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Abstract

Perturbative Quantum Chromodynamics (QCD) involves the appearance of di-
vergences in the amplitudes of a process. However, physical observables must
be finite, therefore all the divergences that emerge must be cancelled. The Ki-
noshita–Lee–Nauenberg (KLN) theorem states that the infrared divergences that
appear in a QCD decay rate or cross section must cancel when putting together
the contributions from the virtual and real parts that contribute at the same order
in perturbation theory. In this work, the main goal is to calculate the decay rate of
the Higgs boson into gluons modelled by an effective Lagrangian in the limit of
infinite top quark mass and verify the KLN theorem, using the Implicit Regulariza-
tion (IReg). We derive the Feynman rules of the effective Lagrangian to describe
the interaction between gluons and the Higgs boson, and use them to construct the
amplitudes of the process’ virtual and real diagrams. We then use IReg, which
is a regularization scheme that works in the physical dimension of the theory and
allows for the separation of the ultraviolet and infrared divergences of an ampli-
tude. The ultraviolet divergent integrals are written as basic divergent integrals and
the ultraviolet finite/ infrared divergent integrals are evaluated using the software
Mathematica. After renormalization of the effective theory, we show that the vir-
tual decay rate of the process can be written as a correction to the tree-level decay
rate. We introduce the spinor-helicity formalism to compute the real amplitude.
We then study the explicit computation of the phase space of the real decay and
integrate the squared real amplitude over the phase space to obtain the real decay.
At last, we add the contributions from both virtual and real decay rates to obtain the
final result which is finite as expected, reproducing known results in the literature.

i



ii



Resumo

O regime perturbativo de Cromodinâmica Quântica (QCD) envolve o apareci-
mento de divergências nas amplitudes de um processo. No entanto, as observáveis
fı́sicas devem ser finitas e, portanto, todas as divergências que surgem devem ser
canceladas. De acordo com o teorema Kinoshita–Lee–Nauenberg (KLN), as di-
vergências infrevermelhas que aparecem numa taxa de decaimento ou secção efi-
caz em QCD devem cancelar-se ao juntar as contribuições das partes virtual e real
que contribuem para a mesma ordem em teoria de perturbações. Neste trabalho,
o objetivo principal é calcular a taxa de decaimento do bosão de Higgs em gluões
modelado por um Lagrangiano efetivo no limite da massa do quark top infinita, e
verificar o cancelamento das divergências usando regularização implı́cita (IReg).
Para tal, derivamos as regras de Feynman do Lagrangiano efetivo para descrever a
interação entre os gluões e o bosão de Higgs e estas são usadas para construir as
amplitudes dos diagramas virtuais e reais do processo. Em seguida, usamos IReg,
que é um esquema de regularização que trabalha na dimensão fı́sica da teoria e
permite a separação das divergências de ultravioleta e infravermelhas de uma am-
plitude. Os integrais divergentes de ultravioleta são escritos como integrais diver-
gentes básicos e os integrais finitos no ultravioleva/ divergentes no infravermelho
são avaliados usando o software Mathematica. Depois de se fazer renormalização
da teoria efetiva, mostramos que a taxa de decaimento virtual do processo pode
ser escrita como uma correção à taxa de decaimento a nı́vel árvore. Introduzimos
o formalismo de spin-helicidade para calcular a amplitude real. Em seguida, es-
tudamos o cálculo explı́cito do espaço de fase do decaimento real e integramos a
amplitude real ao longo das variáveis de integração do espaço fase para obter o
decaimento real. Por fim, adicionamos as contribuições das taxas de decaimento
virtual e real para obter o resultado final, que reproduz resultados conhecidos da
literatura.
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Chapter 1

Introduction

The purpose of this thesis is to further investigate if Implicit Regu-
larization (IReg), a non-dimensional regularization scheme satisfies the Ki-
noshita–Lee–Nauenberg (KLN) theorem. For that we do the computation of a
QCD decay rate of the Higgs boson into gluons and verify that infrared (IR) diver-
gences are cancelled in this scheme and the final decay rate is finite.

Regularization and renormalization in QCD

Physical observables are the primary objects of study in physics. Performing
precise measurements of the interaction of known particles is very important to
corroborate or refute new models in physics, [2]. We cannot compute the exact
Green’s functions analytically when we have a QCD Lagrangian, therefore we use
perturbation theory and expand the terms to arbitrary order. To do so, we first
derive the Lagrangian Feynman rules, which we then use as building block to con-
struct the amplitudes of the Feynman diagrams that correspond to the selected order
of expansion. However, while doing higher-order computations, ultraviolet (UV)
and IR divergences are present, causing Feynman amplitudes to diverge. To allow
comparison with experimental data from particle accelerators, precise calculations
of physical observables beyond leading order in perturbation theory are required.
As a result, one of the most important problems in physics is the regularization
and renormalization of these divergent amplitudes in intermediate steps in order to
preserve the predictive power of the underlying theory.

Renormalization is a systematic way of subtracting the divergences of a theory
by doing a redefinition of the parameters of the bare (unrenormalized) Lagrangian.
A renormalizable theory is a theory that has a finite number of superficially di-
vergent diagrams whose divergences can be cancelled order by order by a finite
number of redefinitions of the bare parameters. But before we perform renormal-
ization we need to completely separate the UV divergent parts from the UV finite
parts of the amplitudes. So we need to regularize the theory.

The choice of a regularization scheme is unphysical but it is otherwise very
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CHAPTER 1. INTRODUCTION 2

important in the sense that we must respect several physical requirements such
as unitarity, causality and symmetries of the system. Several regularization
schemes have been developed over the past years such as conventional dimen-
sional regularization (CDR), ’t Hooft-Veltman scheme (HV), four-dimensional
helicity (FDH), dimensional reduction (DRED) and six-dimensional formalism
(SDF) which are traditional dimensional schemes. Some non-dimensional schemes
developed are implicit regularization (IReg), four-dimension regularization (FDR),
four-dimensional unsubtraction (FDU) and loop regularization (LORE) [3], [4].

Regularization of chiral, topological and supersymmetric gauge theories with
dimensional methods can give rise to inconsistencies in higher loop order or to spu-
rious anomalies. On the other hand, IReg, being a non-dimensional regularization
scheme, is expected to preserve the symmetries of the model and we won’t need
to modify the Lagrangian of the underlying theory, [5]. IReg acts directly on the
dimension of the theory and is implemented to all orders in perturbation theory.
We assume an implicit regulator that allows us to separate the UV divergent ampli-
tudes that are independent of external momenta from the UV finite ones, which can
be IR divergent or IR finite. UV divergent integrals are classified as basic diver-
gent integrals and UV finite integrals are analytically evaluated using Package-X
of software Mathematica, [6].

Spinor-helicity

The traditional method to calculate unpolarized cross sections or decay rates in
QCD involves squaring the amplitude and then sum over the external states and the
spins. When the number of Feynman diagrams increases, the computation becomes
much more complex. The spinor-helicity formalism is an alternative approach to
construct amplitudes using only physical on-shell external states. The idea behind
this formalism is that instead of using spinor fields that transform under unitary,
irreducible infinite-dimensional representations of the Poincaré group, we use he-
licity spinors, which transform in finite-dimensional representations of the Lorentz
group. The choice of this basis automatically eliminates a large number of ampli-
tude terms and the procedure is highly simplified, [7].

Motivation and goals

It is of great relevance to implement a fully mathematical consistent regulariza-
tion scheme that prevents the emergence of symmetry breaking terms or anomalies
and that is valid to arbitrary higher order. As we mentioned, IReg is an invariant
regularization scheme that has proven to be a promising candidate that fulfills all
the previous requirements. It is also stated by the KLN theorem that perturbative
quantum theories must be IR finite. As a result it is of theoretical interest to test the
applicability of IReg in a practical calculation involving IR divergences that only
cancel at the level of cross sections or decay rates and verify the KLN theorem.
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The decay H ÝÑ gg which is described by an effective model in which quarks are
neglected and therefore only gluons are considered, provides a simple yet reliable
model to test this regularization scheme, as suggested in [2] and has already been
used in [8] to test FDR. The main goal of this work will be the computation of the
total decay rate of this process. We will compute the one-loop virtual diagrams
that arise from this effective model and use IReg to extract the UV divergences
which are absorbed in the process of renormalization, and use the remaining UV
finite amplitudes to obtain the regularized virtual decay rate. Then we apply the
spinor-helicity formalism to compute the real diagrams of the process and obtain
the real decay rate. It is expected to have a cancellation of the IR divergences when
combining these decay rates and the final result must be finite.
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Chapter 2

Implicit regularization and
renormalization in perturbative
QCD

In this chapter, we will see that divergences appear in perturbative QCD. As
a result, regularization and renormalization techniques must be developed to deal
with these divergences in order to obtain finite quantities.

2.1 The Kinoshita–Lee–Nauenberg theorem or KLN the-
orem

The KLN theorem states that although IR divergences may occur in the expan-
sion of the action when doing perturbative calculations, the IR divergences coming
from loop integrals are cancelled by divergences coming from phase space inte-
grals. According to this theorem infrared divergences appear because some of
the states are degenerate in energy. Therefore for a suitably defined physical ob-
servable IR divergences will always cancel at all orders. The importance of this
theorem is that it assures that all quantum field theories are IR finite (free of IR
divergences) in the limit of massless particles and this holds in any order in the
perturbation theory, [9], [10].

2.2 Perturbative QCD

Quantum Field Theory (QFT) allows the computation of decay rates and cross
sections that can be compared with experimental results and give information about
the accuracy of the theoretical models. In order to do this, we start by determining
what are the relevant degrees of freedom (fields) in the energy scale that we aim to
describe and then we write down the Lorenz invariant Lagrangian that incorporates
those fields obeying the symmetries of the system.

5
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The theory is defined by its generating functional that allows us to write the
Green’s functions by differentiation with respect to the sources. Ideally, the com-
putation of correlation functions would provide us the exact answer to the time
ordered expectation value of the product of n fields defined in different time-space
points. But most of the times, the Lagrangian will contain interaction terms and
it is not possible to analytically compute the exact correlation functions, which
leads us to the idea of perturbative QFT. Essentially what we do is consider that
the interaction parts of a Lagrangian can be written as a series expansion around
a small coupling constant and compute as many terms as necessary to achieve the
requested precision. These terms in the expansion can be alternatively built from
the Feynman diagrams, which work as the building blocks of the theory. The Feyn-
man rules can be derived directly from the Lagrangian as we will do further in this
work. We write down all of the Feynman diagrams until we get the order of per-
turbation we want to compute and then we use the Feynman rules to compute their
amplitudes.

Before entering the framework of perturbative QCD it has to be assured that
the parameter that we are expanding on is small enough so that higher order terms
can be neglected and we still have an accurate result. In the case of QCD only at
high energies the strong coupling constant is small enough so that we can apply
perturbation theory.

It can happen that the process that we want to describe has some dependence
on a long-distance parameter which in the case of QCD means that the coupling
constant is larger and we cannot expand around it. In this case we factorize the
process in short and long distances. The perturbative part depends on the high
energy part and can be computed from the Lagrangian while the non-perturbative
cannot but we can measure it experimentally and the result will be universal.

2.2.1 Renormalization and Regularization

When working with interactive theories, as we have seen before, we need to
approach the problem of computing amplitudes using perturbation theory. By ex-
panding the S-matrix, the terms of interaction can be represented using Feynman
diagrams. We notice that when we compute an amplitude of a Feynman diagram
with a loop with some internal momentum k that is integrated to infinity we may
get divergent integrals. To understand this, we start by defining the superficial de-
gree of divergence of an integral to be D “ Power of momentum in numerator ´

Powers of momentum in denominator. If D ą 0, the integrals diverge, if D “ 0
the integrals diverge logarithmically and if D ă 0, they do not diverge, [11]. These
type of integrals that appear when the internal momentum in a Feynman diagram
goes to infinity k ÝÑ 8 are UV divergent integrals. Another type of divergent
integrals are IR divergent integrals relate to divergences that may occur when the
internal momentum in a loop goes to zero, k ÝÑ 0. In this case, for D ą 0 the
integrals converge, for D “ 0 they are logarithmically divergent and D ă 0 they are
divergent.
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PERTURBATIVE QCD

Before proceeding in the calculation, we first need to regularize all infinities,
making the amplitudes finite. The UV divergent integrals depend only on the in-
ternal momentum we are integrating, but it is common that the amplitudes have
a dependence on the external momenta. Therefore, it is useful to have a frame-
work that allows us to extract the UV divergent integrals completely from the finite
ones, so that we can renormalize the theory and compute finite physical observ-
ables. Several regularization schemes have been developed over the years. One of
those schemes is IReg that we present in the next section.

Our solution to get free of the divergences is by doing renormalization of the
theory. The bare parameters of a Lagrangian are the parameters of a unrenormal-
ized theory, which will gives us infinities when computing the amplitudes of the
Feynman diagrams. Renormalizing the theory means that we will make a shift
from the bare parameters to some physical parameters. As a result, we get the
counterterms, which are terms that are added to the bare Lagrangian, that will ex-
actly cancel the divergences we had from the bare parameters. In fact, these coun-
terterms are the by-product of the shift of variables that will give us the physical
parameters, which are actually the ones we would observe in nature.

2.3 Renormalization in QCD

The complete QCD Lagrangian is given by

LQCD “ ψq,0piγµDµ ´ mq,0qψq,0 ´
1
4

Ga
µν ,0Gµν ,a

0 ` ca
0p´BµDab

µ qcb
0. (2.1)

where Dµ is the covariant derivative, ψq represents the Dirac spinor for the quark
field, mq is the quark mass, Gµν is the field-strength tensor of the gluon fields
and ca represent the fields of the Faddeev–Popov ghost. The Lagrangian is not
renormalized and the subscript 0 stands for the bare fields.

In order to renormalize the theory, we start by making shift in the bare param-
eters, introducing the field renormalization constants

ψq,0 “ Z1{2
2 ψq, Aµ,0 “ Z1{2

3 Aa
µ , ca

0 “ Z1{2
2c ca. (2.2)

Doing these substitutions in the Lagrangian we can find a relation between the
renormalization constants and the coupling constant of QCD g,

Z2Z1{2
3 gs,0 “ µ

p4´dq{2Z1gs. (2.3)

The renormalization constants are chosen so that the Green’s functions have a unit
residue. Extensive calculation of these factors is done in [12].

For the case of the effective theory in this work, only interactions between
gluons and the Higgs boson are considered. Quarks and ghosts can be neglected
and the only renormalization constants we need to compute are the ones for the
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vacuum polarization and the coupling constant renormalization. There are given
by Z3 and Zg and are computed in [12]. Their correspondence to IReg in the limit
of zero quarks is given by

Z3 “ 1 ` αs
1

p4πq

1
b

Ilogpµ
2q

´13
6

´
ζ

2

¯

CA ` Opα
2
s q (2.4)

for the gluon-field renormalization constant and

Zg “ 1 ´ αs
1

p4πq

1
b

Ilogpλ
2q

11
6

CA ` Opα
2
s q (2.5)

for the renormalization of the coupling constant.
Here ζ is the Gauge parameter, and we use ζ “ 1. Also as we are in SUp3q,

we use CA “ 3.

2.4 Implicit regularization

IReg is a regularization method that operates on the momentum space and was
shown to respect unitarity, locality and Lorentz invariance. This procedure oper-
ates on the specific physical dimension of the theory, therefore we do not need to
extend the space-time dimensions. IReg also does not require any changes to the
Lagrangian and can be applicable to arbitrary n-loop calculations, making it an al-
ternative to dimensional schemes. In IReg, we use an algebraic identity recursively
until the UV behavior is only present in irreducible loop integrals that depend on
internal momentum. The UV finite content of the amplitude isolates the depen-
dence on physical parameters (external momenta and masses). The idea behind
this scheme is to assume an implicit regulator µ that we rely on to isolate the basic
divergent loop integrals from the UV finite parts. For a better illustration, consider
the following integral in 4 dimensions,

ż

k

1
k2pk ´ pq2 . (2.6)

We will then exemplify the procedure as the following steps. Some extensive dis-
cussion is made in the following references, [3], [5], [13], [14],[15],[16].

2.4.1 Separation of divergences

We start by introducing a regulator µ in the denominator like
ż

k

1
pk2 ´ µ2qppk ´ pq2 ´ µ2q

. (2.7)

In the case of IR safe integrals, the regulator µ is needed to avoid spurious IR diver-
gences in the course of the evaluation. It will cancel in the end result. In the case
of IR divergent integrals, the µ will survive and parameterize the IR divergences.
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PERTURBATIVE QCD

By power counting, we notice that as k ÝÑ 8 this integral diverges, but there
is a dependence both on internal and external momenta. We want to isolate the UV
divergent content in an integral that is solely dependent on the internal momentum
k on which we are integrating. We notice that it is possible to rewrite the portion
of the integrand that depends on external momentum as

1
pk ´ pq2 ´ µ2 “

1
k2 ´ µ2 `

2k ¨ p ´ p2

pk2 ´ µ2qppk ´ pq2 ´ µ2q
, (2.8)

where in the second term we diminish one order of divergence and in the first one
we have an integral depending only on the internal momentum as we wanted. As
a result, this identity can be used to manipulate the expression and isolate the UV
divergent content in integrals depending only on the internal momentum.

The procedure exemplified above work in general, where equation 2.8 can be
generalised to

1
pk ´ piq

2 ´ µ2 “

n´1
ÿ

j“0

p´1q jpp2
i ´ 2pi ¨ kq j

pk2 ´ µ2q j`1 `
p´1qnpp2

i ´ 2pi ¨ kqn

pk2 ´ µ2qnrpk ´ piq
2s ´ µ2 . (2.9)

The value of n is chosen so that the UV behaviour, which is regularization depen-
dent is completely separated from the finite part, which is regularization indepen-
dent. Notice that this identity in no way will change the integrand, therefore no
alterations are made in the amplitude.

2.4.2 UV divergent integrals as Basic Divergent Integrals (BDI’s)

Following the separation of the divergences of the amplitude, the UV divergent
content of the amplitude can be expressed as integrals whose denominator is only
dependent on the internal momentum k. These integrals are classified as BDI’s and
they can take either logarithmic or quadratic forms which are respectively

Iν1...ν2r
log pµ

2q “

ż

k

kν1 ...k2r

pk2 ´ µ2qr`2 (2.10)

and

Iν1...ν2r
quad pµ

2q “

ż

k

kν1 ...k2r

pk2 ´ µ2qr`1 . (2.11)

Any BDI with odd power of k in the numerator is automatically zero once the
integral goes over the entire space-time and all the denominators have even powers
of k. These BDI’s are written in terms of Lorenz indices and can be rewritten as
scalar integrals, multiplying metric tensors, after setting ST’s to zero, (see section
below). Scalar logarithmic and quadratic divergent integrals are given as

Ilogpµ
2q “

ż

k

1
pk2 ´ µ2q2 (2.12)
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and

Iquadpµ
2q “

ż

k

1
pk2 ´ µ2q

. (2.13)

2.4.3 Surface terms (ST’s)

Previous work has shown that IReg preserves the symmetries of the system,
such as Lorenz invariance, non-Abelian gauge invariance and supersymmetry. Any
symmetry breaking term can be expressed as a well defined difference between di-
vergent integrals with the same superficial degree of freedom. These are called sur-
face terms and they are not originally fixed, which indicates that they are related to
momentum routing invariance in Feynman diagrams meaning that we could make a
shift in the integration variables. As their value is associated with symmetry break-
ing terms, they play a critical role in IReg for the preservation of the symmetries of
the system and we must carefully choose a value that allows the symmetries of the
underlying theory to be preserved. Nonetheless, in a constrained version of IReg,
it has been proven that these regularization dependent surface terms may be set to
zero, complying with gauge invariance, [15]. This will actually allow us to reduce
BDI’s with Lorenz indices ν1...ν2r to linear combinations of scalar products with
the same degree of divergence plus this well defined surface terms (ST’s). Gener-
ally in the four dimensional Minkowskian space-time a surface term of order j can
be written as

Γ
ν1...ν j
i “

ż

k

B

Bkν1

kν2 ...kν j

pk2 ´ µ2qp2` j´1q{2 , (2.14)

with k being the internal momentum and µ an implicit regulator. The general
formula allows for the computation of any order surface terms. As examples one
has

Γ
µν

0 “

ż

k

B

Bµ

kν

pk2 ´ µ2q2 “ 4
´gµν

4
Ilogpµ

2q ´ Iµν

logpµ
2q

¯

, (2.15)

Γ
µναβ

0 “

ż

k

B

Bµ

kνkαkβ

pk2 ´ µ2q3

“24
´

pgµνgαβ ` gµαgνβ ` gµβ gναq
Ilogpµ2q

24
´ Iµναβ

log pµ
2q

¯

,

(2.16)

and

Γ
µν

2 “

ż

k

B

Bµ

kν

pk2 ´ µ2q
“ 2

´gµν

2
Iquadpµ

2q ´ Iµν

quadpµ
2q

¯

. (2.17)

Setting the surface terms to zero we have Γ
µν

0 = Γ
µναβ

0 = Γ
µν

2 = 0, and we have the
following relations
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Iµν

logpµ
2q “

gµν

4
Ilogpµ

2q, (2.18)

Iµναβ

log pµ
2q “ pgµνgαβ ` gµαgνβ ` gµβ gναq

Ilogpµ2q

24
, (2.19)

and
Iµν

quadpµ
2q “

gµν

2
Iquadpµ

2q. (2.20)

As previously stated, the BDI’s with Lorenz indices can be expressed as a linear
combination of BDI’s containing only scalar integrals with the same order of di-
vergence multiplying combinations of metric tensors.

2.4.4 Renormalization scale

In a massless theory, µ represents an infrared regulator that is set to zero in the
end of the calculation, therefore we need to introduce a positive arbitrary constant
λ , mass independent scale, which will play the role of the renormalization group
scale. Renormalization functions can be computed using the following regularisa-
tion independent identity

λ
2 BIlogpλ 2q

Bλ 2 “
i

p4πq2 , (2.21)

with the following solution

Ilogpµ
2q “ Ilogpλ

2q ` b ln
´

λ 2

µ2

¯

, (2.22)

where the constant is b “
i

p4πq2 . It’s worth noting that a minimal subtraction

renormalization scheme emerges naturally from this formalism, in which the infi-
nite divergences that depend only on the internal momentum are subtracted from
the theory. This means that the Ilogpλ 2q will be subtracted via renormalization
whereas the IR divergent part lnpµ2q will cancel in the final amplitude for infrared
safe processes and in the cross section/decay rate otherwise, which will be finite.

2.4.5 UV finite integrals

As in previous work, the result of the finite integrals can be determined by
hand but since we have a lot of different forms of integrals, we will use here the
Package-X of software Mathematica, [6]. We will explain here the procedure to
the particular case of one-loop integrals. To start, we do the input of the one-
loop integral. We define the numerator and the integration variable in terms of
Passarino-Veltman functions, [17]. The software will then convert the Passarino-
Veltman coefficient functions into analytic expressions. We collect the output and
do an expansion in a dimensionless constant µ0 around zero which allows to isolate
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all terms that are divergent and finite in the limit, and neglect all the higher order
terms. This gives the final answer to the evaluation of the integrals.

2.5 Summarizing the procedure

For the sake of simplicity, once all of the above concepts have been introduced,
we put down a set of rules in order to manipulate the amplitudes of the Feynman
diagrams in the framework of IReg.

• Use Feynman rules of the theory to compute the amplitudes of the theory
which consist of some collection of integrals that can depend on internal or
external momenta;

• Introduce a regulator µ in all the denominators; when IR divergences do
appear, this parameter will allow us to express all IR divergences in terms
of ln µ . On the other hand, if the amplitude is IR safe, it will assure that no
spurious IR divergences arise in intermediate steps;

• Apply an algebraic identity as many times as necessary until the UV diver-
gent integrals in the amplitude are entirely separated from the finite ones;

• Express the UV divergent integrals in terms of tensorial BDI’s;

• Set the surface terms to zero, and by doing this, the tensorial BDI’s can be
expressed as scalar integrals with the same order of divergence multiplied by
products of metric tensors containing the Lorentz indices;

• By the end of the calculation introduce a renormalization scale λ and set the
regulator to zero µ ÝÑ 0;

• Calculate the value of UV finite integrals, either by hand or with software.
In this work we will use the Package-X of the software Mathematica.



Chapter 3

Spinor-helicity formalism

In this chapter we start by discussing the motivation to introduce modern ways
of computing amplitudes and then provide an introduction to the spinor-helicity
formalism. The main purpose is to provide some basic notions for dealing with
color and spin quantum numbers in order to make the computation of tree-level
diagram amplitudes simpler.

3.1 Motivation for the spinor-helicity formalism

The usual method to compute decay rates or cross sections involves computing
the amplitude of a Feynman diagram, square it and then sum over the spins and
colors (if present) of the external states. This can easily become complex if many
Feynman diagrams are present, [18]. This is because the physical theories must be
gauge invariant, therefore transformations of the type

Aµ ÝÑ UAµU: ´
i
g

pBµUqU:, (3.1)

with Aµ as a gauge field, U the unitary matrix and g the coupling constant, must
leave the theory invariant. Then when computing the Feynman rules there will be
redundancies and although we end up with a simple and compact expression, the
intermediate steps are very extensive. This means that we have many Feynman di-
agrams that are related by gauge invariance, [18]. This redundancy is also reflected
in the Lorenz condition that requires εpi ¨ pi “ 0, if we do a gauge transformation
in the polarization εi, the equation above must still hold and the amplitude must be
invariant, therefore the gauge transformation εi ÝÑ εi ` api where a is the gauge
parameter, also leads to redundancies. Additionally, in non-abelian theories there
are to many terms in the Feynman diagrams. As a result, intermediate expressions
may become much more complex than the final result and the process of com-
putation becomes difficult. Therefore, one searches a formalism that reduces the
complexity of the calculation, [19].

13
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If we consider only the outgoing particles and consider them on-shell, we re-
duce considerably the number of degrees of freedom and also eliminate the con-
nection to quantised fields and therefore gauge redundancies, [19]. This motivates
the usage of an on-shell formalism.

We will explore here how to organize the spin (and helicity) and color in order
to simplify the amplitude into gauge invariant pieces.

3.2 Spinor-helicity formalism

In high-energy collision processes, if we consider ultra-relativistic particles,
they will behave as if they were massless for whom it is known that chirality and
helicity are the same and we have conservation of helicity through the interaction
of the particles,[7], [18]. In this context, the helicity basis becomes useful.

The next step is to determine which kinematic variables may be used to write
the scattering amplitudes. The Lorentz group is a Lie group of symmetries of
space-time of special relativity and can have a variety of representations. The four-

vectors pµ are represented in the
´1

2
,
1
2

¯

Lorentz space and are the usual choice of
kinematic variables to define the amplitudes. But there is a smaller representation

of the Lorentz group which is the representation
´1

2
,0

¯

À

´

0,
1
2

¯

. This represen-
tation of the Lorentz group is the Dirac representation, [7]. The main idea behind
this is using constant spinor that transform under the finite dimensional represen-
tations of the Lorentz group, so we define the helicity spinor as real or complex

doublets that transform under the
´1

2
,0

¯

and
´

0,
1
2

¯

representations of the Lorentz
group, [20]. So what we do in spinor-helicity formalism is trading our four vector
momentum pµ

i for a pair of spinors as follows

u`ppiq “ |i`y “ λ
α
i ,

u´ppiq “ |i´y “ λ
9α

i

(3.2)

For massless vectors, these are two-dimensional Weyl spinor and they obey the
Dirac massless equation

{pu˘ppq “ 0, (3.3)

where u`ppiq “
p1 ` γ5q

2
uppiq and u´ppiq “

p1 ´ γ5q

2
uppiq are respectively a right-

handed and left-handed 4-component spinors in the Dirac notation and λ α
i and λ

9α
i

are the respective 2 component versions with α “ 1,2.
To raise and lower the indices we use anti-symmetric tensors of the type

ε
αβ “ ´εαβ “ ε

9α 9β “ ´ε
9α 9β

“ iσµσ
µ “

ˆ

0 1
´1 0

˙

. (3.4)
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We can use the Pauli matrices σ to write the momenta as bispinors. For exam-
ple, for the positive energy solution we have

u`ppqu:
`ppq “ pα 9α “ σ

α 9α
µ pµ “

ˆ

p0 ´ p3 ´p1 ` ip2

´p1 ´ ip2 p0 ` p3

˙

, (3.5)

from where we infer the following relations

pα 9α “ σ
α 9α
µ pµ , (3.6)

pα 9α “ σ̄
µ

9αα
pµ . (3.7)

The determinant of the matrix of the bispinor is

detppα 9αq “ p2
0 ´ p2

1 ´ p2
2 ´ p2

3 “ pµ

0 p0µ “ m2. (3.8)

If the particles are massless then detppα 9αq “ 0. This means that we can factor-
ize the matrix into vectors, which is precisely what we have obtained before by
choosing the Weyl basis. In other notation we have

λ
α “ py, λα “ xp, λ̃ 9α “ ps, λ̃

9α “ rp, (3.9)

where
pα 9α “ λ

α
λ̃

9α “ pyrp (3.10)

and
pα 9α “ λ̃ 9αλα “ psxp. (3.11)

The momentum conservation in terms of the spinors using the ket notation can
be written as

ÿ

pµ

i “
ÿ

pα 9α
i “

ÿ

j

λ
α
j λ

9α
j “

ÿ

j

jyr j “ 0. (3.12)

Using the tensor in equation 3.4, we can define the following objects

ū´ppiqu`pp jq “ ε
αβ pλiqαpλ jqβ ” xi jy (3.13)

and

ū`ppiqu´pp jq “ ε
9α 9β pλ̃iq 9αpλ̃ jq 9β

” ri js. (3.14)

The relation between these objects and the usual Mandelstam variables which we
use to compute amplitudes is

xi jyr jis “ 2pi p j “ ppi ` p jq
2 “ si j ” s (3.15)

and a similar reasoning for the other channels. These are our invariant quantities in
terms of the spinors.
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We consider now that we are only working with real momenta. Notice that
this equation does not completely define the vectors λ , since in the real Minkowski
space they are complex conjugates and can differ by a complex phase, [21]. The
complex conjugate of the spinors is ri js “ xi jy˚ which we notice is just a parity
transformation. This happens because for the case of real momenta, the complex
conjugation is obtained by transposing the matrix {pi, meaning that we exchange left
and right handed spinors, [7]. By looking at equation 3.15 we notice the bispinors
can be written as follows

xi jy “
?

si jeiφ (3.16)

and

ri js “
?

si je´iφ , (3.17)

and the only difference between them is just a complex phase.
The spinor products also respect anti-symmetry, [7]

xi jy “ ´x jiy, ri js “ ´r jis, xiiy “ riis “ 0. (3.18)

After having defined a notation for the momenta and their invariant scalar prod-
ucts, we now write the polarization vector for a massless gauge boson

rε´
p prqsα 9α “

?
2

pyrr
rprs

, (3.19)

rε`
p prqsα 9α “

?
2

ryrp
xrpy

. (3.20)

where we defined a reference momentum r that needs to be chosen so that it can
obey the following properties,[22]

$

’

&

’

%

řn
i“1 ri “ 0

ri ¨ r j “ 0
pi ¨ ri “ 0, for each i

(3.21)

The choice of these reference momentum r is arbitrary, which reflects the freedom
of gauge. This means that the amplitudes should be unchanged when the polariza-
tion vector is shifted by an amount proportional to the momentum, [7].

We have now established a new notation for our objects and, as the amplitudes
should be functions of invariant quantities, the simplest way to do it is to compute
scalar products between momenta and polarizations.

All the above formalism is derived in the basis that helicity is conserved and
particles are massless. But it is know that vector particles like photons and gluons
do not have a conserved helicity. Despite this, in the tree-level reactions, there is
conservation of helicity because all the processes that do not conserve it are zero.
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3.3 Color decomposition

Working in QCD we have the presence of the color degrees of freedom in the
theory. When computing QCD amplitudes using the Feynman rules, we find the
presence of the Lie algebra structure constants f abc. These structure constants are
defined by the commutator

rT a,T bs “ i
?

2 f abcT c, (3.22)

which allows us to relate the constant structures with the matrices of the funda-
mental representation T a

f abc “
i

?
2

pTrpT aT bT cq ´ TrpT aT cT bqq (3.23)

We can now use this equation to eliminate the structure constants in the amplitude
in favour of these traces of the matrices T i. Furthermore, products of traces can be
simplified using the Fierz identity, [18]

ÿ

a

pT aq
j1
i1 pT aq

j2
i2 “ δ

j2
i1 δ

j1
i2 ´

1
Nc

δ
j1

i1 δ
j2

i2 (3.24)

This equation means that the generators T a of the SUpNCq group form a complete
set of traceless hermitian matrices NC ˆ NC, [7], [18]. More details and discussion
are provided in the appendices.

3.4 The amplitude in the spinor-helicity formalism

After the algebraic manipulation of the colour algebra, we have an amplitude
that is a function of the momenta pi and the polarization of the particles εi. In
the spinor helicity formalism what we do is a transformation to a space where the
amplitudes are a function of spinor uppq and helicity hi. It is here that the major
simplification is done as we eliminate the redundancies coming from the Lorenz
condition and the gauge invariance of the theories.

Consider a process involving the Higgs plus some number n of gluons. We will
see that the Feynman rules of the vertices involving three or four gluons translate to
the Yang-Mills’ multiplied by some constant. Therefore, the form of the amplitudes
will be the same as for the pure YM theory. For this case, the color decomposition
of the Higgs´n´gluon tree amplitude is

Mtree
n ppi,hi,aiq “ gn´2

ÿ

εPSn{Zn

TrpT
aε1

ε1 ...T aεn
εn qMnpε 1

1...ε
n
nq. (3.25)

Mtree
n is the partial amplitude with the kinematic variables. The notation is g as

the gauge coupling, pi ” i as the momenta, hi the helicity, ai the color and ε the
polarization, Sn is the set of all permutations of n objects and Zn is the subset of
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cyclic permutations that preserves the trace. By doing the sum of all polarization
that belong to Sn{Zn, what we are doing is sweeping out all cyclically nonequiv-
alent orderings in the trace. This means that the amplitude is color ordered and
is very important, since contributions from some diagrams with a particular cyclic
ordering of the gluons are taken into account, [7], [18].

3.5 Little group covariance

The little group is the ISO(2) group of Lorentz transformations which leaves
the outgoing particle momenta invariant. In terms of bispinors notation we have
that the objects pyrp and psxp are invariant.

This can also be interpreted as the overall phases of the spinors not being deter-
mined by the Dirac equation, so they can be arbitrarily chosen. Due to this freedom
of choice, in terms of bispinors, we have that the above expressions are invariant
under the transformations

py ÝÑ zpy, rp ÝÑ
1
z

rp (3.26)

The requirement of the little group covariance in a scattering amplitude takes the
generic form

Mpph1
1 ...phn

n q ÝÑ Π
n
j“1z´2h j

j Mpph1
1 ...phn

n q. (3.27)

Notice that the amplitude is covariant and not invariant under the little group.
Nevertheless z j are phases that cancel when we do the modulus squared of the
amplitudes, which will remain invariant.

Since momenta and reference momenta are invariant under little group, only
the polarizations play a part in determining the amplitude here, since we have

ε
´
p “

?
2

pyrr
rprs

ÝÑ z2
ε

´
p prq (3.28)

and

ε
`
p “

?
2

ryrp
xrpy

ÝÑ z´2
ε

`
p prq. (3.29)

This will therefore diminish the range of forms of the amplitudes we can accept
for a certain process with certain helicities.



Chapter 4

The effective model for the decay
HÝÑgg

4.1 Effective Field Theories

An EFT is a quantum theory that has a regularization and renormalization
scheme. Its key idea is that the dynamics at low energies given by the scale m
does not depend on the dynamics at high energies given by the scale Λ. As a result,

we can define a power counting parameter δ “
m2

Λ2 and perform the computations

as an expansion to some order n in δ . To better understand the power counting we
start by defining the EFT functional integral as

F “

ż

DφeiS, (4.1)

with the action being

S “

ż

ddxLpxq. (4.2)

L is the Lagrangian density with energy dimension d, rLpxqs “ d given by the sum
of the products of coefficients ci of dimension d-D with Lorentz invariant operators
Oi of dimension D

Lpxq “
ÿ

i

ciOipxq. (4.3)

Now following the same logic as for the Lagrangian density, the EFT La-
grangian can be expanded as

LEFT “
ÿ

Dě0,i

cipDqOipDq

ΛD´d “
ÿ

Dě0

LD

ΛD´d , (4.4)

19



CHAPTER 4. THE EFFECTIVE MODEL FOR THE DECAY HÝÑGG 20

where D is the dimension of the higher order operator, d is the dimension of the
Lagrangian of the theory and ci are Wilson coefficients that are the coefficients of
the expansion and contain all information about short-distance physics above the
scale m. The energy scale Λ is the scale at which new physics occurs and guaran-
tees that even if higher order operators are added to the theory, the full Lagrangian
remains at dimension d, which means that the c

1

is are dimensionless. For d “ 4 we
have the following

LEFT “ LDď4 `
L5

Λ
`

L6

Λ2 ` ... (4.5)

We notice that one does not stop at D “ d, but includes operators of arbitrarily
higher dimension.

EFT can be of two distinct types: bottom-up and top-down. The first is applied
when the underlying theory is known and we write the most general Lagrangian
that is consistent with the symmetries of the system. The top-down EFT is applied
when the full theory is known and we wish to have a Lagrangian to describe a low
energy system; in this case we integrate out the heavy particles.

There are advantages in using EFT, such as the simplification of the compu-
tations, as we are only dealing with the relevant interactions to the energy scale
that we wish to study. Also, when constructing an EFT, the EFT Lagrangian re-
produces the same S-matrix as the original theory and therefore the observables in
both theories must coincide.

So as we have seen EFT provide an efficient method to characterize new
physics using operators of higher dimension, so we will look for a way to con-
struct a Lagrangian that provides us an accurate form to study the system of this
work: the Higgs decay into gluons. This discussion is extensively exposed in [23].

4.2 The effect of heavy quarks in Higgs boson decay

We are now in a position to derive the Lagrangian of our model. In general

L “ LY M ` Lint ` LHiggs (4.6)

where LY M is the Yang-Mills Lagrangian, LHiggs represents the kinetic part of the
Higgs Lagrangian and Lint describes the effective interaction of the Higgs with
the gluons, where the heavier degrees of freedom (quarks) have been integrated
out. For our discussion here the relevant parts will be the YM and the effective
interaction. We can write the interaction part as an expansion in a power of series
as in [24],

Lint “ ´H
ÿ

i

ciOi. (4.7)

Here, H stands for the Higgs field, ci are the coefficient of the expansion and Oi

are local operators. The problem now is to find the local operators with the correct
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dimensions and their corresponding coefficients. This problem has been studied by
Kazama and Yao, [25] and the results for this case have been reported in [24]. So
we have the contribution of the following operator

O1 “ ´
1
4

Ga
µνGµν

a (4.8)

and adding its dimension with the Higgs field dimension, we have a total operator
of dimension 5.

4.3 Higgs decays

The Higgs boson’s decay branching ratios are dependent on the energy scale
being considered, i.e. the Higgs mass. The Higgs boson can decay into a fermion
and an anti-fermion, with the strength of the interaction proportional to the fermion
mass. The final decay rate is proportional to the square of the strength of the
interaction and grows linearly with the Higgs mass. In this case, the most important
final states will be bb̄, ττ and cc̄, the first being the largest one in the range of mass
80GeV to 200GeV as we can see in figure 4.1. Also, there are decays of the Higgs
into bosons W `W ´ and ZZ, which are proportional to the square of the coupling.
Loop-induced decays, such as gg, γγ , and Zγ , are also present. The h ÝÑ γγ and
the h ÝÑ Zγ are dominated by the W boson loop, whereas the h ÝÑ gg decay
is dominated by the top quark loop, with a small contribution from the bottom
quark loop, which will be the focus of this work. All this discussion is extensively
exposed in [26].

Figure 4.1: Higgs branching ratios and total uncertainty at low mass range. We study the limit where
the Higgs mass is between 80GeV and 200GeV . SOURCE: [1]
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4.4 Effective model to describe the Higgs coupling to glu-
ons

Consider the Higgs decay into two jets of gluons in the mass range 80GeV ă

mH ă 200GeV . We have seen that this occurs via a top quark loop. But if we take
the top quark mass to be infinite, this limit allows us to integrate out the top quark
degree of freedom, replacing the one-loop coupling of the Higgs to the gluons with
a top quark loop by an effective local, gauge invariant operator HGa

µνGa,µν . This
will reduce the number of loops by one at each order, [27] and also, by taking an
infinite mass for the quarks we may have underestimated the decay rate, but the
effective Lagrangian may still give a reliable estimate for these corrections in the
range of mass of the Higgs we are considering, [28]. The effective interaction of
one Higgs with two, three and four gluons is described by the Lagrangian,

Le f f “ ´
1
4

AHGa
µνGa,µν (4.9)

that can also be found in [8], [27] and [29].
Ga

µν is the field strength of the SUp3q gluon field given by

Ga
µν “ BµAa

ν ´ BνAa
µ ` g f abcAb

µAc
ν (4.10)

and f abc are the anti-symmetric SUp3q structure constants.
The effective coupling A is given by

A “
αs

3πv

´

1 `
11
4

αs

π

¯

, (4.11)

where H represents the Higgs boson field and v is the vacuum expectation value,

v2 “
1

G f
?

2
. We can relate the effective coupling with the strong coupling constant,

αs “
g2

4π
.

The virtual diagrams that arise from this effective Lagrangian are generated us-
ing the package FeynArts of the software Mathematica, [30]. There are 5 diagrams
that contribute to the one-loop order correction, which are represented in figure 4.2.

Virtual diagrams

H

p2,ν ,b

p1,µ,a

H

p2,ν ,b

p1,µ,a
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H

p2,ν ,b

p1,µ,a p2,ν ,b

p1,µ,a

H

p2,ν ,b

H

p1,µ,a

Figure 4.2: Virtual diagrams contribution to the decay rate H ÝÑ ggpgq. From left to right they are
respectively V1,V2,V3,V4,V5. The dashed line represents the Higgs field, the curly lines represent the
gluon field.

Real diagrams

The diagrams that will contribute for the real decay until the αs order are rep-
resented in figure 4.3.

H

pk

pi

p j

H

p1

p2
p3

Figure 4.3: Real diagrams contribution to the decay H ÝÑ ggg. From left to right they are respec-
tively R1 and R2. The dashed line represents the Higgs field and the curly lines represent the gluon
field. The tpi, p j, pku correspond to the three permutations of pi, p j and pk, so R1 stands for 3 dia-
grams.

The diagrams V1 to V5 contribute to the virtual amplitude and the diagrams R1
and R2 (which corresponds to three diagrams) contribute to the real amplitude at
the same order of expansion.
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4.5 Feynman rules for the effective Lagrangian

By looking at the previous diagrams, notice that the interactions between the
Higgs boson and the gluons arise from the effective interaction while the interac-
tions between only gluons arise from the YM pure lagrangian. In order to evaluate
all the previous diagrams, we need to compute the Feynman rules for the effective
interaction Hgg and the pure YM lagrangian that will be the building blocks for the
amplitudes. We will compute the Feynman rules for the 2-gluon-Higgs, 3-gluon-
Higgs and 4-gluon-Higgs with the effective interaction and the 3-gluon, 4-gluon
interactions and the ghost vertex with the YM lagrangian. We start by deriving the
Feynman rules for the effective interaction. The S-matrix can be written as

S “ x0|T pe´i
ş

d4xLe f f pxqq|qpα,a1

1 pβ ,b1

2 y, (4.12)

where |pα,a
1

1 y, |pβ ,b
1

2 y are the states of the external gluons with color indices a
1

and
b

1

and |qy represents the state of the Higgs boson. To derive each Feynman rule
we extract from the Lagrangian the interaction term that describes the diagram we
are interested in and we expand the exponential in the S-matrix until the first order,
and perform the contractions between operators and states. Also, for convention
all the external momenta are going inwards.

2-gluon-Higgs Feynman rule

We start by computing the 2-gluon-Higgs Feynman rule represented in figure
4.4.

H

p2,ν ,b

p1,µ,a

Figure 4.4: 2-gluon-Higgs Feynman rule.

The part of the lagrangian that gives origin to this rule is

L2gH
e f f “ ´

1
4

AHpBµAa
ν ´ BνAa

µqpBµAν a ´ BνAµ aq

“ ´
1
2

AHpBµAa
νBµAν a ´ BνAa

µBµAν aq.

(4.13)

Expanding the exponential until first order we get
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x0|T p´ip´
1
4

AHq2pBµAa
νBµAν a ´ BνAa

µBµAν aqq|e´ixpq`p1`p2q
ε

a
α

1pp1qε
b
β

1pp2qy.

(4.14)
We sum for all the possibilities of the operators on the effective Lagrangian acting
on the polarizations εppiq. We get the following

“ ´
1
4

AHδ
aa1

δ
ab1

p4gναgνβ p´ip1µqp´ip2µq´4gµαgνβ p´ip1µqp´ip2νqq. (4.15)

Contracting all the indices we get the 2-gluon-Higgs Feynman rule

δ
4pq ` p1 ` p2qiAδ

a1b1

Hαβ pp1, p2q (4.16)

where the tensor is Hα,β pp1, p2q “ ´pβ

1 pα
2 ` gαβ p1 ¨ p2.

3-gluon-Higgs Feynman rule

The 3-gluon-Higgs Feynman rule is represented in figure 4.5.

H p2,ν ,b

p1,µ,a

p3,γ,c

Figure 4.5: 3-gluon-Higgs Feynman rule.

The S matrix is written as follows

x0|T pe´i
ş

d4xLe f f pxqq|qpα,a1

1 pβ ,b1

2 pγ,c1

3 y (4.17)

up to the normalization with |pα,a1

1 y, |pβ ,b
1

2y,|pγ,c
1

3y

as the states of the external gluons
with color indices a

1

, b
1

and c
1

and |qy as the Higgs boson. The part of the effective
Lagrangian that gives origin to this rule is

L3gH
e f f “ ´gAH f abcpBµAa

νqAµ,bAν ,c. (4.18)

Again we expand the exponential until first order and we get

x0|T p´ip´gAH f abcpBµAa
νqAµ,bAν ,cq|e´ixpq`p1`p2`p3q

ε
a
α

1pp1qε
b
β

1pp2qε
c
γ

1pp3qy.
(4.19)
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In this case we have 3! “ 6 different ways of the operators acting on the polariza-
tions εppiq. By summing for all the possibilities we get

“e´ipq`p1`p2`p3q f abcAˆ
`

δ
aa1

gναp´ipµ

1 qpδ
bb1

δ
cc1

gνβ gνγ ` δ
bc1

δ
cb1

gµγgνβ q

`δ
ab1

gνβ p´ipµ

2 qpδ
ba1

δ
cc1

gµαgνγ ` δ
bc1

δ
ca1

gµγgναq

`δ
ac1

gνγp´ipµ

3 qpδ
ba1

δ
cb1

gµαgνβ ` δ
bb1

δ
ca1

gµβ gναq
˘

(4.20)

By contracting all the indices we get the 3-gluon-Higgs Feynman rule

δ
4pq ` p1 ` p2 ` p3qp´Ag f abcV αβγpp1, p2, p3qq, (4.21)

where the tensor is

V αβγpp1, p2, p3q “ pp1 ´ p2qγgαβ ` pp2 ´ p3qαgβγ ` pp3 ´ p1qβ gαγ . (4.22)

4-gluon-Higgs Feynman rule

The 4-gluon-Higgs Feynman rule is represented in figure 4.6.

p1,µ,a

H

p1,µ,a

p1,µ,a

p1,µ,a

Figure 4.6: 4-gluon-Higgs Feynman rule.

x0|T pe´i
ş

d4xLe f f pxqq|qpa1

1µ 1 pb1

2ν 1 pc1

3ρ 1 pd1

4τ 1y (4.23)

where |pa
1

1µ 1y, |pb
1

2ν 1y, |pc
1

3ρ 1y, |pd
1

4τ 1y are the states of the external gluons with color

indices a
1

, b
1

, c
1

, and d
1

and |qy represents Higgs boson field. The part of the
Lagrangian that gives origin to this rule is

L4gH
e f f “ ´

1
4

g2AHp f eabAa
µAb

νqp f ecdAc
µAd

νq. (4.24)

By expanding the exponential in the S-matrix until first order follows
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x0|T p´i
ż

d4xp´
1
4

g2AHp f eabAa
µAb

νqqp f ecdAc
µAd

νq

|e´iqxe´ip1xe´ip2xe´ip3xe´ip4x
ε

a1

µ 1pp1qε
b1

ν 1 pp2qε
c1

ρ 1pp3qε
d1

τ 1 pp4qy.

(4.25)

In this case we have 4! “ 24 different ways for the operators to act on the states
and we sum for all the possibilities which gives the following

“ f eab f edcpgaa1

µµ 1gbb1

νν 1gcc1

µρ 1gdd1

ντ 1 ` gaa1

µµ 1gbb1

νν 1gcd1

µτ 1gdc1

νρ 1 ` gaa1

µµ 1gbc1

νρ 1gcb1

µν 1gdd1

ντ 1

`gaa1

µµ 1gbc1

νρ 1gcd1

µτ 1gdb1

νν 1 ` gaa1

µµ 1gbd1

ντ 1gcb1

µν 1gdc1

νρ 1 ` gaa1

µµ 1gbd1

ντ 1gcc1

µρ 1gdb1

νν 1

`gab1

µν 1gba1

νµ 1gcc1

µρ 1gdd1

ντ 1 ` gab1

µν 1gba1

νµ 1gcd1

µτ 1gdc1

νρ 1 ` gab1

µν 1gbc1

νρ 1gcd1

µτ 1gda1

νµ 1

`gab1

µν 1gbc1

νρ 1gca1

µµ 1gdd1

ντ 1 ` gab1

µν 1gbd1

ντ 1gca1

µµ 1gdc1

νρ 1 ` gab1

µν 1gcd1

ντ 1gcc1

µρ 1gda1

νµ 1

`gac1

µρ 1gba1

νµ 1gcb1

µν 1gdd1

ντ 1 ` gac1

µρ 1gba1

νµ 1gcd1

µτ 1gdb1

νν 1 ` gac1

µρ 1gbb1

νν 1gca1

µµ 1gdd1

ντ 1

`gac1

µρ 1gbb1

νν 1gcd1

µτ 1gda1

νµ 1 ` gac1

µρ 1gbd1

ντ 1gca1

µµ 1gdb1

νν 1 ` gac1

µρ 1gbd1

ντ 1gcb1

µν 1gda1

νµ 1

`gad1

µτ 1gba1

νµ 1gcb1

µν 1gdc1

νρ 1 ` gad1

µτ 1gba1

νµ 1gcc1

µρ 1gdb1

νν 1 ` gad1

µτ 1gbb1

νν 1gca1

µµ 1gdc1

νρ 1

`gad1

µτ 1gbb1

νν 1gcc1

µρ 1gda1

νµ 1 ` gad1

µτ 1gbc1

νρ 1gca1

µµ 1gdb1

νν 1 ` gad1

µτ 1gbc1

νρ 1gcb1

µν 1gda
νµ 1q.

(4.26)

By contracting all the indices we get the 4-gluon-Higgs Feynman rule

δ
4pq ` p1 ` p2 ` p3qp´ig2qXa1b1c1d1

µ 1ν 1ρ 1τ 1 , (4.27)

with the tensor being

Xa1b1c1d1

µ 1ν 1ρ 1τ 1 “ f a1b1e f c1d1epgµ 1ρ 1gν 1τ 1 ´ gµ 1τ 1gν 1ρ 1q

` f a1c1e f b1d1epgµ 1ν 1gρ 1τ 1 ´ gµ 1τ 1gρ 1ν 1q

` f a1d1e f b1c1epgµ 1ν 1gτ 1ρ 1 ´ gµ 1ρ 1gν 1τ 1q.

(4.28)

4.6 Yang-Mills Feynman rules

We find the vertices by writing explicitly the nonlinear terms in the YM La-
grangian, which can be found in [31]

L “ L0 ´ g f abcpBkAa
λ

qAkbAλc ´
1
4

g2p f eabAa
kAb

λ
qp f ecdAc

kAd
λ

q (4.29)

where L0 is the free field Lagrangian and we choose the convention of all momenta
going inwards. The procedure to compute the Feynman rules is very similar to the
previous one and they read as follows.
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3-gluon Feynman rule

The 3-gluon Feynman rule is represented in figure 4.7

p1,µ,a p2,ν ,b

p3,γ,c

Figure 4.7: 3-gluon Feynman rule.

and can be read.

V 3g “ g f abcpgµνpp1 ´ p2qρ ` gνρpp2 ´ p3qµ ` gρµpp3 ´ p1qνq (4.30)

4-gluon Feynman rule

The 4-gluon Feynman rule is represented in figure 4.8

p1,µ,a

p3,ρ,c

p2,ν ,bp4,σ ,d

Figure 4.8: 4-gluon Feynman rule.

and reads as follows

V 4g “ ig2p f abe f cdepgµρgνσ ´ gµσ gνρq

f ace f bdepgµνgρσ ´ gµσ gνρq

f ade f bcepgµνgρσ ´ gµρgνσ qq.

(4.31)

Feynman rules as the building blocks for the amplitudes

We notice that an advantage of using this effective model is that the structure of
the Feynman rules of 3-gluon-Higgs and 4-gluon-Higgs is identical to the Feynman
rules for 3-gluon and 4-gluon derived from pure YM theory.
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The Feynman rules derived above from the effective Lagrangian and pure YM
Lagrangian are the building blocks for the the Feynman diagrams of the theory.
They allow to compute the amplitudes of the virtual and real diagrams exposed
above, as we will see in the next chapters.
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Chapter 5

Virtual decay rate HÝÑgg

In this chapter we compute the one-loop amplitude of each of the virtual dia-
grams, from V1 to V5, using the Feynman rules of the effective lagrangian derived
in chapter 4. After this we use the fundamental identity of IReg to completely
separate the UV divergent integrals from the UV finite ones. The UV divergent in-
tegrals are written as BDI’s and the UV finite ones are evaluated using Package-X
of the software Mathematica. We perform renormalization of the effective theory
and after that we compute the virtual decay rate of the process H ÝÑ gg.

5.1 Computation of the amplitudes and separation of the
UV divergent content

For all the diagrams we choose the external momenta of the two gluons to be p1
and p2 and the momentum of the Higgs boson to be q and the internal momentum
of the loop to be k. All the external momenta are inwards, therefore we can write
the equation of momentum-energy conservation as p1 ` p2 ` q “ 0 which is valid
for any of the diagrams. Because the Feynman rules don’t provide us with the
symmetry factor of the diagrams, they were extracted from the package FeynArts
of the software Mathematica. In the end of the computation we apply the on-shell
conditions and impose p2

1 “ p2
2 “ 0. All the diagrams that we analyse are of order

one-loop, therefore we use the algebraic identity of IReg given in equation 2.8. As
we have two external momenta we have

1
pk ´ piq

2 ´ µ2 “
1

pk2 ´ µ2q
`

pp2
i ´ 2pi ¨ kq

pk2 ´ µ2qrpk ´ piq
2s ´ µ2 (5.1)

where i “ 1,2, will be used to separate the UV divergent content from the finite in
all the amplitudes of the diagrams V1 to V5.

We will use the Feynman Gauge and the Feynman rules used are the ones

derived in chapter 4. The propagators have the form ∆pkqab
µν “

´iδ abgµν

k2 with a,b

31
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being color indices and µ,ν being Lorenz indices and k as the momentum in the
loop.

Diagram V1

To obtain to total amplitude of the diagram V1 we notice that we need two 3-
gluon vertices and the 2-gluon-Higgs vertex. The propagators are ∆pkqcc

1

ρρ
1 , ∆pk `

p2qd
2

d
3

τ
2

τ
3 and ∆pk ´ p1qdd

1

ττ
1 . The symmetry factor is 1, so we have

V1 “ V 3g
subV1

V 3g
subV1

V 2g´H
subV1

∆pkqcc
1

ρρ
1 ∆pk ` p2qd

2
d

3

τ
2

τ
3 ∆pk ´ p1qdd

1

ττ
1 (5.2)

for the 3-gluon vertices we have respectively

V 3g
subV1

“ g f cadpgµρp´k ´ p1qτ ` gµτp2p1 ´ kqρ ` gρτp2k ´ p1qµq, (5.3)

V 3g
subV1

“ g f c
1
bd

2

pgρ
1
νpk ´ p2qτ 2

` gντ
2

p2p2 ` kqρ 1

` gτ
2

ρ
2

p´2k ´ p2qνq (5.4)

and for the 2-gluon-Higgs vertex

V 2g´H
subV1

“ iAδ
d

1
d

3

pgτ
1
τ

3

pk ´ p1q ¨ pk ` p2q ´ pk ´ p1qτ 3

pk ` p2qτ 1

q. (5.5)

Expanding the expression and contracting all indices we obtain

V1 “ ´Ag2CAδ
ab

ż

k

1
k2pk ´ p1q2pk ` p2q2

˜

k4gµν ` 2pk ¨ p1q2gµν ` 2pk ¨ p2q2gµν ` 4pp1 ¨ p2q2gµν ` 11kµkνk2 ´ 6pµ

1 kνk2

´ k2 pµ

2 kν ` k2kµ pν
1 ` k2 pµ

1 pν
1 ` 9k2 pµ

2 pν
1 ` 6k2kµ pν

2 ´ 3k2 pµ

1 pν
2

` k2 pµ

2 pν
2 ´ 10pk ¨ p1qkµkν ` pk ¨ p1qpµ

1 kν ´ 6pk ¨ p1qpµ

2 kν ´ 2pk ¨ p1qkµ pν
1

´ 6pk ¨ p1qpµ

2 pν
1 ´ 6pk ¨ p1qkµ pν

2 ` pk ¨ p1qpµ

1 pν
2 ´ 3pk ¨ p1qpµ

2 pν
2

´ 3k2pk ¨ p1qgµν ` 10pk ¨ p2qkµkν ´ 6pk ¨ p2qpµ

1 kν ´ 2pk ¨ p2qpµ

2 kν ´ 6pk ¨ p2qkµ pν
1

` 3pk ¨ p2qpµ

1 pν
1 ` 6pk ¨ p2qpµ

2 pν
1 ` pk ¨ p2qkµ pν

2 ´ pk ¨ p2qpµ

1 pν
2 ` 3k2pk ¨ p2qgµν

` 4p2
1kµkν ` 4p2

1 pµ

2 kν ` 2p2
1kµ pν

2 ` 2p2
1 pµ

2 pν
2 ´ pp1 ¨ p2qpµ

1 kν

´ 4pp1 ¨ p2qpµ

2 pν
1 ` pp1 ¨ p2qkµ pν

2 ´ pp1 ¨ p2qpµ

1 pν
2 ´ 9pp1 ¨ p2qk2gµν ` 6pp1 ¨ p2qpk ¨ p1qgµν

´ 6pp1 ¨ p2qpk ¨ p2qgµν ` 4p2
2kµkν ´ 2p2

2 pµ

1 kν ´ 4p2
2kµ pν

1 ` 2p2
2 pµ

1 pν
1

¸

.

(5.6)
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Equation 5.6 gives us the amplitude before any treatment of divergences. We now
apply the identity to separate the divergences. Despite having many terms, the inte-
grals in the previous equation can all be reduced to 7 types that are given explicitly
and computed in appendix A. We obtain the following regularised amplitude:

V1 “ ´Ag2CAδ
ab

ż

k

˜

´ 10pk ¨ pp1 ´ p2qkµkν I1
V1

pk, p1, p2,µq

`

´

2gµνppk ¨ p1q2 ` pk ¨ p2q2q ` pk ¨ p1qpµ

1 kν ´ 6pk ¨ p1qppµ

2 kν ` kµ pν
2 q ´ 2pk ¨ p1qkµ pν

1

´ 6pk ¨ p2qppµ

1 kν ` kµ pν
1 q ´ 2pk ¨ p2qpµ

2 kν ` pk ¨ p2qkµ pν
2

¯

I2
V1

pk, p1, p2,µq

`

´

´ 6pk ¨ p1qpµ

2 pν
1 ` pk ¨ p1qpµ

1 pν
2 ´ 3pk ¨ p1qpµ

2 pν
2 ` 3pk ¨ p2qpµ

1 pν
1

` 6pk ¨ p2qpµ

2 pν
1 ´ pk ¨ p2qpµ

1 pν
2 ´ pp1 ¨ p2qpµ

1 kν ` pp1 ¨ p2qkµ pν
2

` 6pp1 ¨ p2qpk ¨ pp1 ´ p2qqgµν

¯

I3
V1

pk, p1, p2,µq

`

´

4pp1 ¨ p2q2gµν ´ 4pp1 ¨ p2qpµ

2 pν
1 ´ pp1 ¨ p2qpµ

1 pν
2

¯

I4
V1

pk, p1, p2,µq

` p11kµkν ` k2gµνqI5
V1

pk, p1, p2,µq

p´6pµ

1 kν ´ pµ

2 kν ` kµ pν
1 ` 6kµ pν

2 ´ 3pk ¨ pp1 ´ p2qqgµν I6
V1

pk, p1, p2,µq

` ppµ

1 pν
1 ` 9pµ

2 pν
1 ´ 3pµ

1 pν
2 ` pµ

2 pν
2 ´ 9pp1 ¨ p2qgµνqI7

V1
pk, p1, p2,µq

¸

,

(5.7)

where Ii
V1

, pi “ 1...7q stand for different combinations of denominators appearing
in the decomposition of the integral related to the diagram V1, and given in the
appendix A. Similar notations are used below for the other amplitudes. To simplify
the expression we have already applied the conditions on-shell, p2

i “ 0, i “ 1,2.

Diagram V2

To obtain the total amplitude of the diagram V2 we notice that the sub-diagrams
are the 4-gluon vertex and the 2-gluon-Higgs vertex. The propagators are ∆pkqcc

1

ρρ
1

and ∆pk ´ p1 ´ p2qdd
1

σσ
1 . The symmetry factor is

1
2

, so the amplitude is

V2 “
1
2

V gggg
subV2

V 2g´H
subV2

∆pkqcc
1

ρρ
1 ∆pk ´ p1 ´ p2qdd

1

σσ
1 (5.8)

For the 4-gluon vertex we have
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V gggg
subV2

“ ´ig2p f abe f cdepgµρgνσ ´ gµσ gνρq

f ace f bdepgµνgρσ ´ gµσ gνρq

f ade f bcepgµνgρσ ´ gµρgνσ qq

(5.9)

and for the 2-gluon-Higgs vertex

V 2g´H
subV2

“ iAδ
c

1
d

1

pgσ
1
ρ

1

pk ´ p1q.pk ` p2q ´ pk ´ p1qσ 1

pk ` p2qρ 1

q. (5.10)

Expanding the expression and contracting the indices we obtain

V2 “Ag2CAδ
ab 1

2

ż

k

1
k2pk ´ p1 ´ p2q2

´

4k2gµν ´ 4k ¨ pp1 ` p2qgµν ` 2kµkν ´ kµppν
1 ` pν

2 q ´ kνppµ

1 ` pν
2 q

¯

.

(5.11)

The expression in 5.11 is still unregularized. In general we have to analyse 3 types
of integrals to which any of the integrals above can be matched given in appendix
A. The regularizes amplitude for V2 is then given by

V2 “Ag2CAδ
ab 1

2

ż

k

´

4k2gµν I1
V2

pk, p1, p2,µq

´ p4k ¨ pp1 ` p2qgµνqI2
V2

pk, p1, p2,µq ` 2kµkν I3
V2

pk, p1, p2,µq

´ pkµppν
1 ` pν

2 qqI2
V2

pk, p1, p2,µq ´ pkνppµ

1 ` pν
2 qqI2

V2
pk, p1, p2,µq

¯

.

(5.12)

Diagram V3

To obtain to total amplitude of the diagrams V3 we notice that the sub-diagrams
are the 3-gluon vertex and the 3-gluon-Higgs vertex. The propagators are given

by ∆pkqcc
1

ρρ
1 and ∆pk ´ p2qdd

1

ττ
1 . The symmetry factor is

1
2

, so the amplitude of the
diagram V3 is given by

V3 “
1
2

V 3g
subV3

V 3g´H
subV3

∆pk ´ p2qdd
1

ττ
1 ∆pkqcc

1

ρρ
1 . (5.13)

We have for the 3-gluon and the 3-gluon-Higgs vertices, respectively

V 3g
subV3

“ g f bcdpgνρpp2 ` kqτ ` gρτp´2k ` p2qν ` gντpk ´ 2p2qρq, (5.14)
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V 3g´H
subV3

“ Ag f d
1
c

1
apgτ

1
ρ

1

pp2 ´ 2kqµ ` gρ
1
µpk ´ p1qτ 1

` gτ
1
µpp1 ` k ´ p2qρ 1

q.

(5.15)
Expanding the expression and contracting all the indices, we obtain

V3 “
1
2

Ag2CAδ
ab

ż

k

1
k2pk ´ p2q2

´

2k2gµν ´ 2k ¨ p2gµν ´ 3p1 ¨ p2gµν

` 2p2
2gµν ` 10kµkν ´ 5kν pµ

2 ´ 5kµ pν
2 ` 3pν

1 pµ

2 ` pµ

2 pν
2

¯

.

(5.16)

Here we have to analyse 4 types of integrals analysed in the appendix A. For the
diagram V3 we obtain

V3 “
1
2

Ag2CAδ
ab

ż

k

´

2gµν I1
V3

pk, p2,µq ´ 2k ¨ p2gµν I2
V3

pk, p2,µq

´ 3p1 ¨ p2gµν I3
V3

pk, p2,µq ` 10kµkν I7
V3

pk, p2,µq

´ p5kν pµ

2 ` 5kµ pν
2 qI2

V3
pk, p2,µq ` p3pν

1 pµ

2 ` pµ

2 pν
2 qI3

V3
pk, p2,µq

¯

.

(5.17)

Diagram V4

The diagram V4 is of the same type as the V3 diagram, the difference being
that the external momentum p2 is now coming from the effective interaction and

p1 from the pure Yang-Mills interaction. The symmetry factor is also
1
2

and the
propagators the same as in V3 by making p1 ðñ p2. For the 3-gluon vertex we
have

V 3g
subV4

“ g f c
1
ad

1

pgρ
1
µp´k ´ p1qτ 1

` gµτ
1

p2p1 ´ kqρ 1

` gρ
1
τ

1

p2k ´ p1qµq (5.18)

and for the 3-gluon-Higgs vertex

V 3g´H
subV4

“ ´Ag f cdbpgρτp2k ´ p1qν ` gτνp´k ` p1 ´ p2qρ ` gνρpp2 ´ kqτq. (5.19)

Expanding the expression and contracting all the indices, we obtain

V4 “
1
2

Ag2CAδ
ab

ż

k

1
k2pk ´ p1q2

´

2k2gµν ´ 2k ¨ p1gµν ´ 3p1 ¨ p2gµν

` 2p2
1gµν ` 10kµkν ´ 5kν pµ

1 ´ 5kµ pν
1 ` 3pν

1 pµ

2 ` pµ

1 pν
1

¯

.

(5.20)

We use the integrals in the appendix A to separate the divergences the same way as
for V3 and we obtain the regularized amplitude
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V4 “
1
2

Ag2CAδ
ab

ż

k

´

2gµν I1
V4

pk, p1,µq ´ 2k ¨ p1gµν I2
V4

pk, p1,µq

´ 3p1 ¨ p2gµν I3
V4

pk, p1,µq ` 10kµkν I7
V4

pk, p1,µq

´ p5kν pµ

1 ` 5kµ pν
1 qI2

V4
pk, p1,µq ` p3pν

1 pµ

2 ` pµ

1 pν
1 qI3

V4
pk, p1,µq

¯

.

(5.21)

Diagram V5

To obtain the total amplitude of the diagram V5 we notice that the it is a 4-

gluon-Higgs diagram with a loop. The symmetry factor is
1
2

. We obtain

V5 “
1
2

ż

d4k
p2πq4

igδ cd

k2 p´iAg2qX µνρσ

abcd , (5.22)

where
1
2

is the symmetry factor of the diagram. Contracting the indices we obtain

V5 “ ´3Ag2CA

ż

d4k
p2πq4

1
k2 δ

abgµν . (5.23)

5.2 UV divergent integrals as Basic Divergent Integrals

We use equations 2.10 and 2.11 to write all the UV divergent integrals coming
from the amplitudes V1 to V5 in terms of BDI’s. Setting the surface terms to zero
we notice that all the divergences can be written as 2.12 and 2.13.

For the diagram V1 we get

´ Iquadpµ
2qp

13
2

gµνq

´ Ilogpµ
2qp´

43
6

p1 ¨ p2gµν `
1
4

pµ

1 pν
1 ´

1
6

pµ

1 pν
2 `

29
6

pν
1 pµ

2 `
1
4

pµ

2 pν
2 q.

(5.24)

For the diagram V2 we get

Iquadpµ
2qp

5
2

gµνq

`
1
2

Ilogpµ
2qp´

13
3

p1 ¨ p2gµν ´
1
3

pµ

1 pν
1 ´

1
3

pµ

1 pν
2 ´

1
3

pν
1 pµ

2 ´
1
3

pµ

2 pν
2 q.

(5.25)

For the diagram V3 we get

Iquadpµ
2qp

7
2

gµνq

`
1
2

Ilogpµ
2qp3pν

1 pµ

2 ´ 3p1 ¨ p2gµν ´
2
3

pµ

2 pν
2 qq.

(5.26)
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For the diagram V4 the BDI’s take the same form as the ones from diagram V3 and
they take the overall form

Iquadpµ
2qp

7
2

gµνq

`
1
2

Ilogpµ
2qp3pν

1 pµ

2 ´ 3p1 ¨ p2gµν ´
2
3

pµ

1 pν
1 qq.

(5.27)

For the diagram V5 the only integral contributing is an UV divergent integral. In
terms of BDI’s this integral is classified as quadratic

ż

k

´3gµν

k2 ´ µ2 “ ´3Iquadpµ
2qgµν . (5.28)

Joining the UV divergent content of all diagrams

After the classification of the BDI’s of the diagrams V1 to V5 we joined all their
contributions. We notice that each diagram individually contributes with logarith-
mic and/or quadratic divergences. Despite this, the integrals Iquadpµ2q from V1 to
V5 cancelled so there was only left Ilogpµ2q. This is because in our effective model
we only include the coupling of the Higgs with gluons. The Higgs propagator is
not included, so there is only going to be renormalization of the gluon field and the
effective coupling

Lren9AHGµνGµν “ ZαsZApAHGµνGµνq, (5.29)

where ZA is the renormalization constant of the gluon and Zαs is the renormal-
ization constant of the strong coupling constant that allows us to renormalize the
effective coupling (see section below). Therefore, all the UV divergence must be
absorbed in ZαsZA. In this case, there’s no terms in the renormalization to absorb
quadratic divergences. As a result, the quadratic divergences were expected to
cancel between themselves.

Adding all the contributions from V1 to V5 we obtain the amplitude Vdiv coming
from the UV divergent contribution of the diagrams

Vdiv “ Ag2CAδ
abIlogpµ

2qp
3
4

ppµ

1 pν
1 ` pµ

2 pν
2 q ´ 2ppν

1 pµ

2 ´ p1 ¨ p2gµνq. (5.30)

As we have defined before Hµνpp1, p2q “ p1 ¨ p2gµν ´ pν
1 pµ

2 is the tree level 2-
gluon-Higgs. After multiplying the previous result with the external polarizations
ε

µ

1 and εν
2 , because of the Lorenz condition we have ε

µ

1 p1µ “ 0 and εν
2 p2ν “ 0 and

we eliminate the first terms. The UV divergent contribution is given by

Vdiv “ Ag2CAδ
ab2Hµνpp1, p2qIlogpµ

2q (5.31)
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and defining the tree-level amplitude V0 “ iAδ abHµν and using b “
i

p4πq2 we can

write the UV contribution of the amplitudes in terms of the tree-level amplitude in
the following way

Vdiv “ V0αs
1
b

1
4π

CA2Ilogpµ
2q. (5.32)

5.3 Renormalization

Our result in equation 5.32 is still UV and IR divergent. Before we proceed
to compute the virtual decay rate, we need to perform renormalization. Our La-
grangian written in equation 4.6 is our bare Lagrangian and therefore we need to
perform a redefinition of the variables and find the counterterms to cancel the diver-
gences. We redefine the fields Aµ , the coupling constant g and αs in the following
way,

A0
µ “ ZAAµ , (5.33)

g0 “ Zgg, (5.34)

and

α
0
s “ Zαsαs, (5.35)

where the subscript 0 means that we are referring to the bare parameters. After
these redefinitions, our renormalized effective Lagrangian is given by

pLe f f qren “ ´
1
4

ZαsZAAHGµνGµν . (5.36)

ZA and Zαs are given by

ZA “ 1 ` δAαs (5.37)

and

Zαs “ 1 ` δαsαs. (5.38)

Substituting ZA and Zαs in the Lagrangian in 5.36, we notice that the counterterm
for the effective vertex is given by

Vcount “ αspδαs ` δAqV0. (5.39)

Using equations 2.4 and 2.5 we have ZA “ Z3 and Zαs relates with Zg.
Our counterterm depends of δαs rather than δg, but we can relate them using

αs “
g2

4π
and equations 5.34 and 5.35, and we can write
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g0 “ Zαsg (5.40)

therefore

Zg “
a

Zαs . (5.41)

Doing a Taylor expansion in Zαs we can write the relation

δαs “ 2δg. (5.42)

As we are in a Feynman Gauge, ζ “ 1, we obtain the counterterm

Vcount “ αsV0
1
b

1
p4πq

CA

´5
3

Ilogpµ
2q ´

11
3

Ilogpλ
2q

¯

. (5.43)

Adding the counterterm to the UV contribution of the Feynman diagrams, we
obtain Vren

Vren “ Vdiv `Vcount “ αsV0
1
b

1
p4πq

CA

´11
3

Ilogpµ
2q ´

11
3

Ilogpλ
2q

¯

. (5.44)

Using the equation of the renormalization function, 2.22 and making CA “ 3, we
obtain

Vren “ V0
αs

π

11
4

ln
´

λ 2

µ2

¯

, (5.45)

rendering an UV finite result.

5.4 UV Finite integrals

The UV finite integrals from V1 to V5 were treated using the Package-X of the
software Mathematica, [6]. The diagram V5 has no finite integrals, therefore will
automatically not contribute to the calculus of the decay rate. The integrals in V3
and V4 were evaluated to zero after performing the integration and conveniently
applying the on-shell conditions. As a result, only the diagrams V1 and V2 will
contribute with a UV finite contribution to the decay rate of the Higgs boson.

In order to use the package-X to evaluate the amplitude, we start by making an
input of the integral in its original form with the internal momentum k, the external
momenta pi and the regulator µ . We then integrate using the package and apply the
on-shell conditions that require that p2

1 “ p2
2 “ 0. These conditions reflect the fact

that we are considering massless gluons in the final state of the decay. We define

µ0 “
µ2

2p1 ¨ p2
“

µ2

s12
. After collecting and summing all the integrals we expand in

a power series the final result in µ0 and neglect all the terms above the order zero.
Our final result is given by
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Vf in “ V1 `V2 “ ´Ag2CAδ
ab i

p4πq2 lnp´µ0q
2
p´pν

1 pµ

2 ` p1 ¨ p2gµνq

“ ´Ag2CAδ
ab i

p4πq2 lnp´µ0q
2Hµνpp1, p2q.

(5.46)

We notice that again, as for the UV divergent integrals, the final result for the finite
integrals is proportional to the tree level HÝÑgg. By doing the expansion of the
logarithm the following way

lnp´µ0q2 “ lnpµ0q2 ` 2iπ lnpµ0q ´ π
2, (5.47)

and substituting 5.47 in equation 5.46, and using the tree-level amplitude we can
write the contribution from the UV finite integrals as

Vf in “ ´
3
4

αs

π
V0plnpµ0q2 ` 2iπ lnpµ0q ´ π

2q. (5.48)

5.5 Virtual decay rate

The amplitude with the one-loop virtual correction V , is given by the sum of
the tree-level amplitude of the process with the renormalized amplitude coming
from the UV divergent integrals and the UV finite contributions

V “ V0 `Vren `Vf in. (5.49)

By squaring this result up to the order considered we obtain

|V|2 “ V2
0 ` 2ℜepV0pVren `Vf inq˚q, (5.50)

where ˚ stands for the complex conjugate. The differential decay rate for the 2-
gluon decay can be found in [32] and is generally given by

dΓ “ |V0|2
S

2mH

d3 p1

p2πq32E1

d3 p2

p2πq32E2
p2πq4

δ
4ppH ´ p1 ´ p2q, (5.51)

where S is a factor that accounts for the presence of identical particles in the final
state and has the form 1{ j! where j is the number of identical particles in the final

state. Here S “
1
2

. We are considering the reference frame where the Higgs is at
rest. Therefore the only possible outcome for the final momenta of the gluons is
that they must be anti-parallel, p⃗2 “ ´p⃗1. This requirement allows us to integrate
over all the final momenta to obtain the decay rate without knowing the explicit
form of the amplitude. All these computations can be found in [32]. After the
integrations and some simplification the final expression is given by



41 CHAPTER 5. VIRTUAL DECAY RATE HÝÑGG

Γ “
|V |2

32πmH
. (5.52)

Substituting 5.45 and 5.48 in the square modulus of the virtual amplitude in equa-
tion 5.50, we get

|V |2 “ |V0|2
´

1 `
αs

π

´11
2

ln
´

λ 2

µ2

¯

`
3
2

p´ lnpµ0q2 ` π
2q

¯

(5.53)

and using µ0 “
µ2

m2
H

, the virtual decay rate is given by

Γv “ Γ0

´

1 `
αs

π

´11
2

ln
´

λ 2

µ2

¯

´
3
2

´

ln2
´

µ2

m2
H

¯

´ π
2
¯¯¯

. (5.54)

Here, Γ0 is the tree-level decay rate of the process, as we will see in section
6.3.1.

Notice that the virtual decay rate with the one-loop correction is written as a
correction to the tree-level decay H ÝÑ gg. Also, there are still present IR diver-
gences parameterized by the regulator µ .
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Chapter 6

Real decay rate HÝÑgg(g)

In this chapter we use the spinor-helicity formalism to compute the real am-
plitudes of the process H ÝÑ gg(g). We also compute the 3-body phase space in
terms of dimensionless variables and do the calculation of the real decay rate.

6.1 Real amplitude

The real emission diagrams represent processes that are of the same order in
αs as the one-loop virtual ones, but notice that we have more final particle states
than in the virtual contribution, which will make the calculus more complex. The
final states momenta will be pµ

1 , pν
2 , pτ

3 and the external polarizations will be given
by ε

µ

1 ,ε
ν
2 ,ε

τ
3 . There are four tree-level diagrams contributing to the decay rate.

R1 contributes with three diagrams because we have permutations tp1, p2, p3u,
tp3, p1, p2u, tp2, p3, p1u which will correspond to s, t,u channels and R2 con-
tributes with a one vertex of 3-gluon-Higgs. We start by computing the amplitudes
individually using the Feynman rules and then sum them. After this we apply
spinor-helicity formalism in order to simplify the squared amplitude.

Amplitude of R1

As previously stated, R1 actually corresponds to three diagrams linked by per-
mutations of external momenta and are represented in figure 6.1. As a result, com-
puting one of the channels is sufficient, and the others can be computed directly
from the other using only momenta permutations.

43
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H

p1

p2

p3 H

p3

p1

p2 H

p2

p3

p1

Figure 6.1: Momenta permutations in the real diagram R1.

The sub-diagrams of the s channel of R1 are given by the 3-gluon coming from
the pure YM interaction and 2-gluon-Higgs originated by the effective interaction.

iMR1 “ g f bcdV ντδ pp2, p3,´pp2 ` p3qqi
gδδ

1

δ dd
1

p´pp2 ` p3qq2 iAδ
ad

1

Hδ
1
µp´pp2 ` p3q, p1qε

µ

1 ε
ν
2 ε

τ
3

“ ´Ag f bca 1
pp2 ` p3q2V ντδ Hδ µ

ε
µ

1 ε
ν
2 ε

τ
3

(6.1)

where the expanded tensors are given by

V ντδ pp2, p3,´pp2 ` p3qq “ pp2 ´ p3qδ gντ ´ pν
2 gτδ ` pτ

3gδν (6.2)

and

Hδ µpp´pp2 ` p3qq, p1q “ gµδ p1 ¨ p´pp2 ` p3qq ´ pδ
1 p´pp2 ` p3qqµ . (6.3)

Contracting all the indices we get

iMR1 “
´Ag f bca

pp2 ` p3q2 ε
µ

1 ε
ν
2 ε

τ
3

´

pp1 ¨ p2qpgµτp2p3 ` p2qν ´ gµνp2p2 ` p3qτ ´ 2pµ

3 gντq

`pp1 ¨ p3qpgµτp2p3 ` p2qν ´ gµνp2p2 ` p3qτ ` 2pµ

2 gντq

´pτ
1pp2 ` p3qµp2p3 ` p2qν ` pν

1 pp2 ` p3qµp2p2 ` p3qτ

¯

.

(6.4)

We can now make use of the Lorenz condition in order to eliminate all the following
scalar products

ε
µ pµ “ ε

1 p1 “ ε
2 p2 “ ε

3 p3 “ 0, (6.5)

and finally we get for the s channel
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iMR1 “
´Ag f bca

pp2 ` p3q2 ε
µ

1 ε
ν
2 ε

τ
3

´

pp1 ¨ p2qp2pν
3 gµτ ´ 2pτ

2gµν ´ 2pµ

3 gντq

`pp1 ¨ p3qp2pν
3 gµτ ´ 2pτ

2gµν ` 2pµ

2 gντq

´2pτ
1pp2 ` p3qµ pν

3 ` 2pν
1 pp2 ` p3qµ pτ

2

¯

.

(6.6)

Notice that we will now purposefully contract the momenta with the polarizations,
as it will come in handy when employing the spinor-helicity formalism to obtain

iMR1 “
´Ag f bca

s23
ps12 ` s13qppε1 ¨ ε3qpp3 ¨ ε2q ´ pp2 ¨ ε3qpε1 ¨ ε2qq

´ s12pp3 ¨ ε1qpε2 ¨ ε3q ` s13pp2 ¨ ε1qpε2 ¨ ε3q

` 2pp2 ¨ ε1 ` p3 ¨ ε1qppp1 ¨ ε2qpp2 ¨ ε3q ´ pp1 ¨ ε3qpp3 ¨ ε2qq.

(6.7)

We now have an amplitude that is determined by scalar products of momenta and
polarizations, allowing us to use the spinor-helicity formalism. Firstly we define
three auxiliary momenta ri, i “ 1,2,3, one for each of the massless gluon. This
choice is arbitrary, as choosing a different reference momenta is the equivalent of
doing a gauge transformation which leaves the square amplitude invariant. Here,
we choose

rpε1q “ p3 ” 3, rpε2q “ p1 ” 1, rpε3q “ p2 ” 2. (6.8)

By doing this choice the terms p2 ¨ ε3 “ p1 ¨ ε2 “ p3 ¨ ε1 “ 0 are automatically zero,
which allows for a great deal of simplification of the amplitude:

iMR1 “
´Ag f bca

s23

ps12 ` s13qppε1 ¨ ε3qpp3 ¨ ε2qq ` s13pp2 ¨ ε1qpε2 ¨ ε3q ´ 2pp2 ¨ ε1qpp1 ¨ ε3qpp3 ¨ ε2qq.

(6.9)

The t channel is obtained by making 1 ÐÑ 3, 2 ÐÑ 1 and 3 ÐÑ 2 in the s channel
and the u channel is obtained by making 1 ÐÑ 2, 2 ÐÑ 3 and 3 ÐÑ 1. We have
then for the t and u channels respectively,

iMR1 “
´Ag f abc

s12

ps13 ` s23qppε3 ¨ ε2qpp2 ¨ ε1qq ` s23pp1 ¨ ε3qpε1 ¨ ε2q ´ 2pp1 ¨ ε3qpp3 ¨ ε2qpp2 ¨ ε1qq,

(6.10)
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iMR1 “
´Ag f cab

s13

ps23 ` s12qppε1 ¨ ε2qpp1 ¨ ε3qq ` s12pp3 ¨ ε2qpε3 ¨ ε1q ´ 2pp3 ¨ ε2qpp2 ¨ ε1qpp1 ¨ ε3qq.

(6.11)

Amplitude of R2

The amplitude for R2 is given by the contraction of the Feynman rule of 3-
gluon-Higgs with the external polarizations,

iMR2 “ ´Ag f abcV µντpp1, p2, p3qε
µ

1 ε
ν
2 ε

τ
3 , (6.12)

the tensor being

V µντpp1, p2, p3q “ pp1 ´ p2qτgµν ` pp2 ´ p3qµgντ ` pp3 ´ p1qνgµτ . (6.13)

By contracting all the indices we will have an amplitude written in terms of scalar
products between momenta and polarizations,

iMR2 “ ´Ag f abc
´

pp1 ´ p2q¨ε3pε1 ¨ε2q`pp2 ´ p3q¨ε1pε2 ¨ε3q`pp3 ´ p1q¨ε2pε1 ¨ε3q

¯

.

(6.14)
Applying the spinor-helicity formalism and remembering the choice of reference
momenta in equation 6.8 we simplify the expression above to be

iMR2 “ ´Ag f abc
´

p1 ¨ ε3pε1 ¨ ε2q ` p2 ¨ ε1pε2 ¨ ε3q ` p3 ¨ ε2pε1 ¨ ε3q

¯

. (6.15)

Notice that we could have made a different choice of reference momenta, but it’s
crucial that once we made a choice, the same needs to be applied to all diagrams
so that we have a consistent result.

Total amplitude M

We will now compute the total amplitude. Summing the s, t and u channels
from R1 with the one vertex diagram from R2 we have
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iM “ ´Ag

˜

f bca

s23
ps12 ` s13qppε1 ¨ ε3qpp3 ¨ ε2qq ` s13pp2 ¨ ε1qpε2 ¨ ε3q ´ 2pp2 ¨ ε1qpp1 ¨ ε3qpp3 ¨ ε2qq

`
f abc

s12
ps13 ` s23qppε3 ¨ ε2qpp2 ¨ ε1qq ` s23pp1 ¨ ε3qpε1 ¨ ε2q ´ 2pp1 ¨ ε3qpp3 ¨ ε2qpp2 ¨ ε1qq

`
f cab

s13
ps23 ` s12qppε1 ¨ ε2qpp1 ¨ ε3qq ` s12pp3 ¨ ε2qpε3 ¨ ε1q ´ 2pp3 ¨ ε2qpp2 ¨ ε1qpp1 ¨ ε3qq

` f abcppp1 ´ p2q ¨ ε3pε1 ¨ ε2q ` pp2 ´ p3qε1pε2 ¨ ε3q ` pp3 ´ p1qε2pε1 ¨ ε3qq

¸

.

(6.16)

To obtain the square of the amplitude we need to sum to all the possible colors
and helicities,

|M|2 “|M```|2 ` |M`´´|2 ` |M´`´|2 ` |M´´`|2

`|M´´´|2 ` |M´``|2 ` |M`´`|2 ` |M``´|2.
(6.17)

To obtain the square of the amplitude we do for example |M`´´|2 “

pM`´´qpM`´´q˚ where the pM`´´q˚ is obtained from M`´´ by exchanging
xy ÐÑ rs and adding a minus sign. Following this logic for each helicity we have
the following relations

|M```|2 “ |M´´´|2,

|M`´´|2 “ |M´``|2,

|M´`´|2 “ |M`´`|2,

|M´´`|2 “ |M``´|2.

(6.18)

so we write the unpolarized amplitude as

|M|2 “
1
4

ÿ

col,polr

|M|2 “
ÿ

col

2
4

p|M```|2 ` |M`´´|2 ` |M´`´|2 ` |M´´`|2q

(6.19)
and by permutations of s, t, and u we can obtain |M´`´|2 and |M´´`|2 from
|M`´´|2. So the only amplitudes we need to calculate are M``` and M`´´ and
their squares.

For the helicity ` ´ ´ we use the expressions introduced in the spinor-helicity

chapter and write the polarizations as ε
`
1 “

?
2

3yr1
x31y

,ε´
2 “

?
2

2yr1
r21s

, ε
´
3 “

?
2

3yr2
r32s

and the momenta as p1 “ 1yr1, p2 “ 2yr2, p3 “ 3yr3 where for simplicity we used
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the notation pi ” i and r j ” j. We are now in conditions to compute the scalar
products between polarizations as

ε
`
1 ¨ ε

´
2 “ 0, ε

`
1 ¨ ε

´
3 “ 0, ε

´
2 ¨ ε

´
3 “

x23y

r32s
, (6.20)

and the products between momenta and polarizations as

p2 ¨ ε
`
1 “

1
?

2
x23yr12s

x31y
, p1 ¨ ε

´
3 “

1
?

2
x13yr21s

r32s
, p3 ¨ ε

´
2 “

1
?

2
x32yr13s

r21s
.

(6.21)

The amplitude M`´´ is obtained by making the previous substitutions of the scalar
products in the expression of the total amplitude, after which we obtain

M`´´ “ ´ Ag f abc
´

x23y

r32s

x23yr12s

x31y

¯´s13

s23
`

s13

s12
`

s23

s12
` 1

¯

´ 2
´ 1

?
2

x23yr12s

x31y

¯´ 1
?

2
x13yr21s

r32s

¯´ 1
?

2
x32yr13s

r21s

¯´ 1
s23

`
1

s12
`

1
s13

¯

(6.22)

and by squaring the amplitude we obtain

|M`´´|2 “ A2g2| f abc|2
s3

23
s12s13

. (6.23)

By making permutations of the indices we obtain the amplitudes for the helicities
´ ` ´ and ´ ´ `

|M´`´|2 “ A2g2| f abc|2
s3

12
s23s13

, (6.24)

|M´´`|2 “ A2g2| f abc|2
s3

13
s23s12

. (6.25)

For the helicity ` ` ` we have already defined ε
`
1 but we still need to de-

fine ε
`
2 “

?
2

1yr2
x12y

and ε
`
3 “

?
2

2yr3
x23y

. We can now construct the scalar products

between the polarizations as

ε
`
1 ¨ ε

`
2 “

r12s

x21y
, ε

`
1 ¨ ε

`
3 “

r13s

x31y
, ε

`
2 ¨ ε

`
3 “

r23s

x32y
. (6.26)

and the scalar product between polarizations and momenta as
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p1 ¨ ε
`
3 “

1
?

2
x12yr31s

x23y
, p2 ¨ ε

`
1 “

1
?

2
x23yr12s

x31y
, p3 ¨ ε

`
2 “

1
?

2
x31yr23s

x12y
.

(6.27)

We do these substitutions in the general equation for the total amplitude and obtain
the expression for the amplitude for the ` ` ` helicity

M``` “ ´Ag f abc

´

r13s

x31y

1
?

2
x31yr23s

x12y
p
s12 ` s13

s23
`

s12

s13
` 1q

`
r23s

x32y

1
?

2
x23yr12s

x31y
p
s13 ` s23

s12
`

s13

s23
` 1q

`
r12s

x21y

1
?

2
x12yr31s

x23y
p
s23 ` s12

s13
`

s23

s12
` 1q

`
1

?
2

x23yr12s

x31y

1
?

2
x12yr31s

x23y

1
?

2
x31yr23s

x12y
p

1
s12

`
1

s13
`

1
s23

q

¯

.

(6.28)

By squaring the amplitude we obtain

|M```|2 “ A2g2| f abc|2
´ s3

12
s23s13

`
s3

13
s12s23

`
s3

23
s12s13

` 4
`s2

12
s23

`
s2

12
s13

`
s2

13
s12

`
s2

13
s23

`
s2

23
s12

`
s2

23
s13

˘

` 6
`s12s13

s23
`

s12s23

s13
`

s13s23

s12

˘

` 12
`

s12 ` s13 ` s23
˘

¯

.

(6.29)

The conservation of energy is expressed by the condition m2
H “ s12 ` s13 ` s23 and

we can express the M``` amplitude in terms of the Higgs mass,

|M```|2 “ A2g2| f abc|2
m8

H
s12s13s23

. (6.30)

We are in conditions to write the full unpolarized amplitude because we already
know the amplitude for each possible helicity. The structure constants can be writ-

ten as | f abc|2 “ 2C2
ACF with CF “

N2 ´ 1
2N

and CA “ N with N “ 3 for the SUp3q

group. We also have defined αs “
g2

4π
. More details are given in the appendices.

We get the final result for the dimensionless real unpolarized squared amplitude
which is in accordance with [8],
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|M|2 “ A2192παsp
s3

12
s23s13

`
s3

13
s12s23

`
s3

23
s12s13

` 2p
s2

12
s23

`
s2

12
s13

`
s2

13
s12

`
s2

13
s23

`
s2

23
s12

`
s2

23
s13

q

` 3p
s12s13

s23
`

s12s23

s13
`

s13s23

s12
q ` 6ps12 ` s13 ` s23qq

“ A2192παs
1

s12s13s23
ps4

12 ` s4
13 ` s4

23 ` m8
Hq.

(6.31)

6.2 Phase Space

After evaluating the unpolarized amplitude, we now need to compute the phase
space for the three gluons that result of the decay of the Higgs boson,

ρ “

ż

d3 p1

p2πq32ω1

d3 p2

p2πq32ω2

d3 p3

p2πq32ω3
p2πq4

δ
4pq ´ p1 ´ p2 ´ p3q (6.32)

where q denotes the Higgs momenta and pi, i “ 1,2,3 are the momenta of the
gluons. The phase space ρ has dimension of mass square. Choosing the reference
frame where the Higgs 3-momentum is zero, q⃗ “ 0 we get the equation for the
conservation of momentum p⃗1 ` p⃗2 ` p⃗3 “ 0. The gluon energies are defined by

$

’

&

’

%

ω2
1 “ µ2 ` |p⃗1|2 “ µ2 ` |p⃗2|2 ` |p⃗3|2 ` 2|p⃗2||p⃗3|cosθ23 “ 2| p⃗2|| p⃗3|cosθ23

ω2
2 “ µ2 ` |p⃗2|2 “ µ2 ` |p⃗1|2 ` |p⃗3|2 ` 2|p⃗1||p⃗3|cosθ13 “ 2| p⃗1|| p⃗3|cosθ13

ω2
3 “ µ2 ` |p⃗3|2 “ µ2 ` |p⃗1|2 ` |p⃗2|2 ` 2|p⃗1||p⃗2|cosθ12 “ 2| p⃗1|| p⃗2|cosθ12

(6.33)
where µ is the regulator mass and | p⃗1|2 “ |p⃗2|2 “ |p⃗3|2 “ 0 and θi j is the angle
between the gluons i and j. Integrating ρ over d3 p3 and changing to spherical
coordinates we get

d3 pi

2ωi
“

1
2

ωidωidΩi, i “ 1,2 (6.34)

and where the solid angle Ω is given by dΩi “ d cosθidφi so we get

ρ “

ż

d3 p1d3 p2

p2πq5p2ω1qp2ω2qp2ω3q
δ pq0 ´ ω1 ´ ω2 ´ ω3q

“

ż

1
p2πq5

1
2ω3

p
ω1dω1dΩ1

2
qp

ω2dω2dΩ2

2
qδ pq0 ´ ω1 ´ ω2 ´ ω3q.

(6.35)

The integral over one of the variables Ωi is trivial because we can choose any
direction, so integrating we get Ω1 “ 4π and for the other variable we have

ş

Ω2 “



51 CHAPTER 6. REAL DECAY RATE HÝÑGG(G)

2πdcosθ12 where θ12 represents the angle between the direction of the gluons 1 and

2. Differentiating the gluon energies expression in 6.33 we have
ω3dω3

p1 p2
“dcosθ12.

The phase space integral simplifies to be

ρ “

ż

1
32π3 dω1dω2dω3δ pq0 ´ ω1 ´ ω2 ´ ω3q (6.36)

and finally integrating over ω3 we obtain

ρ “
1

32π3

ż w1max

w1min

dω1

ż w2max

w2min

dω2, (6.37)

where the conservation of energy is given by q0 ´ ω1 ´ ω2 ´ ω3 “ 0.

6.2.1 Dimensionless variables

It is useful to introduce dimensionless variables instead, following [3]. This
will provide us with a dimensionless ρ and also allows us to use the same regulator
µ as in the virtual decay. We define the new variables χi as

χi “
ppi ´ qq2

q2 ´
µ2

q2 (6.38)

with i “ 1,2,3. By expanding the equation we get

χi “ 1 ´
2pi ¨ q

q2 “ 1 ´
2pp0

i q0 ´ p⃗i ¨ q⃗q

q2
0 ´ |⃗q|2

. (6.39)

In the referential where the Higgs 3-momentum is zero q⃗ “ 0 we have

χi “ 1 ´ 2
ωi

q0
, (6.40)

and differentiating both sides of the equation we get

dχi “ ´
2
q0

dωi, (6.41)

and the phase space integral in terms of dimensionless variables is then

ρ “
1

128π3 q2
0

ż

χ1max

χ1min

ż

χ2max

χ2min

dχ1dχ2. (6.42)

As before we could relate the three gluons energies with the equation of conser-
vation of energy, we can now write down an equation that relates the three new
dimensionless variables χi. Substituting 6.40 in the equation of conservation of
energy we get

χ1 ` χ2 ` χ3 “ 1. (6.43)

The limits of integration for this case will be for χ2
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χ2min “
1 ´ χ1

2
´

d

pχ1 ´ 3µ0qpp1 ´ χ1q2 ´ 4µ0q

4pχ1 ` µ0q
(6.44)

and

χ2max “
1 ´ χ1

2
`

d

pχ1 ´ 3µ0qpp1 ´ χ1q2 ´ 4µ0q

4pχ1 ` µ0q
, (6.45)

and for χ1

χ1min “ 3µ0 (6.46)

and

χ1max “ 1 ´ 2
?

µ0. (6.47)

6.3 Computation of the real decay rate

We start by computing the tree level decay rate H ÝÑ gg and then proceed to
show that the H ÝÑ ggpgq real decay can be written in terms of the H ÝÑ gg.

6.3.1 HÝÑgg real decay rate

The tree-level amplitude is given by

MHgg “ iAδ
abppp1 ¨ p2qpε1 ¨ ε2q ´ pp1 ¨ ε2qpp2 ¨ ε1qq (6.48)

and making the choice of reference momenta to be

rpε1q “ p2, rpε2q “ p1, (6.49)

eliminates the last term in the amplitude. Also, this choice only allows a non-zero
`` and ´´ amplitudes. Also, as we have stated before, |M``

Hgg| “ |M´´
Hgg| so we

only compute M``
Hgg. We have ε

`
1 ¨ ε

`
2 “

r21s

x12y
and that p1 ¨ p2 “

s12

2
. Substituting

these and squaring the amplitude,

|M``
Hgg|2 “ 4A2s2

12 “ 4A2m4
H (6.50)

where in the last step we used the conservation of energy-momentum p1 ` p2 “ pH

which means that s2
12 “ m4

H . The decay rate for the 2 massless gluons can be found
in [32] and we obtain

Γ0 “
|MHgg|2

32πmH
“

A2m3
H

8π
. (6.51)
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6.3.2 HÝÑgg(g) real decay rate

For the H ÝÑ ggpgq real decay the decay rate has the form

Γr “

ż

|M|2
S

2mH
ρ (6.52)

and can be found in [32], where for this case S “
1
3!

because we have 3 identical
particles in the final state. We have already computed the unpolarized amplitude
given in equation 6.31 and the phase space in terms of dimensionless variables in
equation 6.42. We will now perform the integration in equation 6.52 to obtain the
real decay rate.

Whereas for the calculus of the virtual amplitude we applied the on-shell condi-
tions and considered p2

1 “ p2
2 “ 0, we will here integrate the amplitude in a massive

phase space where p2
1 “ p2

2 “ µ2 for the external particles and internal particles stay
massless. This means that where before we had si j “ 2pi ¨ p j, now we need to make
the substitution si j “ ppi ` p jq

2 in the denominators, [8]. We can rewrite this in
a more straightforward way to use our new variables using the energy-momentum
conservation equation p1 ` p2 ` p3 ´ q “ 0,

si j “ ppi ` p jq
2 “ ppk ´ qq2 (6.53)

and substituting the old variables with the dimensionless ones and defining µ0 “

µ2

q2 we obtain

si j “ q2pχk ` µ0q. (6.54)

We have then the following relations using the equation of conservation of energy-
momentum for the dimensionless variables

$

’

&

’

%

s12 “ q2pχ3 ` µ0q “ q2p1 ´ χ1 ´ χ2 ` µ0q

s13 “ q2pχ2 ` µ0q

s23 “ q2pχ1 ` µ0q

(6.55)

We substitute the variables in 6.55 in the unpolarized amplitude 6.31 and then do
all these substitutions in the decay rate in 6.52. After some manipulation of the
mute variables of integrations we get the result

Γr “

ż

192παsA2 1
12mH

1
128π3 q2

´

2 ` 3χ2 ´
4
χ2

`
5χ1

χ2
´

χ2
1

χ2
`

1
χ1χ2

¯

. (6.56)

The integrals were evaluated using the following equations which can be found in
[8], [3],

Ipsq “

ż

dχ1dχ2
1

pχ1 ` µ0qpχ2 ` µ0q
(6.57)
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and

Jppsq “

ż

dχ1dχ2
χ

p
1

pχ2 ` µ0q
(6.58)

with p ě 0. Using our limit of integrations from 6.44 to 6.47 the integrals are
evaluated to be

Ipsq “
ln2pµ0q ´ π2

2
(6.59)

and

Jppsq “ ´
1

p ` 1
lnpµ0q `

ż 1

0
dχ1χ

p
1 rlnpχ1q ` 2lnp1 ´ χ1qs

“ ´
1

p ` 1
lnpµ0q ´

1
p ` 1

” 1
p ` 1

` 2
p`1
ÿ

n“1

1
n

ı

.

(6.60)

We are now in conditions to perform the integration in equation 6.56 using 6.59
and 6.60. The effective coupling A is given in equation 4.11. We have defined

µ0 “
µ2

m2
H

, so we obtain

Γr “

ż

192παsA2 1
12mH

1
128π3

3
2

q2
´73

6
`

11
3

lnp
µ2

m2
H

q ` ln2p
µ2

m2
H

q ´ π
2
¯

. (6.61)

In the reference frame where the Higgs is at rest, q⃗ “ 0, we have q2 “ q2
0 “ m2

H .
Making use of equation 6.51 we have the final real decay rate written in function
of tree level decay

Γr “ Γ0
αs

π

´73
4

`
11
2

ln
´

µ2

m2
H

¯

`
3
2

´

ln2
´

µ2

m2
H

¯

´ π
2
¯¯

. (6.62)

Notice the real decay rate is also IR divergent with the divergences parameterized
by the regulator µ .
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Discussion and conclusion

In previous work,[8] and [27], the decay rate using this effective model has
been computed and has the form

ΓpH ÝÑ ggpgqq “ Γ0pH ÝÑ ggq

´

1 ` δ
αs

π

¯

, (7.1)

where δ “
95
4

´
7
6

NF , but as we are only considering here interactions between
gluons and the Higgs boson we can set NF “ 0 and the decay rate is the following

ΓpH ÝÑ ggpgqq “ Γ0pH ÝÑ ggq

´

1 `
95
4

αs

π

¯

. (7.2)

By combining our previous results in equations 5.54 and 6.62, we get the final
decay rate for the process H ÝÑ ggpgq modelled by the effective model with the
one-loop order correction

ΓT pH ÝÑ ggpgqq “ Γv `Γr “ Γ0pH ÝÑ ggq

´

1`
αs

π

´73
4

`
11
2

ln
´

λ 2

m2
H

¯¯¯

(7.3)

We need now to take into account the correction of A “
αs

3πv
p1 `

11
4

αs

π
q. We

have that Γ09A2 and only keeping the terms until order α3
s we get the following

correction in the decay rate

ΓT pH ÝÑ ggpgqq “ Γ0pH ÝÑ ggq

´

1 `
αs

π

´95
4

´
11
2

ln
´m2

H

λ 2

¯¯¯

(7.4)

Notice that the cancellation of all logarithms depending on the regularization pa-
rameter µ happens only when combining the virtual and real decay rates. The
logarithm that appears on the final result is parameterized only by the renormaliza-
tion scale λ .

By choosing λ “ mH , we see that the total decay rate taking into account the
one-loop virtual diagrams writes as
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ΓT pH ÝÑ ggpgqq “ Γ0pH ÝÑ ggq

´

1 `
95
4

αs

π

¯

. (7.5)

Looking at the previous equation we see that the correction is
95
4

αs

π
. In [33]

we find that the value αspmZq “ 0.1175 with a ˘0.9% uncertainty and we can find
the contribution of our correction to be an increment of 88,8% in the final result,
emphasizing the importance of the one-loop corrections in this decay rate.

Summarizing, we have concluded that the use of IReg in the effective decay
H ÝÑ ggpgq verifies the KLN theorem. We also show that by adopting an effective
theory to describe our system, we verify a cancellation of all the quadratic diver-
gences pIquadpµ2qq when summing the contributions of all the virtual diagrams and
the Ilogpµ2q divergences were absorbed in the process of renormalization. Addi-
tionally, we verify that the UV behaviour of the amplitudes displayed in terms of
BDI’s should not be disregarded in IReg, as they are essential in the final decay
rate so that all the divergences are cancelled and we get a result independent of the
regulator µ . It should be noticed that along this computation we did not make any
changes on the Lagrangian, or the amplitudes or in the dimension of the underly-
ing theory. We simply have assumed an implicit regulator in an algebraic identity
that allowed us to separate divergences and to make the amplitude have a more
convenient form to be treated. We have also showed that spinor-helicity is a good
framework to compute the Feynman amplitudes, as the task of computation of the
amplitudes became much more easier. We showed that we can apply this formal-
ism in Feynman amplitudes of an effective theory involving gluons and a massive
scalar.
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Appendix A

Divergence separation in the
integrals

Diagram V1

For the diagram V1 all the integrals have the structure of one of the following
and after applying the separation identity and collecting the terms we obtain

ż

k

kαkβ kσ pδ

k2pk ´ p1q2pk ` p2q2 “

ż

k

kαkβ kσ pδ

pk2 ´ µ2q3 `

ż

k

kαkβ kσ pδ p´2k ¨ p2q

pk2 ´ µ2q4 `

ż

k

kαkβ kσ pδ kνp2k ¨ p1q

pk2 ´ µ2q4

`

ż

k

kαkβ kσ pδ p2k ¨ p1qp´2k ¨ p2q

pk2 ´ µ2q4ppk ` p2q2 ´ µ2q
`

ż

k

kαkβ kσ pδ p´2k ¨ p2q2

pk2 ´ µ2q4ppk ` p2q2 ´ µ2q

`

ż

k

kαkβ kσ pδ p2k ¨ p1q2

pk2 ´ µ2q3ppk ´ p1q2 ´ µ2qppk ` p2q2 ´ µ2q

“

ż

k
kαkβ kσ kδ I1

V1
pk, p1, p2,µq

(A.1)

The 1º-3º integrals are UV divergent. The 4º-5º integrals are IR divergent as
k9

k9
and the 6º integral is IR finite.
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ż

k

kαkβ pσ pδ

k2pk ´ p1q2pk ` p2q2 “

ż

k

kαkβ pσ pδ

pk2 ´ µ2q3 `

ż

k

kαkβ pσ pδ p´2k ¨ p2q

pk2 ´ µ2q3ppk ` p2q2 ´ µ2q

`

ż

k

kαkβ pσ pδ p2k ¨ p1q

pk2 ´ µ2q2ppk ´ p1q2 ´ µ2qppk ` p2q2 ´ µ2q

“

ż

k
kαkβ pσ pδ I2

V1
pk, p1, p2,µq

(A.2)

The 1º integral is UV divergent, the 2º integral is IR divergent as
k7

k7 , the 3º integral
is IR finite.

ż

k

kα pβ pσ pδ

k2pk ´ p1q2pk ` p2q2

“ kα pβ pσ pδ I3
V1

pk, p1, p2,µq

(A.3)

The integral is UV finite and IR finite.

ż

k

pα pβ pσ pδ

k2pk ´ p1q2pk ` p2q2

“ pα pβ pσ pδ I4
V1

pk, p1, p2,µq

(A.4)

The integral is UV finite and IR divergent as
k4

k4 .

ż

k

kαkβ k2

k2pk ´ p1q2pk ` p2q2 “

ż

k

kαkβ

pk2 ´ µ2q2 `

ż

k

kαkβ p´2k ¨ p2q

pk2 ´ µ2q3 `

ż

k

kαkβ p2k ¨ p1q

pk2 ´ µ2q3

`

ż

k

kαkβ p´2k ¨ p2q2

pk2 ´ µ2q4 `

ż

k

kαkβ p2k ¨ p1qp´2k ¨ p2q

pk2 ´ µ2q4 `

ż

k

kαkβ p2k ¨ p1q2

pk2 ´ µ2q4

`

ż

k

kαkβ p´2k ¨ p2q3

pk2 ´ µ2q4ppk ` p2q2 ´ µ2q
`

ż

k

kαkβ p2k ¨ p1qp´2k ¨ p2q2

pk2 ´ µ2q4ppk ` p2q2 ´ µ2q

`

ż

k

kαkβ p2k ¨ p1q2p´2k ¨ p2q

pk2 ´ µ2q4ppk ` p2q2 ´ µ2q
`

ż

k

kαkβ p2k ¨ p1q3

pk2 ´ µ2q3ppk ´ p1q2 ´ µ2qppk ` p2q2 ´ µ2q

“ kαkβ I5
V1

pk, p1, p2,µq

(A.5)
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The 1º-6º integral are UV finite. The 7º-9º integrals are IR divergent as
k9

k9 and the
10º integral is IR finite.

ż

k

kα pβ

pk ´ p1q2pk ` p2q2 “

ż

k

kα pβ

pk2 ´ µ2q2 `

ż

k

kα pβ p´2k ¨ p2q

pk2 ´ µ2q3 `

ż

k

kα pβ p2k ¨ p1q

pk2 ´ µ2q3

`

ż

k

kα pβ p2k ¨ p1qp´2k ¨ p2q

pk2 ´ µ2q3ppk ` p2q2 ´ µ2q
`

ż

k

kα pβ p´2k ¨ p2q2

pk2 ´ µ2q3ppk ` p2q2 ´ µ2q

`

ż

k

kα pβ p2k ¨ p1q2

pk2 ´ µ2q2ppk ´ p1q2 ´ µ2qppk ` p2q2 ´ µ2q

“ kα pβ I6
V1

pk, p1, p2,µq

(A.6)

The 1º-3º integrals are UV finite. The 4º-5º integrals are IR divergent as
k7

k7 and the
6º integral is IR finite.

ż

k

pα
a pβ

b
pk ´ p1q2pk ` p2q2 “

ż

k

pα
a pβ

b
pk2 ´ µ2q2 `

ż

k

pα
a pβ

b p´2k ¨ p2q

pk2 ´ µ2q2ppk ` p2q2 ´ µ2q

`

ż

k

pα
a pβ

b p2k ¨ p1q

pk2 ´ µ2qppk ´ p1q2 ´ µ2qppk ` p2q2 ´ µ2q

“ pα pβ I7
V1

pk, p1, p2,µq

(A.7)

The 1º integral is UV divergent, the 2º integral is IR divergent as
k5

k5 and the 3º
integral is IR finite.



APPENDIX A. DIVERGENCE SEPARATION IN THE INTEGRALS 66

Diagram V2

ż

k

1
pk ´ p1 ´ p2q2 “

ż

k

1
k2 ´ µ2 `

ż

k

2k ¨ pp1 ` p2q

pk2 ´ µ2q2 `

ż

k

´2p1 ¨ p2
pk2 ´ µ2q2 `

ż

k

p2k ¨ pp1 ` p2qq2

pk2 ´ µ2q3

`

ż

k

2p´2p1 ¨ p2qp2k ¨ pp1 ` p2qq

pk2 ´ µ2q2ppk ´ p1 ´ p2q2 ´ µ2q
`

ż

k

p´2p1 ¨ p2q2

pk2 ´ µ2q2ppk ´ p1 ´ p2q2 ´ µ2q

`

ż

k

p2k ¨ pp1 ` p2qq3

pk2 ´ µ2q3ppk ´ p1 ´ p2q2 ´ µ2q
`

ż

k

2p´2p1 ¨ p2qp2k ¨ pp1 ` p2qq2

pk2 ´ µ2q3ppk ´ p1 ´ p2q2 ´ µ2q

“ I1
V2

pk, p1, p2,µq

(A.8)

The integral 1º-4º integrals are UV divergent. The 5º integral is IR divergent as
k5

k5 ;

the 6º integral is IR divergent as
k4

k5 ; the 7º integral is IR divergent as
k7

k7 and the 8º

integral is IR divergent as
k6

k7 .

ż

k

kα pβ

k2pk ´ p1 ´ p2q2 “

ż

k

kα pβ

pk2 ´ µ2q2 `

ż

k

kα pβ p2k ¨ pp1 ` p2q

pk2 ´ µ2q3 `

ż

k

kα pβ p´2p1 ¨ p2q

pk2 ´ µ2q2ppk ´ p1 ´ p2q2 ´ µ2q

`

ż

k

kα pβ p2k ¨ pp1 ` p2qq2

pk2 ´ µ2q3ppk ´ p1 ´ p2q2 ´ µ2q
`

ż

k

kα pβ p2k ¨ pp1 ` p2qqp´2p1 ¨ p2q

pk2 ´ µ2q3ppk ´ p1 ´ p2q2 ´ µ2q

“ kα pβ I2
V2

pk, p1, p2,µq

(A.9)

The 1º-2º integrals are UV divergent. The 3º-5º integrals are IR divergent as re-

spectively:
k5

k5 ,
k7

k7 ,
k6

k7 .
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ż

k

kαkβ

k2pk ´ p1 ´ p2q2 “

ż

k

kαkβ

pk2 ´ µ2q2 `

ż

k

kαkβ p2k ¨ pp1 ` p2qq

pk2 ´ µ2q3 `

ż

k

kαkβ p´2p1 ¨ p2q

pk2 ´ µ2q3

`

ż

k

kαkβ p2k ¨ pp1 ` p2qq2

pk2 ´ µ2q4 `

ż

k

2kαkβ p2k ¨ pp1 ` p2qqp´2p1 ¨ p2q

pk2 ´ µ2q3ppk ´ p1 ´ p2q2 ´ µ2q

`

ż

k

kαkβ p´2p1 ¨ p2q2

pk2 ´ µ2q3ppk ´ p1 ´ p2q2 ´ µ2q
`

ż

k

kαkβ p2k ¨ pp1 ` p2qq3

pk2 ´ µ2q2ppk ´ p1 ´ p2q ´ µ2q

`

ż

k

kαkβ p2k ¨ pp1 ` p2qq2p´2p1 ¨ p2q

pk2 ´ µ2q4ppk ´ p1 ´ p2q2 ´ µ2q

“ kαkβ I3
V2

pk, p1, p2,µq

(A.10)

Diagrams V3 and V4

ż

k

1
pk ´ p2q2 “

ż

k

1
k2 ´ µ2 `

ż

k

2k ¨ p2

pk2 ´ µ2q2 `

ż

k

p2k ¨ p2q2

pk2 ´ µ2q3 `

ż

k

p2k ¨ p2q3

pk2 ´ µ2q3ppk ´ p2q2 ´ µ2q

“ I1
Vi

pk, p2,µq

(A.11)

The 1º-3º integrals are UV divergent and the 4º integral is IR divergent as
k7

k7 .

ż

k

kα pβ

k2pk ´ p2q2 “

ż

k

kα pβ

pk2 ´ µ2q2 `

ż

k

kα pβ p2k ¨ p2q

pk2 ´ µ2q3 `

ż

k

kα pβ p2k ¨ p2q2

pk2 ´ µ2q3ppk ´ p2q2 ´ µ2q

“ kα pβ I2
Vi

pk, p2,µq

(A.12)

The 1º-2º integrals are UV divergent and the 3º integral is IR divergent as
k7

k7 .

ż

k

pα pβ

k2pk ´ p2q2 “

ż

k

pα pβ

pk2 ´ µ2q2 `

ż

k

ppα pβ qp2k ¨ p2q

pk2 ´ µ2q2ppk ´ p2q2 ´ µ2q

“ pα pβ I3
Vi

pk, p2,µq

(A.13)
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The 1º integral is UV divergent and the 2º integral is IR divergent as
k5

k5 .

ż

k

kαkβ

k2pk ´ p2q2 “

ż

k

kαkβ

pk2 ´ µ2q2 `

ż

k

kαkβ p2k ¨ p2q

pk2 ´ µ2q3 `

ż

k

kαkβ p2k ¨ p2q2

pk2 ´ µ2q4

`

ż

k

kαkβ p2k ¨ p2q3

pk2 ´ µ2q4ppk ´ p2q2 ´ µ2q

“ kαkβ I7
Vi

pk, p2,µq

(A.14)

The 1º-3º integrals are UV divergent and the 4º integral is IR divergent as
k9

k9 . As
the structure of the diagrams V3 and V4 is identical we can have i “ 3,4.



Appendix B

Color factors

The fundamental representation of a group is the algebra smallest, non-trivial
representation. The generators of the fundamental representation of SU(N) is a set
of N ˆ N Hermitian matrices with determinant equal to 1 that can be multiplied.
For the SU(3) the generators can be written as

T a “
1
2

λ
a (B.1)

where λ i are the Gell-Mann matrices with a=1,...8. They can be found explicitly
computed in [31]. We normalize the generators conveniently in the following way

ÿ

cd

f acd f bcd “ Nδ
ab (B.2)

The adjoint representation is defined as the following

pT a
ad jq

bc “ ´i f abc (B.3)

and is given by 8 ˆ 8 matrices in the SU(3) representation.
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