of emotional valence on the video observations, 

considering the database ratings as ground truth, the outcomes obtained for the intrasubject 

modality were not significantly higher than random chance, which is, for this classification 

problem, approximately 33%. And, while accuracy and macro f1-score seem to rise a bit while the 

p-value lowers for the intersubject modality, possibly explained by the bigger number of 

observations which improves the generalization capacity of the model, the p-value is still not small 

enough to affirm that the outcome is not just the result of chance. 

Adding PCA to the pipeline results in similar outcomes, and considering the self-assessment 

answers as ground truth, worsens the results (please see Figures 5 to 8 and Tables 14 to 17). Figure 

5.10 and table 5.8 bear the classification outcomes for this analysis, for the dataset acquired 

simultaneously with fMRI and figure 5.11 and table 5.9 are in respect to the dataset acquired in a 

common environment. 

 
 
 

 

 

 
Table 5.17 - Performance metrics mean values and respective standard deviations, in brackets, 

achieved, on the dataset acquired in a common environment, by SVM with a linear kernel on 

classifying High Valence, Neutral Valence and Low Valence, on intra and inter subject modalities 

using the database mean ratings as ground truth. Last row corresponds to the p-value estimation 

obtained with the permutation tests. 

 
Intrasubject: 

TD 

Intrasubject: 

ASD 

Intersubject: 

TD 

Intersubject: 

ASD 

Intersubject: 

All 

Accuracy 0.36 (0.09) 0.35 (0.11) 0.46 (0.07) 0.44 (0.10) 0.43 (0.09) 

Macro  

F1 - Score 
0.35 (0.05) 0.34 (0.09) 0.39 (0.05) 0.39 (0.1) 0.37 (0.09) 

p-value 0.47 0.50 0.12 0.20 0.19 

Figure 5.10 - Distribution of accuracies achieved, on the dataset acquired in the MR 

environment, by SVM with a linear kernel on classifying HV, NV and LV on intra and inter 

subject modalities using the CAAV database ratings as ground truth. 
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Table 5.18 - Performance metrics mean values and respective standard deviations, in brackets, 

achieved by SVM with a linear kernel on classifying High Valence, Neutral Valence and Low 

Valence, on intra and inter subject modalities using the CAAV database ratings as ground truth 

on the dataset acquired in a common environment. Last row corresponds to the p-value estimation 

obtained with the permutation tests. 

 Intrasubject Intersubject 

Accuracy 0.42 (0.12) 0.48 (0.06) 

Macro  

F1 - Score 
0.37 (0.08) 0.38 (0.05) 

p-value 0.42 0.13 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 5.11 - Distribution of accuracies achieved by SVM with a linear kernel on classifying HV, 

NV and LV on intra and inter subject modalities using the CAAV database ratings as ground 

truth on the dataset acquired in a common environment. 
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5.5.2 BART runs 
 

5.5.2.1 Analysis A5: Winning vs. Losing 
 

Results for the classification problem targeting the BART winning/losing outcomes (Fig. 

5.12 and table 5.10) yielded unsatisfactory results, close to chance level, not improving with PCA 

for dimensionality reduction (see Figure 9 and Table 18).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.19 - Performance metrics mean values and respective standard deviations, in brackets, 

achieved by SVM with a linear kernel on classifying Winning vs Losing events on intra and inter 

subject modalities. Last row corresponds to the p-value estimation obtained with the permutation 

tests. 

 
Intrasubject: 

TD 

Intrasubject: 

ASD 

Intersubject: 

TD 

Intersubject: 

ASD 

Intersubject: 

All 

Accuracy 0.52 (0.09) 0.52 (0.11) 0.48 (0.15) 0.49 (0.13) 0.46 (0.12) 

Sensitivity 0.48 (0.29) 0.55 (0.22) 0.38 (0.29) 0.35 (0.36) 0.18 (0.27) 

Specificity 0.51 (0.27) 0.47 (0.26) 0.59 (0.27) 0.70 (0.32) 0.78 (0.27) 

Precision 0.44 (0.22) 0.48 (0.12) 0.43 (0.25) 0.60 (0.28) 0.40 (0.16) 

F-Measure 0.57 (0.14) 0.60 (0.08) 0.49 (0.16) 0.38 (0.21) 0.35 (0.14) 

p-value 0.16 0.14 0.55 0.52 0.57 

 
 

 
 
 
 
 
 
 

Figure 5.12 - Distribution of accuracies achieved by SVM with a linear kernel on classifying 

Winning vs Losing events on intra and inter subject modalities. 
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5.5.2.2 Analysis A6: Social Reward vs. Interest Reward 
 

Figure 5.13 and Table 5.11 present the classification outcomes for analysis A6. Similarly to 

analysis A5, the classification of reward type was unsuccessful with accuracy values around the 

chance level (50%), moreover, when adding PCA to the process, there were no improvements to 

the outcome (refer to Figure 10 and Table 19). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.20 - Performance metrics mean values and respective standard deviations, in brackets, 

achieved by SVM with a linear kernel on classifying Social vs Interest reward on intra and inter 

subject modalities. Last row corresponds to the p-value estimation obtained with the permutation 

tests. 

 
Intrasubject: 

TD 

Intrasubject: 

ASD 

Intersubject: 

TD 

Intersubject: 

ASD 

Intersubject: 

All 

Accuracy 0.43 (0.18) 0.42 (0.18) 0.49 (0.13) 0.50 (0.18) 0.57 (0.13) 

Sensitivity 0.42 (0.25) 0.48 (0.25) 0.28 (0.34) 0.54 (0.31) 0.45 (0.31) 

Specificity 0.53 (0.21) 0.46 (0.22) 0.71 (0.27) 0.48 (0.28) 0.69 (0.24) 

Precision 0.44 (0.24) 0.48 (0.25) 0.41 (0.27) 0.49 (0.17) 0.59 (0.22) 

F-Measure 0.73 (0.14) 0.72 (0.15) 0.52 (0.18) 0.51 (0.19) 0.53 (0.18) 

p-value 0.36 0.29 0.47 0.37 0.26 

 
 
 
 
 
 
 
 
  

Figure 5.13 - Distribution of accuracies achieved by SVM with a linear kernel on classifying 

Social vs Interest reward on intra and inter subject modalities. 
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6 Discussion 
 

6.1 Behavioural Analysis 
 

The behavioural analysis revealed that our participants’ answers, regardless of their group, 

correlated strongly with the answers of the CAAV database validation group, validating the use of 

these stimuli in our groups. Moreover, the answers of our two groups also showed a strong 

correlation between them. There is, however, a tendency in the ASD group to rate the videos on 

either extreme of the valence scale. This suggests the existence of some differences in the 

perception and reporting of emotion, which has been extensively evidenced and documented for 

ASD (Ben Shalom et al., 2006; Huggins et al., 2021). For arousal, however, there is a notable 

tendency, in both our groups, to give lower arousal ratings to the videos, which evidences emotion 

perception differences, when compared to the CAAV database validation group, and indicates that 

the stimuli may not be having the expected impact on the participants.  

6.2 Signal-to-Noise Ratio Quantification  

 
The signal-to-noise ratio results revealed that, in general, the signals acquired in the MR 

environment present satisfactory SNRs. The EDA signal, however, presents suboptimal SNRs for 

both settings. A possible explanation is that this quantification of SNR is obtained by averaging 

over the signal values of every run and dividing it by the standard deviation, for each participant. 

This process overlooks the variability of the signal between runs, which is particularly high for 

signals that do not translate an intrinsic rhythmic process, as is the case of EDA, which is the result 

of sudomotor activity, a function that does not present any particular pattern but is triggered by 

occasional external and internal stressors, that are different for every run. This translates into 

biosignals that are very different across runs, which results in a large variance and low SNRs. 

The respiration signal displays considerably higher SNR outside of the scanner than in it. The 

lower value for the MR environment was somewhat expected, taken the added source of noise that 

is the scanner and its gradient switch, which artifact can be caught in the biosignal recordings. For 

PPG, however, contrarily to expected, the signals acquired in the MR environment display higher 

SNR values. This may be explained by considering that first: the sampling rate of the signal outside 

the MR scanner is approximately 12 times higher than the sampling frequency of the physiological 

measurement unit of the scanner, which is used to record the PPG during fMRI acquisitions, hence 

it is prone to capturing an added amount of noise when compared to the lower sampled signal, and 

second, participants are lying down when they are performing the fMRI task as opposed to sitting 

when in the common laboratory setting, which can help prevent undesired movement. Moreover, 

the pulse oximeters used for each environment were different, which results in recordings with 

differing quality and characteristics. 
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6.3 Percent Signal Change 
 

From looking at the PSC results we notice a considerable and evident change in pupil size 

from the baseline to the events of interest, for all cases, but mostly for the signals acquired in the 

MR environment. This is due to the big difference in luminosity existent between the fixation 

cross’s background of the stimulus used in the MR task, which was a black colour, and the 

generality of the videos. The muscles of the iris respond to these light changes with greater strength 

than they do to changes in emotional state or cognition, hence, the changes found in the signals 

acquired in the MR environment cannot be attributed to an emotional response. After some 

acquisitions, we became aware that the high contrast between the black screen of the rest period 

and the videos was causing a big fluctuation in pupil size, unrelated to emotional state and, even 

though for consistency, the MR task stimulus was not changed, the background of the fixation 

cross for the stimulus used outside the MR was altered to a light grey colour. This, allied to the 

fact that pupil size changes are not so pronounced in this environment, even though they seem to 

be significant for the most part, indicates that this change may be related to an emotional response, 

which represents a promising result. 

The instantaneous heart rate presents significant changes for a large number of subjects, with 

the most pronounced results for the ASD group. This is in agreement with the statistical analysis 

performed on the extracted features, which also evidenced significant differences between 

conditions for the ASD group, for the features derived from this signal. These results match the 

classical association of cardiac activity with emotional changes (Winton, Putnam and Krauss, 

1984; Lang et al., 1993; Legrand et al., 2021), and indicate that, to some extent, the experimental 

task is indeed inducing physiological variations in the participants. Surprisingly, the PPG signal, 

also strongly related to cardiac function, did not present similar results. Only 6 out of the 45 

individuals that completed the task presented significant changes in this signal between baseline 

and events of interest, even though the group analysis for the ASD group indicates the overall 

intragroup changes to be significant. Since PPG is an indirect measure of cardiac function, 

fluctuations in heart activity related to emotional responses may have a subtler representation in 

PPG than in the direct instantaneous HR monitorization. Hence, the fact that this group is also the 

one with the most pronounced HR changes could explain why intragroup PPG changes are 

significant for ASD but not for TD individuals.  

While the intragroup analysis revealed that respiration does not yield any significant variation 

to baseline, 5 subjects in the ASD group and 8 in the TD group show significant changes for this 

biosignal, all of them completed the task in the MR scanner. Even though the particularity of each 

individual’s physiological response must always be accounted for when interpreting these results, 

we should also keep in mind that completing the task inside an MR scanner or in a relatively normal 

room bears very different conditions for the subjects. Being inside the scanner with a head coil, 
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several electrodes, and wires connected to the body, with the added constraint of laying as still as 

possible for approximately 50 minutes is a very different experience to sitting in a chair, in a normal 

room, surely also with electrodes connected to the body, which were actually wireless. The point 

is that the MR setting certainly represents a much more uncomfortable experience for the 

participants than the data acquisitions carried out in a common laboratory. Hence, some 

physiological responses can be attributed to the uncomfortable setting and not necessarily to the 

experimental task stimuli. This can help explain the non-existence of changes in respiration signal 

for the subjects that completed the task outside the scanner.  

EEG is considered by many the most important biosignal for emotion recognition. Being a 

direct measure of the electrical activity of the brain, where emotional processing takes place, a lot 

of automatic emotion assessment studies have focused on the use of this physiological signal alone, 

using multi-channel EEG recordings. In this project, we used single-channel EEG, which limits 

the uptake of brain activity. Even so, we found significant EEG changes for 6 ASD and 4 TD 

individuals, which indicates that this method may still be capable to detect emotion-related 

fluctuations in the rhythms of the brain, even in the noisy environment of the MR scanner. 

When it comes to EDA, the fact that the signal was high pass filtered with a cut-off frequency 

of 0.5 Hz as it was acquired, for the MR data acquisitions, resulted in the loss of the tonic 

component of the signal. This component represents the baseline level of EDA and is an indicator 

of general arousal. Hence, the fact that it is not present in our MR EDA signals means that the 

slower emotional state related fluctuations in sweat gland activity were not recorded, which 

represents a major information loss. For the data acquisitions carried out outside the MR scanner, 

this issue was corrected, which resulted in signals with very different characteristics and with a 

clear tonic component. This question, and not the MR-related noise, explains the different results 

for this signal for the two different settings. The significant results obtained for the group that 

completed the task outside the MR scanner are in agreement with the extensive literature on the 

influence of the emotional state on sweat gland activity. Furthermore, this signal is, for this group, 

the one displaying the most prominent results, with 75% of the subjects which had EDA data 

available presenting significant changes to the baseline. These results highlight the important role 

of EDA in emotion and indicate that the experimental task has some influence on this physiological 

function. 

In general, peripheral oxygen saturation does not seem to display any significant changes to 

baseline, with only 3 out of 31 subjects presenting significant changes. This comes as no surprise 

and explains the lack of literature relating this measure to the emotional state. 

In the end, even though the data acquisitions carried out outside the scanner were meant for 

comparison purposes, the only two biosignals that are truly comparable are respiration and PPG. 

Restricting the comparison to the two control groups, we did not find significant changes in the 

PPG signal for either case. Even though PSC magnitudes are higher for the PPG signals acquired 
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outside the scanner, their also large variability helps to explain why this does not translate into 

statistically significant results. As for the case of respiration, for both cases, the group analysis did 

not return a significant result, nonetheless, half of the individuals in the TD group that completed 

the MR task present considerable signal changes. However, as mentioned before, the singularity 

of each individual’s physiological response, as well as the uncomfortable setting of the MR 

scanner, help explain the absence of similar responses in the TD group that completed the task 

outside the scanner. All in all, despite the limitations of comparability, there is no evidence in our 

data that the environment of the resonance prevents the successful measurement of physiological 

signals, which is an encouraging sign, predicting the fruitful combination of fMRI and multi-modal 

biosignal acquisitions for a variety of applications.  

6.4 Statistical Analysis 
 

The statistical analysis revealed that only a very limited number of extracted features present 

statistically significant differences between conditions, for both the analysis of video and BART 

runs.  

 In spite of this, the features extracted from the instantaneous HR, particularly meanHR, 

maxHR, and minHR seem to be significantly different between conditions for the ASD group, 

namely between HA and LA, HV and NV, NV and LV, and between the Winning and Losing 

events, and also between groups for the mentioned arousal and valence conditions. This is in line 

with the PSC results and the known relation of this signal with emotion (Rainville et al., 2006), 

shining a light at the role of cardiac function in emotional response and indicating that it may 

present more reactivity to state alterations than other physiological functions. It is interesting, 

however, how these differences are present when considering the database ratings to label the data, 

but not when considering the self-assessment answers. Moreover, for the comparisons between 

valence conditions, these differences disappear between HV and NV and between NV and LV, 

when considering the self-assessment answers to label the events, but appear, for the same features, 

between the HV and LV conditions. This relates to the behavioural analysis findings, revealing 

more extreme valence responses, given by the subjects of this group, which is in line with reports 

of altered self-awareness in autism, and evidences the challenge of finding stimuli that induce the 

desired effects in this population.  

For the signals acquired in a common environment, it is worth noting the results obtained for 

the features derived from the SCRs of the EDA signal, namely ‘meanAmpSCR’, ‘maxAmpSCR’, 

‘rateSCR’, ‘meanRiseDurSCR’ and also ‘decTimeEDA’, for the HA vs. LA comparison when 

considering the database mean answers as ground truth. The statistically significant differences for 

these features between arousal conditions are in line with the literature relating this biosignal with 

arousing situations, particularly the appearance of phasic SCRs in reaction to such situations. The 

fact that these differences are present only for the EDA signals acquired outside of the MR scanner, 
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again shows that the information lost by applying a high-pass filter to this signal during the MR 

acquisitions, was essential to investigate its relationship with emotion. 

While the PSC results led us to expect finding some significant differences in pupil size 

metrics extracted from the signals acquired in a common environment, which had some luminosity 

adjustments, this happened only for maxPupilSize, when considering self-assessment answers, 

which also goes against the norm of finding the most differences when considering the database 

ratings for event labelling. This suggests that, either the extracted features are not appropriate for 

emotional state discrimination and the signal should be further explored to find meaningful ones, 

or the changes found in the signal are unrelated to the emotional content of the task, and are still 

attributed to light changes, albeit to a lesser magnitude. 

 

6.5 Classification 
 

The statistical analysis and the limited number of features exhibiting statistically significant 

differences between conditions reveal the low discriminative power of the extracted features for 

our classification problems and help explain the poor classification outcomes. 

A factor that can help explain the poor results of the intraparticipant modality is the low 

number of observations for each participant, which limits the generalization capacity of the models. 

However, increasing the number of samples for the interparticipant modality, by joining the 

observations of every subject, did not increase the performance of the classifiers. This can be 

justified with the inter-subject variability in ANS response to emotion (Golland, Keissar and Levit-

Binnun, 2014). By combining every participant’s observations, we are introducing variability in 

the data which possibly hampers the identification of patterns, compromising the performance of 

the classifiers. However, we cannot devalue the signs of compromised quality of the features. Even 

though the positive SNR and PSC calculations imply that the MR environment did not significantly 

affect the quality of the signals, there are some other limitations, mostly related to the data 

acquisition step, that potentially did. First, there is the issue with the stimulus contrast between the 

baseline and the videos, which caused the pupil to strongly react to luminance changes, hiding 

pupil reactions related to the emotional state. Second, the application of a high-pass filter with a 

cut-off frequency at 0.5 Hz at the time of acquisition of the EDA caused us to lose an important 

component of this signal, and its underlying information.  

As for the BART runs, according to the statistical analysis performed on the features, the 

events we hypothesized would result in bigger reactivity, namely winning/losing, and more 

importantly, the type of reward earned, do not seem to result in major physiological differences 

between them. This can either be because the stimuli are not causing the desired effect, or because 

the physiological response that they trigger is similar and unrelated to their quality, but rather to 

their intensity. For instance, when the participants leveled up and earned a new reward, it meant 
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they won the game trial, independently of whether they won a social reward or a personalized 

interest reward, which probably induces a stronger response than the quality of the prize. In the 

case of winning versus losing, both events can be equally arousing, even though they bear different 

positive/negative connotations. The arousal dimension of these events is possibly majorly 

responsible for the physiological response they induce, overshadowing their valence. These points 

can help explain the unsuccessful automatic discrimination of such events. 

The initial analysis and comparison between the quality of the signals acquired in 

simultaneous with fMRI and outside, and the classification results obtained for the MR dataset, 

predicted the classification outcomes of the dataset acquired outside the scanner. The SNR and 

PSC calculations did not indicate any major quality improvement from the MR environment to a 

normal setting. The only relevant differences encountered were for EDA and Pupil Size, which 

explanation lies in data acquisition setup and stimulus design, respectively. Like for the MR 

dataset, the statistical analysis again revealed the lack of discriminative power of the features 

derived from the signals, explaining the classification outcomes. We must keep in mind, however, 

the fact that this dataset was comprised of a smaller set of biosignals, limiting the comparisons to 

the signals that were mutual to both datasets. It would be valuable to compare EEG and 

instantaneous HR recordings in both environments, especially EEG, which is, out of all the signals 

acquired, the one subject to more contamination, since the electrodes are literally inside the MR 

tunnel with the patient. 

On a positive note, these results do not point to the rejection of the simultaneous acquisition 

of physiological signals and fMRI. Instead, they underline the importance that stimulus design and 

data acquisition steps have on the quality of the acquired biosignals, and mainly, the complexity 

of automatic emotion assessment, especially when dealing with multi-modal biosignals with 

different characteristics. 
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7 Conclusion and Future Work 
 

This project focused primarily on human physiology and its relationship with emotion, with 

a particular focus on the clinical population of autism spectrum disorder. The understanding of 

these ties and interdependencies can lead to new rehabilitation targets and the development of 

valuable tools to complement and increase the efficacy of current therapeutic techniques. The real-

time monitoring of an individual’s physiological status allows us to identify what stimuli cause a 

negative reaction, and carefully work around it until it is no longer triggering. This is not only valid 

for ASD but other clinical populations and even healthy individuals, representing a quality of life 

improvement (Haji, Mohammadkhani and Hahtami, 2011).  

In this sense, the work developed for this dissertation reiterated the challenging nature and 

complexity behind these physiological interactions. Although the diversity of ANS activity 

patterns between emotional and cognitive states is evident and strongly evidenced in the literature, 

their relationship is neither linear nor simple. The biggest challenges are perhaps the singularity of 

each individual’s physiology and subjective emotion interpretation. To get around these obstacles 

and optimize results, future work must focus on a further search for strong markers of emotional 

reactivity in the physiological signals that demonstrate consistency between subjects. Considering 

the different characteristics of each physiological function, in particular, the latency between 

stimulus onset and response, and response duration, the size of the segments, for each biosignal, 

can also be tuned and experimented with so that they capture the entirety of the event-related 

response, and ideally, no more than that. It is also important to consider that the stimuli presented 

in the experimental task may not have had the desired elicitation effect, hence, future studies must 

explore stimuli with different characteristics.  

On the classification step, feature selection and reduction algorithms must be further explored. 

The preliminary take on PCA for feature reduction did not improve the results, however, its 

combination with feature selection or the use of other feature reduction algorithms can help to 

optimize the extraction of meaningful information from our data. 

The PSC results show that some signals display more variations during the events of interest 

than others when compared to baseline values, which seems to indicate that they do not contribute 

equally to the discrimination of emotional states. Hence, it is possible that classification would 

benefit from the selection of features derived from the most relevant biosignals only. This is then 

one of the paths that should be explored next, and, if successful, it would also reduce the number 

of signals to acquire for future applications, simplifying data acquisition, and increasing the 

subject’s comfort. 

Another important question in this dissertation was the feasibility of acquiring physiological 

signals simultaneous with fMRI, with all the added obstacles that this entails. The SNR and PSC 

results do not indicate that there are quality differences between the biosignals that can be attributed 
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to the environment where they were acquired. This is a positive finding that validates the 

simultaneous acquisition of physiological signals and fMRI, opening the door to a deeper 

exploration and understanding of the existing relationships and interactions between brain activity 

and its translation in the peripheral nervous system. We should keep in mind, however, that only 

respiration, PPG, EDA, and Pupil Size recordings were compared between settings, and it would 

be important to understand how other signals may be affected by the MR, mainly the single-

channel EEG setup that we use, which probably suffers the most contamination. 

Taking the modulation of the brain regions involved in emotion processing, for this 

experimental task, that fMRI allowed us to assess, we can now relabel the trials according to the 

activation levels in these regions and analyse the biosignals under this new light. This will improve 

the precision of the interpretation of variations in the physiological signals, as well as their 

attribution to different emotional states. Moreover, we can explore the biosignals and the features 

derived from them to look for the timepoints of greatest autonomic nervous system activity and 

use it to predict the blood oxygen level dependent fMRI signal, which will allow us to see which 

regions activate when the emotional stimuli induce a reaction in the autonomic nervous system. 

This approach has been employed in simultaneous EEG-fMRI data, which is known as EEG-

Informed fMRI (Abreu, Leal and Figueiredo, 2018), but similar techniques have been used to 

correlate HRV and respiration variations with brain activity in different pathological conditions 

(Macey et al., 2016; Kassinopoulos et al., 2021). Here, we can take advantage of the multimodal 

biosignals and use them to predict brain responses related to emotional-induced autonomic activity 

changes.    

The work developed in this project resulted in a Full Contributed paper accepted for 

presentation at the 43rd Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society (November 2021), which contents can be consulted in Appendix III. 
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Appendix I – Statistical Analysis of the Extracted 

Features 
 

Table 1 - p-values of pairwise comparisons from Wilcoxon Signed Rank Test, performed on the dataset 

acquired in the MR (High Arousal compared to Low Arousal). 

Feature 

Database Self-Assessment 

Clinical 

(N = 15) 

Control 

(N = 16) 

Clinical 

(N = 15) 

Control 

(N = 16) 

meanEDA 0.19 0.28 0.15 0.92 

maxEDA 0.23 0.96 0.45 0.68 

minEDA 0.36 0.35 0.52 0.76 

meanAbsFdEDA 0.85 0.10 0.60 0.07 

meanAbsSdEDA 0.85 0.10 0.60 0.07 

meanDerivNegEDA 0.85 0.30 0.68 0.06 

decTimeEDA 0.05 0.68 0.56 0.68 

nFallsEDA 0.28 0.98 0.49 0.68 

meanAmpSCR 0.28 0.18 0.85 0.80 

maxAmpSCR 0.28 0.41 0.49 0.41 

rateSCR 0.71 0.17 0.06 0.15 

meanRiseDurSCR 0.12 0.44 0.39 0.07 

SDRiseDurSCR 0.80 0.81 0.39 0.86 

meanPPG 0.60 0.18 0.02 0.35 

maxPPG 0.23 0.41 0.52 0.04 

minPPG 0.25 0.04 0.52 0.01 

stdPPG 0.03 0.33 0.45 0.01 

VLF 0.19 0.41 0.03 0.72 

LF 0.19 0.80 0.06 0.68 

HF 0.17 0.76 0.05 0.68 

RaLH 0.08 0.57 0.05 0.88 

RaLVL 0.21 0.11 0.04 0.88 

RaHVL 0.52 0.84 0.21 0.84 

NNmean 0.85 0.30 0.93 0.53 

NNmin 0.85 0.92 0.85 0.35 

NNmax 0.45 0.28 0.60 0.61 

SDNN 0.85 0.33 0.80 0.07 

SDSD 0.39 0.20 0.45 0.08 

RMSSD 0.56 0.23 0.42 0.12 

NN50 0.90 0.53 0.22 0.68 

pNN50 0.45 0.35 0.56 0.68 

meanPeakAmp 0.02 0.64 0.89 0.06 

stdPeakAmp 0.68 0.44 0.60 0.02 

meanDeltaNN 0.93 0.53 0.39 0.72 

delta 0.21 0.28 0.98 0.15 

theta 0.68 0.10 0.85 0.11 

alpha 0.04 0.88 0.49 0.84 

beta 0.08 0.21 0.39 0.61 

gamma 0.23 0.61 0.98 0.16 

meanResp 0.64 0.16 0.39 0.44 

maxResp 0.93 0.13 0.36 0.15 

minResp 0.17 0.50 0.98 0.88 

meanAbsFdResp 0.19 0.68 0.98 0.76 

meanAbsSdResp 0.19 0.76 0.98 0.76 

respRate 1.00 0.88 0.04 0.88 

meanRespAmp 0.36 0.53 0.76 0.35 

medianRespAmp 0.45 0.57 0.89 0.33 

stdRespAmp 0.76 0.21 0.04 0.33 
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meanRiseDurResp 0.30 0.88 0.60 0.88 

SDRiseDurResp 0.19 0.47 0.15 1.00 

meanRespInter 0.89 0.28 0.56 0.23 

medianRespInter 0.72 0.23 0.64 0.41 

minRespInter 0.52 0.15 0.80 0.20 

maxRespInter 0.56 0.53 0.06 0.23 

stdRespInter 0.17 0.16 0.17 0.72 

respHF 0.30 0.80 0.52 0.50 

stdResp 0.17 0.41 0.21 0.04 

DRResp 0.52 0.23 0.93 0.28 

meanPupilSize 0.28 0.06 0.93 0.96 

maxPupilSize 0.52 0.60 0.07 0.33 

nBlinks 0.21 0.03 0.02 0.07 

meanHR 0.02 1.00 0.10 0.39 

maxHR 0.02 0.80 0.30 0.64 

minHR 0.01 0.98 0.01 0.89 

meanAbsFdHR 0.43 0.19 0.39 0.68 

meanAbsSdHR 0.76 0.15 0.81 0.52 

stdHR 0.09 0.72 0.27 0.93 

meanSpO2 0.93 0.41 0.11 0.33 

maxSpO2 0.76 0.28 0.80 0.44 

minSpO2 1.00 0.72 0.60 0.80 
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Table 2 - p-values of pairwise comparisons from Wilcoxon Rank Sum Test, for the arousal conditions 

(Clinical Group compared to Control Group). 

Feature 

Database Self-Assessment 

High 

Arousal 

Low 

Arousal 

High 

Arousal 

Low 

Arousal 

meanEDA 0.54 0.09 0.80 0.19 

maxEDA 0.37 0.35 0.44 0.26 

minEDA 0.46 0.24 0.29 0.35 

meanAbsFdEDA 0.98 0.28 0.86 0.33 

meanAbsSdEDA 0.98 0.28 0.86 0.33 

meanDerivNegEDA 0.49 0.28 0.89 0.28 

decTimeEDA 0.35 <0.01 0.29 0.02 

nFallsEDA 0.23 0.83 0.54 0.92 

meanAmpSCR 0.54 0.40 0.40 0.57 

maxAmpSCR 0.51 0.37 0.26 0.33 

rateSCR 0.91 0.87 0.71 0.95 

meanRiseDurSCR 0.23 0.98 0.15 0.98 

SDRiseDurSCR 0.29 0.54 0.10 0.59 

meanPPG 0.77 0.92 0.28 0.68 

maxPPG 0.89 0.24 0.92 0.26 

minPPG 0.74 0.12 0.92 0.11 

stdPPG 0.51 0.15 0.80 0.49 

VLF 0.21 0.11 0.62 0.09 

LF 0.20 0.09 0.59 0.09 

HF 0.21 0.09 0.54 0.10 

RaLH 0.24 0.09 0.68 0.09 

RaLVL 0.23 0.28 0.59 0.16 

RaHVL 0.31 0.14 0.42 0.12 

NNmean 0.46 0.14 0.23 0.13 

NNmin 0.68 0.57 0.46 0.42 

NNmax 0.46 0.31 0.37 0.29 

SDNN 0.92 0.35 0.49 0.09 

SDSD 0.17 0.20 0.28 0.19 

RMSSD 0.51 0.28 0.42 0.19 

NN50 0.12 0.11 0.09 0.15 

pNN50 0.08 0.02 0.04 0.06 

meanPeakAmp 0.54 0.14 0.92 0.54 

stdPeakAmp 0.51 0.46 0.42 0.31 

meanDeltaNN 0.49 0.92 0.28 0.74 

delta 0.01 <0.01 0.01 0.01 

theta 0.65 0.80 0.83 0.74 

alpha 0.06 0.05 0.07 0.02 

beta 0.02 <0.01 0.01 0.01 

gamma 0.29 0.11 0.16 0.16 

meanResp 0.80 0.98 0.54 0.42 

maxResp 0.42 0.89 0.46 0.46 

minResp 0.92 0.74 0.95 0.68 

meanAbsFdResp 0.28 0.57 0.13 0.35 

meanAbsSdResp 0.31 0.65 0.14 0.42 

respRate 0.74 0.72 0.25 0.18 

meanRespAmp 0.42 0.92 0.28 0.86 

medianRespAmp 0.40 0.89 0.46 0.98 

stdRespAmp 0.92 0.98 0.44 0.92 

meanRiseDurResp 0.37 0.89 0.42 0.95 

SDRiseDurResp 0.71 0.54 0.92 0.42 

meanRespInter 0.89 0.54 0.71 0.44 

medianRespInter 0.77 0.42 0.77 0.42 

minRespInter 0.86 0.46 0.89 0.49 
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maxRespInter 0.86 0.40 0.35 0.65 

stdRespInter 0.80 0.57 0.80 0.68 

respHF 0.42 0.16 0.40 0.74 

stdResp 0.03 0.83 0.09 0.89 

DRResp 0.49 0.95 0.65 0.80 

meanPupilSize 0.29 0.16 0.46 0.16 

maxPupilSize 0.86 0.98 0.17 0.77 

nBlinks 0.42 0.08 0.08 0.17 

meanHR 0.02 0.91 0.02 0.08 

maxHR 0.01 0.56 0.03 0.33 

minHR 0.03 0.84 0.02 0.20 

meanAbsFdHR 0.53 0.68 1.00 1.00 

meanAbsSdHR 0.59 0.59 0.88 0.42 

stdHR 0.21 0.56 0.21 0.56 

meanSpO2 0.80 0.86 0.86 0.59 

maxSpO2 0.64 1.00 0.51 0.89 

minSpO2 0.98 0.89 0.86 0.65 
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Table 3 - p-values of pairwise comparisons between the different valence conditions (High Valence, No Valence, 

Low Valence) from Wilcoxon Signed Rank Test, for the ASD group. 

Feature 
Database Self - Assessment 

HV vs. NV HV vs. LV NV vs. LV HV vs. NV HV vs. LV NV vs. LV 

meanEDA 0.64 0.19 0.08 0.60 0.42 0.56 

maxEDA 0.36 0.33 0.36 0.56 0.25 0.36 

minEDA 0.68 0.98 0.72 0.33 0.93 0.42 

meanAbsFdEDA 0.76 0.49 0.85 0.12 0.98 0.76 

meanAbsSdEDA 0.76 0.49 0.85 0.12 0.98 0.76 

meanDerivNegEDA 0.76 0.49 0.98 0.08 0.98 0.72 

decTimeEDA 0.23 0.52 0.03 0.49 0.30 0.15 

nFallsEDA 0.98 0.12 0.07 0.60 0.21 0.76 

meanAmpSCR 0.71 0.68 0.52 0.17 0.64 0.33 

maxAmpSCR 0.67 0.68 0.68 0.23 0.49 0.49 

rateSCR 1.00 0.33 0.12 0.49 0.21 0.55 

meanRiseDurSCR 0.90 0.36 0.42 0.98 0.58 0.52 

SDRiseDurSCR 0.13 0.12 0.89 0.54 0.80 0.43 

meanPPG 0.85 0.30 0.36 <0.01 0.01 0.23 

maxPPG 0.01 0.17 0.39 0.06 0.09 0.49 

minPPG 0.04 0.72 0.30 <0.01 0.36 0.15 

stdPPG 0.11 0.98 0.09 0.02 0.80 0.11 

VLF 1.00 0.03 0.01 0.85 0.11 0.07 

LF 0.85 <0.01 <0.01 0.64 0.06 0.05 

HF 0.80 <0.01 <0.01 0.76 0.06 0.04 

RaLH 0.52 <0.01 <0.01 0.89 0.08 <0.01 

RaLVL 0.52 0.42 0.02 0.93 0.42 0.85 

RaHVL 0.98 0.21 0.04 0.49 0.19 0.39 

NNmean 0.49 0.76 0.80 0.36 0.45 0.52 

NNmin 0.72 0.60 0.85 0.19 0.23 0.98 

NNmax 0.45 0.52 0.76 0.21 0.56 0.33 

SDNN 0.72 0.64 0.98 0.21 0.30 0.89 

SDSD 0.64 0.17 0.15 0.72 0.30 0.52 

RMSSD 0.85 0.23 0.21 1.00 0.19 0.52 

NN50 0.72 0.21 1.00 0.97 0.76 0.89 

pNN50 0.98 0.52 0.52 0.93 0.42 0.52 

meanPeakAmp 0.04 0.89 0.06 0.03 0.60 0.06 

stdPeakAmp 0.01 0.25 0.60 0.25 0.12 0.80 

meanDeltaNN 0.52 0.42 0.56 0.23 0.60 1.00 

delta 0.06 0.45 0.12 0.02 0.17 0.19 

theta 0.56 0.11 0.76 0.93 0.36 0.28 

alpha 0.03 0.25 0.28 0.03 0.85 0.04 

beta 0.02 0.07 0.39 <0.01 0.19 0.30 

gamma 0.93 0.52 0.04 0.21 0.39 0.36 

meanResp 0.60 0.80 0.60 0.93 0.64 0.80 

maxResp 0.02 0.28 0.68 0.98 0.52 0.76 

minResp 0.21 0.39 0.93 0.03 0.52 0.06 

meanAbsFdResp 0.11 0.08 0.60 0.36 0.98 0.56 

meanAbsSdResp 0.11 0.08 0.56 0.36 0.80 0.52 

respRate 0.35 0.89 0.49 0.60 0.52 0.81 

meanRespAmp 0.80 0.89 0.93 0.28 0.72 0.21 

medianRespAmp 0.93 0.72 0.60 0.36 0.98 0.28 

stdRespAmp 0.15 0.03 0.25 0.15 0.21 0.89 

meanRiseDurResp 0.85 0.06 0.25 0.76 0.02 0.01 

SDRiseDurResp 0.64 0.09 0.04 0.56 0.02 <0.01 

meanRespInter 0.52 0.23 0.93 0.56 0.52 0.93 

medianRespInter 0.64 0.30 0.76 0.49 0.36 0.80 

minRespInter 0.72 0.89 0.80 0.49 0.17 0.85 
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maxRespInter 0.28 0.01 0.19 0.89 0.49 0.39 

stdRespInter 0.98 0.06 0.19 0.89 0.05 0.12 

respHF 0.52 0.76 0.72 0.28 0.64 0.49 

stdResp 0.07 0.52 0.60 0.36 0.49 0.93 

DRResp 0.01 0.21 0.89 0.19 0.60 0.60 

meanPupilSize 0.72 0.14 0.30 0.28 0.15 0.60 

maxPupilSize 0.72 0.76 0.42 0.80 0.25 0.64 

nBlinks 0.93 0.24 0.19 0.02 0.30 0.68 

meanHR 0.01 0.36 <0.01 0.58 0.01 0.33 

maxHR 0.01 0.81 0.02 0.09 0.03 0.71 

minHR <0.01 0.50 <0.01 1.00 0.01 0.24 

meanAbsFdHR 0.63 0.76 0.22 0.81 0.14 0.15 

meanAbsSdHR 0.71 0.63 0.63 0.54 0.39 0.24 

stdHR 0.36 0.05 0.02 0.36 0.33 0.15 

meanSpO2 0.68 0.36 0.36 0.56 0.85 1.00 

maxSpO2 0.64 0.56 0.72 0.30 0.11 0.72 

minSpO2 0.89 0.52 0.76 0.98 0.98 0.89 
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Table 4 - p-values of pairwise comparisons between the different valence conditions (High Valence, No Valence, Low 

Valence) from Wilcoxon Signed Rank Test, for the TD group acquired in the MR. 

Feature 
Database Self - Assessment 

HV vs. NV HV vs. LV NV vs. LV HV vs. NV HV vs. LV NV vs. LV 

meanEDA 1.00 0.30 0.84 0.72 0.30 0.47 

maxEDA 0.84 0.06 0.72 0.96 0.57 0.50 

minEDA 0.30 0.15 0.26 0.76 0.16 0.06 

meanAbsFdEDA 0.21 0.04 0.01 0.88 0.04 0.01 

meanAbsSdEDA 0.21 0.04 0.01 0.88 0.04 0.01 

meanDerivNegEDA 0.76 0.06 0.03 0.68 0.03 0.09 

decTimeEDA 0.28 0.12 0.88 0.30 0.30 0.61 

nFallsEDA 0.80 0.85 0.89 0.42 0.89 0.80 

meanAmpSCR 0.76 0.44 0.12 1.00 0.50 0.53 

maxAmpSCR 0.53 0.44 0.21 0.96 0.57 0.44 

rateSCR 0.60 0.20 0.04 0.33 0.68 0.16 

meanRiseDurSCR 0.41 0.33 0.84 0.18 0.92 0.23 

SDRiseDurSCR 0.04 0.05 0.90 0.10 0.13 0.63 

meanPPG 0.35 0.30 0.88 0.61 0.88 0.38 

maxPPG 0.84 0.02 0.08 0.84 0.21 0.07 

minPPG 0.21 0.26 0.05 0.18 0.13 0.11 

stdPPG 0.64 0.13 0.21 0.64 0.35 0.09 

VLF 0.68 0.28 0.68 0.92 0.76 0.72 

LF 0.38 0.53 0.61 0.61 0.92 0.88 

HF 0.35 0.35 0.76 0.68 1.00 0.80 

RaLH 0.35 0.33 0.84 0.84 0.76 0.57 

RaLVL 0.84 0.13 0.07 0.92 0.30 0.41 

RaHVL 0.33 0.26 0.88 0.80 0.61 1.00 

NNmean 0.72 0.13 0.07 0.76 0.21 0.05 

NNmin 0.28 0.01 0.35 0.57 0.09 0.03 

NNmax 0.13 0.38 0.10 0.96 0.47 0.26 

SDNN 0.04 0.20 0.57 0.07 0.08 0.53 

SDSD 0.10 0.06 0.76 0.05 0.09 0.21 

RMSSD 0.05 0.07 0.61 0.06 0.10 0.47 

NN50 0.61 0.92 0.29 0.50 0.16 0.30 

pNN50 0.05 0.09 0.35 0.10 0.03 0.72 

meanPeakAmp 0.76 0.07 0.33 0.47 0.38 0.04 

stdPeakAmp 0.50 0.12 0.20 0.96 0.16 0.38 

meanDeltaNN 0.44 0.61 0.61 0.23 0.03 0.76 

delta 0.15 0.11 0.80 1.00 0.06 0.08 

theta 0.92 0.50 0.41 0.16 0.88 0.10 

alpha 0.80 0.44 0.84 0.64 0.80 0.84 

beta 0.64 0.38 0.96 0.72 0.33 0.35 

gamma 0.92 0.96 0.13 0.88 0.44 0.64 

meanResp 0.18 0.47 0.88 0.44 0.12 0.72 

maxResp 0.38 0.44 0.80 0.01 0.18 0.84 

minResp 0.57 0.16 0.61 0.15 0.57 0.47 

meanAbsFdResp 0.20 0.28 0.92 0.04 0.03 0.64 

meanAbsSdResp 0.16 0.33 0.96 0.04 0.03 0.72 

respRate 0.44 0.25 0.47 0.76 0.92 0.98 

meanRespAmp 0.68 0.72 0.61 0.80 0.64 0.53 

medianRespAmp 0.64 0.88 0.41 0.50 0.21 0.44 

stdRespAmp 0.04 0.53 0.02 0.15 0.53 0.21 

meanRiseDurResp 0.72 0.41 0.53 0.92 0.84 0.68 

SDRiseDurResp 0.64 0.07 0.13 0.41 0.57 0.68 

meanRespInter 0.76 0.30 0.47 0.23 0.41 0.88 

medianRespInter 1.00 0.41 0.35 0.23 0.44 0.72 

minRespInter 0.76 0.16 0.15 0.16 0.64 0.38 
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maxRespInter 0.53 0.12 0.50 0.96 0.57 0.88 

stdRespInter 0.64 0.96 0.33 0.38 0.96 0.12 

respHF 0.88 0.88 0.88 0.72 0.84 0.47 

stdResp 0.96 0.12 0.41 0.12 0.96 0.06 

DRResp 0.84 0.53 0.53 0.01 0.26 0.33 

meanPupilSize 0.64 0.28 0.61 0.72 0.28 0.15 

maxPupilSize 0.64 0.38 0.44 0.50 0.50 0.76 

nBlinks 0.01 0.16 0.23 0.50 0.66 0.64 

meanHR 0.72 0.60 0.39 0.52 0.52 0.72 

maxHR 0.68 0.76 0.89 0.49 0.68 0.89 

minHR 0.42 0.19 0.45 0.56 0.36 1.00 

meanAbsFdHR 0.64 0.02 0.05 1.00 0.07 0.14 

meanAbsSdHR 0.72 0.42 0.30 0.33 0.80 0.49 

stdHR 0.76 0.08 0.56 0.42 0.89 0.64 

meanSpO2 0.92 0.44 0.20 0.88 0.80 0.57 

maxSpO2 0.16 0.44 0.47 0.53 0.26 0.76 

minSpO2 0.15 0.05 0.15 0.02 0.02 0.84 
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Table 5 - p-values of pairwise comparisons from Wilcoxon Rank Sum Test, for the valence conditions (Clinical Group 

compared to Control Group). 

Feature 

Database Self - Assessment 

High 

Valence 

Neutral 

Valence 

Low 

Valence 

High 

Valence 

Neutral 

Valence 

Low 

Valence 

meanEDA 0.44 0.31 0.37 0.13 0.28 0.26 

maxEDA 0.40 0.29 0.33 0.31 0.42 0.29 

minEDA 0.42 0.28 0.44 0.26 0.95 0.57 

meanAbsFdEDA 0.57 0.42 0.89 0.80 0.49 0.77 

meanAbsSdEDA 0.57 0.42 0.89 0.80 0.49 0.77 

meanDerivNegEDA 0.51 0.40 0.95 0.51 0.65 0.98 

decTimeEDA 0.13 0.02 0.86 0.08 0.02 0.92 

nFallsEDA 0.64 0.91 0.30 0.54 0.95 0.49 

meanAmpSCR 0.33 0.37 0.80 0.59 0.48 0.77 

maxAmpSCR 0.59 0.26 0.31 0.40 0.43 0.40 

rateSCR 0.86 0.72 0.55 0.51 0.55 0.75 

meanRiseDurSCR 0.53 0.83 0.31 0.48 0.32 0.29 

SDRiseDurSCR 0.12 0.77 0.45 0.04 0.74 0.35 

meanPPG 0.28 0.92 0.24 0.65 1.00 0.23 

maxPPG 0.98 0.21 0.57 1.00 0.35 0.68 

minPPG 0.80 0.02 0.59 0.89 0.06 0.54 

stdPPG 0.71 0.17 0.19 0.92 0.02 0.23 

VLF 0.15 0.07 0.40 0.11 0.08 0.33 

LF 0.17 0.07 0.44 0.11 0.13 0.35 

HF 0.19 0.08 0.44 0.09 0.10 0.35 

RaLH 0.14 0.07 0.51 0.09 0.09 0.37 

RaLVL 0.49 0.29 0.29 0.24 0.24 0.17 

RaHVL 0.21 0.14 0.46 0.11 0.16 0.37 

NNmean 0.33 0.12 0.89 0.80 0.15 0.86 

NNmin 0.59 0.83 0.33 0.68 0.49 0.19 

NNmax 0.74 0.20 0.57 0.35 0.21 0.51 

SDNN 0.80 0.31 1.00 0.57 0.57 0.86 

SDSD 0.26 0.37 0.54 0.95 0.44 0.89 

RMSSD 0.65 0.40 0.65 0.65 0.46 0.95 

NN50 0.17 0.08 0.19 0.09 0.20 0.09 

pNN50 0.92 <0.01 0.16 0.95 0.09 0.03 

meanPeakAmp 0.46 0.16 0.21 0.74 0.01 0.26 

stdPeakAmp 0.62 0.35 0.71 0.68 0.65 0.92 

meanDeltaNN 0.71 0.59 0.20 0.57 0.09 0.29 

delta 0.10 <0.01 0.01 0.09 0.01 0.01 

theta 0.80 0.92 0.95 0.77 0.59 0.92 

alpha 0.05 0.03 0.07 0.04 0.02 0.09 

beta 0.10 <0.01 <0.01 0.14 <0.01 <0.01 

gamma 0.31 0.06 0.44 0.21 0.19 0.24 

meanResp 0.42 0.62 0.89 0.68 0.92 0.68 

maxResp 0.19 1.00 0.74 0.12 0.80 0.71 

minResp 0.89 0.98 0.95 0.40 0.24 0.98 

meanAbsFdResp 0.01 0.57 0.62 0.02 0.74 0.92 

meanAbsSdResp 0.02 0.59 0.62 0.02 0.74 0.89 

respRate 0.53 0.54 0.83 0.92 0.74 0.71 

meanRespAmp 0.95 0.40 0.86 0.62 0.40 0.98 

medianRespAmp 0.92 0.40 0.71 0.54 0.35 0.71 

stdRespAmp 0.17 0.71 0.98 0.15 0.40 0.68 

meanRiseDurResp 0.77 0.65 0.33 0.89 0.68 0.07 

SDRiseDurResp 0.24 0.98 0.46 0.54 0.14 0.59 

meanRespInter 0.28 0.89 0.42 0.74 0.80 0.89 

medianRespInter 0.40 0.80 0.54 0.77 0.62 0.86 
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minRespInter 0.28 0.71 1.00 0.71 0.44 0.59 

maxRespInter 0.35 0.65 0.33 0.86 0.74 0.95 

stdRespInter 0.57 0.62 0.65 0.95 0.57 0.92 

respHF 0.33 0.16 0.57 0.37 0.31 0.31 

stdResp 0.04 0.68 0.23 0.08 0.57 0.12 

DRResp 0.15 0.74 0.62 0.11 0.98 0.42 

meanPupilSize 0.57 0.31 0.09 0.54 0.10 0.11 

maxPupilSize 0.21 1.00 0.81 0.14 0.77 0.89 

nBlinks 0.58 0.18 0.15 0.89 0.01 0.28 

meanHR 0.02 0.62 0.03 0.17 0.23 0.05 

maxHR 0.12 0.90 0.03 0.74 0.39 0.03 

minHR 0.02 0.71 0.10 0.09 0.14 0.08 

meanAbsFdHR 0.88 0.68 0.14 1.00 1.00 0.68 

meanAbsSdHR 0.98 0.95 0.68 0.74 0.27 0.78 

stdHR 0.17 0.53 0.21 0.47 0.71 0.23 

meanSpO2 0.98 0.92 0.92 0.86 0.98 0.98 

maxSpO2 0.37 0.65 0.57 0.92 0.29 0.92 

minSpO2 0.54 0.92 0.38 0.29 0.71 0.51 
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Table 6 - p-values of pairwise comparisons from Wilcoxon Signed Rank Test, performed on the dataset acquired in a common 

environment (High Arousal compared to Low Arousal). 

Feature Database Self-Assessment Feature Database Self-Assessment 

meanEDA 0.73 0.15 NN50 0.54 0.64 

maxEDA 0.20 0.20 pNN50 0.59 0.06 

minEDA 0.97 0.09 meanPeakAmp 0.95 0.68 

meanAbsFdEDA 0.20 0.47 stdPeakAmp 0.34 0.84 

meanAbsSdEDA 0.20 0.47 meanDeltaNN 0.07 0.50 

meanDerivNegEDA 0.73 0.34 meanResp 0.67 0.30 

decTimeEDA 0.03 0.23 maxResp 0.27 0.50 

nFallsEDA 0.07 0.27 minResp 0.36 0.76 

meanAmpSCR <0.01 0.42 meanAbsFdResp 0.30 0.58 

maxAmpSCR <0.01 0.05 meanAbsSdResp 0.30 0.58 

rateSCR 0.02 0.06 respRate 0.13 0.57 

meanRiseDurSCR <0.01 0.03 meanRespAmp 0.11 0.85 

SDRiseDurSCR 0.62 0.38 medianRespAmp 0.11 0.85 

meanPPG 0.50 0.79 stdRespAmp 1.00 1.00 

maxPPG 1.00 0.79 meanRiseDurResp 0.04 0.42 

minPPG 0.68 0.84 SDRiseDurResp 1.00 1.00 

stdPPG 1.00 0.84 meanRespInter 0.94 0.81 

VLF 1.00 1.00 medianRespInter 0.58 0.69 

LF 0.74 0.89 minRespInter 0.47 0.58 

HF 0.68 0.74 maxRespInter 0.94 0.94 

RaLH 0.13 0.34 stdRespInter 0.38 0.81 

NNmean 0.31 0.79 stdResp 0.81 0.58 

NNmin 0.74 1.00 DRResp 0.63 0.58 

NNmax 0.41 0.45 meanPupilSize 0.95 0.76 

SDNN 0.17 0.89 maxPupilSize 0.27 0.01 

SDSD 0.17 0.54 nBlinks 0.29 0.19 

RMSSD 0.13 0.74    
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Table 7 - p-values of pairwise comparisons between the different valence conditions (High Valence, No Valence, Low 

Valence) from Wilcoxon Signed Rank Test, for the TD group acquired in a common environment. 

Feature 
Database Self - Assessment 

HV vs. NV HV vs. LV NV vs. LV HV vs. NV HV vs. LV NV vs. LV 

meanEDA 0.20 0.85 0.91 0.38 0.85 0.68 

maxEDA 0.47 0.97 0.27 0.97 0.73 1.00 

minEDA 0.30 0.79 0.62 0.85 0.68 0.30 

meanAbsFdEDA 0.27 0.57 0.08 0.38 0.97 0.15 

meanAbsSdEDA 0.27 0.57 0.08 0.38 0.97 0.15 

meanDerivNegEDA 0.20 0.52 0.85 0.09 0.38 0.52 

decTimeEDA 0.38 1.00 0.20 0.79 0.85 0.47 

nFallsEDA 0.03 0.34 0.18 0.35 0.83 0.33 

meanAmpSCR 0.23 0.79 0.06 0.23 0.38 0.23 

maxAmpSCR 0.04 0.34 0.01 0.27 0.79 0.20 

rateSCR 0.05 0.83 0.02 0.17 0.24 0.16 

meanRiseDurSCR 0.06 0.62 0.05 0.01 0.34 0.01 

SDRiseDurSCR 0.38 0.91 0.47 0.85 0.41 0.52 

meanPPG 0.64 0.34 0.59 0.68 0.74 0.54 

maxPPG 0.89 0.64 1.00 0.54 0.38 0.34 

minPPG 0.50 0.59 1.00 0.74 0.54 0.74 

stdPPG 0.89 1.00 0.95 0.54 0.45 0.27 

VLF 1.00 1.00 1.00 1.00 1.00 1.00 

LF 0.45 0.45 0.68 0.54 0.17 0.64 

HF 0.45 0.89 0.54 0.50 0.17 0.08 

RaLH 0.19 0.59 0.74 0.79 0.45 0.38 

NNmean 0.74 0.15 0.19 0.15 0.03 0.27 

NNmin 0.74 0.11 0.38 0.22 0.06 0.45 

NNmax 1.00 0.89 0.38 0.68 0.54 0.27 

SDNN 0.04 0.38 0.89 0.22 0.41 0.89 

SDSD 0.11 0.59 0.74 0.22 0.27 0.59 

RMSSD 0.08 0.54 0.95 0.17 0.31 0.38 

NN50 0.23 0.65 0.64 0.39 0.68 0.59 

pNN50 0.79 0.38 0.38 0.79 0.84 1.00 

meanPeakAmp 0.84 1.00 0.79 0.68 0.59 0.27 

stdPeakAmp 0.45 0.59 0.79 0.84 0.84 0.50 

meanDeltaNN 1.00 0.74 0.95 0.45 0.79 0.17 

meanResp 0.86 0.76 0.76 0.76 0.22 0.24 

maxResp 1.00 0.27 0.17 0.76 0.30 0.10 

minResp 0.08 0.27 0.63 0.04 0.10 0.86 

meanAbsFdResp 0.08 0.07 0.76 0.58 0.14 0.05 

meanAbsSdResp 0.08 0.07 0.76 0.58 0.14 0.05 

respRate 0.23 0.18 0.83 0.56 0.03 0.90 

meanRespAmp 0.08 0.11 0.52 0.83 0.57 0.90 

medianRespAmp 0.08 0.11 0.52 0.83 0.57 0.90 

stdRespAmp 1.00 1.00 1.00 1.00 1.00 1.00 

meanRiseDurResp 0.76 0.68 0.83 0.37 0.38 0.83 

SDRiseDurResp 1.00 1.00 1.00 1.00 1.00 1.00 

meanRespInter 0.94 0.81 0.69 0.22 0.81 0.11 

medianRespInter 0.94 0.81 0.94 0.16 0.63 0.30 

minRespInter 0.94 1.00 1.00 0.11 0.63 0.05 

maxRespInter 1.00 0.69 0.58 0.38 0.81 0.47 

stdRespInter 0.58 0.84 0.84 0.69 0.63 0.81 

stdResp 0.02 0.04 0.63 0.02 0.02 0.33 

DRResp 0.15 0.08 0.39 0.17 0.02 0.33 

meanPupilSize 0.30 0.05 0.39 0.08 0.14 0.90 

maxPupilSize 0.43 0.06 0.71 0.05 0.02 0.90 

nBlinks 0.95 0.59 0.76 0.22 0.81 0.15 
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Table 8 - p-values of pairwise comparisons from Wilcoxon Signed Rank Test. Second and third columns 

refer to the comparison of the winning against the losing event, fourth and fifth columns refer to the 

comparison between the social and interest rewards. 

Feature 

Winning vs. Losing Social vs. Interest Reward 

Clinical 

(N = 15) 

Control 

(N = 16) 

Clinical 

(N = 15) 

Control 

(N = 16) 

meanEDA <0.01 0.09 0.12 0.76 

maxEDA 0.23 0.68 0.11 0.80 

minEDA 0.02 0.21 0.36 0.68 

meanAbsFdEDA 0.28 0.64 0.25 0.38 

meanAbsSdEDA 0.28 0.64 0.25 0.38 

meanDerivNegEDA 0.17 0.38 0.64 0.41 

decTimeEDA 0.52 0.57 0.49 0.38 

nFallsEDA 0.25 0.04 0.01 0.33 

meanAmpSCR 0.15 0.92 0.98 0.35 

maxAmpSCR 0.09 1.00 0.52 0.64 

rateSCR 0.30 0.28 0.36 0.81 

meanRiseDurSCR 0.93 0.92 0.08 0.98 

SDRiseDurSCR 0.19 0.09 0.16 0.73 

meanPPG 0.64 0.50 0.80 0.57 

maxPPG 0.23 0.28 0.06 0.92 

minPPG 0.14 0.20 0.19 0.84 

stdPPG 0.21 0.23 0.05 0.64 

VLF 0.39 0.04 0.98 0.88 

LF 0.39 0.04 1.00 0.96 

HF 0.89 0.04 0.42 0.96 

RaLH 0.56 0.03 0.98 0.88 

RaLVL 0.89 0.06 0.42 0.88 

RaHVL 0.42 0.07 0.36 0.96 

NNmean 0.15 0.41 0.30 0.68 

NNmin 0.64 0.12 0.93 0.84 

NNmax 0.02 0.76 0.30 0.68 

SDNN 0.02 0.20 0.23 0.50 

SDSD 0.04 0.28 0.19 0.53 

RMSSD 0.03 0.26 0.19 0.53 

NN50 1.00 0.94 0.11 0.59 

pNN50 0.56 0.68 0.08 0.47 

meanPeakAmp 0.15 0.41 0.03 0.61 

stdPeakAmp 0.23 0.15 0.49 0.21 

meanDeltaNN 0.60 0.38 0.72 0.96 

delta 0.52 0.61 0.89 0.21 

theta 0.64 0.88 0.23 0.61 

alpha 0.07 0.47 0.85 0.13 

beta 0.30 0.61 1.00 0.16 

gamma 0.02 0.92 0.21 0.26 

meanResp 0.49 0.80 0.05 0.16 

maxResp 0.60 0.64 1.00 0.88 

minResp 0.42 0.57 0.25 0.96 

meanAbsFdResp 0.36 0.44 0.80 0.21 

meanAbsSdResp 0.39 0.47 0.80 0.21 

respRate 0.72 0.72 0.37 0.55 

meanRespAmp 0.98 0.28 0.15 0.88 

medianRespAmp 0.93 0.35 0.28 0.53 

stdRespAmp 0.21 0.38 0.19 0.84 

meanRiseDurResp 0.98 0.96 0.56 0.96 

SDRiseDurResp 0.33 0.16 0.72 0.18 

meanRespInter 0.02 0.20 0.21 0.64 

medianRespInter 0.03 0.50 0.25 0.68 
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minRespInter 0.06 0.41 0.52 0.38 

maxRespInter 0.06 0.10 0.60 0.35 

stdRespInter 0.64 0.35 0.76 0.05 

respHF 0.68 0.80 0.80 0.21 

stdResp 0.68 0.68 1.00 0.11 

DRResp 0.56 0.84 0.68 0.72 

meanPupilSize 0.06 0.96 0.64 0.53 

maxPupilSize 0.15 0.02 0.68 0.30 

nBlinks 0.28 0.15 0.35 0.41 

meanHR 0.02 0.39 0.11 0.45 

maxHR 0.04 0.46 0.24 0.58 

minHR 0.14 0.22 0.34 0.42 

meanAbsFdHR 0.27 0.19 0.09 0.05 

meanAbsSdHR 0.86 0.76 0.95 0.79 

stdHR 0.50 0.67 1.00 0.79 

meanSpO2 0.17 0.56 0.50 0.86 

maxSpO2 0.19 0.85 0.14 0.79 

minSpO2 0.19 0.56 0.16 1.00 
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Table 9 - p-values of pairwise comparisons from Wilcoxon Rank Sum Test (Clinical Group compared to 

Control Group). 

Feature Winning Losing 
Social 

Reward 

Interest 

Reward 

meanEDA 0.40 0.06 0.71 0.09 

maxEDA 0.74 0.33 0.98 0.86 

minEDA 0.71 0.09 0.80 0.68 

meanAbsFdEDA 0.95 0.49 0.80 0.74 

meanAbsSdEDA 0.95 0.49 0.80 0.74 

meanDerivNegEDA 0.98 0.86 0.74 0.71 

decTimeEDA 0.68 0.89 0.83 0.42 

nFallsEDA 0.94 0.94 0.13 0.35 

meanAmpSCR 0.74 0.35 0.57 0.83 

maxAmpSCR 0.59 0.16 0.95 0.65 

rateSCR 0.98 0.41 0.59 0.75 

meanRiseDurSCR 0.69 0.46 0.18 0.94 

SDRiseDurSCR 0.67 0.01 0.78 0.98 

meanPPG 0.86 0.16 0.62 0.57 

maxPPG 0.16 0.74 0.06 0.77 

minPPG <0.01 0.89 0.03 0.29 

stdPPG 0.02 1.00 0.03 0.46 

VLF 0.01 0.57 0.03 0.04 

LF 0.01 0.49 0.03 0.03 

HF 0.04 0.49 0.12 0.03 

RaLH 0.01 0.57 0.03 0.03 

RaLVL 0.14 0.51 0.11 0.04 

RaHVL 0.05 0.46 0.07 0.05 

NNmean 0.16 0.28 0.40 0.29 

NNmin 0.98 0.92 0.50 0.95 

NNmax 0.08 0.49 0.04 0.35 

SDNN 0.04 0.44 0.02 0.28 

SDSD 0.04 0.46 0.13 0.33 

RMSSD 0.05 0.46 0.11 0.35 

NN50 0.32 0.68 0.41 0.62 

pNN50 0.21 0.71 0.29 0.33 

meanPeakAmp 0.01 0.89 0.03 0.59 

stdPeakAmp 0.01 0.86 0.26 0.08 

meanDeltaNN 0.71 0.68 0.86 0.86 

delta 0.15 0.13 0.89 0.07 

theta 0.51 0.77 0.98 0.86 

alpha 0.74 0.92 0.65 0.80 

beta 0.26 0.80 0.95 0.13 

gamma 0.49 0.04 0.29 0.77 

meanResp 0.77 0.57 1.00 0.95 

maxResp 0.03 0.19 0.06 0.09 

minResp 0.71 0.40 0.29 0.89 

meanAbsFdResp 0.95 0.77 0.54 0.71 

meanAbsSdResp 0.89 0.77 0.49 0.74 

respRate 0.03 0.01 0.12 0.03 

meanRespAmp 0.10 0.71 0.71 0.06 

medianRespAmp 0.16 0.44 0.51 0.05 

stdRespAmp 0.92 0.74 0.29 0.72 

meanRiseDurResp 0.17 0.17 0.59 0.45 

SDRiseDurResp 0.33 0.92 0.74 0.12 

meanRespInter 0.74 0.02 0.98 0.66 

medianRespInter 0.57 0.01 0.95 0.75 

minRespInter 0.29 <0.01 0.95 0.27 

maxRespInter 0.62 0.07 0.68 0.18 
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stdRespInter 0.03 0.59 0.65 <0.01 

respHF 0.65 0.12 0.89 0.44 

stdResp 0.16 0.08 0.12 0.62 

DRResp 0.40 0.59 0.40 0.33 

meanPupilSize 0.62 0.92 0.39 0.76 

maxPupilSize 0.21 0.26 0.42 0.25 

nBlinks 0.34 0.65 0.51 0.34 

meanHR 0.84 0.40 0.40 0.32 

maxHR 0.60 0.63 0.34 0.75 

minHR 0.63 0.57 0.58 0.27 

meanAbsFdHR 0.24 0.40 0.72 0.08 

meanAbsSdHR 0.51 0.77 0.98 0.72 

stdHR 0.98 0.60 0.90 0.68 

meanSpO2 0.56 0.14 0.65 0.98 

maxSpO2 0.38 0.05 0.34 0.83 

minSpO2 0.49 0.20 0.04 0.79 
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Appendix II – Classification Outcomes 
 
 

Analysis A1 with PCA 

 
 
 

 

 

 

 

 

 

 

 

 

 

Table 10 - Performance metrics mean values and respective standard deviations, in brackets, 

achieved on the dataset acquired in the MR environment, using PCA for feature reduction and 

SVM with a linear kernel on classifying HA vs LA on intra and inter subject modalities using the 

CAAV database ratings as ground truth. Last row corresponds to the p-value estimation obtained 

with the permutation tests. 

 
Intrasubject: 

TD 

Intrasubject: 

ASD 

Intersubject: 

TD 

Intersubject: 

ASD 

Intersubject: 

All 

Accuracy 0.54 (0.06) 0.54 (0.07) 0.61 (0.03) 0.61 (0.07) 0.61 (0.03) 

Sensitivity 0.78 (0.10) 0.78 (0.09) 1.00 (0.00) 0.91 (0.17) 0.99 (0.05) 

Specificity 0.21 (0.12) 0.18 (0.10) 0.00 (0.00) 0.11 (0.18) 0.01 (0.06) 

Precision 0.62 (0.04) 0.60 (0.06) 0.61 (0.03) 0.63 (0.05) 0.62 (0.04) 

F-Measure 0.66 (0.06) 0.66 (0.06) 0.76 (0.02) 0.74 (0.09) 0.76 (0.03) 

p-value 0.12 0.09 0.16 0.20 0.16 

 

 

 

Figure 1 - Distribution of accuracies achieved, on the dataset acquired in the MR environment, 

using PCA for feature reduction and SVM with a linear kernel on classifying HA vs LA on intra 

and inter subject modalities using the CAAV database ratings as ground truth. 
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Table 11 - Performance metrics mean values and respective standard deviations, in brackets, 

achieved on the dataset acquired in a common environment, using PCA for feature reduction 

and SVM with a linear kernel on classifying HA vs LA on intra and inter subject modalities 

using the CAAV database ratings as ground truth. Last row corresponds to the p-value 

estimation obtained with the permutation tests. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

  

 Intrasubject Intersubject 

Accuracy 0.59 (0.08) 0.67 (0.06) 

Sensitivity 0.85 (0.08) 0.99 (0.03) 

Specificity 0.16 (0.15) 0.07 (0.11) 

Precision 0.66 (0.09) 0.67 (0.05) 

F-Measure 0.71 (0.06) 0.80 (0.04) 

p-value 0.37 0.11 

Figure 2 - Distribution of accuracies achieved, on the dataset acquired in a common environment, 

using PCA for feature reduction and SVM with a linear kernel on classifying HA vs LA on intra 

and inter subject modalities using the CAAV database ratings as ground truth. 
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Analysis A2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Table 12 - Performance metrics mean values and respective standard deviations, in brackets, 

achieved on the dataset acquired in the MR environment, by SVM with a linear kernel on 

classifying HA vs LA on intra and inter subject modalities using the self-assessment answers as 

ground truth. Last row corresponds the p-value estimation obtained with the permutation tests. 

 
Intrasubject: 

TD 

Intrasubject: 

ASD 

Intersubject: 

TD 

Intersubject: 

ASD 

Intersubject: 

All 

Accuracy 0.53 (0.11) 0.54 (0.12) 0.47 (0.15) 0.51 (0.10) 0.51 (0.12) 

Sensitivity 0.50 (0.17) 0.44 (0.11) 0.48 (0.16) 0.42 (0.29) 0.38 (0.24) 

Specificity 0.50 (0.18) 0.56 (0.19) 0.47 (0.27) 0.66 (0.25) 0.68 (0.24) 

Precision 0.49 (0.18) 0.42 (0.15) 0.46 (0.24) 0.47 (0.26) 0.47 (0.26) 

F-Measure 0.53 (0.13) 0.53 (0.15) 0.45 (0.17) 0.33 (0.13) 0.39 (0.15) 

p-value 0.14 0.16 0.68 0.62 0.51 

 
 

 

 

 

 
 
 

Figure 3 - Distribution of accuracies achieved, on the dataset acquired in the MR environment, 

by SVM with a linear kernel on classifying HA vs LA on intra and inter subject modalities using 

the self-assessment answers as ground truth. 
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Table 13 - Performance metrics mean values and respective standard deviations, in brackets, 

achieved on the dataset acquired in a common environment, by SVM with a linear kernel on 

classifying HA vs LA on intra and inter subject modalities using the self-assessment answers as 

ground truth. Last row corresponds to the p-value estimation obtained with the permutation tests. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 Intrasubject Intersubject 

Accuracy 0.60 (0.13) 0.56 (0.13) 

Sensitivity 0.39 (0.30) 0.13 (0.24) 

Specificity 0.64 (0.31) 0.89 (0.22) 

Precision 0.42 (0.18) 0.45 (0.35) 

F-Measure 0.62 (0.18) 0.36 (0.09) 

p-value 0.07 0.43 

Figure 4 - Distribution of accuracies, achieved on the dataset acquired in a common environment, 

by SVM with a linear kernel on classifying HA vs LA on intra and inter subject modalities using 

the self-assessment answers as ground truth. 
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Analysis A3 with PCA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14 - Performance metrics mean values and respective standard deviations, in brackets, 

achieved, on the dataset acquired in the MR environment, using PCA for feature reduction and SVM 

with a linear kernel on classifying High Valence, Neutral Valence and Low Valence, on intra and 

inter subject modalities using the self-assessment answers as ground truth. Last row corresponds to 

the p-value estimation obtained with the permutation tests. 

   
Intrasubject: 

TD 

Intrasubject: 

ASD 

Intersubject: 

TD 

Intersubject: 

ASD 

Intersubject: 

All 

Accuracy 0.36 (0.08) 0.34 (0.12) 0.42 (0.09) 0.41 (0.07) 0.44 (0.07) 

Macro  

F1 - Score 
0.35 (0.04) 0.34 (0.08) 0.35 (0.07) 0.38 (0.06) 0.36 (0.06) 

p-value 0.48 0.51 0.21 0.27 0.18 

Figure 5 - Distribution of accuracies achieved, on the dataset acquired in the MR environment, 

using PCA for feature reduction and SVM with a linear kernel on classifying HV, NV and LV on 

intra and inter subject modalities using the CAAV database ratings as ground truth. 
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Table 15 - Performance metrics mean values and respective standard deviations, in brackets, 

achieved on the dataset acquired in a common environment, using PCA for feature reduction and 

SVM with a linear kernel on classifying High Valence, Neutral Valence and Low Valence, on intra 

and inter subject modalities using the CAAV database ratings as ground truth. Last row 

corresponds to the p-value estimation obtained with the permutation tests. 

  
 Intrasubject Intersubject 

Accuracy 0.41 (0.10) 0.49 (0.06) 

Macro  

F1 - Score 
0.38 (0.07) 0.37 (0.05) 

p-value 0.42 0.12 

Figure 6 - Distribution of accuracies achieved on the dataset acquired in a common environment, 

using PCA for feature reduction and SVM with a linear kernel on classifying HV, NV and LV on 

intra and inter subject modalities using the CAAV database ratings as ground truth. 
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Analysis A4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 16 - Performance metrics mean values and respective standard deviations, in brackets, 

achieved on the dataset acquired in the MR environment, by SVM with a linear kernel on 

classifying High Valence, Neutral Valence and Low Valence, on intra and inter subject modalities 

using the self-assessment answers as ground truth. Last row corresponds to the p-value estimation 

obtained with the permutation tests. 

 
Intrasubject: 

TD 

Intrasubject: 

ASD 

Intersubject: 

TD 

Intersubject: 

ASD 

Intersubject: 

All 

Accuracy 0.41 (0.15) 0.41 (0.11) 0.36 (0.11) 0.36 (0.15) 0.32 (0.15) 

Macro  

F1 - Score 
0.37 (0.08) 0.38 (0.06) 0.35 (0.11) 0.32 (0.10) 0.30 (0.12) 

p-value 0.43 0.44 0.50 0.56 0.64 

 

 

 
 

Figure 7 - Distribution of accuracies achieved on the dataset acquired in the MR environment, 

by SVM with a linear kernel on classifying HV, NV and LV on intra and inter subject modalities 

using the self-assessment answers as ground truth. 
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Table 17 - Performance metrics mean values and respective standard deviations, in brackets, 

achieved on the dataset acquired in a common environment, by SVM with a linear kernel on 

classifying High Valence, Neutral Valence and Low Valence, on intra and inter subject modalities 

using the CAAV database ratings as ground truth on the dataset acquired in a common 

environment. Last row corresponds to the p-value estimation obtained with the permutation tests. 

 Intrasubject Intersubject 

Accuracy 0.37 (0.16) 0.35 (0.10) 

Macro  

F1 - Score 
0.36 (0.09) 0.28 (0.10) 

p-value 0.50 0.53 

 
  

Figure 8 - Distribution of accuracies achieved on the dataset acquired in a common environment, 

by SVM with a linear kernel on classifying HV, NV and LV on intra and inter subject modalities 

using the self-assessment answers as ground truth on the dataset acquired in a common 

environment. 
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Analysis A5 with PCA 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

Table 18 - Performance metrics mean values and respective standard deviations, in brackets, 

achieved using PCA for feature reduction and SVM with a linear kernel on classifying Winning vs 

Losing events on intra and inter subject modalities. Last row corresponds to the p-value estimation 

obtained with the permutation tests. 

 
Intrasubject: 

TD 

Intrasubject: 

ASD 

Intersubject: 

TD 

Intersubject: 

ASD 

Intersubject: 

All 

Accuracy 0.53 (0.10) 0.52 (0.12) 0.49 (0.13) 0.48 (0.15) 0.50 (0.11) 

Sensitivity 0.48 (0.28) 0.55 (0.19) 0.49 (0.27) 0.38 (0.37) 0.37 (0.26) 

Specificity 0.51 (0.29) 0.50 (0.27) 0.53 (0.19) 0.65 (0.29) 0.67 (0.26) 

Precision 0.47 (0.23) 0.54 (0.13) 0.49 (0.17) 0.50 (0.25) 0.53 (0.20) 

F-Measure 0.56 (0.14) 0.62 (0.09) 0.49 (0.13) 0.45 (0.21) 0.44 (0.14) 

p-value 0.15 0.16 0.54 0.55 0.46 

 
  

Figure 9 - Distribution of accuracies achieved using PCA for feature reduction and SVM with a 
linear kernel on classifying Winning vs Losing events on intra and inter subject modalities. 
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Analysis A6 with PCA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 19 - Performance metrics mean values and respective standard deviations, in brackets, 

achieved using PCA for feature reduction and SVM with a linear kernel on classifying Social vs 

Interest reward on intra and inter subject modalities. Last row corresponds to the p-value 

estimation obtained with the permutation tests. 

 

 
 
 
 
 
 
 
 
 
 
 

 
Intrasubject: 

TD 

Intrasubject: 

ASD 

Intersubject: 

TD 

Intersubject: 

ASD 

Intersubject: 

All 

Accuracy 0.42 (0.16) 0.42 (0.18) 0.49 (0.13) 0.45 (0.15) 0.51 (0.13) 

Sensitivity 0.41 (0.23) 0.48 (0.27) 0.32 (0.36) 0.24 (0.32) 0.11 (0.22) 

Specificity 0.56 (0.21) 0.40 (0.24) 0.67 (0.26) 0.66 (0.42) 0.88 (0.24) 

Precision 0.44 (0.18) 0.46 (0.24) 0.40 (0.22) 0.43 (0.30) 0.50 (0.31) 

F-Measure 0.76 (0.16) 0.71 (0.14) 0.47 (0.21) 0.44 (0.17) 0.46 (0.20) 

p-value 0.24 0.29 0.46 0.49 0.41 

Figure 10 - Distribution of accuracies achieved using PCA for feature reduction and  SVM with 

a linear kernel on classifying Social vs Interest reward on intra and inter subject modalities. 
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Appendix III - Assessing Arousal Through 

Multimodal Biosignals: A Preliminary Approach 
 
 
Rita Correia, Daniel Agostinho, Isabel Catarina Duarte, Daniela Sousa, Ana Pina Rodrigues, Miguel 

Castelo-Branco and Marco Simões 

Abstract 

The increase in Autism Spectrum Disorder (ASD) prevalence estimates over the last decades 

has driven a quest to develop new forms of rehabilitation that can be accessible to a larger part of this 

population. These rehabilitation approaches often take the form of computer games that are blind to 

the user’s emotional state, which compromises their efficacy. In this study, a set of physiological 

signals were acquired in simultaneous with functional Magnetic Resonance Imaging (fMRI) with the 

future prospect of combining both kinds of data to create models capable of assessing the true 

emotional state of their users based on physiological response as a measure of autonomic nervous 

system, having as ground truth the activity of targeted brain regions. This paper describes an initial 

approach, focusing on the information contained on the physiological signals alone. A total of 35 

features were extracted from biosignals’ segments and subsequently used for automatic classification 

of arousal state (High Arousal vs. Low Arousal). The suboptimal results, although some extracted 

features present statistically significant differences, underline the challenging nature of our proposal 

and the added obstacles of recording physiological signals in the magnetic resonance environment. 

Further exploration of the measured signals is needed to gather a bigger number of discriminative 

features that can improve classification outcomes. 

 

1. Introduction 

 

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects social and 

communication skills, as well as normal patterns of behavior, interests and activities [1]. As of 2014, 

16.8 per 1000 children aged 8 years were diagnosed with ASD in the United States of America (USA), 

which represents an increase of 150% when compared with 2000 estimates [2]. Hence, the number of 

people that can benefit from new and improved rehabilitation approaches is enormous and continues 

to rise.  

Over the last decades, there has been an increasing interest in serious gaming as an alternative 

or complement approach to the traditional therapeutical interventions. A serious game is a game with 

an educational purpose, going beyond the sole purpose of entertainment. This rehabilitation tool 

represents a low-cost option that allows for the repeated practice of different skills that are usually 

impaired in the ASD population. Autistic individuals, however, generally present an increased sensory 
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sensitivity, which may compromise the full potential and efficacy of the serious games, the presentation 

of the wrong type and number of stimuli may lead to the disengagement of the user from the game, or 

even to a complete rejection of the intervention [3]. Therefore, the next step must be to optimize the 

serious games based on the emotional state of its users. 

In this sense, this project aims to develop biofeedback-based models, particularly designed for 

the ASD population, that, based on autonomic nervous system (ANS) physiological signals, can infer 

the state of the user, having as ground truth the neuronal activation evoked by different emotion 

eliciting stimuli.  

While physiology based automatic emotion assessment has been substantially considered for 

typically developed (TD) individuals [4]–[8], it is underexplored for ASD. To the best of our 

knowledge, there are only three papers describing automatic emotion classification in autistic subjects. 

By measuring EDA, PPG, skin temperature, EMG and ECG on children with ASD while they 

performed computerized cognitive tasks, Liu et al. (2008) successfully attempted to classify emotional 

states of liking, anxiety and engagement in this population, achieving accuracies of 82.9 % with Support 

Vector Machines (SVM) [9]. Kushki et al. (2015) classified anxiety-related arousal using metrics 

derived from the ECG and a modified Kalman filter obtaining an average specificity of 92% and 

sensitivity of 99% [10]. More recently, Sarabadani et al. (2020) automatically discriminated positive 

from negative valence during high and low arousal in ASD obtaining accuracies of 78.1% and 84.5% 

for high arousal and low arousal, respectively, using K-Nearest Neighbors (KNN), Linear Discriminant 

Analysis (LDA) and SVM, and combining the outputs of all the classifiers using a Majority Vote to 

enhance the performance [11]. 

While these positive outcomes suggest that emotion recognition is a viable approach in ASD, 

the evidence of emotion dysregulation in this population [12] seems to be overlooked. This evidence 

means that the use of self-assessment questionnaire responses or labels based on the general 

population’s emotional perception of a stimulus as ground truth is of limited accuracy. For this reason, 

we believe that, due to its spatial resolution that allows for the precise mapping of brain regions or 

networks of interest, functional Magnetic Resonance Imaging (fMRI) is the ideal true state indicator. 

Sessions involving this imaging technique, however, are quite expensive and nonportable, which limits 

their applicability. With this study, we intend to find ANS physiological patterns that are representative 

of the targeted brain regions modulation, so that it can be inferred outside the MR scanner.  

To this end, respiration, photoplethysmography (PPG), electrodermal activity (EDA), 

electroencephalography (EEG), pulse oximetry (SpO2) and pupil size were recorded simultaneously 

with fMRI in ASD patients and a matched TD group, while watching short videos, chosen specifically 

to induce different kinds of emotional response. 

This paper describes an initial approach to the experiment, which includes feature extraction 

from the physiological signals and subsequent binary classification into high or low arousal states. 

Given the early nature of this study, the data acquired from the fMRI are not yet considered. Instead, 
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the ratings of arousal from the database where the videos were taken from were used as classification 

labels. 

 

2. Methods 

 

A. Participants 
 

Fourteen individuals with ASD (1 female), and 13 typically developed (TD) individuals (2 

females) took part in this study. Participants (or their legal representatives) signed an informed consent 

to participate in the study. Every subject completed the entire task. Table I provides a detailed 

description of the participants. 

Table XXI. Demographic description of the ASD and TD groups, including age, Full-Scale Intelligence Quotient 

(FSIQ), Empathy Quotient (EQ), Autism Spectrum Quotient (AQ) and the Autism Diagnostic Observation Schedule 

(ADOS-II) total score. Each score is presented in terms of group average and standard error, in brackets. Group 

differences were assessed with a two-sample T-test, with p-values on the last column. Groups are matched by age and 

EQ. 

 

 

 

 

 
 

B. Experimental Task 
 

The task follows a block design. Each block consists of a 15 second video presentation trailed 

by a self-assessment period and is preceded by a rest period of approximately the same duration. The 

protocol is composed by 3 task runs, and each run is made up of 10 video trials. 

The 30 videos (10 videos x 3 runs) were taken from the Chieti Affective Action Videos (CAAV) 

database and represent different actions, examples include hugging someone, stealing from another or 

simply hanging a jacket. For our experiment we chose to use videos recorded in the 1st person 

perspective and to coincide the gender of the participant to the main actor [7]. Each video in the 

database is accompanied by the mean rating of valence and arousal given by an evaluation group using 

a 9-point Self-Assessment Manikin (SAM). Consequently, each video falls into one of the following 3 

categories: low valence and high arousal (LVHA); high valence and high arousal (HVHA); no valence 

and low arousal (NVLA). Thus, 10 videos of each category were selected to integrate the task. 

For the self-assessment, the subjects were asked to rate the video they just watched also in the 

9-point SAM scale. For this purpose, participants used a joystick. 

 ASD TD P 

N 14 13  

AGE 21.58 (1.36) 23.15 (0.91) 0.34 

FSIQ 94.50 (2.97) 111.23(4.30) <0.01 

EQ 38.45 (4.54) 45.62 (2.89) 0.18 

AQ 24.17 (1.49) 15.38 (1.54) <0.01 

ADOS-II 11.17 (0.72) - - 
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Before each session, the task was explained and participants were asked to rate some training 

videos, to guarantee that both concepts of valence and arousal were understood, and that they knew 

how to operate the joystick. 

C. Data Acquisition 
 

EEG, EDA and SpO2 were acquired using the MP150 system and AcqKnowledge 4.2 software 

(BIOPAC Systems, Inc.). Respiration and PPG were recorded using the Physiological Measurement 

Unit of the MRI scanner (Siemens Healthcare) and pupil size was registered using the EyeLink 1000 

Plus Eye Tracker with the long-range mount (SR Research Ltd.). Due to the hypersensitivity of the 

ASD population, we tried to simplify and reduce preparation time as much as possible, thus, EEG was 

acquired using only 3 electrodes, placed on the forehead, and either the right or left earlobe and 

temporal area. EDA was measured using 2 Ag/AgCl electrodes taped to the proximal phalanges of the 

index and middle fingers of the participant’s nondominant hand. SpO2 and PPG were measured using 

a pulse oximetry and pulse finger sensors, respectively. Respiration was measured with a respiratory 

cushion attached to the participant using a respiratory belt. EEG, EDA and SpO2 were recorded with a 

sampling rate of 5000 Hz, PPG and Respiration were acquired at 400 Hz and pupil size at 500 Hz. 

D. Signal Processing 
 

Photoplethysmography 

 
To reduce noise contamination, the PPG signal was bandpass filtered using a 6th order 

Butterworth filter with a lower cut-off frequency of 0.5Hz and a higher cut-off frequency of 20Hz. 

The clean PPG signal was then used to compute the Heart Rate (HR) by identification of the 

PPG pulse peak. HR is affected by both, the sympathetic and parasympathetic nervous systems, and is 

one of the most popular measures when it comes to emotion assessment. 

 

Electrodermal Activity 

 
EDA data were high-pass filtered with a 0.5Hz cut-off frequency as it was being collected, and 

it was later low-pass filtered using a 5th order Butterworth filter with a 1Hz cut-off frequency. 

 

Electroencephalography 

 
As expected, the EEG recordings were considerably contaminated by MR gradient switch 

artifacts. To correct them, the FMRI Artifact Slice Template Removal (FASTR) algorithm from the 

FMRIB plug-in for EEGLAB (version 1.21) was used. Feeding the algorithm with the corrupted signal 

and the events for each slice acquired, it computes an average template for the artifact and subtracts it 

from the signal, locked to each slice trigger.  
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Signal Segmentation 

 
Lastly, signals were divided into 30 second segments, time-locked to the beginning of each 

video, this way each segment includes the 15 seconds of the video, the self-assessment period, and 

some seconds after.  

 

E. Feature Extraction 
 

For each video trial, a total of 35 features was extracted from the different biosignals. To account 

for possible carryover effects, the value of the feature for the last 5 seconds of the previous rest period 

was subtracted after extraction. 

For each signal, a brief description of the extracted features is given in Table II. 

  

Signal Feature Name Extracted Features 

EDA 

meanEDA 

maxEDA 

minEDA 

mean_abs_fd_EDA 

mean_deriv_neg_EDA 

Mean 

Maximum 

Minimun 

Mean Absolute First Difference 

Mean of Derivative for Negative Values 

PPG 

meanPPG 

maxPPG 

minPPG 

NNmean 

 

SDNN 

SDSD 

 

RMSSD 

 

NN50 

 

pNN50 

 

Mean 

Maximum 

Minimum 

Mean of the Normal-to-Normal (NN) time intervals 

 

Standard Deviation of NN intervals 

Standard Deviation of Successive Differences between NN 

intervals 

Root Mean Square of Successive Differences between NN 

intervals 

Number of Successive Differences greater than 50ms 

 

Ratio between NN50 and total number of NN intervals 

EEG 
delta, theta, alpha, beta, 

gamma 

Relative Power (delta, theta, alpha, beta and gamma bands) 

Respiration 

meanResp 

maxResp 

minResp 

mean_abs_fd_resp 

Mean 

Maximum 

Minimum 

Mean Absolute First Difference 

Pupil Size 
meanPupilSize 

maxPupilSize 

Mean  

Maximum 

Heart Rate 

meanHR 

maxHR 

minHR 

VLF 

LF 

HF 

RaLH 

Mean 

Maximum 

Minimum 

Relative Power (Very Low Frequency, Low Frequency, 

and High Frequency bands) 

 

Ratio between Low and High Frequency Powers 

SpO2 

meanSpO2 

maxSpO2 

minSpO2 

Mean 

Maximum 

Minimum 

Table XXXIII. List and description of the features extracted from the physiological signals. 
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F. Statistical Analysis 
 

In a first approach, with the intention of inspecting the extracted features for significant 

differences among conditions and groups, the means of every feature for each subject were computed, 

for the conditions of High Arousal (HA) and Low Arousal (LA). Given its’ subjective nature, for this 

preliminary study, the valence dimension was not considered. The HA and LA conditions were then 

obtained by condensing the 3 original ones (LVHA, HVHA, NVLA) and were defined considering 

both the database ratings and the self-assessed arousal values given by each participant. Using the 

database ratings, a trial was labeled as LA if the arousal rating for the corresponding video was lower 

than 4 and labeled as HA otherwise. For the self-assessment, k-means clustering was performed on 

each participant’s answers individually to partition them into 2 clusters. Trials were then classified as 

HA or LA based on the cluster they fell into. Wilcoxon signed rank tests were then performed to look 

for statistically significant differences in feature values between HA and LA, for each group, and 

Wilcoxon rank sum tests were applied to look for differences between groups for the two conditions. 

 

G. Classification 
 

In order to explore the accuracy of automatic emotion assessment in the data acquired with our 

experimental protocol, 4 classification algorithms were applied. The ratings of the CAAV database for 

arousal were used to label the data.  

The considered classifiers were a Euclidean Minimum Distance Classifier (MDC – Euclidean), 

a K-Nearest Neighbors (KNN) and SVM using a Radial Basis Function (SVM RBF) kernel and a linear 

(SVM Linear) kernel. The optimal parameters for the KNN (number of neighbors, K) and SVM (cost, 

C and Kernel Parameter, γ) were determined by applying a 50/50 partition on the training set 5 times 

and choosing the parameters that resulted in the smallest classification error. After the hyperparameters 

were selected, the classifiers were retrained with all training data for the chosen parameters. 

The classifiers were then tested for both intraparticipant and interparticipant classification. For 

the intraparticipant  

approach, data from each subject were randomly split using the 70:30 ratio, where 70% of the 

data were used to train the classifier and the remaining data were used for testing. This process was 

repeated 30 times to avoid outlier results. As for the interparticipant classification, we employed the 

Leave One Subject Out (LOSO) method where the data from each participant are used once for testing, 

while the rest of the participants’ data are used to train the classifier. 

Finally, to ascertain if the accuracies of the classifiers were significantly greater than chance 

level (50%), permutation tests were used. For each partition, after testing, the true labels of the test set 

were iteratively shuffled, and accuracies were calculated using the random labels as the predicted 
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classes. The number of times that these accuracies were greater than the one obtained with the classes 

predicted by the classifier, were then counted. 

 

3. Results 

 

The significance levels that resulted from the statistical analysis are present in Tables I and II, 

for comparisons between conditions and groups, respectively. Only the features that suggest 

statistically significant differences for at least one scenario are shown in each table. 

Apart from the MDC – Euclidean which returned poor accuracies, not significantly higher than 

chance level, all other 3 classifiers exhibited similar results on classifying HA vs LA. While accuracies 

for the intraparticipant classification for both groups are highly variable and for the most part, not 

significantly higher than chance, the interparticipant outcomes have a narrower distribution and exhibit 

accuracies higher than random chance more than 80% of the times. The median accuracy value for all 

3 interparticipant modalities is of approximately 60%. To illustrate these findings, classification results 

for SVM Linear on intra and inter subject modalities on classifying HA vs LA are displayed in Fig.1.  

 
Table XXIII.  p-values of pairwise comparisons from Wilcoxon signed rank test (High Arousal compared to Low 

Arousal) 

 
 
 
 
 
 
 

 
 
Table XXIV. p-values of pairwise comparisons from Wilcoxon rank sum test (Clinical Group compared to Control 

Group) 

 

Feature 

Database Self-Assessment 

Clinical 

(N = 14) 

Control 

(N = 13) 

Clinical 

(N = 14) 

Control 

(N = 13) 

meanPPG 0,71 0,31 0,01 0,19 

minPPG 0,19 0,15 0,76 0,02 

maxResp 0,67 0,05 0,67 0,17 

meanPupilSize 0,67 0,03 0,76 1,00 

meanHR 0,01 0,38 0,12 0,84 

maxHR 0,02 0,45 0,24 0,84 

minHR < 0,01 0,59 0,01 0,95 

RaLH 0,04 0,95 0,01 0,68 

Feature 

Database Self-Assessment 

High 

Arousal 

Low 

Arousal 

High 

Arousal 

Low  

Arousal 

minPPG 0,87 0,04 0,72 0,03 

delta 0,05 0,01 0,04 0,03 

beta 0,03 0,01 0,03 0,03 

gamma 0,08 0,04 0,05 0,10 

meanHR 0,01 0,68 0,01 0,17 

maxHR 0,01 0,37 0,01 0,72 

minHR 0,01 0,87 0,01 0,15 
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4. Discussion 

 

The statistical analysis revealed that only a limited number of extracted features present 

statistically significant differences between HA and LA conditions as well as between groups. The 

time-domain features of the HR (meanHR, maxHR and minHR) seem to be significantly different 

between conditions for the clinical group, and also between groups for the HA condition, which is in 

accordance with the known relation of this signal with emotion discrimination [13]. 

These results help to explain the low classification accuracies and reveal the low discriminative 

power of the extracted features for distinguishing between HA and LA. 

A possible explanation for the poor results of the intraparticipant modality is the low number of 

observations for each individual participant, which limits the generalization capacity of the models. 

The simultaneous acquisition of physiological signals and fMRI represents a great challenge. 

Besides the common noise sources, there is the added artifact caused by the gradient switch of the MRI 

scanner that severely contaminates most of the recordings and results in low signal-to-noise ratios 

(SNR). This interferes with the quality of the features derived from the signals and hinders the 

appearance of subtle differences between states, which could be valuable for their distinction. 

This preliminary approach reiterated the challenging nature of this project and highlighted the 

need to further explore the biosignals in order to find meaningful features that can optimize the 

classification results. 

  

Figure 17. Distribution of accuracies achieved by SVM on classifying HA vs LA on 

intra and inter subject modalities. 
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