

Afonso Elói Carvalho

NAVIGATION, PLANNING AND 3D

TRAVERSABILITY ANALYSIS IN FOREST

ENVIRONMENTS

Master’s Dissertation in MIEEC, supervised by Doctor David B. S.
Portugal and presented to the Faculty of Science and Technology

of the University of Coimbra.

October 2021

Navigation, Planning and 3D

Traversability Analysis in Forest

Environments

Afonso Elói Carvalho

Coimbra, October 2021

Navigation, Planning and 3D

Traversability Analysis in Forest

Environments
Supervisor:

Doctor David Bina Siassipour Portugal

Jury:

Prof. Doctor Paulo Mendes Breda Dias Coimbra

Prof. Doctor Cristiano Premebida

Doctor David Bina Siassipour Portugal

Dissertation submitted in partial fulfillment for the degree of Master of Science in

Electrical and Computer Engineering.

Coimbra, October 2021

Acknowledgements

To my supervisors, for overwhelmingly exceeding even my wildest expectations

about what a truly exceptional guidance is, both scientific and personal. My special

thanks to my supervisor, Professor David B. S. Portugal, for the incredible support,

flexibility and friendliness shown while enforcing the highest standards;

To Gonçalo S. Martins, my co-supervisor, mentor and friend, who gave up count-

less hours of his time with the a piori knowledge that he would get no recognition

for it (not officially anyway). For being one of the people who helped and inspired

me the most in this short time;

To Professor João Filipe Ferreira, for all the enthusiasm, kindness and patience

shown while leading fruitful discussions and providing scientific support well beyond

his obligations;

To my parents and sister, who stood behind me doing their best to keep me from

falling, and even a better job at getting me back up. Without you, this moment

would not have happened;

To Pintas, one of the main characters in the story of my life, for the unconditional

support and motivation;

To Camila Santos, my girlfriend and limitless source of support, whom with her

mere presence pulls me out of my darkest moments. May our future be half as bright

and happy as I envision it;

ii

To D. Cristina and Sr. Artur, for all the support and kindness shown throughout

this journey;

To Elvis Borges, my dearest friend, for all the deep philosophical discussions and

all the support throughout many dimensions of my life. May our reunions never

cease to happen;

To Filipe Barreto, for being the most thoughtful person I have ever met and for

helping me in ways I cannot even begin to describe;

You have my eternal respect.

iii

Resumo

A navegação autónoma em ambientes 3D não estruturados representa um grande

desafio para a robótica moderna. Embora as florestas, em particular, sejam ambi-

entes hostis que apresentam diversos tipos de obstáculos e perigos para robôs móveis

autónomos, elas também fornecem informações valiosas e oportunidades para os mit-

igar.

Este trabalho consiste numa técnica inovadora de análise de travessia e planea-

mento de caminhos em 3D que processa mapas de nuvens de pontos tri-dimensionais

para gerar informações de gradiente do terreno. Isto permite-lhe realizar uma análise

estatística do ambiente percetível para que possa prever a irregularidade geral do

terreno, bem como a presença de obstáculos. Esta informação permite gerar cam-

inhos geralmente eficientes, pois evitam grandes declives quando existem caminhos

viáveis menos exigentes, reduzindo implicitamente o desgaste do equipamento e os

riscos associados.

Neste documento é apresentada uma revisão do estado da arte, identificando

as principais lacunas de pesquisa e fornecendo uma contribuição científica com o

desenvolvimento deste trabalho. A técnica proposta foi testada e comparada com

outras em quatro cenários realistas da nossa autoria, simulados no exterior, e os

resultados são apresentados e discutidos.

Palavras-Chave: Robótica Florestal; Análise de Travessia; Navegação 3D; Planea-

mento de Caminhos; Veículo Terrestre Não-Tripulado.

iv

Abstract

Autonomous navigation in unstructured 3D environments poses a great challenge

for modern Robotics. Although forests, in particular, are harsh environments that

present all kinds of obstacles and dangers for autonomous mobile robots, they also

provide valuable information and opportunities to mitigate them.

This work presents a novel traversability analysis and path-planning technique

that processes 3D pointcloud maps to generate terrain gradient information and

perform a statistical analysis of the perceived environment so that it can predict the

terrain’s overall roughness, as well as the presence of obstacles. This information

allows us to generate paths that are generally efficient, as they avoid major hills

when more conservative paths are available, thus implicitly reducing the wear of the

equipment and the associated risks.

We perform a review of the state of the art, identify key research gaps and provide

a scientific contribution with the development of this work. The proposed technique

has been tested and compared against other techniques on four realistic outdoor

simulated scenarios of our own design, and the results are presented and discussed.

Keywords: Forestry Robotics; Traversability Analysis; 3D Navigation; Path Plan-

ning; UGV.

v

“I will not follow where the path may lead, but I will go where there is

no path, and I will leave a trail."
— Muriel Strode, Wind-Wafted Wild Flowers

vii

Contents

Acknowledgements ii

Resumo iv

Abstract v

List of Acronyms xi

List of Figures xii

List of Tables xiv

1 Introduction 1

2 Background and Related Work 4

2.1 Fundamentals of Navigation and Path Planning 4

2.2 3D Navigation in Forest Environments 10

2.3 Potential Impact of This Work . 16

2.4 Research Gaps and Contributions . 18

3 System Architecture 27

3.1 Overview . 27

3.2 ROS - Robot Operating System . 28

3.3 Grid Map Construction . 31

3.4 Pre-Processing . 33

3.5 Gradient Map Computation . 36

3.6 Evident Obstacle Detection . 38

ix

3.7 Terrain Roughness Estimation . 39

3.8 Data Merging . 40

4 Experimental Evaluation 42

4.1 Objectives of the Experiments . 42

4.2 Performance Metrics . 42

4.3 Simulation Environment . 47

4.4 Scenarios . 49

4.5 Parameterization of the Compared Methods 51

4.6 Results and Discussion . 54

5 Conclusion 63

6 Bibliography 65

x

List of Acronyms

ACO Ant Colony Optimization

APF Artificial Potential Field

GPS Global Positioning System

IMU Inertial Measurement Unit

IRI International Roughness Index

LiDAR Light Detection And Ranging

PCL Point Cloud Library

RGB Red Green Blue

RGB-D Red Green Blue Depth

ROS Robot Operating System

SEMFIRE Safety, Exploration and Maintenance of Forests with the

Integration of Ecological Robotics

SLAM Simultaneous Localization and Mapping

ToF Time-of-Flight

UAV Unmanned Air Vehicle

UGV Unmanned Ground Vehicle

VFF Virtual Force Fields

xi

List of Figures

1.1 The SEMFIRE UGV considered throughout the course of this Dis-

sertation work [1]. 2

2.1 Typical behavior of a differential robot. 5

2.2 Illustration showing the planning and control phases. 8

2.3 Illustration of the 3D path planning taxonomy. 9

2.4 Examples of forest scenarios. 11

2.5 Examples of different spatial representation methods. 12

2.6 Relation between terrain gradient and fuel consumption. 17

2.7 Examples of two different spatial representation methods. 20

3.1 Overview of the architecture. 28

3.2 ROS communication paradigm . 30

3.3 Illustration of the grid map construction stage. 32

3.4 Comparison between the map generation speed of both systems. . . . 32

3.5 Comparison between the two cropping heuristics. 35

3.6 Costmap representation (XY plane) before and after applying the

cropping heuristic. 35

3.7 Representation of the gradient analysis stage output. 37

3.8 Representation of the evident obstacles detection stage output. 39

3.9 Illustration of the terrain roughness estimation output. 40

3.10 Illustration of the data fusion step. 40

4.1 Simulation models and terrains used. 48

4.2 First experimental scenario from two different perspectives. 50

xii

4.3 Second experimental scenario from two different perspectives 50

4.4 Third experimental scenario from two different perspectives. 51

4.5 Resulting plots from 50 runs in Scenario 1. 55

4.6 Resulting boxplots from 50 runs in Scenario 2. 58

4.7 Resulting plots from 50 runs in Scenario 2. 59

4.8 Resulting plots from 50 runs in Scenario 3. 62

xiii

List of Tables

2.1 Comparison of methods for spatial representation. 21

2.2 Comparison of methods for traversability analysis. 22

2.3 Comparison of methods for navigation and path planning. 23

4.1 Parameters used for the different techniques. 53

4.2 Results from 50 runs in Scenario 1. 56

4.3 Results from 50 runs in Scenario 2. 58

4.4 Results from 50 runs in Scenario 2 remapped. 61

4.5 Results from 50 runs in Scenario 3. 61

xiv

1 Introduction

Navigation is a subject of vital importance in modern robotics, endowing all sorts

of robots with the ability to move within their workspace, ranging from modern

autonomous vacuum cleaners to the rovers used to explore uncharted celestial bodies.

Forest maintenance is both dangerous and labor-intensive, requiring staggering

amounts of time, money and human resources, making it a prime candidate for

automation. Such autonomy requires a reliable mean of unsupervised navigation,

which is a sizeable challenge considering that forests are highly unstructured, dy-

namic outdoor environments. As such, these environments have gained increasing

attention over the past few years, with many new research and development efforts

being undertaken, tackling main issues such as autonomous maintenance and man-

agement in completely [2] and semi- [3, 4] unstructured forest environments, as well

as more delicate environments including orchards [5], vineyards [6] and plantation

fields [7, 8].

As such, this work proposes an innovative path planning technique that uses the

concept of mechanical effort from [9] to enable the generation of paths that are less

demanding for a Unmanned Ground Vehicle (UGV), especially avoiding steep sec-

tions of terrain, potentially improving the fuel economy and reducing the mechanical

wear by minimizing the mechanical effort that the robot is subject to. We pursue

our goal by using a two-dimensional costmap – which is a discrete grid of cells, where

each cell represents a portion of the terrain that holds relevant topographical infor-

mation – to represent the perceived environment, in which a traversability analysis

and successive path planning are performed to generate said paths.

Although this work is not platform-specific, we aim to account for the specific lim-

itations and capabilities of a differential heavy-duty forestry robot (Fig. 1.1) under

1

Figure 1.1: The SEMFIRE UGV considered throughout the course of this Disserta-

tion work [1].

the Safety, Exploration and Maintenance of Forests with the Integration of Ecolog-

ical Robotics (SEMFIRE) project. The main goal of the SEMFIRE project is to

develop a fully autonomous system capable of undertaking large forest maintenance

missions, with the support of an UGV of large dimensions and several Unmanned

Air Vehicle (UAV). The path planning technique developed in this work is meant to

empower with autonomous navigation capabilities the ground agent of the system.

The proposed technique for path planning and traversability analysis has been

tested and compared with other techniques on a realistic 3D Gazebo [10] simulation

environment that we have set up, with multiple scenarios with different character-

istics and associated complexities, providing a solid basis for the comparisons that

have been performed.

The remainder of the work is organized as follows: in Chapter 2, we present

a state-of-the-art study on traversability analysis, path planning and navigation

techniques. In Chapter 3, we describe in detail the proposed architecture and the

simulation environment that we have developed. In Chapter 4, experimental setup

and results are presented, detailing the different steps, such as chosen scenarios and

performance metrics, finishing with a discussion of the results. Finally, Chapter 5 is

2

the conclusion of this dissertation, providing relevant avenues to explore for future

work.

3

2 Background and Related Work

2.1 Fundamentals of Navigation and Path Planning

Navigation and path planning are key aspects when considering robot’s motion.

Considering that we deal with a differential UGV, it is important to know the basics

of controlling a platform of this kind.

A differential platform has the ability to fully control the angular speed of

both wheels independently. This means that curved paths (as seen in Fig. 2.1) are

achieved by varying the ratio at which both wheels are turning, therefore not needing

an additional steering degree. It is also important to notice that these platforms can

rotate over their own axis, which empowers them to invert their direction of motion

without needing additional space other than the one it is occupying in that very

moment. Nevertheless, these platforms are non-holonomic, which means that

they have less controllable degrees of freedom than total degrees of freedom in the

task space, i.e. they cannot move to any direction without first needing to readjust

their angle [11].

When it comes to autonomous navigation, we consider as fully autonomous

a vehicle that can, without any sort of human intervention during its execution

phase, navigate through its workspace without unintentionally colliding with existing

obstacles (whether static or dynamic), using information collected from its onboad

sensor(s).

Nowadays, there are a multitude of sensor modalities that robots use in order to

achieve their autonomy, such as:

4

Figure 2.1: Typical behavior of a differential robot. Adapted from [11].

Light Detection And Ranging (LiDAR) - Works by emmiting beams of laser

at a given time, waiting for the reflected signal to come back, and measuring the

time that passed between those two events, being then able to calculate the distance

that separates the device from the obstacle. This is mainly used in line of sight,

but there are situations where LiDARs have been used to scout the grounds of, for

instance, a forest from an unmanned air vehicle (UAV) where the only thing seen

by a regular camera was foliage [12].

Time-of-Flight (ToF) cameras - Time of Flight cameras are similar in working

principle to LiDAR (some of them actually operate with laser light, like LiDAR

does), but may operate with different forms of artificial light sources. These cameras

reconstruct scenes at a high rate, being able to be implemented in real-time systems.

Red Green Blue Depth (RGB-D) cameras - Similar to a common three

channel Red Green Blue (RGB) camera, this devices captures colored scenes, with

the differentiating ability of capturing depth information as well. These cameras

generally use pulsed light or stereo vision for capturing depth in indoor environments,

and usually stereo vision to capture depth in outdoor scenarios.

5

Capitalizing on sensor information, odometry is a technique that detects and

quantifies position variation over time, consequently producing an estimation of

the localization of the robot. Odometry data can be collected, for instance, from

encoders positioned on the joints/wheels of a robot, called wheel odometry, or

from a setup of cameras, in which case it is called visual odometry.

Another broadly used type of odometry estimation is called LiDAR-Based

Odometry, where the detection of position variation of the robot over time and its

consequent localization is achieved by detecting the position variation of environment

features over time on simultaneous readings from the range sensor – called scan

matching – mounted on a moving robot.

There are also other noteworthy types of odometry, such as visual-inertial

odometry, where data from an image sensor and an Inertial Measurement Unit

(IMU) is fused to generate the estimation of pose, and RBG-D odometry that

also uses data fusion from an RGB camera and a depth sensor to achieve the same

purpose.

Resorting to sensors, robots have the ability to detect obstacles up to a given

distance and with a certain belief, which means that they can, for instance, navigate

through an environment with a purely reactive behavior, i.e. they just drive

straight towards a goal point, only changing their trajectory if an obstacle enters

their detection radius. It is intuitive to understand that this way of navigating is

not ideal, given that the robot has no understanding of the general environment it

is in, increasing the chances of getting stuck in specific situations with no real way

of solving the deadlock other than randomness or environment-specific analysis and

so on.

An important concept in mobile robotics is mapping, which can be defined as

the ability of an agent to construct a map of the environment using its sensors.

Although the concept of mapping is independent from the concept of localization

– which can be defined as the problem of determining the pose of a robot relative to a

well-known frame of reference [13] – they are not completely inseparable in the sense

that, unless the localization source is trivial (i.e. mapping from a stationary source),

6

it is not possible to map while in motion without having some sort of localization

information.

Localization, however, may be performed without needing a map. Global Po-

sitioning System (GPS)-based localization, among others, is a common example of

mapless localization. There are two main types of localization:

Relative Localization comes from relative methods such as odometry. These

methods share the common premise that the pose estimation in instant t depends

on the pose calculated in instance t-1, meaning that they cannot perform discrete

corrections, thus accumulating error through time. Also, the localization they pro-

vide is typically centered in the reference frame of the sensor (or any other frame

as long as the transformation between this frame and the base frame of the robot is

known).

Absolute Localization is obtained by using methods such as GPS triangulation

or trilateration referenced to a global frame. These methods do not dependent on

the previous iterations of computation, which means that there is the possibility of

performing discrete pose corrections, thus minimizing the inherent errors. This type

of localization can, for instance, be used to correct the estimation of pose given by

relative methods.

Usually, localization and mapping are implemented together, which is called

Simultaneous Localization and Mapping (SLAM). This problem is solved by using

the data obtained through the robot’s sensors to fill the equivalent area on the map,

and simultaneously locate both the robot and other landmarks. SLAM allows to

generate the map and locate the robot in it concurrently, which makes it appropriate

for a number of applications, including forest navigation [14].

In order to increase the robustness and capabilities of these robots, it is desirable

to have a map of the surrounding environment. There are various types of maps,

such as topological maps [15], feature maps, 3D maps and occupancy grid maps [16],

being the latter the most relevant to this work. An occupancy grid map is a discrete

representation of the environment, where the continuous real space is discretized into

7

A B

Robot

Unknown
Obstacle

Known

Obstacle

Control
Planning

Figure 2.2: Illustration showing the planning and control phases.

cells of a given size, each containing a value that represents some characteristic of

the terrain, for instance its occupancy state or traversability cost. Maps can consist

of a priori full knowledge of the environment that is given to the robot, can consist

of partial information that is known from the start, or can even be empty. In all the

above cases, it is necessary to have some way of updating the map – this is useful

even with a complete initial map if we are dealing with, for instance, unexpected

obstacles – so that the robot’s knowledge of the ambient is increasingly higher, as

well as for self-localization purposes. That is why, as mentioned earlier, SLAM is

commonly used for navigation, path planning and traversability analysis.

Having now established the importance of a map and the ability to create/up-

date one during operation, we can introduce path planning. Path planning is an

area within Robotics on its own, whose objective is to generate a feasible collision-

free path from one place to another [17]. Although simpler or less demanding path

planning tasks do not necessarily need an optimization strategy or even a mathemat-

ical representation, generally path planning problems are described as optimization

problems, in which the objective is to find the optimal path on the given map that

connects an initial pose to a goal one following a safe, efficient and collision-free

trajectory [18]. Path planning can be divided into two sub-groups: planning and

control.

Planning refers to the action of using the information of the map, if one exists,

as well as the sensor readings in order to generate a global path that links the start

and goal poses, even if the goal is not in the known horizon of the robot. Thus, the

planning phase can sometimes be associated with the concept of global planning.

8

3D Path Planning Algorithms

Sampling Based
Algorithms

Node Based
Algorithms

Mathematic Model
Based Algorithms

 Bioinspired
Algorithms

Multifusion Based
Algorithms

Active Passive Linear
Algorithms

Optimal
Control

Neural
Networks

Evolutionary
Algorithms

Figure 2.3: Illustration of the 3D path planning taxonomy, inspired in [18]

Control designates the action of following the path generated in the planning

phase. In this phase the robot is limited to its sensory horizon, generally planning a

small distance ahead and trying to closely follow the obtained path, deviating from

it whenever necessary in order to guarantee a collision-free path. Thus, the control

phase can sometimes be associated with the concept of local planning.

Considering the advantages and disadvantages of both approaches described

above and illustrated in Fig. 2.2, it becomes clear that a viable solution is to use

them together to leverage their strengths, as many methods in the literature do [19].

So far, we have abstracted ourselves from the dimensions in which we plan our

trajectory. Bringing that into the discussion, we can further realize how broad the

concept of path planning is: it has the basis – that is, the classic 2D algorithms

that have been effectively integrated into 3D methods over time –, giving rise to

numerous other approaches [20, 21].

According to [22], some of the most used methods for global path planning mainly

include genetic algorithms, fast random search trees and bee colony algorithms. Also

some of the most popular local path planning algorithms are: Artificial Potential

Field (APF) methods, algorithms based on fuzzy controllers and scrolling window

algorithms, among many others.

Fig.2.3 shows a taxonomy of 3D path planners organized in categories. Sam-

pling based algorithms are among the most common mainly because they avoid the

problem of local minima and they provide an adequate compromise between compu-

9

tational cost and completeness ratio. Therefore, they are used to deal with distinct

matters (such as dealing with dynamic obstacles instead of static ones).

APF algorithms are a classic example of sampling based algorithms. They es-

sentially work by dividing the workspace into a discrete grid of cells and applying a

set of rules to decide on which path to follow. Let us take for example one of the

most well-known and widely used APF algorithms, the Virtual Force Fields (VFF)

algorithm [23]. In VFF, after the initial discretization of the workspace, each cell

is given a real number between 0 and 1 according to the level of confidence in its

occupancy, usually 1 meaning that we have 100% confidence that there is an obstacle

in that cell. Lastly, the algorithm uses the position of each cell and the position of

the robot to compute virtual forces that act on the robot. There are two types of

forces in play: Repulsive forces, in every cell that is above a certain probability of

being occupied and pushing the robot away from that specific cell, and there are

virtual attractive forces pulling the robot towards the goal point. In the end, the

robot manages to navigate through the workspace by following the resulting force

vector, that results in the combination of every force affecting the vehicle in each

iteration.

Bioinspired and multifusion based algorithms [18] are among the most recent

advances in this area. Bioinspired algorithms are based in biological beings and

their natural laws and habits, such as the hierarquization of bee hives or ant colonies,

Darwin’s theory of evolution (applied particularly to evolutionary algorithms) and

so forth. Multifusion algorithms are based on two or more simpler algorithms – such

as Ant Colony Optimization (ACO) and improved potential fields in [24]) –, that

combine into a more complete and robust one.

2.2 3D Navigation in Forest Environments

Within the realm of navigation and path planning techniques, not all of them can be

applied in 3D environments and, even inside the feasible group of techniques, they

are not all able to cope with forest scenarios efficiently.

Forest environments are, arguably, one of the most challenging terrains to face

10

(a) A common pine tree forest. (b) A cluttered forest.

Figure 2.4: Examples of forest scenarios.

when it comes to autonomous robots. On one hand, this type of scenario is com-

pletely unstructured, the soil can have different shapes and textures, different

areas can have totally different characteristics, as shown in Fig. 2.4a, or they can

even change throughout the robot’s mission in an unpredictable way. As Fig. 2.4b

illustrates, trees can be upright, they can be bent, large, small or even fallen. Dense

foliage may occlude sensors, and the forest as a whole can hide hard objects of large

dimensions that may damage the robot if it considers the terrain as traversable – as

is the case with the large boulders in Fig. 2.4b –, among many other examples that

could be presented. On the other hand, forest environments are typically cluttered

with 3D information, thus generating large amounts of data to be processed, making

this process considerably complex and slow, which in turn may lead to its own prob-

lems, seeing as navigation algorithms, especially in forests, must be fast and efficient

when generating outputs. In some cases, robots may encounter danger before the

map is updated with that information. Other factors that make this environment

harsh when it comes to autonomous navigation include: the bad signal reception

from satellite positioning devices, hindering localization of the robot; or the steep

angles of the terrain, limiting the robot’s maneuverability.

Grouping the challenges of navigating in this kind of environment, we are inter-

ested in three main fronts related to this application:

11

(a) 2.5D-NDT representation of a bridge.

Adapted from [25].

(b) OVPC Mesh compared with OctoMap

and Elevation Map, respectively. Adapted

from [26].

Figure 2.5: Examples of different representation methods.

• Environment Representation - We must choose/develop an efficient tech-

nique to represent the foreseeable space with minimal resolution and fidelity

loss while still maintaining performance computation wise.

• Traversability Analysis - We must choose/develop an appropriate method

to analyze the generated representation in order to isolate traversable from

non traversable areas.

• Path Planning - We must design/choose an appropriate method that enables

the robot to navigate through traversable space until it reaches the desired goal

point.

Environment Representation Techniques

Elevation Map [27] - This method incorporates the drift and uncertainties of the

robot’s state estimation, as well as a noise model of the distance-measuring sensor in

order to create a probabilistic terrain estimate as a grid-based elevation map, with

upper and lower confidence bounds.

2.5D-NDT [25] - This method is proposed as a 2.5D Normal Distribution Trans-

form (2.5D-NDT) map. Its main benefits are that it only stores information about

points that are believed to be traversable by ground robots, as clearly shown if Fig.

12

2.5a, the resulting map is efficiently organized according to a proprietary two-index

system designed by the authors, speeding up the computations.

2D Costmap [28] - This is among the pioneer methods used to efficiently repre-

sent the surrounding environment in such a way that a mobile robot can navigate

accordingly. The space is essentially discretized into a 2D grid of a chosen resolution,

then the information in the Z-axis (if existent) is projected into the 2D plane and

each cell is given a value according to the existing belief about its occupancy. Then,

obstacles are typically inflated in order to guarantee a safety distance for the robot

and are lastly fed to the path planner to generate motion commands around these

obstacles.

OVPC Mesh [26] - On Visible Point Clouds (OVPC) Mesh is a method that con-

servatively represents the visible spatial surroundings of the robot as a watertight

3D mesh that aims at providing reliable 3D information for path planning while ful-

filling real-time constraints. This approach provides a satisfactory trade-off between

representation accuracy and computational efficiency, resulting in a technique which

is faster than both octomap and elevation map, while still correctly categorizing

harder obstacles such as overhangs and thin poles, as observed in Fig. 2.5b.

Navigation Mesh [29] - The Navigation Mesh method uses 3D point clouds

to reconstruct a triangle mesh of the environment in real time that also has local

connectivity information. This resulting mesh is then analyzed for roughness and

traversability and fed to the path planner.

OctoMap [30] - This method generates volumetric 3D environment models based

on octrees, which are a data structure optimized for 3D models, thus achieving a

considerable reduction in computational complexity when compared to other vol-

umetric representations. The 3D sensed environment is discretized in 3D cells of

a given size, making this method excel in representation fidelity, but incurring in

heavy computations and large times for extensive and complex environments when

compared 2.5D methods, such as elevation maps.

13

Mechanical Effort Based Map [9] - This representation technique is among

the most recent to be proposed, it distinguishes traversable from non-traversable

areas, computes a mechanical effort measurement of the robot in the given terrain

according to its 3D gradient, and fuses the data in a 2D costmap.

The area within a given distance around the robot is analyzed (ideally at run

time), the gradient of the terrain is calculated and the concept of mechanical effort is

introduced based on that. Then, the calculated mechanical effort is used to populate

a 2D cost map which is later used for navigation.

Traversability Analysis Methods

Semantic Segmentation [31] - This is one of the most recent techniques of

categorizing terrain as traversable. Neural networks are trained to take as input an

image, categorize every pixel into a class and also return a 2D image where every pixel

has an assigned class. This output is generated in the camera’s frame of reference,

which means that it needs to be subject to a coordinate frame transformation before

it can be used as input for a navigation system.

3D OctoMap based Grid Map [32] - The perceived world is first discretized

using an octomap, and that octomap is then divided in horizontal layers of a set

height defined by the user. Every layer is then analyzed considering inter-layer

dependency in order to identify traversable portions of terrain (for instance, levelled

areas or slopes) and non-traversable portions of terrain (for instance, cliffs or hills

that the robot cannot safely climb).

2.5D-NDT Traversability Analysis [25] - The area previously divided into

patches by the corresponding spatial representation technique is then analyzed in

order to find which of the patches are traversable. This analysis is done by consider-

ing a 2r ∗ 2r ∗ 2r sphere as the robot spatial footprint, checking if there are patches

inside that sphere and, in case there are, comparing the height of neighbour patches

relative to each other and to the robot, to check if that patch of terrain is suitable

for navigation.

14

Neural Network Depth Maps [33] - Similarly to semantic segmentation, this

approach also uses neural networks. However, the output of the networks are directly

navigation commands, instead of semantic classes that need to be post-processed to

generate the desired navigation commands.

Path Planning Techniques

Virtual Force Field [23] - A method that discretizes the workspace in cells,

and assigns a force vector to each cell (repulsive force if the cell has an obstacle,

attractive force if the cell has the objective point, zero if the cell is empty) and then

navigates according to the resulting force vector.

Vector Field Histogram [34] - A similar method to VFF, but discretizes the

workspace according to an occupancy histogram instead, pursuing the path that has

the biggest unoccupied area.

Neural Networks [35] - In general, this type of algorithms require a very com-

plex training stage with, for instance, input labelled data (images for segmentation,

navigation commands, etc.) in which they try to approximate the behaviors and

patterns present in the training data, so that in the presence of new data, it can

generate an appropriate output.

Fuzzy Controllers [36] - This type of algorithm is built using the knowledge and

experience of humans about the process to be controlled. Based on this knowledge, a

set of rules is created, and the inputs of the system are fed into a fuzzifier, responsible

for transforming continuous variables in fuzzy variables, which then suffer the effects

of the inference engine, being lastly reconverted into continuous variables by the

defuzzifier. This process allows us to control systems from which the mathematical

model is hard or impossible to extract.

Sampling Based Algorithms [18] - In algorithms like RRT (Rapidly-exploring

Random Tree), the configuration space is rapidly explored by creating a new random

15

node in each iteration of the method, and testing if it is possible to traverse into that

new node while remaining inside the configuration space. If this test is sucessful, the

newly created random node will be saved and become attached to the previous one.

This process is repeated until a path reaching from the starting to the goal pose is

obtained.

Node Based Algorithms [18] - In algorithms like A* and Dijkstra’s, the en-

vironment is sampled into a graph composed by nodes and arcs and the method

iterates by advancing to the next connected node of minimal cost, eventually reach-

ing the goal pose. The generated path is thus guaranteed to be the one of minimum

cost, according to the metric used.

2.3 Potential Impact of This Work

As stated by [37] and on the authority of a study from the European Commission,

road transports account for 72% of the overall EU greenhouse gas emissions, thus

reassuring the importance of developing new and more efficient fuel-related tech-

nologies [38, 39, 40]. Among the research being undertaken on the topic, many

articles have shown that there is a strong correlation between the fuel consumption

of a vehicle in a certain terrain with the gradient and the roughness of that terrain

– even when considering more common types of vehicles like passenger vehicles in

asphalt roads [39, 41, 42].

According to [42], fuel costs make up to 35% of the forestry sector expenses in

Sweden. Furthermore, terrain gradient and road grade account for more than 77%

of the variation in fuel consumption of forestry vehicles, being terrain gradient the

main factor [42, 41]. Also, from the analysis of a dataset collected in a real world

scenario with a heavy duty logging truck, there is a clear relationship between the

characteristics of the terrain and the fuel consumption of the vehicle, as shown in Fig.

2.6. These considerations help to sustain the relevance of the proposed algorithm

which strives to choose the path of less effort, thus reducing the energy requirements

for the locomotion of the robot.

16

Table 7 - The 9 functional road classes were aggregated into 5 general classes.

Road
class

Fuel consump-
tion, litres/100
km

Velocity,
m/s

Gradient Curvature IRI, mm/m No. of
observations

1-4 66.95 18.14 0.25 1.25 1.92 190
5 75.87 13.24 -0.07 3.65 3.57 159
7 95.94 9.88 -0.03 2.93 6.34 43
8 102.07 11.12 0.12 3.19 5.46 123
9 145.19 8.23 0.36 5.06 7.50 30
Road class can accurately describe fuel consumption due to its correlation to IRI and curvature,
but it misses the impact of the independent variable gradient. A regression of gradient against
fuel showed a high coefficient of determination, and adding the continuous variable IRI, resulted
in a function where 77 % of the variation can be explained by these two factors alone:

Fuel = 46.19 + 22.33*G + 1.47*G*G + 7.70*IRI (1)

Looking at the effect of gradient alone, a clear dog-leg occurred between driving uphill and
downhill. When going uphill fuel consumption increased more with increased gradient, than the
corresponding decrease when going down-hill, figure 2.

Figure 2 – A scatter plot of fuel consumption (litres/100 km) and gradient (%).

Gradient, %

Fuel consumption,
litres/100 km

 400

 300

 200

 100

 0

 -5 0 5

Figure 2.6: Relationship between terrain gradient and fuel consumption on a heavy

duty forestry vehicle. Image taken from [42].

On a more speculative note, using the data collected and processed by [42], we can

assume with some degree of certainty that the correlation between the gradient (G),

International Roughness Index (IRI) and fuel consumption shown in the following

equation1:

Fuel = 46.19 + 22.33 ∗G+ 1.47 ∗G2 + 7.70 ∗ IRI, (2.1)

is approximately proportional, thus inferring that the results of the same tests with

our robot would simply be scaled down, while maintaining the distribution of the

values relatively constant, according to

Fuel = K ∗ (46.19 + 22.33 ∗G+ 1.47 ∗G2 + 7.70 ∗ IRI), (2.2)

where K is the unknown scale factor between the two distributions.
1Equation taken from [42].

17

2.4 Research Gaps and Contributions

In this section, we discuss the existing techniques for representation, traversability

analysis and path planning and study how they compare with one another, as well

as with our expectations of what an all-emcompassing method should be, aiming at

finding the most promising one.

In Table 2.1 we compare some of the existing methods used for spatial repre-

sentation, i.e. the way how algorithms sample the real (or continuous environment)

into some sort of discrete representation. In our comparison, we found some metrics

to be the most appropriate ones to describe this group of algorithms based on the

available information, namely:

• Resolution Loss: The amount of detail a method can capture and represent

is a fundamental specification of any environment representation algorithm,

and so is the amount of detail it eliminates. This metric represents how much

detail is lost when applying the method.

• Dimensions: Although the number of represented dimensions can be higher

than three (for instance, 4D - three spatial dimensions and one temporal di-

mension), we chose an interval between two and three dimensions for this

comparison.

• Computational Cost: This is an essential metric for any real-time or close to

real-time method, given that it directly represents the complexity of all the cal-

culations involved and the relation between the complexity of the environment

and the duration of the representation process.

• Test Environment(s): Whether a proposed method is tested under real circum-

stances or not is an important information, given that even the most realistic

of the simulators cannot perfectly emulate reality. On the other hand, testing

software on a realistic simulator is of major importance, given that we can

replicate extremely challenging conditions, and collect valuable data without

worrying about damaging expensive equipment.

18

• Tested in Forest Environments: Bearing in mind the considerations explained

earlier about the specificity and complexity of forest environments, this metric

specifically indicates whether a given method was tested in forest environ-

ments.

As we can see, the majority of the techniques shown in Table 2.1 use at least

2.5D, with only the 2D costmaps and the mechanical effort approach using less than

that.

Generally, the more dimensions a method uses, the higher the fidelity of the

representation is. However, this has a big impact on the computational cost.

For instance, looking at the methods from the first two rows of Table 2.1, we

can see that both represent the world in 2.5D, however one is considered to have

a higher resolution loss than the other. This is because of the way each method

processes the received 3D information. As explained earlier, Elevation Map creates

a triangle-based mesh where the higher point in the Z-axis in each cell defines the

height of that particular triangle, making the representation of some structures like

bridges impossible (this is visible in Fig. 2.7b, where nearly all the terrain under

the tree is classified as non traversable, when in fact that is not true). On the other

hand, the 2.5D-NDT method groups the points from a point cloud into discrete

patches and saves several horizontal patches, which makes it possible to have two

parallel patches, one on top of the other, being able to represent a higher amount of

structures (such as bridges).

Similar conclusions can be inferred about the two 2D methods presented in Table

2.1. Although they both are 2D, mechanical effort based maps capture way more

information about the environment than simple 2D costmaps do. Once again, we

can see that this reflects strongly on the computational cost. Therefore, it becomes

apparent that a method cannot be the best at every category; it must, however,

consist on a proper combination of categories, prioritizing the most relevant aspects

considered.

Having this in mind, as well as the entire analysis available on Table 2.1, we

believe that 2.5D-NDT, OVPC Mesh and Mechanical Effort Based Map are the

methods that show the higher potential for our particular application.

19

(a) Point cloud. (b) Elevation map. (c) OctoMap

representation.

Figure 2.7: Examples of two different representation methods and the original point

cloud. Image adapted from [30].

20

Table 2.1: Comparison of methods for spatial representation.

Name Brief Description
Resolution

Loss
2D/2.5D/3D Computational Cost Test Environment(s)

Tested in Forest

Environments

Elevation Map [27] Triangle-based 2.5D elevation costmap Medium 2.5D Medium to High

Simulation and

in real robots,

both indoor and

outdoor

Yes

2.5D-NDT [25]
2.5D-Normal Distribution Transforms Map, which divides the world in

so called patches.
Low 2.5D Low to Medium

Simulated and

real datasets
No

2D Costmap [43]

Map that discretizes the world in cells and fills each cell with

2D information about the existence of obstacles in the projection of the

world that results in that 2D cell.

High to

Very High
2D Low

Extensively tested

in all kinds of

environments

Yes

OVPC Mesh [26]

On Visible Point Clouds Mesh is a method that conservatively

represents the visible spatial surroundings of the robot as a watertight

3D mesh.

Low 3D Low to Medium
Simulation and real

robot
Yes

Navigation Mesh [29]

Navigation Mesh method uses 3D point clouds to reconstruct a

triangle mesh of the environment in real time that also has local

connectivity information.

Low 3D Medium Real robot No

OctoMap [30] OctoMap generates volumetric 3D environment models based on octrees. Almost none 3D
High to

Severe

Extensively tested

in all kinds of

environments

Yes

Mechanical Effort

Based Map
[9]

Distinguishes traversable from non-traversable areas, computes the

mechanical effort of the robot in the given terrain and fuses the data in a

2D costmap.

Medium 2D
High to

Very High
Simulation No

21

Table 2.2: Comparison of methods for traversability analysis.

Name Brief Description 2D/3D Computational Cost
Local/Global

Analysis
Test Environment(s)

Tested in

Forest

Environments

Semantic

Segmentation
[31]

Performs a pixel-wise analysis and labels each pixel as part of a given

class (e.g. road, tree, bush,...)
3D Medium to High Local

Real

and

Simulated

Yes

3D OctoMap based

Grid Map
[32]

Divides an octomap that represents the perceived environment into layers

and analyzes the layers relative to each other to infer traversability features.
3D

High

to

Very High

Global

Real

and

Simulated

Yes

Elevation Map [27]
Adjacent cells are analyzed with respect to some metrics, for instance,

the height difference between them, and a traversability map is generated.
2.5D Medium Local

Real

and

Simulated

Yes

2.5D-NDT

Traversability

Analysis

[25]

The patches previously identified by the respective spatial representation

method are analyzed to extrapolate a traversability map, performing

several routines.

2.5D Low to Medium Global

Real

and

Simulated

No

Neural Network

Depth Maps
[33]

Although this approach also uses neural nets, unlike semantic segmentation,

the output of the nets are directly navigation commands.
3D Medium to High Local

Real

and

Simulated

No

Local Roughness

Estimation
[29]

Infers the continuity of the surface its respective roughness value,

choosing then the path with less roughness overall.
3D

Medium

to

High

Local

Real

and

Simulated

Yes

22

Table 2.3: Comparison of methods for navigation and path planning.

Name Brief Description 2D/3D Computational Cost
Local/Global

Planning
Test Method(s)

Tested in

Forest

Environments

APF [18]

Artificial Potential Fields - Methods like VFF and VFH that discretize

the workspace into 2D cells, apply virtual forces to each cell and

navigate following the resultant force vector.

2D Low Local
Simulation and

in real robots
Yes

Mechanical

Effort
[9]

Creates a local plan that follow the path that requires less mechanical

effort from the robot, according to the previously generated map from

the same method.

3D Very High Local Simulation No

Neural Networks [35]
This kind of algorithms take, for instance, labelled images as the input,

and return the semantic classes each pixel belongs to.
3D

High on training stage

Lower on running stage

Depends on

the

implementation

Simulation and

in real robots
Yes

Fuzzy Controllers [36]

This kind of algorithms uses a rule basis to calculate the output.

Such rule base is built with linguistic variables and according to

prior knowledge/experience of humans.

Both Medium Both
Simulations and

in real robots
No

Sampling Based

Algorithms
[18]

Algorithms like RRT (Rapidly-exploring Random Tree) where

the configuration space is rapidly explored in order to find a path

leading from the start to the end goal.

Both Medium to High Global Simulation No

Node Based

Algorithms
[18]

Algorithms like A* and Dijkstra’s, which deal with graphs composed

by nodes and arcs and calculate the cost of exploring the

nodes, eventually reaching the optimal path.

Both Medium to High Global
Simulation and

in real robots
No

23

The analysis of Table 2.2 is similar in nature to the one just performed and

the general conclusions still apply. It is important to note that the “Resolution

Loss" metric was swapped with “Local/Global Analysis" as we consider the

latter to be more appropriate when it comes to traversability analysis. In this

context, we consider that a method performs a local analysis of the environment

when it has to plan using only the information given from the onboard sensors

about the surrounding perceived environment at each particular instance, and a

global analysis when the method has information about the environment that is, at

that point in time, outside of the sensory horizon of the robot, either by having an a

priori map of the environment or by recording previous sensor reading in some sort

of representation.

Although implementations based on neural networks show promising results in

some cases, we consider it too resource intensive for this particular work, considering

all the training labeled data it would involve in order to have a chance of succeeding.

From all the methods described in Table 2.2, we believe 2.5D-NDT Traversability

Analysis to be the most promising one, considering its ability to navigate through

challenging environments while only being 2.5D, thus making the computational

cost of the process lower when compared to other methods.

In Table 2.3 we present some of the existing approaches for navigation and path

planning. It is noteworthy that these are just a few of the most common ones,

many others based in different concepts could be mentioned, such as evolutionary

algorithms, bio-inspired algorithms, e.g. bee colony and ant colony algorithms and

even some based in bacterial foraging theory [44].

Although the mechanical effort method is considered to have a very high com-

putational cost, we believe the concept is extremely interesting and, with proper

modifications and expansion to a global analysis, it can become a much more effi-

cient method.

Similarly to the resulting conclusions from table 2.2, neural networks are consid-

ered too expensive data wise to be accounted as a valid candidate for this work.

Both sampling and node based algorithms are valid candidates, yet they tend

to generate results slowly in extensive and cluttered environments, like the ones we

24

intend to deal with.

When it comes to fuzzy controllers, we consider them as possible candidates in

simpler environments. However, in this work we are dealing with highly complex

forest environments and, as such, we believe that the performance offered by this

technique is not adequate as the number of rules to correctly navigate would be too

high.

Based on the analysis performed, we believe that mechanical effort based nav-

igation, sampling and node based algorithms are the more promising ones, as they

have the most fitting ratio of the used metrics to our needs.

Taking into account the tables presented as well as the analysis performed,

we consider the following points as existing research gaps in the state of

the art at this moment:

• Mechanical effort based traversability analysis shows, not only what is and

is not traversable, but also a very interesting way of deciding which path is

the most efficient one, especially with regards to fuel economy. However, this

method has been developed for local planning, which makes it less computa-

tionally efficient and limits its success.

• 2.5D-NDT method presents a very promising approach for the specific task of

spatial representation for vehicle navigation, considering the ratio of compu-

tational cost/representation detail it presents. This was not, however, tested

in a real environment nor in a forest one.

• There is, currently, lack of works with proven effectiveness in forest environ-

ments for spatial representation, traversability analysis and navigation.

• The current literature in forestry robotics lacks fuel related research, such as

fuel consumption models and fuel economy techniques.

25

Having the previous research gaps in mind, we consider the following

points to be relevant candidate contributions of this work:

• A thorough state of the art review on the subject of navigation, path planning

and traversability analysis of UGVs, especially in unstructured environments

such as forests;

• Expand the mechanical effort method [9] to perform a global analysis, with the

intent to improve its overall performance and thus generating a robust method

for traversability analysis and navigation.

• Extension of the mechanical effort algorithm with a mechanism to deal both

separately and concurrently with a lethal obstacle layer, which we called ev-

ident obstacle layer and a terrain roughness layer that is later fused into a

single costmap.

• Optimize the implementation of the algorithm so that it can execute in real

time.

• Benchmarking with other existing techniques to prove the validity of the pro-

posed method.

26

3 System Architecture

3.1 Overview

This Chapter describes the developed architecture in detail. Fig. 3.1 presents its

overview, with the intended dataflow through the main areas of focus considered.

Our system consists of:

1. A pre-processing module responsible for downsampling the input data;

2. A traversability analysis block responsible for generating traversability maps;

3. A navigation technique that uses its contents to generate and execute paths.

The system uses a so-called pointcloud map – a pointcloud representation of the

map generated with any pre-existing SLAM technique – of the environment as its

input, that starts by undergoing multiple steps of decimation and pre processing

(Section 3.4). The output of these inner stages (Section 3.5) are then used as input

to the two main stages of our system: the evident obstacle detection (Section 3.6)

and the terrain roughness estimation (Section 3.7), where in each one a costmap

containing the respective information is generated. The two costmaps that result

from these stages then serve as input for the data fusion stage (Section 3.8) which is

responsible for generating a single costmap that contains all the relevant information.

This costmap is finally fed into the navigation stack that uses it to compute the

global path and drive the robot accordingly (Section 3.2). Thus the robot acts on

the world, changing its configuration, which generates new sensory data, and thus

closing the loop.

27

Pre-Processing
of Data

Navigation
Stack

Robot

ActuatorsSensors Environment

Pointcloud
Map

SLAM 3D Point Couds

Traversability Analysis

Evident
Obstacle
Detection

Terrain
Roughness
Estimation

Gradient Map
Computation

Data Fusion
Grid Map
Construction

Navigation

Commands

Vertical
Cropping of

Data

Traversability
Map

Proprietary

Adapted

Off-the-Shelf

Figure 3.1: System architecture overview for proposed solution. Green boxes rep-

resent modules implementing completely novel algorithms/processes, yellow boxes

represent modules implementing existing solutions modified for the purpose of this

work, and red boxes represent off-the-shelf modules by other authors used "as is".

Fig. 3.1 represents the novel architecture proposed by this work. It is composed

of several modules, from which some have been created from scratch, while others

have been adapted or simply used.

In virtue of having built the entire system using Robot Operating System (ROS)

nodes, it runs concurrently, meaning that a new map may start being processed

while the final output of the previous one is not yet generated. There is, however,

one particular stage of the pipeline, comprised by the modules described in Sections

3.6 and 3.7, that is able to execute in parallel to the same input map.

3.2 ROS - Robot Operating System

ROS [45] is a framework designed to help in the development of software for mobile

robots. It has a conceptually simple yet very powerful workflow, shown in Fig. 3.2,

with its main features being:

• Ability to abstract from the hardware side of the problem and focus on the

software side;

• Native synchronous and asynchronous communication protocols;

28

• Ability to generate self-contained units of software (packages) that can be

interchangeable between projects with minor or no modifications required.

ROS has four main components: Packages, Nodes, Communication Protocols

(services and topics) and Messages.

Packages in ROS are essentially a directory which contains the necessary software

to implement a given feature, which can, for instance, translate into empowering our

robot with an additional feature (such as a PID controller or some sensor’s driver),

ideally with little to no adjustments. A package might contain ROS nodes, a library,

a dataset, configuration files, a third-party piece of software or anything else that

constitutes a logical module when put together.1

When packages are compiled, generally they define independent executables

called nodes that are created during compilation, which are processes that can

communicate with each other to generate the required data flow for the correct

behavior of the implemented system. Nodes can then publish or subscribe to

a topic, which enables them to access required information that other nodes are

sharing, or do themselves the sharing of information.

Topics are a one way communication system bwtween nodes: although they can

either have a node publish information on them or have a node subscribe to it to

get the information it contains, the flow of information on the topic is always from

the publisher to the subscriber.

Both topics and services provide communication between nodes. However, while

topics do it in an asynchronous way (nodes publish information on topics and other

topics may or may not subscribe to it), services implement a synchronous com-

munication protocol, requiring both a request and a response to be transmitted

between the communicating nodes in order to succeed.

All the previous communication is done with the help of messages, which are

pre-specified data containers composed by typed field of various complexities, from

a single integer to nested arrays of primitive types.

Fig. 3.2 illustrates a possible implementation of a system running with ROS.
1http://wiki.ros.org/Packages
2http://wiki.ros.org/Master

29

ROS
Master

topic1

topic1

Advertise
topic1

Node 1

Publish
topic2

Subscribe

topic1

topic2Node 2

Subscribe
topic1

Node N

Figure 3.2: ROS communication paradigm (inspired in the ROS official page2).

It has a few nodes that advertise (publish) topics, i.e. they notify the master node

about wanting to publish a certain type of data into a certain topic and then, the

master node enables the data to be published (with no data transfer yet). When

some other node(s) subscribe to the same topic to acquire relevant information, the

data is then transferred, the subscriber node receives it and a peer-to-peer connection

is created between those nodes. Such connection is later eliminated if it is explicitly

closed by one of the nodes.

Given that ROS provides a simple yet powerful way of programming a complex

system – such as a mobile robot – described above, while greatly facilitating the

integration with simulation tools and having an extremely active community, we use

it in this work for all the implementations and experiments described.

Navigation Stack [43] is a collection of ROS packages that endow a generic

mobile robot with the capability of navigating in 2D environments. Even though

it is not a one-fits-all solution, it can also be tuned to work in 3D environments

and produce satisfactory results. This is what we did in order to process the final

costmap that results from our system and convert it into movement commands.

Instead of using observation sources to populate the costmaps, the navigation

algorithm is fed with the final map produced by our algorithm through a ROS

plugin called costmap_2d::StaticLayer into its global costmap, which is then used

30

to generate the path. Considering that the scope of this work is global planning,

the local costmap is not populated nor updated, it simply stays empty. However,

this does not mean that the local planner is not used, as it actually guides the robot

through the terrain, closely following as much as possible the global path generated

earlier.

3.3 Grid Map Construction

This module is responsible for creating the 2D grid map that serves as input to

other modules. It takes as input the pointcloud map that has been processed in the

first step of data cropping and creates grid of configurable size where each point in

the map is projected and assigned to a particular cell according to its location in

space, as illustrated by Fig. 3.3.

The "Grid Map Construction" block referenced in the architecture (see Fig. 3.1)

was adapted from [46]. The original module was analyzed with a profiling tool

(cProfile), which timed all components of the system during its execution. After

that, we have used pStats to illustrate how much processing time is dedicated to

each component of the system. This analysis revealed a major computational peak

in the algorithm - a very resource-intensive loop that we managed to significantly

improve by using python iterators such as enumerate and zip instead of the typical

three dimensional nested for loop that was implemented. This drastically reduced

the complexity of the algorithm, addressing and solving the first of [46]’s future

work proposals. In Fig. 3.4 we present a plot that shows the scale at which the

algorithm’s complexity was decreased. Although this figure only compared the map

generation time with the size of the pointclouds, it is also worthy to mention that

now the execution time of the algorithm also scales much better with the size and

the resolution of the map, transforming what was a rapidly accelerating exponential

complexity into an almost linear one.

31

3D PointCloud Grid Map

Grid Map
Construction

First Vertical Layer
Second Vertical Layer
Third Vertical Layer

Figure 3.3: Illustration of the grid map construction stage (top view of the point-

cloud).

0 50000 100000 150000 200000 250000 300000
Number of Points

0

50

100

150

200

250

300

350

M
ap

 G
en

er
at

io
n

Ti
m

e
(s

)

Second Degree Polynomial Regression
First Degree Polynomial Regression
Second Degree Polynomial Regression
First Degree Polynomial Regression
Without Speedup
With Speedup

Figure 3.4: Comparison between the map generation speed of both systems.

32

3.4 Pre-Processing

This stage of the pipeline is fed a pointcloud map of the complete environment

received from any SLAM technique, which is not the scope of this work, and filters

the received map in order to exclude the points that are outside the workspace of

the robot. There are four main steps within this stage:

Data Decimation - The raw pointcloud is decimated using a 3D voxel grid with

a configurable downsample factor, which aproximates all the points contained within

each voxel with their centroid, i.e. the spatial average of the points in the cloud con-

fined by each voxel. This significantly reduces the number of points in a pointcloud

(up to 6.5x lower), depending on the point density that our system requires. This

functionality was implemented using the Point Cloud Library (PCL) VoxelGrid fil-

ter. PCL is a standalone, large scale, open project for 2D/3D image and point cloud

processing3.

Change of Frame of Reference - This step is necessary to make sure that

the cropping described in the following points is centered in the robot’s frame of

reference and not in the world reference frame. This step is of major importance,

considering that we intend to have a scrolling window of information centered in the

reference frame of the robot and, if it was centered in the fixed world frame, at some

point the robot would exit the cropbox of known information. To implement the

algorithm described above, we have created a C++ ROS node that takes advantage

of the efficient PCL algorithms (available in the pcl_ros package) and modifies the

frame of reference of the entire input pointcloud, from the world frame of reference

to the robot’s.

Horizontal Data Cropping - Receiving as input the decimated pointcloud in

the robot’s frame of reference, this module filters all the points that are outside

of a three-dimensional box of a configurable size and no limit along the Z-axis,

considering that these points do not have a significant impact in the behavior of the
3https://pointclouds.org/

33

https://pointclouds.org/

robot. The importance of using cropbox with no Z limit in this stage is depicted in

Fig. 3.5a, where we can observe that, by cropping along the Z-axis up to a certain

height, it is only reasonable when the terrain is levelled. As soon as we introduce

hills on the terrain, this technique is no longer guaranteed to work, given that we will

be cropping the entire pointcloud at the same level with no regards to the ground

level for each cell. That may result in the elimination of unwanted information,

such as higher ground trees and/or too little of the lower ground ones, leading to

unreliable path planning.

Vertical Data Cropping - This step deals explicitly with the vertical axis of the

pointcloud. Considering that at this stage we already have a discrete map of N ×N

cells, we perform a cell-wise analysis where we check which is the lowest point in

each cell, and then only consider the points that stand up to a given amount above

it. This heuristic is demonstrated in Fig. 3.5b and can be summarized by

point is

not discarded if z_current_point−min(z_all_points) < threshold

discarded otherwise
,

where the value for the specified threshold is adjusted empirically and varies

depending whether we are dealing with the evident obstacle layer (Section 3.6) or

the terrain roughness estimation layer (Section 3.7).

In Fig. 3.6, we show the effect of the chosen heuristic’s application. Fig. 3.6b

shows the costmap that results from not applying the vertical cropping heuristic,

while Fig. 3.6c shows the resulting costmap from the full pre-processing stage,

including the chosen vertical cropping heuristic.

The main goal of this stage is to reduce the number of points to be further

analyzed and consequently reduce the complexity and computational cost of the

entire process.

34

(a) First vertical heuristic: cropbox. (b) Second vertical heuristic: cell by cell

analysis.

Figure 3.5: Comparison between the two cropping heuristics. The heuristic illus-

trated in (b) was ultimately integrated in the system.

(a) Pointcloud to be

analyzed.

(b) Costmap before

applying the vertical

cropping heuristic.

(c) Costmap after applying

the chosen vertical cropping

heuristic.

Figure 3.6: Costmap representation (XY plane) before and after applying the crop-

ping heuristic.

35

3.5 Gradient Map Computation

This is the first step regarding the actual traversability analysis process, that uses

as input the data generated in the previous pre-processing stages and in which the

terrain is analyzed through the gradient at each point. To accomplish this goal, we

start by making sure that every cell of the grid only contains one point, using the

median of the sample (the set of points in that particular cell) when that is not the

case initially. After this is done, we apply the gradient to the resulting pointcloud,

thus generating a gradient map that can be used to estimate the overall roughness

of the terrain.

The gradient of a function or, as in this case, the approximation of the gradient

of a discrete distribution of points provides us with the information of the direction

of greatest variation. As we stated before in Section 3.5, there is a strong correlation

between the gradient of a terrain and the energy consumption that it requires to be

traversed. As such, using terrain gradient information in this work is of particular

relevance, considering that our main goal is to minimize the traversing effort and

the fuel consumption.

The general two dimensional gradient vector is defined according to Eq. 3.1:

∇f(x, y) =

∂f
∂x

∂f
∂y

 , (3.1)

where f represents the mathematical function of which we would like to know the

gradient. However, considering that it is not possible to find a function that accu-

rately describes the entire point distribution, the gradient we use is an approximation

that is computed using second order accurate central differences in the interior points

through:
∂f

∂λ
=
f(λ+ h)− f(λ− h)

2h
, (3.2)

and first order accurate one-side differences at the boundaries:

∂f

∂λ
=
f(λ+ h)− f(λ)

h
, (3.3)

36

(a) Pointcloud of hilly terrain, where colder

colors represent the higher terrain, and vice

versa.

(b) Resulting gradient map.

Figure 3.7: Representation of the gradient analysis stage output.

for the left boundaries and

∂f

∂λ
=
f(λ)− f(λ− h)

h
(3.4)

for the right boundaries, for each of the dimensions of the gradient.

The resulting gradient values are then clipped to a configurable threshold, i.e.:

∇f(xm, yn) =

∇f(xm, yn), |∇f(xm, yn)| < ∇th

∇th, otherwise
, (3.5)

where ∇f(xm, ym) represents the gradient in a given cell and ∇th represents the clip-

ping threshold. This allows us to automatically exclude both hills and depressions

that exceed this configurable inclination limit.

This block was adapted from [46] and had to be debugged, considering that there

were significant gradient map variations with no apparent cause. The error that

was causing this abnormal behavior was an ill-formed flux control loop, where

the unitary gradient vector was being calculated according to unit_gradient =

37

gradient/norm(gradient). That equation is naturally suitable in every scenario ex-

cept for a planar surface. In such surface, we would be dividing a value by zero and

thus generating an indefinite value and consequently erroneous values in the corre-

sponding cells of the final costmap. This problem has been solved and the results

improved significantly.

3.6 Evident Obstacle Detection

In this stage, we deal with the grid map that has been built using the data contained

in the pointcloud that has been already pre-processed. This data is organized as a

tri-dimensional matrix of configurable size that holds the height of all the points that

are contained within each cell. We calculate the mean, variance and range of the

array of points that form each cell of this matrix and apply the following heuristic

that marks a cell as an evident obstacle:

obstacle =


true,


µ(x,y) > µth

σ2
(x,y) > σ2

th

(max(x,y) −min(x,y)) > γ

false, otherwise

, (3.6)

where µth, σ2
th and γ are the given thresholds for the mean, variance and range of

the sample, respectively. By combining the mean, variance and range we are able

to predict with a higher degree of certainty the presence of obstacles, using the

thresholds to tune the detector to the general type of evident obstacles expected.

For instance, we can use a higher variance and mean if we expect to be dealing with

grown trees. On the other hand, we can lower both those values if the terrain is

mostly free of tall obstacles and have mostly smaller rocks instead.

Fig. 3.8 shows the output from the evident obstacles detector in a forest scenario,

where it is clear that the algorithm is considering every tree as an obstacle while

discarding the tree tops, thus generating a traversable map that would otherwise be

unattainable.

38

(a) Top view. (b) Side view.

Figure 3.8: Representation of the evident obstacles detection stage output on a

forestry scenario.

We implemented this functionality using a ROS node that re-uses all the possible

code from the other stages, mainly the terrain roughness estimation stage.

3.7 Terrain Roughness Estimation

This module estimates the terrain roughness using the previously generated gradient

map. In general, when considering a 3D pointcloud representing the environment,

the gradient along its x and y coordinates provides very useful information about

the structure of the environment.

The definition of mechanical effort from [46] is presented below:

γ = ‖∇f(x, y)‖ · cos θ (3.7)

where θ is the angle between the vector that connects the position of the robot with

the position of the cell we are currently analyzing and the gradient vector in that

cell.

As depicted in Fig. 3.9, the terrain roughness estimation module takes as input

a gradient map (in this case from a hill that is equally steep from every angle) and

fuses that information with the notion of mechanical effort (Eq. 3.7), generating

an output that takes into consideration the position of the robot with relation to

39

Terrain Roughness
Estimation

Robot Travel
Direction

Gradient Map Mechanical Effort Map

Figure 3.9: Illustration of the terrain roughness estimation output on a centered hill.

each cell of the gradient map, thus generating a map in which the traversability

cost increases as the robot’s direction of movement aligns with the gradient and

vice-versa.

3.8 Data Merging

Data

Fusion

Evident Obstacles Map

Terrain Roughness Map

Figure 3.10: Illustration of the data fusion step.

This module outputs a single costmap that incorporates all the useful information

contained on the evident obstacles map and the terrain roughness map, which are

40

the outputs of the modules described above. All the cells identified by the evident

obstacle detection block are marked as non-traversable (100) in the final costmap,

being that all the remaining ones are marked with an integer ranging from 0 to

99, where 50 represents a neutral cost of traversing (levelled terrain), 0 represents

the lowest possible traversing cost (downhill slope that does not exceed the angular

limits of the robot), and 99 the maximum possible cost of traversing a cell that is

not an obstacle.

Fig. 3.10 represents this stage’s output as described above, where we can clearly

see how the costmap fusion is performed.

41

4 Experimental Evaluation

This chapter describes the experimental results of the tests performed to validate

and verify the proposed method, as well as the performance metrics and experimental

scenarios created that enable us to perform them. During these tests, we compare

our approach to some of the approaches discussed in the state of the art analysis

and we present a discussion around them.

4.1 Objectives of the Experiments

We have defined a set of tests and comparisons that are presented in this chapter

and whose main objective is to accomplish the following goals:

1. Demonstrate that our work manages to create and execute paths with a lower

energetic cost when compared to others.

2. Verify that our method outperforms the method in which it is based.

3. Show that our method can run in real time.

4.2 Performance Metrics

All of the raw data generated (x, y, timestamp), as well as all of the metrics defined

below are logged during the experiments and saved into logfiles in .csv format. In

order to quantify the performance of our method and compare it against others, we

have defined the following metrics:

42

Elapsed Time - The total time that it took for the robot to go from the starting

point to the end goal.

Naturally, despite not being one of the main focus of our work in particular, it is

important to compare the execution times of all techniques, even if to simply help

differentiating two distinct approaches which are otherwise identical. Nevertheless,

any technique that generates a theoretically perfect path according to every metric

while taking a disproportional amount of time to do so, is not considered the most

efficient one.

In general, a method should minimize the elapsed time without compromising

other more important factors.

This metric helps to sustain objective number 2.

Travelled Distance - The total distance travelled by the robot from the starting

point to the end goal.

This is an important metric, given that the travelled distance is naturally one of

the most relevant factors when discussing fuel consumption and fuel efficiency. Gen-

erally speaking, a technique should be rewarded for reducing the travelled distance

from the starting pose to the goal, with some exceptions such as not compromis-

ing/worsening some other important metric.

Using the error-free localization information provided by the simulator, the total

travelled distance D is iteratively computed according to the following equation:

D =
N∑
k=1

√
(xk − xk−1)2 + (yk − yk−1)2 + (zk − zk−1)2, (4.1)

where xτ , yτ , zτ are the robot’s coordinate position in each of the axis (x,y,z),

respectively, with τ representing the current (k) and previous (k−1) iterations, and

N the total number of iterations.

This metric helps demonstrating objectives number 1 and 2.

Mean Map Generation Time - The time it takes to generate a new costmap

from a pointcloud of N points.

43

For the purpose of this work, we consider that any approach runs in real time

if a new map is generated before the robot reaches the end of the current one.

This is clearly important, given that it represents the difference between the robot

navigating known or unknown terrain.

We timed the execution of each iteration of our algorithm and saved that infor-

mation along with the number of points in each map. After the execution of the

trajectory, we compute the mean of all values and obtain the mean map generation

time as well as the algorithm’s capability of processing maps, measured in points

per second.

This metric helps demonstrating objectives number 2 and 3.

Up Variation - The cumulative vertical distance travelled by the robot. In gen-

eral, a technique should attempt to minimize this metric.

Each iteration of this metric is calculated according to

β+
k =

zk − zk−1, zk − zk−1 > 0

0, otherwise
, (4.2)

being the total positive height variation given by

β+ =
N∑
k=1

β+
k . (4.3)

This metric helps to demonstrate objective number 1.

Mean Effort - The mean effort that a technique faces while executing the given

path. This metric is measured by averaging all the absolute pitch values, according

to:

Ψ =

∑N
k=1 |θk|
N

, (4.4)

where Ψ represents the mean effort, θ represents the pitch value, N represents the

total number of iterations and k the current iteration.

44

Considering that this metric gives us an indication of the mean vertical travelling

angle – a direct correlation with the effort associated with the chosen path – the

candidate techniques are rewarded for minimizing it.

Naturally, this metric helps to demonstrate objective number 1.

Path Riskiness Index - The path riskiness index metric indicates how risky the

travelled path is. In this context, we define a "risky" situation as one where the

robot travels while exceeding any of its angular limits, and we quantify it as the

percentage of time that the robot exceeded said limits in the travelled path. This is

a very important metric, considering that the ultimate goal of this work is to enable

a real robot to operate autonomously on highly demanding scenarios such as forests,

therefore it must avoid dangerous portions of terrain with a high degree of certainty

in order to maximize its autonomy and minimize the associated maintenance costs.

According to the above considerations, the tested techniques should minimize this

metric.

This metric helps demonstrating objective number 2.

Roll Danger Index - The percentage of roll-related risk that the robot takes

during the execution of its path. The roll values are filtered with the following

sigmoid function:

RDI =
1

1 + e−(0.5φ−13)
, (4.5)

where φ is a vector containing all the recorded roll values in degrees.

The purpose of filtering these values with a sigmoid function is to de-linearize

the penalty curve of the robot’s inclination. Considering the roll angle limit to be

35º, it is almost equally safe to travel with between 5º-10º of inclination. However,

the same 5º difference between 25º-30º of inclination should not be taken as lightly,

considering that the stability of the vehicle rapidly decreases when approaching its

angular limits. A sigmoid filter adequately mimics this behavior, hence our choice

of adopting it.

45

Pitch Danger Index - The percentage of pitch-related risk that the robot takes

during the execution of its path. Similarly to the previous metric and according

to the same reasons, the pitch values are also filtered with the following sigmoid

function:

PDI =
1

1 + e−(0.25θ−6)
(4.6)

where θ is a vector containing all the recorded pitch values in degrees.

Failure Rate - We define the failure rate of a given algorithm as the percentage of

times that its path planner aborts the whole mission because of one of the following

reasons:

• It has not been able to follow the selected path (e.g. due to some internal error

in the navigation stack).

• It has not been able to create a valid or feasible plan from the current pose to

the targeted goal.

• The specified timeout for the mission has been exceeded.

• The robot rolled over.

This metric accounts for any situation that would lead to a failed run and marks

it, though providing a solid measure of a system’s reliability and robustness and

helping to demonstrate objective number 2.

These metrics allow us to test our algorithm by means of a quantitative analysis,

as well as to compare it to existing ones. Yet, there were still two main impositions

that had to be addressed: the necessity of having a simulation tool where a given

simulation could run N consecutive times (Section 4.3), and some way of extracting

metrics from those experiments.

In order to collect the chosen metrics, a script was developed to listen to mean-

ingful information on ROS topics, automatically compute every metric and log the

raw data (x, y, timestamp) and the calculated metrics.

46

It is important to note that for this work we do not consider the problem of

estimating robot localization. For these results, we assume the error-free localization

given by the 3D simulator used through its ROS interface.

4.3 Simulation Environment

We created a 3D Gazebo simulation environment to perform the experiments and

enable the comparison between the selected techniques. Gazebo is a 3D simulation

tool that allows its users to create realistic simulations, with complex scenarios and

a robust physics engine [10]. Among other features, such as its strong community,

there is a ROS package1 that has the interface between the simulated data and the

ROS middleware implemented, which allows to simulate robots using ROS with a

fraction of the effort. Fig 4.1b shows the ranger in a 3D Gazebo forest simulation.

The environment’s terrain is created using the simulator’s heightmap interpretor,

that interprets a .png graphics file and translates it into a height mesh. In our

scenarios, we have used two different terrains, shown in Fig. 4.1c and Fig. 4.1d, and

one type of obstacle, a fully grown pine tree (Fig. 4.1a). Furthermore, the ranger (see

Fig. 1.1) and the 16 channel LiDAR sensors used are simulated according to their

technical characteristics, enabling us to obtain the sensor measurements required to

perform the experiments.

This simulation environment can be launched from the terminal - through the

use of custom scripts – thus enabling us to perform autonomous experiments sequen-

tially with N runs each. This is a particularly relevant characteristic as it allows us

to place the robot anywhere in the workspace and give it any possible goal by chang-

ing the respective configuration files without the need to manually run consecutive

experiments.

1http://wiki.ros.org/gazebo_ros

47

(a) Chosen tree model. (b) Ranger in a forest scenario.

(c) First terrain. (d) Second terrain.

Figure 4.1: Simulation models and terrains used.

48

4.4 Scenarios

Fig. 4.2 illustrates Scenario 1, featuring slight hills, depressions and valleys with the

starting pose and the goal being on opposite sides of a hill, as shown in Fig. 4.2b.

Considering that this hill is mostly traversable without exceeding the angular limits

of the robot, it allows for a myriad of different paths to be successfully executed.

In Fig. 4.2a, we have represented in yellow what we found to be the approximate

path followed by our technique when minimizing the mechanical effort and the path

riskiness index while still regarding the travelled distance and, indirectly, the travel

time. This path is represented to provide some insight into the reasoning behind the

choice of each particular scenario.

In Fig. 4.3 we have a representation of Scenario 2. The idea behind this scenario

is similar to the first one, with one major difference: the hills in this scenario are

much steeper, which means that the traversing cost across the hills will be signif-

icantly higher, and so will the respective risk. This distinct characteristic makes

this an appropriate benchmarking scenario, rewarding path safety over travel dis-

tance, travel time and even mechanical effort, while naturally still taking them into

account.

We also designed a second version of Scenario 2, which we call "Scenario 2

remapped" and consists of the same terrain and features, but with one major differ-

ence: the slopes partially exceed the angular limits of the robot. This slight variation

is critical, considering that it marks the difference between steep slopes, and slopes

that are mostly impossible to safely traverse.

Fig. 4.4 represents Scenario 3. This scenario has an extra layer of complexity

when compared to the first two, considering that besides the hilly terrain it also

has a forest of fully grown pine trees on it. This poses a double challenge to the

candidate techniques, as they have to be able to safely navigate the trees without

colliding with them while, hopefully, choosing an efficient path to do so.

49

Starting Pose

Goal

(a) Top view of Scenario 1.

Starting Pose

Goal

(b) Side view of Scenario 1.

Figure 4.2: First experimental scenario from two different perspectives, with starting

pose, goal point and expected approximate path for our technique in yellow.

Starting Pose

Goal

(a) Top view of Scenario 2.

Starting Pose

Goal

(b) Side view of Scenario 2.

Figure 4.3: Second experimental scenario from two different perspectives, with start-

ing pose, goal point and expected approximate path for our technique in yellow.

50

Starting Pose

Goal

(a) Top view of Scenario 3.

Starting Pose
Goal

(b) Front view of Scenario 3.

Figure 4.4: Third experimental scenario from two different perspectives, with start-

ing pose, goal point and expected approximate path for our technique in yellow.

4.5 Parameterization of the Compared Methods

This section describes the different techniques that are compared, as well as the

respective choice of parameters to configure each one.

We compared our method with:

move_base2, which has been used with no observation sources and empty costmaps,

always following a straight path to the goal and thus being referred to asmove_base_naive

from now on. This is an important method to use in our comparisons, considering

that it establishes the baseline, i.e. the indicators that result from a straight path.

With this in mind, it is expected that this technique highly struggles in cluttered

environments, or any environment in general where there are obstacles in its path.

On the other hand, in the experimental scenarios with no obstacles, its expected

that this technique performs decently, generally achieving low values of elapsed time

considering that it always execute the straightest path to the goal.

System from [46], which uses raw sensory data as input to a pipeline that pop-

ulates a 2D costmap using the mechanical effort concept proposed in [9], resorting

to a median-based interpolation to fill the cells that contain no information. The
2http://wiki.ros.org/move_base

51

generated map is fed into move_base’s local planner, which drives the robot accord-

ingly. This technique is generally inefficient, considering that its known horizon is

relatively small, and it struggles with obstacles near the robot, considering that the

interpolation technique cannot accurately predict them. Having the above consid-

erations in mind, it should come at no surprise that this method may produce poor

results.

move_base_flex3 [47], which adheres to move_base’s local and global path

planners’ interface. However, it was designed to provide richer feedback to the user,

which is valuable information for debugging, and it allows the implementation of

custom behavior trees to define the platform’s actions more precisely and robustly,

as well as navigation with meshes instead of costmaps. Unfortunately, this method

has not yielded consistent results, either by being unable to perform in some scenarios

or by generating results that were too similar to other techniques, so it will not be

considered in any of the comparisons.

The systems have been configured according to Table 4.1, where the parameters

which are not mentioned have been kept default or are not relevant to the current

discussion. As much as possible, all the systems have been configured with the

same values so that the comparisons are as fair as possible. However, the system

from [46] has been used following the author’s own configuration, considering that,

in principle, they should be the most suitable for that particular system.

3http://wiki.ros.org/move_base_flex

52

Table 4.1: Parameters used for the different techniques.

Parameters
Our

System

System from

[46]
move_base_naive move_base_flex

Global Planner A* Dijkstra A* A*

Local Planner
Trajectory

Rollout

Trajectory

Rollout

Trajectory

Rollout

Trajectory

Rollout

planner_frequency 0 0 0 0

controller_frequency 5 3 5 5

allow_unknown false true false false

use_dijkstra false true false false

use_quadratic false true false false

use_grid_path false false false false

old_navfn_behavior false false false false

visualize_potential false false false false

cost_factor 1 3 1 1

neutral_cost 50 50 50 50

lethal_cost 100 253 100 100

acc_lim_x 5 0.4 5 5

acc_lim_y 5 0.4 5 5

acc_lim_theta 5 0.5 5 5

max_vel_x 1.5 0.9 1.5 1.5

min_vel_x -1.5 0.3 -1.5 -1.5

max_vel_theta 1.5 1 1.5 1.5

min_vel_theta -1.5 -1 -1.5 -1.5

min_in_place_vel_theta 0.314 1 0.314 0.314

holonomic_robot false false false false

escape_vel -0.5 -0.1 -0.5 -0.5

yaw_goal_tolerance 6.2832 6.2832 6.2832 6.2832

xy_goal_tolerance 0.5 1 0.5 0.5

sim_time 2 2 2 2

meter_scoring true true true true

path_distance_bias 0.4 0.08 0.4 0.4

goal_distance_bias 0.1 0.05 0.1 0.1

plugins costmap_2d::StaticLayer
SpatioTemporalVoxelLayer

costmap_2d::InfationLayer
None costmap_2d::StaticLayer

53

4.6 Results and Discussion

In this section, the results of the undertaken experiments are presented, both quali-

tatively and quantitatively between the compared methods. Each of the experiments

have been executed 50 times so that we could perform a statistical analysis of the

obtained results.

We would like to mention some aspects that apply to the remaining of the dis-

cussion, namely:

• In the results tables we highlight in bold the best value obtained for each

metric.

• As mentioned in Section 4.5, move_base_flex has not yielded consistent re-

sults, so it will not be considered in the following comparisons.

The results of the first experiment performed, in Scenario 1 (Fig. 4.2), are pre-

sented in Table 4.2. As stated before in Section 4.4, this is the least demanding

scenario, with no obstacles and slight hills that are generally traversable and with

little to no risk for the robot.

Even though the chosen paths for Scenario 1 are considerably different (as illus-

trated in Fig. 4.5), the differences in the metrics from all systems, with the exception

of the elapsed time, are relatively small. This is an expected result in light of the

above considerations regarding the complexity of the scenario. Our system effec-

tively managed to minimize the first 4 metrics presented in Table 4.2, which are the

ones that we are prioritizing in this work, while only slightly sacrificing the total

travelled distance, the elapsed time and roll danger. Regarding the roll danger in-

dex, it is important to state that, although move_base_naive had a result that was

much lower than both other techniques, all the values are negligible, given that even

the worst performing system only travelled, on average, with an inclination of about

1.9% of the limit value.

54

40 20 0 20 40 60 80 100
x (m)

80

70

60

50

40

30

y
(m

)

Mean Travelled Path
+ 3

3
Starting Point

End Point

(a) 50 trajectories projected on the X-Y

plane with our system.

40 20 0 20 40 60 80 100
x (m)

80

70

60

50

40

30

y
(m

)

Mean Travelled Path
+ 3

3
Starting Point

End Point

(b) 50 trajectories projected on the X-Y

plane with the system from [46].

0 20 40 60 80 100 120 140
time (s)

0

5

10

15

20

z
(m

)

+ 3
3

Starting Point End Point

(c) 50 trajectories of height as a function of

time with our system.

0 50 100 150 200 250 300 350
time (s)

0

5

10

15

20

z
(m

)

+ 3
3

Starting Point End Point

(d) 50 trajectories of height as a function of

time with the system from [46].

40 20 0 20 40 60 80 100
x (m)

80

70

60

50

40

30

y
(m

)

Starting Point End Zone

(e) Robot’s 4 hand picked trajectories

projected on the X-Y plane with our system.

40 20 0 20 40 60 80 100
x (m)

80

70

60

50

40

30

y
(m

)

Starting Point End Zone

(f) Robot’s 4 hand picked trajectories

projected on the X-Y plane with the system

from [46].

Figure 4.5: Resulting plots from 50 runs in Scenario 1 (Fig. 4.2) with our system in

the left, and the system from [46] in the right.

55

Table 4.2: Results from 50 runs in Scenario 1 (Fig. 4.2), where MMGT stands for

"Mean Map Generation Time" and is measured in (seconds taken @ points in the

map (points/second)).

Metrics System from [46] move_base_naive Our System

Failure Rate (%) 10.000 8.000 8.000

Mean Effort (º) 11.701± 1.064 12.520± 0.047 10.202± 0.423

Pitch Danger Index (%) 11.290± 2.863 13.758± 0.136 8.796± 1.141

Up Variation (m) 10.433± 0.938 9.058± 0.017 8.666± 0.559

Travelled Distance (m) 112.839± 8.005 89.645± 0.053 106.388± 4.073

Path Riskiness Index (%) 0.112± 0.732 0.000± 0.000 0.068± 0.201

Roll Danger Index (%) 1.903± 1.428 0.016± 0.001 1.888± 0.652

MMGT (s @ pts (pts/sec)) 11.3 @ 37.6k (3.3k) N/A 15.4 @ 210k (13.6k)

Elapsed Time (s) 279.612± 49.750 87.031± 23.229 111.326± 12.938

In Table 4.3 we have the results of the experiment comparing the chosen techniques

in Scenario 2 (Fig. 4.3), where the computed values for every metric are registered

and respectively plotted in Fig. 4.7.

As shown in Fig. 4.7, our system takes a very different approach at this harder

scenario. Instead of trying to traverse straight to the goal, which would represent a

shorter elapsed time and travel distance at the cost of major risk (especially pitch

related risk) and significantly higher mechanical effort, it chooses the more con-

servative and levelled path available, which is around the hill. By doing so, our

system was able to very significantly reduce the effort associated with that trajec-

tory and, per the argument regarding the relationship between terrain gradient and

fuel consumption discussed in Section 2.3, potentially the fuel consumption.

In Fig. 4.7a, we can observe that on a small portion of the trajectory performed

by our system the variance is a little higher, where we can isolate two different path

choices. This is due to the fact that both choices make sense in the context of the

optimization problem at hand, one being slightly farther away and the other having

a slightly lower height variation, but both having a very similar mechanical effort

associated.

56

It is also worthy to note that the pitch danger index is significantly lower than

both other techniques, while the roll danger index is not that low, specially when

compared to the move_base_naive approach. This is, however, easily justifiable

given that while the robot travels around the hill, it tries to minimize the travelled

distance without incurring in excessive risk, thus travelling on the side slopes for the

majority of the path, due to the morphology of the terrain in that area. Furthermore,

even doing so, it only travels on average at 12.8% the maximum inclination allowed,

while the system from [46] travels at a considerably higher 18.6%. This happens

because [46]’s system detects the presence of a significant slope ahead, but is unable

to find a better path due to the fact that its sensory horizon is short, so it tries to

travel sideways on the slope and find a better path, which is not an ideal behavior

considering that it significantly increases both danger and riskiness indexes and the

elapsed time.

Fig. 4.6 represents the statistical distribution of the collected roll and pitch dan-

ger indexes on Scenario 2. Clearly, Fig. 4.6a shows that, although the roll values gen-

erated by our technique are indeed substantially higher than with move_base_naive,

they are still negligible in the sense that their distribution is generally low, well be-

low the 50% risk. On the other hand, the same does not apply to the distribution of

values from the experiment with move_base_naive, considering that a significant

portion of the distribution consistently returned danger values above 50%, while a

non-negligible portion reaches all the way up to 100%.

It is noteworthy that, although there is a major visual impact caused by outliers,

especially in the experiment with our system (Fig. 4.6a), they represent a negligible

slice of the distribution, not exceeding a few percentage points at most.

Table 4.4 shows the results from running the same experiment in the remapped

Scenario 2 (see Section 4.4). Here we can see that by slightly increasing the slope

angles, the other systems perform drastically worse, while ours maintains the results

without much change. The large failure rates from the other two techniques come at

no surprise, considering that this scenario was specifically designed to have this effect

with any technique that chooses to ignore its large hills, reinforcing the importance

57

0 9 18 27 36 45
Run Number

0.00

0.25

0.50

0.75

1.00
D

an
ge

r V
al

ue
s

Roll

0 9 18 27 36 45
Run Number

0.0

0.2

0.4

0.6

0.8

1.0

D
an

ge
r V

al
ue

s

Pitch

(a) Our system.

0 4 8 12 16 20 24 28 32 36 40 44 48
Run Number

0.00

0.25

0.50

0.75

1.00

D
an

ge
r V

al
ue

s

Roll

0 4 8 12 16 20 24 28 32 36 40 44 48
Run Number

0.00

0.25

0.50

0.75

1.00

D
an

ge
r V

al
ue

s

Pitch

(b) move_base_naive.

Figure 4.6: Resulting boxplots from 50 runs in Scenario 2 (Fig. 4.3).

Table 4.3: Results from 50 runs in Scenario 2 (Fig. 4.3), where MMGT stands for

"Mean Map Generation Time" and is measured in (seconds taken @ points in the

map (points/second)).

Metrics System from [46] move_base_naive Our System

Failure Rate (%) 84.000 2.000 2.000

Mean Effort (º) 18.661± 1.828 12.805± 0.205 5.601± 0.060

Pitch Danger Index (%) 38.592± 4.892 25.406± 0.335 2.814± 0.142

Up Variation (m) 15.240± 1.886 8.877± 0.036 8.183± 0.088

Travelled Distance (m) 112.387± 8.066 84.958± 0.068 171.887± 0.343

Path Riskiness Index (%) 4.291± 4.094 0.517± 0.650 0.932± 0.212

Roll Danger Index (%) 26.580± 4.648 0.042± 0.137 12.843± 0.695

MMGT (s @ pts (pts/sec)) 8.2 @ 40.1k (4.9k) N/A 18.3 @ 287k (15.7k)

Elapsed Time (s) 343.582± 14.886 87.014± 12.689 174.368± 4.184

58

40 30 20 10 0 10 20 30 40
x (m)

100

80

60

40

20

0

y
(m

)

Mean Travelled Path
+ 3

3
Starting Point

End Point

(a) 50 trajectories projected on the X-Y

plane with our system.

40 30 20 10 0 10 20 30 40
x (m)

100

80

60

40

20

0

y
(m

)

Mean Travelled Path
+ 3

3
Starting Point

End Point

(b) 50 trajectories projected on the X-Y

plane with the system from [46].

0 25 50 75 100 125 150 175
time (s)

10

5

0

5

10

15

z
(m

)

+ 3
3

Starting Point End Point

(c) 50 trajectories of height as a function of

time with our system.

0 50 100 150 200 250 300
time (s)

10

5

0

5

10

15

z
(m

)

+ 3
3

Starting Point End Point

(d) 50 trajectories of height as a function of

time with the system from [46].

40 30 20 10 0 10 20 30 40
x (m)

100

80

60

40

20

0

y
(m

)

Starting Point End Zone

(e) Robot’s 4 hand picked trajectories

projected on the X-Y plane with our system.

40 30 20 10 0 10 20 30 40
x (m)

100

80

60

40

20

0

y
(m

)

Starting Point End Zone

(f) Robot’s 4 hand picked trajectories

projected on the X-Y plane with the system

from [46].

Figure 4.7: Resulting plots from 50 runs in Scenario 2 (Fig. 4.3) with our system in

the left, and the system from [46] in the right.

59

of avoiding the steepest sections of terrain and ultimately showing the robustness

and reliability of our system, while also supporting objectives 1 and 2.

Lastly, Table 4.5 presents the results of the comparison between the chosen tech-

niques in Scenario 3 (Fig. 4.4), arguably the most demanding scenario that we used

considering that not only the robot must avoid every tree in its path, but it should

also choose the path with the lowest effort associated.

At first, there are a few things that jump out straight away, such as the fact

that the path riskiness index from our system is 0% and the substantial difference

in execution times and failure rates. The particular paths chosen by our technique

in this scenario does not have a single point where the inclination of the terrain is

such that the robot exceeds the roll and pitch limits, as can be partially seen in Fig.

4.4b, thus supporting the plausibility of this particular result.

Our system4 greatly outperformed the remaining ones in every single metric

except in the travelled distance, which was slightly higher. Note, however, how that

little increase in travel distance produced a significant difference in the mean effort

and vertical variation, which are the main variables that we take into consideration.

As stated before, the consistency and robustness of our technique is latent in

the considerable difference in all of the results, and especially in the failure rate and

mean effort.

In all the experiments and results presented above, our system significantly out-

performed the system from [46] with regards to the "Mean Map Generation Time"

metric, which is an expected result according to Section 3.3.

4There is a video demonstrating our system in action on Scenario 3, available here: https:

//drive.google.com/drive/folders/1vbsacOTLBlUhMT2tEWYp-1_-D22ncDUS?usp=sharing

60

https://drive.google.com/drive/folders/1vbsacOTLBlUhMT2tEWYp-1_-D22ncDUS?usp=sharing
https://drive.google.com/drive/folders/1vbsacOTLBlUhMT2tEWYp-1_-D22ncDUS?usp=sharing

Table 4.4: Results from 50 runs in Scenario 2 remapped, where MMGT stands for

"Mean Map Generation Time" and is measured in (seconds taken @ points in the

map (points/second)).

Metrics System from [46] move_base_naive Our System

Failure Rate (%) 100.000 90.000 10.000

Mean Effort (º) N/A 17.172± 0.902 7.004± 0.301

Pitch Danger Index (%) N/A 32.131± 1.199 5.807± 0.653

Up Variation (m) N/A 11.586± 0.050 10.319± 0.476

Travelled Distance (m) N/A 87.873± 0.399 175.689± 1.894

Path Riskiness Index (%) N/A 12.558± 0.853 2.839± 1.134

Roll Danger Index (%) N/A 0.807± 1.413 12.788± 2.581

MMGT (s @ pts (pts/sec)) 8.9 @ 40.5k (4.6k) N/A 18.3 @ 287k (15.7k)

Elapsed Time (s) N/A 25.299± 2.510 173.037± 31.038

Table 4.5: Results from 50 runs in Scenario 3 (Fig. 4.4), where MMGT stands for

"Mean Map Generation Time" and is measured in (seconds taken @ points in the

map (points/second)).

Metrics System from [46] move_base_naive Our System

Failure Rate (%) 58.000 92.000 6.000

Mean Effort (º) 11.024± 3.500 15.188± 0.100 3.595± 0.066

Pitch Danger Index (%) 9.326± 8.016 23.300± 0.565 0.794± 0.015

Up Variation (m) 7.879± 0.496 7.035± 0.066 3.714± 0.045

Travelled Distance (m) 80.226± 9.643 58.299± 0.497 85.586± 0.493

Path Riskiness Index (%) 1.353± 5.998 0.767± 0.701 0.000± 0.000

Roll Danger Index (%) 0.297± 0.297 0.909± 0.469 0.020± 0.001

MMGT (s @ pts (pts/sec)) 12.1 @ 42.4k (3.5k) N/A 20.2 @ 358k (17.7k)

Elapsed Time (s) 340.362± 123.149 182.514± 193.306 88.266± 12.011

61

40 30 20 10 0 10 20 30 40
x (m)

30

20

10

0

10

20

y
(m

)

Mean Travelled Path
+ 3

3
Starting Point

End Point

(a) 50 trajectories projected on the X-Y

plane with our system.

40 30 20 10 0 10 20 30 40
x (m)

30

20

10

0

10

20

y
(m

)

Mean Travelled Path
+ 3

3
Starting Point

End Point

(b) 50 trajectories projected on the X-Y

plane with the system from [46].

0 20 40 60 80
time (s)

4

6

8

10

12

14

z
(m

)

+ 3
3

Starting Point End Point

(c) 50 trajectories of height as a function of

time with our system.

0 100 200 300 400
time (s)

4

6

8

10

12

14

z
(m

)

+ 3
3

Starting Point End Point

(d) 50 trajectories of height as a function of

time with the system from [46].

40 30 20 10 0 10 20 30 40
x (m)

30

20

10

0

10

20

y
(m

)

Starting Point End Zone

(e) Robot’s 4 hand picked trajectories

projected on the X-Y plane with our system.

40 30 20 10 0 10 20 30 40
x (m)

30

20

10

0

10

20

y
(m

)

Starting Point End Zone

(f) Robot’s 4 hand picked trajectories

projected on the X-Y plane with the system

from [46].

Figure 4.8: Resulting plots from 50 runs in Scenario 3 (Fig. 4.4) with our system in

the left, and the system from [46] in the right.

62

5 Conclusion

This work proposes a novel traversability analysis and path planning technique

based on the mechanical effort concept introduced in [9]. This technique catego-

rizes terrain according to the effort required to traverse it, while identifying key

evident obstacles, consequently generating efficient paths that avoid obstacles and

major hills and thus potentially minimizing fuel consumption. A concurrent pipeline

of lethal obstacles detection and terrain roughness estimation has also been imple-

mented and the whole system has been optimized to execute in real time while

performing a global analysis. This potentially allows a robot to plan in real-time far

beyond its observable range if given an a priori map of the environment. Finally,

the implemented system has been tested against other methods in a 3D realistic sim-

ulation engine, yielding very positive results and proving to be a strong competitor

against other state of the art techniques.

Regarding the success of this work, we have accomplished the experimental objec-

tives proposed in Section 4.1, we present a contribution to the first identified research

gap (Section 2.4) while also successfully addressing one of [46]’s stated weaknesses,

as shown in Section 3.3, which suggested that the map generation frequency should

be improved.

As with any scientific research one can think of, there are many lessons learned

and room to improve upon our work. As possible paths forward and hypothesis to

pursue, we would like to mention:

1. Even though our work already manages to run in real time, it would still be a

very interesting idea to further improve the efficiency of the algorithm, enabling

larger costmaps to be used and/or faster throughput. This can be achieved

63

by vectorizing the calculations, by using multi-threads or multi-processes or

by implementing a caching/incremental calculation system so that the map is

not re-calculated at every iteration.

2. The system has been designed to have a fully deliberative behavior. This, of

course, leaves room for improvement via the addition of a reactive module to

enable the robot to detect and evade dynamic entities in real time.

3. Up to this point, the problem of having the mulching tool attached has not

been taken into account. Considering that this tool partially occludes the

sensors’ field of view and changes the footprint of the platform depending on

its current configuration, it would be interesting to model the tool and devise

a strategy to intelligently operate it.

4. Test the developed technique on the real robot, considering that up to this

stage it was just tested in simulation environments.

5. Create a fuel consumption model of the Ranger and tune/design a strategy to

minimize it.

6. No system, including ours, explicitly takes into account the inclination limits

of the robot, so they will take no action to prevent the robot from exceeding

them. As such, the system can be enhanced to take this information into

consideration, enabling it to avoid dangerous paths with a higher certainty.

7. Change the evident obstacles detector so that its thresholds can be autonomously

inferred from the perceived environment and tuned to match the morphology

of the potential obstacles.

64

6 Bibliography

[1] David Portugal, Maria Eduarda Andrada, André G Araújo, Micael S Couceiro,

and João Filipe Ferreira. Ros integration of an instrumented bobcat t190 for

the semfire project. In Robot Operating System (ROS), pages 87–119. Springer,

2021.

[2] Micael S. Couceiro, David Portugal, Joao F. Ferreira, and Rui P. Rocha. SEM-

FIRE: Towards a new generation of forestry maintenance multi-robot systems.

Proceedings of the 2019 IEEE/SICE International Symposium on System Inte-

gration, SII 2019, pages 270–276, 2019.

[3] Abbe Mowshowitz, Ayumu Tominaga, and Eiji Hayashi. Robot navigation in

forest management. Journal of Robotics and Mechatronics, 30(2):223–230, 2018.

[4] Ayumu Tominaga, Hayashi Eiji, and Abbe Mowshowitz. Development of naviga-

tion system in field robot for forest management. Proceedings - 2018 Joint 10th

International Conference on Soft Computing and Intelligent Systems and 19th

International Symposium on Advanced Intelligent Systems, SCIS-ISIS 2018,

pages 1142–1147, 2018.

[5] Nagham Shalal, Tobias Low, Cheryl McCarthy, and Nigel Hancock. Orchard

mapping and mobile robot localisation using on-board camera and laser scanner

data fusion–part b: Mapping and localisation. Computers and Electronics in

Agriculture, 119:267–278, 2015.

[6] A. Linz, A. Ruckelshausen, E. Wunder, and J. Hertzberg. Autonomous service

robots for orchards and vineyards: 3D simulation environment of multi sensor-

65

based navigation and applications. 12th International Conference on Precison

Agriculture, ISPA International Society of Precision Agriculture, 38(1):13, 2014.

[7] Keun Ha Choi, Sang Kwon Han, Sang Hoon Han, Kwang-Ho Park, Kyung-

Soo Kim, and Soohyun Kim. Morphology-based guidance line extraction for

an autonomous weeding robot in paddy fields. Computers and Electronics in

Agriculture, 113:266–274, 2015.

[8] Tijmen Bakker, Kees van Asselt, Jan Bontsema, Joachim Müller, and Gerrit

van Straten. An autonomous weeding robot for organic farming. In Peter Corke

and Salah Sukkariah, editors, Field and Service Robotics, pages 579–590, Berlin,

Heidelberg, 2006. Springer Berlin Heidelberg.

[9] D. Lourenço, J. F. Ferreira, and D. Portugal. 3D Local Planning for a Forestry

UGV based on Terrain Gradient and Mechanical Effort. In Proc. of the 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

2020), Workshop on Perception, Planning and Mobility in Forestry Robotics

(WPPMFR 2020), Las Vegas, NV, USA, Oct 25-29, 2020.

[10] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-

source multi-robot simulator. In 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 3,

pages 2149–2154 vol.3, 2004.

[11] Kumar Malu and Jharna Majumdar. Kinematics, Localization and Control of

Differential Drive Mobile Robot. Global Journal of Researches in Engineering,

14(1):1–8, 2014.

[12] Tom Clynes. Exclusive: Laser Scans Reveal Maya ’Megalopolis’ Below

Guatemalan Jungle, 2018. https://www.nationalgeographic.com/news/

2018/02/maya-laser-lidar-guatemala-pacunam/.

[13] Sebastian Thrun. Probabilistic robotics. Communications of the ACM,

45(3):52–57, 2002.

66

https://www.nationalgeographic.com/news/2018/02/maya-laser-lidar-guatemala-pacunam/
https://www.nationalgeographic.com/news/2018/02/maya-laser-lidar-guatemala-pacunam/

[14] Alif Ridzuan Khairuddin, Mohamad Shukor Talib, and Habibollah Haron. Re-

view on simultaneous localization and mapping (SLAM). Proceedings - 5th

IEEE International Conference on Control System, Computing and Engineer-

ing, ICCSCE 2015, (November):85–90, 2016.

[15] Sebastian Thrun. Learning Maps for Indoor Mobile Robot Navigation. Science,

99(April):21–71, 1996.

[16] A. Elfes. Using occupancy grids for mobile robot perception and navigation.

Computer, 22(6):46–57, 1989.

[17] Alessandro Gasparetto, Paolo Boscariol, Albano Lanzutti, and Renato Vidoni.

Path Planning and Trajectory Planning Algorithms: A General Overview, pages

3–27. Springer International Publishing, Cham, 2015.

[18] Liang Yang, Juntong Qi, Dalei Song, Jizhong Xiao, Jianda Han, and Yong Xia.

Survey of Robot 3D Path Planning Algorithms. Journal of Control Science and

Engineering, 2016, 2016.

[19] Lim Chee Wang, Lim Ser Yong, and Marcelo H. Ang. Hybrid of global path

planning and local navigation implemented on a mobile robot in indoor envi-

ronment. IEEE International Symposium on Intelligent Control - Proceedings,

pages 821–826, 2002.

[20] Cang Ye. Navigating a mobile robot by a traversability field histogram.

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,

37(2):361–372, 2007.

[21] Cang Ye, Johann Borenstein, and Ann Arbor. T-transformation: Traversability

Analysis for Navigation on Rugged Terrain. International Society for Optics and

Photonics, pages 12–16, 2004.

[22] Chen Wang and Jian Mao. Summary of AGV path planning. 2019 IEEE 3rd

International Conference on Electronic Information Technology and Computer

Engineering, EITCE 2019, pages 332–335, 2019.

67

[23] J. Borenstein and Y. Koren. Real-time obstacle avoidance for fast mobile robots.

IEEE Transactions on Systems, Man, and Cybernetics, 19(5):1179–1187, 1989.

[24] ChaoChun Yuan, Yue Wei, Jie Shen, Long Chen, Youguo He, Shuofeng Weng,

and Tong Wang. Research on path planning based on new fusion algorithm

for autonomous vehicle. International Journal of Advanced Robotic Systems,

17(3):1729881420911235, 2020.

[25] Sining Yang, Shaowu Yang, and Xiaodong Yi. An Efficient Spatial Representa-

tion for Path Planning of Ground Robots in 3D Environments. IEEE Access,

6:41539–41550, 2018.

[26] Fabio Ruetz, Emili Hernández, Mark Pfeiffer, Helen Oleynikova, Mark Cox,

Thomas Lowe, and Paulo Borges. OVPC Mesh: 3D Free-space Representation

for Local Ground Vehicle Navigation. arXiv, pages 8648–8654, 2018.

[27] Péter Fankhauser, Michael Bloesch, and Marco Hutter. Probabilistic terrain

mapping for mobile robots with uncertain localization. IEEE Robotics and

Automation Letters, 3(4):3019–3026, 2018.

[28] Pablo Marin-Plaza, Ahmed Hussein, David Martin, and Arturo De La Escalera.

Global and Local Path Planning Study in a ROS-Based Research Platform for

Autonomous Vehicles. Journal of Advanced Transportation, 2018, 2018.

[29] Sebastian Pütz, Thomas Wiemann, Jochen Sprickerhof, and Joachim

Hertzberg. 3D Navigation Mesh Generation for Path Planning in Uneven Ter-

rain. IFAC-PapersOnLine, 49(15):212–217, 2016.

[30] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wol-

fram Burgard. OctoMap: An efficient probabilistic 3D mapping framework

based on octrees. Autonomous Robots, 34(3):189–206, 2013.

[31] Kengo Usui. Data augmentation using image-to-image translation for detect-

ing forest strip roads based on deep learning. International Journal of Forest

Engineering, 00(00):1–10, 2020.

68

[32] Chaoqun Wang, Jiankun Wang, Chenming Li, Danny Ho, Jiyu Cheng, Tingfang

Yan, Lili Meng, and Max Q.H. Meng. Safe and robust mobile robot navigation

in uneven indoor environments. Sensors (Switzerland), 19(13):1–20, 2019.

[33] Lei Tai, Shaohua Li, and Ming Liu. A deep-network solution towards model-less

obstacle avoidance. IEEE International Conference on Intelligent Robots and

Systems, 2016-Novem:2759–2764, 2016.

[34] J Borenstein and Yehuda Koren. The Vector Field Histogram - Fast Obsta-

cle Avoidance for Mobile Robots. IEEE Journal of Robotics and Automation,

7(3):278–288, 1991.

[35] Niall Ormahony, Sean Campbell, Lenka Krpalkova, Daniel Riordan, Joseph

Walsh, Aidan Murphy, and Conor Ryan. Deep Learning for Visual Navigation

of Unmanned Ground Vehicles : A review. 29th Irish Signals and Systems

Conference, ISSC 2018, 2018.

[36] Ayanna Howard, Edward Tunstel, Dean Edwards, and Alan Carlson. Enhanc-

ing fuzzy robot navigation systems by mimicking human visual perception of

natural terrain traversability. Annual Conference of the North American Fuzzy

Information Processing Society - NAFIPS, 1:7–12, 2001.

[37] Assad Alam. Fuel-efficient heavy-duty vehicle platooning. TRITA-EE 2014:027.

2014.

[38] Yu Chen Lin and Ha Ly Thi Nguyen. Development of an eco-cruise control

system based on digital topographical data. Inventions, 1(3):1–16, 2016.

[39] Min Zhou, Hui Jin, and Feng Ding. Minimizing vehicle fuel consumption on hilly

roads based on dynamic programming. Advances in Mechanical Engineering,

9(5):1–8, 2017.

[40] Payman Shakouri, Andrzej Ordys, Paul Darnell, and Peter Kavanagh. Fuel effi-

ciency by coasting in the vehicle. International Journal of Vehicular Technology,

2013, 2013.

69

[41] Georgios Fontaras, Nikiforos Georgios Zacharof, and Biagio Ciuffo. Fuel con-

sumption and CO2 emissions from passenger cars in Europe – Laboratory versus

real-world emissions. Progress in Energy and Combustion Science, 60:97–131,

2017.

[42] Gunnar Svenson and Dag Fjeld. The influence of road characteristics on fuel

consumption for logging trucks. HVTT12: 12th International Symposium on

Heavy Vehicle Transport Technology, 31(5):526–536, 2012.

[43] Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey, and Kurt

Konolige. The office marathon: Robust navigation in an indoor office envi-

ronment. Proceedings - IEEE International Conference on Robotics and Au-

tomation, pages 300–307, 2010.

[44] Md Arafat Hossain and Israt Ferdous. Autonomous robot path planning in

dynamic environment using a new optimization technique inspired by bacterial

foraging technique. Robotics and Autonomous Systems, 64:137–141, 2015.

[45] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy

Leibs, Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source robot operating

system. In ICRA workshop on open source software, volume 3, page 5. Kobe,

Japan, 2009.

[46] Dora Lourenço. 3D Navigation for Ground Robots in Forestry Applications,

MSc Thesis, DEEC, FCTUC. https://eg.uc.pt/handle/10316/92225.

[47] Sebastian Pütz, Jorge Santos Simón, and Joachim Hertzberg. Move Base Flex:

A highly flexible navigation framework for mobile robots. In 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), October

2018. Software available at https://github.com/magazino/move_base_flex.

70

https://eg.uc.pt/handle/10316/92225
https://github.com/magazino/move_base_flex

	Acknowledgements
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	2 Background and Related Work
	2.1 Fundamentals of Navigation and Path Planning
	2.2 3D Navigation in Forest Environments
	2.3 Potential Impact of This Work
	2.4 Research Gaps and Contributions

	3 System Architecture
	3.1 Overview
	3.2 ROS - Robot Operating System
	3.3 Grid Map Construction
	3.4 Pre-Processing
	3.5 Gradient Map Computation
	3.6 Evident Obstacle Detection
	3.7 Terrain Roughness Estimation
	3.8 Data Merging

	4 Experimental Evaluation
	4.1 Objectives of the Experiments
	4.2 Performance Metrics
	4.3 Simulation Environment
	4.4 Scenarios
	4.5 Parameterization of the Compared Methods
	4.6 Results and Discussion

	5 Conclusion
	6 Bibliography

