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"Sensitivity analysis for modellers?
Would you go to an orthopaedist who didn’t use X-ray?"
Fürbinger (1996)

In memoriam of my grandmother Beatriz Duarte.
Thank you for everything.
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Resumo

A polimerização via radical por transferência de átomo com agentes suplementares de ativação
e redução, usualmente referida como SARA-ATRP, tem sido alvo de interesse na comunidade
científica. A partir desta reação é possível produzir-se polímeros com características específicas,
sendo que esta se realiza com uma baixa concentração de catalisador e à temperatura ambiente.
Um modelo que descreva bem este sistema reacional pode ser uma ferramenta importante para o
scale-up, optimização e controlo deste processo. Tendo o modelo desenvolvido, um aspeto im-
portante é saber quais são os parâmetros mais importantes do modelo cinético. Estes resultados
vão permitir obter um conhecimento extra sobre o modelo cinético, onde os parâmetros mais
relevantes deverão ser o foco de novas experiências laboratoriais para melhorar a capacidade
preditiva do modelo. Adicionalmente, isto vai ajudar a decidir o planeamento de experiências
laboratoriais e, eventualmente, reduzir o custo e tempo das experiências. O principal objetivo
deste trabalho é obter a informação de quais os parâmetros mais importantes do modelo cinético
SARA-ATRP, tendo sido para isso utilizados métodos globais de análise de sensibilidade.

Neste trabalho foram aplicados dois métodos globais de análise de sensibilidade. A filtragem
de Monte Carlo e um baseado na variância, o método de Sobol. A aplicação destes métodos, re-
quer a geração de vários valores dos parâmetros, dentro do intervalo dos seus possíveis valores.
De facto, diferentes intervalos considerados, podem mudar o resultado da análise de sensibili-
dade. Assim, foi decidido estudar 3 intervalos diferentes em termos da gama de valores que se
considera os parâmetros poderem assumir.

A formulação do modelo cinético publicado na literatura foi revisitada neste trabalho. As si-
mulações preliminares, mostraram que o modelo tem uma fraca capacidade em previsão da
conversão do monómero e da massa molecular numérica média . Tal motivou a resolução de um
problema de estimação de parâmetros, mas apenas estimando os mais importantes, identificados
a partir dos resultados de análise de sensibilidade.

Os resultados da análise de sensibilidade obtidos para a conversão do monómero pelos dois
métodos são semelhantes. Esta semelhança verifica-se não só no número de parâmetros que são
classificados como críticos/importantes como também na classifiação da sua importância. As-
sim, as constantes cinéticas de propagação, de terminação e a constante aparente de ativação de
cadeias dormentes são considerados críticos/importantes pelos dois métodos, nos 3 intervalos
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de valores. O parâmetro mais importante é a constante de propagação, seguidamente vem a con-
stante de terminação e a constante aparente de ativação de cadeias dormentes. Já nos resultados
da análise de sensibilidade para a polidispersividade, há diferenças significativas que podem ser
encontradas tanto nos resultados obtidos pelos dois métodos, como nos resultados obtidos con-
soante o intervalo de variação dos parâmetros considerado. As constantes cinéticas de adição
da primeira unidade de monómero e a constante aparente de redução do desativador são cla-
ssificadas como importantes/críticos pelos dois métodos nos 3 intervalos, sendo que o ranking

de importância muda consoante o intervalo de variação considerado. Para a massa molecular
média podem ser detetadas algumas diferenças entre o resultados obtidos pelos dois métodos e
para os diferentes intervalos de variação dos parâmetros. Os parâmetros que são considerados
críticos/importantes são os mesmos que os obtidos para a conversão do monómero com a adicão
da constante aparente de redução do desativador.

A partir dos resultados da análise de sensibilidade, decidiu-se estimar novos valores para as
constantes de propagação e terminação. Com os valores obtidos pela optimização, o modelo foi
novamente simulado e desta vez, mostrou uma melhor capacidade para prever a conversão do
monómero e a massa molecular média.

Nesta dissertação foram obtidos resultados importantes, tais como: a determinação das con-
stantes cinéticas mais importantes para cada um dos outputs do modelo estudados; e a melhoria
da capacidade de previsão do modelo, após um problema de estimação de parâmetros. Alguns
dos trabalhos futuros a realizar, podem passar em utilizar os resultados da análise de sensibili-
dade para tentar melhorar a capacidade de previsão do modelo. Contudo, é necessário recolher
mais dados experimentais com intuito de diminuir tanto o erro experimental, como erros do
modelo.

Palavras-chave: Análise de sensibilidade global; Método de filtragem de Monte Carlo; Método

de Sobol; Modelação de polimerizações; SARA-ATRP.
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Abstract

Supplementary activators and reducing agents atom transfer radical polymerization (SARA-
ATRP) is a ATRP variation that has gained attention in the scientific community. Through this
reaction it is possible to produce tailor-made polymers using low amounts of catalyst at room
temperature. A model which can accurately describe these reactions behaviour it is a powerful
tool for scale up, optimization and control of such process. With the kinetic model developed, an
important step is to obtain information on which are the most important model parameters.The
results will allow to obtain extra knowledge about the kinetic model regarding which are the
most relevant parameters that should be the focus of further laboratory experiments to improve
the model predictive ability. Moreover, this will help to decide the laboratory experiments
planning and eventually to reduce the cost and time required for the experiments. The main
goal of this thesis is to obtain information on which are the most important parameters of a
SARA-ATRP kinetic model. In order to achieve this goal, global sensitivity analysis techniques
are used.

In this work, two different global methods were applied: a regionalized based method the Monte
Carlo filtering; and a variance based the Sobol method. To perform these methods, it is neces-
sary to sample various inputs values inside their possible range of variation (i.e., input space).
In fact, different input spaces can affect the outcome of the sensitivity analysis. In this thesis 3
different inputs spaces were studied.

The kinetic model of this polymerization system published in the literature was reviewed.
The preliminary numerical simulations showed a poor ability of the model at predicting the
monomer conversion and the number average molecular weight . To improve the model, it was
decided to solve a parameter estimation problem, but only estimating the important parameters.
In this way, the results of the sensitivity analysis could be used.

The results obtained by the two methods for the monomer conversion are very similar, in both
the parameters that are considered critical/important as well in their importance ranking. Nev-
ertheless, small differences can be detected. The kinetic rates constants of propagation, of
termination and the apparent rate constant of dormant chains activation are all considered crit-
ical/important, by the two methods, in all the three input spaces studied. The ranking of im-
portance is the rate constant of propagation followed by rate constant of termination and the
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apparent rate constant of dormant chains activation. In the polydispersity index output, sig-
nificant differences can be identified, both in the result obtained by the two methods as well
in the result obtained between the input spaces intervals studied. The kinetic rate constants
of the first monomer addition and the apparent rate of deactivator reduction are classified as
critical/important by the two methods in the three input space intervals, being that the impor-
tance ranking changes between them. Finally, for the number average molecular weight some
differences can be found between the methods and the intervals studied. For this output, the pa-
rameters that are consider critical/important, by the two methods in the three intervals studied,
are the same as the ones obtained for the monomer conversion with the addition of the apparent
rate constant of deactivator reduction.

Trough the results of the sensitivity analysis it was decided to only estimate the parameters the
kinetic rate of propagation and termination. The model was simulated with the new parameter
values obtained in the optimization. This time, the model showed a better capability to predict
the monomer conversion and the number average molecular weight.

In this thesis, important results were obtained that can be used in future works, such as: the
determination of the important kinetic rate constants for the 3 model outputs; and the improve-
ment of the model predictive ability after a parameter estimation problem. In future work the
results of the sensitivity analysis can be use to improve the predictive ability of the model. Nev-
ertheless, is necessary to collect more data in order to reduce possible experimental and model
errors.

Keywords: Global sensitivity analysis; Monte Carlo filtering method; Sobol method; Polymer-

ization modeling; SARA-ATRP
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Abbreviations

eATRP electrochemically meadiated ATRP.

photoATRP photochemically meadiated ATRP.

ARGET-ATRP activators regenerated by electron transfer ATRP.

ATRP atom transfer radical polymerization.

CDFs cumulative distribution functions.

CRP controlled radical polymerization.

EE elementary effects.

EnvSci environmental science.

FAST Fourier amplitude sensitivity test.

FRP free radical polymerization.

GSA global sensitivity analysis.

ICAR-ATRP initiators for continuous activator regeneration ATRP.

K-S Kolmogorov-Smirnov.

LRP living radical polymerization.

MCF Monte Carlo filtering.

NMP nitroxide mediated polymerization.

NRMSE normalized root mean square error.
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Abbreviations Abbreviations

OAT one-at-time.

ODEs ordinary differential equations.

OSET outer-sphere electron transfer.

PDI polydispersity index.

PLA poly lactid acid.

PRE persistent radical effect.

PSO particle swarm optimization.

QbD quality by design paradigm.

RAFT reversible addition-fragmentation chain transfer.

RDRP reversible deactivation radical polymerisation.

RMSE root mean square error.

RSA regionalized sensitivity analysis.

SA sensitivity analysis.

SARA-ATRP supplementary activators and reducing agents ATRP.
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Symbols

� behavioural output.

�%= degree of polymerization.

� (. ) output expected value.

�= (-8 |�) cumulative distribution function of the ith input values that obtained a behavioural
output.

�= (-8 |�) cumulative distribution function of the ith input values that obtained a non-behavioural
output.

� objective function.

�8, <0G maximum value of the ith objective function.

 number of inputs under studied.

 ATRP ATRP equilibrium constant.

 dis dissociation of inorganic salt equilibrium constant.

 s dissolution of inorganic salt equilibrium constant.

! lower bound of the parameter search interval for the optimization problem.

"" monomer molar mass [g/mol].

"= number average molecular weight [g/mol].

"Cℎ
= theoretical number average molecular weight [g/mol].

"F weight average molecular weight [g/mol].

#4G? number of experimental points.

'p rate of propagation [M s−1].

()8 total sensitivity index for the ith input.
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Symbols Symbols

(8 first order sensitivity index for the ith input.

(!8 local sensitivity index for the ith input.

* upper bound of the parameter search interval for the optimization problem.

+ (. ) output unconditional variance.

- model input.

. model output.

Δ increment used in the elementary effects method.

X: kth order moment for dead chains.

_: kth order moment for propagating chains.

`8 mean for the ith input.

`: kth order moment for dormant chains.

� non-behavioural output.

~4G? experimental values average.

f8 standard deviation for the ith input.

3=,= two sample Kolmogorov-Smirnov test statistics.

5= (-8 |�) probability density function of the ith input values that obtained a behavioural output.

5= (-8 |�) probability density function of the ith input values that obtained a non-behavioural
output.

: optimization decision variables.

:
app
a0p apparent rate of dormant chains activation by SO2

•[s−1].

:
app
a0 apparent rate of initiator activation by SO2

•[s−1].

:a1p rate constant of dormant chains activation [M−1s−1].

:a1 rate constant of initiator activation [M−1s−1].

:add rate constant of the first monomer addition [M−1s−1].

:ass1 rate constant of association of the CuI/L halidophilicity equilibrium [M−1s−1].

:ass2 rate constant of association of the CuIIX/L halidophilicity equilibrium [M−1s−1].

:d1p rate constant of propagating chains deactivation [M−1s−1].
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Symbols Symbols

:d1 rate constant of initiator deactivation [M−1s−1].

:diss1 rate constant of dissociation of the CuI/L halidophilicity equilibrium [s−1].

:diss2 rate constant of dissociation of the CuIIX/L halidophilicity equilibrium [s−1].

:d rate constant of initiator dissociation [M−1s−1].

:p rate constant of propagation [M−1s−1].

:t0 rate constant of termination between two radicals [M−1s−1].

:tR rate constant of termination between a radical and a propagating chain [M−1s−1].

:tc rate constant of termination by combination [M−1s−1].

:td rate constant of termination by disproportionation [M−1s−1].

:t rate constant of termination [M−1s−1].

? − value proof value of the statistical test.

A number of elementary effects.

F8 weight for the ith objective function.

G monomer conversion.

~4G?, 8 ith experimental value.

~?A4E, 8 ith model predicted value.
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Chapter 1

Objectives and dissertation outline

1.1 Thesis goal

The main goal of this thesis is to investigate on which are the most important parameters of
a supplementary activators and reducing agents atom transfer radical polymerization (SARA-
ATRP) kinetic model reported in Krys et al. (2017). This reaction has been gaining attention
in the scientific community, due to the ability of producing tailor-made polymers with a low
polydispersity index (PDI) using low amounts of catalyst at room temperature. In order to
achieve the goal of this thesis, global sensitivity analysis (GSA) methods are used.

This GSA will allow the answer of some important questions, such as (Saltelli et al., 2004):"which
of the uncertain input factors is more important in determining the uncertainty in the output of
interest?"; or "if we could eliminate the uncertainty in one of the input factors, which factor
should we choose to reduce the most the variance of the output?". These answers will not only
be important to understand the reaction mechanism but also to give information to the experi-
mentalists about which parameters should be the focus of further estimates, in order to improve
the model predictive ability. This idea, if correctly applied, can reduce the cost and time of
experimental work and promote an efficient experimental planning.

1.2 Dissertation outline

This thesis comprises 6 chapters. In Chapter 2, it is presented an introduction to the reaction
system under study, with a brief review radical polymerization including the development of
the SARA-ATRP system. This chapter, also provides a brief introduction to the polymerization
modeling methods, focusing on the one used in this thesis, the method of moments.

In Chapter 3 the topic of sensitivity analysis (SA) is addressed. First, the meaning of SA is
defined and some methods commonly used for performing it are presented. Then, a review of
a few interesting applications of SA in different scientific areas is presented to emphasize that
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1.2. Outline

this is an important tool, that can be used in a wide range of applications. The methods used in
this thesis are explained in more detail and some important settings for the SA are defined, such
as: the model output; the input space; and the sampling approach.

In Chapter 4 firstly, the kinetic model used in this thesis, developed in Krys et al. (2017), is
described. Then, the modeling assumptions are defined and the model mathematical expres-
sions are developed. Using the kinetic parameters reported in Krys et al. (2017) the first model
simulations are performed. The kinetic model simulations results are compared with the exper-
imental data. Following this simulation, it was concluded that it is necessary to estimate new
kinetic parameter values, in order to improve the model predictive ability.

In Chapter 5, the results of the two global SA methods performed in this thesis are presented and
interpreted, the Monte Carlo filtering (MCF) and the Sobol Method. Finally, a brief comparison
between the two methods is discussed.

In Chapter 6 the kinetic estimation problem is formulated where the decision variables of the
optimization problem are specified following the results of the global sensitivity analysis. The
kinetic model simulations results with the new kinetic parameter values are compared with other
experimental data. This is done in order to prevent the model overfitting to the data used in the
parameter estimation problem. Finally, the conclusions and possible future works are presented
in Chapter 7.
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Chapter 2

Polymerization reaction mechanism and
modeling

2.1 Free radical polymerization

Free radical polymerization (FRP) is a chain growth polymerization mechanism used in the
production of around 100 million tons of polymers per year. It is the most widely used poly-
merization technique for the production of polymers for various applications, such as: fibers,
plastics and rubbers (Matyjaszewski, 2012; Coessens et al., 2001).

This polymerization mechanism is characterized by a growing polymer chains with an unpaired
electron in one of the carbon atoms (radical species) known as active center. This mechanism
is illustrated in Figure 2.1, where one of the electrons in the c-bond joins the unpaired one,
while the other moves to one of the carbons in the C –– C bond, forming a new active center.
This process will occur successively, by the constant addition of monomer units, allowing the
polymer to growth until the termination of the active site (Young and Lovell, 2011; Odian,
2004).

H C

H

H

C X

H

+ CH2 CH

X

H C

H

H

C

H

X

C

H

H

C X

H

Figure 2.1: Monomer addition to the growing polymer in a radical polymerization [Adapted
from Young and Lovell (2011)] .

The FRP reaction can be divided in 3 main stages: initiation; propagation; and termination. Ini-
tiation is composed by two steps. The first one is the formation of radicals (R) from the initiator
(I) ( Equation 2.1a) that can occur in two main ways: by homolytic scission or homoloysis.
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2.1. Free radical polymerization

In the second step, the first monomer (M) unit is added to the free radical, producing the first
propagating chain (P1) ( Equation 2.1b). The next stage is the propagation (Equation 2.1c),
which is the stage where the polymer grows trough the successive addition of monomer units,
by the mechanism described, forming propagating chains with = monomer units added (P=).
The final stage, termination, can occur in two ways: by combination, when two chains combine
and form a single polymer (D=+<) (Equation 2.1d); or by disproportionation, when the product
of termination is two individual chains (D= or D<) (Equation 2.1e) (Young and Lovell, 2011;
Odian, 2004). The meaning of the rate constants in (2.1) are presented in Table 2.1.

I
kd−−−→ 2R• (2.1a)

R• +M kadd−−−→ P1
• (2.1b)

P=
• +M

kp−−−→ P=+1
• (2.1c)

P=
• + P<•

ktc−−−→ D=+< (2.1d)

P=
• + P<•

ktd−−−→ D= +D< (2.1e)

Table 2.1: Meaning of the rate constants in (2.1).

Nomenclature description

:d rate constant of initiator dissociation
:add rate constant of the first monomer addition
:p rate constant of propagation
:tc rate constant of termination by combination
:td rate constant of termination by disproportionation

The kinetics of the FRP is characterized by a very slow initiation and a very fast propagation
and termination of propagating chains, being almost impossible to control the polymer struc-
ture. Typically, the final product has high values of polydispersity index (PDI), close to two,
due to the very broad molecular weight distribution. Also, using the FRP mechanism is not
suitable to synthesise block co-polymers, due to the short lifetime of the propagating chains,
of about 1 second for every 1000 monomer additions (Abreu, 2018; Matyjaszewski and Davis,
2003). These limitations, will affect the characteristics of the polymers produced (Coessens
et al., 2001). In order to address these limitations, reversible deactivation radical polymerisa-
tion (RDRP) (formerly known as living radical polymerization (LRP) and/or controlled radical
polymerization (CRP)) have been developed. These mechanisms allow the production of poly-
mers with well defined structures, opening a new door to the world of tailor made polymers
(Matyjaszewski, 2012).
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Chapter 2. Polymerization reaction mechanism and modeling

2.2 Reversible deactivation radical polymerization

Reversible deactivation radical polymerization (RDRP) techniques allow: the synthesis of well-
defined polymers with a broad molecular weight distribution (Abreu, 2018; Matyjaszewski and
Davis, 2003; Matyjaszewski, 2012); production of polymer chains with different typologies (
like stars, brushes, etc) (Matyjaszewski, 2012) ; and the possibility of making block or other
types of co-polymers (Matyjaszewski, 1998, 2012). The success of this type of polymerization
is manly due to a dynamic equilibrium between the propagating chains and a dormant specie,
which is a funcionalized chain that can not propagate or terminate (Abreu, 2018). This equilib-
rium allows the life span of a propagating chain to increase from 1 second, in FRP, to more than
1 hour (Mishra and Kumar, 2012).

The methods used in RDRP can be classified according to two main characteristics: dormant
and persistent species structures; and chemical mechanism of persistent species exchange. The
three most efficient and successful methods, are the nitroxide mediated polymerization (NMP),
the reversible addition-fragmentation chain transfer (RAFT) and the metal catalysed atom trans-
fer radical polymerization (ATRP) methods (Matyjaszewski, 2000; Mishra and Kumar, 2012).
The most commonly used polymerization method is the ATRP.

In the ATRP the dynamic equilibrium relies on the persistent radical effect (PRE) which was
described by Hanns Fischer in his three articles in Fischer (1997, 1999, 2001). In order to
explain this equilibrium effect, the reactions (2.2a) and (2.2b) are considered, where, following
the classification made in Fischer (1997), X is the persistent species, P=X denotes the dormant
chain and :t is the rate constant of termination ( termination by combination + termination by
disproportionation).

P=X
kact−−−−−⇀↽−−−−−
kdeact

P=
• + X (2.2a)

P=
• + P=•

kt−−−→ D=+< (2.2b)

At the beginning of the reaction, if there is zero concentration of radicals (i.e, P=) , the concen-
tration of radicals and of persistent species increase at the same rate in equal amounts (Equation
2.2a). The radical can irreversibly self-terminate (Equation2.2b), or alternatively react with the
persistent species back to the dormant state. However, the transient species can only react by
cross reaction with the radicals. As time proceeds, due to the self-termination of radicals, there
will be a continuous accumulation of the persistent species, and the self-termination will be less
likely to occur. Consequently, this makes the cross reaction the dominant product formation
path-way, reaching a state of quasi-equilibrium (Fischer, 1997, 1999, 2001).

When the radical is formed, it can add monomer units to its chain, similarly to FRP ( Equa-
tion 2.1c). However, in this reaction the rate of polymerization and other characteristics will
be strongly dependent on the equilibrium dynamics. In general, the polymer chain stays dor-
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2.3. Atom transfer radical polymerization

mant for about 1 minute after being transient radical for only 1 millisecond (Abreu, 2018;
Matyjaszewski and Davis, 2003). This will reduce the chain termination, other side reactions,
uncontrolled propagation of monomer units, and, it is expected, a linear evolution of the theo-
retical number average molecular weight ("Cℎ

= ) along the monomer conversion, as represented
in Equation 2.3. Here, [M]0 and [I]0 represent the initial concentration of monomer and ini-
tiator, and G and "" the monomer conversion and molar mass, respectively (Matyjaszewski
and Davis, 2003). In addition, to guarantee a controlled polymerization, in terms of polymer
properties (number average molecular weight ("=) and PDI), it is necessary to ensure that all
the initiator is consumed at the early stage of the reaction (Matyjaszewski and Davis, 2003).

"=Cℎ =
[M]0
[I]0

"" G (2.3)

The following section will be devoted to the ATRP method, because it is the one under study in
this work.

2.3 Atom transfer radical polymerization

ATRP was first introduced by two different investigation groups, whose works are reported in
Kato et al. (1995) and Wang and Matyjaszewski (1995), respectively. Since this discovery, this
method has become one of the most used techniques for the productions of polymers with nar-
row PDI, pre-determined "= and with chain-end functionality (Guliashvili et al., 2012; Santos,
2020). The success of this polymerization can be attributed to the great versatility, the com-
patibility with a variety of monomers, and the ability to be carried out under mild reaction
conditions (Santos, 2020).

ATRP is based on the transition-metal complex mediated equilibrium between a dormant species
(that can be an alkyl halide initiator (RX) or an macromolecular specie (P=X)) and a propagat-
ing radical (R) or chain (P=) (Guliashvili et al., 2012; Matyjaszewski, 2012). This equilibrium
is represented in (2.4).

P=X +Mt</L
ka1p−−−−⇀↽−−−−−−
kd1p

P=
• + X−Mt<+1/L (2.4)

In Equation 2.4 the dormant species is activated by a metal transition complex in a lower ox-
idation state (Mt</L, where Mt is the transition metal specie, m is the oxidation state and L

is the ligand), also called activator. The metal transition complex is oxidized, losing one elec-
tron, and binds to the halogen atom from the dormant chain, forming the propagating chain
and X−Mt<+1/L (deactivator), which is in a higher oxidation state. This reaction occurs with
a rate :a1p. The growing chains quickly react in a reversible reaction with X−Mt<+1/L, with a
rate of :d1p. This path is favoured over activation due to the persistent radical effect explained
earlier, where the halogen atom functions as the persistent species (Matyjaszewski, 2012). The
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Chapter 2. Polymerization reaction mechanism and modeling

addition of monomer and the small, but existing, termination of polymeric chains occurs when
the polymer is active in the same way as in FRP (see (2.1)) (Matyjaszewski and Davis, 2003).

The catalyst used in ATRP, Mt< in Equation 2.4, is one of the most important components in
this technique. It also contributes the most for the value of  ATRP, which is the equilibrium
constant ( ATRP =

:a1p
:d1p

). The catalyst will also determine the exchange dynamics between the
dormant and propagating chains. The most used metal is by far copper (Cu), due to is versatility
and low cost. Nevertheless, other metals such as manganese, ruthenium, iron, cobalt, etc., can
be utilized as well. The persistent species, which is a halide group (−X), should migrate rapidly
and selectively between the growing polymer chain and the metal transition complex to ensure
a controlled polymerization. Usually Bromide (Br) or chlorine (Cl) are used (Matyjaszewski
and Davis, 2003).

The rate of polymerization ('p) for an ATRP system can be defined, considering some approx-
imations, by Equation 2.5, where the metal transition complex is copper (i.e., CuIIX/L is the
deactivator and CuI/L is the activator) (Matyjaszewski, 2012). Here, 'p depends on the propa-
gation and equilibrium constants and the concentration of activator, deactivator, monomer and
dormant species. Nevertheless, the structure of the ligand, the monomer, the pressure, the sol-
vent, the temperature and the activity of the catalyst used, affect the  ATRP. Consequently, all
these factors will influence 'p (Matyjaszewski, 2012; Matyjaszewski and Davis, 2003; Santos,
2020).

'p = :p [M] [P=•] = :p ATRP
[P=X] [CuI/L] [M]
[CuIIX/L]

(2.5)

The PDI equation can also be derived for an ATRP system with some approximations. It is given
in Equation 2.6, where �%= is the target degree of polymerization (Matyjaszewski, 2012). From
this equation, it follows that the PDI depends on the propagation and deactivation constants,
the degree of polymerization, the monomer conversion and the concentration of deactivator and
dormant chains. This equation indicates that a higher concentration of deactivator or a higher
�%= or a lower concentration of dormant chains, will produce polymers with a smaller PDI
value (Matyjaszewski, 2012). However, when an higher �%= is targeted, termination and other
side reactions increase their importance, and may negatively affect the PDI (Matyjaszewski and
Davis, 2003).

%�� = 1 + 1

�%=
+

(
:p [P=X]

:d1p [X−CuII/L]

) (
2

G
− 1

)
(2.6)

One of the majors drawbacks in the original ATRP polymerization is the high concentration
of catalyst used, about 1000-10 000 ppm of cooper, which is not environmentally friendly and
cost effective (Krys and Matyjaszewski, 2017). On top of that, this catalyst co-precipitates in
the final polymers and can give them a coloured tone and turn them toxic. Therefore, it is very
important to purify the final product for safety and aesthetic reasons (Shen et al., 2004). These
drawbacks have created a need for the development of similar reactions, that use a much smaller
concentration of catalyst (Abreu et al., 2017).
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2.4. SARA-ATRP

Based on these needs, new ATRP methods were developed in which a smaller amount of cat-
alyst is used, but still managing to keep the polymerization under control. Most of these tech-
niques are based on the continuous regeneration of CuI/L. This is usually done by adding an-
other redox cycle, which supplements the ATRP equilibrium (Krys and Matyjaszewski, 2017).
The most commonly known methods are: activators regenerated by electron transfer ATRP
(ARGET-ATRP); initiators for continuous activator regeneration ATRP (ICAR-ATRP); sup-
plementary activators and reducing agents ATRP (SARA-ATRP); electrochemically meadiated
ATRP (eATRP); and photochemically meadiated ATRP (photoATRP) (Abreu, 2018; Krys and
Matyjaszewski, 2017; Lyra et al., 2019). In the forthcoming developments, the SARA-ATRP
will be described in more detail.

2.4 SARA-ATRP

The SARA-ATRP method uses an agent (SARA agent) that is usually zero-valent cooper (Cu0),
which is easily removable from the reaction medium after the polymerization. This component
can regenerate CuI/L by a comporpotionation reaction with X−CuII/L. It also serves as an
supplemental activator of alkyl-halide initiators and dormant chains (Krys et al., 2017; Krys
and Matyjaszewski, 2017).

The mechanism of the reaction with Cu0 has been deeply discussed in the scientific community.
Percec et al. (2006) has suggest that Cu0 is totally responsibly for the activation of alkyl-halide
initiators and dormant chains by an outer-sphere electron transfer (OSET). Being that CuI/L
is only formed by Cu0, but rapidly disporpotionates back to Cu0 and X−CuII/L (Krys and
Matyjaszewski, 2017). This point of view, of a reaction only mediated by X−CuII/L and Cu0,
stands in contrast with the concept explained above, of a controlled polymerization due to an
equilibrium that relies on the PRE (Abreu, 2018). The SARA-ATRP and SET-LRP (the name
given to the mechanism suggested in Percec et al. (2006)) were the subject of many works,
with the goal of reaching a definitive conclusion on what would be the correct mechanism
(Abreu, 2018). To put an end to this discussion, an article with the title "SARA-ATRP or
SET-LRP. End of controversy?" was published by the Matyjaszeski´s investigation group, that
trough simulations, using PREDICI, and experimental results, were able to prove and support
the SARA-ATRP mechanism. This means, that in fact, the ATRP equilibrium is the main
reaction, and Cu0 only acts as a supplemental activator of alkyl-halide initiators and dormant
chains (Abreu, 2018; Konkolewicz et al., 2014).

There has been a search for other alternatives of SARA agents, in order to ensure a more safe,
inexpensive, environmental friendly and less toxic SARA-ATRP reaction (Abreu et al., 2012).
Some alternatives have already been used to replace Cu0 such as Fe0 or Ag0, but the use of
inorganic sulfites has caught the interest of the scientific community (Boyer et al., 2016; Krys
and Matyjaszewski, 2017). Inorganic Salts, such as Na2S2O4, have been successfully employed
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as SARA agents. These species are capable of supplemental activate the alkyl-halide initiators
and dormant chains and to regenerate the activator, similarly to Cu0, and still ensure a controlled
polymerization (Abreu et al., 2012). These agents are approved by the U.S Food and Drug
administration and are bio compatible, being possible to prepare polymers for bio-applications
without purification of the final product (Boyer et al., 2016).

The mechanism of a SARA-ATRP using Na2S2O4, was proposed in Krys et al. (2017), where
the authors report the estimation of the kinetic parameters and simulate the model proposed
using the PREDICI software. The results show a good agreement between the model prediction
and the experimental data, validating the mechanism proposed in that work. In comparison
to a typical ATRP mechanism, more reactions were added, corresponding to the dissolution
and dissociation of the inorganic sulfite and the supplemental activation of dormant chains and
alkyl-halide initiators and the regeneration of CuI/L. This will be addressed later in the model
development in Chapter 4.

2.5 Mathematical modeling

Mathematical models bring many advantages to polymer science research, such as: the study
and understanding of the polymerization reaction kinetic mechanism; the development of new
processes for production of polymers with controlled characteristics; their implementation in
advanced control applications to ensure a safe reaction and the final product desired quality;
and to scale up polymerization processes (Asteasuain, 2018; Mastan and Zhu, 2015). One
important point to highlight, is that modeling can not substitute the need for experiments, but if
the two procedures are used, the time and cost of laboratory work can be reduce (Asteasuain,
2018).

In polymer science, the main modeling methods used can be divided into two groups; deter-
ministic or kinetic-based; and statistic or stochastic (Asteasuain, 2018; Mastan and Zhu, 2015).
The first ones are based on the derivation of population balances ( i.e., reactants mass balances),
in the form of a system of differential-algebraic equations. The solution of this set of equa-
tions gives the variation of specific proprieties along time. On the other hand, the statistic or
stochastic modeling methods do not need the derivation of the population balances, because
they are based on probability theories, being this modeling techniques more suitable for com-
plex systems. One big disadvantage of these methods are their incapability of saving the re-
action "history"( i.e., evolution along time). Here, the Kinetic Monte Carlo technique, which
is the combination of deterministic and stochastic approaches, developed by Gillespie (1976,
1977) addresses this limitations. Nevertheless, these methods will need a long computational
time to give accurate results and the objective of improving their computational efficiency is an
area of active investigation (Asteasuain, 2018; Mastan and Zhu, 2015; Mastan et al., 2015). The
modeling method used in this work is deterministic.
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2.5. Mathematical modeling

Using a deterministic method, it is necessary to write and obtain the result of a set of differential-
algebraic equations. In a polymerization reaction there are different types of chains ( e.g.,
dormant and propagating chains) and chains with different sizes (i.e., number of monomer units
added), being necessary to derive the mass balance for each one of this chains (Mastan and Zhu,
2015). For example, if the goal of the polymerization is to obtain polymers with the maximum
of 10000 monomer units added, there will be necessary to have 10000 differential equations
and, if there are two types of polymers the number of equations raises to 20000. This makes
the implementation and computational cost very high and not feasible. In order to address this
limitation, the method of moments is adopted (Mastan and Zhu, 2015).

2.5.1 Method of moments

The method of moments allows the formulation of a model with a small number of differential-
algebraic equations, decreasing the implementation effort and the computational cost of the
simulation. One disadvantage of this method, is that only allows the calculation of average
proprieties, such as "=, and it is not possible to obtain a full distribution of molecular weights
(Mastan and Zhu, 2015).

A statistical moment is defined by Equation 2.7, where k is the moment order and [%=] repre-
sents the concentration of propagating chains with = monomer repeating units (as an example).
The 0th moment represents the total concentration of the polymer (

∑∞
==1 =

: [P=•]) and the 1st
moment is the total concentration of all monomer units in all %= chains (

∑∞
==1 =

1 [%=]) (Hungen-
berg and Wulkow, 2018; Vieira et al., 2015).

_: = [P1
•] +

∞∑
==2

=: [P=•] (2.7)

Through the statistical moments it is possible to calculate the"= and the weight average molec-
ular weight ("F ) by Equation 2.8 and 2.9 (Hungenberg and Wulkow, 2018).

"= =
[P1
•] +∑∞

==2 =
1 [P=•]

[P1
•] +∑∞

==2 =
0 [P=•]

"" =
_1

_0
(2.8)

"F =
[P1
•] +∑∞

==2 =
2 [P=•]

[P.1] +
∑∞
==2 =

1 [P=•]
"" =

_2

_1
(2.9)

By definition the PDI can be calculated through Equation 2.10.

%�� =
_0_2

(_1)2
(2.10)

Also, it is very useful to obtain differential equations of the 0th, 1st and 2nd order moments to
compute the values of"=, "F and PDI along the reaction time. This can be done by computing
the time derivative of _?

:
, which leads to Equation 2.11 (Hungenberg and Wulkow, 2018; Vieira
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et al., 2015; Al-Harthi et al., 2006).

d_
:

3C
=
d[P1

•]
3C

+ d

3C
(
∞∑
==2

=: [P=•]) (2.11)

In the SARA-ATRP system under study, there are three types of polymers (i.e., monomer con-
taining species), the dormant (P=X), the propagating (P=•) and the dead (D=). Thus, the total
moment is the sum of the individual momentum of these three types of polymer chains. The no-
tation in Table 2.2 will be used along this thesis to represent the momentum of each individual
species (Lyra et al., 2019).

Table 2.2: Individual momentum of each species [Adapted from Lyra et al. (2019)].

Specie momentum of kth order

`: `: = [P1X] +
∑∞
==2 =

: [P=X]
_: _: = [P1

•] +∑∞
==2 =

: [P=•]
X: X: = [D1] +

∑∞
==2 =

: [D=]

Following the notation given in Table 2.2 the"=,"F and PDI can be calculated using Equations
2.12, 2.13 and 2.14, respectively.

"= =
`1 + _1 + X1
`0 + _0 + X0

"" (2.12)

"F =
`2 + _2 + X2
`1 + _1 + X1

"" (2.13)

%�� =
(`2 + _2 + X2) (`0 + _0 + X0)

(`1 + _1 + X1)2
(2.14)

It follows that it is necessary to obtain nine differential equations (0th, 1st and 2nd order mo-
meents for the 3 species), to calculate the "=, "F and PDI along the reaction time. Also, it is
easy to derive the equations for the other chemical species, such as the monomer, the activator
or deactivator, etc., using the zero order moment. For example, the monomer mass balance is
given by Equation 2.15 (considering that the only reaction is monomer addition to the propa-
gating chain)

3M

3C
= −:p [M]

∞∑
==1

[P=•] = −:p [M]_0 (2.15)

The method of the moments has been widely used in studies of the ATRP polymerization, not
only to predict the monomer conversion and the PDI, but also to study the reaction kinetics and
the sensitivity to the kinetic parameters and initial conditions. Some examples of these studies
are briefly described bellow:

• In Lyra et al. (2019) the method of moments was used to predict the monomer conversion,
the"= and the PDI of an ARGET-ATRP system. Following the estimation of some kinetic
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parameters, the model was able to make a good prediction of the experimental data. Then,
it was used to study the kinetic model sensitivity to the initial conditions and the kinetic
parameters, obtaining important conclusions of their effect on the conversion, "= and
PDI;

• In Vieira and Lona (2016) a model based on the method of moments was used to establish
the limit temperature for the ATRP of styrene. However, the model prediction has not
been tested with experimental data, an approximate limit value was specified through
several simulations with different temperature values;

• In Vieira et al. (2015) the model was used to optimize the condition of a ATRP system.
In order to obtain the values of temperature, catalyst and initiator concentration that can
produce polymers with the lowest PDI but ensure the highest possible monomer con-
sumption;

• In Al-Harthi et al. (2006) an ATRP system model using bifunctional initiators was formu-
lated. The use of these initiators allow to increase simultaneously the rate of polymeriza-
tion and the polymer final molecular weight, which is not possible with monofunctional
initiators. The developed model was compared to a model with monofunctional initiators,
confirming this theory;

• In Zhou and Luo (2014) a model was formulated to simulate a SARA-ATRP polymer-
ization reaction, but using Cu0 as the SARA agent. In this work, the model includes
diffusion limitation, and studies the effect of the kinetic rate constants corresponding to
the supplemental activation of propagating radicals/chains and regeneration of CuI/L by
Cu0 in the monomer conversion, "= and PDI.

These previous works not only prove that the momentum method is a powerful tool for mod-
eling polymerization reactions but the importance of modeling itself, and its utility to polymer
science. Other works regarding the use of the method of moments can be found in the literature
such as in Massicotte (2015) where ARGET-ATRP polymerization is modeled and simulated.
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Chapter 3

Sensitivity analysis

In this chapter a brief introduction to the sensitivity analysis (SA) topic will be made, involv-
ing: the definition of SA; a brief presentation of commonly used methods for SA, being the
SA methods addressed in this work analyzed in a more detailed way; discussion of some SA
applications in the literature; and the settings used in the SA performed in this thesis.

3.1 Definition

Sensitivity analysis was defined by Saltelli (2002b) as the study of how the uncertainty in the
output of a model can be distributed over different sources of uncertainty in the model inputs
(e.g., model parameters). A sensitivity analysis is performed when one or more of the following
objectives is intended to be achieved (Qian and Mahdi, 2020):

• Ranking the model inputs in function of there importance to the variability of the output.
Those achieving the higher score are the focus of experimental and numerical estimation,
because they are the ones that, if correctly determined, will lead to the largest decrease in
output uncertainty;

• Identify which model inputs have little or no effect on the output variability. this allows
the modeller to reduce the complexity of the model by not taking into account this inputs
or setting them in fixed values;

• Mapping the effects of the inputs on the output, with the aim of finding the parameter
values where the model is stable or where it achieves the optimum conditions.

Along this chapter the model output will be defined by the letter . and the vector of inputs by
- , being . = 5 (-1, -2, ..., -8, ..., - ). There are two main types of sensitivity methods: The
local and global sensitivity methods.
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3.2 Local sensitivity analysis methods

Local or one-at-time (OAT) sensitivity methods study the variation of a single input while the
others are kept constant (Cariboni et al., 2007). This analysis can be done by changing each
input manually by a margin of their nominal value. A possible sensitivity measure ((!8 ) can be
calculated by Equation 3.1a, where .<0G8 represents the value of the model output generated by
the maximum input value (-<0G8 ), being that .<8=8 and -<8=8 have a similar definition (Saltelli
et al., 2019). Another alternative to measure sensitivity, can be the calculation of a sensitive
index by computing the partial derivatives of the output with respect to the input study, as
represented in Equation 3.1b. Here, W8 is a constant whose value change depending on the
method used (for more information the reader is refereed to Qian and Mahdi (2020)) and - ∗8 is
the point where the derivative is evaluated (Saltelli et al., 2019). ´

(!8 =
.<0G8 − .<8=8

-<0G
8
− -<8=

8

(3.1a)

(!8 = W8
m.

m-8

���
-=- ∗

8

(3.1b)

Local methods are relatively simple and, when applied, usually have a low computational cost.
These approaches should not be used when the model features strongn nonlinearities. The
reason for this, is that these methods do not cover all the input space (i.e., all possible combi-
nations of input values). This is aggravated when the number of inputs studied increases (Qian
and Mahdi, 2020; Saltelli et al., 2019). To illustrate this problem, an example is retrieved from
Saltelli et al. (2019). For example, in a sensitivity analysis for the study of 3 inputs, being their
range of variation of 1 unit, the input space can be represented by a three-dimensional cube
with a side length of one (Figure 3.1). If the inputs are moved one at a time from the center
with a distance of 1

2 , these points will be on the faces of the cube not exploring their corners. In
reality, as explained in Saltelli et al. (2019), these points are on the surface of a sphere that is
inside and tangent to the cube, represented by a red color in Figure 3.1. The ratio between the
sphere and cube volume in this case is about 0.52, meaning that a lot of space is not explored.
As one can imagine, due to the so-called "curse of dimensionality" when the number of inputs
increases the volume ratio will decrease, expanding the unexplored space. For example, if there
are 10 inputs the ratio between the "hypersphere" and the "hypercube" will be 0.0025, proving
that local approaches should not be used, unless the model is linear. Another factor that needs
to be accounted is that interactions between model inputs are only detected by moving all si-
multaneous, which is not done in local approaches (Saltelli and Annoni, 2010; Saltelli et al.,
2019). In these cases, when the model is nonlinear, global methods should be used.
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Figure 3.1: Graphical representation of a 3 dimensional input space [Retrieve from Saltelli
et al. (2019)].

3.3 Global sensitivity analysis methods

In the global sensitivity analysis (GSA) methods the sensitivity is evaluated at multiple points of
the input space. Then these sensitivity measures are aggregated, for example, by calculating the
average value (Wang and Solomatine, 2019; Qian and Mahdi, 2020). There are several methods
that can be used to perform a GSA, and the choice of which method to use, depends on the
modeller objective, number of inputs, the output study and the audience to which the results
will be presented (Saltelli et al., 2008). In this work, a brief introduction of the main global
methods used will be done. Also, the theoretical and numerical procedure of the GSA methods
applied in this thesis will be described in more detail. Although, there are many other methods
that can be used for a GSA study. It would not be possible to carry out this work in due time,
describing all. This thesis focus on three commonly applied methods reported in the works of
Saltelli et al. (2008) and Wang and Solomatine (2019). Also, an argument in favour of these,
is that they are a good starting point to initiate a GSA study, because of their simplicity and
adequacy to handle non-linear models. The reader is refereed to the review of Qian and Mahdi
(2020) for more details on the others methodologies.

3.3.1 Elementary effects method

The elementary effects (EE) or Morris method can be seen as a global version of the local
approach described above, being one of the most used methods to perform GSA. The elemen-
tary effect of -8 can be defined by Equation 3.2, where Δ is the step-size or increment, of the
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parameter variation (Yao, 2015; Qian and Mahdi, 2020).

��8 =
. (-1, -2, ..., -8−1, -8 + Δ, ..., -:) − . (-1, -2, ..., -8−1, -8, ..., -=)

Δ
(3.2)

Basically the EE method approximates the sensitivity derivatives, in multiple points, by using
finite differences with the objective of obtaining an distribution of elementary effects for each
input. Then, the mean (`8) and the standard deviation (f8) of this distribution are calculated. `8
measures the overall influence of the input, and f8 gives information about if the input factor
is non-linear or/and is taking part in interactions (Saltelli et al., 2019). The process to generate
these distributions is simple. First, the inputs are rescaled to an uniform distribution between
[0, 1]. Initially, the inputs are set randomly inside this interval, then one factor is incremented or
decremented ( by a Δ) and Equation 3.2 is applied. From this new value of EE, a different input
is changed. This is done until it is calculated one elementary effect for each input. Then, the
process will be repeated by setting the inputs in different starting values, obtaining A elementary
effects per input, and computing the corresponding distribution (Qian and Mahdi, 2020). This
method has a medium computational cost, being mainly used for factor screening (i.e., deciding
which are the most important model parameters) when there is a high number of inputs, between
20-100 (Saltelli et al., 2008; Qian and Mahdi, 2020).

3.3.2 Variance based methods

Variance based sensitivity analysis (VSA) methods are the most popular technique used to per-
form a GSA (Wang and Solomatine, 2019). These methods calculate the proportion of the
model variance caused by each input factor. This includes their single effect and interactions
with 2 or more inputs (Wang and Solomatine, 2019; Qian and Mahdi, 2020). These methods are
based on the calculation of sensitivity indices, being the value of the single effect (given by the
value of the first order sensitivity index ((8)) for the input -8 calculated by Equation 3.3. The
meaning of the elements in this equation will be further discussed in the next section.

(8 =
+-8
(�-8
(. |-8))

+ (. ) (3.3)

The calculation of the sensitivity indices will need the computation of multidimensional inte-
grals, by brute force methods, which is not feasible due to long computational time needed,
especially for complex models (Saltelli et al., 2008; Wang and Solomatine, 2019). In order to
address these limitations, methods like Sobol and the Fourier amplitude sensitivity test (FAST)
were developed. The Sobol method is an efficient sample based approach, where the model
variance is decomposed into contributions from each input and their interactions, being the
most popular variance based method (Wang and Solomatine, 2019; Qian and Mahdi, 2020).
This type of approach is usually done for ranking and factor screening, and despite the new
alternative methods, such as Sobol, the computational cost is still high and their used is only
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recommended when the input factors are less that 20 (Saltelli et al., 2008). In order to reduce
the computational effort required by these methodologies, some authors use approaches based
on metamodeling. This topic is out of the scope of this thesis. For further details on this meta-
modeling approaches the reader is refereed to Saltelli et al. (2008) or Wang and Solomatine
(2019).

3.3.3 Regionalized sensitivity analysis

Regionalized sensitivity analysis (RSA) is an approach where it is intended to find the region of
parameter values that lead to a certain behaviour of the model, and to identify which parameters
are responsible for not obtaining that particular behaviour (Wu et al., 2017; Wang and Soloma-
tine, 2019). An important step in this method, is to define what is the "good" behaviour and
the "bad" behaviour of the model. For example, in a polymerization reaction the behavioural
output could be a PDI smaller that 1.10, and all the values superior to 1.10 would be considered
non-behavioural. Then, the model is evaluated with different input values and the simulation
results are split into two groups: those who are in the good behaviour zone; and those who
are not (Wang and Solomatine, 2019). Next, two Cumulative Distribution Functions (CDFs)
are generated for all the inputs. One with the input values that generate a behavioural output
and other with the ones that generate a non-behavioural output. This CDFs can be used to de-
termined the importance of each input and to locate the "good" parameter values (this will be
explained in more detail in the next section) (Wang and Solomatine, 2019). An usual method
of RSA is the Monte Carlo filtering (MCF). This method is described, in detail, in two books of
Andrea Saltelli (Saltelli et al. (2004, 2008)). One disadvantage of these methods, is that many
interactions between the inputs are not detected. RSA is usually used for factor mapping (i.e.,
see where the "good" values of the inputs are), and has a medium computational cost (com-
pared to EE and Sobol methods). Its application is usually recommended for less than 20 inputs
(Saltelli et al., 2008).
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3.4 Methods comparison

In Table 3.1 is represented a brief comparison between the sensitivity analysis methods pre-
sented in this thesis.

Table 3.1: Comparison between the methods used for SA (Saltelli et al., 2008; Qian and Mahdi,
2020; Yao, 2015).

Methods Local methods EE methods VSA methods RSA methods

Number of inputs No information 20-100 <20 <20
Computational cost Low Medium High High
Coping with non-linearity - + + +
Detection of interactions - + + +/-
Difficulty of the analysis Low∗ Medium∗ High Medium
∗ Expected difficulty. Only the VSA and RSA methods were implemented in this thesis

3.5 Applications of sensitivity analysis

Applications of sensitivity analysis can be found in the most varied fields, not only in exact
sciences, but also in economics and social sciences (Saltelli et al., 2019). In the literature, it
is possible to find very interesting works that deal with current problems. A work that stood
out in this research, due to the present world situation, was the GSA in Zhang et al. (2021)
of a COVID-19 model using the Sobol method. The authors main goal was to identify the
inputs that are the most responsible for the 4 outputs uncertainties (Susceptible Population,
Exposed individuals, Infected population and Dead bodies), with the aim that these results can
help governments, or other entities, to explore various policy options to control the COVID-19
pandemic. This is in line with a recent technical report by the European commission, entitled
"Uncertainty and Sensitivity Analysis for policy decision making", which tries to promote the
use of SA and Uncertainty analysis in models that assist policy decisions (Azzini et al., 2020).

Another field of application of SA, which is an important topic nowadays, is in environmental
science (EnvSci), being currently the subject that release the most amount of SA related papers
(Saltelli et al., 2019). One example of the application in EnvSci is reported by Campolongo
and Braddock (1999), where a GSA is performed, using a Morris method based approach, in
a model that predicts the climate change as a result of the emission of greenhouse gases by
human activity. At the end of the analysis, the authors conclude, what are the variables whose
measurement should be improved in order to improve the model prediction capacity. Another
example in this field is an application that brings together EnvSci and economy in Bolker et al.
(2021). Here a GSA is performed on a integrated climate-economic model, that is basically an
economic model that takes into consideration the climate dynamics, which can severally impact

18



Chapter 3. Sensitivity analysis

the economy. In this type of models SA is very important, because small changes in input values
can cause large variations in the output, so their relative importance must be investigated. These
three examples clearly show the importance and how valuable can be SA to assist in current
world problems.

The use of SA methodologies is also present in Engineering related articles, such as in the work
of Wu et al. (2017). In this Civil Engineering paper a SA is performed in a model that predicts
pavement distress, being a important tool for pavement design. For the SA the author uses the
MCF method, because the designers are interested to explore the zone/"region" of the model
output around the design limit and thus finding out the parameters that are most responsible
for exceeding that design criteria. In the end, the author obtains information on the inputs
ranking, which matches the conclusion of other authors using different SA methods. With the
a additional information about whether the effect of the inputs in satisfying the design criteria
is positive or negative across the entire range of variation (i.e., all possible values of the input
space). This one of the advantages, stated by the authors, for the use of RSA methods in this
specific case. Other works can be found in completely different areas of engineering, such as
in Biomedical Engineering. One such example is the article Zi et al. (2008), that reports the
development of a software to perform GSA in biological models. In fact a SA is so important
in this area that a recent review of SA methods untitled "Sensitivity analysis methods in the
biomedical sciences" was published in 2020 (Qian and Mahdi, 2020).

In Chemical Engineering it is also possible to find some works that preform SA in their mod-
els. In fact, in the book of Saltelli et al. (2008), a chemical reactor is used as a case study to
exemplify the use of GSA techniques. In these example, the thermal runaway of a batch reac-
tor is investigated, with the aim of finding the model inputs that will offer the better chance of
reducing the temperature variance. This GSA study was performed using several techniques.
This can also be looked as a example of how SA can help to ensure chemical process safety, by
investigate which inputs are the most responsible for creating dangerous conditions. Another
example, is a SA performed on a Spray Drying unit by Bhonsale et al. (2019). The main ob-
jective of this article is to demonstrate that GSA can be a model based approach to apply the
principles of quality by design paradigm (QbD) in the Pharmaceutical industry, where the Spray
dry unit is used.

Addressing specifically the area of polymer sciences reaction modeling, it is only possible to
find a limit amount of papers, modeling-related, that uses GSA techniques. One of the works is
described in Salas et al. (2019). Here, is intended to make an online kinetic parameter estimation
of a polymerization to synthesize Polyolefins ( i.e., polypropylene and polyethylene) in a semi-
batch reactor, by measuring the inlet of ethylene flow rate. This model has large number of
kinetic parameters, as it is common in polymerization reactions. Thus, the authors decided to
make a GSA to identify only the most important parameters to be estimated, keeping the others
in their nominal value. Using the Sobol method only two parameters were considered important
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to the model output. As a consequence, this approach decreased the computational cost of the
kinetic parameter estimation problem. Another work that uses GSA is published in Zubov and
Sin (2018) of a poly lactid acid (PLA) production model. The main goal is to develop a model
that relates the reactions conditions with the rheological proprieties in the final product. In
order to obtain a modeling framework that allows the development of PLA based materials with
specific rheological characteristics. A key part in this work is a GSA with the goal of obtaining
insights into the contribution of the model inputs to the predicted polymer quality.

Nevertheless, most of the papers in polymerization modeling use local methods. An interest-
ing example, due to the topic of these work, is a SA performed in a RDRP, by computing the
sensitivity derivatives in order to asses which parameters have the greatest importance to the
monomer conversion, "=, "F and the PDI (Flores-Tlacuahuac et al., 2003). From this analysis
the authors conclude that for the monomer conversion and"= the most important kinetic param-
eters are the propagation, initiation and termination constant, being moderately influenced by
the equilibrium parameters (activation and deactivation rate constants). These last two param-
eters are the most important for the "F and PDI. Nevertheless, other works can be found that
also used derivatives, such as in Thomas and Kiparissides (1984), where a SA is perform in a
free-radical polymerization model. In Lyra et al. (2019) a SA is applied by using the one-at-time
method.

These works present important conclusions, but as explained above local methods only explore
a very confined space of all possible input combinations. In addition, the polymerization kinetic
models are normally constituted by several parameters and non-linear. Thus, global methods
must be used to make a correct SA. This preference for local methods is not only a problem of
polymer science modeling but can also be visualized in other areas. For example, in a recent
study presented in Saltelli et al. (2019), were analysed 28 articles that perform SA in chemical
engineering related models. Only 12 of this works used GSA methods being that 16 models
were non-linear (for the rest of the models analysed it was not possible to determine whether
they are linear or non-linear). This lack of use of global techniques and possible bad practices
when a SA is realized, can be due to numerous factors, such as (Saltelli et al., 2019): sensitivity
analysis is not considered an unified discipline in the various branches of modeling; lack of good
statistical background by the modelers; the meaning of sensitivity analysis is not understood;
afraid of finding possible errors in the model; lack of comparative studies in the various areas
of modeling.

3.6 Detailed methods

In this work is intended to make a GSA to discover the most important kinetic parameters in
SARA-ATRP system by exploring all the parameter space. This will be done in order to gain
extra knowledge on the reaction mechanism, with the intention of this results being further used
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in possible model improvements. Proving that GSA can be an useful and an easy to apply tool
in polymerization modeling. For this matter it was decided to use two different methods: the
variance based Sobol method and the regional based Monte Carlo filtering. In order to compare
and show two different possibilities that the modelers could apply in their model. These two
methods will be described in detail in the next subsections.

3.6.1 Monte Carlo filtering

In MCF the values of the model output variable under analysis are classified into two different
realizations, the behavioural output (�) and the non-behavioural output (�). The behavioural
realization is where the output result meets the requirements pre-established by the modeller,
i.e., it is in the good behaviour zone of the model. Other outputs outside this zone belong to the
non-behavioural domain because they not fulfil the model target (Saltelli, 2002a; Saltelli et al.,
2008).

The MCF procedure is simple. First several input values are generated and propagated into the
model and, a response is obtained for eah combination of parameters. Then, according to the
model target, each output obtained is categorized belonging to the � or � group. In the next
step the values of the parameters that originates a model output in the � zone are separated
from the ones that do not fulfil the model target, creating two subsets for each parameter, the
subsets (-8 |�) and (-8 |�). These subsets are from two different unknown probability density
functions, 5= (-8 |�) and 5= (-8 |�). In order to find the most important parameters 5= (-8 |�) and
5= (-8 |�) are compared. If for a given parameter there is a significant difference between the two
distributions, it means that the input is important for driving the model to the target behaviour
(Saltelli et al., 2008).

For the comparison between the two probability density functions the statistical two sample
Kolmogorov-Smirnov (K-S) test is applied. This is a hypothesis test used to quantify the dif-
ference between two cumulative distribution functions (CDFs), �= (-8 |�) and �= (-8 |�). The
null hypothesis of this test is that the two CDFs are equal (Equation 3.4) and the alternative
hypothesis is that they are different (Equation 3.5) (Wu et al., 2017; Saltelli et al., 2008)

�0 : �= (-8 |�) = �= (-8 |�) (3.4)

�1 : �= (-8 |�) ≠ �= (-8 |�) (3.5)

The two sample K-S test gives two results, the 3=,= which represents the maximum distance
between the two CDFs (Equation 3.6) and the ? − value which is the probability, considering
that the null hypothesis is true, to obtain a 3=,= as large as the one obtained between the two
distributions studied.

3=,= (-8) = BD? | �= (-8 |�) − �= (-8 |�) | (3.6)

To classify the parameters, according to the ?-value, the strategy represented in the Table 3.2
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was used. This classification is recommended by Saltelli et al. (2004) and is used in the work
of Wu et al. (2017). The 3=,= statistic can be used as a sensitive measure to rank the input
parameters, but it must be taken into consideration that this value often does not take into
account input interactions (Yao, 2015; Wang and Solomatine, 2019). The model interaction
structure can be briefly analysed by a bivariate correlation analysis of the filtered samples (i.e.,
by calculating the correlation coefficient between 5= (-8 |�) of each pair of parameters) (Saltelli
et al., 2004, 2008). This analysis will be performed in this work following an example presented
in Saltelli et al. (2004). Performing this analysis, when is stated that the inputs interact, it means
that they interact in order to obtain a behavioural output (for more information the reader is
refereed to Saltelli et al. (2004)).

Table 3.2: Parameter classification in function of the ? value.

? value Classification

< 1% Critical
1% − 10% Important
> 10% Insignificant

The CDFs can give an important information, about the range of the input space where there is
more probability of obtaining an output in the good behaviour zone. In order to explain how
this can be visualised trough the CDFs, Figure 3.2 is taken as an example. In this figure is
represented a plot of the two CDFs, �= (-8 |�) and �= (-8 |�), for a model parameter study in this
work. In this figure, is possible to analyse that in low values of the input the �= (-8 |�) curve
is steeper than �= (-8 |�). This indicates that there is more probability of obtaining an output
in the behavioural zone by using low values of the input range (i.e., between 4.85 × 10−6 and
1.21× 10−5, in this example) (Yao, 2015; Saltelli et al., 2008). This is very helpful in a way that
can give the modeler information on what range of values of the input should be used, in order
to obtain a behavioural response. If the slope of the �= (-8 |�) is zero it means that if it is used a
input value in that range, there will be zero probability of obtaining a behavioural output.
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Figure 3.2: Example of a CDFs plot.

3.6.2 Sobol method

The Sobol method is part of the variance based global sensitivity analysis methods and it was
developed by the Russian mathematician Ilya Sobol and first publish in Sobol (1990). This
method was developed in order to accelerate the computation of the sensitivity indices by using
an efficient sample based approach (Wang and Solomatine, 2019). When all the model param-
eters vary within a determinate range, the uncertainty of the output can be quantified by the
output unconditional variance (+ (. )). + (. ) can be defined by (3.7), trough the elements of this
equation it is possible to study which are the most influential parameters (Ochoa et al., 2016;
Saltelli et al., 2008).

+ (. ) = �-8
(+-8
(. |-8)) ++-8

(�-8
(. |-8)) (3.7)

The meaning of �-8
(+- 8
(. |-8)) and+-8

(�-8
(. |-8)) is quite difficult to understand and visualise

at a glance, especially when one does not have a good statistical background. But in a simple
way, and by the explanation given in Ochoa et al. (2016), �-8

(+- 8
(. |-8)) is the expected value

over all the possible values of the parameter -8 of the conditional variance of . under the
variation of all the parameters except -8 . On the other hand,+-8

(�-8
(. |-8)) can be defined as

the variance over all possible realizations of the parameter -8 of the conditional expected value
of the output . under the variation of all the parameters expect -8 (Ochoa et al., 2016). These
metrics can give useful information of the input importance, because if �-8

(+- 8
(. |-8)) is small

and +-8
(�-8
(. |-8)) is higher, it means that the input is important (Note: This again can be hard

to mentally visualize why) (Saltelli et al., 2008). To measure the importance of a given input
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(-8) in relation to the output, the first order sensitivity index ((8) can be calculated by (3.3). This
sensitivity index varies between 0-1, and the higher the value, the more important the parameter
is (Saltelli et al., 2008).

Ilya Sobol proposed a way of calculating this index using a Monte-Carlo based approach, eval-
uating the function . = 5 (-1, -2, ..., -8, ..., - ) multiple times with different input values. The
demonstrations made by Sobol can be found in the Appendix A in Section A.1.

These demonstrations also enable the calculation of the total Sensitivity indices (()8 ), which
accounts for the total contribution of a given input to the variation of the model output, i.e., it
takes into account both the individual contribution of the parameter as well as its interactions
with the other inputs. The total sensitivity indices were not explicit introduced by Sobol but
rather by Tomshimitsu Homma and Andrea Saltelli in Homma and Saltelli (1996) (Saltelli et al.,
2008). In addition to (3.7) + (. ) can be calculated by Equation 3.8 (Saltelli et al., 2008).

+ (. ) = �-8
(+-8
(. |-∼8)) ++-8

(�-8
(. |-∼8)) (3.8)

The definition of �-8
(+-8
(. |-∼8)) and +-8

(�-8
(. |-∼8)) in (3.8) is very similar to the definition

of �-8
(+-8
(. |-8)) and +-8

(�-8
(. |-8)), except that for this case the conditional variance and the

conditional expected value is calculated by fixing all model inputs expect -8 . Dividing (3.8) by
+ (. ) the total sensitivity index can be calculated by Equation 3.9 (Saltelli et al., 2008).

()8 =
�-8
(+-8
(. |-∼8)

+ (. ) = 1 −
+-8
(�-8
(. |-∼8))

+ (. ) (3.9)

Analysing �-8
(+-8
(. |-∼8)) and+-8

(�-8
(. |-∼8)) and Equation 3.9 it is possible to verify that this

two metrics have a different behaviour that the one verified for �-8
(+-8
(. |-8)) and+-8

(�-8
(. |-8)).

Saltelli et al. (2008) describe a Monte-Carlo based numerical procedure, derived from the orig-
inal method proposed in (Sobol, 1990), to calculate the first order and the total order indices.
This method and its mathematical formulation were develop by Saltelli (2002a). The numerical
procedure starts by generating a matrix of # lines and 2 ( is the number of inputs under
studied) columns with the sampling of the model parameters. Then the matrix is divided in two
matrices, �(#, ) and �(#, ). Using the notation of Saltelli et al. (2008), these matrices are
given by:

� =

©«

-
(1)
1 -

(1)
2 ... -

(1)
8

... - 1
 

-
(2)
1 -

(2)
2 ... -

(2)
8

... - 2
 

... ... ... ... ... ...

-
(#−1)
1 -

(#−1)
2 ... -

(#−1)
8

... -#−1
 

-
(# )
1 -

(# )
2 ... -

(# )
8

... -#
 

ª®®®®®®®®¬
(3.10)

24



Chapter 3. Sensitivity analysis

� =

©«

-
(1)
 +1 -

(1)
 +2 ... -

(1)
 +8 ... - 1

2 

-
(2)
 +1 -

(2)
 +2 ... -

(2)
 +8 ... - 2

2 

... ... ... ... ... ...

-
(#−1)
 +1 -

(#−1)
 +2 ... -

(#−1)
 +8 ... -#−1

2 

-
(# )
 +1 -

(# )
 +2 ... -

(# )
 +8 ... -#

2 

ª®®®®®®®®¬
(3.11)

Then, another matrix, �8 (#, ), is defined for each of one of the parameters, with all columns
of � except the column corresponding to the parameter which is replaced by the corresponding
column of matrix �. An example of its form for the ith parameter is represented in (3.12).

�8 =

©«

-
(1)
 +1 -

(1)
 +2 ... -

(1)
8

... - 1
2 

-
(2)
 +1 -

(2)
 +2 ... -

(2)
8

... - 2
2 

... ... ... ... ... ...

-
(#−1)
 +1 -

(#−1)
 +2 ... -

(#−1)
8

... -#−1
2 

-
(# )
 +1 -

(# )
 +2 ... -

(# )
8

... -#
2 

ª®®®®®®®®¬
(3.12)

Then, the model output is computed for each line of the matrices (That have a different com-
bination of model input values) �, � and �, individually. In the end, there will be vector of
dimension # for which one of the matrices with the model output result (Equation 3.13).

~� = 5 (�) ~� = 5 (�) ~�8 = 5 (�8) (3.13)

With these three vectors it is possible to obtain the first order and the total sensitivity indices.
Trough some demonstrations, the sensitivity indices can be calculated by Equation 3.14. For
more information see Appendix A in Section A.2 and (Saltelli, 2002a).

(8 =
*8 − �2(. )
+ (. ) (3.14)

The elements of Equation 3.14, have the advantage of being possible to approximate their value
by Monte Carlo methods. Then, � (. ) can be approximated through the mean value as the
statistical estimator, using the values of ~ (�) given by Equation 3.15 (Note: ~ (�) can also be
used but in Saltelli et al. (2008) the authors choose to use the formula with the values of ~ (�),
being the same notation used in this work) (Saltelli, 2002a; Wu et al., 2012).

� (. ) ≈ 5̂0 =
1

#

#∑
9=1

~
9

�
(3.15)

*8 in Equation 3.14 can be approximated by the estimator *̂8 . This estimator can be calculated
by Equation 3.16 (Saltelli, 2002a; Saltelli et al., 2008).

*8 ≈ *̂8 =
1

#

#∑
9=1

~
9

�
~
9

�8
(3.16)
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The + (. ) is approximated by Equation 3.17, where +̂ is calculated by (3.18).

+ (~) ≈ +̂ − 5̂0 (3.17)

+̂ =
1

#

#∑
9=1

(~ 9
�
)2 (3.18)

To calculate the total indices, Homma and Saltelli took advantage of the work done by Sobol.
In Homma and Saltelli (1996) it was proposed the estimator *∼8 , for the calculation of these
indices (3.19), where the value of *∼8 can be approximated by *̂∼8 (Homma and Saltelli, 1996;
Saltelli, 2002a).

()8 = 1 − *̂∼8 − �
2(. )

+ (. ) (3.19)

In Saltelli et al. (2008) it was proposed to calculate *̂∼8 using Equation 3.20.

*∼8 ≈ *̂∼8 =
1

#

#∑
9=1

~
9

�
~
9

�8
(3.20)

At first, in this thesis the method presented in Saltelli et al. (2008) was implemented in MAT-
LAB®. Later on, after analysing the existing literature, it was found some modification to this
methods proposed by Saltelli, with the aim of improving it. One of the most interesting modifi-
cation is presented at Wu et al. (2012). This method was developed with the aim of increasing
the computing efficiency and to accelerate the convergence of the classic Saltelli numerical pro-
cedure. This method was already used in a sensitivity analysis performed on a co-polimerization
reaction in Salas et al. (2019). In particular, in this method another matrix is defined, which,
contrary to the matrix�8 , has all columns of � except the column corresponding to the parame-
ter which is taken from �. In this thesis, this matrix is represented by the letter �8 . An example
of its form for the ith parameter is represented in (3.21).

�8 =

©«

-
(1)
1 -

(1)
2 ... -

(1)
:+8 ... - 1

 

-
(2)
1 -

(2)
2 ... -

(2)
:+8 ... - 2

 

... ... ... ... ... ...

-
(#−1)
1 -

(#−1)
2 ... -

(#−1)
:+8 ... -#−1

 

-
(# )
1 -

(# )
2 ... -

(# )
:+8 ... -#

 

ª®®®®®®®®¬
(3.21)

Wu et al. (2012) have also proposed new formulas for the statistical estimators. These are given
in Table 3.3, where they can be compared with the original formulation.
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Table 3.3: Statistical estimators.

Estimator Saltelli et al. (2008) Wu et al. (2012)

5̂0
1
#

∑#
9=1~

9

�
1
2#

∑#
9=1(~

9

�
+ ~ 9

�
)

*̂8
1
#

∑#
9=1~

9

�
~
9

�8

1
2#

∑#
9=1(~

9

�
~
9

�8
+ ~ 9

�
~
9

�8
)

*̂∼8
1
#

∑#
9=1~

9

�
~
9

�8

1
2#

∑#
9=1(~

9

�
~
9

�8
+ ~ 9

�
~
9

�8
)

+̂8
1
#

∑#
9=1(~

9

�
)2 1

2#

∑#
9=1((~

9

�
)2 + (~ 9

�
)2)

In Homma and Saltelli (1996) it is also stated that better estimates of the first and total order
Sobol indices, can be accomplished by using the Ŵ estimator for calculating the numerator terms
in (3.3) and (3.9), as follows:

+-8
(�-8
(. |-8)) = *8 − W2 (3.22)

+-8
(�-8
(. |-∼8)) = *̂∼8 − W2 (3.23)

This estimator is not used in the method presented in Saltelli et al. (2008), but in Wu et al.
(2012) a new formula is proposed, which is given in (3.24).

W2 ≈ Ŵ2 = 1

2#

#∑
9=1

(~ 9
�
~
9

�
+ ~ 9

�8
~
9

�8
) (3.24)

In this thesis, it will be used the W to calculate the sensitivity indices, when using the method of
Wu et al. (2012). At first glance, one of the disadvantages of the new modification could be the
computational effort necessary compared to the one presented in Saltelli et al. (2008). This is
because in the later the number of model evaluations is # ( + 2) whereas for this new method
is # (2 + 2). For a # = 1000 and with 13 parameters the first method will need 15000 model
evaluations and 2nd method 28000 model evaluations. However, it should be noted that this
method was also developed to accelerate the convergence of the indices. Thus, it is expected
that using the new strategy of Wu et al. (2012) will require a smaller # . Further on, the two
methods will be compared by using a simple analytical function as a case study.

It is important to mention some properties of the sensitivity indices in order ensure a correct
interpretation of the results of the sensitivity analysis (Saltelli et al., 2008), such as:

• (8 indicates how much, on average, the output variance can be reduced if -8 could be
fixed;

• ()8 is always equal or larger than (8 , and when it is equal it means that -8 has no interac-
tions with other inputs;

• If ()8 = 0 it means that -8 is a non-influential factor that does not affect the output vari-
ance;

•
∑
8 (8 is always equal or smaller than one, and

∑
8 ()8 is always equal or higher than one;

• 1 −∑
8 (8 is an indicator of the presence of interactions in the model.
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To assist in the interpretation of the results of the sensitivity indices, a threshold of 0.05 is
applied. Therefore, if the first order and the total sensitivity index is less than 0.05 the parameter
is considered unimportant, i.e., the output is considered to be independent of that input. This
criteria was adopted in this thesis from Bhonsale et al. (2019).

3.7 Settings for GSA

In this section it will be presented some important settings that need to be defined before starting
the sensitivity analysis, such as: the model output; the parameters input space; and the sampling
method.

3.7.1 Model output

The model output for this GSA will be defined as the error between the experimental data and
the model predictions. This is in fact a widely used strategy in GSA instead of calculating
the sensitivity of the model output directly (Wang and Solomatine, 2019). In this thesis, the
error will be evaluated with respect to the monomer conversion, PDI and "=. To do so, the
normalized root mean square error (NRMSE) represented in (3.25) is used, where ~4G?, 8 is the
ith experimental value, ~?A4E, 8 is the ith value predicted by the model, #4G? is the number of
experimental points and ~4G? is the average of the experimental values. It was decided to use
this error instead of the root mean square error (RMSE), as in Wang and Solomatine (2019),
due to the fact that the outputs have very different scales of variation.

#'"(� =

√∑#4G?

8=1

(~exp, i−~prev, 8 )2
#exp

~exp
(3.25)

Other choices of outputs can be found in the literature for dynamic models. For example in
Ochoa et al. (2016) and Qian and Mahdi (2020) the authors used the Sobol method and calcu-
lated the total and first order sensitivity indices at several time points, obtaining their variation
along time. This approach allows to verify how the importance of the inputs changes with
time. However, it was concluded that this methodology would be much more difficult to im-
plement, would require more computational time and the discussion of results would be more
difficult. Hence, it was decided that using the NRMSE would be the best alternative. Once
the output of the model is defined, is possible to specify the threshold between the behavioural
and non-behavioural for the MCF method application. Given that the model will be simulated
first, with literature parameters, the NRMSE will be calculated for these simulations. Tanking
into account that one of the goals of the SA is to identified critical parameters for model im-
provements, it makes sense that a behavioural response would correspond to a NRMSE lower
that the one obtained with simulations using the original kinetic parameters. Also, note that the
threshold for the 3 outputs can be only specified after these first simulations.
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3.7.2 Input space

Defining the input space is a difficult part of sampling-based GSA, because the range o variation
could be unknown. This is particularly difficult in relatively new reaction such as the one studied
in this thesis. In Lyra et al. (2019) the author does a sensitivity analysis of a ARGET-ATRP
system by one-factor-at-time, changing the deactivation, activation and the reduction constant
between 0.1 × =><8=0; E0;D4 and 10 × =><8=0; E0;D4. In this work, it was decided to use the
same procedure for the kinetic parameters study. In fact, changes in the input space study can
severely affect the outcome of the GSA (Qian and Mahdi, 2020). Because at this stage there
is no information on real parameter variation, it was decided to test two more intervals with a
smaller size (see Table 3.4 ).

Table 3.4: Parameters input spaces for the sensitivity analysis.

Interval Lower Bound Upper bound

1st 1
10× Nominal value 10× Nominal value

2nd 1
5× Nominal value 5× Nominal value

3rd 1
2× Nominal value 2× Nominal value

The ranges of variation are not equidistant from the nominal value, as it is usual in a GSA study.
This is because it is impossible to do a variation in percentage using the range as in Lyra et al.
(2019), without obtaining negative kinetic parameters.

3.7.3 Sampling approach

The sampling for the calculation of the sensitivity indices and MCF is done by using the Sobol
quasi-random numbers sequence, as recommended in Saltelli et al. (2008). This quasi-random
sequences ensure that the samples fill the input space more uniformly, avoiding gaps and clus-
ters, which occur when random number generators are used. This will typically result in a faster
convergence and more stable results (Qian and Mahdi, 2020). A simple example is presented
in the Figures 3.3a and 3.3b for two inputs uniformly distributed over 0 and 1, where one is
sampled using the Sobol quasi-random numbers and the other is sampled by a random number
generator, for this example was decided to sample 10000 points.
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(a) By the Sobol quasi-random number generator. (b) By a random number generator.

Figure 3.3: Input space generated by two different number generators for the same number of
points.
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Chapter 4

SARA-ATRP kinetic model formulation
and numerical simulation

In this chapter the kinetic model proposed in Krys et al. (2017) is described with the model
assumptions and the formulation of the mass balances. The reaction scheme is described in
Section 4.1 followed by the model assumptions in Section 4.2 and the dynamic model formu-
lation in Section 4.3. Finally, the numerical simulation results are presented and discussed in
Section 4.4.

4.1 Reaction scheme

The formulation of the kinetic model of a SARA-ATRP (4.1) is based on the reaction scheme
described by Krys et al. (2017). In Krys et al. (2017) it was only considered termination by
combination. This is in fact a good approximation used by others modelers in similar studies,
as reported for example in Monteiro et al. (2007). This approximation is done because it was
demonstrated that acrylate radicals predominantly end by combination (Ribelli et al., 2017),
although some chains can still terminate by disproportionation. In Bamford et al. (1969) it
was determined that for free-radical polymerization of methyl acrylate (MA) 0.13 of the chains
terminate by disproportionation. This reaction was also considered in the kinetic model of Lyra
et al. (2019) and Zhou and Luo (2014) of a MA polymerization. In this reaction scheme RX

represent the alkyl halide initiator, X− the halogen ion and P0 is a species formed from a radical
self-termination. The description of these kinetic rate constants is given in in Table 4.1.

Na2S2O4
KS−−−⇀↽−−− 2Na+ + S2O4

2− , (4.1a)

S2O4
2− Kdis−−−⇀↽−−− 2 SO2

• , (4.1b)

31



4.1. Reaction scheme

SO2
•− + RX

kappa0−−−→ R• + X− + SO2 , (4.1c)

SO2
•− + P=X

kappa0p−−−→ P=
• + X− + SO2 , (4.1d)

SO2
•− + CuIIX/L

kappred,CuL−−−−−−→ CuI/L + X− + SO2 , (4.1e)

SO2
•− + CuII/L

kappred,CuL−−−−−−→ CuI/L + SO2 , (4.1f)

RX + CuI/L
k01−−−⇀↽−−−−−
kd1

R• + CuIIX/L , (4.1g)

P=X + CuI/L
ka1p−−−−⇀↽−−−−−−
kd1p

P=
• + CuIIX/L , (4.1h)

CuI/L + X− ↽−−−−−
kdiss2

kass1−−−−−−−⇀ CuIX/L , (4.1i)

CuII/L + X− ↽−−−−−
kdiss1

kass2−−−−−−−⇀ CuIIX/L , (4.1j)

R• +M kadd−−−→ P1
• , (4.1k)

P=
• +M

kp−−−→ P=+1
• , (4.1l)

R• + R• kt0−−−→ P0 , (4.1m)

R• + P=•
ktR−−−→ D= , (4.1n)

P<
• + P=•

ktc−−−→ D=+< , (4.1o)

P<
• + P=•

ktd−−−→ D= +D< , (4.1p)

Table 4.1: Meaning of the rate constants in 4.1.

Nomenclature description

 s dissolution of inorganic salt equilibrium constant
 dis dissociation of inorganic salt equilibrium constant
:
app
a0 apparent rate of initiator activation by SO2

•

:
app
a0p apparent rate of dormant chain activation by SO2

•

:a1 rate constant of initiator activation
:d1 rate constant of radicals deactivation
:ass1 rate constant of association of the CuI/L halidophilicity equilibrium
:diss1 rate constant of dissociation of the CuI/L halidophilicity equilibrium
:ass2 rate constant of association of the CuIIX/L halidophilicity equilibrium
:diss2 rate constant of dissociation of the CuIIX/L halidophilicity equilibrium
:t0 rate constant of termination between two radicals
:tR rate constant of termination between a radical and a propagating chain

The SO2
• is involved in the supplementary activating reaction of the alkyl halide initiator and

dormant chains (4.1c, 4.1d) and is a reduction agent of CuIIX/L and CuII/L (Equations 4.1e
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and 4.1f). This compound is formed from Na2S2O4 by two successive reactions (Equations
4.1a and 4.1b). The rate of the first reaction (Equation 4.1a) is very dependent on the reaction
medium, due to the solubility of Na2S2O4 changing with the polarity of the solvent. When
polar solvents are used ( e.g., aqueous solvents), where Na2S2O4 is totally soluble, there will
be a large concentration of SO2

•− in the beginning of the reaction. On the other hand, if non-
polar solvents (e.g., organic solvents) are used, the concentration of SO2

•− will be constant and
low throughout the polymerization (Abreu et al., 2017; Krys et al., 2017; Góis et al., 2014). In
this reaction scheme, the direct initiation of growing chains by SO2

• is neglected, as it has been
proven that this reaction is slow compared to the remaining ones (Krys et al., 2017).

The ATRP equilibrium between (macro)alkyl halides and (macro)radicals is represented by
(4.1g) and (4.1h). Equations (4.1i) and (4.1j) represent the halidophicility equilibrium of CuIIX/L
and CuI/L complexes (Krys et al., 2017). The reactions of first monomer addition, monomer
addition to propagating chains, termination between two radicals, termination between a radical
and a propagating chain and termination between two propagating chains by combination and
disproportionation are represented by Equations 4.1k, 4.1l, 4.1m, 4.1n, 4.1o and 4.1p, respec-
tively.

4.2 Model assumptions

For the development of the kinetic model it is first necessary to state the main assumptions in
its formulation. The model prediction will be compared to the experimental data obtained in
Krys et al. (2017). The data are relative to the polymerization of MA at 30ºC, using a mixture
of 90 % of ethanol (EtOH) and 10 % of water as solvent and Ethyl U-bromoisobutyrate as the
initiator. Taking into account similar works, the main assumptions are:

• isothermical polymerization reaction (Krys et al., 2017);

• the diffusion limitations are not taken into account (Huang et al., 2013; Lyra et al., 2019;
Massicotte, 2015);

• the volume variation is not taken into account (Lyra et al., 2019);

• rate constants are independent of polymer chain length (Huang et al., 2013; Massicotte,
2015; Vieira et al., 2015);

• the cooper salt is completely complexed with the ligand at the beggining of the reaction
(Lyra et al., 2019);

• the kinetic rate constants and the experimental data for the model validation, are taken
from a polymerization performed with a organic solvent. Taking into account the discus-
sion made in the previous section, the concentration of SO2

•− is assumed to be constant
throughout the reaction. Therefore, apparent rates are used in (4.1c), (4.1d), (4.1e) and
(4.1f). Thus, the reactions (4.1a) and (4.1b) can be neglected (Krys et al., 2017).
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4.3 Dynamic model formulation

In this section the mathematical expressions of the dynamic model will be presented.

4.3.1 The moments differential equations

The 0th, 1st and 2nd moments differential equations were obtained for the P=, P=X and D=

species. The development of these equations can be found in the Appendix B. The moment
differential equations for the P= are:

d_0
dC

= :
app
a0p `0 + :a1p [Cu

I/L]`0 − :d1p [CuIIX/L]_0

+ :add ["] [R] − :tR [R•] _0 − (:tc + :td )_0 _0 ,
(4.2)

d_1
dC

= :
app
a0p `1 + :a1p [Cu

I/L]`1 − :d1p [CuIIX/L]_1 + :p [M]_0

+ :add ["] [R•] − :tR [R] _1 − (:tc + :td )_1 _0 ,
(4.3)

d_2
dC

= :
app
a0p `2 + :a1p [Cu

I/L]`2 − :d1p [CuIIX/L] _2 + :p [M] (_0 + 2 _1)

+ :add ["] [R] − :tR [R•] _2 − (:tc + :td )_2 _0
(4.4)

It follows that the moment differential equations for the P=X are :

d`0
dC

= −:appa0p `0 − :a1p [Cu
I/L]`0 + :d1p [CuIIX/L]_0 (4.5)

d`1
dC

= −:appa0p `1 − :a1p [Cu
I/L]`1 + :d1p [CuIIX/L]_1 (4.6)

d`2
dC

= −:appa0p `2 − :a1p [Cu
I/L]`2 + :d1p [CuIIX/L] _2 (4.7)

Finally, the moment differential equations for the D= are given by:

dX0
dC

= :tR [R•] _0 + :td _0 _0 +
:tc

2
_0 _0 (4.8)

dX1
dC

= :tR [R•] _1 + ( :td + :tc ) _1 _0 (4.9)

dX2
dC

= :tR [R•] _2 + ( :td + :tc ) _2 _0 + :tc _1_1 (4.10)

4.3.2 Non-polymeric species molar balances

For the non-polymeric species (radicals, initiator, terminated radicals, activator, deactivator,
CuII/L, CuIX/L, monomer, sulfur dioxide and the halogen ion) a molar balance for each one
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is considered, resulting in the additional set of ordinary differential equations (4.11).

Radicals, R•

d[R]
dC

= :
app
a0 [RX] + :01 [RX] [Cu

I/L]

−  d1 [R•] [CuIIX/L] − :add [M] [R•]
− 2:C0 [R•]2 − :tR [R•]_0

(4.11a)

Initiator, RX
d[RX]
dC

= −:appa0 [RX] − :01 [RX] [Cu
I/L]

+ :d1 [R•] [CuIIX/L]
(4.11b)

Terminated rad., P0
d[P0]
dC

= :t0 [R•]2 (4.11c)

Activator, CuI/L

d[CuI/L]
dC

= :
app
red,X−CuL [Cu

IIX/L] + :app
red,CuL

[CuII/L]

− :01 [RX] [CuI/L] + :d1 [R•] [CuIIX/L]
− :a1p [CuI/L]`0 + :d1p [CuIIX/L]_0
− :ass1 [CuI/L] [X−] + :diss1 [CuIX/L]

(4.11d)

Deactivator,CuIX/L

d[CuIIX/L]
dC

= −:app
red,X−CuL [Cu

IIX/L] + :01 [RX] [CuI/L]

− :d1 [R•] [CuIIX/L] + :a1p [CuI/L]`0
− :d1p [CuIIX/L]_0 + :ass2 [CuII/L] [X−]
− :diss2 [CuIIX/L]

(4.11e)

CuII/L
d[CuII/L]

dC
= −:app

red,CuL
[CuII/L] − :0BB2 [CuII/L] [X−]

+ :diss2 [CuIIX/L]
(4.11f)

CuIX/L
d[CuIX/L]

dC
= :ass1 [CuI/L] [X−] − :diss1 [CuIX/L] (4.11g)

Monomer, M
d[M]
dC

= −:add [R] [M] − :p [M]_0 (4.11h)
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Sulfur dioxide, SO2

d[SO2]
dC

= :
app
a0 [RX] + :

app
a0p `0

+ :app
red,X−CuL [Cu

IIX/L] + :app
red,CuL

[CuII/L]
(4.11i)

Halogen ion, X–

d[X−]
dC

= :
app
a0 [RX] + :

app
a0p `0

+ :app
red,X−CuL [Cu

IIX/L] − :ass1 [CuI/L] [-−]
+ :diss1 [CuIX/L] − :ass2 [CuII/L] [X−]
+ :diss2 [CuIIX/L]

(4.11j)

Therefore, the dynamic model of this SARA-ATRP system is formed by of 19 ordinary differ-
ential equations (ODEs).

4.4 Numerical simulation

For the kinetic model simulation, the same kinetic parameters and initial conditions as in (Krys
et al., 2017) were used. These values are given in Tables 4.2 and 4.3, respectively. Also,
in the simulations performed in Krys and Matyjaszewski (2017) it was considered that the
initial concentration of X− is the same as the one of the deactivator ( [CuBr2]0 ). The same
consideration is used in this simulation.

Table 4.2: Kinetic parameters reported in Krys et al. (2017).

Parameter Value

:
app
a0 1.20 × 10−5 s−1

:
app
a0p 9.70 × 10−6 s−1

:
app
red,X−CuL 6.2 × 10−5 s−1

:
app
red,CuL

2.3 × 10−4 s−1

:a1 1.30 × 105 M−1 s-1
:a1p 6.30 × 103 M−1 s−1

:d1 3.70 × 107 M−1 s−1

:d1p 3.70 × 107 M−1 s−1

:p 1.47 × 104 M−1 s−1

:add 1.38 × 103 M−1 s−1

:t 2.45 × 108 M−1 s−1

:tR 1.00 × 108 M−1 s−1

:t0 8.00 × 108 M−1 s−1

:ass1 1.00 × 109 M−1 s−1

:diss1 3.10 × 107 s−1

:ass2 1.00 × 109 M−1 s−1

:diss2 6.10 × 104 s−1
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Table 4.3: Initial conditions.

Initial condition Value

Target DP 222.000
["]0 7.400 M
['- ]0 0.033 M
[CuBr2]0 0.003 M

The constant :t is defined by (4.12) (Young and Lovell, 2011). The rationale behind this equa-
tion is that some chains will terminate by combination and others by disproportionation. Thus,
to calculate the constants :tc and :td, it is necessary to multiply :t by the corresponding fraction
(see (4.13)).

:t = :td + :tc (4.12)

As mentioned before, the disproportionation reaction is considered in this work, using the frac-
tion of combination of 0.87 calculated in Bamford et al. (1969), for a free-radical polymerization
of MA. 

:tc = 0.87:t

:td = (1 − 0.87):t
(4.13)

For instance, thesimulations made by Lyra et al. (2019) and Zhou and Luo (2014) for the MA
ATRP, a 0.90 combination fraction was used, which is very close to the one calculated by
Bamford et al. (1969).

The kinetic model was implemented in MATLAB®, and was solved using the ode15s solver.
This solver is specific for stiff models. A stiff system is when one of the solutions of the ODE
varies slowly while another varies rapidly. This implies that the numerical method use a very
small integration step to obtain good results (Moler, 2003). This kinetic model is predicted to
be stiff due to the a priori knowledge of the reaction. For example, it is expected that the con-
centration of radicals from the initiator and the initiator will decrease sharply at the beginning
of the reaction, while the monomer concentration will gradually decrease over time.

In order to compare the model prediction with the experimental data obtained in Krys et al.
(2017), the profile of the monomer conversion, PDI and "= along the reaction time were ob-
tained. These profiles are presented in the Figures 4.1a, 4.1b and 4.1c, respectively. A simu-
lation time of 250 min was considered, because the last experimental point is available at 240
min. The experimental points are given in Appendix C in Table C.3.

From observing these Figures, it is possible to note that there is not a perfect match between the
model prediction and the experimental data. Through a visual comparison between the 3 plots it
appears that this error is more pronounced for the monomer conversion and"= profiles. For the
PDI, the model is able to predict the value well with the exception of the 1st and last two points.
This difference may be due to not being considered limitations by diffusion, as these are more
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(a) Monomer conversion vs time. (b) PDI vs time.

(c) "= vs time.

+

Figure 4.1: Profiles obtained along time.

pronounced at the end of the reaction, when the medium becomes more viscous. Nevertheless,
it is also verified that the 4th and 5th point are those with the largest deviation from the model
prediction in the "= profile. Also, it is possible to visualize that this two points show some
discrepancy in relation to the evolution of the "= along time. This could indicate that these
points could be affected by experimental errors.

The normalized root mean square error (NRMSE) was calculated using Equation 3.25. This
type of error was chosen instead of the more widely used root mean square error (RMSE)
because the values of the monomer conversion, the "= and the PDI are on different scales.

Table 4.4: Error between model prediction and experimental data.

Conversion PDI "=

NRMSE 0.1351 0.0386 0.1051

The results of the NRMSE values confirm the conclusions drawn from the visual analysis of the
profiles in Figure 4.1. The PDI presents the lowest error and by a significant margin compared
to the other outputs. Also, it follows that the monomer conversion shows the largest error.
Figures 4.2a and 4.2b show the profiles of PDI and "= in function of the monomer conversion.
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(a) PDI vs monomer conversion. (b) "= vs monomer conversion.

Figure 4.2: Profiles obtained along the monomer conversion.

It can be concluded that the model provides relatively good predictions of the PDI and the "=

in function of the monomer conversion, with the exception of the first experimental point in the
PDI profile. This is in accordance to the simulations results reported in Krys et al. (2017). It
is worth to note that the main objective of the model is not to predict well in this zone, since
it corresponds to the initial stage of reaction where the monomer conversion is very low (5%).
Also to be noted, that the"= has a linear evolution, as expected in reversible deactivation radical
polymerization reactions (Matyjaszewski and Davis, 2003).

In order to improve the model ability to predict the conversion and "=, there are, two options.
The first option is to increase the complexity of the model by considering fewer assumptions.
Another possibility is an optimization problem process, where the values of the kinetic param-
eters are estimated with the aim of reducing the error between the model prediction and the
experimental data. In this work was decided to pursue this last option.

This can be in fact a good opportunity to demonstrate the application of SA, as this model is
constituted by 17 parameters, and most certainly not all of these will have the same importance
to the monomer conversion and the"=. Trough the SA results, it will be possible to only choose
the important parameters to be estimated in the optimization, similarly to the work of Salas et al.
(2019), reducing the complexity of the kinetic estimation problem and the risks of overfitting
the model to this set of data.
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Chapter 5

Global sensitivity analysis results

In this chapter, the sensitivity analysis results obtained with the two GSA methods, the Monte
Carlo filtering (Section 5.2) and the Sobol method (Section 5.3), are presented. Also, in Section
5.4 a comparison between these two results is presented. One emphasizes that in order to reduce
the computational time of this sensitivity analysis, the MATLAB® parallel computing toolbox
was used in both methods.

5.1 Simplifications

5.1.1 Parameters studied

For this sensitivity analysis it was decided to study not all the model kinetic parameters. The
main reason behind this decision has to do with the total number of model runs necessary to
perform the Sobol method. As said before, the number of runs will depend on the number
of parameters, being # ( + 2) when using the method in Saltelli et al. (2008) or # (2 + 2)
if the method of Wu et al. (2012) is used. Obviously, a higher number of model parameters,
will increase the total number of model runs and consequently the computational time of the
analysis.Therefore the parameters that were not included are :ass1, :diss1, :ass2 and :diss. These
parameters correspond to the halidophilicity equilibrium that is not usually accounted in most
of the ATRP kinetic models found in the literature. Nevertheless, the model was tested without
these reactions and no significant differences were obtained. This proves that choosing these
kinetics constants it is the best option in order to reduce the number of model simulations and,
consequently, the computational time of the analysis.

5.1.2 Notation

As said in Chapter 3, three different input spaces will be studied. This is because the true range
of variation of the parameters under study is unknown, and different input spaces can affect the
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results of the GSA. The three input space intervals will be refereed simply as the 1st, 2nd and
3rd interval accordingly to the order they are given in the Table 3.4.

5.2 Monte Carlo filtering

The Monte Carlo filtering method was implemented in MATLAB® following an example de-
scribed in Saltelli et al. (2008). The MATLAB® Statistical and Machine learning toolbox was
used to apply the two sample K-S statistical test which is available in this toolbox.

Following the explanation given in the Section 3.6 of Chapter 3, the behavioural and non-
behavioural output will be defined as follow:

• �G → Have a NRMSE less than 0.1351;

• �G → Have a NRMSE higher than 0.1351;

• �%�� → Have a NRMSE less than 0.0386;

• �%�� → Have a NRMSE higher than 0.0386;

• �"= → Have a NRMSE less than 0.1051;

• �"= → Have a NRMSE higher than 0.1051.

5.2.1 Choosing the number of samples (N)

To apply the MCF method it is first necessary to choose the number of samples to be generated
(# ). In the case of MCF, # , corresponds to the number of model simulations. Recall that the
two sample Kolmogorov-Smirnov test (K-S test) gives two different outputs, the 3=,= and the
?-value. In order to choose the correct # , it was decided to check from which value of # the
3=,= remained constant or when its variation was minimum. This approach follows a similar
study reported in Wu et al. (2017).

The output 3=,= was chosen instead of the ?-value because this last tends to decrease as the
number of samples increase, except for the model parameters which have no influence on the
output. This is mainly due to the fact that if the size of the two distributions generated by the
model simulations for each parameter, 5= (-8 |�) and 5= (-8 |�), are larger, there will be a greater
probability that the two sample K-S test will find a difference between them. Thus, decreasing
the ?-value, which tends to 0 as the number of # increases (Thiese et al., 2016). This problem
is discussed in Lin et al. (2013), where is stated that small ?-values can be an artifact of a large
sample size and the interpretation of this value has to be critical and no conclusions should be
drawn from this number alone. This is commonly addressed as the ?-value problem (Lin et al.,
2013). In this thesis, the two results obtained from the K-S test, the 3=,= and the ?-value, will
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be analysed. The ?-value will be used to classify the parameters, following the classification in
Saltelli et al. (2004), and the 3=,= for ranking the parameters, working as a sensitivity measure.

As mentioned in Chapter 3, due to the difficulty in defining the correct sampling interval for
each parameter 3 different intervals will be studied, represented in Table 3.4. To choose the
number of # to apply the MCF method, it was decided only to study the variation of 3=,= along
# , using the 1st interval inputs range. This is that an initial analysis demonstrated that using the
inputs space of the 1st interval will require a larger # for 3=,= to converge. In order to maintain
consistency, in order to make a uniform comparison between this intervals, the number of #
concluded in this study will be the one used for the application of the MCF method when using
the 2nd and 3rd interval inputs range.

It was observed that by sampling the parameters within the range of the 1st interval and then
simulate the model with these values, the number of outputs obtained in the � was much smaller
than the outputs in �. Table 5.1 shows the results for 1000 model evaluations where there is a
big difference between the outputs with the expected behaviour and those without it, especially
for "= output. This is can be due to the fact that very extreme values of the parameters are
explored, which inevitably cause the model to have an off-target response.

Table 5.1: Number of outputs off-target and in-target with 1000 model evaluations.

Conversion PDI Mn

� 59 55 8
� 941 945 992

In order decide the number of # , the MCF was aplied for # = 1000, # = 1000 and # = 10000.
The results of 3=,= and ?-value in function of the ;>610(# ) are presented in the Figures 5.1a to
5.3b, for the three outputs. The ?-value profile is also studied to illustrate the explanation above.

(a) 3=,=. (b) ?-value.

Figure 5.1: Two sample Kolmogorov-Smirnov test statistics in function of ;>610(# ) for the
monomer conversion output.

From these figures it is possible to observe that in most of the cases the 3=,< values remain
constant or presents small variations between # = 10000 and # = 100000. The only clear
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(a) 3=,=. (b) ?-value.

Figure 5.2: Two sample Kolmogorov-Smirnov test statistics in function of ;>610(# ) for the
PDI output.

(a) 3=,=. (b) ?-value.

Figure 5.3: Two sample Kolmogorov-Smirnov test statistics in function of ;>610(# ) for the"=

output.

exception, is in Figure 5.3a, where it is possible to verify that some inputs, with a small 3=,=
still varied considerable between # = 10000 and # = 100000. On the other hand, in most of
the cases the ?-value does not converge within the number of # used. It can be also verified,
that this value decreases as the number of # increases, possibly changing the classification of
the parameter, following the classification in Table 3.2. Nevertheless, other pattern of variation
can be observed, such as in the case of :d1p, in Figure 5.3b. In this case, the ?-value decreases
between # = 1000 and # = 10000 but increases between # = 10000 and # = 100000. This
clearly shows that the value of # should not be chosen according to the ?-value. Based on
these data, it was decided to use a # = 10000. The reason for this decision is because for most
parameters the 3=,= shows a minimum variation between # = 10000 and # = 100000. The
only exception is in Figure 5.3b, where for some parameters the 3=,= value still varies between
# = 10000 and # = 100000. The parameters for which this occurs have a small 3=,=. Therefore,
they are considered insignificant parameters. Thus, it is not mandatory to obtain the most correct
3=,= value for these parameters. Also, using a # = 100000 could increase the number of inputs
considered important/critical due to the ?-value problem. Remark that if number of parameters
are considered critical/important, no meaningful conclusions can be drawn from this sensitivity
analysis. This problem can be more problematic if it is considered the 2nd and 3rd interval
parameter range, where it is expected a faster convergence of the 3=,= value.
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5.2.2 Monomer conversion output results

The results of the two sample K-S test for the monomer conversion output are presented in the
Table 5.2, 5.3 and 5.4 for the 1st, 2nd and 3rd interval, respectively.

Table 5.2: 1st interval monomer conversion
MCF result.

Parameter 3=,= Classification

:
app
a0 0.0210 Insignificant
:
app
a0p 0.1226 Critical
:
app
red,X−CuL 0.0713 Critical
:
app
red,CuL

0.0354 Insignificant
:a1 0.0190 Insignificant
:a1p 0.0209 Insignificant
:d1 0.0141 Insignificant
:d1p 0.0246 Insignificant
:p 0.8435 Critical
:add 0.0327 Insignificant
:t 0.1558 Critical
:tR 0.0247 Insignificant
:t0 0.0264 Insignificant

Table 5.3: 2nd interval monomer conversion
MCF result.

Parameter 3=,= Classification

:
app
a0 0.0177 Insignificant
:
app
a0p 0.1051 Critical
:
app
red,X−CuL 0.0678 Critical
:
app
red,CuL

0.0157 Insignificant
:a1 0.0162 Insignificant
:a1p 0.0212 Insignificant
:d1 0.0179 Insignificant
:d1p 0.0661 Critical
:p 0.7736 Critical
:add 0.0322 Insignificant
:t 0.1538 Critical
:tR 0.0322 Insignificant
:t0 0.0200 Insignificant

Table 5.4: 3rd interval monomer conversion
MCF result.

Parameter 3=,= Classification

:
app
a0 0.0169 Insignificant
:
app
a0p 0.1435 Critical
:
app
red,X−CuL 0.0970 Critical
:
app
red,CuL

0.0157 Insignificant
:a1 0.0149 Insignificant
:a1p 0.0181 Insignificant
:d1 0.0154 Insignificant
:d1p 0.0126 Insignificant
:p 0.7348 Critical
:add 0.0419 Critical
:t 0.2219 Critical
:tR 0.0192 Insignificant
:t0 0.0192 Insignificant

From these results it is possible to verify that the same parameters are critical, according to
the ?-value, in all 3 intervals (:p, :t, :

app
a0p and :app

red,X−CuL ). The only exception is the 2nd
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interval where :d1p is considered critical and in the 3rd interval where :add is also classified
as critical. Also, for all the intervals the parameter ranking, based on the 3=,<, was always
the same. Therefore, it follows that :p is the most influential parameter, with the largest 3=,<,
followed by :C , :

app
a0p and :0??

A43,-−�D!. For the second interval, :d1p appears as the 5th most
influential parameter. In the 3rd interval :add is also the 5th most influential parameter.

The result of :p being the most influential parameter was expected. It is the propagation rate
constant related to the monomer addition to the growing chain reaction, which is in the monomer
mass balance equation and in the propagation rate equation for a ATRP system. Although,
in a controlled polymerization system it is expected that there will be a low termination of
polymeric chains, :t appears as the second most influential parameter. This may be due to the
fact that the variation in the value of this constant will have an effect on the concentration of
propagating chains, thus changing the rate of propagation (See Equation 2.5), and consequently
the monomer conversion.

Regarding the specific parameters of the SARA-ATRP system, :appa0p and :app
red,X−CuL, from the

kinetic model it is possible to verify that these constants will directly affect the concentration
of dormant chains, activator and deactivator. These are all elements of Equation 2.5, thus af-
fecting the monomer conversion. The reason for :appa0p being more influential than :app

red,X−CuL
may be due to the fact that :appa0p is the constant of supplemental activation of dormant chains,
directly producing propagating chains. Also, it does makes sense that :d1p receives the critical
classification for the same reason as :appa0p and :app

red,X−CuL. Taking into account that the ATRP
equilibrium is the main reaction in this polymerization system, ( see Chapter 2) it should make
sense that :d1p has a higher sensitivity index than the one of :appa0p and :app

red,X−CuL. The impor-
tance of :add can be due to the fact that this parameter, similarly to the :p, appears directly
in the monomer mass balance equation (see Chapter 4), but their relative importance is only
acknowledged in the 3rd interval.

In Figures 5.4,5.5 ,5.6, 5.7 and 5.8 are presented the two CDFs, for the three intervals and for
the parameters that are classified as critical.

From these figures, it is possible to observe the bigger difference between the two CDFs for the
constant :p. This is in agreement with what was concluded previously, by the statistical two
sample K-S test, that :p is the most important parameter.

In an individual analysis of the results obtained for each parameter and taking into account the
slopes of the CDFs, it is possible to verify there is a higher probability of obtaining a behavioral
output by using low values of :p, :appa0p and :app

red,X−CuL, and high values of :t. In fact with a
certain range of :p values it is impossible to obtain a behavioural response.

Finally, it can be also verified that only in the 2nd interval the CDFs for :d1p present some
difference between them. Nevertheless, in this figure the two CDFs are very similar and no
meaningful conclusion can be taken on which interval of :d1p values there is more probability
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(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.4: CDFs of :p for the monomer conversion.

(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.5: CDFs of :t for the monomer conversion.

(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.6: CDFs of :appa0p for the monomer conversion.

(a) 1st interva. (b) 2nd interval. (c) 3rd interval.

Figure 5.7: CDFs of :app
red,X−CuL for the monomer conversion.

of obtaining a behavioural output. From the Figure 5.9c is possible to verify that by using low
values of :add there will be a higher probability of obtaining a behavioural output.
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(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.8: CDFs of :d1p for the monomer conversion.

(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.9: CDFs of :add for the monomer conversion.

As for the correlation analysis, a graphical representation of the empirical correlation matrix
was plotted, similarly to what was done by Saltelli et al. (2004). The result for the monomer
conversion is in the Figures 5.10a, 5.10b and 5.10c for the 3 intervals. An approximation of
these figures is given in the Appendix D in Figures D.1, D.2 and D.3 for the 1st, 2nd and
3rd interval, respectively. In Figure 5.10, the higher the correlation coefficient, the larger the
circle (in absolute value and between -1 and 1). When the coefficient is closer to 1 (positive
correlation) the color of the circle will be closer to red. If the coefficient is closer to -1 (negative
correlation), the color will approach the colour blue.

From the Figures, it is possible to observe that all the highest values of the correlation coefficient
involve the :p constant, suggesting that this parameter has a great interaction with the remaining
inputs. In particular with those parameters that have obtained the critical classification by the
K-S two sample test. The highest correlation of :p is with :t with a value of 0.4664 for the
1st interval, 0.4868 for the 2nd interval and 0. 3968 for the 3rd interval, followed by :appa0p with
-0.4485 for the 1st interval, -0.4441 for the 2nd interval and -0.2918 for the 3rd interval. The
3rd highest is the with :app

red,X−CuL, obtaining a value of -0.3757 for the 1st interval, -0.3329 for
the 2nd interval and -0.2062 for the 3rd interval. The decrease of the correlation values along
the interval size can be justified by the fact that in the larger interval very extreme values are
explored, which can make the interactive behaviour between parameters more obvious.

It can also be observed that :d1p interacts with :app
red,X−CuL with a correlation coefficient of
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(a) 1st interval. (b) 2nd interval.

(c) 3rd interval.

Figure 5.10: Graphical representation of the empirical correlation matrix for the monomer
conversion.

0.1756. Strangely enough, in the 3rd interval a correlation coefficient between these two pa-
rameters is also detected with a higher coefficient value of about 0.2444. Nevertheless, neither
in the K-S two sample test or by a comparison between the two CDFs of :d1p it is possible to
observe any influence of this parameter to drive the model output to the good behaviour.

The sign of the correlation coefficients can also be useful to qualitatively understand the inter-
action between the set of parameters (for more information see Saltelli et al. (2004) and Saltelli
et al. (2008)). However, this topic will not be discussed in this work due to the complexity of
the model.

5.2.3 PDI output results

The results for the K-S two sample test for the PDI output are given in the Tables 5.5, 5.6 and
5.7.

When one analyzes the values obtained in the K-S two sample test it can be observed that
in contrast to the monomer conversion, the results show a variation depending on the interval
studied, in particular between the 2nd and the 3rd interval. These differences can be observed in
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Table 5.5: 1st interval PDI MCF result.

Parameter 3=,= Classification

:
app
a0 0.0166 Insignificant
:
app
a0p 0.7236 Critical
:
app
red,X−CuL 0.6367 Critical
:
app
red,CuL

0.0491 Insignificant
:a1 0.0200 Insignificant
:a1p 0.0286 Insignificant
:d1 0.0204 Insignificant
:d1p 0.1293 Critical
:p 0.1171 Critical
:add 0.1293 Critical
:t 0.0249 Insignificant
:tR 0.0236 Insignificant
:t0 0.0280 Insignificant

Table 5.6: 2nd interval PDI MCF result.

Parameter 3=,= Classification

:
app
a0 0.0259 Insignificant
:
app
a0p 0.5414 Critical
:
app
red,X−CuL 0.3754 Critical
:
app
red,CuL

0.0120 Insignificant
:a1 0.0186 Insignificant
:a1p 0.0332 Insignificant
:d1 0.0151 Insignificant
:d1p 0.1831 Critical
:p 0.1396 Critical
:add 0.2033 Critical
:t 0.0089 Insignificant
:tR 0.0090 Insignificant
:t0 0.0620 Critical

Table 5.7: 3rd interval PDI MCF result.

Parameter 3=,= Classification

:
app
a0 0.0742 Critical
:
app
a0p 0.0776 Critical
:
app
red,X−CuL 0.0685 Critical
:
app
red,CuL

0.0150 Insignificant
:a1 0.0188 Insignificant
:a1p 0.0970 Critical
:d1 0.0120 Insignificant
:d1p 0.2238 Critical
:p 0.0380 Critical
:add 0.6053 Critical
:t 0.0973 Critical
:tR 0.0212 Insignificant
:t0 0.2214 Critical

the parameter ranking of importance, based on the value of 3=,=, that changes significantly in the
last interval, but also in the number of parameters considered critical: 5 in the 1st interval and
9 in the 3rd interval. As mentioned before, it is expected that using the input range of the 2nd
and 3rd interval will require a smaller number of # for the 3=,= to remain constant. This could
potentially increase the number of parameters that are considered important/critical due to the
?-value problem. Also, using different input spaces for the GSA can affect the result obtained,
as mentioned earlier in this work.

The SARA-ATRP specific constants, :appa0p and :app
red,X−CuL , are the most critical constants to
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drive the model output to the good behaviour in the 1st and 2nd interval based on the 3=,=
value, but their influence decreases sharply in the 3rd interval, with its ranking going down
to the 5th and 6th position, respectively. From a mechanistic point of view, the change in the
value of these kinetic parameters causes a variation in the concentration of propagating chains,
dormant chains, activator and deactivator. Note that the concentration of dormant chains and
deactivator are terms in the PDI equation for an ATRP reaction (see equation 2.6). For instance,
the increase of these kinetics parameters will increase the concentration of propagating chains,
leading to an increase of the termination and uncontrolled propagation. On the contrary, if
the value of the parameters are smaller, the concentration of propagating chains will be lower,
decreasing the PDI. These results can be in conflict with the conclusions of Krys et al. (2017)
where it is demonstrated by simulation, with a one factor variation, that the the SARA-ATRP
specific constants do not change the PDI meaningfully. However, it should be taken into account
that in this work one analyzed the error between the experimental and model prediction of the
PDI over time, whereas in Krys et al. (2017) it is the PDI vs monomer conversion profile that
it is studied. The GSA was also tested considering PDI vs monomer conversion profile and
significant differences in the results were obtained, this could be explored in future works.
With respect to the difference between the parameters ranking obtained using the 2nd or 3rd
intervals input space. As mentioned in Chapter 3, differences in the parameters input space
can severely affect the outcome of the sensitivity analysis, being this a expected result. At last,
another SARA-ATRP parameter appears with the critical classification in the 3rd interval, the
:
app
a0 . This can be the result of interactions between inputs, such as :add and :t0, because these

parameters are also important in this interval and all are kinetic rate constants of reactions that
occur in the early stages of the polymerization (see reaction scheme 4.1).

With respect to the :d1p constant, it changes its ranking along the intervals but always with
a small variation, being the 3rd in the 1st interval, 4th in the 2nd interval and 2nd in the 3rd
interval. This parameter was expected to be critical because it corresponds to the deactivation
rate constant of propagating chains of the ATRP equilibrium that is the key to get a low PDI.
Also, :d1p appears directly in the PDI equation for an ATRP system (see Equation 2.6). The
decrease and increase of this constant has the same effect as the variation of the SARA-ATRP
specific parameters. A polymer scientist can find this result questionable because if the equi-
librium reaction is the responsible for the success of the ATRP reaction, then :d1p must be the
most important parameter for this specific output. However, the results obtained using the MCF
method do not explicit explain which parameters are important for the model output, but rather
the ones that are critical in order to get a behavioural output. Then, a different definition of a
behavioural output can affect the results. If, for instance the behavioral output was specified for
o a PDI lower than 1.10, then :d1p could be the most important parameter. Another important
point that could affect the results, is the fact that in this GSA we consider the NRMSE and not
PDI directly. Another kinetic constant from the ATRP equilibrium (:a1p), is classified as critical
only in the 3rd interval being considered less important than :d1p through the analysis of the
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3=,= value. The greater sensitivity of the PDI with respect to :d1p in comparison with :a1p, was
also detected in the local sensitivity analysis perform in Lyra et al. (2019).

The :add and :t0 parameters appear to be the most important parameters in the 3rd interval,
being :033 the 1st and :t0 the 2nd. Actually, :t0 increases its ranking as the interval decreases,
being insignificant in the 1st interval and the 6th more important parameter in the 2nd interval.
On the other hand, :add has the same ranking in the 1st and 2nd interval, the 3rd position.
This result is unexpected. As mentioned before, these are parameters of reactions that occur in
the polymerization initial stage. A subsequent application of the MCF method was performed
where the first experimental point was not considered in the calculation of the NRMSE. To
obtain these results the model was simulated using 10000 model evaluations and the 3rd interval
input space. The results show a significant decrease on the ranking and classification for both
the :add and :t0, where :add was classified important and :t0 insignificant. This results clearly
show that the importance of these two parameters are linked to the first experimental point.

The parameter :p obtained the critical classification in all 3 intervals, being the 5th most im-
portant in the 1st and 2nd interval and 9th in the 3rd interval. This kinetic constant appears in
the PDI equation ( Equation 2.6), so its importance for this output is expected. For example,
an increase in the value of :p will lead to a higher rate of monomer addition, which will have a
negative impact on the micro structural control of the polymers, increasing the PDI (Al-Harthi
et al., 2006). Finally, the kinetic constant :t appears as the 4th most important parameter only
in the 3rd interval. Analysing Equation 2.6, it is possible to see that in fact :t can directly affect
some variables in this equation, such as: the concentration of dormant chains; the monomer
conversion; and the degree of polymerization.

The CDFs of each parameter that receive the critical classification for the PDI are represented
from the Figure 5.11 to 5.19 for the 1st, 2nd and 3rd interval.

(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.11: CDFs of :appa0 for the PDI.

One can observe that for most of the parameters the profile of the two curves, �= (-8 |�) and
�= (-8 |�), is quite different in the 3rd intervalb when compared to the profiles in the 1st and 2nd
interval. This confirms what was observed in the K-S two sample test that in the 3rd interval
the importance of the parameters is different of the one verified with the 1st and 2nd intervals.
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(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.12: CDFs of :appa0p for the PDI.

(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.13: CDFs of :app
red,X−CuL for the PDI.

(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.14: CDFs of :p for the PDI.

(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.15: CDFs of :t for the PDI.

Analysing Figure 5.11, it is possible to see that for the parameter :appa0 , only a significant dif-
ference between the two CDFs is verified in the 3rd interval. Observing Figure 5.11c, it is
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(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.16: CDFs of :a1p for the PDI.

(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.17: CDFs of :d1p for the PDI.

(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.18: CDFs of :add for the PDI.

(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.19: CDFs of :t0 for the PDI.

possible to verify that by using higher values for this constant, there is more probability of ob-
taining a behavioural output. In Figures 5.12 and 5.13, corresponding to the parameters, :appa0p
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and :app
red,X−CuL, is clearly visible the similarities between this two figures in all the intervals

studied. For the 1st and 2nd interval the probability of obtaining a behavioural output by using
low values of these kinetic constants is higher. However, in the 3rd interval low values of this
parameter should not be used. Also, for the CDF curves in the 1st and 2nd interval is possible
to see that from values of 4 × 10−5 s−1 for :appa0p and 3 × 10−4 s−1 for :app

red,X−CuL there is zero
probability of obtaining a behavioural output.

Figure 5.14 shows that for the 1st and 2nd interval low values of :p should be used in order
to have a better chance of obtaining a behavioural output. The exception is the extreme lower
values of the intervals, where the two CDFs are overlapped. However, similarly to the result
obtained for :appa0p and :app

red,X−CuL, the CDFs for the 3rd interval indicates that using low values
of :p it leads to an increase in the probability of obtaining a non-behavioural output. For the
parameters :t and :a1p, as well as to :appa0 only have a significant difference between the two
CDFs in the 3rd interval, as it can be seen in the Figures 5.15 and 5.16, there is an higher
probability of obtaining a behavioural output by using low values of :t and high values of :a1p.

Both parameters :d1p and :add present very similar CDFs in the 1st and 2nd interval (Figures
5.17 and 5.18). Here, there is a higher probability of obtaining a good behavioral result when
high values of the input range are used, for both parameters. This probability is almost zero if
the values are very close to the interval lower bound. In the 3rd interval there are considerable
differences between the two parameters. Here, the CDFs of :d1p are similar to the ones obtained
for the 1st and 2nd interval. Contrarily, in the Figure 5.18 bigger differences between �= (-8 |�)
and �= (-8 |�) are detected for :add when compared to the one observed in 1st and 2nd intervals.
This clearly shows the increase of importance of this parameter as the interval decreases. The
parameter :t0 only presents a significant difference in the 2nd and 3rd interval, and lower values
of this input will have more probability of producing a behavioural output.

The graphical representation of the empirical correlation matrix was obtained for the PDI output
for the 1st, 2nd and 3rd interval. These results are represented in the Figures 5.20a, 5.20b and
5.20c, respectively. An approximation of these figures are in the Appendix D in the Figures
D.4, D.5 and D.6 for the 1st, 2nd and 3rd interval, respectively.

From Figure 5.20 one can make the same conclusions as in the case of the result obtained in K-S
two sample test and by the analysis of the CDFs. There is a big difference between the results
obtained in 1st and 2nd interval and the results of the 3rd interval. In the 1st and 2nd interval, the
biggest correlation appears with the two most important parameters, :appa0p and :app

red,X−CuL, being
the value -0.4309 for the 1st and -0.4546 for the 2nd interval. Another substantial correlation
appears with :app

red,X−CuL and :p, being the value of the correlation -0.2543 for the 1st and -
0.2261 for the 2nd interval. For the 3rd interval the biggest correlation is with the two most
important parameters, as in 1st and 2nd interval. However, in this case the parameters :add and
:t0 have a significant smaller value of correlation, only 0.2375. In this interval, there is no other
substantial correlation between the parameters.
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(a) 1st interval. (b) 2nd interval.

(c) 3rd interval.

Figure 5.20: Graphical representation of the empirical correlation matrix for the PDI.

5.2.4 Sn output results

The results for the "= for the three intervals are presented in the Tables 5.8, 5.9 and 5.10.

The results obtained for the output "= are very similar to those obtained for the monomer
conversion. Here, the same 4 parameters are significant to obtain the good model response
(:appa0p , :app

red,X−CuL, :t and :p). In fact, the same conclusion was presented in Flores-Tlacuahuac
et al. (2003), where in a sensitivity study of a controlled polymerization, by a local sensitive
technique, the most influential parameters that were identified are the same for the monomer
conversion and "= output. For a RDRP, "= depends directly from the monomer conversion
(Equation 2.3). If the rate of propagation is lower, the addition of monomers to the propagating
chains will be slowed down. Consequently, the polymers growth will be delayed, changing the
"= time profile.

Analysing the results in more detail, it can be seen that the ranking based on 3=,= value in 1st and
2nd interval is the same, being :p the most important parameter followed by :appa0p , :app

red,X−CuL
and :t. In fact, based on the ?-value, :t only receives the important classification in the 1st
interval. :add is classified as important in the 2nd interval, and is classified as insignificant in
the remaining intervals. In the 2nd interval the parameter :appa0 is also classified as important,
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Table 5.8: 1st interval "= MCF result.

Parameter 3=,= Classification

:
app
a0 0.1234 Insignificant
:
app
a0p 0.6689 Critical
:
app
red,X−CuL 0.5986 Critical
:
app
red,CuL

0.1110 Insignificant
:a1 0.0696 Insignificant
:a1p 0.0685 Insignificant
:d1 0.0661 Insignificant
:d1p 0.1200 Insignificant
:p 0.7086 Critical
:add 0.1097 Insignificant
:t 0.1412 Important
:tR 0.1266 Insignificant
:t0 0.0857 Insignificant

Table 5.9: 2nd interval "= MCF result.

Parameter 3=,= Classification

:
app
a0 0.0655 Important
:
app
a0p 0.4580 Critical
:
app
red,X−CuL 0.3476 Critical
:
app
red,CuL

0.0423 Insignificant
:a1 0.0397 Insignificant
:a1p 0.0577 Insignificant
:d1 0.0234 Insignificant
:d1p 0.0613 Insignificant
:p 0.6337 Critical
:add 0.0675 Important
:t 0.1398 Critical
:tR 0.0605 Insignificant
:t0 0.0524 Insignificant

Table 5.10: 3rd interval "= MCF result.

Parameter 3=,= Classification

:
app
a0 0.0117 Insignificant
:
app
a0p 0.1827 Critical
:
app
red,X−CuL 0.1208 Critical
:
app
red,CuL

0.0091 Insignificant
:a1 0.0113 Insignificant
:a1p 0.0149 Insignificant
:d1 0.0075 Insignificant
:d1p 0.0260 insignificant
:p 0.6692 Critical
:add 0.0109 Insignificant
:t 0.1987 Critical
:tR 0.0135 Insignificant
:t0 0.0091 Insignificant

being the last in the ranking. In the 3rd interval, :p continues to be most important parameter
but :t becomes the 2nd most influential parameter followed by :appa0p and :app

red,X−CuL.

The variation in the value of :p, will influence the rate of the monomer addition to the propa-
gating chains (Al-Harthi et al., 2006). Thus, it affects the evolution of "= along the time. The
value of :t will influence the concentration of propagating chains that will affect the number of
active sites, consequently affecting as well the evolution of "=. Regarding the SARA specific
kinetic constants, :appa0p and :app

red,X−CuL, the importance of these two parameters to the "= can
be due to their influence on the concentration of propagating and dormant chains through the
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direct activation of dormant chains, by :appa0p , or indirectly by the regeneration of the activator
(CuI/L) with the kinetic constant of :app

red,X−CuL. The reason for the importance of :add in the
2nd interval was studied and the conclusion was the same as the one obtained for the PDI out-
put. The importance of this parameter is related to the first experimental point. If this point is
removed, the classification of :add will be insignificant. The importance of :appa0 can be due to
some interaction with :add, because they are kinetic rate constants of reactions that occur in the
early stages of the polymerization.

The CDFs for all the parameters that get the critical/important classification for all the 3 intervals
are presented in the Figures 5.21 to 5.26. At first glance, it is possible to verify that for the
"= output the CDFs of � (-8 |�) are not as smoother as the ones obtained for the monomer
conversion and the PDI. The reason for this is that for the "= the number of outputs that meet
the objective are smaller than for the monomer conversion and the "=, as it can be seen in the
Table 5.1. The CDFs of this output have a less smoother profile. This effect is more visible
in the 1st interval because is the one where is more difficult to obtain behavioural outputs (see
Table 5.1.

(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.21: CDFs of :appa0 for the "=.

(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.22: CDFs of :appa0p for the "=.

For the parameter :appa0 ( Figure 5.21) it is possible to verify that in the 2nd interval no meaning-
ful conclusion can be taken from the CDFs. Nevertheless, the CDFs on the 1st interval appear
to have a bigger difference compared to the ones on the 2nd interval. However, because of
the ?-value the parameter is classified as insignificant. From Figures 5.22 and 5.23 it can be
seen that for the remaining SARA-ATRP parameters, :appa0p and :app

red,X−CuL, there is a higher
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(a) 1st interval. (b) 2nd interval (c) 3rd interval

Figure 5.23: CDFs of :app
red,X−CuL for the "=.

(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.24: CDF of :p for the "=.

(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.25: CDFs of :t for the "=.

(a) 1st interval. (b) 2nd interval. (c) 3rd interval.

Figure 5.26: CDFs of :add for the "=.

probability of generating a behavioural output by using low values of this parameters, in all
the intervals. However, if values of :appa0p higher than 4 × 10−5 s−1 are used, there will be zero
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probability of obtaining a good output in the 1st and 2nd interval. The same can be concluded
for :app

red,X−CuL in the 1st interval, but from values higher than 3 × 10−4 s−1. As for :p, in Figure
5.24, it can be observed that in the 1st and 2nd interval low values of this parameter will lead
to a higher probability of obtaining a behavioural output, except for the ones closer to the lower
bound. From these figures, it is possible to concluded that above a given value of the parameter,
when the slope of the �=,= (-8 |�) CDF is zero, there is no probability of obtaining a good model
output. This value seems to change accordingly to the interval under study. Figure 5.25 shows
that there is more probability of obtaining a behavioural output by using high values of :t.

Finally, in Figure 5.26, for :add, it seems that in the 1st interval there is a difference between the
two CDFs and not just in 2nd interval as detected by the two sample K-S test. This result was
further studied by performing the two sample K-S test with more model evaluations, 100000
and 200000. With 100000 evaluations the ?-value obtained was 0.1078, being almost classified
as a important parameter. Using 200000 model evaluations, the parameter receives the critical
classification with a ?-value of 0.0054. This clearly shows how the result of the ?-value, and
consequently the classification of the model parameters, can change due to a higher # . This
parameter could be also classified as important, due to the influence of the first experimental
point, similarly to the case of the PDI output.

As for the other model outputs, a graphical representation of the empirical correlation matrix
for the "= is presented in the Figures 5.27a, 5.27b and 5.27c for the 1st, 2nd and 3rd interval,
respectively. An approximation of these figures is given in the Appendix D in the Figures D.7,
D.8 and D.6, respectively.

Analysing the Figure 5.27, it is easy to notice the similarities between these results and the
ones obtained for the monomer conversion, where the main correlations are with :p. On the
other hand, some differences between the two outputs are visible. At first, in the 1st and 2nd
interval there is a high correlation between the SARA rate constants (:appa0p and :app

red,X−CuL),
which is not obtained in the monomer conversion output. Also, in the 1st interval the graphical
representation of the "= presents more circles with a larger size compared to the one obtained
for the monomer conversion. This can be an indicator, that in this interval, the interactions
between parameters are more pronounced than the ones obtained for the monomer conversion.

For the 1st interval the highest correlation is between :p and :t, followed by the correlation
between the SARA-ATRP constants, with values of 0.5352 and -0.3163, respectively. Other
important correlations are with :p and two other constants, :appa0p and :app

red,X−CuL the correlation
values are -0.337 and -0.3317, respectively. In the 2nd interval the important correlations are
the same, expect for the correlation between the SARA-ATRP parameters, which is smaller.
The values of these correlations are 0.4830, -0.4363, -0.3496 and -0.3163, respectively. In the
last interval, the most important correlations are between :p and :appa0p , followed by the one with
:t and :app

red,X−CuL, with the values of -0.4039, 0.3899 and -0.2826, respectively.
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(a) 1st interval. (b) 2nd interval.

(c) 3rd interval.

Figure 5.27: Graphical representation of the empirical correlation matrix for the "=.

5.3 Sobol method

5.3.1 Methods comparison

As mentioned before, the method to calculate the sensitivity indices presented in Saltelli et al.
(2008) and its extension in Wu et al. (2012), will be compared using a simple function given by
(5.1). This equation makes possible to calculate the first order index analytically (see Saltelli
et al. (2008), pages 174-176).

~ = -1 + -2 + -3 (5.1)

The values of the parameters -1, -2 and -3 follow a uniform distributions within the intervals
presented in (5.2).

-1 ∼ * (0.5, 1.5) -2 ∼ * (1.5, 4.5) -3 ∼ * (4.5, 13.5) (5.2)

The first order sensitivity indices, calculated analytically in Saltelli et al. (2008), for the three
inputs, are presented in Table 5.11.

The two methods were implemented in MATLAB® and the first order indices were calculated
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Table 5.11: First order sensitivity indices true values of the parameters in Equation 5.1.

Parameter (8

-1 0.011
-2 0.099
-3 0.890

for N = 10, 100, 1000 and 10000 using the two computational procedures. The results were
obtained for each parameter. In order to compare the two methods, the result of the sensitivity
indices was plotted in function of ;>610(# ). In these plots, is also represented the first order
sensitivity index calculated analytically. The results are represented in the Figures 5.28, 5.29
and 5.30.

Figure 5.28: Results for the parameter -1.

Figure 5.29: Results for the parameter -2.

It should be noted that the results for # = 10 are not represented for the method of Saltelli et al.
(2008). This is because the values calculated for -1 and -2 are negative. This can happen due
to numerical errors as it is discussed in Saltelli et al. (2008). In an example presented in Saltelli
et al. (2008) of an infection model sensitivity analysis (page 169), two negative sensitivity
indices are obtained, with values smaller than −1 × 10−2. Despite these results, the GSA is
carried out considering that these inputs are unimportant because the sensitivity indices are
negative, but almost zero. In this case, the values obtained for -1 and -2 are -0.50 and -0.17,
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Figure 5.30: Results for the parameter -3.

respectively, smaller than the ones obtained in the book example. Therefore, it was decided that
these values should not be represented and it was concluded that the method of Saltelli et al.
(2008) requires a larger # to give acceptable results for this specific function. With N = 100 the
method gives negative sensitivity indices, but closer to zero.

In general, the method of Wu et al. (2012) has a better performance, does not give negative
sensitivity indices and provides values closer to the ones calculated analytically, even for a
smaller # . This method gives the correct parameter ranking even using a # = 10. For the
example under analysis, the only exception is for the case of the parameter -3, in which the
values obtained by the Saltelli method are closer to the real value with a smaller number of # .
Also, the Wu et al. (2012) was used to performed a GSA in a polymerization kinetic model in
Salas et al. (2019). Hence, it was decided to use this method. It is worthy to mention that, before
applying the proposed method to the SARA-ATRP kinetic model, an implementation test was
made to verify if the method was properly implemented in MATLAB® for the calculation of
the first and total order sensitivity indices. Further details on this preliminary test are given in
Appendix E.

5.3.2 Choosing the number of samples (N)

The first and total order sensitivity indices were calculated for # = 1000, 5000, 10000 and
20000. In a preliminary study, it was observed that the values obtained with the 1st interval
needed a higher # to reduce the numerical errors of the method, indicating that this interval
will need a large sample size. The # selected for this interval will be the one used for the 2nd
and 3rd intervals, to ensure a uniform comparison. The results are presented in a plot of the
variation of the sensitivity indices in function of ;>610(# ) (Figures 5.31, 5.32, 5.33). Another
important point is the computational time needed to calculate these sensitivity indices, which
increases with # . This factor is also taken into account in this work and the CPU time for all
the # are presented in the Table 5.12.
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(a) First order indices. (b) Total order indices.

Figure 5.31: First and total order indices in function of ;>610(# ) for the monomer conversion.

(a) First order indices. (b) Total order indices.

Figure 5.32: First and total order indices in function of ;>610(# ) for the PDI.

(a) First order indices. (b) Total order indices.

Figure 5.33: First and total order indices in function of ;>610(# ) for the "=.

From these figures it follows that the first order sensitivity indices have a more stable behaviour
along # , in comparison with the total order sensitivity indices. This is observed for all the 3
outputs. It is more difficult to see these differences in the monomer conversion graphs, due to
the scale issues. Therefore, the conclusions will be taken from the total order sensitivity indices
where it follows that it is necessary a larger sample size to have stable results. In Figures 5.31
and 5.32 it is possible to see that for most of the parameters the total indices have a stable
behaviour for # = 5000, and most of them are almost constant for # = 10000. The parameters
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Table 5.12: CPU time to calculate the first and total indices in function of # .

N Time (B)

1000 880
5000 2404
10000 4610
20000 8334

:a1 and :a1p for the "= output (Figure 5.33b) are the only two exceptions where their values
for # = 10000 and 20000 are quite different. Another problem that was taken into account, but
is not clearly visible in these figures, was the numerical errors that result in negative indices.
It was verified that, in general, increasing the sample size decreases the magnitude of these
numerical errors (i.e., less negative values of sensitivity indices close to zero). This remark
also reported in the work of Yao (2015). As mentioned before, in Saltelli et al. (2008) the
sensitivity analysis is pursued even with very small negative values, close to zero. Therefore, in
this work it was decided to limit of how negative can be a sensitivity index. A given tolerance
of 10−2 was specified. It was found that the sensitivity indices smaller than 10−2 were only
obtained with # < 10000. Hence, it was decided to use # = 10000, because the results do not
change considerably with # = 20000 except for the two parameters described above, and all the
negative numbers are bigger than 10−2. As for the computational cost it takes approximately
more than 1 hour with # = 20000 than with # = 10000 to calculate the sensitivity indices.
Therefore, it was decided that for the specific application and by the results obtained in the
previous figures was not worth the extra CPU time.

5.3.3 Monomer conversion output results

The first and total sensitivity indices obtained for the monomer conversion are in the Figures
5.34a, 5.34b and 5.34c for the 1st, 2nd and 3rd interval, respectively.

The results obtained for the 3 intervals very similar. Nevertheless, small differences can be
detected. The parameters :p and :t are always the two most important parameters with the
higher first order and total sensitivity indices. :p features the highest indices by a large margin.
This, denotes the importance of this kinetic constant for this output in comparison to the other
parameters. The importance of the other kinetic constants that can be considered important to
the output, using the threshold of 0.05 defined previously, change in function of the interval
considered. These parameters are only important because of the value of the total order sen-
sitivity index. In the 1st interval the parameter :appa0p has the 3rd highest total sensitivity index
with a value of 0.0753 followed by :add with 0.0573. It is interesting to note that the first order
sensitivity index of :add is higher than the sensitivity index of :appa0p . This indicates that :add
contributes the most for the variation of the output, but :appa0p interacts more with the other pa-
rameters and its total effect (accounting the interactions and its effect alone) can induce more
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(a) 1st interval results. (b) 2nd interval results.

(c) 3rd interval results.

Figure 5.34: Sensitivity indices for the monomer conversion.

variability in the output. In the 2nd interval, the 3rd most important parameter is :appa0p followed
by :app

red,X−CuL with a total sensitivity index of 0.0962 and 0.0541, respectively. At last, for the
3rd interval the only parameter that is considered important to the output, besides :p and :t, is
:
app
a0p with a total sensitivity index of 0.0834.

Also, it is interesting that in the 2nd interval there is a stronger interaction between the pa-
rameters, with 1 − ∑

8 (8 approximately 0.1854, while for the 1st and 3rd interval this value is
respectively 0.1500 and 0.0746. Observing the important parameters individually, the total or-
der index is always bigger in the case of the 2nd interval. This was unexpected, it was thought
that interactions would be more pronounce in the 3rd interval. That is, because the bigger in-
terval includes very extreme values of the parameters, which may lead to a more pronounced
interaction between the kinetic constants.

It is possible to observe a quite good agreement between the results obtained by this method and
by MCF, where :p, :t and :appa0p are considered important parameters for this output (considering
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the calculation of the first order and total order sensitivity indices) and critical to obtain the
correct behaviour of the model for all the 3 intervals. The kinetic constant :app

red,X−CuL is always
considered critical using the MCF in all the intervals, but the same can not be concluded from
the sensitivity indices. In fact, this parameter is always in the top of the ranking (in 4th or 5th
place depending on the interval). However, due to the threshold of 0.05 it is only considered
important to the output in the 2nd interval. The :add constant is only considered critical in the
MCF method results when using the 3rd interval while their importance its only acknowledge in
the 1st interval based on the sensitivity index value. In fact, the value of the total order sensitivity
index in the 3rd interval has a considerable difference with respect to the limit proposed of 0.05,
being this value approximately 0.0136.

5.3.4 PDI output results

The results for the PDI are presented in the Figures 5.35a, 5.35b and 5.35c for the 1st, 2nd and
3rd interval, respectively.

(a) 1st interval results. (b) 2nd interval results.

(c) 3rd interval results.

Figure 5.35: Sensitivity indices for the PDI output.

67



5.3. Sobol method

In contrast to what has been observed for the case of the monomer conversion output, a signifi-
cant difference can be observed between the intervals, especially between the 1st and the other
two intervals. The 1st interval is the one where the values of the indices are more distributed
between the parameters. In this case, the ranking of the parameters changes if it is considered
the first or the total sensitivity order index. The parameter :d1p is the one with the highest first
order sensitivity index of 0.2581 followed by :add with a value of 0.2487. However, consid-
ering the total order sensitivity index, :add has the highest index with 0.3764 and :d1p is the
second in the ranking with 0.3764. This is an indication that :add interacts more with the other
parameters. These kinetic constants are followed by :p with a first order and total order sen-
sitivity index of 0.0714 and 0.2461. Then, in 4th place appears :appa0p with 0.0554 and 0.1505,
respectively. The other parameters that are considered important are :app

red,X−CuL, :a1 and :t0
with a total index of 0.1303, 0.0561 and 0.0540, respectively. The importance of :a1 and :t0 are
mainly due to interactions with the other parameters given that there is still a significant differ-
ence between the first order and total order indices. This interactive behaviour can be with :add,
because these constants are relevant during the early stage of the reaction. In the 2nd interval,
:add is the parameter that affects the most the variability of the output and by a large margin
of 0.4818 and 0.7299 for the values of the first and total order indices, followed by :d1p with
the indices of 0.1145 and 0.1857, respectively. The other parameters classified as important are
:t0, :appa0p , :p and :app

red,X−CuL with a total order sensitivity index of 0.1636, 0.1103, 0.0964 and
0.0872, respectively. In the 3rd interval, the importance of :add is even more evident, with a
first and total order sensitivity index of 0.6173 and 0.828, with a considerable gap to the second
classified, :t0, with sensitivity indices of 0.0840 and 0.2340, respectively. At last, :app

red,X−CuL
has a total order index of 0.0576. In this interval the number of parameters that have sensitivity
indices above the threshold of 0.05 decreases considerably, and strangely the parameters :d1p
and :appa0p lose their importance to the output in favour of :add and :t0.

In this interval the biggest interactions between parameters are found in the 1st interval with a
1 − ∑

8 (8 of 0.3311, followed by the 2nd and 3rd interval with 0.2904 and 0.240, respectively.
This reinforces the ideia stated in the discussion of the monomer conversion results, that a
bigger interval will induce a more interactive behaviour between the model inputs.

Comparing the results obtained from the two methods used for the global sensitivity analysis,
some similarities can be found, such as the increase in the importance of :add and :t0 as the
size of the interval decreases, while for the parameters :appa0p and :red,X−CuL the opposite effect
is observed. Taking into account a ranking based on the 3=,=, different results are found between
the two methods.

When using the MCF method, the importance of :add and :t0 comes as an unexpected result.
Thus, to investigate the reason for this result, the calculation of the sensitivity indices was
repeated this time without considering the first experimental point. The results for each interval
are represented in the Figures 5.36a, 5.36b and 5.36c.
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(a) 1st interval results. (b) 2nd interval results.

(c) 3rd interval results.

Figure 5.36: Sensitivity indices for the PDI output without the first experimental point.

From these new results it is possible to conclude that the importance of the parameters :add
and :t0 are highly linked to the first experimental point, due to the fact that the values of the
sensitivity indices decrease substantially when this point is not considered in the calculation.
Here, :add is only considered important to the output in the 1st interval because of interaction
effects. A plausible reason for the importance of :add using the first experimental point is
that, it is possible to notice that in at the time of this point, the model predicts a much higher
PDI than the one that is determined experimental ( Figure 4.1b). In this analysis the NRMSE is
considered as the sensitivity output and, therefore, it is normal that a bigger fraction of this value
is affected by the error at this point. Furthermore, because this experimental points corresponds
to the initial stage of the reaction it is normal to be more affected by :add and :t0. These results
reveal also the importance of the SARA kinetic constants ( :appa0p and :app

red,X−CuL) to this output.
This was also detected by the MCF method, where the SARA-ATRP kinetic constants are the
two most important for the PDI in the 2nd and 3rd interval. Despite the difference between the
two results, one major similarity can be found, which is the decreasing in the importance of
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:d1p as the range of the parameter variation is decreased. One major conclusion that is taken
from these results, is that substantial differences can be found when considering different sets
of experimental points for the PDI.

5.3.5 Sn output results

The results for the "= output are presented in the Figures 5.37a, 5.37b and 5.37c for the 1st,
2nd and 3rd interval, respectively.

(a) 1st interval results. (b) 2nd interval results.

(c) 3rd interval results.

Figure 5.37: Sensitivity indices for the "= output.

It is possible to observe some differences specially between the 1st and the 2nd or 3rd interval,
similarly to what was observed in the case of the PDI output. On the 1st interval :app

00? has the
highest first order sensitivity index with a value of 0.2667 , followed by :p with 0.3195. But
if the total order sensitivity index is considered, then :p is the most important parameter and
:
app
a0p the 2nd, with sensitivity of 0.3195 and 0.3056, respectively. In this interval, if the first

order index is considered, then only one more parameter, :app
red,X−CuL, is above the previously
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defined threshold, with a value of 0.2667 and with a total order sensitivity index of 0.2605. All
other parameters that are considered important are due to the interaction with the other kinetic
constants. These parameters are :d1p, :add, :a1 and :a1p with total order sensitivity indices
of 0.1459, 0.1187, 0.0748 and 0.0612, respectively. In the 2nd interval there is a significant
increase in the sensitivity indices of the parameters :t and :p. On contrary, there is a decrease
of these indices for the :app

red,X−CuL and :appa0p . On this interval, :p has the largest first order
and total order indexes with values of 0.4200 and 0.5854. This parameter is followed by :appa0p ,
:
app
red,X−CuL, and :t with values of the first order sensitivity index of 0.1973, 0.1100 and 0.0744,

and total order sensitivity indices of 0.2813, 0.1623 and 0.1496, respectively. In the 3rd interval,
:p and :t continue to increase their importance to the variability of the output. In this interval
:t overtakes the SARA-ATRP parameters in the ranking and moves into the 2nd place. In this
interval :p has the highest first and total order sensitivity indices with a values of 0.6021 and
0.7244, being followed by :t and :appa0p with a first order sensitivity indices of 0.1286 and 0.1965
and total sensitivity indices of 0.1965 and 0.1548. Finally, appears :app

red,X−CuL, but it is only
considered important, in this interval, due to the interactions effects, having a total order index
of 0.0751.

As for the PDI output, the bigger fraction of interactions is found in the 1st interval with a
1 −∑ 

8=1 (8 of 0.2648, being the values for the 1st and 3rd interval of 0.1877 and 0.1279. These
results reinforce the idea that a larger input space should lead to more interactions between the
model inputs.

Comparing the results obtained from the two methods it is possible to observed similarities in
the parameters that are considered critical or important to this output. One important aspect is
that in the two methods the importance of the SARA kinetic constants decrease as the interval
of variation decreases, in favour of :t. One exception is :p, which in the MCF method main-
tains its importance across the 3 intervals, while using the Sobol method the importance of this
parameter increases through the intervals. One major difference that can be seen is the number
of parameters that are considerable critical in the 1st interval using the MCF method results
versus the ones that are considered important using the sensitivity indices. However, it should
be taken into account that using the MCF method it is very difficult to observe the interaction
structure of the model. For instance, the 3=,= used for the ranking of the parameter importance
may not cover the interactions between inputs, and the parameters :d1p, :add, :a1 and :a1p are
only considered important due to the total order sensitivity index. Hence, their importance is
mainly attributed to interactions that may not be detected by using the MCF method.
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5.4 Methods comparison

Comparing the results obtained for the 3 outputs by the MCF and Sobol method some simi-
larities can be found specially for the monomer conversion results, where basically the same
conclusion can be drawn using either method. Nevertheless, some major differences can be
visualized, such as: the ranking of the parameters in the PDI output; and the difference between
the number of parameters classified as critical/important in the 1st interval results for the "=

output. These differences are normal and expected, because as stated in Wang and Solomatine
(2019), these methods are based on different theories, concepts and principles, as explained in
Chapter 3.

One factor that may be important to a modeler that intends to perform GSA in his/her model is
the simplicity of the method and their ease of implementation. From a personal point of view,
the MCF method was found to be very simple to understand and to implement in comparison to
the Sobol method, which is based on more complex principles (Wang and Solomatine, 2019).
Thus, the MCF method can be an easy tool to be applied for a preliminary GSA, giving extra-
information by the analysis of the CDFs (i.e., input range where there is more probability of
obtaining a behavioural output). Nevertheless, the Sobol method uses a more sophisticated and
statistical apparatus, that results in a better estimation of the sensitivity index (Wang and Solo-
matine, 2019) and a better detection of inputs interactions. These interactions are not always
detected by the MCF method, as verified in the 1st interval result for the"= output. This has the
implication that after using the MCF method it is necessary to use another GSA method to fully
assess the input relevance (Saltelli et al., 2008). The reason for this, is that it is only possible to
state that an input is unimportant if their single effect and interactions are fully analysed.

The computational effort was higher for the Sobol method. This method needed a larger sam-
pling size (# ) in order to converge in comparison to the MCF method. To make matters worse,
the total number of model runs for the Sobol method, using the numerical procedure in Wu et al.
(2012), is # (2 + 1) while it is only # for the MCF method. This may make the use of the
Sobol method very impractical, specially in complex models that require a larger CPU time to
obtain the results.
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Parameter estimation problem

6.1 Problem formulation

The parameter estimation problem is formulated as an optimization problem, using the same
objective function (� ) as in Massicotte (2015) for the kinetic constants estimation of a ARGET-
ATRP reaction. This objective function is defined in (6.1).

min
:

� (:) =
3∑
8=1

F8

�8 ,<0G

10∑
9=1

(
~8, 9

~4G? 8, 9
− 1

)2
subject to :! ≤ : ≤ :* ,

(6.1)

Where ~8, 9 is obtained by solving the kinetic model. The objective function (6.1) was written
using a similar notation as in Amador et al. (2018), where : represents the vector of decision
variables of the optimization problem. The ~4G? 8, 9 and ~8, 9 are the experimental and predicted
values by the model for i outputs, respectively. In this case there are three decision variables
which are the monomer conversion, PDI and "=.The subscript 9 represents the time instant
index. Here,<0G ( 9) = 10 because this is the number of measures taken from the experimental
work. The subscripts * and ! on : represent the upper and lower bound as in Amador et al.
(2018).

The objective function uses the weight sum method. This method is characterized by using
a objective function, which is the sum of the individual criteria, where each one is multiplied
by a weight (F8), that reflects the user preferences for each term. For instance, the author of
Massicotte (2015) gave the same importance for all the terms ( i.e.,F8 = 1).

In this work different weights will be used for the three terms. First, it is necessary to define
the ranking of the weights, that is, to define which output will have the highest and lowest
correspondent weight. For this thesis, it was decided to choose the monomer conversion term
to be the one with the highest weight. The reason for this option, was due to the fact that this
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is the output where the model presents the worst prediction, with the highest NRMSE, being
the main motivation to perform this parameter estimation problem. In addition, the method
used to measure the monomer conversion (by nuclear magnetic resonance) is very precise, so
the experimental data is very reliable. As for the term with the lowest weight, it was decided
to choose the term related to "=, because the experimental data appears to have some errors,
namely in the 4th and 5th point (see Chapter 4). Therefore, the weights ranking will be 1st
for the monomer conversion, 2nd for the PDI and for the 3rd for the "=. The weights will be
defined iteratively, by choosing F8 , between 0-1 and with

∑8
==1F8 = 1, that brings the NRMSE

of the conversion closer to the one obtained in the PDI. One problem that should be accountefor
choosing the correspondent weights, the 3 objective functions terms must be normalized to be
on the same scale, in order to capture the users preferences. To normalize these terms, the same
method as in Marler and Arora (2010) will be used, by dividing each of them by their maximum
possible value (�8, <0G ).

To solve this parameter estimation problem the particle swarm optimization (PSO) algorithm
was used. The main reason behind this decision is that the model used in this work is not
constituted by explicit algebraic expressions, but rather by an ODE system. In this case, it is
recommended the use of derivative-free algorithms like PSO (Rios and Sahinidis, 2013). The
PSO algorithm was first introduced in Eberhart and Kennedy (1995). This algorithm was in-
spired by the swarm intelligence of some animals such as fishes and birds, because they have the
capability of sharing information between their group, and that gives them a great survival ad-
vantage (For more information about the behavior of these swarms of animals and the reason to
be transposed to an optimization algorithm the reader is referred to Almeida and Leite (2019)).
These types of algorithms are called meta-heuristics, because they mimic successful optimiza-
tion strategies found in nature. The word heuristic appears, because it is not guaranteed that the
exact best solution will be found using these methods, but a good and useful approximation of
the optimum is frequently obtained (Schwaab et al., 2008).

6.2 Optimization results

One important decision that needs to be made is which parameters are the decision variables
for the optimization problem, taking into account the results of the global sensitivity analysis.
This parameter estimation problem is mainly motivated by the bigger error calculated between
the experimental points and the predicted conversion and "=, compared to the one obtained for
the PDI. Consequently, it is necessary to choose the kinetic parameters that affect the most the
conversion and the "=, but have a smaller effect on the PDI. The results from the global sen-
sitivity analysis for the conversion and "=, by the two methods used, are conclusive regarding
the most important parameters for these outputs (see Chapter 4). These are :p, that is by far
the most important parameter, followed by :t, and then :appa1p , and :app

red,X−CuL. These last two
parameters are very important regarding their effect on the PDI, as demonstrated by the results
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of the two methods (i.e., MCF and Sobol method). Taking this into account, it was decided to
only estimate :p and :t.

The limits of the 3rd interval used in the global sensitivity analysis were chosen as the upper
and lower bound for the optimization problem. One reason for this selection is that the values
explored in this interval are all closer to the ones referenced in the Krys et al. (2017). Another
reason, is that a larger interval allow to explore parameter values that may not be physically
acceptable.

By defining the upper and lower bound, it was possible to calculate �8,<0G . Various values of :p
and :t were sampled, using the Sobol quasi-random sequence, within the interval defined by the
upper and lower bound. Then the objective function is evaluated, with these different parameter
values, and the maximum value of each term of the objective function was defined as �8,<0G .
The results obtained are in Table 6.1, for a total of 10000 objective function evaluations. As it
can be seen, the maximum value of each objective function is quite different from each other.
This. shows the importance of the normalization of the different objective terms in this specific
case.

´

Table 6.1: �8,<0G with 10000 objective function evaluations.

O.F �8 ,<0G

�G,<0G 4.3827
�%��,<0G 0.0314
�"=,<0G 2.4321

As mentioned before, the values of F8 are adjusted by trial and error until the optimal solution
gives the most similar NRMSE between the conversion and the PDI. This optimization problem
was solved using the MATLAB® global optimization toolbox. This toolbox includes a built-
in PSO algorithm, based on the original algorithm by Eberhart and Kennedy (1995) but with
some modification by Pedersen (2010) and Mezura-Montes and Coello (2011).To illustrate the
approach taken to calculate the weights, the diagram in Figure F.10 in the appendix F summa-
rizes the procedure used. The algorithm described in Figure F.10 is initialized with FG = 0.5,
and terminates when the criteria are satisfied. The value of the weights obtained in presented
in Table 6.2. As it can be seen, the criterion can only met if a large weight for the monomer
conversion output is used than for the PDI and "= terms in the objective function. Using the
weights in Table 6.2 the values of :t and :p obtained are presented in Table 6.3.

6.3 Kinetic model simulations with the new parameters

The kinetic model was simulated again, but this time with the new parameter values obtained
from the solution of the parameter estimation problem. In Figures 6.1a, 6.1b and 6.1c are
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´

Table 6.2: F8 values.

output F8

FG 0.90
F%�� 0.07
F"= 0.03

Table 6.3: Optimal parameter values.

Parameter Value Variation from the parameters in Krys et al. (2017)

:t 3.90 × 108 M−1s−1 59.2 %
:p 1.28 × 104 M−1s−1 -13.0 %

represented the profiles of the monomer conversion, PDI and "= along the reaction time.

(a) Monomer conversion vs time. (b) PDI vs time.

(c) "= vs time.

Figure 6.1: Time profiles with the new parameter values.

It is clear that the use of the new parameter values decrease the error between the model predic-
tion and the experimental data of the monomer conversion and "=. As for the PDI profile no
major difference can be visualized in comparison to the profile in Figure 4.1b. The NRMSE for
these new simulations are given in Table 6.4.

From the NRMSE values in Table 6.4 it follows that the model predictive capability improved
with respect to the monomer conversion and the"=. Regarding the PDI, a very small increase of

76



Chapter 6. Parameter estimation problem

Table 6.4: NRMSE for the new simulations.

.

Output NRMSE

Conversion 0.0479
PDI 0.0450
"= 0.0481

about 0.0064 in NRMSE is observed. This increase can be due to the weight of the correspond-
ing objective function term being much lower comparatively to the one used for the monomer
conversion. The same does not occur with the"=, because this output is related to the monomer
conversion, as it was verified with the global sensitivity analysis study and by Equation 2.3.

The "= and PDI profiles as a function of monomer conversion are presented in the Figure 6.2a
and 6.2b Comparing these profiles to the ones obtained before the optimization, it is hard to
find differences that can be visually detected. More specifically, in the PDI it is possible to see
that the model prediction are closer to 6th and 7th experimental points, comparing to the model
with the parameters from Krys et al. (2017).

(a) PDI vs monomer conversion. (b) "= vs monomer conversion.

Figure 6.2: Monomer conversion profiles with the new parameter values.

Another problem that needs to be addressed is the risk of overfitting the model to this data. This
occurs when the model can reproduce very well the training data (i.e., in this case the data used
for the parameter estimation problem), but has a poor predictive capability. In order to assess
this aspect, the model prediction was tested with 2 new data sets available in Krys et al. (2017).
These 2 experiments were tested with different initial conditions (Table 6.5).

As it can be seen, the differences between these two new experiences and the the original are
on the target �%= in the case of the 2nd experiment, and in the initial concentration of the
deactivator in the 3rd experiment. The monomer conversion, PDI and "= profiles along the
reaction time were obtained for the 2 new experiments and compared with the experimental
points (6.3a to 6.5b). The experimental points of the 2nd and 3rd experience are presented in
Appendix C in Table C.4 and C.5.
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Table 6.5: Initial conditions for the 3 experiments.

Initial condition 1st experiment 2nd experiment 3rd experiment

Target DP 222.000 1000.000 222.000
["]0 7.400 M 7.400 M 7.400 M
['- ]0 0.033 M 0.033 M 0.033 M
[CuBr2]0 0.003 M 0.003 M 0.0003 M
NºExperimental points 10 9 8

(a) 2nd experiment. (b) 3rd experiment.

Figure 6.3: Monomer conversion vs time profile.

(a) 2nd experiment. (b) 3rd experiment.

Figure 6.4: PDI vs time profile.

From the observation of these profiles it can concluded that, in general, the model does a good
prediction of the data in both experiments. From this preliminary analysis, the model is not over-
fitting to the original experimental data. It should be noted that, in the future, is recommended
the use of more data to verify this result. One clear exception is the "= profile represented in
Figure 6.5b, where it is possible to observe that the experimental value is always higher than the
predicted one. One reason for this discrepancy could be the experimental measurement error
of "= by SEC. However this difference is observed for all the points. Note, that in the first
instances of the "= profile, it is possible to observe that the "= remains constant for some time
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(a) 2nd experiment. (b) 3rd experiment.

Figure 6.5: "= vs time profile.

(this can also be visible in the PDI profile), which delays the predicted growing of the "=. This
can explain the difference between experimental and predicted values. The simulations profiles
in Krys et al. (2017) also show a similar deviation and a initial constant behaviour of "= at the
beginning of the profile.

This could indicate that for a smaller concentration of deactivator (this is the case in which the
concentration of deactivator is decreased by a factor of 10) it is necessary to consider additional
reactions in the formulation of the kinetic model . Nevertheless, further experiments need to be
made and no definitive conclusions should be drawn from these tests alone. Table 6.6 presents
the NRMSE results calculated for the 3 outputs of the 2 experiences The high value of NRMSE

´

Table 6.6: NRMSE obtain for the 3 experiments.

NRMSE

1st experience 2nd experience 3rd experience
Conversion 0.0479 0.0436 0.0485
"= 0.0450 0.0425 0.0972
PDI 0.0481 0.0147 0.1659

obtained in the simulation of the 3rd experiment came as a surprise, because in Figure 6.4b, it
seems that the model predicts well the experimental data. A possible explanation for this error
is the first experimental point, where the model predicts a value of 1.7965 and the experimental
point is 1.486. If this point is neglected the NRMSE decreases to 0.0290. The larger NRMSE
also confirms the model lack of ability in predicting the "= for this experiment. Nevertheless,
good results can be found for 2nd experiment, with smaller NRMSE values. The biggest differ-
ence is in the PDI where for 1st experiment the error is 0.0450 and for the second only 0.0147.
Again this is explained by the fact that in the 1st experiment the model does not predict well the
1st experimental point. Note that this does not occur with the simulation for the 2nd experiment
for which the NRMSE is small. The profiles for the PDI and "= in function of the monomer
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conversion for the 2nd and 3rd experiments are given in Figures 6.6a to 6.7b.

(a) 2nd experiment. (b) 3rd experiment.

Figure 6.6: PDI vs monomer conversion profile.

(a) 2nd experiment. (b) 3rd experiment.

Figure 6.7: "= vs monomer conversion profile.

These profiles show a good agreement with the experimental points of the 1st experiment. The
same can not be said for the 3rd experiment where considerable deviations between the exper-
imental points and the model predictions are observed. On the PDI vs monomer conversion
profile these errors are more pronounced, in the 3rd, 4th and 5th experimental point. Nev-
ertheless, the model has a good prediction of the PDI at high monomer conversions. As for
the "= profile as in the case of "= vs time profile, the error is systematic along the monomer
conversion. This result was also reported in Krys et al. (2017).
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From these results it is possible to conclude that the kinetic model, in general, predicts quite
well the experimental data. In the future, further developments can be made to formulate a more
accurate model. This can be achieved by considering, for example, the diffusion limitations
that are more pronounced at high monomer conversion (Zhou and Luo, 2014), reactor volume
variation Vieira et al. (2015), chain-length dependence of the kinetic parameters (Lyra et al.,
2019), etc. There is a wide range of possible improvements that improve the model. But it is
important to test the model with more data, because this is the only way to be certain that the
model is good enough and is not affected by experimental and modeling errors. The sentence
"on god we trust all others must bring data" said by the statistician Edward Deming, must be
taken seriously.
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Chapter 7

Conclusions and Future work

7.1 Conclusions

The main goal of this thesis was to perform a global sensitivity analysis (GSA) on an already
validated kinetic model of a SARA-ATRP system proposed in Krys et al. (2017). First of all,
the kinetic model formulation for the SARA-ATRP system was reviewed. Then the model was
simulated with the kinetic parameters given in Krys et al. (2017), and the results were com-
pared with experimental data. From this analysis it was concluded that the model predictions
presented some deviations from the experimental points, specially in the case of the monomer
conversion and the "= outputs. Therefore, to improve the model predictive ability a parameter
estimation problem was formulated, to obtain new kinetic parameter values. In order to do this,
only the model important parameters identified through the GSA study, were considered as the
decision variables of the parameter estimation problem.

From the application of the MCF method it was concluded that the specification of the number
of model simulations (# ) can not be done based on the studying of the convergence of the ?-
value, because of the commonly know ?-value problem ( the ?-value decreases as the number of
samples increases). Another alternative criteria, used in this work, is the 3=,=. The MCF method
identifies the most important parameters in order to reduce the current model error in the three
model outputs. For the monomer conversion, the results were very similar for the 3 input space
intervals studied. It was always :p the kinetic parameter with the highest rank, followed by :t,
:
app
a0p and :app

red,X−CuL. The same can not be said for the PDI result. Here, significant differences
in the parameter ranking were obtained for each input space interval under study, and in the
number of parameters that receive the critical classification. Here, the parameters that always
receive the critical classification are :appa0p , :app

red,X−CuL, :d1p, :add and :p. The "= output leads
to similar results to the ones obtained for the monomer conversion. These two outputs are
related by Equation 2.3 and therefore these results are expected. Then, the parameters that are
classified as critical/important are the same as the ones in the monomer conversion results in
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the 3 intervals. A difference between the ranking order of :t, :
0??

a0p and :0??
red,X−CuL is observed

along the different intervals studied.

As for the Sobol method results, two numerical procedures to calculate the first and total order
sensitivity indices were compared: the method presented in Saltelli et al. (2008) and a new
derivation made by Wu et al. (2012). In general, using the method of Wu et al. (2012) the values
of the true sensitivity indices are closer when the # is smaller. In addition, this method also
decreases the occurrence of numerical errors (i.e., negative sensitivity indices) in comparison to
the numerical procedure in Saltelli et al. (2008). For the monomer conversion, the results are
similar to the ones obtained using the MCF method. Using the threshold of 0.05, only :p, :t and
:
app
a0p (being this last only important due to interaction effects) are considered important in all

the intervals. Similarly to the MCF method, there are significant differences between the PDI
results in the three input space intervals studied. Only :add, :t0 and :app

red,X−CuL are considered
important in all the three intervals. This result, of :add and :t0 being classified as important was
intriguing because these are kinetic constants of the reactions that occur in the early stages of the
polymerization. Then, the Sobol method was performed considering the NRMSE without the
first experimental point. The results showed a considerable decrease in the importance of :add
and :t0 to the PDI output, concluding that their importance is linked to the first experimental
point. For the "= output the kinetic constants that obtained the important classification in all
the 3 input space intervals study were :appa0p , :app

red,X−CuL, :p and :t. These results are very similar
to the ones obtained for the monomer conversion, in particular for the 3rd input space interval.

From this work, it was conclude that the MCF method is a simpler and easier method to un-
derstand and to implement, with a low computational cost, in comparison to the Sobol method.
Nevertheless, due to the fact that the interactions are not always accounted in the 3=,= value, it
is necessary to use another GSA method (e.g., such as Sobol), to fully conclude the sensitivity
analysis.

New values for the parameters :p and :t were obtained by solving a kinetic estimation problem.
The simulations results show an increase in the model ability to predict the monomer conversion
and the "=. To prevent the risk of overfitting the model to the original set of data, the model
was tested with other sets of experimenal data. The model show a relatively good predictive
ability. One exception is in predicting the "= for the 3rd experience. This is also observed in
the simulations results of Krys et al. (2017). Nevertheless, there is a need to test the model with
more experimental data to make more assertive conclusions.
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7.2 Future work

Regarding the kinetic model formulation, further improvements can be made, such as:

• consideration of diffusion limitations and comparison of the results obtained with the
ones of this work. A similar study was done in Zhou and Luo (2014);

• consideration of reaction medium volume variation;

• collecting more experimental data to use in new kinetic parameters estimation problems
in order to improve the model predictive ability;

• another modeling alternative could be the development of a hybrid model, which involve
the integration of mechanistic and a data-driven model. The data could provide informa-
tion about aspects that are not present in the deterministic model (Sansana et al., 2021);

• estimation of the Arrhenius equation constants for the model kinetic rate constants, to
formulate the model with the temperature dynamics.

Also, the kinetic model can be used in the future in several studies, such as:

• the application of the Kalman filter to estimate the concentration of SO2
• (see reaction

scheme 4.1) along the reaction time, which is not possible to measure experimentally.

• the scale-up of the SARA-ATRP reactor system;

• the study of control strategies, including advanced process control.

In relation to the global sensitivity analysis, further works can be done, such as:

• to consider correlations between the inputs. In the GSA realized in this thesis, the in-
puts correlations were not considered. In fact, to use the Sobol method it is necessary
to assume that the parameters are independent of each other (see Appendix A). The con-
sideration of correlation in the inputs affects the outcome of the sensitivity analysis and
therefore the conclusions drawn form this study can be different. In Xie et al. (2019) two
types of sensitivity analysis in two different biochemical reactions. One of them consid-
ered the inputs independent and the other one comprises the correlations. Comparing the
results of the two cases, significant differences in the ranking and in the values of the
sensitivity indices were detected. In the future, a similar study must be performed with
this kinetic model, in order to conclude and investigate the influence of input correlation
and their effect in the final GSA results;

• test other sensitivity analysis method such as the Fourier amplitude sensitivity test and
the elementary effects method, to compare with the results obtained in this thesis;

• plan new laboratory experiences in order to obtaine more accurate values of the kinetic
parameters but with special focus on the parameters, that were identified as important in
the Global sensitivity analysis study;
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• perform a sensitivity analysis considering the kinetic model initial conditions as the in-
puts.

• perform a study applying the Fisher matrix method to determine the most important pa-
rameters and to asses if the problem is identifiable, and to forecast the precision of exper-
iments in the context of design of experiments.
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A Sobol method demonstrations

A.1 Sobol demonstrations

Ilya Sobol proposed a way of calculating the sensitivity index using a Monte-Carlo based ap-
proach, evaluating the function . = 5 (-1, -2, ..., -8, ..., - ) multiple times with different input
values. He proposed a decomposition of the response 5 , considering into a set of functions of
increasing dimensions in which all the individual terms are square integrable in their domain
and that the inputs are all mutually independent (Ochoa et al., 2016; Saltelli et al., 2008; Wu
et al., 2012). In (1) the indices i,j and k represent different model inputs.

5 = 50 +
∑
8

58 (-8) +
∑
8

∑
9>8

58, 9 (-8, - 9 ) + ... + 51,2,..,: (-8, - 9 , ..., -:) (1)

Sobol proved that if all the individual terms of (1) have zero mean (Equation 2) then all the
terms are orthogonal in pairs (Equation 3).

∫
5 (-8)3-8 = 0 (2)

∫
5 (-8) 5 (- 9 )3-83- 9 = 0 (3)

This orthogonal characteristic enables that these terms can be calculated using the conditional
expectations of the model output (. ) as it is demonstrated in the Equations 4 and 5 (Saltelli,
2002a; Saltelli et al., 2008; Ochoa et al., 2016).

� (. ) =
∫

5 (- )3- = 50 (4)

� (. |-8) =
∫

5 (- )
∏
:≠8

3-: = 50 + 58 (-8) (5)

By square integrating each one of the terms of (1) except -8 , it is possible to obtain the decom-
position of the variance, the so called the ANOVA-HMDR decomposition (Equation 6) (Ochoa
et al., 2016; Cariboni et al., 2007; Saltelli et al., 2008; Wu et al., 2012).

+ (. ) =
∑
8

+8 +
∑
8

∑
9>8

+8, 9 + ... ++1,2,...,: (6)

Here,
∑
8 +8 represents the main contribution to the total variance of only one input (-8) and
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∑
8

∑
9>8 +8, 9+ ...++1,2,...,: is all the decomposed parts that the input-8 appears, from two-elements

(+8, 9 ) up to k-elements group (+1,2,3,..,:) (Yao, 2015). As one can imagine, this last element
indicates the contribution of inputs interaction to the total variance of the model output (Yao,
2015). Dividing 6 by + (. ) and taking into account the definition of sensitivity index, (3.3),
Equation 7 is obtained.

1 =
∑
8

(8 +
∑
8

∑
9>8

(8, 9 +
∑
8

∑
9>8

∑
;> 9

(8, 9,; + ... + (1,2,3...: (7)

A.2 Equation 3.14 deduction

The expect value of the model output (� (. )) and + (. ) can be defined by the multidimensional
integrals (8) and (9) (Saltelli, 2002a).

� (. ) =
∫ ∫

...

∫
5 (-1, -2, ..., - )

:∏
8=1

?8-83-8 (8)

+ (. ) =
∫ ∫

...

∫
5 2(-1, -2, ..., - )

:∏
8=1

?8-83-8 − �2(. ) (9)

As demonstrated in Saltelli (2002a), the numerator (Equation 3.3) in the the first order sensitiv-
ity index equation (+-8

(�-8
(. |-∼8)) can be calculated by solving the integral in (10).

+-8
(�-8
(. |-8)) = + (. ) − �-8

(+ (. |-8)) =
∫

�2-8
(. |-8 = -̃8)?8-83-8 − �2(. ) (10)

In (10) the term
∫
�2
-8
(. |-8 = -̃8)?8-83-8 can be substituted by*8 , as follows (Saltelli, 2002a):

*8 =

∫
�2-8
(. |-8 = -̃8)?8-83-8 (11)

Thus, from (3.3)is obtained:

(8 =
*8 − �2(. )
+ (. ) (12)

B Moments differential equations development

For the P=
• chains the differential terms corresponding to the balances d[P1

•]
dC and d

∑∞
==2 =

: [Pn
•]

dC

of (2.11), can be written as follows:
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d[P1
•]

dC
= :

app
a0p [P1X] + :a1p [CuI/L] [P1X] − :d1p [CuIIX/L] [P1

•]

+ :add [R•] [M] − :p [M] [P1
•] − :tR [R•] [P1

•]

− (:tc + :td) [P1
•]
∞∑
==1

[P=•]

(13a)

d

dC
(
∞∑
==2

=: [P=•]) = :appa0p

∞∑
==2

=: [PnX] + :01? [CuI/L]
∞∑
==2

=: [P=X] − :d1p [CuIIX/L]
∞∑
==2

=: [P=•]

− :p [M]
∞∑
==2

=: ( [P=•] − [P=−1•]) − :tR [R•]
∞∑
==2

=: [P=•]

− (:tc + :td)
∞∑
==2

=: [P=•]
∞∑
==1

[P=•]

(13b)

From the sum of (13a) and (13b) is follows that:

d

dC
(
∞∑
==1

=: [P=•]) = :appa0p

∞∑
==1

=: [PnX] + :01? [CuI/L]
∞∑
==1

=: [P=X] − :d1p [CuIIX/L]
∞∑
==2

=: [P=•]

− :p [M]
∞∑
==1

=: [P=•] + :p [M]
∞∑
==1

=: [P=−1•] − :tR [R•]
∞∑
==1

=: [P=•]

− (:tc + :td)
∞∑
==1

=: [P=•]
∞∑
==1

[P=•]

(14)

By Equation (14) is possible to obtain the 0th, 1st and 2nd differential moment equations. To
obtain these equations, first it is necessary to remove the dependency on [P=−1•]. This is done
by simplifying the term :p [M]

∑∞
==1 =

: [P=•] + :p [M]
∑∞
==1 =

: [P=−1•]) of (14). First of all, the
summation index of the second sum is shifted as follows (Hungenberg and Wulkow, 2018):

− :p [M]
∞∑
==1

=: [P=•] + :p [M]
∞∑
==1

=: [P=−1•] = −:p [M]
∞∑
==1

=: [P=•] + :p [M]
∞∑
==1

(= − 1): [P=•]

(15)

Then, the final simplification of Equation 15 leads to changes according to the order of the
moment considered. The final simplification result for the 0th, 1st and 2nd moments can be
found in Table B.1 (Hungenberg and Wulkow, 2018).
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B. Moments differential equations development

Table B.1: Simplification results of Equation 15 for the 0th, 1st and 2nd moments.

Momentum Result
0th 0
1st :? [M]

∑∞
==1 [P=•]

2nd :? [M] (
∑∞
==1 [P=•] + 2

∑∞
==1 =[P=•])

Now, it is possible to obtain the differential equation for the 3 moments of the propagating
chains. These are given by (16), using the notation described in Chapter 2.

d_0
dC

= :
app
a0p `0 + :a1p [Cu

I/L]`0 − :d1p [CuIIX/L]_0

+ :add ["] [R] − :tR [R•] _0 − (:tc + :td )_0 _0 ,
(16a)

d_1
dC

= :
app
a0p `1 + :a1p [Cu

I/L]`1 − :d1p [CuIIX/L]_1 + :p [M]_0

+ :add ["] [R•] − :tR [R] _1 − (:tc + :td )_1 _0 ,
(16b)

d_2
dC

= :
app
a0p `2 + :a1p [Cu

I/L]`2 − :d1p [CuIIX/L] _2 + :p [M] (_0 + 2 _1)

+ :add ["] [R] − :tR [R•] _2 − (:tc + :td )_2 _0 .
(16c)

Dormant chains PnX

For the P=X chains the derivation of Equation (2.11) can be made directly, because the chains
with one monomer unit have the same exact molar balance that the ones with two or more
repeating units. The balance to the P=X is then given by (17).

d

d C
(
∞∑
==1

=: [P=X]) = −:app00?

∞∑
==1

=: [P=X] − :a1p [CuI/L]
∞∑
==1

=: [P=X]

+ :d1p [CuIIX/L]
∞∑
==1

=: [P=•]
(17)

Then, the 0th, 1st and 2nd momentum equations are obtained from (17), and are given by (18)
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d`0
dC

= −:appa0p `0 − :a1p [Cu
I/L]`0 + :d1p [CuIIX/L]_0 (18a)

d`1
dC

= −:appa0p `1 − :a1p [Cu
I/L]`1 + :d1p [CuIIX/L]_1 (18b)

d`2
dC

= −:appa0p `2 − :a1p [Cu
I/L]`2 + :d1p [CuIIX/L] _2 (18c)

Dead chains Dn

For the D= chains (for simplicity D= denotes the chains terminated by combination and dispro-
portionation) the two terms of Equation (2.11) can be written as follows:

d[D1]
dC

= :tR [R•] [P1
•] + :td [P1

•]
∞∑
==1

[P=•] (19a)

d

dC

∞∑
==2

[D=] = :tR [R•]
∑
=

[Dn] + :td
∞∑
==2

[P=]
∞∑
==1

[P=•] +
:tc

2

∞∑
==1

=:
=−1∑
A=1

[P=•] [P=−A •]

(19b)

The difference between Equation (19a) and (19b) is due to the fact that is not possible to have
a D= chain, which ended by combination, with only one repeating unit. The minimum number
of units in this type of chain is two. The sum

∑=−1
A=1 [P=•] [P=−A •] is the result of a modification

of the original summation derived in Hungenberg and Wulkow (2018). This is because in the
case of termination by combination there is a different summation term for polymers with odd
or pair repeating units. This two different sum terms, derived in Hungenberg and Wulkow
(2018), would increase the problem complexity and the difficulty of the numerical treatment, so
a simplification is necessary (Hungenberg and Wulkow, 2018) ( for more information about this
subject and the mathematical demonstrations the reader is refereed to Hungenberg and Wulkow
(2018)).

To obtain the differential moments equations it is necessary to simplify the double sum in (19b)
as follows (Hungenberg and Wulkow, 2018; Mastan and Zhu, 2015):

:tc

2

∞∑
==1

=:
=−1∑
A=1

[P=•] [P=−A •] =
:tc

2

∞∑
==1

[PA •]
∞∑
A=1

(= + A ): [P=•] (20)

Table B.2 show the expressions for the 0th, 1st and 2nd obtained by Mastan and Zhu (2015) by
simplifying (20).
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C. Experimental points

Table B.2: Simplification of (20) for the 0th, 1st and 2nd moments.

Momentum Result

0th :tc
2

∑∞
==1 [P=•]

∑∞
==1 [P=•]

1st :tc
∑∞
==1 = [P=•]

∑∞
==1 [P=•]

2nd :tc (
∑∞
==1 =

2 [P=•]
∑∞
==1 [P=•] + (

∑∞
= = [P=•])2 )

Through the sum of (19a) and (19b), and using the expression in Table B.2, the moments equa-
tion are obtained:

dX0
dC

= :tR [R•] _0 + :td _0 _0 +
:tc

2
_0 _0 (21a)

dX1
dC

= :tR [R•] _1 + ( :td + :tc ) _1 _0 (21b)

dX2
dC

= :tR [R•] _2 + ( :td + :tc ) _2 _0 + :C2 _1_1 (21c)

C Experimental points

In Table C.3 are presented the experimental points used for the model validation in Chapter 4.

Table C.3: Experimental points for the model validation in Chapter 4.

time (min) monomer conversion PDI "= (g/mol)

5 0.0967 1.030 2590
17 0.2847 1.031 6308
38 0.5757 1.024 13070
60 0.7479 1.016 14599
82 0.8675 1.030 16604

105 0.9065 1.039 18644
130 0.9524 1.040 19669
160 0.9698 1.039 20038
195 0.9857 1.039 20230
240 0.9916 1.036 20895

The experimental points of the 2nd and 3rd experiment used in Chapter 6 are reported in the
Tables C.4 and C.5.
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Table C.4: Experimental points of the 2nd experience.

time (min) monomer conversion PDI "= (g/mol)

12 0.1713 1.052 14560
24 0.2411 1.033 21530
36 0.3400 1.028 29470
48 0.4524 1.034 40143
60 0.5306 1.040 47606
80 0.6201 1.036 56149

100 0.7353 1.039 68701
140 0.8536 1.052 78711
200 0.9287 1.074 86051

Table C.5: Experimental points of the 3rd experience.

time (min) monomer conversion PDI "= (g/mol)

5 0.0912 1.480 3590
11 0.2074 1.310 6308
20 0.3587 1.230 9070
30 0.5263 1.160 11599
45 0.6411 1.130 13604
70 0.8054 1.090 16644
95 0.8632 1.080 18669

125 0.9041 1.090 20038

D Approximated graphical representation of the empirical
correlation matrix

For the monomer conversion the graphical representation of the empirical correlation matrix for
the 1st, 2nd and 3rd interval are represented in the Figures D.1, D.2 and D.3, respectively.
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D. Approximated graphical representation of the empirical correlation matrix

Figure D.1: 1st interval for the monomer conversion.

Figure D.2: 2nd interval for the monomer conversion.
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Figure D.3: 3nd interval for the monomer conversion.

For the PDI the graphical representation of the empirical correlation matrix for the 1st, 2nd and
3rd interval are represented in the Figures D.4, D.5 and D.6, respectively.

Figure D.4: 1st interval for the PDI.
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D. Approximated graphical representation of the empirical correlation matrix

Figure D.5: 2nd interval for the PDI.

Figure D.6: 3rd interval for the PDI.

For the "= the graphical representation of the empirical correlation matrix for the 1st, 2nd and
3rd interval are represented in the Figures D.7, D.8 and D.9, respectively.
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Figure D.7: 1st interval for the "=.

Figure D.8: 2nd interval for the "=.
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E. Implementation test

Figure D.9: 3rd interval for the "=.

E Implementation test

An example is considered to test whether the method was properly implemented in MATLAB®,
for the calculation of the first order s indices and total sensitivity indices as well. The code was
tested with a simple function (22) where the parameters -8 are uniformly distributed between 0
and 1. This function was selected because the first order and total order sensitivity indices were
calculated using a Monte-Carlo method based on Sobol approximations in Qian and Mahdi
(2020), which facilitates the comparison to the results of the code in this work.

~ = - 2
1 + -2-3 + -4 (22)

The author does not mention the exact method they used to specify the number of samples
generated for this study. Because the computational cost to study this function is low, it will be
used a N= 10000, since it is the number of # all the sensitivity indices approximated the value
calculated analitically, in the previous example. The result for sensitivity indices obtained with
the code implemented in this work and Qian and Mahdi (2020) are presented in Table E.6. The
obtained sensitivity indices are consistent with those obtained by Qian and Mahdi (2020) using
a similar method. It can be concluded that the method is well implemented in MATLAB®.
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Table E.6: Global sensitivity analysis results of Equation 22.

Qian and Mahdi (2020) This work

Parameter (8 ()8 (8 ()8
-1 0.403 0.403 0.402 0.402
-2 0.094 0.126 0.094 0.126
-3 0.094 0.126 0.094 0.126
-4 0.377 0.377 0.377 0.378

F Algorithm for the weights determination

define FG

F%�� = 2
3 (1 − FG )

F"= = 1
3 (1 − FG )

Solve the optimization problem

Simulate
the model

add 0.05
to FG

Is the NMRSE
less similar to the

one of the
previous
iteration?

Use the
F8 of the
previous
iteration

no

yes

Figure F.10: Steps to calculteF8 .
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