
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

João Miguel Tomás Ferrão Correia Perdigão 
 
 
 
 

A SOFTWARE ARCHITECTURE FOR HIGHLY AVAILABLE 

CLOUD-NATIVE APPLICATIONS 
 
 
 
 
 
 
 

Dissertation in the context of the Master in Informatics Engineering, Specialization in 
Software Engineering, advised by Professor Raul Barbosa and presented to the  
Faculty of Sciences and Technology / Department of Informatics Engineering. 

 
 
 
 

September 2021 

A
 S

O
FW

TA
R

E 
A

R
C

H
IT

EC
TU

R
E 

FO
R

 H
IG

H
LY

-A
V

A
IL

A
B

LE
 

 C
LO

U
D

-N
A

TI
V

E 
A

P
P

LI
C

A
TI

O
N

S 
Jo

ão
 M

ig
u

el
 T

o
m

ás
 F

er
rã

o
 C

o
rr

e
ia

 P
er

d
ig

ão
 



Faculty of Sciences and Technology

Department of Informatics Engineering

A Software Architecture for Highly

Available Cloud-Native Applications

João Miguel Tomás Ferrão Correia Perdigão

Dissertation in the context of the Master in Informatics Engineering, Specialization in Software
Engineering advised by Professor Raul Barbosa and presented to the

Faculty of Sciences and Technology / Department of Informatics Engineering.

September 2021



This page is intentionally left blank.



Abstract

Cloud-native applications are becoming the de facto approach for building systems.
With their heterogeneity, increased size and dynamic nature new challenges arise to en-
sure important requirements such as their availability. In a scenario of business-critical
applications, where an outage of a single minute has signi�cant economical impacts, mak-
ing sure that the system remains available is mandatory. Hence, autonomic computing, a
paradigm introduced by IBM, intends to �nd better ways to manage systems, while reduc-
ing the cost to maintain them. More precisely, and among the self-managing properties
it suggests, we are particularly interested in self-healing capabilities, i.e., identifying and
recovering from failures or bugs (and repairing whenever possible) without human inter-
vention. In this thesis, we propose a solution through the implementation of an autonomic
framework capable of detecting failures in the managed system and applying mitigation
plans accordingly, to recover from failures. A Publish-Subscribe middleware is used as the
underlying infrastructure for communication among components. With this approach, we
intend to provide better availability for cloud-native applications whenever subject to fail-
ures. The proposed solution was evaluated under di�erent failure scenarios and considering
distinct recovery actions and strategies. The outcome of the experiments shows that the
framework developed is capable of e�ectively recovering from failures, while achieving the
desired performance. These results represent a step further to guarantee high availability
of cloud-native applications.

Keywords

Microservices, Autonomic Computing, MAPE-K Loop, Fault Tolerance, Cloud Com-
puting

iii



This page is intentionally left blank.



Resumo

As aplicações nativas da cloud estão a tornar-se na abordagem aceite para construir
sistemas. Com a sua heterogeneidade, aumento crescente de tamanho e natureza dinâmica,
surgem novos desa�os de forma a assegurar requisitos importantes, tais como a sua disponi-
bilidade. Nos cenários de aplicações críticas para o negócio, no qual uma interrupção do seu
funcionamento que dure um minuto tem impactos �nanceiros signi�cativos, é imperativo
garantir que o sistema permanece disponível. Deste modo, a computação autonómica, um
paradigma introduzido pela International Business Machines Corporation (IBM), pretende
encontrar maneiras mais adequadas de gerir sistemas, enquanto reduzindo o custo da sua
manutenção. Mais precisamente, e entre as propriedades de auto-gestão sugeridas, estamos
particularmente interessados nas capacidades de �auto-cura�, isto é, identi�car e recuperar
de falhas ou bugs (e reparar sempre que possível) sem intervação humana. Nesta tese,
propomos uma solução através da implementação de uma framework autonómica capaz
de detetar avarias no sistema gerido e aplicar planos de mitigação de acordo com as mes-
mas, de forma a recuperar das avarias. Um middleware Publish-Subscribe é utilizado como
infraestrutura adjancente para comunicação entre componentes. Com esta abordagem pre-
tendemos fornecer melhor disponibilidade a aplicações nativas da cloud quando estas forem
sujeitas a falhas. A solução proposta foi avaliada sob diferentes cenários de avarias, tendo
sido consideradas ações e estratégias de recuperação distintas. O resultado das experiên-
cias demonstra que a framework desenvolvida é capaz de recuperar e�cazmente de avarias,
enquanto garantindo o desempenho desejado. Estes resultados representam um avanço na
garantia de alta disponibilidade de aplicações nativas da cloud.

Palavras-Chave

Microsserviços, Computação Autonómica, Ciclo MAPE-K, Tolerância a Falhas, Com-
putanção na Nuvem

v



This page is intentionally left blank.



Acknowledgements

First and foremost, I want to express my gratitude to my supervisors. Professor Raul
Barbosa always provided the best feedback and was always open to debate new ideas
throughout our discussions. His continuous support, ambitious ideas and vast wisdom
were fundamental for the success of this work. Engineer André Bento, also had a core role
while co-supervisor of my thesis, being always available to help with his immense technical
knowledge and constructive suggestions.

I would also like to express my grateful thanks to professor Filipe Araújo and Engineer
Jaime Correia for their advice which helped improve the work performed throughout this
thesis. An additional thank you must be sent to the sta� at Fiercely, namely António
Howcroft, Luís Ribeiro and João Soares for their input and insightful ideas and reviews.

Faculdade de Ciências e Tecnologia da Universidade de Coimbra (FCTUC) was my
home for the last �ve years, so a special thank you must be sent to everyone which helped
me become the professional that I am today.

I would also like to thank the National Institute of Distributed Computing (INCD),
which provided the computational resources that had a core importance for the experi-
mental work, and the Project Autonomic Service Operation (AESOP), P2020-31/SI/2017,
No. 040004., for supporting this thesis.

Finally, a warm thank you must be sent to my mother and my father which always
cared for my well-being and education. I must also express my very profound gratitude to
my family, for always supporting me, my girlfriend Marília, who was always by my side
and provided unfailing support and encouragement, and my friends, with whom I had the
pleasure to work with and share this journey.

vii



This page is intentionally left blank.



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Workplan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 8
2.1 Microservices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Autonomic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Faults in Microservices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Fault Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Distributed Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 Gru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.2 Autonomic Version Management in self-healing microservices archi-
tecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.3 An architecture for self-managing microservices . . . . . . . . . . . . 25

2.6.4 Research notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Proposed Solution 28
3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . . . . 33

3.1.3 Technical Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.4 Validation of Non-Functional Requirements . . . . . . . . . . . . . . 35

3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Level 1 - Context Diagram . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Level 2 - Container Diagram . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Level 3 - Component Diagram . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Mitigation Plan Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Recovery Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Recovery Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Evaluation of the Proposed Solution 43
4.1 Experimental runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Faultload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Crash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.2 Hang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ix



Chapter 0

4.2.3 Wrong result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.4 Corrupted output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.5 Memory Leak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Implementation 49
5.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Istio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.2 Jaeger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.3 StreamTrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.4 Fault Detection System . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.5 Mitigation Plan Selector . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.6 Executor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.7 Apache Kafka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.8 PostgreSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.9 ElasticSearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.10 MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.11 Kubernetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Results and Analysis 59
6.1 Performance of the recovery actions . . . . . . . . . . . . . . . . . . . . . . . 59

6.1.1 Crash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.1.2 Wrong output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.3 Memory Leak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.4 Hang and corrupted output . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 E�ectiveness of the recovery actions . . . . . . . . . . . . . . . . . . . . . . 65
6.2.1 Crash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2.2 Wrong output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.3 Memory leak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 E�ectiveness of the recovery strategies . . . . . . . . . . . . . . . . . . . . . 70
6.4 Answers to the research questions . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Conclusion and Future Work 74

x



This page is intentionally left blank.



Acronyms

AESOP Autonomic Service Operation. vii

API Application Programming Interface. 23

AWS Amazon Web Services. 20

CI Continuous Integration. 8

CI/CD Continuous Integration/Continuous Delivery. 8

CNA Cloud-Native Application. 10

CNCF Cloud Native Computing Foundation. 10

CPU Central Processing Unit. 35

ECA event-condition-action. 12

FCTUC Faculdade de Ciências e Tecnologia da Universidade de Coimbra. vii

FMEA Failure Mode and E�ect Analysis. 17

HTTP Hypertext Transfer Protocol. 1, 10, 17, 19

IBM International Business Machines Corporation. iii, v, 1

INCD National Institute of Distributed Computing. vii

JSON JavaScript Object Notation. 25, 28, 30, 32, 35, 37, 39

MAPE-K Monitor-Analyze-Plan-Execute over a shared Knowledge. 2

MEPFL Microservice Error Prediction and Fault Localization. 16

MTBF Mean Time Between Failures. 3, 73

MTTD Mean Time To Detect. 62

MTTR Mean Time To Recovery. 3, 59, 62, 65

RPC Remote Procedure Call. 23

RQ Research Question. 2

SDK Software Development Kit. 23

SLA Service Level Agreement. 1

SOA Service-Oriented Architecture. 8

xii



This page is intentionally left blank.



List of Figures

1.1 Formula to evaluate the availability of a system . . . . . . . . . . . . . . . . 3
1.2 Overall Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Work performed in the �rst semester . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Second Semester Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Work performed in the second semester . . . . . . . . . . . . . . . . . . . . 5

2.1 Comparison between monolith and microservices. Figure from [21] . . . . . 9
2.2 MAPE-K loop structure [55] . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Fundamental chain of dependability and security threats [8] . . . . . . . . . 14
2.4 Causal and temporal relationships between spans. Figure from [85] . . . . . 22

3.1 Proposed solution overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Utility Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Formula of the Kubernetes' Horizontal Pods Auto-scaling algorithm [17] . . 35
3.4 Context Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Container Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Component Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Experiments execution pro�le. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 System and Experimentation overview . . . . . . . . . . . . . . . . . . . . . 45

5.1 MAPE-K Loop Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Jaeger Streaming Deployment Strategy. Figure from [48] . . . . . . . . . . . 51
5.3 Directed Acyclic Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Kubernetes Architecture Overview [58]. . . . . . . . . . . . . . . . . . . . . 58

6.1 Performance in the crash catalogue scenario . . . . . . . . . . . . . . . . . . 61
6.2 Performance in the wrong output scenario . . . . . . . . . . . . . . . . . . . 63
6.3 Performance in the memory leak scenario . . . . . . . . . . . . . . . . . . . 64
6.4 Golden run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.5 Crash catalogue scenario with restart . . . . . . . . . . . . . . . . . . . . . . 67
6.6 Crash catalogue scenario with version downgrade . . . . . . . . . . . . . . . 67
6.7 Wrong output scenario with restart . . . . . . . . . . . . . . . . . . . . . . . 68
6.8 Wrong output scenario with version downgrade . . . . . . . . . . . . . . . . 69
6.9 Behavior of Kubernetes OOMKiller . . . . . . . . . . . . . . . . . . . . . . . 69
6.10 Memory Leak scenario with restart . . . . . . . . . . . . . . . . . . . . . . . 70
6.11 Memory Leak scenario with global restart strategy . . . . . . . . . . . . . . 71
6.12 Crash catalogue scenario with iterative recovery strategy . . . . . . . . . . . 72

xiv



This page is intentionally left blank.



List of Tables

2.1 Table of considered faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Fault and Failure Injection Tools . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Infrastructure con�guration . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Span speci�cation [103] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1 Standard statistics of the crash catalogue experiment . . . . . . . . . . . . . 61
6.2 Mean Time Between Failures (MTBF) . . . . . . . . . . . . . . . . . . . . . 73

xvi



This page is intentionally left blank.



Listings

3.1 JSON example of the Mitigation Plan Data Model . . . . . . . . . . . . . . 39
5.1 JSON example of the Fault Information Object . . . . . . . . . . . . . . . . 53
5.2 Mitigation Plan to apply a restart after payment service crashed . . . . . . 54

xviii



This page is intentionally left blank.



Chapter 1

Introduction

1.1 Context

With the ever-growing size of computer systems, new approaches to assure important
quality attributes such as availability, performance and scalability are required. A very pop-
ular approach in cloud computing are microservices [68]. These decouple the monolith into
functionally independent services, which perform simple tasks and communicate through
lightweight protocols such as Hypertext Transfer Protocol (HTTP). The huge amount of
complexity and dynamic nature of such systems makes it more di�cult to manage and
monitor them, thus surpassing human cognitive capabilities.

To help self manage systems in an economic-e�ective manner, IBM proposed in 2001
a paradigm for self-management of computer systems [55], resembling the autonomic ca-
pabilities of the human body. This paradigm includes self-healing to help detect, diagnose
and repair problems, self-optimization for automatic con�guration of the system while
making it more cost e�ective, self-con�guration according to high-level policies de�ned by
the system's administrators and self-protection against attacks or failures. A self-manage
or self-adaptive system would usually consist in a feedback loop to deal with adaptation
aspects of the managed system. The feedback loop proposed by IBM is the MAPE-K loop
[55, 45, 99], which consists of several entities, namely Monitor(M), Analyse(A), Plan(P),
Execute(E) over a shared Knowledge(K), as explained in Section 2.2.

However, the implementation of such paradigm still poses a challenge for researchers
and developers and not many implementations exist that can ful�ll all the characteristics of
such systems. Nonetheless, it is crucial and very needed to address their implementation,
to help keep applications available.

1.2 Motivation

With many enterprises adopting a cloud-�rst model, it is crucial for business-critical
applications to guarantee the availability of their systems while maintaining acceptable
management costs and honoring any Service Level Agreement (SLA) de�ned. However,
such applications usually consist of large-scale systems, with complex request �ows and
runtime behavior. These characteristics make it harder to monitor failures and optimize
performance only with human interaction. Nonetheless, not only the systems increase their
size and complexity, but the same applies to their corresponding failures, and systems

1



Chapter 1

lack e�ective fault tolerance and recovery strategies to handle them [31]. Furthermore,
some faults can only be detected in runtime environments, thus the importance of failure
injection techniques such as chaos engineering.

Hence, it is imperative that systems start providing self-managing capabilities in a cost-
e�ective manner to cope with such complex environments. This thesis proposes a solution
to detect and recover from failures without human intervention, to help guarantee system's
availability.

1.3 Goals

The objectives of this thesis can be split in two di�erent goals:

� Development of a framework with autonomic capabilities, intended to maintain a
cloud-native application available, through the enforcement of self-healing actions,
namely detection of faults and error recovery. The error recovery is performed
through a set of actions de�ned in mitigation plans to be applied to the system
upon the detection of a failure. A Publish-Subscribe middleware constitutes the core
innovation of this implementation. It will help in the process of information exchange
among the fault detection and recovery components, whose information will be pub-
lished to and consumed from topics. This solution is documented in further detail in
Chapter 3.

� Validation of the framework resorting to fault injection techniques. Knowing that the
system must issue recovery actions according to the detected faults, a set of faults
will be injected to assess the framework's behavior. This evaluation is present in
Chapter 4.

1.4 Research Questions

The present section depicts the research questions that will be assessed in the context
of this work:

RQ1. Study the feasibility of building a MAPE-K loop using a Publish-Subscribe middle-
ware.

RQ2. Evaluate the possibility of achieving an availability of 99.99% for a cloud-native
application with the self-healing capabilities provided by our framework.

RQ3. Evaluate the e�ectiveness of di�erent recovery strategies as a means to complement
single recovery actions.

The �rst research question (RQ1) is intended to study the feasibility of using a Publish-
Subscribe middleware as a fast and reliable middleware for inter-component communica-
tion. Publish-Subscribe is a type of asynchronous communication among services, where
messages are sent to and consumed from topics. These are places where messages are stored
and where a publisher can publish a message and all the subscribed consumers will receive
it. In the context of the present work, we will study the feasibility of Apache Kafka [4] as
the chosen middleware, according to the results obtained from the experiments performed

2



Introduction

after �nishing the development of the framework. This was the chosen technology due to
its performance, scalability, durability and fault tolerance attributes.

Regarding RQ2, it is concerned with the ability of the framework to maintain a cloud-
native application available 99.99% of the time. Availability is the �readiness to provide
correct service� [8]. It can be measured resorting to the following formula:

Availability =

(
MTBF

MTBF +MTTR

)
× 100

Figure 1.1: Formula to evaluate the availability of a system

MTBF is the Mean Time Between Failures and is the average time between repairable
failures of a system. The Mean Time To Recovery (MTTR) is the average time taken to
recover from outages. For an application to maintain an availability of 99.99%, its yearly
downtime (period when the system is not providing service) cannot be greater than 52
minutes and 35 seconds. Thus, if we have outages whose error detection and recovery
takes between 1 to 5 minutes, we can withstand several of those while still maintaining the
high availability desired, being the downtime considered a reasonable value for a business-
critical application.

Finally, RQ3 is related to evaluating the e�ectiveness of di�erent recovery strategies
under distinct failure scenarios. Recovery actions, by themselves, are a candidate approach
to restore the system's correct service. However, since there is no silver bullet to mitigate
failures due to their diversity and complexity, another possible solution is to combine
di�erent recovery actions into a recovery strategy. This �nal research question addresses
this approach and intends to evaluate the e�ectiveness of the strategies in the di�erent
failure scenarios considered.

1.5 Workplan

The work developed within the scope of this thesis encompasses two semesters. The
initial plan was to devote the �rst semester to research about topics and core concepts
related to the scope of this work, as well as de�ne the requirements and architecture of
the solution and how it must be validated. In the second semester, the implementation
must take place, as well as the validation of the solution and answering to the research
questions. According to the proposed hours that must be dedicated to the Master Thesis,
in the �rst semester the student is supposed to devote 16 hours each week, resulting in a
total of 320 hours (20 weeks Ö16 hours). In which concerns the second semester, there are
800 hours of estimated work, resulting from 40 hours of work throughout 20 weeks (see
Figure 1.2).

In the �rst semester, the work went according to schedule. It was focused on researching
about the topics related to the research subject, which allowed to compose the state of
the art. Meetings took place every week to clarify any doubts, discuss some relevant ideas
about the project and plan work to be done until the next meeting. In the beginning
of the semester, the scope of the project was de�ned. Likewise, the requirements of the
framework being developed and its architecture were also de�ned. Since the component
interacts with a Publish-Subscribe middleware, namely Apache Kafka [4], some time was
devoted to the con�guration of this middleware inside a Kubernetes cluster. To have a
better understanding of the work that was carried out, Figure 1.3 presents the Gantt chart

3



Chapter 1

1821 28 5 12 19 26 2 9 16 23 30 7 14 21 28 4 11 18 25 1 8 15 22 1 8 15 22 29 5 12 19 26 3 10 17 24 31 7 14 21 28
9/20 10/20 11/20 12/20 1/21 2/21 3/21 4/21 5/21 6/21

Overall Plan start end

  First Semester 21/09/20 18/01/21
      State of the Art Study 21/09 22/10
      Requirements and Architecture Definit... 23/10 23/11
      Technology Hands-on 24/11 11/12
      Intermediate Report Writing 14/12 18/01

  Second Semester 31/01/21 30/06/21
      Proposed Solution Implementation 31/01 17/03
      Proposed Solution Evaluation 18/03 15/04
      Answer to the research questions 16/04 04/05
      Final Report Writing 05/05 30/06

Powered by TCPDF (www.tcpdf.org)

Figure 1.2: Overall Plan

20 27 4 11 18 25 1 8 15 22 29 6 13 20 27 3 10 17
9/20 10/20 11/20 12/20 1/21

First Semester start end

  Project Contextualization 21/09/20 04/10/20
      Background 21/09 27/09
      Scope definition 27/09 04/10

  State of the Art 05/10/20 31/10/20
      Core concepts 05/10 20/10
      Technologies 18/10 31/10

  Proposed Solution Specification 30/10/20 30/11/20
      Requirements Elicitation 30/10 15/11
      Architecture Definition 16/11 30/11

  Technologies Hands-on 29/11/20 12/12/20
      Apache Kafka Configuration 29/11 12/12

  Intermediate Report 12/12/20 18/01/21
      Writing of the Intermediate Report 12/12 18/01

Powered by TCPDF (www.tcpdf.org)

Figure 1.3: Work performed in the �rst semester

of the �rst semester.

Regarding the second semester, Figure 1.4 presents its work estimation. This estimation
was performed based on the Fibonacci Agile Estimation. This technique allows a rational
estimation of the e�ort required for each task to be done, resorting to the Fibonacci
sequence.

The real work performed in the second semester, which is exhibited in Figure 1.5
showcases a few key changes when comparing with the estimation performed. In order
to support the development and testing of the proposed solution, additional components
needed to be developed. These include StreamTrap, which reconstructs traces from indi-
vidual spans, Fault Detection System, in charge of analysing incoming traces and detecting
failures, and the Executor, which receives the mitigation plans and applies the recovery
actions to the system. Another change was that before implementing the �streaming� so-
lution, which operates in the intended feedback loop, an �o�ine� version was developed
to facilitate testing. Additionally, a research paper was written for the 2nd Workshop on
Dynamic Risk Management for Autonomous Systems (DREAMS 2021). Finally, besides
developing and assessing the performance and e�ectiveness of di�erent recovery actions,
recovery strategies were also developed and their e�ectiveness was evaluated.

4



Introduction

3031 7 14 21 28 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27
1/21 2/21 3/21 4/21 5/21 6/21

Second Semester start end

  Proposed Solution Implementation 31/01/21 17/03/21
      Implementation research 31/01 03/02
      Project setup 04/02 05/02
      Fault Reader implementation 06/02 10/02
      Fault Analyser Implementation 11/02 24/02
      Database configuration 25/02 26/02
      Plan Selector Implementation 27/02 12/03
      Plan Writer implementation 13/03 17/03

  Proposed Solution Evaluation 18/03/21 15/04/21
      Configuration of the fault injection tool 18/03 23/03
      Perform fault injection tests 24/03 05/04
      Document the results of the experim... 06/04 10/04
      Experiments reiteration 11/04 15/04

  Answer to the research questions 16/04/21 04/05/21
      Research about the proposed questio... 16/04 29/04
      Document the result 30/04 04/05

  Write final report 05/05/21 30/06/21
      Final report writing 05/05 30/06

Powered by TCPDF (www.tcpdf.org)

Figure 1.4: Second Semester Plan

3031 7 14 21 28 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27 4 11 18 25 1 8 15 22 29 5
2/21 3/21 4/21 5/21 6/21 7/21 8/21 9/21

Second Semester
  Proposed Solution Implementation
      Implementation research
      Project setup
      Fault Reader Implementation
      Fault Analyser Implementation
      Database configuration
      Plan Selector Implementation
      Plan Writer Implementation
      Batch Fault Detection System Implem...
      Executor Implementation
      Fault Detection System Implementati...
      StreamTrap Implementation

  Proposed Solution Evaluation
      Setup of the fault injection experimen...
      Configuration of the fault injection tool
      Perform fault injection tests
      Document the results of the experim...
      Experiments reiteration

  Research Paper Writing
      Writing research paper for DREAMS ...
      Prepare camera-ready paper submiss...

  Recovery strategies implementation
      Implementation of recovery strategies
      Experiments with recovery strategies

  Research Questions and Final Repo...
      Research about the proposed questio...
      Write the Final Report

Powered by TCPDF (www.tcpdf.org)

Figure 1.5: Work performed in the second semester

5



Chapter 1

1.6 Research Contributions

The work performed throughout this thesis converged in a research paper to be pre-
sented at the 2nd Workshop on Dynamic Risk Management for Autonomous Systems
(DREAMS 2021). This contribution is entitled as follows:

� João Tomás, André Bento, João Soares, Luís Ribeiro, António Ferreira, Rita Car-
reira, Filipe Araújo, Raul Barbosa. Autonomic service operation for cloud applica-
tions: Safe actuation and risk management. 17th European Dependable Computing
Conference (EDCC 2021).

1.7 Document Structure

This section aims to present the structure of this document, which is organised as
follows:

� Chapter 2 presents theoretical background and core concepts that help understand
the work being performed. Related work in the �eld is also documented in order to
assess the existing work and raise a critical overview of possible improvements in the
system to be developed.

� Chapter 3 documents the proposed solution. It includes both the functional and
non-functional requirements, as well as its architecture. The data model used for the
mitigation plans is also documented and the validation of the non-functional require-
ments is performed. A detailed description of the recovery actions and strategies
considered is also performed.

� Chapter 4 explains how the proposed solution was evaluated, through the use of fault
injection techniques. A detailed description of the experimental runs is provided,
which includes the faultload and workload used. Furthermore, the infrastructure
where the experiments are executed is also described.

� Chapter 5 provides a detailed description of the proposed architecture's implemen-
tation. The chapter is split into several sections, each of them describing one of the
components from the architecture.

� Chapter 6 exhibits and interprets the results obtained throughout the experimental
runs. Moreover, the answers to the research questions are also provided.

� Chapter 7 summarizes the research subject, how the proposed solution helps solve
the documented problems and the conclusions obtained from the present work A
brief discussion of the experimental results is also provided, as well as future work
to help feed research directions to complement and improve the proposed solution.

6



This page is intentionally left blank.



Chapter 2

Background

This Chapter pinpoints the main concepts that are related to the scope of this thesis, the
technology which implements those concepts and related work in the �eld. The information
gathered results from literature review, documentation and exchange of ideas from the
meetings.

2.1 Microservices

With the increasing adoption of cloud computing and with many enterprises migrating
their applications to the cloud or intending to do so in the following years, there is the
necessity for a suitable architectural style and that is where microservices emerge. Some
research has already been performed about the concerns of migrating from a monolith
architecture to a microservices one, in order to achieve the fast pace of delivery, scalability
and availability features that this design pattern provides [59].

The previously mentioned monolith was the traditional approach to software devel-
opment where we would witness all the functionalities of a piece of software deployed into
a single application (Figure 2.1). This was only feasible when dealing with a small appli-
cation, even showing some strengths such as being easy to develop, test and deploy [59].
However, when the size and complexity of an application starts to increase, some problems
arise. For instance, if there is an increase in load, we are forced to scale the whole appli-
cation. The same applies if a bug is found, since all the application may be a�ected due
to the code being gathered in one place, creating a single point of failure.

That said, the need to decouple the components of an application arose, leading us to
the microservices architectural style (Figure 2.1). These can be de�ned as �an approach
to developing single application as a suite of small services, each running in its own process
and communicating with lightweight mechanisms� [30], following the principle of �small and
focused on doing one thing well� [68].

An important aspect that must be noticed is that microservices can be seen as an
improvement over Service-Oriented Architecture (SOA). These had as main objec-
tive �the integration of di�erent software assets, possibly from di�erent organizations, in
order to orchestrate business processes� [38]. In which concerns microservices, these are
more focused on improving the development, delivery and deployment and are seen as
an enabler for surfacing software development practices such as DevOps and Continuous
Integration/Continuous Delivery (CI/CD). Another advantage, related to Continuous In-

8



Background

tegration (CI), is the possibility for new versions of components to be gradually introduced
in a system through the side by side development with previous versions [65]. Besides that,
service-oriented architectures focused on sharing as much as possible, while microservices
encourage in decoupling services and sharing as little as possible [32].

Figure 2.1: Comparison between monolith and microservices. Figure from [21]

Among all the bene�ts of microservices, we can identify [59, 68, 80]:

� Technology Heterogeneity - developers are not attached to using the same tech-
nology for all the services that compose an application. Contrariwise, we have the
possibility to have each single service written in a di�erent programming language.

� Scaling - when a service is under heavy load, it can be scaled individually, without
the need to scale any other services.

� Resilience - if an instance of a service fails, the fault can be isolated and the re-
maining services can keep working (unless we are dealing with a cascading failure,
which occurs when a failing service has other services that depend on it, which in
turn can become unresponsive [65]).

� Ease of Deployment - when we need to deploy changes to a certain service, this
can be done independently to the desired service, without a�ecting the remaining
ones.

� Replaceability - due to their small size, it is easier to replace an existing service
with another with a better implementation or even delete it if it is no longer used.

� Composability - due to the decoupling of microservices, it is easier to change our
application if the business demands change, which is something that would be very
hard to accomplish with a monolithic architecture.

� DevOps - enables a �collaborative symbiosis� between developers and operators,
having one team working on the architecture and development phases. This results
in improved quality and faster delivery to production.

Notwithstanding, there are also some issues that arise from using this kind of architec-
ture:

� Monitoring - having such a �ne-grained system makes it harder to pinpoint where
a certain failure occurred and what caused it. This brings the need to use new

9



Chapter 2

monitoring solutions such as distributed tracing (see Section 2.5), since logging
becomes unsuitable when we are dealing with such distributed systems.

� Complexity - development and production become more complex due to provision-
ing and orchestration of services.

� Testing - new testing approaches are required due to the dynamic and distributed
nature of microservices.

� Communication overhead - services communicating over protocols such as HTTP
can result in high latency.

A widely adopted concept nowadays is the one of Cloud-Native Application (CNA).
This is the name used to refer to an application that is �speci�cally designed to provide
a consistent development and automated management experience across private, public
and hybrid clouds�[37]. The development of cloud-native applications helps speed up how
they are built, optimize them and connect all of them. This way it is possible to deliver
applications that the user wants at the pace a business needs [37]. According to CNCF
[29], their objective is to drive adoption of this paradigm by serving and sustaining an
ecosystem of open source and vendor-neutral projects, thus helping innovations become
accessible to everyone.

Naturally, to allow this type of software architecture to be developed, speci�c infras-
tructure technologies are required, which allow to deploy, manage and control distributed
services and have basic self managing properties such as horizontal scaling and restarting
pods that failed. Among these technologies we can identify Docker [96], Docker Swarm
[22], Kubernetes [56], Apache Mesos [5] and Amazon Elastic Container Service [84].

In the scope of this thesis there is a special interest in Docker and Kubernetes since
these are some of the technologies to be used in the framework development. Docker is
a widely used container-based technology that allows to build, ship, and run distributed
applications [96]. These containers are a lightweight approach which many prefer in con-
trast to hypervisor-based virtualization [16]. The latter type of virtualization works at the
hardware-level, with an hypervisor establishing complete virtual machines on top of the
host operating system. These machines contain not only the application and its depen-
dencies, but also the entire guest operating system [16].

To help manage containers we may resort to orchestrators such as Docker Swarm, Ku-
bernetes and Apache Mesos. An orchestrator can be seen as technology that helps manage
containers and automate tasks such as their deployment and scaling. One of the best
known orchestrators is Kubernetes. It is an open source platform that allows to man-
age Docker containers in a cluster. Some of its features include healing by automatically
restarting pods that failed and rescheduling when their hosts die [92]. A Kubernetes cluster
is composed of at least one master node [74]. The master node is in charge of managing
and controlling the worker nodes. This node is usually tainted with a policy of NoSchedule,
to avoid The pods are hosted in the worker nodes and are the smallest deployable units,
which can have one or more containers [58, 77].

Since our intention is to build a cloud-native application, we must consider the usage of
a service mesh, which can be de�ned as a �dedicated infrastructure for handling service-
to-service communication� [83]. These are usually implemented as an array of lightweight
proxies attached to containers in a sidecar pattern which allow reliable message delivery
and hold a set of important techniques such as service discovery, circuit-breaking and load
balancing. Sidecars interact with the service mesh control plane, which is in charge of

10



Background

managing and con�guring the proxies to route tra�c. These proxies can be individually
con�gured with timeouts or retries if the associated microservice does not receive a timely
response or to retry the request. Mechanisms such as the previously mentioned circuit-
breaker can prevent cascading failures, where a failure in a microservice can propagate to
subsequent services. Circuit-breaker is a design pattern that, whenever a certain number
of requests to a downstream service fail, stops all further requests (fail fast) to that service.
After a certain period of time, the client can send requests to assess if the downstream
service has recovered. If this happens, the circuit breaker resets and the request �ow is
restored [68]. Nonetheless, there are trade-o�s that should be considered when con�guring
mechanisms such as the circuit-breaker. If the circuit breaker decides too quickly that a
service has failed, it can unnecessarily abort requests, which will a�ect the application's
availability. Furthermore, if the decision is made too slowly, this failure can propagate to
other services (cascading failure), which will also impact the application's availability [50].
Thus, we can conclude that the adoption of a service mesh in the technology stack is critical
for applications that can have thousands services, each of them with hundreds of instances
that dynamically change their state.

Nonetheless, with the increasing complexity of systems we need more than ever the
existence of self-adapting capabilities upon di�erent situations, without the need for human
intervention.

2.2 Autonomic systems

The concept of Autonomic Computing was �rst introduced by IBM in 2001 [40]. Fore-
seeing the increasing complexity of software systems, which are becoming more intercon-
nected and diverse, they envisioned the necessity to start developing �computing systems
that can manage themselves given high-level objectives from administrators� [55], which
can be de�ned as autonomic computing. The main objectives are to reduce the system's
ownership cost and to �nd better ways of managing their increasing complexity [87]. This
paradigm is in�uenced by the human body's autonomic system, which regulates vital body
functions such as the heart rate without conscious e�ort [87].

The core idea for this kind of systems is self-management, which would allow the system
to monitor its own usage and do its own maintenance when there is the need to. Inside
self-management there are four aspects that we must consider [55]:

� Self-con�guration - the ability of the system to con�gure itself according to high
level policies. Based on that information, it must adapt automatically.

� Self-optimization - intended to eradicate the concern of tuning the parameters of
software systems and continuously trying to improve their operation, thus becoming
more performance and cost e�cient.

� Self-healing - focused on the detection, diagnose and repair of problems resulting
from bugs or failures, on its own.

� Self-protection - capable of protecting the system in two ways, either as a whole
against malicious attacks or cascading failures, or prevent problems ahead of their
occurrence, based on previous information.

That said, a self-adaptive system is usually composed of a feedback loop and a
managed system. The managed system is a component (hardware or software) that can

11



Chapter 2

be managed, such as an application. The feedback loop handles the adaptation of the
managed system, which includes, for instance, changing the system's con�guration when
it is under heavy load [45].

The feedback loop, proposed by IBM, is a structure referred to as MAPE-K loop
(or just MAPE-K). It is composed of the Monitor, Analyse, Plan and Execute entities,
alongside with runtime models (Knowledge) of the managed system, its environment and
the adaptation objectives provided by the system administrators [45]. A runtime model
can be described as an abstraction of a system that allows to reason about it during its
execution [14]. An example of a runtime model is software architecture runtime model,
which are graph-based data structures that store con�gurational and operational informa-
tion. The model is sustained through system monitoring, in order to echo in the model
any changes that may occur in the system, and help the system to self-adapt [14].

Each of these entities is described as follows [45, 99, 35]:

� Monitor (M) - gathers data from the managed system and the environment, with
the help of probes, to update the Knowledge. The data sent to the Knowledge may
be subject to preprocessing tasks, such as �ltering and aggregating the data received.

� Analyse (A) - assesses if there is the need to perform any adaption action, based
on the monitored state of the managed system, the environment and the adaption
concern of interest.

� Plan (P) - is in charge of planning the mitigation actions to adapt the managed
system. These actions can range from a single command to a more complex work-
�ow.The Plan component will then notify the Execute in order for the latter to
execute the adaptation actions on the system.

� Execute (E) - is responsible for performing the adaption actions derived from the
mitigation plans.

� Knowledge (K) - is intended to manage di�erent knowledge sources for supporting
the feedback loop's operation, thus managing the knowledge that other components
may need for their operations. Examples of shared knowledge include log �les, system
metrics and topology information. A knowledge source is an implementation of a
repository (e.g., a database) that stores knowledge, which can be shared among
autonomic managers and accessed by the entities of the autonomic manager (monitor,
analyse, plan and execute) [35]. To clarify, an autonomic manager is a component
that manages other components using a control loop. Such control loop includes
monitor, analyse, plan and execute functions [35].

As shown in Figure 2.2, the sensors and actuators are connected to the system to
be managed. These can also be called touchpoints, since they act as an interface to the
managed resource [44]. The sensors are managed by the Monitor entity and are in charge
of gathering contextual data which will be later analysed to perform adaptation decisions
[99]. In turn, the actuators (or e�ectors) are used by the Execute entity to perform changes
to the managed element.

Besides the overall autonomic functionalities of this systems, they will still depend
on humans to provide them policies. The policies are the goals and constraints that
govern the system's actions. These can be expressed using event-condition-action (ECA)
policies, goal policies or utility function policies. ECA policies are usually presented in
the format �when an event occurs and condition holds, then execute action�. Goal policies

12



Background

Figure 2.2: MAPE-K loop structure [55]

are described in a higher level since they specify criteria that characterise desirable states,
but leave the system in charge of �nding how to achieve that state (we can specify that a
service should have a response time of under 2 seconds and the autonomic manager will
use internal rules to scale resources, in order to attain the desirable state). Lastly, utility
functions de�ne a quantitative level of desirability to each state, taking as input a number
of parameters and returning the desirability of that state as output [43].

To de�ne such policies, a manual manager can be used. This manager provides
a system management interface that allows system administrators to perform tasks that
these delegate through a management console.They can choose which tasks involve human
intervention and which should be performed autonomically, according to policies de�ned
by them [35].

Furthermore, these kind of systems will help reduce human errors, but if a mistake is
made while setting up those policies, the consequences can be greater. Thus, two engi-
neering challenges arise: ensuring that goals are speci�ed correctly in the �rst place and
ensuring that systems behave reasonably even when they are not [55]. Facing these two
challenges, Kephart [55] suggests that for the �rst one, a joint work between psychologists
and computer scientists to help simplify and clarify the means by which humans express
the intended goals shall take place. In which concerns the second one, this would require
an additional layer of robustness in the system to protect itself from erroneous input goals
provided by humans.

With regard to the approaches that can be followed to integrate autonomic capabilities
into an application, two are considered [28]:

� internal approach - the autonomic manager is part of the system to manage.

� external approach - the autonomic manager does not depend on the application
and communicates with it from the outside.

The solution proposed in this document is part of the Planning phase. It will choose
mitigation plans according to fault information received from the Analyse entity, which
will then be sent to a publish-subscribe middleware. These plans will be collected after-
wards by the Execute and applied to the system. The proposed solution is explained in
detail in Chapter 3 and the related work is documented in the present Chapter, in Section

13



Chapter 2

2.6. The method that allows to pinpoint the fault location by the Analyse component is
distributed tracing and will be explained in more detail in Section 2.5.

Since the present work is related to providing self-healing actions to the managed
system, we can identify �ve important properties that self-healing systems must have
[75, 9]:

1. Monitoring, in runtime, of a given system (or part of it).

2. Detection when a given fault occurs in the system.

3. Diagnosis of the fault, including identi�cation of events.

4. Generation or selection of a given recovery plan.

5. Validation and execution of a given recovery plan.

Thus, self-healing is concerned with fault identi�cation and e�ective recovery, without
loss of data or service, and repairing the system whenever possible. Fault prediction
techniques might also be used, allowing to perform a re-con�guration process to avoid the
previously detected faults or reduce the likelihood of their occurrence [87].

Nonetheless, with the evergrowing complexity of microservices, it is mandatory to pay
attention to system's dependability. This can be de�ned as the �ability to deliver service
that can justi�able be trusted�, being service the system's behavior as it is recognized by
its users or other systems [8].

The attributes that compose dependability are availability, reliability, safety, integrity
and maintainability. Availability is our most valuable quality attribute in the context of
this work since the framework under development aims at assuring that cloud-native appli-
cations remain available even when in the presence of faults. This attribute can be de�ned
as �readiness for correct service� [8]. Alongside with the previously mentioned quality at-
tributes, there are other two mechanisms that are essential for attaining dependability - the
threats to and the means for dependability. The threats that compose the fundamental
chain (Figure 2.3) are faults, errors and failures. A fault is an anomalous condition of the
system which may lead to a failure, an error is a human action that causes an incorrect
result and a failure is an event that arises when the service provided deviates from correct
service.

...→ fault
activation−−−−−−−→ error

propagation−−−−−−−−→ failure
causation−−−−−−→ fault→ ...

Figure 2.3: Fundamental chain of dependability and security threats [8]

The chain in Figure 2.3 depicts that a fault is activated when an input is applied
to a component, causing a dormant fault to become active. After being activated, the
fault produces an error, which is a result from the computation process that, in turn,
may create other errors (error propagation). When the errors that were propagated a�ect
the delivered service, a failure occurs, which deviates the system from correct service [8].
Finally, a component failure causes a permanent or transient failure to the system that it
belongs to. A permanent fault is one whose presence is continuous in time and persists
inde�nitely or until it is repaired. In turn, a transient fault (also known as soft fault) is
bounded in time.

14



Background

The last mechanism are the means to attain dependability, which are fault preven-
tion (avoid the occurrence of faults), fault tolerance (avoid service failures in the presence
of faults), fault removal (remove a fault to avoid damaging the system's correct service)
and fault forecasting [8]. The latter is performed through an evaluation of the system's
behavior whenever a fault occurs or is activated, in order to classify them according to their
failure modes (qualitative evaluation) or in terms of the probability of a fault occurrence
(quantitative evaluation).

Sterritt et al. [87] perform an interesting study on how autonomic computing can imple-
ment a framework for dependability. They acknowledge that the mechanisms stated above
have a considerable in�uence on the dependability of a system and resort to the funda-
mental chain (Figure 2.3) to present the need for an improved approach to design fault
tolerant systems, to help break this chain and further prevent failure. However, they rec-
ognize that the creation of such autonomic systems is a major challenge which will require
further research and contributions from the subjects of Software Engineering and Arti�cial
Intelligence. Notwithstanding, two strategies for introducing Autonomic Computing are
discussed, either by making individual systems autonomic or achieving autonomic behavior
at the system level. The article concludes stating that not only the self-healing property
of autonomic systems is concerned with a system's dependability, but that all facets of
Autonomic Computing are concerned with it. Hence, with the adoption of this paradigm,
it is possible to increase system's dependability.

In a more detailed analysis, an autonomic system will monitor itself, analyse monitoring
data, decide whether or not an action must be perform to bring the system to correct service
and discover, predict or prevent the system from failures (self-con�guration, self-healing,
self-optimization and self-protection, respectively). The previously mentioned attributes
of dependability will help assess if the monitoring data indicates the existence of any
anomaly in the system [41]. To deal with such occurrences we resort to the means of fault
prevention, tolerance, removal and/or forecasting. These can be embedded in the self-
adaption provided by the autonomic system. The anomalies found consist in the threats
to dependability - faults, errors and failures.

In which concerns the faults that may occur when working with microservices, these
will be thoroughly explained and analysed in the following Section (2.3).

2.3 Faults in Microservices

In addition to the �ne-grained nature of microservices, this situation gets worse due
to their dynamic nature, since a lot of failures that occur in a microservices environment
are due to complex interactions between them. These applications usually have complex
invocation chains that involve many microservices' invocations, being most of these asyn-
chronous. Likewise, any failures in con�guration or coordination of microservices instances
may lead to failures at runtime [101]. Another important consideration is that if a fault
is not properly handled, it may increase the system failure rate, which is the probability
that a component or system fails at runtime [2].

To assure microservices reliability, it is important that failures and performance issues
are detected quickly, as well as the root cause of such failures. However, microservices ar-
chitectures pose new challenges, due to complex dependencies among microservices, service
heterogeneity, the vast amount of metrics generated and frequent updates of services (a
company such as Net�ix can update their services thousands of times a day) [98]. To allow
root cause localization of failures in microservices architectures, several works have been

15



Chapter 2

proposed, such as the one in [98]. This work derives the root cause of performance issues
through correlation of application performance symptoms with the corresponding system
resource utilization. The application level metrics help detect performance issues. From
there, the cause analysis engine constructs the attributed graph to represent the anomaly
propagation paths and, �nally, extracts the anomalous subgraph and infers which service
could have caused the anomaly.

Thus, the importance of detecting and locating the faults that may occur in a system
during runtime execution is essential to a system's availability. Likewise, many failures are
very di�cult to reproduce and this can only be done at runtime, thus the importance of
techniques such as chaos engineering, which is explained in the next Section (2.4).

Zhou et al. [100] acknowledge the lack of research about fault analysis and debug-
ging of microservices and provide an industrial survey to learn about common faults in
microservices, the techniques used for debugging and the challenges that developers face
when trying to debug the systems. Furthermore, they perform a benchmark of a medium-
size microservice system, which will then be the starting point for the empirical study to
investigate the e�ectiveness of the debugging practices that are used. The outcome docu-
ments that the existing debugging practices can be further improved. The faults considered
are arranged based on their symptoms (functional or non-functional) and root causes
(internal, interaction, or environment).

However, in a latter work by the same authors [101], where they build MEPFL, which
is an approach for latent error prediction and fault localization in microservice applications
that learns from system trace logs, they categorize these fault cases in four types:

� Monolithic Faults - faults that can cause failures when the application has all
its microservices deployed in a single node, with only one instance per microservice
and these interacts in a synchronous way. These are usually a result from internal
implementation faults of the services.

� Multi-Instance Faults - faults associated with the existence of multiple instances
of the same microservice at runtime and are a result from lack of coordination among
the di�erent instances.

� Con�guration Faults - faults related to environmental con�gurations of microser-
vices, such as resource limits and are usually a result of improper con�guration of
microservices or the environments where these operate.

� Asynchronous Interaction Faults - faults that may occur during asynchronous
communication among services. Failures can arise when asynchronous invocations
are executed or when these are returned in an unexpected order. These usually
result from missing or improper coordination of asynchronous invocations (such as
the lack of coordination mechanisms).

In such a dynamic environment, it is hard to pinpoint the causes of every fault that
occurs in the system or even detect where the fault occurred or have the capability to
detect the faults. However in these work, a set of faults found throughout literature review
are considered, as well as a set of planned actions and strategies (see Chapter 4) for error
recovery that the framework under development will choose to apply to the system, in
order to recover from the detected faults.

Among all the existing faults that can occur in a microservices environment, the fol-
lowing, collected from literature review [100, 19, 6, 1, 86], will be considered in this study:

16



Background

Failure mode Possible Failure Causes Symptom

Incorrect
Content

Service received an
invalid response

The incorrect value propagates
through the service interface and
results in a cascading failure.

Corrupted
Output

Missing asynchronous
message delivery
sequence control

Messages are displayed in the
wrong order

Service received a
corrupted response

The invalid response is persisted
and results in a cascading failure

Crash
Improper resource
limit con�guration

Microservice instance is restarted;
Timeout exception; Exceptions
related to resource-consumption
are thrown

Service allocates memory
without freeing
it (memory leak)

Service exhausts its memory and
returns timeouts upon user
requests

Hang

Service receives an
abnormaly high amount
of requests, making it
unable to process them

The service starts to return
timeouts to user requests

External service is not
reachable

Attempted connections to an
external service are timed out

Service acting as a
gateway or proxy did not
receive a timely response

Service timed out

Table 2.1: Table of considered faults

These faults are presented according to the Failure Mode and E�ect Analysis (FMEA)
format. This is a �systematic technique to explore the possible failure modes of individual
components or subsystems and determine their potential e�ects at the system level� [64].
It gathers the potential failure modes of subsystems, their root causes and their e�ect in
the system. In the �rst column we are presented with the failure modes, which are the
di�erent ways that the deviation from correct service can assume [8]. The second column
describes possible failure causes for each failure mode. In the third column the failure
e�ect (or symptom) is documented, which is the consequence of the failure in the system.
The reference of the identi�ed fault is documented in the last column.

The failure modes considered are [8, 18]:

� Incorrect output - a service returns a valid response, but containing a wrong result.

� Corrupted output - a service returns a corrupted result.

� Crash - a service stops working completely.

� Hang - a service does not answer any incoming requests or does not produce any
further output.

The main focus in gathering the faults presented in Table 2.1 was �nding faults whose
failure e�ect could be an HTTP code that the Fault Detection System could detect and
subsequently inform the Mitigation Plan Selector. Likewise, and since HTTP is a widely

17



Chapter 2

used communication protocol among microservices, we focused on status codes in the 5xx
range (server-side error codes) [23]:

� 500 Internal Server Error - server has encountered an unexpected condition, thus
preventing it from ful�lling the request. This is a broad response usually adopted
when no better response to describe the error can be provided.

� 502 Bad Gateway - server, while acting as a proxy or gateway, received an invalid
response from an upstream server.

� 503 Service Unavailable - server is not ready to handle the request, which is
usually a result from server overload or maintenance.

� 504 Gateway Timeout - server, while acting as a proxy or gateway, did not receive
a timely response from an upstream server.

Although these faults could be identi�ed, the major availability and performance break-
downs observed in the cloud are caused by gray failures. Huang et al. [42] de�ne these
as �component failures whose manifestations are fairly subtle and thus defy quick and
de�nitive detection� and report that these get more common with the growth in complex-
ity and size of cloud systems. Examples of this type of faults are random packet loss,
performance-degradation and non-fatal exceptions. These failures assume a speci�c fea-
ture named di�erential observability, which is when the system's failure detectors do
not notice problems when applications are a�icted by them, or, more precisely, when dif-
ferent components notice di�erent behaviors of the same application. An example would
be when one component is negatively a�ected by the failure and another does not perceive
that there is a failure. These type of failures can sometimes lead to unwanted situations
where recovery actions harm the system. This same article reports a scenario where a
failure is not detected upon its occurrence due to a resource-reporting bug. A machine
that was operating in degraded mode kept getting overloaded and was being constantly
rebooted. When the failure detector noticed this constant rebooting, it shut down the
machine. This, alongside another problem in the replication work�ow, put pressure in the
remaining servers, which led to a cascading failure.

Likewise, the authors of the paper outline potential solutions that could be considered
to �ght gray failure. A possibility would be to to close the observation gap between the
system and the application that it serves and moving single failure detection, such as
the one that an heartbeat mechanism provides, to a multi-dimensional health monitoring
one. Further possibilities include taking advantage of the diversity of components in the
system, in order to complement each other information, to detect the subtleties of gray
failure. Another possibility would be to discover the temporal patterns that result in gray
failures, to help the systems react before applications are a�ected.

To evaluate if the proposed solution can, in fact, choose plans to recover from the
presented faults, fault and failure injection experiments will be performed. Thus, the
following Section (2.4) will describe this technique, as well as the underlying technologies.

2.4 Fault Injection

To improve and assure a system's dependability, fault tolerance techniques must exist.
However, we need a way to evaluate these fault tolerance mechanisms, to assess if our
system is capable of withstand failures that may occur. Thus, fault injection shall be used.

18



Background

This technique can be de�ned as the willful insertion of a fault or error in a system, to
observe how it behaves and handles the resulting e�ects and recovers from possible failures
that may occur [60].

We can identify fault injection as being of four types [79, 66, 102, 13]:

� Hardware-based - injection of faults at the physical level by controlling environ-
mental parameters, such as shutting down virtual machines.

� Software-based - faults are injected through their implementation in software. Sev-
eral examples are setting wrong parameters, incorrect timeouts, inject latency in
HTTP tra�c or sending messaging with a di�erent format from the one expected.
This approach mimics software faults through changes performed in the application's
source code.

� Simulation-based - injection of faults in high-level model(s) of the system, through
the usage of simulation scripts or by modifying the model. It enables an early eval-
uation of the system's dependability when only a model is available. The meaning-
fulness of the results obtained deeply depends on the accuracy level of the model of
the system.

� Hybrid - a combination of two or more of the previously identi�es fault injection
techniques. This approach provides a more complete exercise of the system under
analysis.

Nonetheless, a drawback of software-based fault injection is that it requires the modi�-
cation of the application source code. Thus, the code that executes during the experiment
is not the same as the one that will run in production [102].

Moreover, software injection methods can be categorized according to the timing of
the faults injected - compile-time or run-time [102]. When the program's source code is
modi�ed before the program image is loaded and executed, in order to inject a fault, we
say that the fault is injected at compile-time. The modi�ed code helps emulate the
fault scenario, generating an erroneous software image. When this image is executed, it
activates the injected fault. Since the e�ect of this fault is hard-coded, it can be used to
emulate permanent faults. On the other hand, when a fault is injected during the program
execution time, we say that it is injected at run-time. To inject such faults, a mechanism
is required to trigger fault injection. Examples of triggering mechanisms include time-out,
where the injection is triggered based on a timer, and exception/trap, where, for example,
a software trap instruction invokes the fault injection.

Furthermore, in recent years, the term Chaos Engineering appeared, emerging as a
�discipline to enable resiliency in the cloud�[91]. Another de�nition from [78] describes it as
�the discipline of experimenting on a system to build con�dence on the system's capability
to withstand turbulent conditions in production�. When an application is deployed to
a production environment, it faces many unpredictable conditions due to the dynamics
and complexity of microservices invocations. Thus, it is important to experiment in a
system during runtime, in order to assess the system's resilience under real conditions [51].
Chaos engineering can be classi�ed as simulation-based fault injection since the system
is tested under a simulation of what the real failure conditions would be in a production
environment. [51]. Through such experiments, developers can discover system's weakness
which are required to be solved in order to improve its resilience.

One of the most well known examples of this technique is Chaos Monkey, which was
created when Net�ix moved their data center to Amazon Web Services and wanted to

19



Chapter 2

assess how potential failures in Amazon Web Services (AWS) would a�ect their ability to
provide continuous service [3]. Chaos Monkey then became part of a bigger group, the
Simian Army. While the Chaos Monkey operates by randomly selecting an instance of a
virtual machine and shutting it down, there are other that work at a higher level, such as
Chaos Kong, which simulates the failure of an entire Elastic Cloud Computing region, in
Amazon Web Services. Currently, the Simian Army is no longer actively maintained, but
Chaos Monkey continues to operate as a standalone service [67].

To further express the importance of testing an application's resilience, Heorhiadi et al.
[39] present, in Table 1, a set of outages in popular Internet services. Their postmortem re-
ports show missing or faulty failure-recovery logic, which pinpoints that unit or integration
tests are insu�cient to detect these bugs. They further recommend performing resilience
testing (e.g., chaos engineering) to assess if the application can recover from failures that
are common in cloud environments.

If we intend to perform an experiment that follows this approach, there are four prin-
ciples that must be addressed [11, 60]:

� Build a hypothesis around steady-state behavior - even complex systems man-
ifest regular behaviors that can be foreseen. Thus, it is important to �nd metrics that
can de�ne a system's steady state behavior so that we can hypothesize and assess
the system's health.

� Vary real-world events - the design of experiments must consider a sample of all
possible inputs that can occur in the real world. To do so, we can inject a failure in a
service, simulate a service failure or choose a subset of the service's users to perform
an experiment.

� Run experiments in production - it is never possible to reproduce real system
conditions in test scenarios, thus integration tests must be performed in production
to assure that many critical failure scenarios are not skipped.

� Automate experiments to run continuously - it is important to automate tests
to assure that these are run repeatedly as the system evolves over time, hence pre-
serving con�dence in results over time.

There are many chaos engineering tools available in the market. However, some of
them are not available for use with a Kubernetes orchestrator, thus those will be excluded
from the considered tools. A comparison of the remaining tools that can be used with this
orchestrator is performed and presented in Table 2.2 [34, 76].

Although Istio is among the considered tools, it is not a fault injection tool. It is a
service mesh used to manage the communication among microservices that also allows to
inject faults to the tra�c it monitors, such as delay and abort faults.

The comparison performed helped de�ne the fault injection tools to be used in the solu-
tion's evaluation. Litmus and Istio were chosen since Litmus has a wide set of experiments
available and it is already setup in the cluster where the work will be performed and the
same applies to Istio. Although the latter is very limited in the range of experiments, it
allows to simulate faults de�ned in the previous section. The process of fault injection for
each of the faults listed in the previous section is documented in Chapter 4.

In the following section, a deeper insight about the methodology used to identify the
faults in the system is documented.

20



Background

Name Description Pros Cons
Number of
attacks

Litmus

Cloud-native chaos
engineering
framework for
Kubernetes

Large number of
experiments
available;
WebUI available;
public repository
to share chaos
experiments

Administrative
overhead;
Complicated to
perform
experiments

39

ChaosBlade

Alibaba's
experimental
injection tool
that follows the
principles of chaos
engineering

Large number of
experiments;
Fault injection
at the
application level

Documentation
lacks language
support;
Lacks
reporting
capabilities

40

Chaos Mesh

CNCF hosted
project recognized
as a cloud-native
chaos engineering
platform

Reasonable
amount of
experiments;
Does not require
special dependen-
-cies or modi�ca-
-tion of the
deployment logic

No attacks
available at
the node
level

17

Istio

Open source
service mesh
to manage
communication
among
microservices

Built into Istio
service mesh;
Easy to setup
experiments

Very limited
number of
experiments

2

Table 2.2: Fault and Failure Injection Tools

2.5 Distributed Tracing

The distributed and decoupled architecture of microservices requires new means to
monitor the existing systems. The complexity of the request �ow makes it more di�cult to
isolate the faults and uncover where did they occur and who caused them. Thus, distributed
tracing can be de�ned as an approach where a unique identi�er is tagged at the origin and
persisted all the way in the �ow of information until the end of the request's lifecycle [81].
This technique can be used to study and understand the behavior of distributed systems,
as well as monitor their performance. It is also a means to improve Observability, which
is the �measure of how well internal states of a system can be inferred from knowledge of
its external outputs� [95].

In a nutshell, distributed tracing starts by creating a trace when a client request arrives
to the system. A trace can be seen as a �visualization of the life of a request as it moves
through a distributed system� [71]. It is composed by spans, which are di�erent parts of
the work�ow that contain information, such as the operation name and a start and �nish
timestamp, and are the basic units of work. The start timestamp of the child lies with
the duration of the parent span. However, the end timestamp of the child spans is not
always before the �nish timestamp of the parent when the two are asynchronous [61]. Each

21



Chapter 2

tem on behalf of a given initiator. For example, Fig-
ure 1 shows a service with 5 servers: a front-end (A),
two middle-tiers (B and C) and two backends (D and E).
When a user request (the initiator in this case) arrives at
the front end, it sends two RPCs to servers B and C. B
can respond right away, but C requires work from back-
ends D and E before it can reply to A, which in turn re-
sponds to the originating request. A simple yet useful
distributed trace for this request would be a collection
of message identifiers and timestamped events for every
message sent and received at each server.

Two classes of solutions have been proposed to ag-
gregate this information so that one can associate all
record entries with a given initiator (e.g., RequestX in
Figure 1), black-box and annotation-based monitoring
schemes. Black-box schemes [1, 15, 2] assume there is
no additional information other than the message record
described above, and use statistical regression techniques
to infer that association. Annotation-based schemes
[3, 12, 9, 16] rely on applications or middleware to
explicitly tag every record with a global identifier that
links these message records back to the originating re-
quest. While black-box schemes are more portable than
annotation-based methods, they need more data in order
to gain sufficient accuracy due to their reliance on sta-
tistical inference. The key disadvantage of annotation-
based methods is, obviously, the need to instrument pro-
grams. In our environment, since all applications use the
same threading model, control flow and RPC system, we
found that it was possible to restrict instrumentation to
a small set of common libraries, and achieve a monitor-
ing system that is effectively transparent to application
developers.

We tend to think of a Dapper trace as a tree of nested
RPCs. However, our core data model is not restricted
to our particular RPC framework; we also trace activ-
ities such as SMTP sessions in Gmail, HTTP requests
from the outside world, and outbound queries to SQL
servers. Formally, we model Dapper traces using trees,
spans, and annotations.

2.1 Trace trees and spans

In a Dapper trace tree, the tree nodes are basic units of
work which we refer to as spans. The edges indicate a
casual relationship between a span and its parent span.
Independent of its place in a larger trace tree, though, a
span is also a simple log of timestamped records which
encode the span’s start and end time, any RPC timing
data, and zero or more application-specific annotations
as discussed in Section 2.3.

We illustrate how spans form the structure of a larger
trace in Figure 2. Dapper records a human-readable span
name for each span, as well as a span id and parent id

Figure 2: The causal and temporal relationships be-
tween five spans in a Dapper trace tree.

in order to reconstruct the causal relationships between
the individual spans in a single distributed trace. Spans
created without a parent id are known as root spans. All
spans associated with a specific trace also share a com-
mon trace id (not shown in the figure). All of these ids
are probabilistically unique 64-bit integers. In a typical
Dapper trace we expect to find a single span for each
RPC, and each additional tier of infrastructure adds an
additional level of depth to the trace tree.

Figure 3 provides a more detailed view of the logged
events in a typical Dapper trace span. This particular
span describes the longer of the two “Helper.Call” RPCs
in Figure 2. Span start and end times as well as any RPC
timing information are recorded by Dapper’s RPC library
instrumentation. If application owners choose to aug-
ment the trace with their own annotations (like the “foo”
annotation in the figure), these are also recorded with the
rest of the span data.

It is important to note that a span can contain informa-
tion from multiple hosts; in fact, every RPC span con-
tains annotations from both the client and server pro-
cesses, making two-host spans the most common ones.
Since the timestamps on client and server come from

Figure 3: A detailed view of a single span from Fig-
ure 2.

3

Figure 2.4: Causal and temporal relationships between spans. Figure from [85]

component of the system contributes with a span. With the provided information, spans
can be grouped and ordered to model causal relationships. This is crucial to understand
which service was the caller and which was the callee, to help de�ne, in a failure scenario,
what could be the origin of a certain failure.

Furthermore, among the metadata that each span contains, we can �nd the Span Con-
text, which contains the span id, parent id and trace id. The context provides information
for the span to know who its parent is and to each trace it belongs to. The child span
creates its id, which it then propagates to the child span, as the parent id, together with
the trace id [61]. The span id �eld consists in a unique identi�er used to identify the unit
of work. The parent id �eld is used to reconstruct the causal relationships between the in-
dividual spans in a distributed trace (Figure 2.4). For instance, in Figure 2.4, the parent id
in the Backend.Call span provides enough information to infer that the Frontend.Request
span is the parent span. A span that is created without a parent id is know as root span.
If several spans share the same trace id, it means that they belong to the same distributed
trace [85]. The trace id is a unique identi�er used to identify the trace that a span belongs
to.

The trace data collected can further be sent to a monitoring agent which will display
this information in an interface [82]. The traditional way to instrument an application
would require to change its source code. However, recent approaches arose, such as the
use of an underlying service mesh like Istio or Trae�k. The �rst follows a sidecar design
pattern that allows to attach lightweight proxies to services. The second one opts for the
usage of a proxy endpoint that runs in each node and handles the routing. Among the
existing distributed tracing tools, we can identify Jaeger [49] and Zipkin [73].

One of the �rst and most relevant works performed in this area is Dapper [85]. Google
developed Dapper as a tracing infrastructure for their distributed systems. They recog-
nized the importance of having a tool that would allow them to pinpoint errors along
their highly distributed infrastructure and set four important design goals - low overhead,
application-level transparency, scalability and quick availability of tracing data. Low over-
head was desired to avoid that instrumenting their services would have any impact in
their infrastructure's performance. Application-level transparency allowed to avoid fur-

22



Background

ther problems such as errors due to incorrect or missing instrumentation. Scalability was
also important since the system would need to handle big clusters such as the one's at
Google. The possibility of having tracing data available in little time would allow quicker
reactions to runtime failures. The application-level transparency was achieved through a
set of control �ow, ubiquitous threading and Remote Procedure Call (RPC) libraries. The
desire to have a low overhead and scalability was attained with the usage of adaptive
sampling. This approach would allow to tune the sampling rate to cope with di�erent
workloads, increasing their sampling rate when dealing with low tra�c workloads and high
tra�c workloads would require the sampling rate to be decreased to control the overhead.

Initiatives such as OpenTracing API have been created to provide a standard frame-
work to instrument applications. Having a vendor-agnostic API helps in the process of
instrumenting tracing into the application's source code without having to worry about
the distributed tracing tool being used and having to repeat the instrumentation process
when they intend to change tools. Another well-known initiative is OpenCensus, which
consists in a set of libraries to help collect application metrics and distributed traces, that
can be sent to a backend to be further analyzed. These tools have now been merged to form
OpenTelemetry, in order to provide a single place with libraries, Application Programming
Interface (API), Software Development Kit (SDK) to capture distributed tracings and
metrics from the applications [70].

The following and �nal section of this Chapter presents related work in the �eld of
autonomic computing, namely its self-managing properties.

2.6 Related Work

The research for autonomic systems has been increasing continuously throughout the
last years. Several proposals of architectures for autonomic systems or components that
can make a system autonomic have been proposed. However, there is a scarcity of im-
plementations and corresponding evaluation, having noticed that several papers found
throughout literature review only depict conceptual architectures and components, with
the implementation still to be performed.

Subsections 2.6.1, 2.6.2, 2.6.3 showcase relevant work found that hold self-adaptive
properties. Subsection 2.6.4 does an overview of existing work and documents the research
direction to be taken in the development of our framework.

2.6.1 Gru

As documented in Section 2.2, autonomic capabilities can be implemented in an appli-
cation using an internal approach, where the autonomic manager is part of the managed
application, or follow an external approach.

Florio et al. [28] propose an implementation of the MAPE-K loop, where an autonomic
manager is attached to a system that was not initially designed to be autonomic, thus
following an external and decentralized approach. An autonomic enabler is used as
an intermediary (link) between the autonomic manager and the system to manage. The
authors state that the adoption of a decentralized approach to autonomically manage an
application reduces the risk of bottlenecks and single point of failure.

The approach taken is established on a multiagent system, where each agent is an

23



Chapter 2

�intelligent� and independent unit that performs autonomic actions on the managed system,
based on their own information and information coming from peers. The implementation
was performed on Docker containers, with each Docker node consisting of a Docker Daemon
and a Gru-Agent. The latter implements the MAPE-K loop as follows:

� The Monitor interacts with the Docker Daemon to gather container monitoring
information.

� The Analyser receives the collected data and evaluates the available resources for
each microservice.

� The Planner decides which action to take according to a partial view of the system
provided by the Analyser, based on policies (rules to execute one or more actions)
and strategies (algorithms to help choose the appropriate policy).

� The Executor interacts with the Docker Daemon to apply to the container the
actions from the policy chosen.

The decisions taken are only based on a partial view of the system because the agents
only exchange information with a set of their neighbors, which helps reduce the overhead.
Besides this inter-agent communication to exchange knowledge, the agents also communi-
cate with a Repository containing con�guration information of each agent and µService-
Descriptors. The latter has information about each microservice running in the system, as
well as QoS constraints related to the execution of the microservice. Such constraints are
considered by the agent when deciding the actions to actuate.

The experiments performed reveal that Gru is capable of scaling containers according
to the constraints de�ned in the µService-Descriptors, but this work is limited to simple
self-healing actions, such as scale up and scale down.

2.6.2 Autonomic Version Management in self-healing microservices ar-

chitecture

A considerable amount (16% according to [36]) of the incidents that occur in cloud
systems are a result of software updates.

Wang [94] proposes an architecture with self-healing capabilities and autonomic re-
source management. However, the initial e�ort consists in a component of a version man-
ager to autonomically manage version upgrades in microservices. The author noticed that
papers only focused on the impact of service upgrades in a single application. Nonetheless,
di�erent teams from a company tend to reuse microservices from each other. If a microser-
vice that another team depends on is upgraded, it can break the entire application. Thus,
autonomic version management at the application and system level must be considered.
By dealing with unexpected changes across system boundaries, it may be possible to avoid
or minimize the impact of partial outages of the system.

The proposed architecture allows hot swapping and automated version upgrading of
services, without impacting the other services that depend on them. It containerizes mi-
croservices as business nodes that run within a group of virtual machine instances. The
manager nodes that help microservices working together and easing system changes are
allocated in another set of virtual machines. To enable communication among instances of
a node, a message broker is used. The manager node takes care of orchestration, scheduling

24



Background

and control of the microservices in the cluster, and is composed of the four components
that follow.

The component for managing version upgrades at application and company level is
the version manager. It is in charge of de�ning how and to where the tra�c should be
redirected according to the type of changes (minor or major). The service registry and
discovery service allows services to locate each other. The schedule resolver acts as
a load balancer and performs resource usage optimization. Lastly, the health monitor
and fault manager are intended to detect, correct and prevent failures in the system.
It collects microservices monitoring information at run time, to provide information to
the score engine to attribute a score according to their health status. This component
also contains strategies to help minimize the impact of partial outages. With regard to the
communication between components, approaches using message formats such as JavaScript
Object Notation (JSON) or Protocol Bu�ers are considered.

Despite the fact that the initial focus of the proposed solution is focused on auto-
nomic version management, it is something that must be considered due to the fact that
microservices are constantly changing (e.g., a company, such as Net�ix, updates their ser-
vices thousands of times a day). Besides that, it is common for di�erent autonomous teams
to be working on the same product. Addressing such issue can help us walk a step closer
in avoiding failures due to software updates. The solution is planned to be further tested
in a production environment, through chaos engineering experiments.

2.6.3 An architecture for self-managing microservices

The dynamic environment of microservices makes it di�cult for developers and system
administrators to be aware of everything that happens in a system. Thus, the development
of autonomic applications or externally attaching autonomic capabilities to applications is
an important step to help manage applications and to assure important quality attributes,
such as their availability.

To�etti et al. [88] recognize that cloud applications need to be continuously managed
to accommodate the resource usage to the workload and to ensure that correct service is
provided even when subject to failures. They defend that the actual management func-
tionalities have intrinsic limits since these functionalities are provided as infrastructural
or third party services. This external approach inhibits their natural adaptation to the
managed application and requires additional management e�orts.

Hence, an architecture for self-managing microservices is proposed. Through the usage
of a consensus algorithm, a leader can be elected to assign management functionalities to
nodes, which allows for a node in the cluster to take over the management logic of another
node that eventually fails. In order to provide service discovery and automatically up-
date components' con�guration upon changes, Etcd is used. Raft is the chosen consensus
algorithm used for fault-tolerance and consistency of the keystore (etcd). Con�guration
management helps implement self-management functionalities, such as self-healing. Com-
ponents are distributed across di�erent failure domains to create a resilient architecture
and ensure that components that fail are quickly restarted. Furthermore, sharing mon-
itoring data in etcd enables health monitoring and auto-scaling components to become
stateless.

This architecture works both on atomic services, as well as in microservices applications.
However, to enable self-managing microservives applications, multiple key-value stores are
required - a microservices application has its own key-value store and there is a global

25



Chapter 2

key-value store that works at a global applicational level, which is in charge of endpoint
discovery and leader election. The leader handles monitoring, auto-scaling and health-
management functionalities.

In [89], an experimental evaluation of the proposed architecture was performed. The
target application was a typical 3-tier monolith application, which was subject to architec-
tural changes, in order follow the principles of cloud-native applications. It was then split
in Docker containers, deployed among several virtual machines.

The authors wanted to demonstrate that the self-managing architecture proposed could
address the requirements of elasticity and resilience. A load generator was used to exercise
the system over an increasing load and test its elasticity. It was possible to observe that
the application was able to automatically scale up and down, according to CPU utilization
and application response time, and maintain the desired response time. With regard to
resilience, a set of IaaS failures were emulated by killing containers and virtual machines.
When testing the system behavior upon container failures, new services were instantiated
appropriately, but there was a signi�cant impact on their response time. With respect
to virtual machine failures, the e�ects observed varied according to the type of virtual
machines running and the type of containers running on those machines. If the machines
were running stateless containers, the e�ects were small and transient. However, if the
virtual machine is running stateful containers, such as a database, an increase in response
time of the database was observed, which subsequently a�ected the application's response
time.

2.6.4 Research notes

IBM proposed the autonomic computing concept two decades ago and it is still a
challenge to develop a system with autonomic capabilities that will not disrupt its correct
service.

Throughout the extensive literature review performed about autonomic systems that
display self-healing properties, it is still notorious the lack of research about this sub-
ject. Even though some works were found on this topic, only some of them document
implementations and the results from experiments, while others only present the proposed
solutions.

Nonetheless, the research performed, and particularly [28] and [88, 89], helped endorse
the fact that it is possible to attain autonomic capabilities in an application. The imple-
mentation from [28] uses a feedback loop (the MAPE-K loop), which is run periodically.
However, the proposed solution of the present work consists in a continuous feedback loop.
This can be seen as an improvement, which would allow faster reaction to failure events.
The solution proposed by [88, 89] takes on a hierarchical approach, with the manage-
ment logic running inside the microservices. This is di�erent from the solution currently
proposed in this framework, where the management logic is provided externally.

Furthermore, it was possible to realize that, to the best of my knowledge, no work
similar to the one proposed in this thesis, where a publish-subscribe middleware is used to
share information about faults and recovery actions, has already been performed. Besides
the fact that the present approach is documented speci�cally concerning a Kubernetes
cluster, it can still be used with other orchestrators due to the decoupling provided where
only the message format needs to be agreed.

Since the orchestrator under consideration (Kubernetes) already provides some self-

26



Background

healing capabilities, such as the ability of automatically restarting failed pods or migrating
deployments if any of the cluster nodes fail, the proposed solution aims to complement
such capabilities, in order to full�l existing gaps and improve system's dependability.

The following Chapter documents the proposed solution to implement the autonomic
framework.

27



Chapter 3

Proposed Solution

This Chapter presents the proposed solution, which is an autonomic framework in-
tended to keep a cloud-native application available. Its self-healing properties will provide
error recovery plans and strategies according to the fault information provided by a Fault
Detection System. The latter resorts to distributed tracing to gather important fault in-
formation. This information contains the name of the a�ected components, the category
of the fault and a brief description of the fault, the communication protocol used among
components, the causal relationship between them and the timestamp of when the fault
was detected. All this information is placed in a JSON object to be sent to the Mitiga-
tion Plan Selector. According to the received fault information, the recovery plans will
be issued. These consist in JSON objects that are composed by a set of �elds, such as
the description of the action, the a�ected components and the recommended actions, as
documented in Section 3.3. These error recovery plans are intended to bring the system
back to correct service.

An overview of the solution is presented in �gure 3.1.

Applies, to the system, the 
recovery actions held in the

mitigation plan

Executor component
(Execute)

Fault Detection System
(Analyse)

Mitigation Plan Selector
(Plan)

The data model
with fault information is 

published to the faults topic

The data model is 
consumed from the 

faults topic

Sends the 
selected plan 

to the faults topic

The mitigation plan is consumed 
by the Executor component

ID: 1

ID: 1

Resorts to distributed tracing 
to gather fault information from 
the managed system, which is
consolidated in a data model

Evaluates the received information 
and selects the mitigation plan 

accordingly from the 
internal database

1

2

3

4

ID: 1

ID: 1

Figure 3.1: Proposed solution overview

As shown in Figure 3.1, the components will send information (the JSON objects) to
a topic in the Kafka's Publish-Subscribe middleware. Publish-Subscribe was used because
this type of middleware allows for an asynchronous, fast and reliable communication, which
helps both speed up and decouple the communication among the di�erent components.
Although the Monitor entity is not shown in the �gure, it is handled by the underlying

28



Proposed Solution

service mesh belonging to the cloud-native application's technology stack.

The managed application used in the present work is Stan's Robot Shop [46]. This is one
of several well-known sample microservices applications, used to perform tests and learn
more about this type of architecture. It is intended to mimic an e-commerce application
that sells robots. It includes a catalogue of products, a cart to store products and the
possibility to order them. The system is composed of twelve microservices and has a diverse
technology stack comprised of di�erent programming languages such as Java, Python and
Golang, thus showing the heterogeneity of this type of architecture.

Throughout the present chapter, examples of commands and the validation of the
requirements are directly related to Kubernetes since, in the context of the project, the
cluster that will be used as a testbed has this this orchestrator deployed.

Nonetheless, as with any software engineering project, we must start by de�ning the
functional and non-functional requirements of the system (Section 3.1). These are followed
by the architecture de�nition in Section 3.2. Section 3.3 showcases the Mitigation Plan
Data Model, which is the data model used in the mitigation plan. Finally, Section 3.4
and Section 3.5 document the recovery actions and strategies, respectively, applied by the
framework.

3.1 Requirements

The requirements of the system help understand what the framework does and how
it must behave to ful�ll the system's goals. Functional requirements describe what the
system must do and how it must react to runtime stimuli [12]. On the other hand, the
non-functional requirements, also known as quality attributes, de�ne the properties of
the system that help realize the goals of the system [12]. The functional requirements are
documented in Subsection 3.1.1, followed by the non-functional requirements in Subsection
3.1.2. The latter are thoroughly validated in Subsection 3.1.4.

3.1.1 Functional Requirements

Starting by the functional requirements, these are documented with use cases, in the
fully dressed format, allowing a more in-depth understanding of each of the requirements.
Two �elds were removed from this format - Technology and Data Variations List
- since there are no deviations either in the technology or data being used due to the
technical constraint described in Section 3.1.3 and the Special Requirements since in
each use case scenario the three existing non-functional requirements would be repeated.
These use cases are documented in Subsubsections 3.1.1.1, 3.1.1.2, 3.1.1.3 and 3.1.1.4.
Their prioritization is performed after the description of the four use cases.

3.1.1.1 Use Case 1: Collect the fault information from the Publish-Subscribe

Primary Actor: Fault Reader

Stakeholders and Interests:

� Fault Reader: Wants to obtain information about the detected faults, parse and send
it to the Fault Analyser

29



Chapter 3

� Publish-Subscribe: Wants to provide topics to host the shared information about the
detected faults

Preconditions:

� There must be information in the faults topic of the Publish-Subscribe

� The information in the topic must be in JSON Format

Success Guarantee (Postconditions): The fault information is collected from the
faults topic, the o�set of the message read is committed and the information is sent to the
Fault Analyser

Main Success Scenario (Basic Flow):

1. Information about a detected fault in the system is placed in the topic of faults of
the Publish-Subscribe middleware

2. The Fault Reader collects the information contained in the faults topic

3. The o�set of the message, which contains the fault information, is committed

4. The JSON object is deserialized and sent to the Fault Analyser

Extensions (Alternative Flows):

1.a The Publish-Subscribe is not properly con�gured, which means that the information
placed on the topic is not renewed

2.a The format in which the fault is documented is not in accordance with what the
Fault Reader expects to receive

Frequency of Occurrence: As soon as information is available in the faults topic

3.1.1.2 Use Case 2: Parse the fault information collected

Primary Actor: Fault Analyser

Stakeholders and Interests:

� Fault Reader: Wants to send the collected information about the fault to the Fault
Analyser

� Fault Analyser: Wants to analyse the information received and provide the fault's
description, where did it occur and which components were a�ected, as well as the
protocol being used for communication between the a�ected components

Preconditions: Information about a fault must be received from the Fault Reader

Success Guarantee (Postconditions): The fault information is analysed and the
information resulting from the analysis is sent to the Plan Selector. This information will
contain the description of the fault, the order in which the command(s) must be applied
to the a�ected component(s)

Main Success Scenario (Basic Flow):

30



Proposed Solution

1. Fault information is received from the Fault Reader

2. The information is properly analysed in order to assess the fault's type, description
and a�ected components

3. Once the analysis is complete, the resulting information is sent to the Plan Selector

Extensions (Alternative Flows):

1.a No information is received from the Fault Reader

Frequency of Occurrence: Whenever information is collected from the faults topic
and read by the Fault Reader

3.1.1.3 Use Case 3: Select a mitigation plan to be applied upon the fault
detected

Primary Actor: Plan Selector

Stakeholders and Interests:

� Plan Selector: Wants to select a mitigation plan to apply after receiving the fault
information from the Fault Analyser

� Fault Analyser: Wants to send to the Plan Selector the assessment of the received
fault information

� Database: Wants to provide the mitigation plans that it stores

Preconditions:

� There must be a prede�ned set of mitigation plans in the database

� Analysis information of a fault must be received from the Fault Analyser

Success Guarantee (Postconditions): A mitigation plan is selected after receiving
the fault information from the Fault Analyser and it is sent to the Plan Writer.

Main Success Scenario (Basic Flow):

1. The fault analysis information is received from the Fault Analyser

2. A search is made in the database where the mitigation plans can be found

3. A mitigation plan is found to mitigate the perceived fault

4. The mitigation plan found is complemented with the fault information received and
sent to the Plan Writer

Extensions (Alternative Flows):

2.a The database does not respond when the search is carried out

31



Chapter 3

1. A retry of the request is sent to the database

3.a No match is found after the search

Frequency of Occurrence: Whenever fault assessment information is received from
the Fault Analyser

3.1.1.4 Use Case 4: Send the selected mitigation plan to the Publish-Subscribe

Primary Actor: Plan Writer

Stakeholders and Interests:

� Plan Writer: Wants to send the selected mitigation plan to the faults topic

� Publish-Subscribe: Wants to store the mitigation plans received and make them
available to the Executor component

Preconditions:

� A mitigation plan must have been selected by the Plan Selector

� There must be enough space in the Publish-Subscribe to store the selected mitigation
plan

Success Guarantee (Postconditions): The chosen mitigation plan is placed in the
Publish-Subscribe

Main Success Scenario (Basic Flow):

1. The mitigation plan received from the Plan Selector is serialized to JSON format

2. The mitigation plan is sent to the Publish-Subscribe

3. The Publish-Subscribe receives the plan

Extensions (Alternative Flows):

3.a The plan received is in the wrong format

Frequency of Occurrence: Whenever there is a mitigation plan to send to the
Publish-Subscribe

Regarding the priority of the presented functional requirements, three values were
considered - High (H), Medium (M) or Low (L). These were attributed to the dif-
ferent requirements according to their relevance to the proposed solution. A high level
of priority was attributed to the four use cases de�ned since all of them are crucial to
the implementation of the framework. Notwithstanding, we should be aware of the risks
associated with the prioritization de�ned since all the risks have high priority. This could
mean that, if the requirements are not ful�lled, the proposed solution could run the risk
of not being �nished. However, the estimated implementation di�culty is low, thus the
de�ned prioritization does not pose any major threat to accomplish the �nal solution.

32



Proposed Solution

3.1.2 Non-Functional Requirements

In which concerns the non-functional requirements (also known as Quality Attributes),
these are documented using the scenarios of quality attributes, which gather a set of impor-
tant characteristics to help describe these requirements. Three non-functional requirements
were considered for this work and their priorities are assigned in the utility tree directly
after the following scenarios.

3.1.2.1 Scenario 1 - Performance

Stimulus: All the fault information sent to the Publish-Subscribe needs to be pro-
cessed by the Mitigation Plan Selector

Source of the stimulus: Fault Detection System

Artifact: System

Environment: System runtime (normal operation)

Response:

� The Mitigation Plan Selector processes the fault information received

� The information received about the fault is analysed to �nd out the fault's type,
where did it occur and which components were a�ected, as well as the protocol being
used and the causal relationship

� The Mitigation Plan Selector determines which mitigation plan to apply

� The selected plan is sent to the faults topic in the Publish-Subscribe

Response Measure: During the overloaded period, the Mitigation Plan Selector must
be capable of providing service without losing any data.

3.1.2.2 Scenario 2 - Availability

Stimulus: The Mitigation Plan Selector is waiting for information to be sent to the
Publish-Subscribe and crashes

Source of the stimulus: Internal

Artifact: System

Environment: System runtime

Response: The failed Mitigation Plan Selector replica is shutdown and a new one is
started. During this period no information will be consumed from the topics, thus no data
is lost.

Response Measure: The time needed for repair must not be longer than 5 minutes

3.1.2.3 Scenario 3 - Scalability

Stimulus: All the fault information that arrives at the Publish-Subscribe middleware
needs to be processed.

33



Chapter 3

Source of the stimulus: Fault Detection System

Artifact: Mitigation Plan Selector, System

Environment: System runtime

Response: The number of replicas of the framework are increased to cope with the
increase in load

Response Measure: Number of additional replicas added to face the increase in load

In scenario 3 (Scalability), only the scale up action is being considered since, in this
scenario, we are assessing an increase in load. Nonetheless, whenever the load decreases,
the Kubernetes auto-scaling mechanism is capable of scaling down and reduce the number
of existing replicas.

The utility tree shown in Figure 3.2 gathers the quality attributes considered. The root
node only contains the word �utility� which is used as an expression of the overall �goodness
of the system� [12]. The children of this node contain the quality attributes, which have,
as their children, their re�nement, i.e., a decomposition to help better understand that
requirement. Finally, the leaf nodes are the scenarios of the quality attributes and the
edges that lead to them contain their priorities, according to two di�erent factors:

� Impact on the architecture - High (H), Medium (M), Low (L)

� Value for mission or business - High (H), Medium (M), Low (L)

Utility

Performance

Availability

Scalability

(H, H)
No data loss

Repair time

Scale up

All the fault information sent to the Publish-Subscribe 
needs to be processed by the Mitigation Plan Selector 

without any data losses

The Mitigation Plan Selector crashes and is able to be
repaired and return to correct service within 5 minutes

All the fault information that arrives at the Publish-
-Subscribe needs to be processed and the Mitigation Plan

Selector is able to increase the number of replicas 
to cope with the load increase

(M,H)

(M,H)

Figure 3.2: Utility Tree

The three attributes have a high priority in which concerns the value for business since
they are must-have requirements for the framework. With regard to the impact in the
architecture, it is set as high for performance because it requires additional considerations
in the architecture to assure that no data is lost. Availability and scalability are assigned
medium priority since both require the existence of an orchestrator to assure the responses
desired.

3.1.3 Technical Constraints

According to Len Bass et al.[12], a constraint is a design decision with zero degrees of
freedom. Likewise, technical constraints are restrictions that in�uence the architecture and
can be related to several aspects such as the data format or communication protocol to be
used in a system. In the development of this component there is one technical constraint
that must be considered:

34



Proposed Solution

� Data Format: The data format used for data exchange between the component
being developed and the external components must be JSON [53].

3.1.4 Validation of Non-Functional Requirements

The non-functional requirements documented in the previous subsection need to be
thoroughly validated to assure that this can be met, which is the purpose of the present
subsection.

Regarding performance, it is claimed that during a period with high volume of fault
information, the Mitigation Plan Selector must be capable of providing service without
losing any data. Since Apache Kafka is the technology being used as the Publish-Subscribe
middleware, it has the capability of storing data until it is consumed from the topics by
the Mitigation Plan Selector. Hence, even if a high load of requests is received, they can
be held in the topics and not get lost while the framework is handling other requests, thus
ful�lling the performance requirement.

From an availability standpoint, the repair time after a crash occurs is considered,
which is the time taken between the detection of the failure and the repair of the failed
component. Vayghan et al. [92] performed a set of experiments to evaluate the service
outage of Kubernetes and concluded that, with the default con�guration of Kubernetes,
the worst case scenario for the repair time after a pod failure is about 33 seconds and for
a node failure is about 263 seconds, which is less than 5 minutes. This experiment helps
validate the availability requirement de�ned.

Finally, regarding scalability, which can be de�ned as �the measure of a system's
ability to increase or decrease in performance and cost in response to changes in application
and system processing demands� [33], we need to consider the type of scaling that we are
going to perform (horizontal or vertical) and the response metric we are using. In which
concerns the type of scaling, we are considering only horizontal scaling, which can be
de�ned as �scaling by adding or removing machines/replicas from our pool of resources�
[12]. About the metric, we are considering that the component must be able to scale up
or down according to load �uctuations.

Since we are using the Kubernetes orchestrator, and considering that the auto-scaling
feature is enabled, the default con�guration measures the relative CPU utilization of each
active pod and uses the formula in Figure 3.3 to evaluate the number of pods (P) that are
needed to maintain the CPU utilization under the de�ned target, being Utarget the target
relative CPU utilization [17].

P =

⌈∑
i∈ActivePods Ui

Utarget

⌉

Figure 3.3: Formula of the Kubernetes' Horizontal Pods Auto-scaling algorithm [17]

Since this feature of the Kubernetes orchestrator is capable of scaling the pods up or
down according to some speci�ed metric [17], we can conclude that the scalability required
is ful�lled.

35



Chapter 3

Fault Detection System
[Software System]

Detects and gathers information 
about faults that occur in the system

Publish-Subscribe
[Software System]

Contains the topics where data can 
be written to and read from

Executor
[Software System]

Applies the mitigation plans to the
system

Mitigation Plan Selector
[Software System]

Evaluates the fault information 
received and selects a mitigation 

plan accordingly

Writes the 
information
about the 

detected faults to
the faults topic

Reads the 
mitigation 

information from
 the faults topic

Reads the faults 
information from
 the faults topic

Sends the 
selected plan to
 the faults topic

Subtitle

Relationship
External Main

Figure 3.4: Context Diagram

3.2 Architecture

This section is meant to showcase the architecture of the component which will be
developed. The architecture is detailed using the C4 Model, created by Simon Brown [15].
This was the chosen model due to the fact that it has all the relevant aspects needed to
document the architecture of my system, in a clear and non ambiguous way.

3.2.1 Level 1 - Context Diagram

Starting by the �rst level (C1), we create the context diagram (Figure 3.4), which
presents the component to be developed (Mitigation Plan Selector) and the systems with
whom it interacts, allowing us to behold a higher level representation of the component's
environment.

On the left side we have the Fault Detection System. It is in charge of detecting the
faults that may occur in the system resorting to distributed tracing and gather information
about these faults. This includes the a�ected components, a description about the fault
and detection timestamp, thus collecting crucial information that will be essential in the
process of generating the mitigation plans. This information is then sent to the Publish-
Subscribe, which is the middleware that allows asynchronous communication between the
di�erent components and from where the information will be retrieved by theMitigation
Plan Selector. This component will fetch one of the available mitigation plans from the
database. The chosen plan will then be published to the Publish-Subscribe Model, from
where the data will be consumed by the Executor, which is the component in charge of
applying the mitigation plans to the system, in order to recover from the existing failure.

36



Proposed Solution

Fault Detection System
[Software System]

Detects and gathers information 
about faults that occur in the system

Publish-Subscribe
[Software System]

Contains the topics where data can 
be written to and read from

Executor
[Software System]

Applies the mitigation plans to the
system

Server-side Web 
Application
[Container: Java]

Evaluates the fault information 
received and selects a mitigation 

plan accordingly

Writes the 
information
about the 

detected faults to
the faults topic

Reads the 
mitigation 

information from
 the faults topic

Reads the faults 
information from
 the faults topic 

[HTTP]

Sends the 
selected plan to
 the faults topic 

[HTTP]

Database
[Container: PostgreSQL]

Stores the mitigation plans

Reads the 
Mitigation Plan

 from 
[JDBC] 

Subtitle

Relationship
Software System External

Mitigation Plan Selector
[Software System]

Container

Figure 3.5: Container Diagram

3.2.2 Level 2 - Container Diagram

Drilling down in the architecture, we reach the second level (C2), where we present
the container diagram (Figure 3.5), that allows a more in-depth understanding of the
framework.

This allows to split our component in two di�erent containers, the Server-side Web
Application and the Database. The Web Application will be developed using the Java
programming language, where the analysis of the fault information will take place, as well
as the mitigation plan selection. The Database will store the mitigation plans, which will
be fetched by the Web Application. Despite the fact that the data exchanged (including
the mitigation plans) will be in JSON format, the plans are stored in the schema de�ned
for the PostgreSQL table. Then, whenever information needs to be collected to compose
the mitigation plan, it is selected and saved to the mitigation plan, in JSON format.

3.2.3 Level 3 - Component Diagram

Reaching the third level (C3) of the architecture, we present the component diagram
(Figure 3.6), where the inner components of the web application are known. Hence, this
is composed of four components, the Fault Reader, Fault Analyser, Plan Selector
and Plan Writer. The �rst one reads the fault information gathered by the Fault Detec-
tion System, which is held in a topic of the Publish-Subscribe middleware. After parsing
and deserializing the data, which is in JSON format, the information is sent to the Fault
Analyser. This evaluates the fault information received, allowing to assess the a�ected
components, the fault description and detection timestamp. The fault analysis data gen-
erated will be sent to the Plan Selector. This component will select, from the database,
a mitigation plan to be applied to the existing failure. When the plan is chosen, it will

37



Chapter 3

Fault Detection System
[Software System]

Detects and gathers information 
about faults that occur in the system

Publish-Subscribe
[Software System]

Contains the topics where data can 
be written to and read from

Executor
[Software System]

Applies the mitigation plans to the
system

Fault Reader
[Component: Java]

Reads the fault information that is
retrieved form the Publish-Subscribe

Writes the 
information
about the 

detected faults to
the faults topic

Reads the 
mitigation 

information from
 the faults topic

Reads the faults 
information from
 the faults topic

Sends the 
selected plan to
 the faults topic

Plan Writer
[Component: Java]

Sends the chosen mitigation plan to the
Publish-Subscribe

Subtitle

RelationshipContainer External

Server-side Web Application
[Container]

Container

Fault Analyser
[Component: Java]

Analyses the fault information 
received and gathers information

 such as the occurrence timestamp
 and the affected components

Plan Selector
[Component: Java]

Selects, from the internal database,
the mitigation plan that shall be

applied, and complements it
with the information received

Database
[Container: PostgreSQL]

Stores the mitigation plans

Reads the 
Mitigation Plan

 from 
[JDBC] 

Sends fault 
information to

Sends fault 
analysis to

Sends chosen
plan to

Element

Figure 3.6: Component Diagram

38



Proposed Solution

be sent to the Plan Writer, which serializes the plan to JSON format and writes it to the
Faults Topic. This topic of the Publish-Subscribe will store the mitigation plans to be
consumed and applied to the system by the Executor.

The following subsection presents the data model to be used for the mitigation plans
provided by the framework.

3.3 Mitigation Plan Data Model

Since the mitigation plan data will be sent to a Publish-Subscribe topic, where it can
be consumed by di�erent components of the system, there is the need to de�ne a data
model. This will allow the other components to know how the data of the mitigation plan
is structured, as well as help them de�ne how to parse the received information.

This mitigation plan data model will consist in a JSON object containing detailed
information about the mitigation plan to be applied, according to the detected fault.

The data model will be structured as follows:

� faultDescription [string] - a brief description of the fault that originated the miti-
gation plan

� mitigationPlanDetails [object] - a composed object containing detailed informa-
tion about the mitigation plan to be applied, containing the actionDescription,
faultyComponents and recommendedAction �elds

� actionDescription [string] - an explanation of what can be done to recover from
the fault

� faultyComponents [string] - a list of component identi�ers from the components
that were a�ected by the fault

� recommendedAction [string] - a list of commands to be applied to the system

� occurrenceTimestamp [long] - timestamp of when the failure occurred, in millisec-
onds

� detectionTimestamp [long] - timestamp of when the failure when the failure was
detected by the framework, in miliseconds

Listing 3.1 presents an example of a mitigation plan for a speci�c fault to be considered.

{

"faultDescription ": "Attempted connections to an external service are timed out

since the external service is not reachable",

"mitigationPlanDetails ": {

"actionDescription ": "To recover from the present fault , the affected

component(s) must be restarted",

"faultyComponents ": [

{"name": "pod -checkout -567"}

],

"recommendedActions ": [

{" command ": "kubectl rollout restart deployment pod -checkout -567"}

],

"occurrenceTimestamp ": 1278678127781 ,

"detectionTimestamp ": 1278678127790

}

}

Listing 3.1: JSON example of the Mitigation Plan Data Model

39



Chapter 3

Besides this example being directly related to Kubernetes [56], it is possible to modify
the recommendedActions �eld with commands from other orchestrators, thus making this
component �orchestrator-agnostic�.

An important concern that must be addressed is the insertion of new plans in the
database or any repository considered. If a considerable amount of plans needs to be added
manually, this task can become unsustainable. Nonetheless, as observed in Section 3.4 and
as seen throughout literature review [97, 28, 88, 89, 36], the amount of recovery actions that
could be considered is not something that a human being could not handle. Furthermore,
whenever a new recovery action may be considered, it needs to be thoroughly evaluated,
to search for possible risks of its usage, in order to avoid damaging the system when trying
to repair it. Thus, the new recovery actions can be inserted manually in the database by
a system administrator.

The subsection that follows contains the recovery actions that are considered in the
proposed solution.

3.4 Recovery Actions

Developing autonomic fault responses is a challenging task since there is no single �per-
fect� fault mitigation action to a given failure. The objectives and state of the applications
have a signi�cant impact on the design of the recovery actions. The system's autonomic
behavior should also respect the non-functional requirements and service-level objectives
imposed and not damage the application's correct service [24]. A service-level objective
(SLO) is an agreement within an SLA regarding metrics such as uptime or response time.
On the other hand, SLA is an agreement between the service provider and the client
concerning measurable metrics such as uptime [7].

That being said, we must be aware of the underlying risks of performing recovery
actions in the system [90]:

� Costly unavailability - May be a result of incorrect autonomic actuation performed
by the autonomic manager. Performing improper recovery actions can damage the
system and lead to a worse scenario than if no action would be performed.

� Unexpected expenses - Since the cloud follows the pay-per-use pricing model,
where users pay for the resources they use, an incorrect recovery action may trigger
high resource use, leading to unwanted expenses.

Despite the importance of having appropriate fault diagnosis mechanisms, in order to
provide accurate root-cause localization of failures, fault mitigation is another important
challenge that must be addressed. In the industry, it is common to give humans the task
of solving problems that arise. This is advantageous in the sense that is safer than trying
to approximate the appropriate recovery action to apply to the system. However, the hu-
man approach is only useful in systems that do not require quick reactions to failures [24].
Nonetheless, it is utterly important to develop appropriate recovery actions and mecha-
nisms for their approximation [97]. This will be of most importance in critical systems that
require time-bounded responses, which could take advantage of autonomic actuation [24].

In the context of this thesis, the following recovery actions were considered [90]:

� restart - reboots the failed component, in order to start it from a clean state. This

40



Proposed Solution

is a common practice in the industry, which is proven to be e�ective in recovering
from failure scenarios [63, 97, 36].

� version downgrade - replaces the current service version with the previous one, if
one exists. Since a considerable amount of failures that occur in a cloud environment
are due to faulty software updates (16%, according to [36]), it is mandatory to con-
sider such recovery action. Even tough developers perform a vast amount of tests
before deploying code in production, some failures only manifest in this environment.

Further recovery actions were initially evaluated, but ended up not being considered.
For instance, in several papers, recovery actions such as scale up/down [28, 97] and virtual
machine or pod migration [97] are presented. However, the orchestrator used (Kubernetes)
already provides several self-healing actions. Instead of developing a scaling mechanism
from scratch, we can take advantage of Kubernetes HPA (Horizontal Pod Autoscaler),
which automatically scales services up or down, according to the resource utilization de-
�ned. Moreover, whenever one of the worker nodes (virtual machines) where an application
is running stops working, the Kubernetes master automatically reschedules and migrates
the resources to the available nodes. Whenever a Kubernetes cluster is con�gured, it is
important to guarantee that redundancy is in place. As previously stated, if a worker node
fails, its resources can be rescheduled to other worker nodes. However, the same does not
apply to the master node. This node is the one in charge of managing the worker nodes
and is where the Kubernetes API server and etcd run. Thus, a failure on a master node
with a single replica can be catastrophic. This requires the existence of additional master
nodes to assure correct service in a failure scenario.

Despite the fact that the mentioned recovery actions can help improve the availability
of a system, redundancy remains utterly important, ensuring that spare components are
ready for service in case of failure [93].

3.5 Recovery Strategies

A recovery strategy can be described as an algorithm that combines a set of recovery
actions to be applied to a system in a failure scenario. The core motivation for de�ning
recovery strategies is to enhance and combine the strengths of single recovery actions into
more robust recovery work�ows, that can, for instance, try a di�erent recovery action if
the previous one was not successful in mitigating an existing failure.

That being said, two recovery strategies were considered:

� Global Restart - this strategy employs the restart recovery action to every service
upon the detection of a failure.

� Iterative Recovery - this strategy takes advantage of both of the recovery actions
considered in this work (restart and version downgrade). However, it uses the algo-
rithm described in Algorithm 1. Upon the detection of a failure, the �rst action to
be applied is a restart. If after a de�ned period, information about the same failure
is received, the version downgrade action is chosen. Finally, if the failure persists
after applying the previous action, a noti�cation is sent to the operator. This will
provide context to help identify and manually solve the failure detected.

Re�ecting on the strategies considered, the global restart can become a viable approach
if the experiments exhibit a low restart time for the services deployed in Kubernetes. On the

41



Chapter 3

Algorithm 1: Iterative recovery strategy algorithm

Input: Record containing fault information
Output: Mitigation plan to be applied to the managed application
Data: Period = x seconds

1 Collect status code, name of the components and occurrence timestamp from fault
information record;

2 if database is not empty then
3 if (status code is equal to status code stored in database) and (components in

components stored in database) and (occurrence timestamp is less or equal

than period + last timestamp stored in database) then
4 if version downgrade count is equal to 1 then
5 Create mitigation plan to notify the operator of the unsuccessful

recovery attempts;

6 else
7 Create mitigation plan with version downgrade recovery action;

8 else
9 Create mitigation plan with restart recovery action;

10 else
11 Create mitigation plan with restart recovery action;

other hand, iterative recovery can provide a basic automation work�ow where the strategy
applies more than one recovery action to try and recover the system. Nonetheless, and as
mentioned in the previous section, the risk of actuation must be carefully studied to avoid
damaging the system when trying to recover from a failure.

42



Chapter 4

Evaluation of the Proposed Solution

The present chapter documents the methods used to evaluate the proposed solution, in
order to assess if it can apply the appropriate recovery actions, as well as the time required
to recover the system. For this purpose, fault injection shall be used. It will be performed
through code changes at compile-time (software-implemented fault injection), as well as
resorting to chaos engineering, using Litmus.

This chapter is organised as follows. Section 4.1 describes the details of the experiments
performed, namely the di�erent types of runs executed and the metrics collected, as well as
the di�erent components that take part in the fault injection campaign and the workload
used. Section 4.2 contains the di�erent faults considered, each of them consisting in a fault
identi�ed in Table 2.1, in Section 2.3, and the corresponding description of the method
to inject the desired fault. Lastly, Section 4.3 contains a description of the experimental
setup where the experiments were performed.

4.1 Experimental runs

The experimental runs performed to evaluate the proposed architecture encompass
two phases, the golden run and the faulty run. The golden run is intended to gather
metrics from the system and evaluate its normal state. Throughout a golden run no fault is
injected. On the other hand, the faulty runs are those where the faults listed in Section 4.2
are injected into the system. Only one fault is injected per run, to assure that we can
study the e�ect of each scenario individually, otherwise we could face undesired aftermath,
such as interaction between di�erent faults. A faulty run consists of the following three
steps [18]:

� warmup - step intended to stabilize the system and taking place in the �rst 30
seconds of each run.

� peak - period where faults are injected into the system. This is the only period when
faults are injected and occurs during the 90 seconds that follow the warmup step.
This duration considers additional maintenance operations required, such as starting
up pods.

� cooldown - step with the objective of assuring that there is enough time for the
fault to propagate in the system and become a failure. This way we can achieve a
fault e�ect in every run. This step lasts for the �nal 30 seconds of the faulty run,
which also provides enough time for the system to stabilize.

43



Chapter 4

Warmup

Injection
time

CooldownPeak

Load start

Run 0 Run 1 Run 2 Run 3 Run N

Golden run Faulty run

Load end

Figure 4.1: Experiments execution pro�le.

A representation of the di�erent experimental runs can be observed in Figure 4.1

During each run, a set of measurements are collected from the system to help analyse
its performance and behavior. The metrics collected are:

� service logs - every container running inside a pod produces logs, which are collected
and saved for post-run analysis.

� spans and traces - the spans produced during each run are saved to the Elas-
ticsearch database, which is the backend storage for Jaeger. After each run, this
database is queried to retrieve spans that contain fault information within the time
period of the run.

� prometheus metrics - Prometheus is a tool for metrics collection. It uses metrics
from Node exporter (Prometheus exporter which provides host-related metrics) and
Kube-state-metrics (service that listens for the Kubernetes API server and generates
cluster level metrics). The metrics collected from Prometheus are container memory
usage, container CPU utilization, number of running containers, number of available
containers and container start time.

An overview of the work�ow of an experimental run is depicted in Figure 4.2.

The controller is the component which iterates over the experimental runs of a fault
injection campaign and stores the results for later analysis [66]. The monitor entity
gathers raw data (e.g., measurements) from the target system (Stan's Robot Shop). These
components consist in Python scripts, which interact with the fault injector and the load
generator, in order to manage the work�ow of the experiments.

The fault injector is in charge of injecting the desired faults in the system and it is
also a Python script. Moreover, the load generator that provides the workload for the
experiments is the Robot-Shop load generator. The workload are the inputs submitted to
the application. The load generator uses Locust, which is a load testing framework. It runs
for 150 seconds, with 10 concurrent clients and a spawn rate of 1 client per second. These
values were chosen according to the performance of the system and the available resources,
having tested di�erent combinations until no erroneous monitoring data was present in the
golden runs.

44



Evaluation of the Proposed Solution

Load
Generator

Stan's Robot Shop

Fault
Injector

ElasticSearch

StreamTrap

Fault Detection
System

Mitigation Plan
Selector

Executor

3. Collect measurements
and readouts1. Send workload

to the system

Jaeger
Collector

Jaeger Ingester

Controller
(Monitor)

span topic

Service 1 Service 2

Service 4Service 3

trace topicinformation topic

actuation topic

2. Inject faults to 
the system

Figure 4.2: System and Experimentation overview

At the end of each run, all the metrics previously mentioned are stored for further
analysis. Additionally, the remaining messages that are stored in the Kafka topics, as well
as the topics, are deleted and recreated. This is done to ensure that no data from the
current experimental run a�ects the results of the forthcoming runs.

4.2 Faultload

The faultload are the di�erent faults that are injected into the target system. These
faults are performed in a fault injection campaign, which consists in the several experiments
that are performed [66]. This faultload was chosen according to several considerations -
they represent typical faults that are common in microservices applications or cloud sys-
tems; they have considerable impact on the service provided by the system, thus a�ecting
its availability; they can be applied to more than one service, thus allowing to generalize
the conclusions obtained [20].

The remainder of this section provides a detailed description of the faults presented in
Table 2.1, as well as the fault injection method used in each scenario.

4.2.1 Crash

A crash failure occurs when an application or a system stops working. This is a very
common scenario in cloud applications [36], having direct impact on the service availability,
thus the importance of addressing this failure scenario. To simulate this type of failure,
an instruction is added to the source code of the catalogue service, at compile time. The
instruction considered is throw new Error("error"), in Javascript, which throws a Javascript
error, leading to a crash. Initially, the payment service was the target of the experiments for
the crash failure. However, this service is deployed using uWSGI, which is an HTTP server,
where the payment service, implemented in Python, runs. When a crash was injected using
sys.exit(), in Python, it would throw a SystemExit exception that kills the process running

45



Chapter 4

inside the container. However, this server automatically restarted the process when this
was terminated, which would in�uence the experimental results.

4.2.2 Hang

A hang happens when one service stops answering requests and does not produce any
further output. One possible cause could be a missing response from an upstream service,
from which the present service hangs while waiting for the response. This scenario can
lead to timeouts, if such are con�gured. Since this scenario can have a signi�cant impact
on system availability, it must also be considered.

To perform the simulation of this failure scenario, a code change was implemented.
A sleep() instruction was inserted into the source code of the payment service, written
in Python. This enables the representation of an hang scenario where a service would
be overloaded with requests or would be performing a longstanding operation and not
answering to requests.

4.2.3 Wrong result

In this scenario, as the name states, the service produces syntactically correct content,
but with wrong values. Similar to the previous scenarios, a code change was performed
in order to replicate this failure. In this speci�c scenario, the ratings service, instead of
returning a rating value between 0 and 5, returns the value 6, which is outside the expected
range. Despite being a valid value, its content is incorrect and can a�ect further operations
that use the computed value.

This type of errors in the interaction between services or call statements are called
interface errors [25]. Since it is through the system's interfaces that failures can propagate,
such interface faults can result in cascading failures that a�ect downstream services that
rely in this service's response.

As stated in [66], interface error injection enables the injection of errors that corrupt the
input and output values which a component exchanges with other software components,
the hardware and the environment. Error injection at the output values is used to emulate
the outputs of faulty components, as well as assess their impact on the rest of the system
[66]. This form of fault injection, which is sometimes referred to as interface error injection
or failure injection, is also referred to as fault injection since the corrupted values can be
seen as external faults, according to the de�nitions of Avizienis [66].

The criteria used for interface error injection answers to the following questions [66,
52]:

� What to inject? - The invalid value to be injected can be generated using several
methods, such as fuzzing (replacing a correct value with another that is generated
randomly), bit-�ipping (inverting one of the bits of a value in order to corrupt it)
and data-type based injection (replacing a valid value with an invalid one, based on
the type of the parameter being corrupted).

� Where to inject? - Errors can be injected at the input or output parameters of
the software interface.

� When to inject? - Injection can occur when a service of the target application is
invoked.

46



Evaluation of the Proposed Solution

4.2.4 Corrupted output

A corrupted output scenario can occur when a service returns a corrupted result, which
does not comply with the expected data type. This scenario is another type of interface
error injection.

In order to reproduce such scenario, a code change is performed. Instead of returning
the total value of a purchase, which would be an integer, a string is returned by the cart
service. This service starts by returning an invalid output value, which is stored in the Redis
database, as well as in the session variable that stores user data. The following service,
which is the shipping service, retrieves the cart object to store the shipping information.
However, since the total order value is not used, this fault is not yet detected. Finally, the
payment service will retrieve the cart from the request and uses the total value to perform
an operation. When this occurs, the fault is triggered, thus reaching a cascading failure
scenario.

4.2.5 Memory Leak

In this �nal scenario, a memory leak is considered. As stated in [54], this is one of the
major software bugs which threatens the availability of software systems. A memory leak
exhausts system resources, which can lead to system crashes [54].

To perform this scenario, the Memory Hog experiment from Litmus was used. This
experiment exhausts the memory resources of a pod in Kubernetes, according to a con�g-
urable amount of memory to be exhausted.

Litmus, the selected chaos engineering experiment, has two main components, the
control plane and the execution plane. The �rst one contains the components that enable
the operation of the Chaos Center, which is the website-based portal for Litmus. This
component also performs the post-processing and analysis of the experiment results. The
execution plane is the component that manages the experiments and holds the di�erent
components which perform the chaos injection in the target resources.

When a chaos experiment is performed [62], the control plane sends the work�ow mani-
fest to the execution plane. This manifest is then used to create the chaos work�ow custom
resource. A custom resource can be seen as a custom object that allows to extend the ca-
pabilities of the Kubernetes API. When the work�ow controller �nds the new work�ow
custom resource, it creates the chaos experiment and chaos engine custom resources. The
chaos operator proceeds to choose the chaos engine that is ready to perform the chaos ex-
periment and creates the chaos runner. The latter reads the experiment data, constructs
the jobs that will inject chaos in the target service(s) and monitors them until completion.
Finally, the chaos engine gets the experiment result and sends it to the control plane.

4.3 Experimental setup

The experimental setup was deployed in a virtual private cloud on Openstack, composed
of six virtual machines. Four of these machines sustain the Kubernetes cluster - one VM
runs the master node, which manages and coordinates the worker nodes; the workers run in
three other machines and it is where the managed application and the remaining services
of the proposed solution run. In which concerns the two remaining machines, one runs the
ElasticSearch database, to where spans are persisted. The �nal one acts as a bastion host.

47



Chapter 4

CPU (vCPU) RAM (GB) Disk (GB) Operating system

Kubernetes Node (x4) 8 (each) 16(each) 100(each) Debian 10

ElasticSearch 4 8 100 Debian 10

Bastion 4 8 100 Debian 10

Table 4.1: Infrastructure con�guration

This VM is directly exposed to the Internet and, in a normal scenario, has the purpose of
withstand attacks. However, in this scenario, it is used to access the worker nodes that
run on the internal network of the virtual private cloud.

In which concerns the speci�cations of the machines, all of the four VM's that composed
the Kubernetes cluster have 8vCPUs, 16GB of RAM, 100GB of storage and run Debian
10 operating system. The ElasticSearch and bastion host machines have 4vCPUs, 8GB of
RAM, 100GB of storage and also runs Debian 10 operating system. Table 4.1 provides an
overview of the speci�cations of the experimental infrastructure.

48



Chapter 5

Implementation

The present Chapter documents the implementation of the solution proposed in Chap-
ter 3. The following sections contain a detailed description of the architecture's compo-
nents, as well as other underlying tools and data that help sustain the desired functionalities
of the solution.

The proposed solution focuses on the Planning phase of the MAPE-K loop. Nonethe-
less, it was necessary to develop additional components, in order to obtain a fully functional
feedback loop. These components are StreamTrap, Fault Detection System and Executor, as
well as the streaming deployment strategy of Jaeger. All of these components use Kafka as
their middleware, helping them exchange data between each other, and sustain the required
information for the Mitigation Plan Selector to analyse the existing fault information and
provide the appropriate recovery actions to be applied to the managed system.

Jaeger, alongside Istio service mesh, helps monitor the system, gathering spans from
the target microservices application (Stan's Robot-Shop). Spans contain metadata from
each microservice in the invocation chain, helping collect relevant information to monitor
the system. The loop starts with spans being sent to the tracing backend by the sidecar
attached to each service. Once the tracing backend receives the traces, it batches the
desired amount of spans before publishing them to the span topic. Once the desired amount
is reached, the spans are sent in a batch of messages to the de�ned topic, to be consumed
by the StreamTrap component. The latter is in charge of sorting the received spans and
reconstructing the traces that these spans belong to. The resulting traces are then sent to
the trace topic and read by the Fault Detection System. This component is in charge of
analysing the traces received and identifying the ones which contain HTTP codes in the
400 and 500 ranges. When identi�ed, a record with fault information is composed. This
record collects the name of services present in the traces and other important metadata,
such as the communication protocol and the occurrence and detection timestamps. The
resulting record is then sent to the Mitigation Plan Selector, which will select a recovery
action for the failure identi�ed. Lastly, this plan is sent to the Executor, which applies the
selected recovery action to the services present in the mitigation plan.

An overview of the implementation described is presented in Figure 5.1.

49



Chapter 5

StreamTrap

FDStream

Jaeger
Streaming

Managed
Aplication

Gather spans

span topic trace topic

info topicaction topic MPSExecutor

Convert spans to traces

Gather fault 
information 
from traces

Choose the error recovery 
action according to the fault 

information received

Apply the recovery 
actions to the system

ElasticSearch

PostgreSQL

Holds span data

Holds the error recovery actions

Figure 5.1: MAPE-K Loop Implementation

5.1 Components

This section presents a detailed description of each component, to help better under-
stand how the elements of the architecture implement the desired functionalities.

5.1.1 Istio

Istio is the service mesh used to provide observability of the managed application.
It works by attaching a sidecar to each pod of the managed application. The Envoy
proxy from each sidecar enables reliable message delivery and can implement a set of
relevant mechanisms such as service discovery and circuit-breaking. This proxy also helps
instrument the requests with the required headers to enable distributed tracing.

Istio provides two di�erent ways to integrate with tracing backends: Envoy or Mixed
based. The chosen way was to use Envoy since it is already compatible with Jaeger, which
is a distributed tracing backend compatible with Zipkin-API.

With this approach, the sidecar proxy sends the required tracing information to the
tracing backend, which runs on port 9411. As stated in Istio documentation [47], Envoy is
in charge of:

� generating request IDs and trace headers (for example, x-B3-TraceId) for the requests
that go though the proxy. The trace headers contain the trace context, which has
references to other spans and traces.

� generating trace spans for each request according to its request and response meta-
data.

� sending the generated trace spans to the tracing backend.

� forwarding the trace headers to the proxied application.

50



Implementation

The initial headers are only generated by Istio if they are not provided by the request.

Such headers are useful to propagate trace context across service boundaries. The trace
context contains references to other spans and traces, such as their SpanId, TraceId and
ParentSpanId, which are used to refer to spans and traces across a process boundary. This
allows to gather individual spans and stitch them together to be able to have an overview
of the tra�c �ow [47].

5.1.2 Jaeger

Jaeger, a software to trace the communication among distributed services, plays an
important role as a way to monitor the managed application, alongside Istio service mesh.

Jaeger provides several deployment strategies in Kubernetes - allInOne, production
and streaming. The one that suits the present architecture is streaming, since it enables
continuous data streaming to the StreamTrap component. It is composed by several com-
ponents - agent, collector, ingester and query - decoupled from each other, which allows
each component to be scaled independently:

� Agent - network daemon, which is placed in every node of the cluster. It listens for
spans that are sent via UDP, which are then sent to the collector.

� Collector - receives traces from all the Jaeger agents and runs several processing
tasks, such as trace validation and indexing, before storing them. As backend storage,
either Cassandra, ElasticSearch or Kafka can be used.

� Ingester - reads data from a Kafka topic, which it then stores in another storage
backend (Cassandra or ElasticSearch).

� Query - is a service intended to retrieve traces from storage and display them in the
UI that it provides.

With this approach, Kafka acts as an intermediate bu�er to help reduce the pressure
from the backend storage (Figure 5.2). Instead of having Jaeger Collector writing spans
directly to the backend database, they are �rst sent to the Kafka bu�er. From this topic,
data is consumed by Jaeger Ingester and further stored in ElasticSearch.

Despite the streaming deployment using Jaeger Agent to listen for spans, in the pro-
posed architecture Jaeger runs agentless. This is intended since the Istio sidecar, which is
attached to each pod of the managed application, already sends tracing information to the
Jaeger Collector.

Kubernetes Pod

Envoy proxy (Istio
Sidecar)

Application

Jaeger Collector Jaeger Ingester
and Indexer

Jaeger Query
Sends request

Proxies requests with 
the appropriate b3-headers

Kafka

UI

DB

Figure 5.2: Jaeger Streaming Deployment Strategy. Figure from [48]

51



Chapter 5

Since Kafka is the chosen message-oriented middleware, we must de�ne a Consumer
Group for the StreamTrap deployment di�erent from the one chosen for Jaeger Ingester.
With this con�guration, both consumers can read from the Kafka topic independently,
without consuming each other's messages.

5.1.3 StreamTrap

This component handles the conversion of spans into traces. It starts by collecting a
batch of messages from the Kafka topic where spans are produced to, with each message
containing a span. The batch contains a minimum of 30 records and a maximum of 75
records, to assure that there is enough data (spans) to reconstruct the traces. Di�erent
batch sizes were considered and the present one was chosen as the most appropriate trade-
o� between standby latency and complete traces. The standby latency is the time it takes
to batch the referenced number of records (spans). A complete trace is a fully reconstructed
trace with all spans in its invocation chain, without losing any spans.

The batch of spans initially collected is saved to a �le in jsonl format, containing a
span per line. Then, the sorting process takes place. It receives as input the span �le
and scans its content, in order to sort the spans by their traceId, which are saved to a
new �le. This output �le is browsed in order to reconstruct the traces with the spans
contained in the �le. It then gathers all the spans which have the same traceId and uses
them to reconstruct the trace. To perform this reassembly, we must keep in mind that a
trace, according to OpenTracing [72], can be seen as a directed acyclic graph (DAG)
of spans (Figure 5.3). To elucidate, a DAG is a graph in which all edges have a direction,
such that it is not possible to �nd a path that leads back to the same node.

The graph is then iterated in order to reconstruct the traces. The component starts by
searching the parentIdenti�ers within each span. If the span has no parentIdenti�ers, it
means that it is a root span. Otherwise, we iterate over the parentIdenti�ers and, if they
are not null, we add them as neighbors of the parent of the current span (node). If, once
again, the parent of the current node is null, we add it as root. If the array of roots is
null, we consider that there are missing nodes, since the graph always needs to have a root
node.

Span A

Span B Span C

Span D Span E Span F

Figure 5.3: Directed Acyclic Graph

Finally, the reconstructed traces are published, one by one, to the Kafka topic from
where the Fault Detection System will consume.

52



Implementation

{

"faultCategory ": "Server -side error",

"faultDetails ": {

"description ": "503",

"protocol ": "HTTP",

"causalRelationships ": [

"serv1 ->serv2"

]

},

"faultyComponents ": [

"payment"

],

"detectionTimestamp ": "1623024581053479" ,

"timestamp ": "1623024599683"

}

Listing 5.1: JSON example of the Fault Information Object

Field Description

traceId
unique 64 or 128 bits unique identi�er for a trace. Is set in
every span belonging to the trace.

spanId unique 64bit identi�er for the operation within the trace.

parentId identi�er of the parent span. Null if the it is the root span.

duration
duration of the operation associated with the span, in
microseconds.

timestamp Epoch microseconds that mark the start time of the span.

annotations Describes events that justify latency with a timestamp.

tags
Adds contextual information to a span. Examples include
the HTTP status code of the request, the service that made
the request and the one to whom the request was made.

Table 5.1: Span speci�cation [103]

5.1.4 Fault Detection System

The present component starts by collecting traces from the traces topic. These are then
parsed and a search for HTTP status codes that represents an error code, either in the 400
or 500 range, is performed. Whenever a match is found, the required information about
the existing failure is retrieved from the trace. This information contains the name of the
services involved, the status code identi�ed, the timestamps of occurrence and detection
and the communication protocol. Since a trace is composed of one or more spans and
each span contains information as exhibited in Table 5.1, the data is collected from each
span. The only data that is not collected from the span is the detection time, which is
registered by the framework whenever the present component �nds a match in a span.
With this data, a record with fault information is created and sent to the topic, to be
further consumed by the Mitigation Plan Selector. An example of the information that
the record contains is shown in Listing 5.1.

This component only considers distributed tracing data as monitoring data, but can
further be extended to accept other information, such as logs from services or other metrics
collected from the system. This is possible due to the decoupling that the message oriented
middleware provides and the fact that the monitoring information comes from external
sources.

53



Chapter 5

5.1.5 Mitigation Plan Selector

This component reads the existing fault information records from the info topic. This
information provides a description of the failure, the names of the a�ected components and
the detection and occurrence timestamps. After parsing this data, this component fetches
a mitigation plan from the Postgres database. The mitigation plan is then completed with
the fault information, prior to being sent to the action topic. The mitigation plan also
contains the recovery action that must be applied to the a�ected components identi�ed
in the fault information record. A plan similar to the one in Listing 5.2 is then sent to a
topic, from where the Executor will read the plan.

This component can apply both the recovery actions and strategies previously described
in Sections 3.4 and 3.5.

{

"faultDescription ": "503",

"planTimestamp ": "1626169711688" ,

"mitigationPlanDetails ": {

"actionDescription ": "To recover from the present fault ,

the affected component (s) must be restarted",

"recommendedActions ": [

{

"action ": "restart",

"command ": "kubectl rollout restart deployment payment"

}

],

"faultyComponents ": [

{

"name": "payment"

}

]

},

"detectionTimestamp ": "1626169711573675" ,

"timestamp ": "1626169711668"

}

Listing 5.2: Mitigation Plan to apply a restart after payment service crashed

5.1.6 Executor

The last component of the feedback loop is the Executor, which reads the mitigation
plan from the topic and applies the recovery actions to the system.

To apply the recovery actions, the Executor communicates with the Kubernetes API
Server. This server exposes an HTTP API that allows users, di�erent parts of the cluster
and external components to communicate. It also enables querying and manipulation of the
state of API objects in Kubernetes. Taking advantage of several Java libraries presented
in the Kubernetes documentation, the component communicates with the API Server to
apply the restart and version downgrade actions to the system when needed.

The restart action is performed by scaling down to zero the number of replicas and
scaling up to one the number of existing replicas of the intended deployment.

In which concerns the downgrade version action, it is done in two steps. First, we
verify if there is any previous revision of the target deployment, i.e., we verify if there is
any previous version of the target service. If so, we change the current container version to
the previous one. To clarify, a revision is created when a new rollout occurs. This happens
when the .spec.template of a pod is changed, for example, by replacing the container's
image. This template speci�cation describes the data that a pod should contain if it is

54



Implementation

created from a template.

If a recovery action cannot be applied to the system, a noti�cation record is sent to the
noti�cation topic. This record allows to inform the system administrators and developers
that an action could not be applied and what prevented it from being applied, such as not
�nding the service or that the service does not have a previous version to downgrade to.

As previously shown in Figure 5.1, these components compose the MAPE-K loop, thus
enabling to perform autonomic actions to the system.

5.1.7 Apache Kafka

Apache Kafka [4] is the middleware that enables the communication among the dif-
ferent components of the architecture. It is a distributed event streaming platform where
clients and servers communicate over a high-performance TCP network protocol. It usu-
ally runs as a cluster, consisting of one or more servers, that can be deployed in di�erent
datacenters. Each of these servers is a Kafka broker. The existence of multiple brokers
allow for redundancy, failover and load balancing.

Furthermore, it helps guarantee that no data is lost, which is crucial since we need
to receive all the information about failures in the system, to be able to perform the
appropriate recovery actions. To assure that no data is lost, we take advantage of Kafka
retention policies, which can keep records for the amount of time or the maximum size of
data con�gured.

Kafka, by default, provides an at-least-once delivery semantic through the appropriate
management of consumer o�sets. With this semantic, a Kafka consumer uses an automatic
commit policy, which triggers an o�set commit periodically. Whenever an application,
acting as a Kafka consumer, successfully consumes a message from a topic, it updates the
consumer o�set, which is saved and stored in a separate topic called �__consumer_o�sets�.
This ensures that, if there is a failure and the consumer does not receive the message, it
can consume it again since the o�set was not updated. With this approach, no messages
will be lost, but duplicates are possible.

However, this delivery semantic does not meet the requirements of the proposed solu-
tion. If we receive duplicated messages containing mitigation plans, we can subject the
system to unnecessary actions which can lead to downtime. Thus, exactly-once delivery
must be implemented. The �rst step is to con�gure the producer to be idempotent. By
turning on idempotence, each Kafka message will contain two additional �elds, the pro-
ducer id (PID) and the sequence number (seq). This way, upon a client or broker failure,
if a message is sent another time, the topic will only accept messages with a new sequence
number and producer id. To guarantee that each message is processed exactly-once, we
resort to transactions. With this approach, either the full operation is successful or a roll-
back is issued. Additionally, the consumer must be con�gured to be transactional. This is
possible by setting the isolation level to read commited. This way, the consumer will only
read messages that were already commited. Finally, we need to commit the o�sets of the
messages consumed back to the Kafka topic and send them to the producer transaction.
The operation �nishes when we commit the transaction [10, 26].

Zookeeper is deployed alongside Kafka because it manages and coordinates the Kafka
cluster. It keeps track of the status of the nodes in the Kafka cluster, as well as the
messages and topics in Kafka.

Each topic has two partitions, but it is possible to increase the number of partitions to

55



Chapter 5

be able to have several consumers, in parallel, handling data consumption from the topic.
However, for the current experimental scenario, a single consumer was su�cient.

To read from the span topic, the two existing consumers (one from the StreamTrap
and the other from the Jaeger Ingester) must belong to di�erent ConsumerGroups. Having
each consumer in a di�erent ConsumerGroup allows each of the two components to read
the same messages from the topic, instead of parallelizing data consumption. This is the
intended scenario since we want each of the two components to perform di�erent operations
on the data consumed: Jaeger Ingester will read data from the Kafka topic and persist it
to the backend storage (ElasticSearch) and StreamTrap will read a batch of spans, which
will be parsed and composed into traces.

Further con�gurations to Kafka include enabling topic deletion to help clean data from
topics during the experiments. The topic retention time was set to one day instead of the
default time of seven days. The topic retention policy was changed from compact to delete.
What this does is that, in the default Kafka con�guration, log compaction is performed,
where the last known value for each message key within the log data for a topic partition
is always retained. With the delete policy, the old segments will be discarded when their
retention time or size limit is reached.

5.1.8 PostgreSQL

PostgreSQL is the relational database that hosts the error recovery data. A relational
database was chosen since the schema would always be the same, thus the option to choose
a NoSQL database was discarded.

This database contains a table which holds the mitigation plans and is composed of six
columns:

� id - auto-incremental integer to distinguish the di�erent table records

� action description - description of the recovery action to be performed

� recommended action - command to be applied to the system

� action - recovery action to be applied

� fault category - category of the detected fault

� service type - type of service that the recovery action will be applied to

This database is queried by the Mitigation Plan Selector whenever it needs to create a
mitigation plan.

5.1.9 ElasticSearch

Elasticsearch [27] is a widely used distributed search and analytics engine. It provides
storage, as well as querying and analyzing vast amounts of data in near real-time.

In the proposed architecture, this component is the backend database where the spans
will be stored. The Jaeger Ingester will fetch the spans from the Kafka topic and persist
them to this database. From this storage, Jaeger Query will fetch the data to be displayed
in the Jaeger UI, available in the browser.

56



Implementation

5.1.10 MongoDB

MongoDB is a document-oriented NoSQL database. This type of databases are known
for not having strict schemas as the ones found in relational databases, such as PostgreSQL
and MySQL. And this was also the main reason for choosing this database to store the
information related to the iterative recovery strategy. Since di�erent approaches were
being tested and the structure of data was constantly changing, it was more suitable to
use MongoDB.

In MongoDB data is stored as JSON. Inside a database in MongoDB, data is stored in
collections, which is the equivalent to a table in SQL. However, this does not have a strict
schema as observed in relational databases. A collection is a group of documents. Each
document can be compared to a row in a table.

This database stores information related to the failures that occur in the system. This
helps provide the required information to the algorithm of recovery strategy previously
de�ned in Section 3.5. The information required, which is stored in a document, is the
following:

� id - unique identi�er used to identify each document stored in the collection.

� last_ts - the epoch timestamp, in microseconds, of when the failure occurred. This
timestamp is collected from the trace.

� status code - the HTTP status code from the failure that was identi�ed. This data
is collected from the trace with information about the fault.

� components - the components from the managed application that were considered
as culprits. This information is gathered from the trace collected.

� applied actions - object that stores the di�erent actions that were applied to the
system and how many times they were applied.

5.1.11 Kubernetes

Containers by themselves cannot assure that they are running as intended or that the
load has increased and it is required that the number of running containers to accommodate
the exceeding tra�c. As such, a technology to manage the deployment of containers, their
scalability and management is required. For this purpose, the proposed solution resorts to
Kubernetes [56].

In a Kubernetes cluster, the pods are hosted in the worker nodes. Every node in the
cluster contains two components that enable the corresponding node to run pods - the
kubelet and the kubernetes proxy. The �rst communicates with the Kubernetes API
server to receive pod speci�cations, which provide information to assess if they are running
as intended. It also reports to the control plane with information about the pod's health
and status. The latter (Kubernetes proxy) is the network proxy that is located in each
node in the cluster and is in charge of handling the communication to the pods running
on these nodes.

In the master node(s) we �nd the control plane, which is the �brain of the operations�
in Kubernetes, making decisions about the cluster and responding to any events, such
as creating new resources. It is composed by the following �ve components. The API
server exposes the Kubernetes API, which is used by all the resources in the cluster to

57



Chapter 5

Controller
manager

Cloud
controller
manager

Scheduler

API server

Etcd

Kubelet

Kube-proxy

Cloud provider 
API

Node

Kubelet

Kube-proxy

Node

Kubelet

Kube-proxy

Node

Control Plane

Figure 5.4: Kubernetes Architecture Overview [58].

communicate. Etcd contains all the data related to the cluster and can be used as the
single source of truth. Scheduler designates the nodes with newly created pods, thus
handling the scheduling logic. Controller manager runs the controller processes which
monitor the cluster state to assure that the state of the cluster matches the desired state.
Finally, the cloud controller manager runs the controllers that provide the link between
the cluster and the underlying cloud providers.

Figure 5.4 provides an overview of the Kubernetes architecture.

58



Chapter 6

Results and Analysis

This chapter documents the results and analysis over the data gathered from the fault
injection campaign in Chapter 4. The present chapter is split in four subsections. The
�rst one provides the results from the performance of the recovery actions. The second
one describes the analysis of the recovery actions' e�ectiveness. The third one describes
the e�ectiveness of the recovery strategies considered. The fourth and �nal one provides
the answer to the research questions from Section 1.4 in Chapter 1.

6.1 Performance of the recovery actions

The autonomic architecture developed is intended to assure the high availability of
cloud-native applications. Thus, and as stated in Research Question 2, we want to assess
if we can achieve an availability of 99.99% with the recovery actions selected. This can
be attained if the solution presented provides a relatively low recovery time, that allows
to perform recovery actions upon existing failures, and still remain under the threshold of
high availability.

To compute the Mean Time To Recovery (MTTR) of the present solution, we
only require the timestamp of the failure occurrence and the start up time of the failed
Kubernetes resources upon applying the recovery actions. However, to evaluate the per-
formance of the solution, �ve timestamps were collected, to provide a more granular view
of each phase's duration:

� Injection time - timestamp when the fault is injected into the system by the con-
troller of the experiment.

� Occurrence time - timestamp when the fault occurred, which is provided in the
trace record that is collected from the Kafka topic.

� Detection time - timestamp when the fault is detected by the Fault Detection
System. Since this is the component which analyses the traces to search for error
codes, the detection timestamp is collected when an error code is found.

� Plan time - timestamp when the mitigation plan is composed, after choosing the
recovery action to be applied to the system.

� Action time - timestamp when the recovery action is applied to the managed ap-
plication.

59



Chapter 6

� Container start time - timestamp when the container started, after being submit-
ted to the chosen recovery action.

With the timestamps collected, additional metrics were considered. The detection
time (MTTD) which is the average time required to detect and diagnose failures in the
microservices application. The wait time is the period when spans are batched before
they are fed to the StreamTrap component. It is measured as the di�erence between the
occurrence timestamp and the timestamp of the arrival in the StreamTrap component.
The execution time is the execution time of the framework, from the moment that the
fault is detected until the recovery action is applied to the system.

The occurrence, detection, plan and action timestamps collected are collected by the
architecture components and saved to the PostgreSQL database by the Executor compo-
nent, after applying the recovery actions. This is done to avoid any additional overhead
from database communication when collecting these timestamps. The injection and con-
tainer start time are collected by the experiment controller. The injection timestamp is
saved upon fault injection. To save the container start time, the controller uses kubectl to
fetch the container start time. This data is saved to a Comma-Separated Values (CSV)
�le, alongside other experiment information, such as system metrics (CPU and memory
usage), spans and traces.

In order to gather enough experimental data, 100 experimental runs were performed
for each of the failure scenarios considered. The information collected was analysed, in
order to remove any existing outliers, and is displayed in the graphics presented in the
following subsections.

An important aspect that must be considered is that the services that compose the
managed application are distributed among several virtual machines in a datacenter. Thus,
we need to ensure that the local clocks of each machine are synchronized, otherwise we
risk a�ecting the results of the time measurements performed in the di�erent experiments.
This synchronization works to minimize clock skew (time di�erence between two clocks) as
much as possible. To perform this task, the local clock of each machine is synchronized with
the NTP (Network Time Protocol) server provided by the datacenter where the virtual
machines are hosted. This is the standard protocol used to synchronize computer clock
times in a network.

Brie�y explaining, when a client, such as an host machine, synchronizes with an NTP
server, a set of requests and responses are exchanged [69]. The client starts by sending an
NTP query to the server with the origin timestamp, which is the client's system time when
the query is sent. When the server receives the request, it stamps the receive timestamp. It
then sends the response with this timestamp and the transmit timestamp. Finally, the client
receives the response and registers the destination timestamp, which is the timestamp when
the response is received. The timestamps gathered help determine the di�erence between
the internal clock and the time provided by the server, taking into account the round trip
delay (the time it takes for the message to travel to the server and back), thus maintaining
synchronization.

6.1.1 Crash

The �rst scenario considered when evaluating the performance of the framework is a
crash in the catalogue service. The observation that strikes us at �rst when performing
an analysis of Figure 6.1 is that the MTTR of the restart action is lower than the one

60



Results and Analysis

MTTD MTTR (restart) MTTR (downgrade)

0
5

10
15

20
25

Metric

T
im

e 
(s

ec
on

ds
)

Figure 6.1: Performance in the crash catalogue scenario

Metrics Mean Median Q1 Q3 Min Max
MTTD 4.287 4.072 2.920 5.273 0.531 14.060

MTTR (restart) 12.150 12.141 10.450 13.255 7.506 19.761

Execution time
(restart)

0.614 0.603 0.510 0.667 0.426 1.088

MTTR (version
downgrade)

14.19 13.830 12.620 15.760 10.450 20.440

Execution time
(version downgrade)

1.239 1.208 1.159 1.277 0.963 1.673

Restart time 7.375 7.307 6.602 8.101 5.434 10.483

Table 6.1: Standard statistics of the crash catalogue experiment

61



Chapter 6

from the version downgrade action. Since the version downgrade action starts by
checking if there is any previous deployment revision to rollback to and only then applies the
downgrade action, the di�erence in recovery time is justi�ed. Nonetheless, both recovery
actions present similar performance with restart taking 12.150 seconds, on average and
version downgrade taking 15.890 seconds, on average. However, observing Table 6.1, we
can see that, in the Min column, which contains the minimum values, the restart can
recover in 7.506 seconds and the version downgrade in 10.450 seconds. The use of boxplots
provides a better view of how the data is distributed. Since the median splits the box of the
MTTD in half, we can observe that the data is roughly symmetric. However, in the other
two plots, some skew is observed. This shows that, for instance, in the box concerning the
restart data, the data has positive skew, which means that the values in the upper part of
the box are closer together, and not that the sample size is smaller in that area. Finally,
regarding the variability of the data, since the size of the interquartile range (grey box
which contains the middle 50% of the data) is narrow in all of the boxes boxes, it shows
that the data does not vary too much.

Taking a closer look at the standby time, execution time and restart time, we can
observe that:

� The Mean Time to Detect a failure in this scenario is 4.287. seconds. This metric
measures the time between the occurrence of the failure in the managed application
and the timestamp of when the framework detected it. This value is mostly condi-
tioned by the process of batching spans. However, this operation is required in order
to reconstruct traces and have the full service invocation call. This was the de�ned
approach for the detection process, i.e., to consider all spans in a trace as culprits.
Nonetheless, in a future implementation, this task can be replaced with a more ad-
vanced root-cause localization and identi�cation of the culprits. To de�ne the number
of spans that should be used for a single batch, experiments were performed with
di�erent batch sizes and the corresponding standby time was evaluated. It started
with higher values (minimum of 250 and maximum of 500 spans), where the average
standby time was 29.891 seconds. Then this range was decreased to 100-250, which
resulted in an average of 12.771 seconds. Since this time was still not acceptable,
the �nal experiments were performed with 30-75, reaching an average time of 4.154
seconds. Additionally, in the di�erent experiments similar slicing of the traces was
observed. Thus, the smallest batch size was chosen to reduce the overhead, which
had a noticeable in�uence in reducing the Mean Time To Detect. It is possible to
conclude that the biggest overhead for the mean time to detect comes from the span
process and the remaining time corresponds to the time that the framework takes to
notice the failure.

� The time required for a container to start is 7.375 seconds, on average. This low
restart time presents one of the bene�ts of the utilization of container-based virtual-
ization. However, the restart value depends on the infrastructure where the managed
application runs. A more powerful infrastructure would result in even lower start
times, which, in turn, would help decrease the MTTR. Nonetheless, an improvement
in the restart time was possible by modifying, in Kubernetes, the pullPolicy of the
container images from Always to IfNotPresent. What this con�guration does is that,
instead of always pulling the container image from the container registry when the
service is started, Kubernetes veri�es if the image already exists locally. If it already
exists, we can save the time required to download the image from the repository.

62



Results and Analysis

MTTD MTTR (restart) MTTR (downgrade)

0
5

10
15

Metric

T
im

e 
(s

ec
on

ds
)

Figure 6.2: Performance in the wrong output scenario

6.1.2 Wrong output

Observing the results obtained in the wrong output scenario (Figure 6.2), we notice
that the results are identical to the ones from the previous experiment. However, in this
scenario, there is almost no di�erence between the performance of the recovery actions.

Additionally, the Mean Time To Detect presents even lower values, of 1.550 seconds,
when compared to the previous experiment. Since all the experiments were performed
under the same conditions, one may conclude that the number of spans considered per
batch was the lower end of the batch (30 spans). Considering that the MTTD is mostly
in�uenced by the batch time, this could explain the results observed. Another possible
explanation lies in the fact that the fault could also manifest earlier when compared to the
other scenarios.

6.1.3 Memory Leak

Contemplating the results for the wrong output scenario, a similar result from the one
of the crash scenario (Figure 6.1) can be seen in Figure 6.2. This helps reinforce the idea
that the mean time to repair does not di�er much even when dealing with di�erent services,
written in di�erent programming languages and with di�erent image sizes.

On the other hand, the detection time is not in�uenced by the service, but by the time
it takes for the required amount of spans to be produced and batched before being sent to
the service in charge of fault detection.

63



Chapter 6

MTTD MTTR

0
5

10
15

20
25

Metric

T
im

e 
(s

ec
on

ds
)

Figure 6.3: Performance in the memory leak scenario

6.1.4 Hang and corrupted output

Regarding the last two scenarios - hang and corrupted output - that were initially
considered and prepared for evaluation, these ended up not providing the expected results
that would be worth evaluating. The reason for discarding the hang scenario was due to
a limitation in the detection phase. The hang did not manifest as an HTTP status code
and the only way to detect it would be to consider the request duration contained in each
span. Then, this value could be compared to an average request duration that could be
stored in a database. Additionally, a threshold to be added on top of the average request
duration could also be used to avoid any false positives. However, the time for developing
and testing the solution is limited. Thus, this solution was discarded and the time was
used to implement and evaluate the recovery strategies.

In which concerns the corrupted output scenario, it was discarded after the results
obtained in the experiments. The way the fault was injected resulted in a cascading
failure which incurred, once again, in a detection limitation of the present solution. The
fault was injected in the cart service, which would return a corrupted output (wrong
variable data type) upon con�rming the cart information and proceeding to shipping.
This corrupted value was persisted in a session variable and not used when de�ning the
shipping information. Finally, when one would arrive to the checkout, which was handled
by the payment service, this value was used and resulted in a failure. Despite the fact
that the HTTP status code, which appeared in the trace data, would point out that the
culprit would be the payment service, the true culprit was not present in the invocation
chain, since the fault was injected in the cart. The way to discover the root cause of the
present failure would not be so trivial. The reason behind this is that, for the best of my
knowledge, it is not possible to correlate two individual traces. This makes it impossible

64



Results and Analysis

to �nd the true culprit.

In a �nal consideration regarding the performance of the proposed solution, one can
observe that the MTTR in the di�erent scenarios is similar. Only in the wrong output
scenario a di�erent value is observed, but still close to the times of the remaining scenarios.
However, since the three scenarios are evaluated with di�erent services, each written in a
distinct programming language, and having di�erent container sizes, it is recognizable that
some di�erences may be observed. Since the container size only impacts the download
time that would be required to fetch the image, but the pullPolicy is set to IfNotPresent,
the image size can be discarded as the reason behind the di�erent times observed. Thus,
the main reason lies in the di�erent programming languages and frameworks used for the
services considered. The catalogue service is written in nodejs, shipping is written in
Java with Springboot and ratings is written in PHP. In summary, we can conclude that
the type of failure does not a�ect the mean time to recover of the proposed approach.
In an additional consideration, the Mean Time to Detect in the wrong output scenario is
considerably lower. However, this result is not related with the performance of the recovery
action, but instead, with this speci�c failure scenario.

6.2 E�ectiveness of the recovery actions

The performance experiments from the previous section show that the proposed solu-
tion can perform recovery actions in a short period of time. This is mainly due to the
fast publish-subscribe middleware, the execution time of the framework and the usage of
container-based virtualization, which allows low container startup times when compared
to virtual machine virtualization. However, an analysis should be performed to uncover if
these recovery actions are e�ective and able to recover the a�ected services, bringing them
back to providing correct service.

To verify the e�ectiveness of the solution, a set of metrics that are usually considered
when executing performance tests are used. This type of tests allow to verify the behavior
of the system under load and uncover any possible limitations of the target application.

The metrics considered are the ones provided by the load generator Locust :

� Throughput - using 10 simultaneous clients, the number of requests that the system
handles, per second, is measured.

� Response time - the time, in milliseconds, that it takes for the service to respond
to requests is also considered. The data from this metric that is present in the
plot corresponds to the 95th percentile. This percentile describes the response time
required for 95% or less of the requests.

� Number of failures per second - the HTTP status codes from the requests per-
formed are considered. This helps to know when an anomaly in the system might
have occurred.

With these metrics we can investigate the impact of the di�erent failures in the man-
aged application. In order to get a baseline from the system behavior, a golden run was
performed, which followed the guidelines provided in Chapter 4. The load generated using
Locust was sent directly from the browser to simulate, in a more realistic manner, the
client requests while using an e-commerce application.

65



Chapter 6

1629591000 1629591025 1629591050 1629591075 1629591100 1629591125 1629591150 1629591175
Timestamp

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Nu
m

be
r o

f r
eq

ue
st

s
 p

er
 se

co
nd

1629591000 1629591025 1629591050 1629591075 1629591100 1629591125 1629591150 1629591175
Timestamp

0

500

1000

1500

2000

Re
sp

on
se

 ti
m

e 
(m

s)

1629591000 1629591025 1629591050 1629591075 1629591100 1629591125 1629591150 1629591175
Timestamp

0.00

0.01

0.02

0.03

0.04

0.05

Nu
m

be
r o

f f
ai

lu
re

s

Figure 6.4: Golden run

The results from the golden run (Figure 6.4) do not exhibit any failure as expected. We
can observe that the maximum number of requests that the system handles, per second,
tops at around 15. And �nally, the 95th percentile of response times is 2 seconds, which
means that 95% of the requests are answered in 2 or less seconds. Using the 95th percentile
has the advantage of considering the vast majority of the results while still discarding some
outliers. The 75th percentile could also be a viable option, but the 95th percentile was
more appropriate since it considers more data.

6.2.1 Crash

In which concerns the crash scenario, the �rst recovery action evaluated was the restart
action (Figure 6.5). When comparing with the baseline run (Figure 6.4), it is possible to
observe that the number of requests to which the system responds decreases to one third
from the timestamp where the failure is injected until the end of the experiment. Moreover,
after applying the restart, the response time starts to decrease considerably. This does not
mean that the system was able to recover from the failure. Instead, it shows that the restart
action impacts the response time and that, after the actions is applied, the response time
decreases again. Since the fault is injected at compile-time and persists throughout the
experiment, it was expected that this action would not be e�ective in this speci�c scenario.

Regarding the version downgrade action, a di�erent behavior is observed (Figure 6.6).
The number of requests that the system can handle is similar to the ones from the golden
run. The response times also decrease slightly after the recovery action is applied to the
system. Furthermore, in the third subplot, it is noticeable that, shortly after the action is
performed, the number of requests with HTTP codes goes down to zero. Upon the results
obtained, one may conclude that the version downgrade action is e�ective in this scenario.

66



Results and Analysis

Timestamp
0

2

4

6

8

10

Nu
m

be
r o

f r
eq

ue
st

s
 p

er
 se

co
nd

injection
restart
occurrence
detection
action

Timestamp0

500

1000

1500

2000

Re
sp

on
se

 ti
m

e 
(m

s)

injection
restart
occurrence
detection
action

1626686150 1626686175 1626686200 1626686225 1626686250 1626686275 1626686300 1626686325
Timestamp

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Nu
m

be
r o

f f
ai

lu
re

s

injection
restart
occurrence
detection
action

Figure 6.5: Crash catalogue scenario with restart

Timestamp
0

2

4

6

8

10

Nu
m

be
r o

f r
eq

ue
st

s
 p

er
 se

co
nd

injection
version downgrade
occurrence
detection
action

Timestamp
0

1000

2000

3000

4000

5000

Re
sp

on
se

 ti
m

e 
(m

s)

injection
version downgrade
occurrence
detection
action

1626707650 1626707675 1626707700 1626707725 1626707750 1626707775 1626707800 1626707825
Timestamp

0.0

0.1

0.2

0.3

0.4

0.5

Nu
m

be
r o

f f
ai

lu
re

s

injection
version downgrade
occurrence
detection
action

Figure 6.6: Crash catalogue scenario with version downgrade

67



Chapter 6

Timestamp
0

2

4

6

8

10
Nu

m
be

r o
f r

eq
ue

st
s

 p
er

 se
co

nd

injection
restart
occurrence
detection
action

Timestamp
500
750

1000
1250
1500
1750
2000
2250

Re
sp

on
se

 ti
m

e 
(m

s)

injection
restart
occurrence
detection
action

1626908725 1626908750 1626908775 1626908800 1626908825 1626908850 1626908875 1626908900
Timestamp

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Nu
m

be
r o

f f
ai

lu
re

s

injection
restart
occurrence
detection
action

Figure 6.7: Wrong output scenario with restart

6.2.2 Wrong output

This scenario presents similar results to the ones from the crash catalogue scenario.
Starting with the restart action (Figure 6.7), it presents that the number of requests does
not decrease as much as in the crash scenario. This may be a result from a crash being
a more severe scenario, which has a more meaningful impact in the service provided by
the application. On the other hand, the type of interface error analysed in this scenario
shows a lighter impact. Nonetheless, the two remaining subplots in Figure 6.7 present
similar scenarios to the ones from the previous scenario, which are evidences that the
recovery action was not successful. Since this fault is also permanent and lasts throughout
the experiment, the version downgrade once again demonstrates the ability to recover the
system from the failure scenario (Figure 6.8). It is possible to observe that after applying
the recovery action, the metric values return back to the normal values expected, which
match with the ones from the baseline run.

6.2.3 Memory leak

In this �nal scenario, the restart action is the only action considered. This is done
since this is a transient fault, i.e., it is bounded in time, and it would not be appropriate
to try to downgrade the service version. With this scenario, the core idea was to evaluate
if the restart action could improve a mechanism already used by Kubernetes, which is the
OOMKiller.

As stated in Kubernetes documentation [57], a container can have as much memory as
it requests, as long as the memory usage does not exceed the limit de�ned. Whenever a
container tries to allocate more memory than its limit, it becomes a candidate for termi-
nation. If it keeps consuming memory past its limit, the kubelet will terminate the pod.
The kubelet consists in an agent that runs on each node and assures that containers are
running in a pod [58]. To terminate pods, the kubelet resorts to the �OOM Killer�. The
OOM Killer works by observing the node memory usage to search for memory exhaus-
tion. If such exhaustion is detected, the OOM Killer will choose which processes should

68



Results and Analysis

Timestamp
0
2
4
6
8

10
12
14

Nu
m

be
r o

f r
eq

ue
st

s
 p

er
 se

co
nd

injection
version downgrade
occurrence
detection
action

Timestamp
0

500
1000
1500
2000
2500
3000
3500

Re
sp

on
se

 ti
m

e 
(m

s)

injection
version downgrade
occurrence
detection
action

1630122050 1630122075 1630122100 1630122125 1630122150 1630122175 1630122200
Timestamp

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Nu
m

be
r o

f f
ai

lu
re

s

injection
version downgrade
occurrence
detection
action

Figure 6.8: Wrong output scenario with version downgrade

Timestamp
0
2
4
6
8

10
12
14
16

Nu
m

be
r o

f r
eq

ue
st

s

injection
container start
OOMKill

Timestamp
250
500
750

1000
1250
1500
1750
2000

Ti
m

e 
(m

s)

injection
container start
OOMKill

1629853725 1629853750 1629853775 1629853800 1629853825 1629853850 1629853875 1629853900
Timestamp

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f f
ai

lu
re

s

injection
container start
OOMKill

Figure 6.9: Behavior of Kubernetes OOMKiller

69



Chapter 6

Timestamp
0
2
4
6
8

10
12
14

Nu
m

be
r o

f r
eq

ue
st

s
 p

er
 se

co
nd

injection
restart
occurrence
detection
action

Timestamp

250
500
750

1000
1250
1500
1750
2000

Re
sp

on
se

 ti
m

e 
(m

s)

injection
restart
occurrence
detection
action

1629071450 1629071475 1629071500 1629071525 1629071550 1629071575 1629071600 1629071625
Timestamp

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f f
ai

lu
re

s

injection
restart
occurrence
detection
action

Figure 6.10: Memory Leak scenario with restart

be killed. The core objective is to kill the least amount of processes while recovering the
maximum amount of the node's memory. For this, the kernel holds an oom_score for each
process and the process with higher oom_score is more likely to be killed. The oom_score
is calculated with regard to the percentage of memory that is being used by the process.

When performing the chaos experiment, we can observe, in Figure 6.9, that Kubernetes
uses the OOM Killer to terminate the service which is exhausting the memory resources.
Comparing the results from the OOM Killer with the ones from the restart action (Figure
6.10), we can observe that the results obtained are very similar from one another in every
aspect. This result is not a complete surprise since both approaches terminate the service
and start it again at a clean state. However, the di�erence lies in the detection method.
While the OOM Killer relies on the memory usage to actuate, the present solution monitors
the spans provided by distributed tracing. And, as observed throughout the experiments,
the service provided started to become a�ected and unable to answer some requests before
OOM Killer was triggered. Thus, the approach used by the framework can complement
the mechanism already provided by Kubernetes, in order to provide error recovery sooner.
Nonetheless, the recommended approach would be to have the Horizontal Pod Autoscaler
enabled, which would scale pods according to resource usage and avoid any failures due to
the increase in resource consumption.

6.3 E�ectiveness of the recovery strategies

The performance and e�ectiveness of isolated recovery actions was already evaluated.
However, an interesting approach would be to also consider recovery strategies. Such
strategy encompasses a more elaborated work�ow, composed of more than one recovery
actions, which would provide some sort of simple automation to bring additional bene�ts
for the system's dependability. Hence, the recovery strategies mentioned in Section 3.5
- global restart and iterative recovery - will be evaluated. Due to the conclusions
obtained in the previous section, the global restart strategy will only be evaluated in the
memory leak scenario. The same applies to the iterative recovery strategy, which will only

70



Results and Analysis

Timestamp
0

2

4

6

8

10

Nu
m

be
r o

f r
eq

ue
st

s
injection
restartAll
occurrence
detection
shipping
service

Timestamp
0

250
500
750

1000
1250
1500
1750
2000

Ti
m

e 
(m

s)

injection
restartAll
occurrence
detection
shipping
service

1629942600 1629942625 1629942650 1629942675 1629942700 1629942725 1629942750 1629942775
Timestamp

0.0

0.5

1.0

1.5

2.0

2.5

Nu
m

be
r o

f f
ai

lu
re

s

injection
restartAll
occurrence
detection
shipping
service

Figure 6.11: Memory Leak scenario with global restart strategy

be applied to the crash catalogue scenario due to the similar conclusions between the crash
catalogue and memory leak scenarios.

Figure 6.11 displays the results from the global restart strategy. The leftmost vertical
line is always the injection timestamp. Additionally, the lines at the line all have the label
�service� since represent the start time of each service and keeps the legend more clean.
When comparing the plot with the one from the single recovery action (Figure 6.10), it is
possible to observe similarities in the response time and failure subplots. However, there
is a noticeable and important observation in the �rst subplot in Figure 6.11. This exhibits
that the requests per second are severely a�ected since all the services are restarted, which
can brie�y a�ect the application's availability. Nonetheless, this strategy may be applied
when no fault detection and analysis mechanism is in place, to provide the culprits of an
existing failure, and the application can sustain momentary downtime. Notwithstanding,
in a system's normal operation, the single restart option is preferable due to the lower
actuation risk associated.

Regarding the iterative recovery strategy, it combines both recovery actions (restart and
version downgrade) to further improve the recovery phase. Despite knowing that the Mean
Time Between Failures (MTBF) of every system is di�erent and there is no reference value,
it is recognizable that if a failure with the same characteristhics arises within a short amount
of time, such as a day or less, we can conclude that we are dealing with the same failure
and that it was not repaired. Thus, it is possible to de�ne a certain period, which could
be equal or lower than the MTBF, and that would be the timeframe considered. If failure
data containing the same HTTP status code, the same components and within the de�ned
timeframe was found, one could consider that the previous recovery action was not e�ective
and a new one should be applied. For the sake of the current experiment, the timeframe
considered was 120 seconds, which is the duration of the experiment. Furthermore, upon
applying the �rst recovery action, a standby time of 60 seconds was considered, to help
present the results in the plot and their subsequent analysis.

When observing the experimental results (Figure 6.12), it is noticeable that the recovery
strategy was e�ective. After applying the �rst recovery action (a restart), this was not
e�ective and, once information regarding the same failure appeared, the version downgrade

71



Chapter 6

Timestamp
0

2

4

6

8

10
Nu

m
be

r o
f r

eq
ue

st
s

injection
restart
occurrence
detection
action
version downgrade

Timestamp
0

500
1000
1500
2000
2500
3000
3500

Ti
m

e 
(m

s)

injection
restart
occurrence
detection
action
version downgrade

1630174050 1630174075 1630174100 1630174125 1630174150 1630174175 1630174200 1630174225
Timestamp

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f f
ai

lu
re

s

injection
restart
occurrence
detection
action
version downgrade

Figure 6.12: Crash catalogue scenario with iterative recovery strategy

was applied and restore the system's normal operation.

6.4 Answers to the research questions

The present section provides the answers to the research questions de�ned in Chapter 1.
It is split in three subsections, each one corresponding to one of the research questions.

RQ1. Study the feasibility of building a MAPE-K loop using a Publish-
Subscribe middleware.

Through the experiments performed, it was possible to observe that Apache Kafka
ful�lled the desired requirements and enabled the feedback loop. It helped guarantee
exactly-once delivery semantic of messages. This has a core importance in guaranteeing
that the recovery actions are only applied once, even if a failure occurs in Kafka, Zookeeper
or any of the components of the architecture. The durability provided by the topics, which
can store information until it is consumed, helps guarantee that no data is lost. Moreover, it
enabled fast information exchange among the di�erent components. This high-performance
from Kafka is very important to help guarantee the fast recovery times that the proposed
solution provides.

RQ2. Evaluate the possibility of achieving an availability of 99.99% for
a cloud-native application with the self-healing capabilities provided by our
framework.

Availability is one of the most important quality attributes for companies nowadays.
The underlying idea for the current research question was to evaluate how the proposed
solution could be a framework to assure high availability of cloud native application. Since
the Mean Time Between Failures (MTBF) is something that we cannot control and di�ers
from system to system, what we can do is evaluate, taking into consideration the MTTR
obtained, what MTBF would allow us to achieve the desired availability.

Analysing the results displayed in Table 6.2, it is possible to observe that, with the

72



Results and Analysis

Failure scenario Recovery action MTTR (s) Availability (%) MTBF (h)

Crash catalogue
Restart 12.150

99.9% 3.371
99.99% 33.747

Version downgrade 15.890
99.9% 4.409
99.99% 44.134

Wrong output
Restart 11.500

99.9% 3.191
99.99% 31.941

Version downgrade 9.358
99.9% 2.597
99.99% 25.992

Memory leak Restart 14.083
99.9% 3.908
99.99% 39.116

Table 6.2: Mean Time Between Failures (MTBF)

lowest MTTR, which belongs to the version downgrade in the wrong output scenario, it is
possible to withstand almost one failure per day while still guaranteeing high availability.
In which concerns the worst case scenario, related to the version downgrade in the crash
catalogue, the system can handle a failure every two days.

As previously stated, there is no reference value to be used as the Mean Time Between
Failures (MTBF), since every system is di�erent, and as a consequence, it behaves and
fails di�erently. However, the recovery times provided by the framework enable the system
to accommodate failures occurring within a short period of time between each other, while
still guaranteeing high availability.

Notwithstanding, to further improve the availability of an application, additional mech-
anisms and considerations should take place. A common example is the existence of spare
replicas that must coexist with the running instances in order to provide redundancy in
case of failure.

RQ3. Evaluate the e�ectiveness of di�erent recovery strategies as a means
to complement single recovery actions.

Regarding the recovery strategies, these can be seen as a means to improve single
recovery actions. With the experiments performed and documented in Section 6.3, one
could notice that even with simple recovery strategies, it is possible to recover the system's
correct service.

The global restart action takes advantage of the fast restart time to try to mitigate
any existing anomaly. This is a non-intrusive approach when compared to the version
downgrade one. However, it must be carefully applied since the throughput and response
time of the application may be a�ected. An additional downside is that this strategy does
not scale. If we are working with a small microservices application, it could be feasible to
apply this recovery strategy. However, the same does not apply to a medium to large-scale
application.

On the other hand, the iterative recovery is e�ective against permanent failures.
Since these are common failures, which can result from software updates that introduce
bugs in the production environment, it is positive to observe this outcome for the present
recovery strategy.

Notwithstanding, the risks of actuation must be carefully studied, both for the recovery
actions and strategies, to avoid damaging the service when trying to mitigate failures.

73



Chapter 7

Conclusion and Future Work

This �nal Chapter presents an overview of the work performed, the conclusions attained
and possible research directions. The overall work of this thesis resulted in an architecture
of a feedback loop which is capable of autonomically apply recovery actions and strategies
to a microservices application. Both goals initially de�ned in Subsection 1.3 have been
ful�lled.

The �rst goal, regarding the development of a framework that could apply recovery
actions to a microservices application was achieved. The solution monitors a cloud-native
application using data from distributed tracing. This data is then analysed to search for
any anomaly in the system and di�erent recovery actions or strategies can be applied to
help mitigate the existing failure. The second goal was also met as shown in Chapter 6.
Applying the failures de�ned in Chapter 4 to the framework helped analyse the performance
and e�ectiveness of the recovery actions and strategies considered. The restart action
provides a non-intrusive and fast method to actuate in the system. Taking advantage of
this commonly used recovery action, it was possible to observe that, in a failure scenario
which was the result of a transient fault, it can help restore the normal system service.
However, one may conclude that scaling up the resources would be the appropriate action
in this scenario. On the other hand, the version downgrade action proves to be e�ective
in scenarios where the fault injected is permanent. Since permanent failures, such as the
one's resulting from software updates, are not unusual, it is interesting to observe the
fast performance and proven e�ectiveness of this action. Moreover, the usage of recovery
strategies to enhance the recovery phase and provide automation capabilities when initial
recovery actions are not e�ective also revealed that this is a path that can be followed and
further enhanced. The global restart action has the advantage of helping the system when
no detection method is available. However, there are risks attached, such as a�ecting the
application's throughput and the fact that it can not be used in application composed of
many microservices. Regarding the iterative recovery strategy, it exhibited the capability
of a simple automation work�ow of choosing a di�erent recovery action when the current
one was not e�ective.

Re�ecting about the work performed, the following conclusions can be withdrawn:

1. It is possible to actuate autonomically and perform recovery actions and strategies
in a microservices application to recover the system in failure scenarios.

2. The complex and dynamic nature of microservice architectures makes it harder to
detect and actuate upon failures.

3. There is still a lack of research in this �eld that should be addressed.

74



Conclusion and Future Work

In which concerns the �rst conclusion, the proposed framework enables the actuation
of recovery actions and strategies in cloud-native applications. It has the capability of
working with any microservices application and container orchestrator due to the existing
decoupling. Since the framework gathers system metrics from external sources, such as
distributed tracing, it can work with any system as long as it complies with the message
format de�ned. Additionally, the application may work with di�erent orchestrators, but
the commands that are applied would need to be modi�ed since each orchestrator may
have its own commands.

Regarding the second point, the experiments performed, namely the one where the
output provided by the application is corrupted, show scenarios that make it di�cult to
detect the existing failure, which, in turn, makes it impossible to actuate in that concrete
failure scenario.

The third and �nal point reports something that was observed while performing liter-
ature review. The trend towards adopting cloud computing and developing cloud-native
applications is something new, which justi�es the lack of research in �elds such as recover-
ing from failures in microservices, detecting faults in microservices and the di�erent types
of faults that may occur in this kind of environments.

From the work performed, the following research directions may be followed:

� Develop and integrate, in the current framework, a mechanism capable of choosing
the most appropriate recovery action.

� Integrate a proper fault detection mechanism in the architecture to improve the
detection of the culprits.

� Assess the risk of autonomic actuation in a microservices application.

� Develop and evaluate more complex recovery strategies.

� Consider additional metrics to evaluate the failure scenarios at runtime.

Regarding the �rst consideration, in the work performed, only one recovery action was
considered per run. However, an interesting approach would be to develop a solution to
choose the most appropriate action to apply in a concrete failure scenario. To enable
this mechanism, it would be utterly important to improve the detection mechanism. This
should provide as much information as possible about the failure to the component that
chooses the recovery actions, so that the latter could analyse and choose the most appro-
priate..

The second item is related to the fact that, in the current implementation, the detection
method considers as culprits all the services that are part of a trace which an HTTP status
code in the 400 and 500 range. This approach should be replaced with one where a proper
fault detection mechanism analyses metrics and data collected from the system to assess
the root cause of a failure. This would also improve the work performed by the proposed
solution since it could help reduce the risk of actuation.

In third place, the risk of actuating in a system should be carefully analysed. Since the
availability is the core quality attribute that should be respected, one should be careful
to avoid damaging the system even more when trying to restore the system's service. An
additional consideration would be to evaluate and compare the impact of recovery actions
in stateless and stateful services.

75



Chapter 7

The fourth point is related to study and implement additional recovery strategies that
could be embedded in the proposed solution. These could bene�t from improved detection
mechanisms to help provide richer information upon which the system could deliberate
when choosing a recovery action.

In �fth and �nal place, more metrics from the system, besides distributed tracing,
should be considered to assist the framework in having a better overview of the managed
application. This, in turn, could improve the detection and planning phases.

Re�ecting upon the work performed, it is possible to conclude that it was successful.
The goals de�ned were accomplished and relevant conclusions and considerations could
be withdrawn. Finally, the acceptance of the research paper that was submitted to the
DREAMS Workshop 2021 helped enhance the importance and relevance of the work per-
formed.

76



Bibliography

[1] 500 internal server error · Issue #2 · paulc4/microservices-demo. url:
https://github.com/paulc4/microservices-demo/issues/2 (visited on
5th Dec. 2020).

[2] Fatemeh Afsharnia. `Failure Rate Analysis'. In: Dec. 2017. isbn:
978-953-51-3713-9. doi: 10.5772/intechopen.71849.

[3] Khaled Alnawasreh et al. `Online robustness testing of distributed embedded
systems: An industrial approach'. In: 2017. doi: 10.1109/ICSE-SEIP.2017.17.

[4] Apache. Apache Kafka. url: https://kafka.apache.org/ (visited on 10th Dec.
2020).

[5] Apache. Apache Mesos. url: http://mesos.apache.org/ (visited on 2nd Jan.
2021).

[6] Apigee. 502 Bad Gateway Unexpected EOF | Apigee Docs. url: https:
//docs.apigee.com/api-platform/troubleshoot/runtime/502-bad-gateway

(visited on 2nd Jan. 2021).

[7] Atlassian. SLA vs. SLO vs. SLI - Di�erences | Atlassian. url:
https://www.atlassian.com/incident-management/kpis/sla-vs-slo-vs-sli

(visited on 12th July 2021).

[8] Algirdas Aviºienis et al. `Basic concepts and taxonomy of dependable and secure
computing'. In: IEEE Transactions on Dependable and Secure Computing 1 (1
2004). issn: 15455971. doi: 10.1109/TDSC.2004.2.

[9] Nagwa Lotfy Badr. `An investigation into autonomic middleware control services
to support distributed self-adaptive software'. PhD thesis. Liverpool John Moores
University, 2003.

[10] Baeldung. Exactly Once Processing in Kafka with Java. url:
https://www.baeldung.com/kafka-exactly-once (visited on 15th Aug. 2021).

[11] A Basiri et al. `Chaos Engineering'. In: IEEE Software 33 (3 2016), pp. 35�41.
doi: 10.1109/MS.2016.60.

[12] Len Bass, Paul Clements and Rick Kazman. Software Architecture in Practice.
Third. Addison-Wesley Professional, 2012.

[13] Alfredo Benso and Stefano Di Carlo. `The Art of Fault Injection'. In: Control
Engineering and Applied Informatics 13 (4 2011). issn: 14548658.

[14] Thomas Brand and Holger Giese. `Towards software architecture runtime models
for continuous adaptive monitoring'. In: vol. 2245. 2018.

[15] Simon Brown. The C4 model for visualising software architecture. url:
https://c4model.com/ (visited on 15th Dec. 2020).

[16] Thanh Bui. `Analysis of Docker Security'. In: ArXiv abs/1501.02967 (2015).

77

https://github.com/paulc4/microservices-demo/issues/2
https://doi.org/10.5772/intechopen.71849
https://doi.org/10.1109/ICSE-SEIP.2017.17
https://kafka.apache.org/
http://mesos.apache.org/
https://docs.apigee.com/api-platform/troubleshoot/runtime/502-bad-gateway
https://docs.apigee.com/api-platform/troubleshoot/runtime/502-bad-gateway
https://www.atlassian.com/incident-management/kpis/sla-vs-slo-vs-sli
https://doi.org/10.1109/TDSC.2004.2
https://www.baeldung.com/kafka-exactly-once
https://doi.org/10.1109/MS.2016.60
https://c4model.com/


Chapter 7

[17] Emiliano Casalicchio. `A study on performance measures for auto-scaling
CPU-intensive containerized applications'. In: Cluster Computing 22 (3 2019).
issn: 15737543. doi: 10.1007/s10586-018-02890-1.

[18] Frederico Cerveira et al. `Evaluation of restful frameworks under soft errors'. In:
vol. 2020-October. 2020. doi: 10.1109/ISSRE5003.2020.00042.

[19] Marcello Cinque, Ra�aele Della Corte and Antonio Pecchia. `Microservices
Monitoring with Event Logs and Black Box Execution Tracing'. In: IEEE
Transactions on Services Computing (2019). issn: 19391374. doi:
10.1109/TSC.2019.2940009.

[20] Mariana Cunha and Nuno Laranjeiro. `Assessing Containerized REST Services
Performance in the Presence of Operator Faults'. In: 2018. doi:
10.1109/EDCC.2018.00025.

[21] Piotr Karwatka - Divante. Monolithic architecture vs microservices: Which is
better? | Divante. url:
https://divante.com/blog/monolithic-architecture-vs-microservices/

(visited on 4th Jan. 2021).

[22] Docker. Swarm mode overview | Docker Documentation. url:
https://docs.docker.com/engine/swarm/ (visited on 3rd Jan. 2021).

[23] MDN Web Docs. HTTP response status codes. url:
https://developer.mozilla.org/pt-PT/docs/Web/HTTP/Status (visited on
5th Jan. 2021).

[24] Abhishek Dubey et al. `Towards a veri�able real-time, autonomic, fault mitigation
framework for large scale real-time systems'. In: Innovations in Systems and
Software Engineering 3 (1 2007). issn: 16145046. doi:
10.1007/s11334-006-0015-7.

[25] João A. Durães and Henrique S. Madeira. `Emulation of software faults: A �eld
data study and a practical approach'. In: IEEE Transactions on Software
Engineering 32 (11 2006). issn: 00985589. doi: 10.1109/TSE.2006.113.

[26] DZone. Interpreting Kafka's Exactly-Once Semantics. url:
https://dzone.com/articles/interpreting-kafkas-exactly-once-semantics

(visited on 15th Aug. 2021).

[27] Elasticsearch. Elasticsearch: The O�cial Distributed Search & Analytics Engine.
url: https://www.elastic.co/elasticsearch (visited on 29th July 2021).

[28] Luca Florio and Elisabetta Di Nitto. `Gru: An approach to introduce decentralized
autonomic behavior in microservices architectures'. In: 2016. doi:
10.1109/ICAC.2016.25.

[29] CNCF (Cloud Native Computing Foundation). CNCF Cloud Native De�nition.
url: https://github.com/cncf/toc/blob/master/DEFINITION.md#%E4%B8%AD%
E6%96%87%E7%89%88%E6%9C%AC (visited on 10th Jan. 2020).

[30] Martin Fowler. Microservices. url:
https://martinfowler.com/articles/microservices.html (visited on
10th Dec. 2020).

[31] Peter Garraghan et al. `Emergent Failures: Rethinking Cloud Reliability at Scale'.
In: IEEE Cloud Computing 5 (Sept. 2018), pp. 12�21. doi:
10.1109/MCC.2018.053711662.

[32] Martin Garriga. `Towards a taxonomy of microservices architectures'. In:
vol. 10729 LNCS. 2018. doi: 10.1007/978-3-319-74781-1_15.

78

https://doi.org/10.1007/s10586-018-02890-1
https://doi.org/10.1109/ISSRE5003.2020.00042
https://doi.org/10.1109/TSC.2019.2940009
https://doi.org/10.1109/EDCC.2018.00025
https://divante.com/blog/monolithic-architecture-vs-microservices/
https://docs.docker.com/engine/swarm/
https://developer.mozilla.org/pt-PT/docs/Web/HTTP/Status
https://doi.org/10.1007/s11334-006-0015-7
https://doi.org/10.1109/TSE.2006.113
https://dzone.com/articles/interpreting-kafkas-exactly-once-semantics
https://www.elastic.co/elasticsearch
https://doi.org/10.1109/ICAC.2016.25
https://github.com/cncf/toc/blob/master/DEFINITION.md#%E4%B8%AD%E6%96%87%E7%89%88%E6%9C%AC
https://github.com/cncf/toc/blob/master/DEFINITION.md#%E4%B8%AD%E6%96%87%E7%89%88%E6%9C%AC
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1109/MCC.2018.053711662
https://doi.org/10.1007/978-3-319-74781-1_15


Bibliography

[33] Gartner. De�nition of Scalability - Gartner Information Technology Glossary.
url: https://www.gartner.com/en/information-
technology/glossary/scalability (visited on 1st Dec. 2020).

[34] Gremlin. Chaos Engineering tools comparison. url:
https://www.gremlin.com/community/tutorials/chaos-engineering-tools-

comparison/.

[35] IBM Group. `Autonomic Computing White Paper: An Architectural Blueprint for
Autonomic Computing'. In: IBM White Paper (June 2005). issn: 1944-8244.

[36] Haryadi S. Gunawi et al. `Why does the cloud stop computing? Lessons from
hundreds of service outages'. In: 2016. doi: 10.1145/2987550.2987583.

[37] Red Hat. Understanding cloud-native apps. url:
https://www.redhat.com/en/topics/cloud-native-apps (visited on 15th Dec.
2020).

[38] Robert Heinrich et al. `Performance engineering for microservices: Research
challenges & directions'. In: 2017. doi: 10.1145/3053600.3053653.

[39] Victor Heorhiadi et al. `Gremlin: Systematic Resilience Testing of Microservices'.
In: vol. 2016-August. 2016. doi: 10.1109/ICDCS.2016.11.

[40] P. Horn. `Autonomic Computing: IBM's Perspective on the State of Information
Technology'. In: 2001.

[41] Gang Huang, Xuanzhe Liu and Hong Mei. `SOAR: Towards dependable
Service-Oriented Architecture via re�ective middleware'. In: International Journal
of Simulation and Process Modelling 3 (1-2 2007). issn: 17402131. doi:
10.1504/IJSPM.2007.014715.

[42] Peng Huang et al. `Gray Failure: The Achilles' Heel of Cloud-Scale Systems'. In:
vol. Part F129307. 2017. doi: 10.1145/3102980.3103005.

[43] Markus C. Huebscher and Julie A. McCann. `A survey of Autonomic Computing -
Degrees, models, and applications'. In: ACM Computing Surveys 40 (3 2008).
issn: 03600300. doi: 10.1145/1380584.1380585.

[44] IBM. `An architectural blueprint for autonomic computing'. In: IBM White Paper
36 (June 2006). issn: 19448244.

[45] Didac Gil De La Iglesia and Danny Weyns. `MAPE-K formal templates to
rigorously design behaviors for self-adaptive systems'. In: ACM Transactions on
Autonomous and Adaptive Systems 10 (3 2015). issn: 15564703. doi:
10.1145/2724719.

[46] Instana. Robot Shop: Sample Microservices Application. url:
https://github.com/instana/robot-shop (visited on 4th Feb. 2021).

[47] Istio. Istio / Distributed Tracing FAQ. url:
https://istio.io/latest/about/faq/distributed-tracing/ (visited on
20th June 2021).

[48] Jaeger. Architecture - Jaeger documentation. url:
https://www.jaegertracing.io/docs/1.21/architecture/ (visited on
28th May 2021).

[49] Jaeger: open source, end-to-end distributed tracing. url:
https://www.jaegertracing.io/.

[50] Lalita J. Jagadeesan and Veena B. Mendiratta. `When Failure is (Not) an Option:
Reliability Models for Microservices Architectures'. In: 2020. doi:
10.1109/ISSREW51248.2020.00031.

79

https://www.gartner.com/en/information-technology/glossary/scalability
https://www.gartner.com/en/information-technology/glossary/scalability
https://www.gremlin.com/community/tutorials/chaos-engineering-tools-comparison/
https://www.gremlin.com/community/tutorials/chaos-engineering-tools-comparison/
https://doi.org/10.1145/2987550.2987583
https://www.redhat.com/en/topics/cloud-native-apps
https://doi.org/10.1145/3053600.3053653
https://doi.org/10.1109/ICDCS.2016.11
https://doi.org/10.1504/IJSPM.2007.014715
https://doi.org/10.1145/3102980.3103005
https://doi.org/10.1145/1380584.1380585
https://doi.org/10.1145/2724719
https://github.com/instana/robot-shop
https://istio.io/latest/about/faq/distributed-tracing/
https://www.jaegertracing.io/docs/1.21/architecture/
https://www.jaegertracing.io/
https://doi.org/10.1109/ISSREW51248.2020.00031


Chapter 7

[51] Hugo Jernberg, Per Runeson and Emelie Engström. `Getting started with chaos
engineering - Design of an implementation framework in practice'. In: 2020. doi:
10.1145/3382494.3421464.

[52] Andréas Johansson et al. `On enhancing the robustness of commercial operating
systems'. In: vol. 3335. 2005. doi: 10.1007/978-3-540-30225-4_11.

[53] JSON. url: https://www.json.org/json-en.html (visited on 10th Nov. 2020).

[54] Hui Kang, Haifeng Chen and Guofei Jiang. `PeerWatch: A fault detection and
diagnosis tool for virtualized consolidation systems'. In: 2010. doi:
10.1145/1809049.1809070.

[55] Je�rey O Kephart and David M Chess. `The Vision of Autonomic Computing'. In:
Computer 36 (1 Jan. 2003), pp. 41�50. issn: 0018-9162. doi:
10.1109/MC.2003.1160055. url: https://doi.org/10.1109/MC.2003.1160055.

[56] Kubernetes. url: https://kubernetes.io/pt/ (visited on 23rd Nov. 2020).

[57] Kubernetes. Assign Memory Resources to Containers and Pods. url:
https://kubernetes.io/docs/tasks/configure-pod-container/assign-

memory-resource/ (visited on 20th Aug. 2021).

[58] Kubernetes Components | Kubernetes. url:
https://kubernetes.io/docs/concepts/overview/components/ (visited on
10th Dec. 2020).

[59] Lorenzo De Lauretis. `From monolithic architecture to microservices architecture'.
In: 2019. doi: 10.1109/ISSREW.2019.00050.

[60] R. K. Lenka, S. Padhi and K. M. Nayak. `Fault Injection Techniques - A Brief
Review'. In: 2018 International Conference on Advances in Computing,
Communication Control and Networking (ICACCCN). 2018, pp. 832�837. doi:
10.1109/ICACCCN.2018.8748585.

[61] Lightstep. Understand Distributed Tracing | Lightstep Learning Portal. url:
https://docs.lightstep.com/docs/understand-distributed-

tracing#attributestags (visited on 28th June 2021).

[62] Litmus. Architecture Summary | Litmus Docs. url:
https://docs.litmuschaos.io/docs/architecture/architecture-summary

(visited on 10th Aug. 2021).

[63] Haopeng Liu et al. `What bugs cause production cloud incidents?' In: 2019. doi:
10.1145/3317550.3321438.

[64] Vince Molnár and István Majzik. `Model checking-based Software-FMEA:
Assessment of fault tolerance and error detection mechanisms'. In: Periodica
polytechnica Electrical engineering and computer science 61 (2 2017). issn:
20645279. doi: 10.3311/PPee.9755.

[65] Fabrizio Montesi and Janine Weber. Circuit Breakers, Discovery, and API
Gateways in Microservices. 2016.

[66] Roberto Natella, Domenico Cotroneo and Henrique S. Madeira. `Assessing
dependability with software fault injection: A survey'. In: ACM Computing
Surveys 48 (3 2016). issn: 15577341. doi: 10.1145/2841425.

[67] Net�ix/chaosmonkey: Chaos Monkey is a resiliency tool that helps applications
tolerate random instance failures. url:
https://github.com/netflix/chaosmonkey (visited on 10th Dec. 2020).

[68] Sam Newman. Building Microservices: Designing Fine-Grained Systems. 1st.
O'Reilly Media, Feb. 2015, p. 280. isbn: 978-1491950357.

80

https://doi.org/10.1145/3382494.3421464
https://doi.org/10.1007/978-3-540-30225-4_11
https://www.json.org/json-en.html
https://doi.org/10.1145/1809049.1809070
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MC.2003.1160055
https://kubernetes.io/pt/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-memory-resource/
https://kubernetes.io/docs/concepts/overview/components/
https://doi.org/10.1109/ISSREW.2019.00050
https://doi.org/10.1109/ICACCCN.2018.8748585
https://docs.lightstep.com/docs/understand-distributed-tracing#attributestags
https://docs.lightstep.com/docs/understand-distributed-tracing#attributestags
https://docs.litmuschaos.io/docs/architecture/architecture-summary
https://doi.org/10.1145/3317550.3321438
https://doi.org/10.3311/PPee.9755
https://doi.org/10.1145/2841425
https://github.com/netflix/chaosmonkey


Bibliography

[69] NTP. How does it work? url:
http://www.ntp.org/ntpfaq/NTP-s-algo.htm#Q-ALGO-BASIC-SYNC (visited on
20th Aug. 2021).

[70] OpenTelemetry. What is OpenTelemetry? | OpenTelemetry. url:
https://opentelemetry.io/docs/concepts/what-is-opentelemetry/ (visited
on 20th Dec. 2020).

[71] OpenTracing. Spans. url: https://opentracing.io/docs/overview/spans/
(visited on 22nd Dec. 2020).

[72] OpenTracing speci�cation. url: https://opentracing.io/specification/
(visited on 10th May 2021).

[73] OpenZipkin · A distributed tracing system. url: https://zipkin.io/.

[74] René Peinl, Florian Holzschuher and Florian P�tzer. `Docker Cluster Management
for the Cloud - Survey Results and Own Solution'. In: Journal of Grid Computing
14 (2 2016). issn: 15729184. doi: 10.1007/s10723-016-9366-y.

[75] E. Grishikashvili Pereira and R. Pereira. `Simulation of fault monitoring and
detection of distributed services'. In: Simulation Modelling Practice and Theory 15
(4 2007). issn: 1569190X. doi: 10.1016/j.simpat.2006.11.012.

[76] PingCAP. Chaos Mesh - Your Chaos Engineering Solution for System Resiliency
on Kubernetes | PingCAP. url: https://pingcap.com/blog/chaos-mesh-your-
chaos-engineering-solution-for-system-resiliency-on-kubernetes.

[77] Pods | Kubernetes. url:
https://kubernetes.io/docs/concepts/workloads/pods/ (visited on 10th Dec.
2020).

[78] Principles of chaos engineering. url: https://principlesofchaos.org/ (visited
on 4th Feb. 2021).

[79] Rakesh Rana et al. `Improving fault injection in automotive model based
development using fault bypass modeling'. In: INFORMATIK 2013 � Informatik
angepasst an Mensch, Organisation und Umwelt. Ed. by Matthias Horbach. Bonn:
Gesellschaft für Informatik e.V., 2013, pp. 2577�2591.

[80] Daniel Richter et al. `Highly-Available Applications on Unreliable Infrastructure:
Microservice Architectures in Practice'. In: 2017. doi: 10.1109/QRS-C.2017.28.

[81] Mallanna S.D. and Devika M. `Distributed Request Tracing using Zipkin and
Spring Boot Sleuth'. In: International Journal of Computer Applications 175 (12
2020). doi: 10.5120/ijca2020920617.

[82] Matheus Santana et al. `Transparent tracing of microservice-based applications'.
In: vol. Part F147772. 2019. doi: 10.1145/3297280.3297403.

[83] Service mesh: A critical component of the cloud native stack | Cloud Native
Computing Foundation. url: https://www.cncf.io/blog/2017/04/26/service-
mesh-critical-component-cloud-native-stack/ (visited on 20th Dec. 2020).

[84] Amazon Web Services. Amazon ECS | Container Orchestration Service | Amazon
Web Services. url: https://aws.amazon.com/ecs/ (visited on 2nd Jan. 2021).

[85] Benjamin H Sigelman et al. `Dapper , a Large-Scale Distributed Systems Tracing
Infrastructure'. In: Google Research (April 2010). issn: <null>.

[86] State change updates sending after shutdown and throwing exceptions · Issue #726
· sitewhere/sitewhere. url:
https://github.com/sitewhere/sitewhere/issues/726 (visited on 3rd Dec.
2020).

81

http://www.ntp.org/ntpfaq/NTP-s-algo.htm#Q-ALGO-BASIC-SYNC
https://opentelemetry.io/docs/concepts/what-is-opentelemetry/
https://opentracing.io/docs/overview/spans/
https://opentracing.io/specification/
https://zipkin.io/
https://doi.org/10.1007/s10723-016-9366-y
https://doi.org/10.1016/j.simpat.2006.11.012
https://pingcap.com/blog/chaos-mesh-your-chaos-engineering-solution-for-system-resiliency-on-kubernetes
https://pingcap.com/blog/chaos-mesh-your-chaos-engineering-solution-for-system-resiliency-on-kubernetes
https://kubernetes.io/docs/concepts/workloads/pods/
https://principlesofchaos.org/
https://doi.org/10.1109/QRS-C.2017.28
https://doi.org/10.5120/ijca2020920617
https://doi.org/10.1145/3297280.3297403
https://www.cncf.io/blog/2017/04/26/service-mesh-critical-component-cloud-native-stack/
https://www.cncf.io/blog/2017/04/26/service-mesh-critical-component-cloud-native-stack/
https://aws.amazon.com/ecs/
https://github.com/sitewhere/sitewhere/issues/726


Chapter 7

[87] R. Sterritt and D. Bustard. `Autonomic Computing - A means of achieving
dependability?' In: 2003. doi: 10.1109/ECBS.2003.1194805.

[88] Giovanni To�etti et al. `An architecture for self-managing microservices'. In: 2015.
doi: 10.1145/2747470.2747474.

[89] Giovanni To�etti et al. `Self-managing cloud-native applications: Design,
implementation, and experience'. In: Future Generation Computer Systems 72
(2017). issn: 0167739X. doi: 10.1016/j.future.2016.09.002.

[90] João Tomás et al. `Autonomic service operation for cloud applications: Safe
actuation and risk management'. In: Dependable Computing - EDCC 2021
Workshops. Springer International Publishing, 2021. doi:
10.1007/978-3-030-86507-8.

[91] Kennedy A. Torkura et al. `CloudStrike: Chaos Engineering for Security and
Resiliency in Cloud Infrastructure'. In: IEEE Access 8 (2020). issn: 21693536.
doi: 10.1109/ACCESS.2020.3007338.

[92] Leila Abdollahi Vayghan et al. `Deploying Microservice Based Applications with
Kubernetes: Experiments and Lessons Learned'. In: vol. 2018-July. 2018. doi:
10.1109/CLOUD.2018.00148.

[93] Leila Abdollahi Vayghan et al. `Microservice Based Architecture: Towards
High-Availability for Stateful Applications with Kubernetes'. In: 2019. doi:
10.1109/QRS.2019.00034.

[94] Yuwei Wang. `Towards service discovery and autonomic version management in
self-healing microservices architecture'. In: vol. 2. 2019. doi:
10.1145/3344948.3344952.

[95] Peter Waterhouse. Monitoring and Observability � What's the Di�erence and
Why Does It Matter? � The New Stack. url:
https://thenewstack.io/monitoring-and-observability-whats-the-

difference-and-why-does-it-matter/ (visited on 10th Dec. 2020).

[96] Why Docker? | Docker. url: https://www.docker.com/why-docker (visited on
12th Dec. 2020).

[97] Li Wu et al. `MicroRAS: Automatic recovery in the absence of historical failure
data for microservice systems'. In: 2020. doi: 10.1109/UCC48980.2020.00041.

[98] Li Wu et al. `MicroRCA: Root Cause Localization of Performance Issues in
Microservices'. In: 2020. doi: 10.1109/NOMS47738.2020.9110353.

[99] Edith Zavala et al. `HAFLoop: An architecture for supporting Highly Adaptive
Feedback Loops in self-adaptive systems'. In: Future Generation Computer
Systems 105 (2020). issn: 0167739X. doi: 10.1016/j.future.2019.12.026.

[100] Xiang Zhou et al. `Fault Analysis and Debugging of Microservice Systems:
Industrial Survey, Benchmark System, and Empirical Study'. In: IEEE
Transactions on Software Engineering (2018). issn: 19393520. doi:
10.1109/TSE.2018.2887384.

[101] Xiang Zhou et al. `Latent error prediction and fault localization for microservice
applications by learning from system trace logs'. In: 2019. doi:
10.1145/3338906.3338961.

[102] Haissam Ziade, Ra�c Ayoubi and Raoul Velazco. `A survey on fault injection
techniques'. In: Int. Arab J. Inf. Technol. 1 (2 2004).

[103] Zipkin API - Swagger. url: https://zipkin.io/zipkin-api/#/ (visited on
20th Aug. 2021).

82

https://doi.org/10.1109/ECBS.2003.1194805
https://doi.org/10.1145/2747470.2747474
https://doi.org/10.1016/j.future.2016.09.002
https://doi.org/10.1007/978-3-030-86507-8
https://doi.org/10.1109/ACCESS.2020.3007338
https://doi.org/10.1109/CLOUD.2018.00148
https://doi.org/10.1109/QRS.2019.00034
https://doi.org/10.1145/3344948.3344952
https://thenewstack.io/monitoring-and-observability-whats-the-difference-and-why-does-it-matter/
https://thenewstack.io/monitoring-and-observability-whats-the-difference-and-why-does-it-matter/
https://www.docker.com/why-docker
https://doi.org/10.1109/UCC48980.2020.00041
https://doi.org/10.1109/NOMS47738.2020.9110353
https://doi.org/10.1016/j.future.2019.12.026
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1145/3338906.3338961
https://zipkin.io/zipkin-api/#/

	Introduction
	Context
	Motivation
	Goals
	Research Questions
	Workplan
	Research Contributions
	Document Structure

	Background
	Microservices
	Autonomic systems
	Faults in Microservices
	Fault Injection
	Distributed Tracing
	Related Work
	Gru
	Autonomic Version Management in self-healing microservices architecture
	An architecture for self-managing microservices
	Research notes


	Proposed Solution
	Requirements
	Functional Requirements
	Non-Functional Requirements
	Technical Constraints
	Validation of Non-Functional Requirements

	Architecture
	Level 1 - Context Diagram
	Level 2 - Container Diagram
	Level 3 - Component Diagram

	Mitigation Plan Data Model
	Recovery Actions
	Recovery Strategies

	Evaluation of the Proposed Solution
	Experimental runs
	Faultload
	Crash
	Hang
	Wrong result
	Corrupted output
	Memory Leak

	Experimental setup

	Implementation
	Components
	Istio
	Jaeger
	StreamTrap
	Fault Detection System
	Mitigation Plan Selector
	Executor
	Apache Kafka
	PostgreSQL
	ElasticSearch
	MongoDB
	Kubernetes


	Results and Analysis
	Performance of the recovery actions
	Crash
	Wrong output
	Memory Leak
	Hang and corrupted output

	Effectiveness of the recovery actions
	Crash
	Wrong output
	Memory leak

	Effectiveness of the recovery strategies
	Answers to the research questions

	Conclusion and Future Work

