
Acknowledgements

I would like to thank my supervisors, Prof. João Paulo Fernandes, Prof. Luís Paquete,
and Prof. Rui Maranhão, whose support and knowledge helped me reach a level of quality
and rigor for this thesis that I would not be able to reach by myself. I’m grateful for all
that I have learned with all of you and, above all, thank you for bearing with me and my
forgetful nature.

I’m also grateful for my family for supporting me every day during quarantine. And to my
friends, thank you for support and for staying with me even when I seemingly disappeared
from the grid at times. Here’s to many more years of great friendship.

Pedro Miguel Dias da Silva,
Coimbra, October 2021



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

Pedro Miguel Dias da Silva 
 
 
 
 

QUANTUM COMPUTING FOR OPTIMIZING POWER 

FLOW IN ENERGY GRIDS 
 
 
 
 

 
 

Dissertation in the context of the Master in Informatics Engineering, 
Specialization in Software Engineering, advised by Professor João Paulo 

Fernandes, Professor Luís Paquete, and Professor Rui Maranhão, and presented to 
Faculty of Sciences and Technology / Department of Informatics Engineering 

 
 
 
 

October 2021 

Q
U

A
N

T
U

M
 C

O
M

P
U

T
IN

G
 F

O
R

 O
P

T
IM

IZ
IN

G
 P

O
W

E
R

 F
L

O
W

 I
N

 

E
N

E
R

G
Y

 G
R

ID
S

 
P

ed
ro

 M
ig

u
el

 D
ia

s 
d

a 
Si

lv
a 



This page is intentionally left blank.



Faculty of Sciences and Technology

Department of Informatics Engineering

Quantum Computing for Optimizing
Power Flow in Energy Grids

Pedro Miguel Dias da Silva

Dissertation in the context of the Master in Informatics Engineering, Specialization in Software
Engineering, advised by Prof. João P. Fernandes, Prof. Luís Paquete, and Prof. Rui Maranhão

and presented to the
Faculty of Sciences and Technology / Department of Informatics Engineering.

October 2021



This page is intentionally left blank.



Abstract

Quantum Computing is beginning to gather even more attention at a time where efforts
are being made into familiarizing younger audiences into not only learning programming
on a classical computer, but also on a quantum one.

This new paradigm of computation is set to revolutionize several industries as the hard-
ware keeps developing, with the potential to solve problems that a classical computer would
consider intangible, as well as giving some specific problems a so sought after speed-up.
This is done by applying the properties of quantum physics, like superposition and entan-
glement, for computation. These properties not only allow to process a larger amount of
data simultaneously, but also allows to tackle problems in a completely different way that
would not be possible in a classical computer.

This thesis focuses on solving a known and relevant problem in the electrical industry and
studying its application on a quantum environment. The Unit Commitment Problem, the
problem in question, consists in minimizing the cost of power production, for a certain time
horizon, by scheduling different generating units in order to meet a certain demand given
by a valid forecast. Given that this is an NP-hard problem, it quickly becomes intractable
on classical computers when considering real world scenarios on a large scale.

A test scenario was also designed to study, by conducting an experimental analysis, the
influences that each of the parameters have on the solution quality. To that end, the
formulation of the Unit Commitment Problem was also translated to a suitable QUBO form
which is then solved through a quantum annealer from D-Wave. For that test scenario,
both the parameters from the problem formulation as well as the parameters related to
the quantum computer were considered.

The results from the experimental analysis suggest that most parameters do have an impact
on the solution quality. With some having a greater impact overall such as Grids, that
are representing how accurate the linearization of the problem is, as well the delta value
associated with the first constraint, a value that is tied to how much of a weight the first
constraint, that restricts each unit to a single production level, has. While the parameters
with the overall greater impact are tied to the formulation of the problem, parameters like
chain strength that affects the strength of coupling between qubits representing a single
variable also have a significant impact on the solution quality. While most parameters have
a statistical impact on the solution quality, the delta associated with the second constraint,
that restricts power generation to equal the demand, fails to have an impact.

Keywords

Unit Commitment Problem, Mixed-Integer Linear Programming, Quantum Computing,
Quantum Annealing, Quadratic Unconstrained Binary Optimization, Optimization

iii



This page is intentionally left blank.



Contents

1 Introduction 3

2 Background 7
2.1 The Unit Commitment Problem and its Formulation . . . . . . . . . . . . . 7
2.2 Quantum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Available Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Development and Solution 19
3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Translation to QUBO . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Relaxed Qubo Formulation . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 QUBO Matrix formulation . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 D-Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 GLPK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Problems and Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Experimental Analysis 31
4.1 Preliminary Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Findings and Important Factors . . . . . . . . . . . . . . . . . . . . . 34
4.2 Formulating a Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Analyzing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Testing hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Formulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.2 D-Wave Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.3 Isolated Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Conclusion 49

v



This page is intentionally left blank.



Acronyms

D-WAVE D-Wave Systems, Inc.. v, ix, xi, 3, 5, 11, 15–19, 25, 26, 28, 29, 31–37, 39, 45

GLPK GNU Linear Programming Kit. v, 19, 27, 29

IBM International Business Machines Corporation. v, xi, 3, 4, 11–13, 15

JSON JavaScript Object Notation. v, 26

MILP Mixed-Integer Linear Programming. v, 7, 19

MINLP Mixed-Integer Non-Linear Programming. v, 7

QPU Quantum Processing Unit. v, 11, 13, 26, 45, 46, 49

QUBO Quadratic Unconstrained Binary Optimization. v, 4, 5, 19–26, 29, 32, 34, 36, 37

vii



This page is intentionally left blank.



List of Figures

2.1 Bloch Sphere (Qiskit) [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 CNOT-Gate (Qiskit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Entanglement (Qiskit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Quantum Annealing process and bias (D-WAVE) . . . . . . . . . . . . . . . 16
2.5 Energy well of 2 entangled qubits (D-WAVE) . . . . . . . . . . . . . . . . . 17
2.6 Eigenspectrum and the evolution of an Hamiltonian (D-WAVE) . . . . . . . 18

3.1 Discretization example using 10 grids . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Embedding on D-WAVE with for a problem with 35 variables . . . . . . . . 33
4.2 Embedding on D-WAVE with for a problem with 125 variables . . . . . . . 33
4.3 Results from random solution generator . . . . . . . . . . . . . . . . . . . . 34
4.4 Results from D-WAVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 A 5-way Anova test using the values related to the first restriction as a basis 38
4.6 A 5-way Anova test using the values related to the second restriction as a

basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7 A 5-way Anova test using the values from chain break as a basis . . . . . . 38
4.8 Boxplot of broken units for the different constraint types . . . . . . . . . . . 39
4.9 Boxplot of deviation from Demand for the different constraint types . . . . 40
4.10 Boxplot of broken chains for the different constraint types . . . . . . . . . . 40
4.11 Boxplot of broken units for the different DeltaP_A values . . . . . . . . . . 40
4.12 Boxplot of deviation from Demand for the different DeltaP_A values . . . . 41
4.13 Boxplot of broken chains for the different DeltaP_A values . . . . . . . . . 41
4.14 Boxplot of broken chains for the different Delta_B values . . . . . . . . . . 43
4.15 Boxplot of broken units for the different Datasets used . . . . . . . . . . . . 44
4.16 Boxplot of deviation from Demand for the different Datasets used . . . . . . 44
4.17 Boxplot of broken chains for the different Datasets used . . . . . . . . . . . 44
4.18 Boxplot of broken units for the different embeddings used . . . . . . . . . . 45
4.19 Boxplot of deviation from Demand for the different embeddings used . . . . 45
4.20 Boxplot of broken chains for the different embeddings used . . . . . . . . . . 46
4.21 A 5-way Anova test using the values related to the first restriction as a basis 46
4.22 A 5-way Anova test using the values related to the second restriction as a

basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.23 A 5-way Anova test using the values related to the chain break as a basis . 47
4.24 Boxplot of broken units when Grids used varies . . . . . . . . . . . . . . . . 47
4.25 Boxplot of deviation from Demand when Grids used varies . . . . . . . . . . 48
4.26 Boxplot of broken chains when Grids used varies . . . . . . . . . . . . . . . 48

ix



This page is intentionally left blank.



List of Tables

2.1 Available systems on Qiskit for the IBM Quantum Network as of August 2021 13
2.2 Available systems on Qiskit for free users as of August 2021 . . . . . . . . . 13
2.3 Available simulators on Qiskit for all users as of August 2021 . . . . . . . . 13
2.4 Available systems on D-WAVE [2] . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 A Tukey test with the values of DeltaP_A when considering the values from
the first constraint as a basis . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 A Tukey test with the values of DeltaP_A when considering the values from
the second constraint as a basis . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 A Tukey test with the values of DeltaP_A when considering the values from
the chain break as a basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 A Tukey test with the values of DeltaP_B when considering the values from
broken chains as a basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xi



This page is intentionally left blank.



Listings

3.1 Find Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 API call that solves the QUBO . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Snippet of an input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Params and Vars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Objective Function and Constraints . . . . . . . . . . . . . . . . . . . . . . . 28
1 Qubo Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1



This page is intentionally left blank.



Chapter 1

Introduction

In recent years, there has been an increasing amount of attention around applications of
quantum solutions due to the potential speed-up that it can bring to some fields. The fields
researching quantum applications vary, as they range from typical optimization problems
like scheduling problems, portfolio selection and pathfinding, to simulating and analyzing
chemicals, molecules and quantum effects, and even some applications in machine learn-
ing. [3]

The study of possible quantum computing applications is nothing new, as it has been the
topic of research spanning back several decades even before any substantial hardware was
available [4, 5, 6, 7, 8]. It was not until the late 1990s that experimental implementations
of a quantum computer took off from the simple 2-Qubit systems to the thousand-Qubit
systems that D-Wave Systems, Inc. currently offers. In recent years with the increasing re-
search on part manufacturing along with other advancements in hardware, the capabilities
that the current hardware offers already allows for a speedup when compared to classical
computers in some specific problems. Methods such as Boson sampling [9], and Monte
Carlo methods [10] already have a considerable speed-up over classical alternatives and are
usually the methods used when trying to prove quantum supremacy. Another algorithm
to note is Shor’s factoring algorithm that, in theory, offers a speedup when compared to
the best classical method [11, 12]. Even so, the quantum hardware is still not developed
enough to allow Shor’s algorithm process large numbers, as some of the recent attempts
managed to factor the number 21 and failed to correctly factor the number 35. [13]

Aside from the improved hardware capabilities, efforts are also being made to improve the
availability of quantum hardware to the general public. Through the use of cloud services,
anyone could potentially learn and try to solve a problem in an actual quantum machine.
To list a few: IBM’s Qiskit [14], D-WAVE’s Leap [15], Amazon’s AWS Braket [16], Qutech’s
Quantum Inspire [17], Microsoft’s Azure Quantum [18], and even some Universities that
allow access to their quantum computers through the cloud such as the University of
Bristol. [19]

One of the biggest goals for quantum computing is to achieve quantum supremacy. That
is, to solve a problem on a quantum computer that would be considered intractable on a
classical computer. Some teams around the world have already claimed to have achieved
quantum supremacy like a team from Google [20] and a team in China [9]. This experiment
by Google consisted in using a 53 qubit quantum processor to make a true random number
generator. Although this experiment claims that what they achieved in 200 seconds would
take a classical computer 10000 years to solve, IBM reported that by using a different
classical technique could lower the estimate of the classical method to 2.5 days. This

3



Chapter 1

response by IBM seems to invalidate Google’s claim for quantum supremacy [21] but
nonetheless, this experiment is still shows a significant improvement and even though no
supremacy was achieved, a sizeable speed-up is still within reach with current methods
and hardware.

The remarkable doubly exponential growth of quantum computational power [22] as well
as the improvement of the fabrication process [23] will help to improve the reliability as
well as tackle some large scale problems that the quantum hardware currently cannot.

One of the prominent fields that has turned their attention to quantum is optimization
problems. While more and more research is put into improving performance of these
algorithms using different kinds of heuristics that tend to mimic biological behaviors to
the make algorithms slightly ever faster. [24, 25, 26, 27, 28]

There are many different applications for optimization problems but a specific field has
had its importance increase over the years with current efforts to diminish environmental
impact and turn to more green friendly options. The area of power production has some
major problems with varying degrees of complexity, with some examples being facility
allocation that focuses on optimizing facility location for maximum power production,
heat exchanger network that aims to minimize heating and cooling costs for industrial
plants, and unit commitment problem that revolves around minimizing the costs of energy
production units. [29]

Focusing on the Unit Commitment Problem that, while having had a lot of research [30,
31, 32, 33, 34] focused around developing different kinds of algorithms to push ahead of
the current state of the art due to its NP-hard nature [29], has not had much attention
into its application in a quantum environment. Having a paper covering it [29], with the
goal of making a broad review of the quantum environment for problems and with a bigger
emphasis on the results and how it compares to the classical solutions while the process
to implement those problems are not explained in detail, increasing the entry barrier for
those who want to replicate, or expand on, any of the experiments.

The goals for this thesis are to create a detailed approach starting from the base formu-
lation of the Unit Commitment Problem and transforming it into a QUBO form that a
quantum annealer accepts. Afterwards, a test scenario is created that allows for an ex-
perimental analysis of the various effects of several parameters and how much they impact
the solutions returned by the computer. This leads to the hypothesis raised by this thesis:
"Varying the parameters from both the unit commitment problem and from the quantum
annealer influences the quality of the solutions returned by the quantum annealer". If the
hypothesis is confirmed, then the parameters that have the biggest impact are compiled
and a discussion on the optimal configuration of the parameters will follow.

The results from testing show that most of the parameters have an impact on the results,
with some having a greater impact than others. Some of the parameters with a bigger
influence are the constraint type considered and the delta value, or the weight, of the first
constraint. These are both part of the formulation of the problem but a parameter for the
quantum annealer, the embedding type used, also has a considerable impact, specially on
chain break occurrence. All of these findings, as well as the parameters, will be explained
in more detail in section 4.

The various contributions made by this thesis can be listed as follows

• A review of the state of the art for quantum computing, with a bigger focus on the
Unit Commitment Problem.

4



Introduction

• Implementation of a quantum algorithm using a D-WAVE Quantum Annealer, in-
cluding the process of translating the base problem formulation into a QUBO form
that D-WAVE accepts.

• An experimental analysis to study the influences of various parameters, from both
the formulation and the quantum annealer, on the quality of the solutions returned
by the quantum annealer.

This thesis will be structured according to the following outline

• Chapter 2 - Background will expand on the concepts required to understand the
thesis like quantum concepts and the optimization problem being studied.

• Chapter 3 - Development and Solution follows the process of translating the
base formulation for the problem and finally solving it in a quantum environment.

• Chapter 4 - Experimental Analysis contains the experimental analysis of a
formulated test case to study the impact of the different parameters to both the
formulated problem as well as the quantum hardware.

• Chapter 5 - Conclusion will cover the conclusions that resulted from this thesis
as well the outlook for the future concerning applications of these kind in quantum.

5



This page is intentionally left blank.



Chapter 2

Background

This section will focus on introducing the concepts discussed in this thesis like the formula-
tion for the Unit Commitment problem and the workings behind some quantum mechanics
that are being implemented when solving the problem.

2.1 The Unit Commitment Problem and its Formulation

The Unit Commitment problem is an optimization problem which consists of minimizing
the cost of power generation, for a certain time horizon, by properly scheduling the gener-
ation units, while having production values that meet a demand given by a valid forecast.
One could also consider which units are operational at a given time, as well as what type
of unit they are.

Usually, there are three different types of power generating units in the electrical power
industry [35] [36]:

• Thermal Units(including nuclear ones)

• Hydro Units

• Renewable Energy Units

Note that the problem of the intermittence of renewable sources have additional constraints
such as being able to produce power during the day for solar farms, with the weather being
yet another a factor, or for the wind farms that are only able to produce power when there
is sufficient wind [32]

The Unit Commitment problem is typically formulated as Mixed-Integer Linear Pro-
gramming (MILP) problem, and sometimes as a Mixed-Integer Non-Linear Programming
(MINLP) problem, due to the natural ease to formulate the problem with nonlinear func-
tions that describe complex properties and integer variables that are used to capture the
discrete decisions of the model [37]. It has also been proven that this problem is NP-hard,
which means that it should not be expected to solve this problem in a polynomial amount
of time with respect to size [31].

It is at this stage that Quantum Computing comes into play, and while in theory solving
the problem in polynomial time is still unlikely, Quantum Computing can be used to reach
a speedup when compared to classical computing solutions by taking advantage of the
properties of Quantum Mechanics.

7



Chapter 2

In the following, an overview of the formulation that is typically used for the Unit Com-
mitment problem based on the formulation in this thesis [38]

The Objective Function

∑
k∈K

∑
j∈J

cpj (k) + cuj (k) + cdj (k) (2.1)

The objective function describes the problem to solve, more specifically the quantities that
must be minimized. In this formulation, cpj (k), cuj (k) and cdj (k) refer, respectively, to the
production cost, startup cost, and shutdown cost of a unit j in a certain time period k.

Equation 2.2 refers to the quadratic part of the objective function.

cpj (k) = ajvj(k) + bjpj(k) + cjp
2
j (k), ∀j ∈J , ∀k ∈K (2.2)

This quadratic function represents the production cost of a unit in which a,b and c are the
quadratic coefficients and vj(k) is a binary variable that is 1 if unit j is online in period k
and 0 otherwise. The term pj(k) represents the power output of a unit j in a certain time
period k.

Regarding the startup cost, it can be considered a constant value but, in some cases it
is represented by a piecewise linear function to better represent the exponential start-up
time. This is due to thermal units being more easily lit up when it is been offline for less
time. What is typically referred to as "cold" startup is a much more expensive way to
activate the unit than one that was just offline for an hour, since there is already some
scattered heat that helps bringing it back up online. Shutdown cost is simpler to represent
since it is usually a constant value but can also be modeled by a piecewise linear function
in a similar manner to startup cost.

The Constraints

The problem has the following constraints:∑
j∈J

pj(k) = D(k), ∀k ∈ K (2.3)

This constraint aims to balance the power production of all units in a certain time period
k, so that it can be equal to the demand D(k).∑

j∈J
pj(k) ≥ D(k) +R(k), ∀k ∈ K (2.4)

Equation 2.4 represents the maximum available power output, p(k), that must be greater
or equal than the sum of the demand D(k) and the spinning reserve R(k). This constraint
aims to provide a margin for the spinning reserve, also known as operating reserve, with
the goal of having a power reserve ready for unexpected spikes in demand, a generator
breaking down or any other kinds of disruptions.

There are other typically used constraints like [38]:

• Ramp-up and ramp-down constraints, where it more accurately models the evolving
power production instead of being a constant.

8



Background

• Minimum and maximum production limit. Unit power production will not go below
or above a set interval.

• Minimum and up and downtime for the units. Once a unit is online it must be up
for 3 hours or once it goes offline it must be resting for 4 hours, for example.

• Mandatory online and offline units. Essentially restricting the problem that unit j
must be online or offline. This could be desired due to some units being more efficient
than others.

This thesis covers a simplified version where the time factor will not be considered, as well
as shutdown and startup costs, as well as spinning reserve. This simplified form, as well as
its implementation in a quantum machine will be explained in more detail in Section 3.1
and Section 3.1.1 respectively.

2.2 Quantum

Using the effects of quantum mechanics like superposition and entanglement, quantum
algorithms are able to do things that were not feasible in classical computing, like using
destructive quantum interference to naturally remove unwanted solutions in the course of
the algorithm as used for example in Shor’s factoring algorithm [11] by cleverly making
use of quantum Fourier transforms.

Instead of using a classical bit, representing either a state of 0 or 1, quantum computing
makes use of a qubit, where a special state called superposition allows both 0 and 1 states
to exist at the same time. The standard notation for a qubit uses the dirac notation, also
known as the braket notation (from the bra 〈a| and ket |b〉 it represents).

Although it is possible for a qubit to be in a superposition of both "0" and "1", after
measurement it collapses into a single state, meaning that the two states are mutually
exclusive. What follows is a standard definition of these two states without superposition.

|0〉 =

[
1
0

]
|1〉 =

[
0
1

]
(2.5)

With this in mind, an arbitrary state vector can be defined as:

|ψ〉 = α|0〉+ β|1〉 (2.6)

With the coefficients α and β representing the probability amplitudes of their respective
states, the reason why it is an amplitude will be explained shortly. |α|2 is then, the
probability of the qubit being in the state "0" and |β|2 the probability of being in the state
"1". [39]

Since |ψ〉 must also be a unit vector then the normalization is described as:√
|α|2 + |β|2 = 1.

With this, it becomes possible to represent a nearly infinite combination of states with the
coefficients α and β. This opens up a lot of computing possibilities for storing temporary
information than just the classical "0" or "1" bits.

9



Chapter 2

Yet, this formulation has some problems, like not being able to differentiate between some
states through just the use of a global phase.

To circumvent this, the difference in phase of α and β is measured instead.

Trigonometry can be used to obtain:
√

sin2 x+ cos2 x = 1.

With this in mind, α and β can be described as cos and sin, respectively. α = cos θ2 , β =

sin θ
2

With this any state of the qubit can be described using φ and θ:

|Ψ〉 = cos θ2 |0〉+ eiφ sin θ
2 |1〉 θ, φ ∈ R (2.7)

Using θ and φ as spherical coordinates (with radius=1, since the magnitude of a qubit
state is 1), any qubit state can be plotted on the surface of a sphere, also know as the
Bloch Sphere [40] as shown in Figure 2.1.

Figure 2.1: Bloch Sphere (Qiskit) [1]

This is just a basic introduction to the fundamentals of the quantum field but, what can
truly be achieved with these mechanics depends on the use of entanglement.

When two, or more, qubits from different systems come together they form a composite
system that correlate qubits in such a way that it becomes impossible to describe each
qubit individually, not to mention that it also becomes impossible to measure on qubit
without influencing the result of the other.

This correlation is what is called entanglement and one such example of a system with a
maximum level of entanglement would be a Bell state:

|Φ+〉 = 1√
2
(|00〉+ |11〉) |Φ−〉 = 1√

2
(|00〉 − |11〉)

|Ψ+〉 = 1√
2
(|01〉+ |10〉) |Ψ−〉 = 1√

2
(|01〉 − |10〉)

Focusing on one of the four Bell states, for example

|Φ+〉 = 1√
2
(|0A0B〉+ |1A1B〉)

10



Background

In this composite of qubits A and B has a 50% probability of being measured in both the
state |00〉 and |11〉, and these states are in superposition until it collapses onto a single
state on measurement. This means that when measuring a qubit, in this example, if the
measurement reads the state |0〉 then the state of the other entangled qubit must also be
|0〉 , with the final state of the qubits being |00〉.

This means that the final state of a qubit in a maximally entangled system is random, but
it is also known that once the result of a qubit is known, then the state of the other qubit
is also known since they are entangled.

These Bell states ere essential in some specific applications like Quantum Teleportation that
is being researched towards improving how the world communicates securely. This protocol
transfers the state of a qubit to another over a distance trough the use of entanglement.

This allows quantum states to be shared across distances and for communications to rely
on quantum cryptography that creates an unbreakable security, since any attempts to read
the key that encrypts the message will either change it or destroy it.

And yet, since it relies on entanglement that acts across distances it may seem that it is
possible to achieve an instantaneous communication over seemingly infinite distances by
measuring the state of an entangled qubit and instantly know the state of another qubit
far far away, the reality is that it is not.

This effect is known as the No-communication theorem [41]. Due to this theorem it is not
possible to transmit information through the use of entanglement, for example, entangling
two qubits and then sending one of the qubits to Mars, then trying to send the state |1〉
to Mars by influencing the qubit on this side. This is where the theorem comes in, stating
that it is not possible to create a desired outcome since the measurement collapses the
qubit into a random state and can’t be forced to collapse into a desired state.

One of the biggest problems left to solve in the quantum computing field are the different
kinds of errors that qubit states are susceptible to. Even though efforts have seen an
advance in error correction, some kinds of errors still elude these efforts.

These kind of errors tend to be the uncorrelated and random errors that can be fixed
with simple error correction algorithms also used in classical computing, with just a slight
quantum twist. But correlated errors that can affect the whole system, a large array of
entangled qubits, are a major setback for quantum computing, since these errors can com-
pletely invalidate the problem being solved. A recent paper has also found that quantum
computers with a superconducting system are susceptible to correlated errors caused by
cosmic radiation, with the implication that shielding from such rays is necessary to increase
system accuracy and reduce errors of this kind. [42]

2.2.1 Available Frameworks

When considering how to build a quantum system, there are several possible architectures
that can be used. The ones being discussed in this thesis are the Quantum circuits and
Adiabatic Quantum Computers models, are the ones with the most active development that
offer global publicly accessible solutions through the cloud that any person with access to
the internet can make use of. Two of the biggest companies working on these models are
International Business Machines Corporation (IBM), using the Quantum Circuits model,
and D-Wave Systems, Inc. (D-WAVE), using the Adiabatic model. IBM and D-WAVE
both have their QPU available for use through the cloud while also giving access to several
tools for the making of quantum algorithms as well as for miscellaneous support. While

11



Chapter 2

their pricing strategies differ, anyone can still create a quantum algorithm and run it on
their machines for free.

Gate-based Quantum Computers

The gate-based, or circuit-based, quantum computers are the ones most similar to their
classical counterparts, but that’s where the similarities start and end, applying transfor-
mations to qubits instead of pushing electric signals through various gates to check the
resulting output. Following a gate-based architecture, this model uses gates to apply a
certain operation to the state of a qubit, which in the end, after the evolution of the sys-
tem through various gate operations, leads to the solution of a desired problem or goal
but, unlike classical gates, the gates in this quantum model are reversible.

Consider IBM’s Qiskit for a moment, this gate-based quantum framework can not only
solve a variety of problems, but it also shows significant speedups in problems related
to integer factorization and solving linear system equations when compared to classical
approaches. And this while using a few qubits to do so.

One of the problems with this model is related to qubit decoherence, this means that the
states of qubits are destroyed by interactions with the environment, resulting in the state
collapsing and altering the final result as a consequence. After overcoming this setback, a
universal quantum computer is one step closer to be built and to use both classical and
quantum models and achieve a synergetic performance [29].

IBM Q also has the short term goal to develop scalable quantum systems and the long
term goal to create a universal quantum computer, a system that would be able to solve
any kind of computational problem in a quantum environment, that is so sought after in
the field.

Available through an open-source framework, anyone can use the various tools and compo-
nents of Qiskit to create a quantum algorithm. All that is needed is to create an account
in the IBM Quantum Experience page or link various other services like a Github or a
Google account to automatically create an account and sign in. With this, several options
to create a program exist: either use the direct circuit composer to directly embed a circuit
through a visual aid that represents the gates in the overall circuit, or use the quantum
labs section to create a Jupyter notebook and program the circuit in python, or even make
use of the API to program it through external means.

With both a free plan and a premium plan, Qiskit allows users to run code on an actual
quantum computer, although there tends to be a waiting queue to run the programs on a
given system. For simple enough programs, or even just for learning purposes, Qiskit also
provides with a a simulator to run quantum code on a simulated environment of a classical
computer.

The available systems for a free user can be seen in Table 2.2, where quantum volume is
a metric that measures the overall capabilities of a quantum computer and its error rates,
while the ones in Table 2.1 refer to the ones exclusively available to the IBM Quantum
Network. This Network is a premier access to Fortune 500 companies, academic institu-
tions, research labs and even some startups that work together with IBM to help develop
quantum computing even further.

A table referencing the available simulators in Qiskit are also listed in Table 2.3.

The public IBM computers tend to stay around the 5 qubit order, opting instead to improve

12



Background

System Qubits Quantum Volume QPU type
ibmq_montreal 27 128 Falcon r4
ibmq_kolkata 27 128 Falcon r5.11
ibmq_mumbai 27 128 Falcon r5.1
ibmq_dublin 27 64 Falcon r4
ibmq_hanoi 27 64 Falcon r5.11
ibmq_cairo 27 64 Falcon r5.11
ibmq_manhattan 65 32 Hummingbird r2
ibmq_brooklyn 65 32 Hummingbird r2
ibmq_toronto 27 32 Falcon r4
ibmq_sydney 27 32 Falcon r4
ibmq_guadalupe 16 32 Falcon r4P
ibmq_casablanca 7 32 Falcon r4H
ibmq_lagos 7 32 Falcon r5.11H
ibmq_nairobi 7 32 Falcon r5.11H
ibmq_jakarta 7 16 Falcon r5.11H

Table 2.1: Available systems on Qiskit for the IBM Quantum Network as of August 2021

System Qubits Quantum Volume QPU type
ibmq_santiago 5 32 Falcon r4L
ibmq_manila 5 32 Falcon r5.11L
ibmq_bogota 5 32 Falcon r4L
ibmq_quito 5 16 Falcon r4T
ibmq_belem 5 16 Falcon r4T
ibmq_lima 5 8 Falcon r4T
ibmq_armonk 1 1 Canary r1.2

Table 2.2: Available systems on Qiskit for free users as of August 2021

System Qubits Simulator Type
ibmq_simulator_stabilizer 5000 Clifford simulator
ibmq_simulator_mps 100 Matrix Product State
ibmq_simulator_extended_stabilizer63 Extended Clifford (eg. Clifford+T)
ibmq_simulator_statevector32 Schrödinger wavefunction
ibmq_qasm_simulator 32 General, context-aware

Table 2.3: Available simulators on Qiskit for all users as of August 2021

the overall performance and error rate as seen in the Quantum Volume of some of the
listed at the top. The simulators in table 2.3 is just a classical computer running simulated
quantum code to solve those more simple problems, or usually used during tutorials to
help speedup the process without having to wait in a queue for the results.

To start programming on Qiskit first one must learn about the gates that interact with
a qubit. These gates can also be represented by a Pauli matrix since the operations are
based on the algebra that defines the quantum field. The details that follows is inspired
by the Qiskit Documentation [40]

The most elementary gates are:

An X Gate X =

[
0 1
1 0

]
13



Chapter 2

An Y Gate Y =

[
0 −i
i 0

]

An Z Gate Z =

[
1 0
0 −1

]

How a gate operation affects the state of a qubit: X|0〉 =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1〉

But with just these Pauli-gates it is impossible to reach a state other than |0〉 or |1〉. This
essentially allows for the same operations as a classical bit, but there’s a bit more to it
than just that. Now this is where one of the most fundamental Quantum gate comes in.

An Hadamard Gate H = 1√
2

[
1 1
1 −1

]
With this the qubit can escape the poles of the Bloch sphere and takes a state of superpo-
sition of |0〉 and |1〉. Two states can be derived this way:
H|0〉 = |+〉
H|1〉 = |−〉

This way it is possible to reach the state of what is called an eigenstate of the X-gate:

|+〉 = 1√
2
(|0〉+ |1〉) = 1√

2

[
1
1

]
|−〉 = 1√

2
(|0〉 − |1〉) = 1√

2

[
1
−1

]

An Rφ-Gate Rφ =

[
1 0
0 eiφ

]
with φ as a real number.

This gate is a bit special, in the way that it is parametrized. This gate performs a rotation
of φ around the X/Y/Z-axis, depending on what is needed.

Aside from these gates there’s also S and T gates which are just an Rφ-Gate on the Z-axis
with φ values of φ = π/2 and φ = π/4, respectively.

Still, these individual operations hold little value when compared to a classical computer.
it is when qubits interact with each other that Quantum Computing truly shines.

A CNOT-Gate essentially applies an X-gate to a qubit if the control Qubit is |1〉. A
representation of this gate can be viewed in Figure 2.2.

Figure 2.2: CNOT-Gate (Qiskit)

This CNOT gate is important, because when it is used together with an Hadamard Gate,
an entanglement is created between two qubits. A representation of what an entanglement
process would look like on a quantum circuit can be viewed in Figure 2.3.

Aside from these there is also a swap gate that allows two qubits to be swapped. It’s a
simple gate that allows some specific algorithms to work.

14



Background

Figure 2.3: Entanglement (Qiskit)

With these, now a myriad of problems can be represented in a quantum circuit and solved.
The size, and complexity, of the problems depend on the number of qubits available.

Adiabatic Quantum Computers

This thesis will be focusing on the adiabatic systems, and the quantum annealing procedure
of these systems, provided by D-WAVE since they are known for being commercially avail-
able quantum computers. Instead of going for the familiarity of a gate-based architecture
like IBM’s Qiskit, D-WAVE opts instead to follow the route of quantum annealing. This
quantum counterpart of simulated annealing uses quantum fluctuations instead of the ther-
mal ones the simulated kind uses. Unlike the versatile gate circuit model, these quantum
annealing machines are built specifically for a purpose, one that is usually optimization,
machine learning, among others [29].

When comparing to the gate model Qiskit uses, there is the advantage that the quantum
annealing model is much more resistant when it comes to state interference due to external
noise, and therefore has less of a need to divert efforts towards error correction and therefore
losing out on potential processing power, and also has the ease to have much higher numbers
of qubits in the hardware. The drawback of this model is that there are very few problems,
since it’s focusing more on the annealing process and can’t compete with the flexibility of
a universal quantum computer, which can be solved exponentially faster when comparing
to classical algorithms [29].

The D-WAVE systems, commercially available, have been steadily evolving over time as
can be seen in Table 2.4

System Release date Qubits Couplers Josephson junctions
D-Wave One May 2011 128 352 24,000
D-Wave Two May 2013 512 1,472 -
D-Wave 2X August 2015 1,152 3,360 128,000

D-Wave 2000Q January 2017 2,048 6,016 128,472
Advantage 2020 5,640 40,484 1,030,000

Table 2.4: Available systems on D-WAVE [2]

The biggest evolution would have to be the Advantage system. Compared to the previous
D-WAVE 2000Q system, not only has the available qubits essentially doubled, but the
couplers and Josephson junctions have increased explosively. These couplers are connectors
responsible for connecting a qubit to its neighbors inside and outside their own units, units
that consist of a group of intertwined qubits, and the Josephson junctions are responsible
for ensuring the superconductive properties of the circuit so that electrons can travel with
minimal resistance.

A brief explanation on how quantum annealing works, based on the D-WAVE documenta-

15



Chapter 2

tion [43], follows.

D-WAVE’s systems implement a qubit as a circulating current and a corresponding mag-
netic field.

As seen in Figure 2.4 the process begins with a single well where the qubit is in superposition
and only one minimum exists (a). As the annealing process runs and the barrier is raised,
creating what is know as a double-well potential (b) where the chances of the qubit ending
in one state is the same as the other.

But that’s not everything, the process is not just random, the probabilities of individual
states can be modified by applying an external magnetic field to the qubit (c). This
destroys the equilibrium and raises the odds of the qubit ending up in a certain state.
The programmable quantity that controls this external magnetic field is referred to as a
bias, this bias pushes the qubit into collapsing into the most probable state, and therefore
lowering the energy of the system, and falling into the lower well.

Figure 2.4: Quantum Annealing process and bias (D-WAVE)

The bias alone is not the only variable able to influence these qubits though. As in the
gate model, the advantage of this system reveals itself when you link qubits together.

By entangling qubits together through the use of the couplers linking each qubit together,
it is possible to influence more than one qubit at once, as if they were a single entity.
This coupler strength is a correlation that is also a programmable setting that is defined
beforehand.

This process can be seen better in Figure 2.5 where the energy of each state, influenced
by the bias on the qubits and the coupler strength between them, leads to this landscape
where the qubit states are eventually settling on the minimum energy state of (1,1).

The values chosen for the bias and coupler strength are just as important if not more than
the problem formulation. These properly define an energy landscape so that the annealer
can find the minimum energy state of the problem. This landscape becomes exponentially
more complex as more qubits are added, doubling the possible states, of entangled qubit,
for every qubit added. If the Advantage system in Table 2.2 is considered and all qubits
used, this leads to an astronomical number, 25640, of possible states.

This is the advantage of Quantum Annealing. Starting in a state of superposition, after
the biases and couplers, couplers that are entangling qubits together, are introduced and
the quantum annealing process begins. By the end every state is in a classical state that
represents the minimal energy of the problem , or one that is very close to it. This process
takes a mere matter of microseconds from start to finish.

In D’Wave’s quantum processors qubits are ordered in what is called a Unit Cell, where
each cell has eight qubits and each qubit is connected to twelve other ones through internal
couplers, and then the qubits of each unit cell is connected to other adjacent ones through

16



Background

Figure 2.5: Energy well of 2 entangled qubits (D-WAVE)

external couplers.

Since a single qubit is representing a given variable, for problems where there is a need to
represent a variable in more than 12 places at once a problem arises. The workaround for
this is what is called a chain, a chain is a link of several correlated qubits that exist to
represent the same variable throughout the several connections it has. But, the problem’s
not fixed just yet.

A chain break can also occur, that is, when the link of qubits that represents a single
variable, has conflicting states when they are measured after the annealing. This conflict
is usually resolved by the default method of majority vote, where the most common state
is the deciding one, but there are still situations where wrong values can happen.

There is also a parameter called chain strength, that determines how strongly correlated
the linkage between the qubits in a chain should be, and a higher value will lower the odds
of a chain break happening. To note that the default value that D-WAVE uses for this
parameter is completely inadequate for most problems that are of a higher complexity.

This was a quick overview of how the workings behind the quantum annealing systems of
D-WAVE but one detail still remains, the quantum process making it work.

The Hamiltonian is a function, or more precisely an operator, that describes the system’s
energy, both kinetic and potential energy. The process of exploring the concepts of Hamil-
tonians is what makes the annealing process in these quantum annealers work.

Figure 2.6 shows how exactly this process works. Given an initial Hamiltonian, prepared in
the lowest-energy eigenstate and serves as the starting point, on the left and an arbitrary
number of other eigenstates, the Hamiltonian evolves into the desired final Hamiltonian
that describes the problem to solve, using the biases and couplers to alter the initial
Hamiltonian.

At the end of the annealing process, the ground state represents the solution for the
problem. This is, of course, if the adiabatic process is done slowly, if there is no external
influence compromising this process and if what is represented in the figure as the minimal
gap is large enough. This gap matters because if the gap between eigenstates is sufficiently
small enough, the ground state can jump into a higher energy state and the problem would
then return a near optimal solution. Although this circumstance is to be avoided if possible,

17



Chapter 2

Figure 2.6: Eigenspectrum and the evolution of an Hamiltonian (D-WAVE)

the near optimal solutions can still be very useful.

18



Chapter 3

Development and Solution

This section will explain the steps required to implement the Unit Commitment Problem
onto a quantum annealer and obtain a solution.

Firstly, since the D-WAVE API receives a QUBO formulation as input, the base form for
the problem must be translated into QUBO. However, the problem must be first discretized
due to its non-linear nature not being compatible with the QUBO formulation.

With the QUBO form ready what follows is the actual implementation. Through the use
of a simple API call through a python program it is possible to obtain a solution to the
formulated problem.

Then, to compare the solution obtained against a proven optimal solution, an implemen-
tation in a classical solver was also done. GLPK was chosen as the solver to obtain the
optimal solutions to our test cases.

3.1 Problem Formulation

This section details the approach of the transition from the MILP formulation of the Unit
Commitment Problem to the QUBO formulation. Then, the latter is transformed in a
matrix form in order to be read by D-WAVE.

Problem 3.1 gives the formulation for the Unit Commitment Problem, where U is the
index set for the units, constants Ai, Bi and Ci, i ∈ U , correspond to the coefficients that
are related to the quadratic cost function for a unit i that is represented as the objective
function pertaining to the production cost values, and L is the power demand that must be
reached. The last constants represent the minimum and the maximum value of the range
of the possible production values of each unit i, pi, and the respective range where it can
fluctuate.

min
∑
i∈U

Aiyi +Bipi + Cip
2
i

s.t.∑
i∈U

pi = L

Pmin,iyi ≤ pi ≤ Pmax,iyi ∀i ∈ U
yi ∈ {0, 1}

(3.1)

19



Chapter 3

The variables of this problem are yi, which is the binary variable that corresponds to
switching on a unit i (yi = 1) or switching it off (yi = 0) and pi that denotes the production
value of a unit i. The first constraint limits the global production values to be equal to
the demand (L).

Aside from this constraint there is also the domain space for the variable pi. Production
values start at Pmin,i and, as the thermal unit heats up, the production increases until it
reaches the maximum allowed production, Pmax,i for the unit. Note that pi takes value 0
if unit i is switched off.

In order to transform the problem above in a QUBO formulation pi, it must be first
discretized as suggested in [29]. Let N be the set of limited values the continuous pi will
be split into, here forth referred to as grids. We define Dik ∈ U, k ∈ {1, ..., N + 1} as
follows.

Dik = Pmin,i + (k − 1)×
(
Pmax,i−Pmin,i

N

)
(3.2)

The value Dik is the discretization of pi at a certain production level k. More precisely it
is the kth value out of the N different values that pi was split into. The domain of k is
expanded to N + 1 to be able to reach the max value of production, since formulation uses
(k − 1) as a multiplier to pick the appropriate production value.

Figure 3.1: Discretization example using 10 grids

Figure 3.1 shows the effect of this discretization process for 10 grids. In this case, the
approximation error obtained is around 14.28% and if the grids were to be doubled then
the error would lower to 6.6%.

Problem 3.3 show the new formulation based on the discretization done previously in

20



Development and Solution

Equation 3.2.

min
∑
i∈U

Ai (1− vi) +Bi

(
N+1∑
k=1

Dikzik

)
+ Ci

(
N+1∑
k=1

Dikzik

)2

s.t.

vi +
N+1∑
k=1

zik = 1 ∀i ∈ U

∑
i∈U

N+1∑
k=1

Dikzik = L

vi, zik ∈ {0, 1}

(3.3)

The process of discretization leads to some amount of error in the approximation which
means that the problems 3.1 and 3.3 are not outright equivalent. At a sufficiently high
amount of grids in N the approximation becomes so close that the error becomes negligible.

Another noticeable change is the new variables vi and zik acting as a replacement for the
previous yi variable in Problem 3.1 and vi takes the role of a nullifier for the coefficient Ai
when unit i is offline. This means that when vi = 1 then that unit cannot have any active
production levels, with zik = 0 for all k. Similarly, if zik = 1 for any k then vi = 0.

3.1.1 Translation to QUBO

In the following, the transformation of Problem 3.3 into a QUBO is described. Before
proceeding any further, the squared summation on the third term of the objective function
needs to be expanded. The expansion of the quadratic term of the objective function in
3.3 is as follows:

∑
i∈U

Ci

(
N+1∑
k=1

Dikzik

)2

=
∑
i∈U

N+1∑
k=1

CiD
2
ikzik +

∑
i∈U

N+1∑
k=1

N+1∑
m=k+1

2CiDikDimzikzim (3.4)

Problem 3.3 can be directly translated to QUBO form. Since they are both constraints
based on equality, the QUBO equivalent for an equality constraint is used, where ∆A and
∆B are the delta values that determine the weight that each of the two constraints have
in the objective function.

21



Chapter 3

The objective function of QUBO is as follows

min
∑
i∈U

N+1∑
k=1

(
Ai +BiDik + CiD

2
ik

)
zik

+
∑
i∈U

N+1∑
k=1

N+1∑
m=k+1

2CiDikDi,mzikzim

+ ∆A

∑
i∈U

(
N+1∑
k=0

zik − 1

)2

+ ∆B

((∑
i∈U

N+1∑
k=1

Dikzik

)
− L

)2

(3.5)

Note that the first constraint in Problem 3.3 is now in the objective function of Problem
3.5, which has a summation outside the actual constraint. That is because the goal is
to constrain each unit to only a single production level, so this can be viewed as several
constraints joined in a single term rather that a single constraint applying to all the inter-
vening variables. Aside from this, variable vi was also replaced and is now considered as
zik = 0, causing the first constraint to now start at k = 0 to accommodate for this change.

There is no need to modify the domain of the other summations aside from the first con-
straint since any value resulting from the interaction between two variables would amount
to Dik ×Di(0) = 0, since any production level of a unit where k = 0 is also 0 and would
not change the final matrix form. This means that only that first constraint would have
in the summation with a starting value of k = 0. This will become more clear with the
expansion in problem 3.7.

Before proceeding any further, the quadratic terms must still be expanded so that a matrix
notation is reached. The quadric term corresponding to the first constraint can be expanded
as follows (see [44] for more details):

∆A

∑
i∈U

(
N+1∑
k=0

zik − 1

)2

= ∆A

∑
i∈U

N+1∑
k=0

z2ik + 2
N+1∑
k=0

N+1∑
j=k+1

zikzij − 2
N+1∑
k=0

zik + 1

 (3.6)

For the sake of simplicity consider xik = Dikzik

∆B

(∑
i∈U

N+1∑
k=1

xik − L

)2

=∆B

(∑
i∈U

N+1∑
k=1

x2ik

)

+ ∆B2

∑
i∈U

N+1∑
k=1

 N+1∑
m=k+1

xikxim +
U∑

j=i+1

N+1∑
m=1

xikxjm


−∆B2L

(∑
i∈U

N+1∑
k=1

xik

)
+ L2

(3.7)

22



Development and Solution

3.1.2 Relaxed Qubo Formulation

Due to the results of the initial tests, a relaxation of Problem 3.7 was considered by
changing the constraint type of the second constraint, related to the production meeting
Demand, from an equality type constraint into an inequality. This allowed the problem
to consider solutions where some production, to an extent, that goes beyond the Demand
to be considered feasible. What follows is original part in equation 3.8 and then the
reformulated part in equation 3.9:

∑
i∈U

N+1∑
k=1

Dikzik = L (3.8)

∑
i∈U

N+1∑
k=1

Dikzik >= L (3.9)

This change in QUBO can be observed with the original formulation in Equation 3.10 and
the relaxed Equation 3.11

∆B

(∑
i∈U

N+1∑
k=1

Dikzik − L

)2

(3.10)

∆B

((∑
i∈U

N+1∑
k=1

(Dikzik) +
S+1∑
s=1

(
−2s−1

)
`s

)
− L

)2

(3.11)

In order to deal with the inequality, slack variables were added to the second constraint
to allow for some relaxation towards the required production to meet demand. S is the
amount of slack variables considered and `s is a decision variable that activates certain slack
level s. For instance, if 5 slack variables are to be considered, that would allow the problem
to consider feasible solutions that have up to a surplus of 20+21+22+23+24 = 31. Adding
these slack variables may seem to complicate the expansion but if these slack variables are
considered to be a counterpart of zik that has a negative production value instead, then
the expansion is done in the same way as shown previously in equation 3.7.

3.1.3 QUBO Matrix formulation

In the following, the matrix form of Problem 3.5 is presented. For the sake of visual clarity
M = N + 1 was considered.

Some abbreviations were also made to save space:

• prod(i, k) = Dik =
(
Pmin,i + (k − 1)

(
Pmax,i−Pmin,i

N

))
• cost(i, k) = Ai +Bi × prod(i, k) + Ci × prod(i, k)2

• A(i, k, `) = 2Ci × prod(i, k)× prod(i, `)

• B(i, k, j, `) = 2× prod(i, k)× prod(j, `)

23



Chapter 3

Also note that when k = 0 both prod(i, 0) and cost(i, 0) return the value of 0 since k = 0
is representing a unit in an off state.

In the following, the QUBO matrix formulation (Equation 3.13) of the first terms of the
objective function in Problem 3.5 (Equation 3.12) is shown.

min
∑
i∈U

N+1∑
k=1

(
Ai +BiDik + CiD

2
ik

)
zik

+
∑
i∈U

N+1∑
k=1

N+1∑
m=k+1

2CiDikDi,mzikzim

(3.12)

Let Wi =



0 0 . . . . . . . . . 0
0 cost(i,1) A(i,1,2) . . . A(i,1,M−1) A(i,1,M)
... 0 cost(i,2) . . . A(i,2,M−1) A(i,2,M)
...

. . . . . . . . . . . .
...

...
. . . . . . . . . cost(i,M−1) Ai,M−1,M

0 . . . . . . . . . 0 cost(i,M)


and let W =


W1 0 . . . 0
0 W2 . . . 0
...

. . . . . . 0
0 0 . . . WU


(3.13)

W allows to represent the first two terms of Problem 3.5 with a matrix of size (M + 1)×
(M + 1).

In the following is the QUBO matrix form for the first constraint (Equation 3.15), with
the original QUBO form corresponding to the third term in Problem 3.5 (Equation 3.14)

∆A

∑
i∈U

(
N+1∑
k=0

zik − 1

)2

= ∆A

∑
i∈U

N+1∑
k=0

z2ik + 2

N+1∑
k=0

N+1∑
j=k+1

zikzij − 2

N+1∑
k=0

zik + 1

 (3.14)

Let Ti =



0 1 1 1 . . . 1
... 0 1 1 . . . 1
...

. . . 0 1 . . . 1
...

. . . . . . . . . . . .
...

...
. . . . . . . . . 0 1

0 . . . . . . . . . . . . 0


and let T =


T1 0 . . . 0
0 T2 . . . 0
...

. . . . . . 0
0 0 . . . TU

 (3.15)

Where Ti is a matrix of size (M + 1)× (M + 1)

Constraint1 = ∆A × I(U×(M+1))×(U×(M+1)) + 2∆A × T − 2∆A × I(U×(M+1))×(U×(M+1)) + U∆A

(3.16)

Now follows the second constraint in QUBO matrix form, followed first by the original

24



Development and Solution

QUBO form:

∆B

(∑
i∈U

N+1∑
k=1

xik − L

)2

=∆B

(∑
i∈U

N+1∑
k=1

x2ik

)

+ ∆B2

∑
i∈U

N+1∑
k=1

 N+1∑
m=k+1

xikxim +

U∑
j=i+1

N+1∑
m=1

xikxjm


−∆B2L

(∑
i∈U

N+1∑
k=1

xik

)
+ L2

(3.17)

Constraint2 = ∆B × I(U×(M+1))×(U×(M+1))

+ ∆B



0 B(1,0,1,1) B(1,0,1,2) . . . B(1,0,1,M) B(1,0,2,0) . . . B(1,0,U,M)

0 B(1,1,1,2)
. . . . . . . . . . . . B(1,1,U,M)

0
. . . . . . . . . . . .

...

0 B(1,M,2,M)
. . . . . . B(1,M,U,M)

0 B(2,0,2,1)
. . . B(2,0,U,M)

0
. . .

...
0 B(U,M−1,U,M)

0


− 2× L×∆B × I(U×(M+1))×(U×(M+1))

(3.18)

These last two matrix representations are simple to understand. The more straightforward
terms that do require a matrix to represent are instead multiplying with an identity matrix
because those two terms only affect the diagonal portion of the matrix and can be split off
to simplify the representation of the more complex matrix.

In the second constraint, unlike the one in equation 3.13 and 3.15 all the production levels
of each unit are supposed to be connected to each and every single level of production,
regardless of which unit it belongs to. This is because the goal is to equal all active units
in U with a certain level k of production to the given Demand.

3.2 D-Wave

This section showcases a code snippet from the python program that builds the matrix that
will be sent to D-WAVE for solving as well as some insight on some important functions
and procedures in the D-WAVE API.

There are two routines that have great importance in the program:

1 import networkx as nx
2

3 sampler = DWaveSampler ()
4 embedding = find_embedding(nx.complete_graph(scope).edges (),

sampler.edgelist)

25



Chapter 3

5 embedding = find_clique_embedding(scope , target_graph=sampler.
to_networkx_graph ())

6

Listing 3.1: Find Embedding

1 composite = FixedEmbeddingComposite(sampler , embedding=embedding)
2 response = composite.sample_qubo(Qubo , chain_strength , num_reads ,

label)
3

Listing 3.2: API call that solves the QUBO

The first one is mainly responsible for finding an embedding for the problem, or more
specifically to the number of variables used, in the quantum processor. This is done to
allow the mapping of the QUBO onto the QPU and is highly recommended to save the
embedding since it takes a sizable amount of time to find an embedding when a large
number of variables is used. This can be done by dumping the embedding onto a JSON
file, for example, and then reading it once that specific embedding is required again.

The second one is the actual routine call that sends the QUBO problem to D-WAVE for
solving. The function in line 2 has many more parameters aside from the ones listed, but
these could be considered the essential ones with the label being the name shown in the
D-WAVE website when browsing the problems solved.

The code related to the implementation of the QUBO matrix form in python can be found
in appendix 5, while any other code and programs can also be accessed in the public github
at https://github.com/Pmsilva1/UC_Solver. With the program related to the D-WAVE
implementation found inside the QUBO folder with the name uc_dwave.py.

3.2.1 Verification

For the purpose of verifying whether the implementation of the formulation in python was
free of errors, a simple method was used: the QUBO matrix being created in the code to
send to D-WAVE was split and saved onto different matrixes where each one represents
a different section of the QUBO formulation in matrix form. These different sections are
split into the matrix form of objective function, the matrix form for the first constraint,
the matrix form of the second constraint, and the matrix form of the second constraint
with the modified constraint type used.

Then, with the solution that is obtained from the D-WAVE system the final value is
calculated through the QUBO formula using the matrix notation, with x being the solutions
to the problem and Q the QUBO formulation in a matrix form:

fQ(x) = xTQx

The QUBO implementation code can be found previously in section 3.2 on page 25

To check against this value the different sections of the QUBO formulation was iterated
in python through loops while using the summations from problem 3.5 as a reference
and calculating the final value of the problem using a set of solutions obtained previously
through the D-WAVE solver.

This verification did not find any errors in the code implementation for the problem for-
mulation but, it does not guarantee that the formulation that is based on is correct or that
the implementation is truly error free.

26



Development and Solution

3.3 GLPK

This section will follow some snippets of the code developed in GLPK to explain the process
behind implementing the original problem formulation in problem 3.3 in this environment
and reintroduced in problem 3.19.

min
∑
i∈U

(
N+1∑
k=1

(
Ai +BiDik + CiD

2
ik

)
zik +

N+1∑
m=k+1

2CiDikDimwikm

)
s.t.

N+1∑
k=1

zik = 1 ∀i ∈ U

∑
i∈U

N+1∑
k=1

Dikzik = L

N+1∑
m=1

wikm ≤ zik ∀i ∈ U,∀k ∈ {1, ..., N + 1}

N+1∑
k=1

wikm ≤ zim ∀i ∈ U,∀m ∈ {1, ..., N + 1}

wikm ≥ zik + zim − 1 ∀i ∈ U,∀k ∈ {1, ..., N + 1},∀m ∈ {1, ..., N + 1}
zik, wikm ∈ {0, 1}

(3.19)

Note that when wikm = 1 that means that zik = zim = 1 and the opposite applies when
wikm = 0 with zik = zim = 0.

Creating the input files, a snippet of which can be seen in listing 3.3, is a simple and
straightforward process. Line 1 and 2 show the value of U and demand, respectively, while
lines 4 through 9 define the various values that the vector A has. To note that the end; in
line 10 must be present at the end of the input files as well as the main GLPK file.

1 param U := 5;
2 param demand := 30;
3

4 param : A :=
5 1 49.1
6 2 83.1
7 3 61.4
8 4 36.4
9 5 79.1;

10 end;

Listing 3.3: Snippet of an input file

Listing 3.4 shows the definition of parameters that can either be defined directly, like N
and prod, or imported from an input file like the rest of parameters. There is also the
definition of the binary decision variables, in this case z and zw.

1 # Size of units and grids
2 param U;
3 param N := 5;
4

5 # Params
6 param demand; # Power demand
7 param Pmin {1..U}; # min prod of unit

27



Chapter 3

8 param Pmax {1..U}; # max prod of unit
9

10 # Quadratic Coefficients
11 param A{1..U};
12 param B{1..U};
13 param C{1..U};
14 param prod{i in 1..U, k in 1..N+1} := (Pmin[i] + (k-1) *(( Pmax[i] - Pmin[i])

/ N ));
15

16 # Variables
17 var z{1..U, 1..N+1} binary;
18 var zw{1..U, 1..N+1, 2..N+1} binary;

Listing 3.4: Params and Vars

Lastly the formulation of the problem, shown in listing 3.5, is implemented almost directly
onto the program through two major sections: objective function and constraints.

1 # Objective Function
2 minimize obj:
3 sum{i in 1..U, k in 1..N+1} (z[i,k] * (A[i] + B[i]* prod[i,k] + C[i]*

prod[i,k]**2)
4 + sum{m in k+1..N+1} 2 * C[i] * prod[i,k] * prod[i,m] * zw[i,k,m] );
5

6 # Restrictions
7 s.t. zw1{i in 1..U, k in 1..N+1}:
8 sum{m in k+1..N+1} zw[i,k,m] <= z[i,k];
9

10 s.t. zw2{i in 1..U, m in 2..N+1}:
11 sum{k in 1..N+1} zw[i,k,m] <= z[i,m];
12

13 s.t. zw3{i in 1..U, k in 1..N+1, m in k+1..N+1}:
14 zw[i,k,m] >= z[i,k] + z[i,m] - 1;
15

16 s.t. cdemand:
17 sum{i in 1..U, k in 1..N+1} prod[i,k]*z[i,k] >= demand;
18

19 s.t. binary_z{i in 1..U}:
20 sum{k in 1..N+1} z[i,k] <= 1;

Listing 3.5: Objective Function and Constraints

While similar to the formulation, some differences still exist. Variables z and zw are
representing the same zik variable from the original problem, with the slight difference
that zw is modelling the multiplication of zikzim, the new constraints zw1,zw2 and zw3
are constricting this new zw so that it stays within the bounds of the original zikzim form.
The variable vi is also removed, since it’s possible to keep the constraint inequality in this
model.

Important Parameters

There are five important parameters in the D-WAVE program:

• deltaPA

• deltaB

• chainstrength

• constrainttype

28



Development and Solution

• grids

The first three parameters are essential to fine tuning any kind of program sent to D-WAVE,
whereas constraint type and grids is more of a formulation change.

The first two, deltaPA and deltaB, are the familiar deltas that have been introduced in
the formulation before, and are responsible for giving a proper weight to each restriction.
In this case, since the first restriction deals with only values in the single digits, while
the second one can scale much higher depending on production values and Demand, the
once deltaA was changed into a percentage form, where it will take a percentage of the
highest value, or bias in quantum terms, of the created matrix for the second restriction,
and only then apply it to the first restriction. This was made in mind to allow some sort
of automation since without it, fine-tuning would be much more complex.

The constrainttype and grids parameters are related to the formulation of the problem
in some way, where constrainttype changes whether the second constraint is an equality
or inequality and grids is related to how accurate, the more grids the less error, the
discretization is to the original continuous formulation.

And finally, chainstrength. This parameter is related to program behavior in D-WAVE
and will be explained in more detailed in the next chapter.

3.4 Problems and Difficulties

• D-Wave documentation

• GLPK limitations

• Implementing the formulation

One of the biggest difficulties for implementing this formulation for a D-WAVE system
was how structured the available documentation for the D-WAVE systems are. It followed
along the lines of a typical programmer’s type of documentation which is usually tailored
for people already schooled in that language or program structure. But for someone who
is considered entry-level on quantum computing, a lot of terms and parameters will be
confusing and hard to understand, specially with some cases that barely have any useful
description on what it does.

Aside from this there is also the lack of clear examples that help the reader learn and try
as they explore the different terms and capabilities for the hardware, as done for example
in Qiskit’s case.

GLPK also has some limitations that did not allow to map the original Unit Commitment
Problem since it has a non-linear nature and GLPK only solves linear problems. This was
not much of a problem since it allowed both GLPK and D-WAVE implementations to solve
a similar environment to compare solutions that could be attainable by both.

Another difficulty was in understanding the process of transforming the original Unit Com-
mitment Problem to a QUBO form since the paper used as a support [29] had some
mistakes and in some transformations had no mentions of the steps or formulas used to
accomplish said transformation. This lead to lost time trying to correct the misunder-
standings and searching for the appropriate steps for the conversion to fully understand
the process.

29



This page is intentionally left blank.



Chapter 4

Experimental Analysis

This chapter describes an experimental analysis that allow us to understand the ability of
D-WAVE to solve a typical formulation of the Unit Commitment problem and explore what
optimal settings should be used as well as how the results compare to a simple classical
approach of the same formulation that will be used as a basis for the most optimal solution
for the problem, that is, the cheapest approach to produce enough power to meet demand.
This chapter will begin with some informal tests, developed while writing the code, and
some initial observations taken from the results. Afterwards, an in-depth experimental
analysis with statistical testing is described to test the hypothesis raised.

4.1 Preliminary Experiments

Some preliminary experiments were conducted in D-WAVE in order to collect some first
insights on its performance. In these first set of experiments, 120 variables were considered
and the results observed were sub-optimal at best. Rarely were any of the constraints met
and there seemed to be some randomness to the results, as solutions were only returned
once and seemed to have no consistency as to be focused around the region of the most
optimal solution for example.

After this, the number of variables used was reduced to 30 and the results were much more
favorable. The results on this set of solutions actually contained the most optimal solution
which was also returned twice in a run with 2000 shots.

This result is important because when solving smaller quantum problems, the most com-
monly returned solution is likely to be the most optimal solution to the problem, since the
annealer reached this lower energy state several times, hinting that it might be one of the
best solutions attainable.

But, with problems on this scale identical solutions that are returned more than once
are a rare occurrence, and not always the most optimal solution. Due to this, processing
the solutions is required to find the cheapest solution among them that also meet the
constraints. A more detailed breakdown of the observations follows.

With the input values created initially with 120 variables, the results were a little under-
whelming due to several units breaking as well as the production of several solutions not
reaching the required demand.

It was also observed that by reducing the number of variables the severity of the solutions

31



Chapter 4

that failed to meet the constraints seemed to lower as well, while also having the rare
solution that met both constraints. It is an expected result, since the number of variables
is related to how hard the problem is to solve.

Aside from the impact of number of variables used, there is also the impact from the two
constraints that must be factored in, as well as the second term of the objective function
in equation 3.4. The correlations that these terms create between the variables of the
problem increase the difficulty to directly embed the problem onto the D-WAVE quantum
processors due to the limited number of connections between qubits, requiring use of chains
to better represent the big net of connections that is created between the variables. But
problems arise when these chains break, causing conflicting results for a single variable and
further complicating the concept in quantum computing of "the most returned solution is
often the best".

One important parameter to take note is chain strength, related to how strongly connected
the qubits inside the chain are. At the time of writing the default value is 1, a value that
is extremely overshadowed by the biases from the deltas for each constraint that can reach
numbers in the four or five digits. These biases can be considered the strength or influence
of a term in the QUBO form that ultimately leads to how the annealer decides which
factors to consider to lower the system energy.

Considering that these biases are then normalized to values between 0 and 1, that chain
bias is further made obsolete and the chain breaks continue. This might not be of great
consequence for problems with few variables and with little to no correlations between the
variables that do not need chains at all, since these correlations can be represented with the
15 couplers per qubit in the Pegasus system [45], but as the problem size grows the effects
that default value for chain strength has is immediately noticeable, as the percentage of
chain breaks grows considerably.

This leads to how the problems are actually embedded on the annealer. In this thesis these
problems are sent to the Advantage D-WAVE system, also mentioned as Pegasus, designed
for a total maximum of 5640 qubits. The actual qubits available vary from chip to chip
but there are always at least 5000 working qubits in every chip [46].

It’s possible to see how the embedding process influences the problem by using the D-
WAVE inspector to see various details in the returned solutions. Figure 4.1 shows that
the embedding for a problem with 35 variables is only taking up a minor portion of the
processor while the embedding shown in Figure 4.2, with 125 variables, is taking about half
of it. The amount of variables used between the figures go up by around three and a half
and yet the amount of qubits used increases by more than ten times. This is most likely
due to the amount of scaling that has to be done to represent the ever growing connections
between variables and to that end, more and more chains need to be created, to the point
that there are several chains to represent the connections of a single variable instead of a
one chain per variable.

When observing all the solutions returned by these unformulated tests on a graph, a
representative graph can be seen in Figure 4.4, the solutions seemed to be akin to randomly
picked for a problem with 120 variables. To compare the performance of actual random
solutions, a simple program that outputs a random solution to an identical problem sent
to D-WAVE was created to check if a similar observation could be seen.

This program, developed in python, made use of the Random library and the randrange()
function that uses a uniform distribution. The program ensures that the first constraint
is always maintained by going through every unit available and picking a random level of

32



Experimental Analysis

Figure 4.1: Embedding on D-WAVE with for a problem with 35 variables

Figure 4.2: Embedding on D-WAVE with for a problem with 125 variables

production, and at the end outputs the resulting sum of what was produced in each unit
and its cost.

33



Chapter 4

With this, two test cases were made where they have same amount of different solutions
and the same parameters for both the random generator and D-WAVE.

Figure 4.3: Results from random solution generator

Both figures show a line for a production value equal to 100 that corresponds to the
required production to meet demand, to allow for an easier distinction from the feasible
and unfeasible solutions each test case has.

Figures 4.3 and 4.4 show the results relating to the Random solution program and D-
WAVE respectively and, at a glance it is possible to see that the random solution test
case has many more valid solutions than the D-WAVE counterpart. This can be seen
as a consequence to the random solution program always maintains the first constraint,
therefore allowing to reach a bigger production value more easily. Even with this in mind,
the results from D-WAVE still tend to be closer to the most optimal solutions returned by
the classical solver.

4.1.1 Findings and Important Factors

Before discussing some initial results on how exactly the various solutions returned by the
problem differ, some important factors and their function will be explained.

Independent Variables

• DeltaP_A - related to the Delta value acting on the first constraint, derived from a
percentage value of the biggest bias in the QUBO matrix, previously mentioned in
section 3.1.1.

34



Experimental Analysis

Figure 4.4: Results from D-WAVE

• Delta_B - also a Delta value that is related to the second constraint.

• Slack - mentioned as Constraint Type, it represents whether the problem uses an
equality or inequality constraint type for the second constraint

• Grids - the amount of segments a unit’s production is split into. More segments
means a better representation of reality while also increasing complexity

• Dataset - the set of data being used as an input for the problem.

• Embedding - the type of embedding being used in the Quantum Processor

• Shots - the amount of solutions to be returned from D-WAVE during a run

Dependent Variables

• Chain_break - the occurrence, in percentage, of chain breaks throughout the different
shots of a certain execution

• Restriction1 - the amount of broken units, units that have more than one production
level, in a solution

• Restriction2 - the deviation of production from the required Demand

With this in mind, some initial hypothesis can be made with the preliminary experiments.
Throughout the different tests, some parameters stood out on how they impacted the

35



Chapter 4

problem: Grids, Slack and DeltaP_A. Testing out different values for these parameters
showed some visible differences in the results and means that statistical analysis will most
likely show a statistical difference.

While the actual quality of impact varied, considering that changing the constraint type
to an inequality and increasing the DeltaP_A value has shown some improvement in the
amount of valid solutions, while increasing the Grids used seemed to cause a negative
impact to the number of valid solutions.

As for the other parameters the impact was not so noticeable without resorting to variance
tests, and may end up having no significant statistical difference in the worst case.

4.2 Formulating a Test Case

Before beginning the actual experimental analysis, some thought had to be put into bal-
ancing the amount of variance for the independent variables and the allowed computational
budget that D’Wave offered for the processing, as to be able to cover a big scope of possible
variance and possible intersections between the independent variables considered.

In order to check whether changing the default "regular" embedding had any effect, two
kinds of embedding, regular and clique, were used.

Then, two different datasets were used to compare behaviors when inputs vary to a cer-
tain extent. These datasets are generated randomly by using the same methods detailed
previously in section 4.1 using the Demand and the Units as input as a basis for range of
possible values picked for each unit’s production, to allow the random values to reach a
valid solution, this code can be checked in the git repository for further details.

The amount of units were fixed at 10 and the only factor that varied was the amount of
grids, from 5 to 10, and the Constraint Type, from equality to inequality. This means
that, with the combination of these factors, the number of variables considered were either
70 at it’s minimum, or 125 at it’s maximum. Note that the amount of Grids for this test
scenario were fixed at 5 since it failed to find a a clique embedding for the test cases with
10 grids. A special analysis of the impact of the Grids can be found in section 4.4.3 at the
end of this experimental analysis.

The deltas for each constraint assumed values with exponential growth that allowed for a
broader coverage in the quality of solutions while also letting some irregular cases to be
observed in the jumps between values used. The starting value for DeltaP_A was chosen
as 0.5 due to it having a bigger impact on the problem, as was previously observed in the
previous section, than Delta_B which starts at 1.0, with the bigger values for Delta_B
intended to cover a bigger range of sets to confirm whether there is a significant variance
or not.

The value for chain strength is a single percentage, instead of comparing different percent-
age values. As per D-WAVE’s guide on the parameter [47] this value is near, in this case
using 75% of, the biggest absolute bias used in the final matrix of the QUBO formulation
sent to D-WAVE. Using values too close to this absolute bias tended to result in a negative
influence when few variables are used.

The following list shows the possible values of parameters that the problem can take:

• Embedding: Regular and Clique

36



Experimental Analysis

• Dataset: 1 and 2

• Units: 10

• Grids: 5

• Constraint type: equality and inequality

• DeltaP_A: 0.5 and 1 and 2 and 4

• Delta_B: 1 and 2 and 4 and 8

• Chain Strength: 75%

• Shots: 4000

While chain strength was not a varying factor considered for this test case, due to budget
constraints and the bigger focus on the independent variables related to the formulation,
the importance of changing the default value is not to be understated.

It is crucial to note that the default value for this factor is not at all appropriate for any
problem sent to D-WAVE that has a large amount of variables. By default, D-WAVE
applies a routine that tries to find a fitting value for this strength when it predicts that
a chain break can occur but, when it fails to do so it returns the default value one. This
value seriously hinders problems at a higher complexity, while for problems that deal with
qubits numbering below 10 may not see an actual impact. This default value of 1 is usually
what was observed during the executions done so far and so it was set as an actual value
before sending the problem over to D-WAVE.

Per D-WAVE’s documentation on the matter [47], as the weights in the QUBO are scaled
automatically to fit between [−1, 1], it is important to keep the chain strength at a value
so that it is not to small to keep up with the big weights of the QUBO values, and that
it’s not too big to overshadow the weights of the QUBO and hinder the formulation for
the problem. With this, the program in this thesis uses a percentage value for chain
strength, set at 75%, that picks a value for the chain strength according to the biggest
weight in the QUBO. With this, the given chain strength at any time will have a value
of 75% of the biggest weight of the QUBO, where some simple tests showed that it stood
an acceptable performance. This factor was not expanded upon in this test case due to
budget constraints, as well as the impact being obvious enough, since the varying chain
break values can also be used to derive conclusions to the influence of chain strength aside
from largely lowering the amount of broken chains.

4.3 Analyzing results

To analyze the results returned by D-WAVE, the data of the solutions is saved to a text file
in a format that allows for importing in other platforms. In this case Jupyter was used to
create a notebook to import, analyze and create graphs and plots of the data for analysis
as well as hypothesis testing. The most relevant kinds of data that were collected were are
Pcost (the production cost for a given solution), Restriction1 (amount of units that have
more than one production level) and Restriction2 (the production deviation when compared
to demand). Due to the rare amount of solutions that passed the constraints, some special
decisions were made. All of the solutions produced were collected regardless of passing the
constraints, although in case the first constraint was broken the units responsible for this

37



Chapter 4

breakage were considered as being off and not producing anything for the purposes of the
experimental analysis.

A 5-way ANOVA (with no interactions) was performed for the five main factors described,
in particular the ones that had different values, described in the list of section 4.2 in order
to gain some insight into the role of each factor in the performance. This process was
made with the tools available in the statsmodel library for python, more specifically the
formula.api and stats.anova modules. The ANOVA tables can be found in Figures 4.5,
4.6 and 4.7 using as dependent variables the number of violations of the first constraint,
second constraint and the amount of chain break, respectively.

Figure 4.5: A 5-way Anova test using the values related to the first restriction as a basis

Figure 4.6: A 5-way Anova test using the values related to the second restriction as a basis

Figure 4.7: A 5-way Anova test using the values from chain break as a basis

38



Experimental Analysis

Overall, the factors that have the biggest impact on the parts responsible for the quality of
the solutions returned to the formulated problem appear to be DeltaP_A and Constraint
type for the constraint performance shown in tables 4.5,4.6, while Dataset and Embedding
also have a big impact on chain break as shown in table 4.7.

With just the results from the ANOVA test there is no data on the quality of the impact of
each factor in the overall problem, that is, whether the impact deteriorates the number of
feasible solutions or actually improves them. To verify the actual impact of these factors
further analysis will be done, starting with some simple exploratory analysis, and then
proceeding with experimental analysis and statistical tests to check if the hypothesis holds.

4.4 Testing hypothesis

Before heading onto the grit of the analysis an important distinction must be made. There
are two kinds of parameters for this problem: parameters relating to the formulation, that
influence the behavior of the problem being formulated, and parameters related to the
D-WAVE machines, that control how our formulation is implemented onto and performs
on the quantum annealer.

4.4.1 Formulation Parameters

These are the parameters responsible for the accuracy of the representation of the original
formulated problem. Most of the factors used belong to this category and many of them
have a great impact on how the program behaves. A more detailed analysis follows.

Constraint Type

Figure 4.8: Boxplot of broken units for the different constraint types

The analysis confirms the expected result that changing the second constraint to become
an inequality would net positive results. This relaxation means that it becomes easier to
find a solution that produces enough to meet the Demand constraint, as shown by Figure
4.9, while the first constraint sees a small improvement, about 0.22 less broken units albeit
not noticeable in Figure 4.8, when using the second constraint as inequality. The means
of chain break occurrences sees a slight increase when opting for the inequality type, but
even so, the amount of occurrences seems to be more concentrated on lower values when

39



Chapter 4

Figure 4.9: Boxplot of deviation from Demand for the different constraint types

Figure 4.10: Boxplot of broken chains for the different constraint types

comparing to the broad coverage of the equality constraint type, as shown by the Figure
4.10

DeltaP_A

Figure 4.11: Boxplot of broken units for the different DeltaP_A values

This, alongside Delta_B, is one of the most important factors to analyze, given their role

40



Experimental Analysis

Figure 4.12: Boxplot of deviation from Demand for the different DeltaP_A values

Figure 4.13: Boxplot of broken chains for the different DeltaP_A values

for enforcing and strengthening their respective constraints and this analysis serves to
verify if they actually do so.

To start off, it’s difficult to see the results that Figure 4.11 shows since there are only
10 values and the results hover around the same area. Even so, it’s possible to see some
variation through the median of each part.

The results from the figure are inconclusive but the ANOVA test rejected the null hypoth-
esis, so there must be some variation happening. For a more detailed analysis, a pairwise
Tukey HSD test, using the statsmodels library in python, was performed for the three
factors.

Group1 Group2 Diff P-value
0.5 1.0 -0.1146 0.001000
0.5 2.0 -0.3007 0.001000
0.5 4.0 -0.3161 0.001000
1.0 2.0 -0.1862 0.001000
1.0 4.0 -0.0154 0.001000
2.0 4.0 -0.0154 0.1057

Table 4.1: A Tukey test with the values of DeltaP_A when considering the values from
the first constraint as a basis

41



Chapter 4

With the Tukey HSD test from 4.1 it becomes easier to compare the actual variations
between each part, it also returns a P-value that tells whether or not to reject the null
hypothesis that the sets of data share the same median. Through the differences between
each set, it’s possible to observe that the broken units tend to decrease as the value of
DeltaP_A increases, which means that the delta is correctly affecting the constraint it
is responsible for. On a closer look, it can be seen that the last case comparing the
DeltaP_A value sets of 2.0 and 4.0 returns a P-value that leads to the acceptance of the
null hypothesis. Meaning that there is no statistical difference between both sets, and
perhaps even little point to increasing the DeltaP_A value beyond 2.0.

With regards to how the second constraint behaves, Figure 4.12 shows some clear variation
between each value. With this, raising the value of DeltaP_A has a visible positive effect,
decreasing the gap between the energy demand and produced energy to be closer to zero.
Through the Tukey test in table 4.2 the individual differences between groups can be seen,
and there is always some gain from increasing the Delta, unlike the previous case of the
first constraint, where no statistical difference can be seen beyond the value 2.

Group1 Group2 Diff P-value
0.5 1.0 7.429 0.001
0.5 2.0 14.0476 0.001
0.5 4.0 17.0028 0.001
1.0 2.0 6.6186 0.001
1.0 4.0 9.5738 0.001
2.0 4.0 2.9552 0.001

Table 4.2: A Tukey test with the values of DeltaP_A when considering the values from
the second constraint as a basis

In regards to the values of chain break shown in Figure 4.13 and the Table 4.3, using values
below one for the Delta has a considerable negative effect on the amount of broken chains.
Aside from this irregularity, the amount of broken chains increases progressively alongside
the Delta value, meaning that is somewhat of a negative effect on the chains as the Delta
increases. Although this is a negative effect, considering the gains to the other factors
and the fact that chain break is still below acceptable values, the gains that outperform
this negative impact means that the optimal decision is to increase the Delta value as the
overall effect on the amount of valid solutions increases.

Group1 Group2 Diff P-value
0.5 1.0 -0.2037 0.001
0.5 2.0 -0.1919 0.001
0.5 4.0 -0.1757 0.001
1.0 2.0 0.0118 0.001
1.0 4.0 0.028 0.001
2.0 4.0 0.0162 0.001

Table 4.3: A Tukey test with the values of DeltaP_A when considering the values from
the chain break as a basis

The take from this is that there is no reason to raise the Delta value to a high value like 2.0
or 4.0 as there is an overall positive effect on the amount of valid solutions to the problem.

42



Experimental Analysis

Figure 4.14: Boxplot of broken chains for the different Delta_B values

Delta_B

With regards to the effects of Delta_B, things get more complicated. With the acceptance
of the null hypothesis in the Anova test related to both the first and second constraint,
the statistical impact of this Delta is on the verge of being null. Even so, the Anova test
of the impact on chain break rejects the null hypothesis, meaning that there must be some
variation to analyze.

Group1 Group2 Diff P-value
1.0 2.0 0.0004 0.7063
1.0 4.0 0.0011 0.0111
1.0 8.0 0.0017 0.001
2.0 4.0 0.0008 0.1696
2.0 8.0 0.0013 0.0018
4.0 8.0 0.0006 0.4045

Table 4.4: A Tukey test with the values of DeltaP_B when considering the values from
broken chains as a basis

Now, with the results from the Tukey HSD test shown in Table 4.4, the situation is grim.

At first glance, half the combinations lead to the rejection of the null hypothesis, while the
other half accept it. Even without the p-values, it’s already possible to see how little the
differences between each group actually is, meaning that there is a minimal impact on the
amount of chain breaks.

This means that potentially, the Delta can be discarded as the statistical impact in the
overall problem is insignificant.

Dataset

With figures 4.15, 4.16 and 4.17, the difference in performance between datasets can be
seen. Overall they stay largely the same with some minor variations, with the second
constraint seeing some negative impact on the second set of inputs, this means that the
kind of dataset used has some impact on the valid solutions for the problem. Along with
the second constraint, the amount of chain break has also seen some deterioration, while
the values resulting from the first constraint remain largely the same. But, seeing as these

43



Chapter 4

Figure 4.15: Boxplot of broken units for the different Datasets used

Figure 4.16: Boxplot of deviation from Demand for the different Datasets used

Figure 4.17: Boxplot of broken chains for the different Datasets used

inputs are related to the actual working values that most likely cannot be changed to
improve the problem, not much can be done to improve this factor’s impact towards the
positive side.

44



Experimental Analysis

4.4.2 D-Wave Parameters

These are the parameters responsible for actually interacting with the behavior of the D-
WAVE machines. In this case only the embedding being used was considered as a varying
value, while chain strength was used with a fixed value. Other factors exist, like annealing
schedule, but were not considered due to the current budget restraints.

Embedding

Figure 4.18: Boxplot of broken units for the different embeddings used

Figure 4.19: Boxplot of deviation from Demand for the different embeddings used

The embedding used, is of course vital to the performance of the problem since it’s related
to how the problem is mapped onto the QPU. As shown by the figures 4.18, 4.19 and
4.20, the clique embedding closely comes out on top. If comparing the actual means, the
clique embedding has a better performance on all but the second constraint, where it is a
whole 2 points lower when compared to the regular embedding. As it stands, it could be
worth using for the improvement of the chain break behavior, specially if used with the
high values of DeltaP_A that increase the chain break amount while also improving the
second constraint.

45



Chapter 4

Figure 4.20: Boxplot of broken chains for the different embeddings used

4.4.3 Isolated Parameter

Since no embedding was found for the test cases with 10 Grids for the Clique Embedding,
the Grids parameter was removed from the main analysis. This was done to keep the
number of parameters from both the problem formulation and the QPU more balanced.
But, there is still some relevant analysis to be gained from this parameter, which will be
included in this extra section.

Figure 4.21: A 5-way Anova test using the values related to the first restriction as a basis

This new 5-way Anova test that replaces embedding with grids shows just how much of an
impact varying the number of grids in the problem can have. With the grids parameter
having the biggest impact on the performance of the first constraint and the chain break
values, and the second most impact on the performance of the second constraint. The
results from this Anova test can be observed in figures 4.21, 4.23, and 4.22 respectively.

The great impact grids has on the first constraint is to be expected since it is closely tied
to the amount of production levels each unit has and, with more levels to check against
the constraint, more errors, broken units, are prone to happen.

The boxplots from Figures 4.24, 4.25 and 4.26 show that as the amount of grids increase,
the solution quality deteriorates.

While increasing the amount of grids considered makes the linearization more accurate, it
also deteriorates the solution quality since it has a big impact on the number of variables

46



Experimental Analysis

Figure 4.22: A 5-way Anova test using the values related to the second restriction as a
basis

Figure 4.23: A 5-way Anova test using the values related to the chain break as a basis

Figure 4.24: Boxplot of broken units when Grids used varies

for the problem.

47



Chapter 4

Figure 4.25: Boxplot of deviation from Demand when Grids used varies

Figure 4.26: Boxplot of broken chains when Grids used varies

48



Chapter 5

Conclusion

This thesis was conducted with the goal to expand the current implementations of Unit
Commitment on quantum computers and study the impact of the various parameters of
the problem. To that end, a test scenario was designed to allow an experimental analysis
to be conducted and verify the hypothesis that the parameters do influence the results.
The results from the test scenario show that both the parameters related to the problem
formulation and the parameters from the quantum annealer have a considerable impact on
the solutions to the problem.

From the problem formulation parameters, the results from the test scenario show that the
Grids, Constraint type and the Delta of the first constraint do have an influence on the
quality of the solutions returned by the QPU. Aside from these that were showcased in the
test scenario, there is also the number of variables that the problem is considering, or the
scope of the problem, which is the biggest influencer on the complexity of the problem and
is also expected to have a great impact. The results from the experimental analysis were to
be expected, since these parameters are closely related to the complexity of the problem, as
well as the weight of each constraint. As for the remaining parameter, the Delta associated
with the second constraint, the results show that it does not have a statistical difference
when comparing the different samples, which means more focus should be put into fine
tuning the other parameters instead.

When it comes to the parameters from the QPU, a very important case stands out. The
chain strength parameter has a default value that is destructive to problems at a higher
qubit complexity. It’s imperative that this parameter is set correctly, as the default and a
wrongly set value can a great negative impact on solution quality. This is due to the nature
of chains and the part they play in representing a specific variable throughout several re-
gions of the problem. Aside from this parameter two different kinds of embedding were also
tested, but the impact is in general overshadowed by the formulation parameters, although
a considerable impact still exists when it comes to influencing chain break occurrence.

A possible follow-up to this work could be to study the interactions between each parameter
since there could be specific interactions that have a great impact on the solution quality.

From the results achieved in this thesis it can be concluded that an approach that provides
an undeniable advantage through quantum computing on a real world scale for the Unit
Commitment Problem is still currently out of reach, specially since the formulation used
for this thesis is already a simplification of the original problem. Even so, the potential
is there, since the QPU can return a great amount of solutions in a short time and allow
for a much greater flexibility in picking the best solution for a real world scenario, since

49



Chapter 5

an unexpected occurrence can invalidate a solution that would take a classical computer
several hours, if not days, to compute.

50



References

[1] Qiskit. Bloch sphere. https://qiskit.org/textbook/ch-states/introduction.
html. Accessed: 6 January 2021.

[2] Wikipedia. Comparison of d-wave systems. https://en.wikipedia.org/wiki/
D-Wave_Systems#Comparison_of_D-Wave_systems. Accessed: 15 January 2021.

[3] Catherine C. McGeoch, Richard Harris, Steven P. Reinhardt, and Paul I. Bunyk.
Practical annealing-based quantum computing. Computer, 52(6):38–46, 2019.

[4] Andrew Steane. Quantum computing. Reports on Progress in Physics, 61(2):117,
1998.

[5] Jozef Gruska et al. Quantum computing, volume 2005. McGraw-Hill London, 1999.

[6] Peter W Shor. Quantum computing. Documenta Mathematica, 1(1000):467–486, 1998.

[7] Tony Hey. Quantum computing: an introduction. Computing & Control Engineering
Journal, 10(3):105–112, 1999.

[8] Eleanor Rieffel and Wolfgang Polak. An introduction to quantum computing for non-
physicists. ACM Computing Surveys (CSUR), 32(3):300–335, 2000.

[9] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han
Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, Peng Hu, Xiao-Yan Yang, Wei-Jun
Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen
Wang, Li Li, Nai-Le Liu, Chao-Yang Lu, and Jian-Wei Pan. Quantum computational
advantage using photons. Science, 370(6523):1460–1463, 2020.

[10] Ashley Montanaro. Quantum speedup of monte carlo methods. Proceed-
ings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
471(2181):20150301, Sep 2015.

[11] Dan Stahlke. Quantum interference as a resource for quantum speedup. Physical
Review A, 90(2):022302, 2014.

[12] Shah Muhammad Hamdi, Syed Tauhid Zuhori, Firoz Mahmud, and Biprodip Pal. A
compare between shor’s quantum factoring algorithm and general number field sieve.
pages 1–6, 2014.

[13] Mirko Amico, Zain H. Saleem, and Muir Kumph. Experimental study of shor’s fac-
toring algorithm using the ibm q experience. Physical Review A, 100(1), Jul 2019.

[14] IBM. Qiskit front page. https://qiskit.org/. Accessed: October 2021.

[15] D-Wave. D-wave front page. https://www.dwavesys.com/. Accessed: October 2021.

51

https://qiskit.org/textbook/ch-states/introduction.html
https://qiskit.org/textbook/ch-states/introduction.html
https://en.wikipedia.org/wiki/D-Wave_Systems#Comparison_of_D-Wave_systems
https://en.wikipedia.org/wiki/D-Wave_Systems#Comparison_of_D-Wave_systems
https://qiskit.org/
https://www.dwavesys.com/


Chapter 5

[16] Amazon. Aws amazon braket front page. https://aws.amazon.com/braket/. Ac-
cessed: October 2021.

[17] Qutech. Quantum inspire front page. https://www.quantum-inspire.com/. Ac-
cessed: October 2021.

[18] Microsoft. Azure quantum front page. https://azure.microsoft.com/en-us/
services/quantum/. Accessed: October 2021.

[19] University of Bristol. Quantum in the cloud. http://www.bristol.ac.uk/physics/
research/quantum/engagement/qcloud/. Accessed: October 2021.

[20] Arute, F, Arya, K, Babbush, and R et al. Quantum supremacy using a programmable
superconducting processor. Nature, 574:505–510, 2019.

[21] Edwin Pednault, John Gunnels, Dimitri Maslov, and Jay Gambetta. https://
www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/. Accessed: Octo-
ber 2021.

[22] Kevin Hartnett. A new law to describe quantum com-
puting’s rise? https://www.quantamagazine.org/
does-nevens-law-describe-quantum-computings-rise-20190618/. Accessed:
September 2021.

[23] University of Queensland. Improved fabrication technique paves
way for improved quantum devices. https://phys.org/news/
2021-09-fabrication-technique-paves-quantum-devices.html. Accessed:
September 2021.

[24] RM Brady. Optimization strategies gleaned from biological evolution. Nature,
317(6040):804–806, 1985.

[25] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE
computational intelligence magazine, 1(4):28–39, 2006.

[26] James Kennedy and Russell Eberhart. Particle swarm optimization. 4:1942–1948,
1995.

[27] Iztok Fister Jr, Xin-She Yang, Iztok Fister, Janez Brest, and Dušan Fister. A brief
review of nature-inspired algorithms for optimization. arXiv preprint arXiv:1307.4186,
2013.

[28] Xin-She Yang. Nature-inspired optimization algorithms. Academic Press, 2020.

[29] Akshay Ajagekar and Fengqi You. Quantum computing for energy systems optimiza-
tion: Challenges and opportunities. Energy, 179:76 – 89, 2019.

[30] F. A. C. C. Fontes*, D. B. M. M. Fontes**, and L. A. Roque***. An optimal control
approach to the unit commitment problem. 2012.

[31] Qiaozhu Zhai Xiaohong Guan and A. Papalexopoulos. Optimization based methods for
unit commitment: Lagrangian relaxation versus general mixed integer programming.
IEEE Power Engineering Society General Meeting, 2(1095-1100), 2003.

[32] Idriss Abdou and Mohamed Tkiouat. Unit commitment problem in electrical power
system: A literature review. International Journal of Electrical and Computer Engi-
neering (IJECE), 8:1357, 06 2018.

52

https://aws.amazon.com/braket/
https://www.quantum-inspire.com/
https://azure.microsoft.com/en-us/services/quantum/
https://azure.microsoft.com/en-us/services/quantum/
http://www.bristol.ac.uk/physics/research/quantum/engagement/qcloud/
http://www.bristol.ac.uk/physics/research/quantum/engagement/qcloud/
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://www.quantamagazine.org/does-nevens-law-describe-quantum-computings-rise-20190618/
https://www.quantamagazine.org/does-nevens-law-describe-quantum-computings-rise-20190618/
https://phys.org/news/2021-09-fabrication-technique-paves-quantum-devices.html
https://phys.org/news/2021-09-fabrication-technique-paves-quantum-devices.html


References

[33] Ana Viana João Pedro Pedroso. A new milp-based approach for unit commitment
in power production planning. International Journal of Electrical Power & Energy
Systems, 44(1):997 – 1005, 2013.

[34] K Srikanth, Lokesh Kumar Panwar, BK Panigrahi, Enrique Herrera-Viedma,
Arun Kumar Sangaiah, and Gai-Ge Wang. Meta-heuristic framework: Quantum
inspired binary grey wolf optimizer for unit commitment problem. Computers &
Electrical Engineering, 70:243 – 260, 2018.

[35] Saleh Y. Abujarad, M.W. Mustafa, and J.J. Jamian. Recent approaches of unit
commitment in the presence of intermittent renewable energy resources: A review.
Renewable and Sustainable Energy Reviews, 70:215 – 223, 2017.

[36] Yuntao Ju, Jiankai Wang, Fuchao Ge, Yi Lin, Mingyu Dong, Dezhi Li, Kun Shi, and
Haibo Zhang. Unit commitment accommodating large scale green power. Applied
Sciences, 9(8):1611, Apr 2019.

[37] Nikolaos V. Sahinidis. Mixed-integer nonlinear programming. Optimization and En-
gineering, 20(301-306), 2018.

[38] M. Carrion and J. M. Arroyo. A computationally efficient mixed-integer linear for-
mulation for the thermal unit commitment problem. IEEE Transactions on Power
Systems, 21(3):1371–1378, 2006.

[39] Kuk-Hyun Han and Jong-Hwan Kim. Quantum-inspired evolutionary algorithm for a
class of combinatorial optimization. IEEE Transactions on Evolutionary Computation,
6(6):580–593, 2002.

[40] Qiskit. Representing qubit states. https://qiskit.org/textbook/ch-states/
representing-qubit-states.html. Accessed: 15 January 2021.

[41] Asher Peres and Daniel R. Terno. Quantum information and relativity theory. Reviews
of Modern Physics, 76(1):93–123, Jan 2004.

[42] Wilen, C D, Abdullah, S, Kurinsky, and N A et al. Correlated charge noise and
relaxation errors in superconducting qubits. Nature, 594:369–373, 2021.

[43] D-Wave. What is quantum annealing? https://docs.dwavesys.com/docs/latest/
c_gs_2.html. Accessed: 15 January 2021.

[44] D-Wave. Qubo expansion. https://youtu.be/Q4FE4jou5CA?t=1440. Accessed: De-
cember 2020.

[45] D-Wave. D-wave qpu architecture: Topologies. https://docs.dwavesys.com/docs/
latest/c_gs_4.html. Accessed: August 2021.

[46] D-Wave. D-wave solutions and products. https://www.dwavesys.com/
solutions-and-products/systems/. Accessed: August 2021.

[47] D-Wave Systems. Programming the d-wave qpu: Setting the chain
strength. https://www.dwavesys.com/media/vsufwv1d/14-1041a-a_setting_the_
chain_strength.pdf. Accessed: February 2021.

53

https://qiskit.org/textbook/ch-states/representing-qubit-states.html
https://qiskit.org/textbook/ch-states/representing-qubit-states.html
https://docs.dwavesys.com/docs/latest/c_gs_2.html
https://docs.dwavesys.com/docs/latest/c_gs_2.html
https://youtu.be/Q4FE4jou5CA?t=1440
https://docs.dwavesys.com/docs/latest/c_gs_4.html
https://docs.dwavesys.com/docs/latest/c_gs_4.html
https://www.dwavesys.com/solutions-and-products/systems/
https://www.dwavesys.com/solutions-and-products/systems/
https://www.dwavesys.com/media/vsufwv1d/14-1041a-a_setting_the_chain_strength.pdf
https://www.dwavesys.com/media/vsufwv1d/14-1041a-a_setting_the_chain_strength.pdf


This page is intentionally left blank.



Appendices

55



This page is intentionally left blank.



Appendix A

1 def qubo(params):
2 print(f"Creating Qubo dict w/ deltaP_A {params[’deltaP_A ’]} & delta_B {params[’delta_B ’]}")
3 delta_B = params["delta_B"]
4 deltaP_A = params["deltaP_A"]
5

6 additive_a = 0
7 additive_b = 0
8

9 # objective function
10 for i in range(0,U):
11 for k in range(1,N): # python range stops b4 last term , so N

= Grids + 2 is the same as N + 1 in summation terms
12 Qubo[str(i*N+k), str(i*N+k)] += float( cost(i,k) )
13 for m in range(k+1,N): # extra func (from sumation square expansion)
14 Qubo[str(i*N+k), str(i*N+m)] += float( 2*C[i]*prod(i,k)*prod(i,m) )
15

16 # constraint 2
17 for i in range(0,U):
18 for k in range(1,N):
19 Qubo[str(i*N+k), str(i*N+k)] += float( delta_B *( prod(i,k)**2 ) ) # first term: sum xi **2
20 Qubo[str(i*N+k), str(i*N+k)] += float( delta_B *( -2*Demand*prod(i,k) ) ) # third term: -2*C*sum xi
21 for ii in range(i,U):
22 for kk in range(1,N):
23 if ii == i and k >= kk: continue
24 Qubo[str(i*N+k), str(ii*N+kk)] += float( delta_B *( 2*prod(i,k)*prod(ii ,kk) ) ) # second term: 2*sum xi*xj,

where j > i
25 for s in range(scope -Slack , scope):
26 Qubo[str(i*N+k), str(s)] += float( delta_B *( 2*prod(i,k)*prod_slack(s - scope + Slack) ) )# Slack variables

| s - scope + Slack -> range from 0 to 5 (Slack variables)
27

28 for s in range(scope -Slack , scope):
29 Qubo[str(s), str(s)] += float( delta_B * (prod_slack(s - scope + Slack)**2) )# first factor +
30 Qubo[str(s), str(s)] += float( delta_B* -2 * Demand * prod_slack(s - scope + Slack) )# third factor -
31

32 for s2 in range(s+1,scope):
33 Qubo[str(s), str(s2)] += float( delta_B* 2 * prod_slack(s - scope + Slack) * prod_slack(s2 - scope + Slack) )

57



A
ppendix

34

35 additive_b += delta_B *( Demand **2 )
36

37 max_bias = 0
38 for value in Qubo.values ():
39 if abs(value) >= max_bias:
40 max_bias = value
41

42 delta_A = max_bias * deltaP_A
43 params["delta_A"] = delta_A
44 max_bias_final = max_bias
45

46 # restriction 1
47 for i in range(0,U):
48 for k in range(0,N):
49 Qubo[str(i*N+k), str(i*N+k)] += float( delta_A *( 1 ) ) # 1**2
50 Qubo[str(i*N+k), str(i*N+k)] += float( delta_A *( -2 ) ) # -2*1
51

52 for kk in range(k+1,N):
53 Qubo[str(i*N+k), str(i*N+kk)] += float( delta_A *( 2 ) ) # 2*1*1
54 additive_a += delta_A *(1) #1**2
55

56 for value in Qubo.values ():
57 if abs(value) >= max_bias_final:
58 max_bias_final = value
59

60 #print_qubo(Qubo)
61

62 params["additive_a"] = float( additive_a )
63 params["additive_b"] = float( additive_b )
64 params["max_bias_B"] = float( max_bias )
65 params["max_bias_final"] = float( max_bias_final )
66

67 print(f"Created Qubo dict w/ delta_A {params[’delta_A ’]:.2f} & max_bias_B {params[’max_bias_B ’]:.3f} &
max_bias_final {params[’max_bias_final ’]:.3f}")

68 return Qubo ,Qubo_obj ,Qubo_res1 ,Qubo_res2 ,Qubo_slack

Listing 1: Qubo Function

58


	Introduction
	Background
	The Unit Commitment Problem and its Formulation
	Quantum
	Available Frameworks


	Development and Solution
	Problem Formulation
	Translation to QUBO
	Relaxed Qubo Formulation
	QUBO Matrix formulation

	D-Wave
	Verification

	GLPK
	Problems and Difficulties

	Experimental Analysis
	Preliminary Experiments
	Findings and Important Factors

	Formulating a Test Case
	Analyzing results
	Testing hypothesis
	Formulation Parameters
	D-Wave Parameters
	Isolated Parameter


	Conclusion

