e 4

UNIVERSIDADE DE COIMBRA

MASTER IN INFORMATICS ENGINEERING
2015-2016

DEPENDABILITY ASSESSMENT OF NOSQL ENGINES

Final Dissertation

STUDENT:
Luis Filipe André Ventura
Ifav@student.dei.uc.pt

SUPERVISOR:
Prof. Dr. Nuno Antunes
DEI-UC

September 2, 2016

FCTUC DEPARTAMENTO
DE ENGENHARIA INFORMATICA
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE DE COIMBRA

UNIVERSIDADE DE COIMBRA

MASTER IN INFORMATICS ENGINEERING

2015-2016

DEPENDABILITY ASSESSMENT OF NOSQL ENGINES

Final Dissertation

STUDENT:
Luis Filipe André Ventura
Ifav@student.dei.uc.pt

SUPERVISOR:
Prof. Dr. Nuno Antunes
DEI-UC

JURY:
Prof. Dr. Vasco Pereira

DEI-UC
JURY:

Prof. Dr. Raul Barbosa
DEI-UC

September 2, 2016

FCTUC DEPARTAMENTO
DE ENGENHARIA INFORMATICA
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE DE COIMBRA

Acknowledgements

During the course of not only this dissertation, but my entire academic life I have met
many amagzing individuals which have helped me grow, not only academically but also
into a better person.

First I would like to thank the teachers who have given me most of the knowledge I possess.
This knowledge has not only allowed my to finish this work, it will be the foundation for my
future. Among the many talented professors I have met during my years at this university
there are two to whom I would like to give special thanks. To professor Alberto Cardoso I
give my thanks for all the guidance and assistance he provided while I was facing a difficult
period of my life. To professor Marco Vieira I give my thanks for both the opportunity
to work as research student, as well as all his guidance. He always urges his students to
strive to be the best they can, not only by being kind and supportive, but also harsh when
needed.

Next I want to thank my family, especially my grandparents. They have raised me the
best they could, always striving to provide me with whatever I needed. I have never lacked
for anything and I own everything I have accomplished to them.

Thirdly, I would like to thank my close group of friends. Not only have they helped me
with with much of my academic work, they have provided me with much needed mental
support whenever I was feeling down. In alphabetical order: Ana, André, Claudio, David,
Diogo, Ivo, Pedro, and Pratas. I love you guys, thank you for being part of my life.

Last, but certainly not least, I want to say a huge thank you to my supervisor, Nuno
Antunes. During this last year, he was more than a supervisor or a friend, he was a
mentor. I have never learned so much from someone else in a single year. Your constant
friendly presence, desire to always improve yourself each day, and incredible work ethic,
make me think I can only hope to be someone as great as you someday.

To everyone present on this list, thank you for everything, without you I would not be
where I am today.

This page is intentionally left blank.

Abstract

NoSQL databases are the response to the sheer volume of data
being generated, stored, and analyzed by modern users and
applications. They see great usage in big data and real-time
web applications as they are capable of both: extreme hori-
zontal scaling, and storing data with less rigid structures than
the ones used in relational DBMSes. NoSQL databases are
known to sometimes compromise consistency in favor of avail-
ability, partition tolerance, and performance. Several studies
have evaluated the performance of these databases, but their
users also need to understand how they behave in the presence
of faults and how to quantify the impact of those faults.

As such, the main goal of this dissertation is to perform an
experimental assessment of NoSQL databases. This work pro-
poses an experimental methodology based on fault injection,
an experimental procedure to implement the methodology, and
three metrics based on dependability attributes, which can
be used to evaluate the databases. A prototype for a tool,
which implements the experimental procedure and automates
the testing process, developed during the work is also pre-
sented. Lastly, an experimental campaign assessing three pop-
ular NoSQL engines was performed to demonstrate both the
methodology and tool.

The results of the experimental campaign show that many
times, even in the presence of simple faults, the integrity of
the data is affected. They also show that each database han-
dles the workloads and faults differently, evidencing that users
need to carefully select which solution to use in their systems.

Keywords

NoSQL Databases, Dependability Assessment, Fault Injection

iii

This page is intentionally left blank.

List of Publications

This dissertation is partially based on the work presented in the following publication:

e Luis Ventura, Nuno Antunes, “Experimental Assessment of NoSQL Engines Depend-
ability”, 12th European Dependable Computing Conference (EDCC 2016), Gothen-
burg, Sweden, September 5-9, 2016.

— Abstract: NoSQL databases are the response to the sheer volume of data being
generated, stored, and analysed by modern users and applications. They are
extremely scalable horizontally and store data with less rigid structures than
the relational ones. NoSQL databases are known to compromise consistency
in favour of availability, partition tolerance, and performance. Several studies
evaluated the performance of these databases, but the users also need to under-
stand how they behave in the presence of faults and quantify the impact of those
faults. This paper presents an experimental evaluation of NoSQL databases’
dependability using fault injection, which compares three widely used NoSQL
engines based on how they perform in the presence of operator faults. The re-
sults show clearly that many times the integrity of the data is affected, even in
the presence of simple faults. It is also shown how different databases handle
the workloads and the faults differently, evidencing that users must carefully
select the solution to use in their systems.

This page is intentionally left blank.

Contents

Introduction 1
1.1 Contributions 2
1.2 Thesis Structure 3
Background and related work 5
2.1 NoSQL . . . o 5)
2.1.1 Purpose and importanceo 6
2.1.2 Tradeoffs o 7
2.1.3 NoSQL databases usage 9
2.2 Performance Evaluation of NoSQL databases 11
2.3 YCSB . . . 11
2.4 Dependability 14
2.4.1 Attributes L 14
2.4.2 Threats e 15
2.4.3 Means e e e e e 16
2.5 Dependability assessment oL 16
2.6 Dependability Assessment of NoSQL databases 17
Research Objectives and Approach 19
3.1 Research Objectives 19
3.2 Approach 20
3.2.1 Workload 20
3.2.2 Fault Injection 21
3.2.3 Experimentation L L o 21
3.24 Measures e 22
3.2.5 Metrics e e 22
NoSDep - A Dependability Assessment Tool for NoSQL 25
4.1 NoSDep o e 26
4.2 Workload Manager L 28
4.3 YCSB and Logger 28
4.4 Fault Injector L 29
4.5 SUT . . o 30
4.6 Dependability Evaluator 0o oL 31
4.6.1 Data Integrityo 31
4.6.2 Recovery Time L 32
4.6.3 Impact on the Throughput 33
Experimental Campaign 35
5.1 Experimental Setup 35
5.2 Experimental procedure 37
5.3 Results. e 37
5.4 Discussiono 40
5.5 Threats to the Validity of the Experiment 44
Conclusions and Future Work 45

vii

This page is intentionally left blank.

Acronyms

CQL Cassandra Query Language. 5
DI Data Integrity. 31, 32

IT Impact on the Throughput. 33
NYI Not Yet Implemented. 30

OS Operating System. 29, 30

SPOF Single Points Of Failure. 6
SQL Structured Query Language. 5
SUT System Under Test. 21, 25, 30, 31

YCSB Yahoo! Cloud Serving Benchmark. 1, 11-13, 17, 20, 28, 29, 35

ix

This page is intentionally left blank.

List of Figures

CAP theorem and properties favoured by each database (from [37]). 8
Dependability tree (from [21]) 14
Fault-error-failure chain, with fault tolerance mechanisms in place (adapted

from [22]). 15
Proposed methodology L 20
NoSDep’s components. 25
NoSDep’s experimental procedure. 26
Mean time to recover L 32
Pre- and Post-Fault throughputs 33
Setup used in the experimental campaign. 36
Data Integrity (DI) values for each Workload FaultType.. 41
Impact on the throughput (IT): ratio between the throughput before and

after the fault injection for each workload, fault, and engine. 42

xi

This page is intentionally left blank.

U W N =

List of Tables

NoSQL databases supporting ACID transactions and joins 9
Proposed fault model oL 29
Details of the evaluated NoSQL databases. 37
Overview of the results obtained during the experimental campaign. 38
Overview of the UNC fault’s results obtained during the experimental cam-

PAIGN. . .« . e e e e e e e e 40
Summary of the results for the recovery time. 43

xiii

This page is intentionally left blank.

1. Introduction

For over forty years, relational databases have been the leading model for data storage,
retrieval and management. However, the need to handle data in web-scale systems, in par-
ticular Big Data systems, have led to the creation of numerous NoSQL databases [37].
Unlike relational databases, NoSQL databases embrace schemaless data, run on clusters,
and have the ability to trade-off traditional consistency for other useful properties. Advo-
cates of NoSQL databases claim that they can build systems that are more “performant”,
scale better, and are easier to program with [42].

Several studies assessing the performance of NoSQL of databases have been performed
[20, 26, 28, 44]. There is even a well-established benchmarking tool which has been used
in most of these studies, Yahoo! Cloud Serving Benchmark (YCSB) [26]. YCSB allows its
users to evaluate the performance of different NoSQL engines by generating and executing
workloads against the databases, while collecting measures related to performance such as
throughput and latencies. While it is true that performance is very important for users
looking for a new database solution for their system, other non-functional attributes such
as data integrity or availability can be even more important.

To achieve their levels of performance, NoSQL databases make some tradeoffs. Each engine
usually documents these tradeoffs, and there is even a study which uses this documentation
alongside existing performance evaluation to try and rate these databases from a quality
attribute point of view [37]. There is also one work which tries to evaluate the availability of
these databases by simulating cloud anomalies [43]. However, the amount of information
regarding the dependability of these databases is still quite limited, and with critical
systems starting to include NoSQL databases, there is a need to understand how each
different database behaves under the effect of faults, as well as the impact of those
faults.

Over the last decades, fault injection has been the premier technique for the depend-
ability assessment of various systems [33, 47]. It is used to validate the fault tolerance
mechanisms of systems and to understand their behavior in the presence of faults. For
this evaluation to be accurate, the faults used must be representative of the faults the
system face during regular operation.

Fault injection techniques have been used in many studies which assess the dependability
of various systems, including dependability benchmarks for Relational Database Manage-
ment Systems (RDBMSes) [47]. However, as stated before, the number of studies per-
formed on the experimental evaluation of NoSQL database’s quality attributes is rather
limited. The fact that most of the work is focused on performance evaluation [26] leaves a
vacuum in the assessment of attributes such as integrity, availability and reliability. This
information may be very useful for users that are planning to use NoSQL databases to
handle their data.

This work proposes a methodology to assess and compare NoSQL databases in
terms of dependability attributes. This methodology is inspired in measurement-
based techniques [34] and uses fault injection to characterize the behavior of the NoSQL
databases in the presence of faults, with particular interest on the integrity of the data,
the availability of the engine, and on the impact of the fault in the throughput.

A tool — NoSDep — was developed to implement the proposed methodology. NoSDep is
a prototype tool capable of performing automated dependability evaluations on NoSQL
databases. It includes components to manage the workload, the injection of the faults
and also to collect the measurements relevant to compute the dependability metrics. A
third-party widely used workload generator is used (YCSB) [26] to exercise the database
during the experiments. Also, until now, the tool implements a fault model with 6 classes
of faults.

An experimental campaign was designed to demonstrate the applicability of method-
ology and the usage of the tool. It consisted in the evaluation of three popular NoSQL
databases. These evaluations used the faults of the proposed fault load, and three different
workload types. The campaign also served to observe how the different NoSQL databases
behaved in the presence of the faults. The engines have different recovery mechanisms
which lead to very different recovery times and data integrity problems. It is interesting
to notice that some engines had problems even in the presence of very simple faults.

A key concern in this kind of evaluation is related to the representativeness, which is
mainly influenced by the workloads executed and faults injected. Regarding the workload,
the option of using a an existing tool, which is accepted by the industry and academia,
provides us with several different predefined configurations that represent typical big data
usage scenarios. The fault model must emulate a set of real faults experienced by NoSQL
databases during their activity. With hardware achieving high levels of reliability, software
faults and operator faults are nowadays considered the most frequent causes of computer
failures [38, 47]. Moreover, while the current implementation of the tool and the exper-
imental campaign performed use only operator faults, the approach was designed to be
generic and therefore can easily be extended with other types of faults.

This work was able to successfully evaluate the dependability of three different databases.
The methodology was validated by performing an experimental campaign. The engines
were evaluated according to a previously defined set of metrics, which were calculated
with the measurements collected during over 810 test slots. The results show that the
integrity of the data is not always guaranteed. In fact, records were lost even when
the fault injected was simple and apparently harmless (e.g. clean restart of the engine),
resulting in 403 data integrity issues in a total of 810 tests (= 49.75%). In 55 cases, the
engine also finished the test slot with one extraneous record that was never confirmed to
the client.

1.1. Contributions

The main goal of this work was to research techniques to assess the dependability of
NoSQL databases. The main contributions are listed below:

e An experimental methodology to evaluate and compare NoSQL databases. While
many studies have evaluated these databases’ performance, work on other quality
attributes is limited. After researching existing literature, only one experimental
methodology that focuses on anomaly prediction to characterize availability was
found. The methodology is presented in Section 3.

e A prototype tool — NoSDep — that implements the proposed methodology. To vali-
date the methodology and evaluate the databases, NoSDep was developed to auto-
mate the experimentation process made the experiments take much less time. The
tool is presented in Section 4.

1.2.

This

An experimental campaign and the analysis of its results. An experimental campaign
using 3 different databases, 3 workloads and 6 fault types was performed. The
campaigned showed several problems on the tested databases. The campaign is
presented in Section 5.

Thesis Structure

document is divided in chapters, organized as follows:

Chapter 2 contains the background and related work. It introduces the fundamental
concepts of this work, such as NoSQL, Dependability, and Performance and Depend-
ability assessment. Regarding the assessment part, the most prominent techniques,
as well as some works which make use of them are also presented.

Chapter 3 presents the main reserach objectives, as well as the approach used to
reach those objectives. The approach section introduces the methodology that is
proposed to assess NoSQL databases, explain every component of the methodology,
and presents the metrics that are proposed to rate the evaluated databases.

Chapter 4 introduces the tool that was developed to automate the evaluation of
NoSQL databases. It begins by providing a broad view of the components which
compose the tool, followed by an explanation of each component. This chapter also
contains a list of the necessary prerequisites to run the tool.

Chapter 5 presents the experimental campaign that was performed in order to
demonstrate the methodology and tool. The chapter begins by presenting the main
research questions the campaign was attempting to answer. Next, it presents the
experimental setup that was used during the campaign, including the rationale be-
hind the selection of the engines. Lastly, the chapter presents the results obtained
the results obtained during the campaign, as well as a discussion where the research
questions are answered based on these results.

Finally, chapter 6 contains the main conclusions and the future work. The conclu-
sions cover the strong and the weak points of this work. The future works present
the next steps that will be taken in furthering this research.

This page is intentionally left blank.

2. Background and related work

This chapter introduces the concepts most important to this dissertation. It contains an
introduction to each technology involved, as well as review of some of the most important
related work.

Section 2.1 explains why NoSQL databases were created and why they have recently been
gaining traction in the market. Section 2.2 discusses some studies performed on evaluating
the performance of these databases. Section 2.4 introduces the concept and importance
of dependability and dependable systems, and it is followed by section 2.5 where the most
prominent techniques used to evaluate the dependability of a system are introduced. This
last section also presents some of the existing studies which make use of these techniques
and a review of existing dependability assessment studies targeting NoSQL databases.

2.1. NoSQL

“The term NoSQL was first coined in 1988 to name a relational database that did not
have a Structured Query Language (SQL) interface” [37]. It reappeared in 2009 to name
an event which highlighted new non-relational databases, such as Google’s BigTable [25]
and Amazon’s DynamoDB [28].

While the term initially stood for “No SQL”, a few NoSQL engines do have query lan-
guages, such as Cassandra’s Cassandra Query Language (CQL). As such, “non-relational”
or “Not Only SQL” are more popular (and correct) definitions.

There are four general types of NoSQL databases, each with their own specific character-
istics and attributes [37, 44]:

o Key-value stores — The least complex databases. They are designed for storing
data in a schema-less way. In key-value stores, all data consists of an indexed key
paired with a value. A few examples of key-value stores are: Redis [2], Aerospike [4],
and DynamoDB [10]

e Column stores — While relational databases serialize the rows together, column
databases serialize the columns. Row databases are optimized for operations that
target a specific record, usually involving several of the record’s columns. On the
other hand, column databases excel in operations that target only a subset of a
row’s columns. A few example of column stores are: Cassandra [5], HBase [11], and
Accumulo [3]

e Document stores — These databases store their records as documents. Documents
can be seen as a grouping of key-value pairs. Unlike relational DBMSes, in a docu-
ment store each document has its own schema. A few examples of document stores
are: MongoDB [1], OrientDB [16], and CouchDB [8]

e Graph stores — These databases excel at dealing with interconnected data. They
consist of connections between nodes. Each node can hold any number of key-value
pairs and each edge contains a semantically relevant label. A few examples are:
Neo4j [14], OrientDB [16], and Titan [19]

In addition to the four previously mentioned types, there are also multi-model NoSQL
databases, such as OrientDB which appeared on the previous list in two different database
types, which support multiple data models [39].

In the next subsections the importance of NoSQL databases is explained as well as their
main use cases, the trade-offs they make to achieve their features and the most popular
databases of each type.

2.1.1. Purpose and importance

NoSQL databases were created to deal with some of the traditional relational-database’s
limitations, particularly, handling Big Data. The almost limitless amount of data col-
lection technologies ranging from point of sale systems, to GPS tools, or social networks
connecting millions of users and their information, all act as force multipliers for data
growth [27].

To understand how NoSQL databases help deal with the problem of Big Data, it is im-
portant to analyse the properties of a Big Data project. Big Data projects are usually
typified by [27]:

e High data velocity - lots of data coming in very quickly, possibly from different
locations.

e Data variety - storage of data that is structured, semi-structured, and/or unstruc-
tured.

e Data volume - data that involves many tera- or petabytes in size.

e Data complexity - data that is stored and managed in different locations or data
centers.

Based on these needs, to solve a Big Data project a system should have high availability,
be highly scalable and be very fast. Those are the selling points of many NoSQL solutions:

e Horizontal scalability: One of the most common points mentioned when talking
about NoSQL databases is their inherent support of horizontal scalability (i.e. scaling
by increasing the number of computers). Horizontal scalability is not only cheaper
than vertical scalability (i.e. scaling by increasing the power of the computer being
used), since the upgrading consists of adding additional machines to the pool, it
typically involves no system downtime [36].

In fact, while relational databases are also capable of scaling horizontally, the rela-
tional nature of their data structure makes the joining of their tables in a distributed
system a difficult task to manage.

e High availability: We are on the Information Age. Nowadays almost everyone is
connected to the web, and downtime can be a deadly blow to a company’s reputation.
NoSQL databases were designed to be used in a distributed architecture, as such,
there are no Single Points Of Failure (SPOF) and there is built-in data replication.
[37, 44]

These properties mean that even if one node goes down there should be no downtime
or data loss in the system.

e Performance: NoSQL databases were designed to be used in a distributed archi-
tecture. The fact that the data is replicated among several nodes means that not
only is availability very high, read performance will also be higher due to load bal-
ancing. Likewise, write performance is also very high since data partitioning allows
for parallel writes [37].

2.1.2. Trade offs

When talking about trade-offs in NoSQL databases, it is important to mention the CAP
(Consistency, Availability, and Partition-tolerance) theorem. Introduced by Eric Brewer
in 2000, the CAP theorem states that any networked shared-data system can have at most
two of these three desirable properties [24]:

e Consistency: equivalent to having a single up-to-date copy of the data;
e Availability : high availability of the data;

e Partition tolerance : tolerance to network partitions.

For many years, relational databases have been stamped as being consistent and available
(CA), and having trouble with partitions. In the context of distributed databases however,
since a database can’t be called a reliable distributed database if it is not partition tolerant,
the behaviour of the database usually falls on two one of these two types: if a network
split happens, should the database keep responding to requests with possibly old/wrong
data? (AP) or should it stop responding unless it is capable of ensuring it has access to
the latest copy of the data? (CP). [30]

When they have to ensure partition tolerance, distributed relational databases typically
fall into the category of CP (favouring consistency and partition tolerance), i.e., in the
case of a network partition happening, they favor data consistency over availability (e.g.
If the communication between two datacenters is broken, either only one of them will keep
replying to requests or both will stop, in order to ensure data is consistent). [30]

In truth, even though many relational databases favor consistency, there are some even-
tually consistent (databases where update operations executed on one node eventually
execute on all nodes) databases, like MariaDB, which are starting to appear. According
to the CAP theorem, these databases would be classified as AP (favouring availability and
partition tolerance) [23, 35].

When NoSQL databases first appeared, a common misconception regarding their clas-
sification using the CAP theorem was that they are all AP (favouring availability and
partition tolerance), sacrificing data consistency in the process. Nowadays, its understood
that while some NoSQL databases do favor availability and others favor consistency, they
are not fully (i.e. only) consistent or fully available. Instead, these databases offer fine-
tuning of consistency and availability levels, allowing their users to configure the database
to suit their needs [37].

Image 1 contains a visual representation of the cap theorem, as well as the CAP properties
favoured by a few NoSQL databases. Like stated before, in the case of NoSQL databases,
these properties can usually be fine-tuned. Cassandra for example is represented as AP,
since by design it uses eventual consistency (meaning all nodes will eventually have the
same data) to ensure high availability. However, it is also possible to configure Cassandra

to use strong consistency (ensuring tha data is consistent across all nodes before accepting
new operations),i.e., favouring CP in the CAP theorem [5].

HSASE
. SQL Senrer

ﬂunu_JB

. IMoIn gl‘.]

Availability Partition-Tolerance

Tha system continues
to oparate aven in the
presence of node
failures

The system continues
1o operate in spite of
natwork failures

Figure 1: CAP theorem and properties favoured by each database (from [37]).

Another important point when talking about trade-offs in NoSQL databases is ACID
transactions. ACID is a set of properties that guarantee that database transactions are
executed reliably.

ACID stands for [29]:

e Atomicity - during transactions, if any one part of the transactions fails, the entire
transactions fails and the database state is left unchanged.

e Consistency - even though it shares the same name, it has nothing to do with the
consistency from CAP’s theorem. In ACID, consistency means that any transaction
will bring the database from one valid state to another. Any data written to the
database must be valid according to all defined rules, including constraints, cascades,
triggers, and any combination thereof.

e Isolation - during the execution of concurrent transactions, the resulting system
state must be the same as if the transactions were executed serially, i.e., one after
the other.

e Durability - after a transaction has been committed, it will remain so, even in the
event of power loss, crashes, and/or errors.

When the first NoSQL databases appeared, they sacrificed ACID transactions for the sake
of performance, and used what are called BASE transactions. Like ACID, BASE is a set
of properties of database transactions.

BASE stands for [40]:

e Basically Available - means that the system guarantees availability, in terms of the
CAP theorem.

e Soft state - indicates that the system may change over time, even without input.
This property derives from the eventual consistency model of the system.

e Eventually Consistent - indicates that the system will become consistent over time,
given that it doesn’t receive new input during that time.

There is one more important trade-off made by NoSQL databases. Table joins.

Relational databases are usually normalized to eliminate duplication of information such
as when objects have one-to-many relationships. What this means is that the information
can be kept in different tables and when there is the need to combine information from
both tables a join can be performed.

Unlike relational databases, NoSQL databases are usually denormalized, i.e., information
is not kept in self-sustained entities. A good example to understand normalized and
denormalized data is the storage of people and their phone numbers. In a normalized
environment, people and phone numbers are kept in self-contained entities and a join
operation is performed when needed. In denormalized environments, however, instead of
two tables we would have only the person table, with a list of phone numbers inside.

Normalization is better to ensure data integrity, as there is no data duplication, however
since joins can be heavy operations, denormalized data is typically faster to access.

While most NoSQL databases don’t support either ACID transactions or table joins, there
are some that actually do. Table 1 contains a list of the NoSQL databases that support
ACID transactions and joins.

Database ACID transactions Joins

Aerospike Yes No
ArangoDB Yes Yes
CouchDB Yes Yes
c-treeACE Yes Yes
HyperDex Yes Yes
InfinityDB Yes No

LMDB Yes No
MarkLogic Yes Yes
OrientDB Yes Yes

Table 1: NoSQL databases supporting ACID transactions and joins

2.1.3. NoSQL databases usage

As was mentioned before, NoSQL engines are very popular. This subsection presents some
use cases where NoSQL databases are being used.

Cassandra is being used by instagram to store auditing information related to security
and site integrity purposes. Before changing to cassandra, instagram was using Redis
(an in-memory NoSQL database) to store this information. Since using disks is much

cheaper than using memory, and this data was mostly about writes, instagram did not
lose any performance and was able to save 75% of the costs to store the same amount of
information [6].

Ebay is building an elastic, highly scalable, and highly available metadata store [13], using
mongodb as its storage engine.

Redis is an in-memory key-value pair database, commonly used as an in-memory database,
message queue, or cache. The fact that redis is the third most deployed container in docker
is testament to its popularity [17].

Neodj is a widely used graph database. Gamesys is using Neo4j on its new social network.
Graph databases are well suited to handle social networks, due to the massive connect-
edness of the data. Neo4j was chosen because Gamesys judged it to be the most mature
graph database [15].

Following, we present a list with the most popular databases for each database type [9].

e Key-value stores:

1. Redis [2]
2. Memcached [12]
3. RIAK KV [18]

e Column stores:

1. Cassandra [5]
2. HBase [11]
3. Accumulo [3]

e Document stores:

1. MongoDB [1]
2. CouchBase [7]
3. DynamoDB [10]

e Graph stores:

1. Neodj [14]
2. OrientDB [16]
3. Titan [19]

Relational databases are still the most popular, however, it should be noted that among
the 12 databases listed in this section, three of them are in the topl0 of the most popular
databases (MongoDB,Cassandra, and Redis)®.

Additional information about any of these databases can be found in their respective
websites. Additionally, in section 5.1, the ones selected for the experimental campaign are
explored in detail.

'Ranking obtained from db-engines (http://db-engines.com/en/ranking), on August 2016

10

2.2. Performance Evaluation of NoSQL databases

Nowadays, the scaling and speed performances of NoSQL databases [26], the trade offs
made by them in order to achieve their levels of performance [28, 37, 44|, and the main
use cases where NoSQL databases can be used [31], all have a lot of research performed
on them.

Some NosSQL databases, like Amazon’s DynamoDB in 2007 [28], have had evaluations
performed before they were even called NoSQL databases.

While DynamoDB’s evaluation is based on field measurements, i.e. data collected from the
system performing in a real scenario, most of the recent NoSQL database’s performance
evaluations have made use of Yahoo! Cloud Serving Benchmark (YCSB).

YCSB was used to compare six different databases in [41]. This work used workloads
focusing on write, read, and scan operations, and measured the throughput, read/write
latencies of each engine and how much space each engine required to store the same data
on disk.

Also using YCSB, the work in [20] focused on comparing the reading and update perfor-
mances of MongoDB and Cassandra. In this work, the workloads chosen were comprised
of mostly read or update operations. The authors ran several workloads, with varying
amounts of data and in the end compared the baseline performance of each database.

The study performed in [44] evaluated a couple of NoSQL databases, alongside a rela-
tional database(MySQL), from both a quantitative and a qualitative point of view. The
qualitative analysis consisted in checking whether a set of features was available for the
NoSQL databases taken into account. The quantitative analysis consisted in using YCSB
to run workloads of 120 million operations against the databases, and collecting informa-
tion regarding the throughputs and latencies.

2.3. YCSB

As was stated before, most of the performance evaluations performed on NoSQL databases
make use of YCSB [26].

YCSB is a framework for benchmarking systems, which was released in 2010 by workers
in the research division of Yahoo!, with the goal of ”facilitating performance comparisons
of the new generations of cloud data serving systems” [26].

The framework consists of a workload generating client and a package of standard work-
loads that cover interesting parts of the performance space(read-heavy workloads, write-
heave workloads, etc.) [26].

Besides the workload generator, to run YCSB additional code to interface with a data
serving system is needed. The creators of YCSB also developed a tool called the YCSB
client which is used to execute the YCSB benchmarks. This tool was developed with
with extensibility in mind, as such it is possible to add both new interfaces to connect to
databases and different workloads to it.

When YCSB was proposed, the authors also proposed six different workloads, each ex-
ploring different parts of the performance space. These workloads, which come bundled
with the YCSB client, are considered representative of real-world applications and have
been used in many performance evaluations [26][44][28][20]. The list presented below con-

11

tains the core set of workloads, with information regarding the type of operations, the
performance space it is evaluating, and an application example of the workload.

e workloadA (50% reads, 50% updates) is an update-heavy workload and “an appli-
cation example is a session store recording recent actions” [26].

e workloadB (95% reads, 5% updates) is a read-heavy workload and “an application
example is photo tagging; adding a tag is an update, but most operations are to
read tags” [26].

e workloadC (100% reads) is a read-only workload and “an application example is a
user profile cache, where profiles are constructed elsewhere (e.g. Hadoop” [26].

e workloadD (95% reads, 5% updates) is a read-heavy workload and “an application
example is user status updates; people want to read the latest” [26].

e workloadE (95% scans, 5% inserts) is a read-heavy (bulk) workload and “an appli-
cation example is threaded conversations, where each scan is for the posts in a given
thread (assumed to be clustered by thread id)” [26].

e workloadF (50% reads, 50% read-modify-writes) is a read and update-heavy work-
load and “an application example is a user database, where user records are read
and modified by the user or to record user activity” [26].

To run a workload using YCSB there are six steps:

1. Set up the database system to test

Choose the appropriate DB interface layer
Choose the appropriate workload

Choose the appropriate runtime parameters.

Load the data.

SO

Execute the workload.

Setting up the database system:

This step consists in setting up the database system which is going to be evaluated. Besides
the installation and normal configurations of the database system, it may also be necessary
to create tables/keyspaces/storage buckets to store records.

Choosing the appropriate DB interface layer:

The interface layer is a Java class that will execute the operations generated by the YCSB
client against the database’s APIs. The YCSB client already comes packed with interfaces
to run the workloads against some of the most popular NoSQL databases (e.g. MongoDB,
Cassandra, Redis, etc) in the market, however, new interfaces can be created if needed.

Choosing the appropriate workload:

The workload defines the data that will be loaded into the database during the loading
phase, as well as the operations that will be executed against the dataset during the
transaction phase.

The workloads are a combination of :

12

e A parameter file containing the properties of the dataset.

e A workload Java class which uses the properties specified in the parameter file to
insert records (during the loading phase) or execute transactions (during the trans-
action phase).

Choosing the appropriate runtime parameters:

Besides the specific types of workload and properties of data sets, there are additional
settings which can be specified when running the benchmark. Some of these settings are:

e threads n : the number of client threads. By default, YCSB uses a single
worker thread, but additional threads can be specified to increase the load against
the database.

e target n : target number of operations per second. By default, YCSB will
attempt to do as many operations as it can. This parameter can be used to throttle
the operation throughput if needed.

e 5 : status. Setting this parameter will make the client report its status every 10
seconds.

Loading the data:

Like stated before, workloads have a loading step and a transaction step. To execute the
loading phase a command like the one below is used:

#run loading phase
python bin/ycsb load mongodb -P workloads/workloada -P properties/mongodb >
loading_output.out

Listing 1: Running the loading phase.

If running from the root folder of ycsb, what this will do is call the YCSB client, tell
it to execute the loading phase using the MongoDB interface, specify the workload and
property files to be used and log the output to a file called output.out.

The loading phase is meant to populate the database, and consists only of insert operations.
As such, independently of the workload specified, YCSB’s behaviour will be the same:
generate data and insert it into the database.

Executing the workload:

Once the data is loaded, the workload can be executed. This is done by telling the client
to run the transaction section of the workload.

#run transaction phase
python bin/ycsb run mongodb -P workloads/workloada -P properties/mongodb >
transactions_output.out

Listing 2: Running the transaction phase.

As can be seen from the snippets, for YCSB users, the only difference in running the
loading and transactions phases is changing the load to run.

The transaction phase of the workload will execute operations against the dataset inserted
during the loading phase. The operations to be performed (i.e. updates, reads, etc) are
generated according to the workload file.

13

After the execution of the transaction phase, the client will direct the performance statis-
tics to stdout. These statistics include minimum and maximum latencies, number of
successful operations and throughput(ops/sec), to name a few.

2.4. Dependability

The dependability of a system is the system’s capacity to deliver service which can be
trusted. Another definition provided by Avizienis et al. is: ”the dependability of a system
is the ability to avoid service failures that are more frequent and more severe than is
acceptable.” [22]

Image 2 contains the dependability tree [22], which is a visual representation of the at-
tributes, threats and means of systems.

A dependable system must be able to satisfy a set of attributes, in order to be capable of
resisting the existing threats. To attain the required attributes, a system has many means
which have been developed over the course of the past 60 years.

— Availability
— Reliability
— Safety

Attributes . o
— Confidentiality

— Integrity

L— Maintainability

— Faults

Dependability Threats — Errors

— Failures

Fault Prevention

Fault Tolerance

Means
Fault Removal

Fault Forecasting

Figure 2: Dependability tree (from [21])

The next subsections describe each element of the dependability tree.

2.4.1. Attributes

A system is said to be dependable if it can satisfy the following quality attributes [22, 47]:

Availability: readiness for correct service.

e Reliability: continuity of correct service.

Safety: absence of catastrophic consequences on the user(s) and the environment.

Confidentiality: absence of unauthorized disclosure of information.

Integrity: absence of improper system alterations.

14

e Maintainability: ability to undergo modifications and repairs.

2.4.2. Threats

During normal execution, a system may be affected by threats which cause a drop in
dependability. The three types of threat are:

e Faults: defects in the system. The presence of a fault may not always lead to
a failure, as depending on the system’s inputs and state, the fault may never be
executed. When producing errors faults are called active, otherwise they are called
dormant.

e Errors: discrepancies between the intended and actual behaviours of the system.
They occur at runtime, whenever a fault gets activated.

e Failures: instances in time when the system displays behaviour that is contrary to
its specification. It should be noted that not all errors give way to failures. e.g. If an
exceptions gets thrown but is correctly handled, the system will not enter a failure
state.

Figure 3 gives a visualization of the fault-error-failure chain [21]. Faults originate errors
which in turn give way to failures, unless they are correctly handled.

Fault tolerance
mechanisms

Lead to Lead to Fail to handle .
Faults > Errors I Failures

handle

Handled Errors

Figure 3: Fault-error-failure chain, with fault tolerance mechanisms in place (adapted
from [22]).

Failures can be categorized in two different levels, according to the relation between the
benefit of having the system perform in the absence of a failure, and the consequences of
a failure happen [21]:

e minor failures: where the harmful consequences of failures are of similar or lower
cost than the benefits provided by correct service delivery.

e catastrophic failures: where the harmful consequences of failures are orders of
magnitude, or even incommensurably higher than the benefits provided by correct
service delivery.

To consider a system dependable in the presence of failures there are several criteria that
can be used to determine the class of the failure’s severity. A few examples of such criteria
are:

15

for availability, the downtime of the service.

for safety, the possibility of having endangered human lives.

for confidentiality, the type of information that may have been unduly disclosed.

for integrity, the extent of the corruption of data, as well as the system’s capacity
to recover from the corruption.

2.4.3. Means

Having mentioned the dependability attributes and the threats they are subjected to, it
is important to talk about the means to break the fault-error-failure chains.

In figure 3 one of the possible means of improving software dependability is shown, Fault
Tolerance.

The four means to ensure software dependability are the following [21, 22]:

e Fault Prevention - technique to prevent the occurrence or introduction of faults.
This technique consists in the usage of quality control techniques during the design
and manufacturing phases of the system.

e Fault Tolerance - technique to preserve correct delivery of service in the presence
of faults. Fault tolerance is comprised of two main techniques: Error detection,
which consists in identifying the presence of an error, and Recovery, which consists
in turning a system state with the presence of errors into a state without errors or
faults that may be activated again.

e Fault Removal - technique to reduce the number or severity of faults. It can occur
during system development or system operation.

— Removal during development - Consists of three steps : the verification
step which is always executed and consists in checking if system adheres to a
set of given properties; the diagnosis step which is executed only if the verifi-
cation fails, and consists in diagnosing the faults that prevent the verification
properties from being fulfilled; the correction step, which is executed after the
diagnosis steps and consists in the necessary corrections to the system.

— Removal during operation - Consists in the use of corrective or preventive
maintenance (patches, updates, etc.). Corrective maintenance aims to remove
faults that have produced one or more errors and have already been previously
reported, whereas preventive maintenance is aimed at uncovering and removing
faults before they cause errors during normal operation.

e Fault Forecasting - technique to predict the likelihood of faults, so they can be
removed or have their effects circumvented.

2.5. Dependability assessment

As dependability is a ‘meta-attribute’, which encompasses multiple quality attributes, the
techniques available for dependability assessment are very diverse. Following, some of the
existing techniques used for the quantitative assessment of dependability are introduced,
focusing on the ones more related to the work that was performed:

16

e Fault injection — used to evaluate the system’s fault tolerance mechanisms. Con-
sists in introducing artificial, but representative, faults in components to evaluate
specific fault handling mechanisms and to assess the impact of faults in actual soft-
ware components [33];

e Robustness testing — used to evaluate the system’s ability to operate despite
abnormalities in its input. It stimulates the software in such a way that triggers
internal errors, exposing both programming and design errors [46];

e Benchmarks — standard tools that allow the evaluation and comparison of different
systems according to certain characteristics. A benchmark defines all the steps and
components needed to obtain the values of interest [34];

e Field measurements — observations of components in the ‘wild’ or in production.
These observations have the advantage of being realistic [34];

An example of a concrete dependability benchmark based on fault injection was proposed
in [47], which targets OLTP systems (DBench-OLTP). The goal of this benchmark was
to provide a practical way to assess the performance and dependability features of OLTP
systems, focusing on the availability of the system.

DBench-OLTP was defined in five main components: a workload, faultload, measures,
procedures and rules, and experimental setup. The workload and some of the measures
are inherited from the TPC-C benchmark. The remaining components are explained in
the paper. The procedures are simple as a driver system guides all the experiment. The
fault load is constituted by a set of operational faults, because of their importance in this
environment. The new measures characterize the systems in terms of availability.

To demonstrate the usefulness of the technique, the authors applied the benchmark to a set
of ten different systems and compared the results. The results shown the importance of the
ideas introduced by the benchmarking as they show that some of the systems with lower
performance can present higher availability, providing to the users of the benchmark the
opportunity to choose the most adequate metric. The paper concludes with the discussion
of the effort necessary to use the benchmark.

2.6. Dependability Assessment of NoSQL databases

When YCSB was developed it was intended to be used to evaluate cloud system’s aspects
other than performance, such as availability and replication(which directly affect depend-
ability attributes) [26]. However, apart from performance evaluations, there is limited
work on evaluating quality attributes of NoSQL databases.

Recently, there has been worked published on the evaluation of NoSQL engines from a
quality attribute point of view [37]. However, that is a literature review work, which
gathers information about some NoSQL engines’ quality attributes from sources such as
the engines’ websites or works performing evaluations on the databases.

An experimental evaluation of Scale-out Storage Systems (SoSS) based on fault injection
is presented in [43]. SoSS scale horizontally and include key-value and document stores
(NoSQL databases) among other systems, and are likely to run in the cloud. This work
focuses on the impact that anomalies have on data availability. A cluster of VMs running
MongoDB was exposed to memory and network faults to simulate cloud anomalies, and
their predictability was analysed. The work shows that the injected faults adversely im-

17

pacted the performance of these systems and proposes an anomaly detection approach to
enhance the dependability of SoSS through predictions of cloud anomalies.

18

3. Research Objectives and Approach

The main goal of this dissertation was to evaluate and compare different NoSQL databases.
To evaluate this kind of databases, an experimental methodology based on fault injection
was defined. While running a first experimental campaign in order to validate the method-
ology, the existence of a well-defined experimental procedure that did not change between
experiments made evident the need for the creation of a tool — NoSDep — to automate
the process of assessing the databases.

This chapter presents the main research objectives of this work, as well as the approach
used to reach them. Section 3.1 presents the main research goals as well as the reason-
ing behind them. Section 3.2 explains the proposed approach to reach these objectives,
introducing the methodology and experimental approach.

3.1. Research Objectives

As stated before, the main research objective of this dissertation was to perform an exper-
imental assessment of NoSQL databases’ dependability. To achieve this main objective,
the following three goals were set and achieved:

e Definition of a methodology

A measurement based methodology was defined, which required careful selection of
the measures to characterize the databases. To understand how these databases
behave under the presence of faults, the methodology was based on fault injection as
it has been the premier technique for dependability assessment of various system over
the last decades. To ensure the fault-based evaluation is accurate it was necessary
to use a representative fault model, as such the fault model consists only of faults
the systems may face during normal execution.

e Development of a tool to implement and automate the methodology

After defining the methodology and the experimental procedure, a few experiments
were run to validate them. The running of these ad-hoc experiments made evident
the need for a tool to automate the experimentation process. As stated before, the
experimental procedure is the same for every experiment, as such what the tool does
is implement this procedure in an automated way. The development of the tool was
the second objective to achieve, as the tool is what made running the experimental
campaign possible.

o Demonstration of the tool and methodology

The last objective that was achieved in this dissertation was the demonstration of
the tool and methodology by running an experimental campaign. This campaign
validated the methodology and proved that the developed tool was correctly im-
plementing the experimental procedure. To perform this demonstration a set of
representative engines was selected, and a set of experiments was defined. The en-
suing step was the performance of the experimental campaign and analysis of the
results.

19

3.2. Approach

As was shown in subsection 2.4.1, dependability is a meta-attribute which encompasses
several attributes. In the context of NoSQL databases, integrity and availability assume a
special importance [45].Thus, the proposed methodology presented in Figure 4 uses fault
injection to assess the dependability of YCSB databases, and is focused on availability
and data integrity.

A Workload

(. L
| Experimentation (D)
NiC) Measures
L System

eFault Injection

Figure 4: Proposed methodology

The proposed methodology consists in having a prototype of a real system running a
NoSQL database which will have a representative workload be generated and executed
against it. At a defined point in the execution of the workload, faults will be injected onto
the system. To understand how well the databases are capable of tolerating these faults,
several measurements are taken during the execution of the workload and analysed after
the execution finishes.

In the ensuing subsections each element of the methodology is explained in detail.

3.2.1. Workload

To have a representative evaluation, it is necessary to have the engines working under a
realistic load. To ensure this, YCSB was used as the workload generator. As was seen in
section 2.3, YCSB already comes bundled with a set of different workloads which can be
considered representative of real world applications. However, none of the core workloads
is insert-mostly.

It was also explained that YCSB is an extensible workload generator, as such, the following
workload was defined to be used in the evaluations of the databases:

e workloadL (100% inserts) is an insert-only workload and an application example
is a data loading process.

The reasoning behind the creation of this workload is that data integrity can only be veri-
fied in workloads that contain either inserts or updates, therefore an insert-only workload
is likely to be more prone to data integrity problems when faults affect the system.

Due to the need to use representative workloads in the experiments, no other workloads
were added to YCSB during this dissertation. While workloads can easily be added, it

20

should be kept in mind that workloads without insert or update operations are unlikely
to detect data integrity problems.

3.2.2. Fault Injection

As was explained in section 2.5, fault injection is a technique used to evaluate a system’s
fault tolerance mechanisms. For these faults to be considered representative, they must
emulate real faults the system may face during normal operation.

The proposed approach was designed to be generic in terms of the faults to be used, thus
being able to include faults from one or more of the following types:

e Operator faults: correspond to administrator mistakes [38, 47]. the complexity
and frequency of management and tuning tasks leads to the prevalence of this type
of faults.

e Software faults: also known as software bugs, are one of the main causes of system
failures [34]. Several techniques allow to emulate software faults in a representative
fashion [34].

e Hardware faults: although the reliability of hardware increased a lot, high level
hardware failures such disk failures can have catastrophic consequences on data
management systems [38, 47].

With the current levels of hardware reliability, operator and software faults are nowadays
considered the most frequent causes of computer failures [33, 47].

The functioning of NoSQL databases and their underlying machines is ensured by system
administrators. It is a human activity, and thus subject to mistakes. System administrator
mistakes are basically operator faults, and they can be easily emulated by reproducing
those mistakes [45].

3.2.3. Experimentation

The experimentation process always follows the following procedure:

1. Start the System Under Test (SUT);

Execute the loading phase

Start the transaction phase

Inject the fault at a predetermined instant

Wait for a detection period before restarting the engine

Wait for the transaction phase to conclude

N T

Analyse the data.

Each assessment always starts with a clean start of the database to evaluate. The next
step is the execution of a loading phase which is used to both populate and warm up
the database. After the loading, the transaction phase begins. This transaction phase is

21

where the fault is injected into the system, at a predetermined time. After injection of the
fault there is a detection period, followed by a restart of the database if needed. Lastly,
the data regarding the experiment is analysed as soon as the transaction phase finishes its
execution.

3.2.4. Measures

During the experimentation process several measurements are performed in order to eval-
uate the database. Each of the collected measures is explained below:

e Matching records — Number of records confirmed by the database still present
after injection of the fault

e Missing records — Number of records confirmed by the database that went missing
after injection of the fault

e Outdated records — Number of records confirmed by the database that are missing
update operations

e Extraneous records — Number of records present in the database whose insert
operation was reported as having failed.

e Recovery Time — Time the database requires to recover after detection of the fault

e Pre-fault Throughput — Number of operations per second before injection of the
fault

e Post-fault Throughput — Number of operations per second after injection of the
fault

Chapter 4 contains more information on how the measures are collected in the current
implmentation.

These measures are combined in the metrics presented next to characterize three different
attributes: Data integrity, Availability, Throughput.

3.2.5. Metrics

Three metrics were computed from the measures present in the previous subsection.

The first metric portrays the impact of the faults in the Data Integrity (DI). It is
defined as seen in (1). The metric is a ratio between the number of legitimate records and
the number of expected records. It focuses on the engine’s ability to recover from faults,
with the minimum amount of data loss. The expected records correspond to all the
records that were confirmed by the NoSQL engine. The legitimate records correspond
to the number of matching records minus the extraneous records. The extraneous records
are subtracted from the matching records because they were never confirmed to the client.
Thus, they should penalize the engine. However, they cannot be put on the denominator
as they can not be considered expected records.

The measurements necessary to calculate this metric are the most complex to collect.

22

Subsection 4.6.1 explains the data integrity verification process in-depth.

DI — # Legitimate_records _ (1a)
Expected_records

matching — extraneous

DI =

(1b)

matching + outdated + missing

The second metric that was defined is the Recovery Time (RT) and it is related to
the system’s availability. The availability of a system can be given by the formula present
n (2a) [34]. Following the methodology proposed in this dissertation it is not possible
to calculate the availability of the database, as there is no way to calculate the Mean
Time Between Failures (MTBF). However, data to compute the Recovery Time (RT)
is available and it influences availability according to (2b).

G g MTBF
availability = VTBE + MITR (2a)

MTTR = DT + RT (2b)

Lastly, even though the work is focused on dependability assessment, it is still important
to understand how the presence of faults impact the performance of NoSQL databases. As
such, to portray the impact the faults have on the throughput of these engines, the metric
Impact on the Throughput (IT) that is defined based on the throughput values before
and after the injection of the fault is proposed:

_ TP(pre_fault)

1= T P(post_fault) 3)

This metric is a ratio between the throughputs pre- and post-fault and a value greater
than one implies a degradation on the throughput value after the injection of the fault.

23

This page is intentionally left blank.

4. NoSDep - A Dependability Assessment Tool for NoSQL

NoSDep (NoSQL Dependability) is a tool to automate the evaluation of NoSQL databases.
This tool consists of several components, each responsible for implementing a different step
of the methodology presented in section 3.2. Figure 5 presents a diagram with all of these
components. It should be noted that while the diagram is based on UML’s component
diagram, it does not follow UML’s conventions. As such, to properly read the diagram
the following information should be taken into account:

e A component box indicates a component

e A component box inside another component means that component is part of the

larger one

e A dashed line indicates that the component towards which the arrow is pointing

is used by the first component

e A solid line indicates communication between the involved components

NoSDep tool {
Workload $:| Fault Dependability $:|
Manager Injector Evaluator

" 5 o
|
[

Generates| Executes Injects faults on Evaluates SUT’s

workload : workload on | either the database database using

using J{ the database or system shadow database

YCSB = | suT = | shadow 5|

Logger & NoSQL $:| NosQL £]
* Database ; Database

<<external>>

Figure 5: NoSDep’s components.

Looking at figure 5 it is possible to observe that the main component, the NoSDep tool,
has three smaller components. These smaller components can be directly matched with

the proposed methodology:

e The workload manager uses an external component (YCSB) to generate and ex-
ecute a workload against theSUT database

e The fault injector is responsible for implementing and coordinating the injection
of the faults targeting either the SUT database or the machine it is running on

25

e The dependability evaluator is the component responsible for evaluating the
dependability of the database being tested. It uses the measurements collected
during the workload execution, in order to compute the metrics defined in 3.2.5

Besides the Main component and its three subcomponents, the tool also uses three external
components:

e YCSB is the component responsible for generating and executing the workloads. It
contains a subcomponent, the logger

— The logger is responsible for storing all information related to the execution
of the workloads in a log file

e The SUT represents the system being tested. It contains the NoSQL database which
is being evaluated

e The Shadow component represents the shadow database, which is built from the
successful operations present in the log file, and used to evaluate the integrity of the
SUT database

To better understand the functioning of the tool, each of the components is explained in the
ensuing sections. Section 4.6 is particularly important, as it explains how the component
calculates each of the metrics used to evaluate the databases. Following the explanation
of the components, the last section contains the list of prerequisites necessary to run the
NoSDep tool.

4.1. NoSDep

In subsection 3.2.3 the experimental procedure proposed to evaluate NoSQL databases was
presented. What NoSDep does is provide an automated implementation of this procedure.

Figure 6 contains a graphical representation of this implementation.

NosalL I Configuration | Testing | Analysis |

ot 1 Testslot 2 n Testslot 3

assessment |
] 0 [
L | v
Fault injection Recovery start

Test slots

| L Test Sto
Tx phase start SteadY §tate Recovery end Tx phase end
condition

Loading Steady state Injection Detection Recovery Keep Data Integrity
phase time time time time time analysis

Experimental
methodology

Figure 6: NoSDep’s experimental procedure.

In the figure it is possible to see how NoSDep handles the evaluation of the databases.

The user begins by introducing the necessary configurations, such as:

e Database to assess, i.e. select which database from the list of supported databases
is going to be assessed

26

e Information required to connect to the database, i.e. ip and port of the machine
where the database is running

e Information about the workload to execute, i.e. which workload to execute and any
additional workload configurations (4.2)

The configurations are followed by the testing period, which is composed by several test
slots. Each test slot is an implementation of the experimental procedure presented in 3.2.3.
For the results of the evaluation to be considered representative, it is necessary to test each
engine several times, as such, the higher the amount of test slots, the better the results
will be.

Each test slot begins with a clean state of the database, i.e. the database starts only with
the necessary configurations, with no data either in memory or disk. NoSDep ensures this
clean state by performing the following actions between test slots:

1. Deleting all data and tables in the databases and shutting down the databases

2. Deleting all of the database’s data files still present in the disk

3. Creating the tables again

4. Restarting the machines running the database

5. Starting the database
The last step of the evaluation is the analysis of the results. At the end of the execution
of all the test slots, the user can check all the information regarding the evaluations,

including the values of each of the metrics presented in subsection 3.2.5. These values
take into consideration the average results of all test slots.

The NoSDep main component is responsible for controlling the execution of the tests. It
receives the necessary configurations from the user, and makes use of its several compo-
nents to implement the experimental procedure:

1. It starts the System Under Test (SUT) by connecting to the machines running
the databases and starting them. This connection is done via ssh

2. Tt executes the loading phase using the Workload Manager (WM) component, and
starts the transaction phase using the same component

3. It times the right instant to inject the fault and uses the Fault Injector compo-
nent to inject it

4. After the injection, it waits for a detection period before restarting the engine
(if needed)

5. After the transaction finishes executing, it uses the Dependability Evaluator (DE)
component to analyse the results

6. It assures the next test slot begins with a clean slate, using the steps previously
enumerated

7. Finally, after the last test slot, it presents the results of the assessment to the user

27

4.2. Workload Manager

The Workload Manager (WM) is the component responsible for managing the generation
and execution of the workload, which is performed by the YCSB component. This com-
ponent contains all the property and workload configuration files required by the YCSB.
It also contains a script which receives three parameters:

e The database to evaluate
e The workload to be executed

e The property file to be used

While some databases have more than 1 driver available, at this moment the tool is
defaulting to the most popular synchronous driver available for that database. In the
future specifying the driver will also be possible.

The available workloads have already been presented in sections 2.3 and 3.2.1. The WM
keeps a a different parameter file for each workload, which is used by YCSB in order to
generate it. This property file contains the necessary information for YCSB to connect to
the database, as well as some additional (optional) runtime parameters. Below is a list of
the tool’s currently supported parameters:

e hosts — IP address of the machine(s) hosting the target database(s)

e port — Port to be used by YCSB

e recordcount — Number of records to be insert into the database during the loading
phase (default:500000)

e operationcount — Number of operations to be performed during the transaction
phase (default:500000)

e threads — number of YCSB client threads (default:10)

It should be noted that the hosts and port parameters have to be defined to evaluate
the databases, whereas the other parameters have default values which will be used if the
NoSDep user does not specify them.

In order to store the desired configurations in the property files this component exposes a
simple Java API to the main component, which can be used to access and/or change the
values of the parameters.

4.3. YCSB and Logger

The YCSB component is an external component which is used to generate and execute
the workloads. YCSB was introduced in subsection 2.3, and the previous section discussed
the necessary configurations to run it. The Logger component is an addition to YCSB
responsible for logging all operations executed against the evaluated databases.

Apart from the addition of a new workload (workloadL, presented in 3.2.1)there was only
one change to the base YCSB tool: the addition of the Logger module.

The LG module is a simple Java module which was implemented on top of YCSB and is
responsible for logging the following information for each operation being executed against
the database:

28

The timestamp (in nanoseconds) of the operation

e The success status of the operation: either SUCCESS or FAILURE

The key of the record being affected by the operation

The fields associated with the record, if the operation is either an insert or update

To ensure YCSB’s representativeness as a workload generator is not affected, the LG
module does not interfere with the way YCSB generates or its executes the workload.
The only thing it does is log the information related to the execution of each operation
immediately after a response is received from the database.

The timestamps are calculate using Java’s “System.nanoTime()” method. The nanoTime
method returns a “free-running” time in nanoseconds, which is useful for comparison
with other nanoTime values. NanoTime uses the highest resolution clock available on the
platform, and returns values in nanoseconds [32].

4.4. Fault Injector

The fault injector is the component responsible for the injection of the faults.

Table 2 presents the current fault model proposed for the evaluation of NoSQL databases.
The fault model is composed of operator faults, however it could be expanded to include
other types of fault as well.

Table 2: Proposed fault model

CRE Clean Restart Engine

FRE Force Restart Engine

CRO Clean Restart Operating System
FRO Force Restart Operating System
PRM Power Restart Machine

UNC Unplug network cable

DDW Delete Data Working

DDI Delete Data Idle

As can be observed, most of the faults are based on unintentional shutdowns of the NoSQL
engine, Operating System (OS) or machine running the database. The shutdowns of the
engine and OS can be either forced or clean. These faults allow for the evaluation of the
database’s fault tolerance mechanisms responsible for recovering from abrupt termination.

The Unplug Network Cable (UNC) is meant to evaluate how the databases tolerate sudden
Internet shortages.

Lastly, the Delete Data (DD) faults are meant to evaluate if the databases have any
mechanisms (and how well they work) in place to detect and recover from unexpected
removal of the data files on disk, either while working (running the workload) or in an idle
state (after execution of the workload).

Regarding the injection of the faults there are two types of fault: the ones that need human
intervention, and the fully automated ones. Fully automated faults are ones which don’t
require the tool’s user to do anything after the test has started. On the contrary, the ones
requiring human intervention need the user to perform some sort of action during the test
(such as physically restarting the machine or unplugging the network cable).

29

The current version of the tool only supports the Linux OS. However, there are plans to
port the tool to other popular operating systems. As such, the list below provides both
generic and OS-specific (Linux) instructions on how the tool implements the faults.

e CRE — Perform a clean shutdown of the engine — Send SIGTERM signal to the
database process

e CRO — Perform a clean shutdown of the Operating System — Use the command
“shutdown -r 0 7 Which sends a SIGTERM signal to all running processes and is
expected to give them enough time to flush all dirty data to disk before restarting.

e FRE — Perform a forced shutdown of the engine — Send SIGKILL signal to the
database process

e FRO — Perform a forced restart of the Operating System — Use the command
“reboot -f -n” which forces immediate reboot of the system and doesnt not contact
the init sytem

e PRM — Perform a physical restart of the machine running the database — Press the
restart button on the computer at the right time

e UNC — Unplug the network cable from the computer — Unplug the network cable
from the computer at the right time and wait 30 seconds before plugging it back in.

e DDW — Delete data files while working — (Not Yet Implemented (NYT)) Goes to
the folder containing the data files of the database and deletes some of them while
the workload is executing

e DDI — Delete data files while idle — (NYI) Goes to the folder containing the data
files of the database and deletes some of them after the workload executes

During tests with the PRM or UNC faults, the fault injector component doesn’t do any-
thing (as it is the user that physically injects the faults). From the tool’s standpoint, those
tests are almost the same as performing clean runs, with the only difference being that the
tool gives a sound alert 10 seconds before the faults need to be injected (and 10 seconds
before the network cable needs to be plugged back in in the case of the UNC fault).

4.5. SUT

The System Under Test (SUT) consists in a NoSQL database, fully configured to receive
requests of a workload and whose dependability is being evaluated, running on a single
computer or cluster. During our experiments, the NoSQL database is the only software
running on the machine, to provide us with a controled environment.

During the execution of the tests the database starts automatically with the booting of
the OS and stays up until the end of the test (with the only downtime being due to the
injected faults). During this same period, the computer(s) running the database are only
running the database, with no other processes running.

In this work, building this component consisted in formatting a computer and clean in-
stalling an OS, installing three different NoSQL engines in it and configuring each database
to be able to run YCSB’s workload.

30

4.6. Dependability Evaluator

The Dependability Evaluator (DE) is the component responsible for using the measure-
ments available in the log file, which was created by the LG component, to compute the
necessary metrics in order to assess the databases.

The component was implemented in Java and the implementation details regarding the
computation of each metric are presented and explained in the following subsections.

4.6.1. Data Integrity

Not only is the Data Integrity (DI) metric the most important of the three, its measure-
ments are the hardest to collect. The enumeration below presents the procedure to collect
the measurements required to compute this metric.

1. During the workload, the client stores all operations in a safe log, immediately
after confirmation by the server;

2. After the workload, the log is used to build a shadow database which contains all
successful operations confirmed by the SUT database;

3. The shadow and SUT databases are compared, counting the number of:

matching — key-value pairs that are equal in both databases;
outdated — keys in both databases, but with different values;
missing — keys present only in the shadow database;

extraneous — keys present only in the SUT database.

After collecting these measures, the formula (1) presented in subsection 3.2.5 is used to
calculate the DI value.

A few more implementation details are presented below:

e When building the shadow database, the DE component goes through each operation
in the log file, from first to last. It performs the ones marked as success and skips
the ones marked as fail

e The DE component uses the same Java driver used by YCSB to connect to the
databases. However, unlike YCSB which was configured to use synchronous driver-
s/methods in the tests, it uses asynchronous methods to create the shadow database.
This was designed like this for two reasons:

— Performance — Asynchronous methods of data insertion are generally faster
as they don’t block waiting for a response from the database

— Controlled environment — Asynchronous data transfer can be used because
in a controlled environment all operations are expected to succeed

e While comparing the databases, the DE goes through every single record on the
shadow database and searches for its key in the SUT database

e If it finds matching keys, it compares every single field of the records to see if they
all match. Only 100% matches count towards matching records

31

e After comparing the two databases and collecting the necessary measures, the DE
component calculates the DI value for the database using the previously defined
metric

4.6.2. Recovery Time

Subsection 3.2.5 presented the formula to calculate a system’s availability in equation (2a).
It also explained that with the data which can be collected using the proposed methodology
only the Recovery Time (RT) can be calculated.

Figure 7 shows the highlights procedure’s part related to the recovery of the database.

MTTR

Steady state Detection Recovery Keep
time time time time

Figure 7: Mean time to recover

As can be seen in the figure, at some point in time a fault is injected into the system. After
the injection of the fault there is a detection time and a recovery time before the keep
time which represent normal database functioning. The balls filled with green represent
the last correct operation before the injection of the fault and the first correct operations
after recovery of the database.

The process to calculate the database’s RT is pretty simple. The time that goes from
the last confirmed operation before the first failure (first green ball) to the first confirmed
operation after the last failure (second green ball) is equal to the database’s downtime.

With this information, it is possible to observe that (DT) + RT is equal to the difference in
time between the first correct operation after failure and the last correct operation before
failure. As was shown before, the log file contains the timestamp of each operation. Not
only that, the detection time is a fixed and known value in each experiment. As such, the
following formula represents how the RT value is calculated:

RT = Timestamp_first_correct — Timestamp_last_correct — DT (4)

The validity of the formula is dependent on there being only one fault injection point and
problems only occurring inside the MTTR, period. As such, the following steps were taken
to ensure this validity:

e The number of fault injection points is controlled by the tool.

e The tool looks for problems outside of the MTTR during each experiment.

During the experimental campaign performed during this work no problems were found
outside the MTTR. period.

32

4.6.3. Impact on the Throughput

The simplest metric to implement was the Impact on the Throughput (IT). To calculate the
throughput of a database the procedure is as simple as counting the number of operations
performed during a period of time and dividing that number by the time period.

Steady state Detection Recovery Keep
time time time time

Figure 8: Pre- and Post-Fault throughputs

As such, as can be seen with the help of figure 8, calculating the throughput value pre-fault
consists in counting the number of operations between the first confirmed operation and
the last confirmed operations before the injection of the fault. Similarly, the post-fault
throughput consists in calculating the throughput between the first correct operation after
the injection of the fault and the last operation of the workload.

Having these two throughput values, to calculate the I'T metric the tool only has to divide
them.

It should be noted that to calculate the pre-fault throughput only the operations performed
during the transaction phase were considered. The reasoning behind this is that the loading
phase is to be used as a warm-up phase to the database. As such, throughput calculations
only begin at this steady state time. When using the NoSDep tool The loading phase
throughput is still shown to the user, however it is calculated by YCSB, not NoSDep.

33

This page is intentionally left blank.

5. Experimental Campaign

The main purpose of this experimental campaign was the demonstration of both the
methodology which was defined to assess NoSQL databases, and the tool which provides
an automated implementation of the methodology.

This way, during the experimental campaign the developed tool was used to follow the
methodology in order to evaluate three of the most used NoSQL engines on how well they
behave in the presence of faults. Particular focus was given to the attributes: Availability
and Integrity.

In practice, the experimental campaign tried to answer the following research questions:

e What is the impact of the injected faults in the integrity of the data?

e What is the amount of time required by the engine to recover from a failure caused
by the faults?

e What is the impact of the faults on the throughput of the engines?

e How heavily does the type of workload being executed affect the availability and
data integrity of the engines? Does it also affect the engine’s performance?

e How heavily does the injection point of the fault affect its impact?

e What are the differences between faults targeting the Operating System (OS) or the
machine?

5.1. Experimental Setup

As can be seen in figure 9, three machines were used during the experimental campaign.

NoSDep represents a machine running the NoSDep tool, which is responsible for controlling
the execution of the tests. Even though it is running on a dual core machine with 4GB
of RAM, it does not create a bottleneck during the tests, as it is only responsible for
coordinating the other machines and injecting the faults, which is not computationally
intensive.

The YCSB machine is running a single instance of the YCSB client. It is responsible
for emulating the client applications using the system, and also for taking the necessary
measurements. It is running on a dual core machine with 8 GB of RAM

The SUT represents a NoSQL database fully configured to run the workload and whose
dependability is being evaluated. All of the databases were running on a Ubuntu Server
14.04.3 LTS 64bit installation, on a machine with a 3.50GHz Dual-core CPU, 16GB of
RAM, and a solid-state disk (SSD) for the OS and database installations, as well as a 7200
rpm Hard Disk Drive (HDD) to store the data.

The three machines are connected to each other through fast Ethernet.

When selecting which databases to use on the test bed, several criteria was taken into
acount:

35

manages workload Injects faults

YCSB SUT

=] . =
- operations -

\4

feedback

Figure 9: Setup used in the experimental campaign.

Popularity of the database — The popularity of the database was one of the most
important criterion. If a database is not popular, interest in a study evaluating it
will generally be quite low

Existence of a YCSB driver — Even though YCSB is extensible, priority was given
to databases which already have a driver developed. This was done ir order to avoid
having to spend time implmenting a new database driver

Type of the database — As was seen in section 2.1, NoSQL databases can be divided
in four main types. The selected databases are all of different types.

Known trade-offs — The CAP theorem was presented before. When selecting which
databases to use, priority was given to databases favouring different attributes

The databases which were evaluated during the experimental campaign are presented in
Table 3. They all have different types, favour different CAP attributes, and all of them
had YCSB interfaces already available. This diversity adds value to their evaluation.

Regarding configuration, all the databases were configured to run in a single node setup.
Default configurations were used whenever it was possible, and the following dependability-
friendly options were adopted:

¢ In MongoDB, journaling was used with its default sync value of 100ms. The journal
is an append-only file where all operations performed are written, annotating which
were already flushed to disk. In the case of a crash, the journal is used to replay
operations that were not flushed yet

e Cassandra uses a commitlog which was configured with its default periodic mode.
In this mode, the commitlog is fsync’d to disk every sync_period (the default 10000ms
was used). As such, all data since the last fsync can be lost in the case of a crash

36

e In Redis, its Append-only File (AOF) was used with an every second policy (fsync’s
the AOF approx. every 1000ms). The AOF logs every write operation received by
the server, which will be played again at server startup to rebuild the dataset.

Table 3: Details of the evaluated NoSQL databases.

Name MongoDB [1] Cassandra [5] Redis 2]
. v3.2.1. with
Version MMAPv1 storage v2.2.4 v3.0.5
Type Doc. Oriented Column Based Key-Value
CAP CP AP/CP CPp
YCSB mongo-java-driver cassandra-driver-core -
driver v3.0.3 v2.1.8 Jedis v2.0.0
Journaling with Periodic AOF enabled
Fault . .
tolerance 100ms commit commitlog sync everysec (1000ms)
Interval 10000ms period configuration

5.2. Experimental procedure

The assessment procedure is composed by several test slots, as depicted in Fig. 6. A test
slot is a measurement interval during which a workload is executed in a database and one
fault is injected.

3 different instants were defined to inject the fault: 25%, 50% and 75% of the workload
duration. This allows us to study the different impacts on the data integrity and the time
necessary to recover. The time corresponding to each of these instants was calculated
earlier, using profiling runs.

In the case of faults targeting the engine, there is a fixed detection period of 30s, cor-
responding to an approximation of the time necessary for the OS to restart. Thus, it is
enough time for the OS to stabilize after the engine shutdowns. For faults targeting the
OS, since the engines are always started with the OS, the detection time was considered
0s. The detection time was always subtracted from the analysis of the recovery time, thus,
it was left out of the analysis.

The total number of test slots corresponds to: w*f*n*p+*5, where w is the number of
different workloads used, f is to the number of faults, n is the number of databases
evaluated and p is the number of injection instants. Each test slot was repeated 5 times,
for statistical reasons.

This way, the experimental campaign consisted of a total of 810 test slots: 3 work-
loads*6 faults*3 databases*3 instants*5 repetitions.

5.3. Results

This section provides an overview of the results. The full results from the experimental
campaign can be checked at: https://eden.dei.uc.pt/~1fav/nosdep/

Table 4 presents an overview of the results obtained during the campaign for all the faults
excluding the Unplug Network Cable (UNC). The results for the injection instants and
repetitions were aggregated, so each of the presented rows corresponds to a sum or an
average of 15 independent test slots.

37

https://eden.dei.uc.pt/~lfav/nosdep/

Table 4: Overview of the results obtained during the experimental campaign.

‘W _Fault Engine #Issues #Recs matching outdated missing extra. Total Time RT TP-Pre TP-Post
MongoDB 1 (of 15) 500000 499999.93 0.07 00:14:57 0.46 937.04 901.85
A_CRE Cassandra 4 (of 15) 500000 499999.73 0.27 00:17:31 33.15 903.33 859.68
Redis 1 (of 15) 500000 499999.93 0.07 00:12:26 5.19 1,353.31 1,356.26
MongoDB 13 (of 15) 500000 499983.60 16.40 00:15:26 24.75 949.46 880.35
AFRE Cassandra 15 (of 15) 500000 498912.13 1087.87 00:17:34 33.43 901.02 856.94
Redis 2 (of 15) 500000 499999.87 0.13 00:12:17 4.39 1,361.19 1,370.50
MongoDB 0 (of 15) 500000 500000.00 00:17:30 31.42 908.80 901.85
A_CRO Cassandra 1 (of 15) 500000 499999.93 0.07 00:18:09 46.22 896.85 791.00
Redis 0 (of 15) ~ 500000 500000.00 00:13:13 33.92 1,341.61 1,408.51
MongoDB 15 (of 15) 500000 499978.73 21.27 00:18:34 109.47 920.98 582.23
A_FRO Cassandra 15 (of 15) 500000 499001.60 998.40 00:18:19 41.33 894.26 789.67
Redis 15 (of 15) 500000 499844.87 155.13 00:12:58 30.58 1,363.80 1,437.41
MongoDB 15 (of 15) 500000 499984.67 15.33 00:20:09 188.14 937.09 552.70
A_PRM Cassandra 15 (of 15) 500000 498745.07 1254.93 00:18:00 43.82 904.48 801.34
Redis 15 (of 15) 500000 499841.40 158.60 00:13:04 31.53 1,351.32 1,419.92
MongoDB 0 (of 15) 1000000 999998.00 00:11:11 0.56 1,533.71 1,541.01
L_CRE Cassandra 12 (of 15) 1000000 981018.93 0.80 00:16:09 33.15 1,101.20 1,074.39
Redis 7 (of 15) 1000000 929495.93 0.47 00:13:03 6.59 1,228.62 1,243.19
MongoDB 14 (of 15) 1000000 999913.00 85.00 00:11:33 28.07 1,542.61 1,595.73
LFRE Cassandra 15 (of 15) 1000000 975838.27 4616.27 00:16:15 33.43 1,093.34 1,069.23
Redis 6 (of 15) 1000000 930181.93 0.40 00:12:48 6.40 1,254.77 1,270.36
MongoDB 0 (of 15) 1000000 999998.87 00:10:57 28.43 1,544.02 1,541.01
L_CRO Cassandra 10 (of 15) 1000000 987223.40 0.67 00:15:47 48.34 1,104.53 1,129.38
Redis 6 (of 15) 1000000 991955.53 0.40 00:13:25 34.06 1,183.13 1,324.25
MongoDB 15 (of 15) 1000000 999899.00 99.47 00:11:27 57.06 1,538.07 1,651.01
L_FRO Cassandra 15 (of 15) 1000000 994758.13 2008.60 00:15:49 41.97 1,103.76 1,127.80
Redis 15 (of 15) 1000000 994345.67 659.87 00:13:25 31.37 1,259.93 1,323.61
MongoDB 15 (of 15) 1000000 999936.27 62.13 00:11:41 57.83 1507.52 1604.25
L_PRM Cassandra 15 (of 15) 1000000 993448.47 5105.67 00:15:49 42.53 1104.50 1133.75
Redis 15 (of 15) 1000000 996127.20 659.07 00:13:41 33.21 1,242.41 1,287.85
MongoDB 0 (of 15) 500000 500000.00 00:19:39 3.68 942.59 898.59
FCRE Cassandra 2 (of 15) 500000 499999.87 00:22:27 33.13 868.24 822.36
Redis 1 (of 15) 500000 499999.93 0.07 00:14:51 472 1,476.95 1,481.69
MongoDB 15 (of 15) 500000 499987.33 12.67 00:20:02 25.61 952.65 872.72
FFRE Cassandra 15 (of 15) 500000 499271.07 728.93 00:22:32 33.45 868.06 819.11
Redis 0 (of 15) 500000 500000.00 00:14:44 4.76 1,483.23 1,488.84
MongoDB 0 (of 15) 500000 500000 00:21:28 30.07 932.86 668.27
F_CRO Cassandra 2 (of 15) 500000 499999.87 0.13 00:22:50 44.63 868.39 776.79
Redis 1 (of 15) 500000 499999.93 0.07 00:15:27 32.19 1,478.01 1,527.64
MongoDB 14 (of 15) 500000 499987.80 12.20 00:23:16 125.53 942.19 652.91
F_FRO Cassandra 15 (of 15) 500000 499492.93 507.07 00:23:28 42.78 868.62 776.08
Redis 15 (of 15) 500000 499842.40 157.60 00:15:31 29.83 1473.22 1,521.25
MongoDB 15 (of 15) 500000 499988.53 11.47 00:23:15 139.492 947.95 675.75
F_PRM Cassandra 15 (of 15) 500000 499313.13 686.87 00:23:04 40.91 878.96 792.47
Redis 15 (of 15) 500000 499911.20 11.47 00:15:42 30.40 1,472.71 1,469.70

To properly read the table the following information should taken into account:

The first two columns show the workload executed, the fault injected, and the
database being evaluated

The #issues column indicates how many tests slots (out of the 15) had data integrity
problems

The #Recs column indicates the number of records which were introduced into the
database

The matching, outdated, missing, and extra. (extraneous) represent the average
counting for each of these measures which were previously introduced in 4.6.1

“Total Time” presents the average time necessary to run both the load and trans-
action phases, while RT presents the average time to recover

Lastly, TP-pre and TP-post present the throughput value before and after the in-
jection of the fault

Observing these results, the first relevant point is that a large number of issues related

38

to data integrity were identified during the experiments. In fact, from the total of 675
test slots executed, 377 led to at least one problem of data integrity, which corresponds to
more than half of the cases (=~ 55.85%).

As expected, the number of problems is much smaller in the “clean” faults than in the
“forced” ones. Nevertheless, all of the engines had at least one outdated or missing issue,
even during a clean restart of the engine (CRE). In some cases, Cassandra and Redis
also finished the process with one extra record that was never confirmed to the client
(extraneous).

All of the experiments with the FRM fault, 135 in total, resulted in data integrity issues
and in longer times to recover. The experiments with the FRO fault had similar results,
with 134 out of 135 also having data integrity issues (only MongoDB was able to avoid
losing data in one of the test slots).

These numbers demonstrate that NoSQL databases are not prepared to tolerate this kind
of problems. One of the reasons is that “by design” the database’s developers trade
guarantees of data integrity for higher performance and scalability.

In the experiments with workloadA, no cases of missing or extraneous records were ob-
served. Likewise, in the experiments with workloadL no cases of outdated information
were observed. Although workloadA has no inserts in the transaction phase and work-
loadL has no updates, this was verified to check for any possibility of unexpected problems
with the data.

The experiments with workloadF had similar results to the ones using workloadA, the
only difference being that on average experiments using workloadF resulted in a lower
number of integrity issues. This is due to the fact that while the two workloads have
similar operations, both consisting of reads and inserts, workloadF has a lower number of
updates.

The results related to the UNC fault can be seen in table 5. The reason for presenting
these results in a separate table is that the UNC fault never caused a failed operation on
both MongoDB and Cassandra. Without failed operations it is not possible to calculate
the Impact on the Throughput (IT) metric, as such, while analysing the data for this fault,
a different approach was used to measure the impact of the faults on the throughput:

e While analysing the log file, the timestamps of the operations corresponding to 25%,
50% and 75% of the transaction phase were stored.

e Using these timestamps, alongside the already calculated first and last operations,
it was possible to calculate four different throughputs:

0 to 25 % of the transaction phase
25 to 50 % of the transaction phase
— 50 to 75 % of the transaction phase
75 to 100 % of the transaction phase

Looking at the throughputs in table 5, it is possible to find a correlation between the
time period with the lowest throughput and the instant that the fault was injected. For
example, looking at the first test slot, where the fault was injected at 25% of the workload,
the time period with the lowest throughput was from 25 to 50%.

The most relevant finding regarding this fault type is that, while this fault had one of
the lowest amounts of data integrity issues out of all the faults, in the experiments with

39

Redis and workloadL there was always an extraneous record. It is not clear whether this
problem is caused by the client not waiting for an answer or the engine not verifying if
the client received its response.

The reason for the Recovery Time (RT) not being present in table 5 is that since the
Unplug Network Cable (UNC) fault never led to a system failure, the RT value during
these tests was always 0.

The UNC fault had data integrity issues in 26 out of 135 test slots (= 19.26%). Moreover,
the average number of wrong records (i.e. either outdated, missing, or extraneous) in
every test slot using this fault never surpassed 1.

Table 5: Overview of the UNC fault’s results obtained during the experimental campaign.

‘W_Fault Engine Inj. Point #Issues #Recs matching outdated missing extra. TP 025 TP 25-50 TP 50-75 TP 75-100

25% 0 (of 5) 500000 500000 985.85 672.17 875.65 900.85

MongoDB 50% 1 (of 5) 500000 1000000.00 0.20 993.13 888.67 711.40 863.80

75% 0 (of 5) 500000 499999.93 1000.93 877.61 866.68 746.61

25% 0 (of 5) 500000 1000000 1135.59 751.21 1093.92 1097.52

A_UNC Cassandra 50% 1 (of 5) 500000 1000000.00 0.20 1135.52 1091.15 749.46 1090.51
5% 1 (of 5) 500000 499999.93 0.20 1134.54 1085.17 749.46 1090.51

25% 2 (of 5) 500000 1000000 0.40 1057.31 1218.71 1139.40 1374.39

Redis 50% 2 (of 5) 500000 1000000.00 0.40 1367.57 1218.71 1139.40 1374.39

5% 1 (of 5) 500000 499999.93 0.20 1358.52 1365.81 979.64 1368.95

25% 0 (of 5) 500000 1000000 669.16 518.47 603.87 602.81

MongoDB 50% 0 (of 5) 500000 1000000.00 683.68 605.29 484.70 613.01

75% 0 (of 5) 500000 499999.93 647.40 617.16 607.62 496.45

25% 0 (of 5) 500000 1000000 599.62 465.76 578.31 563.39

F_UNC Cassandra 50% 0 (of 5) 500000 1000000.00 599.13 581.47 467.30 564.43
75% 0 (of 5) 500000 499999.93 602.24 579.14 580.24 456.33

25% 0 (of 5) 500000 1000000 1018.86 788.42 1020.36 1024.45

Redis 50% 2 (of 5) 500000 1000000.00 0.40 1014.04 1018.22 785.19 1018.55

5% 1 (of 5) 500000 499999.93 0.20 1028.70 1039.90 1030.94 789.28

25% 0 (of 5) 1000000 1000000 1052.97 1429.27 1541.69 1542.11

MongoDB 50% 0 (of 5) 1000000 1000000 1538.24 1184.99 1309.87 1543.37

75% 0 (of 5) 1000000 1000000 1533.77 1540.38 936.95 1538.37

25% 0 (of 5) 1000000 1000000 1135.59 751.21 1093.92 1097.52

L_.UNC Cassandra 50% 0 (of 5) 1000000 1000000 1135.52 1091.15 749.46 1090.51
75% 0 (of 5) 1000000 1000000 1134.54 1085.17 1091.52 834.20

25% 5 (of 5) 1000000 999991.00 0.40 1131.66 1079.62 1293.23 1310.94

Redis 50% 5 (of 5) 1000000 999990.00 0.40 1283.06 1307.70 947.12 1320.67

5% 5 (of 5) 1000000 999990.80 0.20 1264.92 1294.19 1290.55 941.71

5.4. Discussion

Considering the large number of data integrity issues observed, it was imperative to per-
form a more detailed analysis of the data. No influence of the injection instant (25%, 50%,
or 75% of the workload) was detected in the results for data integrity.

Considering the Data Integrity (DI) metric presented in 4.6.1, the summary of the results
is presented in Fig. 10. Each set of three columns represent the results achieved by the
databases in one workload and one fault type (again, each column corresponds to the
average of 15 measurements). As we can observe, the results obtained are in general, very
close to 1, which means that the issues are related to small chunks of data. Still, only
in 6 cases did the databases achieve perfect integrity (5 times with MongoDB and 1 with
Redis).

The results are fairly worse in “forced” faults, for all of the three databases. This is
justified by the fact that the database does not have the chance to flush the dirty memory
pages to the disk, losing data that represents operations that were already confirmed to
the client.

The results show that during these experiments, and in terms of DI, Cassandra achieved
the worst results for all of the fault types. In one configuration (L FRE), it averaged
only (= 0.995%) data integrity. This means that almost 0.5% of the data was either lost

40

or missing updates. Cassandra uses a commit log, that by default is configured for a
“periodic sync” of 10sec. This means that up to 10 seconds of operations can be lost. The
reasoning behind this is that lower values for the periodic sync may hurt the performance.
Cassandra also relies on replication, to mitigate this while keeping good performances.

MongoDB and Redis perform very similarly, except for the “forced” faults. In the case of
FRE, Redis performs slightly better, while in the case of FRO, it presents worse results,
losing more data. MongoDB relies on journaling while Redis relies on a AOF, which in
essence have the same objectives of the commit log. From the results, it is possible to
understand that Redis is more vulnerable to failures of the OS than MongoDB. In this
case, it is not clear which is the best database, as it depends on the faults that the target
system will be exposed to.

DI =
&
a
o
§
J o BN < o
° =3 o 8 o - 3 2
- =) ‘@ o S B =) o0
o o (<)) (<)) (=} [=2]) (<)) (<))
a o [} (<)) (=} (<)) (<)) ~ (<))
(=} o (<)) (<)) (=} (=2 (<)) < (<))
© © B o © O o o
S — =) o — B o B3 S
S o 0
=Y
o a)
o - (=]
] i S <
© & by
3 o S
° L_CRE L_FRE L_CRO L_FRO L_PRM
—
Iy
()]
o
&
b o 8T N =} o n o0
o il ~ =l ‘o ~ =)
- o) © S [E-) L ©
[N [<2] (=)} (<] (=] (<) (<)) (<))
& o B-) =) s & o ifY =)
[S) o 8- o =3 o o B o) [
o N S I S K Y ©) I8
§ <) © o BN - =] o BB S B
; N
S P @ ~
" o i &
e o o 3
e o
g
° A_CRE A_FRE A_CRO A_FRO A_PRM
-
&
()]
o
o]
(=2
o o BB N o M © -
S <J o < S)) ~
- S B ~ s o ~ B ~
5 o B o R S) o B o I
) © Bl o Y S -} o I3 o Rt
S) =3 & [<t =3 O o EN-) o B
© S B) I © bl % o B3
S — =] o B — B8 o B o B
S) (=} g
(o2}
o
o
3
° F_CRE F_FRE F_CRO F_FRO F_PRM
H MongoDB Cassandra ™ Redis

Figure 10: Data Integrity (DI) values for each Workload _FaultType.

The Recovery Time (RT) influences the availability of the system as explained in Sec-
tion 3.2.4. It is measured by computing the difference between: the instant of the first
successful operation after the fault, and the last successful operation before the fault. As
mentioned in section 3.2.4 the detection time was left out of the analysis. Table 6 presents

41

the summary of the results for the recovery time of each database. As we can observe,
faults affecting the OS have a much higher impact on the time to recover, as expected
since the times measured also include the time necessary to boot the OS.

It is interesting to notice that after a clean shutdown of the database, MongoDB is ex-
tremely fast to recover. However, after a forced engine or OS shutdown, it takes much
longer. This shows that in the cases of clean shutdowns, it is able to store all the informa-
tion in the disk, in a ready to use format. The results for A_FRO differ from those of the
other faults. This workload, together with the force restart, stress the fact that MongoDB
is not optimized for reads and updates.

Redis recovers slightly faster than the other engines in the cases of the “forced faults”.
In the case of “clean” faults, the engine takes some time to shutdown, which influences
the results. To recover, Redis always needs to load everything from the AOF. For the
experiments with workloadL: (prefixed with “L), it is possible to observe that the time
to recover consistently increases as the instant of the fault injection advances. Redis works
in-memory, and it is reconstructing the database from its AOF on start. Thus, as there
are more records in the database, it takes more time. This would grow even further if
workloads with more elements were used. This does not happen with workloadA, because
the transaction phase consists only of reads and updates, so no further data is added.

Although Cassandra takes a long to time to recover, it also displayed the most constant
times with a very low standard deviation in engine faults.

In general, Redis took the lowest amount of time to recover and Cassandra took the
longest. It should be noted though, that unlike in MongoDB and Cassandra, Redis showed
a correlation between injection time and time to recover, as such, if we were using a much
larger dataset, we believe that Redis would have taken longer to recover whereas the other
databases would probably display similar times.

Fig. 11 presents the summary of the results for the impact of the faults in the through-
put. Before looking at the results, one might assume that the throughput presents some
degradation, mainly in machine restarts.

d o -—5% 50% EE75% —equal

)
o

1,4

1,0

I

N

O
&

&

i t
&

&
& &
RS

=

o
&
&
7

o
&
O

&

@ ©
S 0@6
&

K
&<
)

Figure 11: Impact on the throughput (IT): ratio between the throughput before and after
the fault injection for each workload, fault, and engine.

As we can observe, two configurations clearly stand out from the remaining: A_CRO
MongoDB and A_FRO MongoDB. In these cases, the throughput becomes much worse after the
injection of the fault. They have the particularity of being executed with MongoDB and
the faults injected being the ones with the worst impact in that database. Furthermore,
the workload used is also the one in which MongoDB is not optimized for, thus explaining
such a degradation in performance.

42

Table 6: Summary of the results for the recovery time.

Workload Fault Fault Inj. instant MongoDB Cassandra Redis

25% 0.54 33.15 5.37
L_CRE 50% 0.59 33.15 6.73
75% 0.54 33.15 7.67
25% 26.97 33.42 5.29
L_FRE 50% 28.64 33.42 6.44
75% 28.59 33.44 7.48
25% 29.60 46.20 33.24
L_CRO 50% 28.10 49.20 34.36
5% 27.58 49.92 34.59
25% 57.82 41.14 29.99
L_FRO 50% 54.64 42.71 31.10
75% 58.73 42.05 33.00
25% 55.02 44.75 31.44
L_PRM 50% 58.13 38.72 33.05
5% 60.36 44.11 35.13
25% 0.54 33.14 5.06
A_CRE 50% 0.54 33.14 5.48
5% 0.31 33.17 5.03
25% 18.03 33.43 4.15
A_FRE 50% 18.87 33.43 4.34
75% 37.35 33.43 4.66
25% 30.68 43.01 33.52
A_CRO 50% 31.79 46.22 33.95
75% 37.79 49.42 34.29
25% 124.95 38.91 30.21
A_FRO 50% 87.24 41.33 30.48
5% 116.23 43.76 31.04
25% 169.14 43.76 33.87
A_PRM 50% 191.49 41.44 29.91
75% 203.80 46.26 30.81
25% 0.54 33.13 4.26
F_CRE 50% 9.95 33.13 4.82
75% 0.54 33.13 5.08
25% 20.75 33.45 4.32
F_FRE 50% 22.40 33.44 4.86
5% 33.67 33.46 5.09
25% 30.20 41.41 30.88
F_CRO 50% 30.50 46.25 33.48
75% 29.50 46.23 32.21
25% 108.63 42.15 29.34
F_FRO 50% 140.59 42.99 30.07
75% 127.37 43.20 30.10
25% 151.55 39.75 29.88
F_PRM 50% 131.50 40.60 30.20
5% 136.72 42.39 31.11

Finally, Redis never presents a worse throughput than before the fault. This is due to
the AOF based mechanisms of recovery of Redis. This mechanism allows restoring the
database without degradation and also has a “warm-up” effect (i.e. the data loaded during
the recovery process makes an exploration of the spatial and temporal localities possible).
Finally, No patterns regarding the relation between the injection instant and the impact
on the throughput were observable.

43

5.5.

Threats to the Validity of the Experiment

There are some threats to the validity of the experimental campaign that must be dis-
cussed:

T1

T2

T3

Size of the workload — developed to handle big data, 1 Million operations may be
too small to be a representative workload. However, we believe that the size of the
workload has limited impact on most of the observations made in this experiment.

Single node deployment — although NoSQL databases were designed for horizon-
tal scaling, these experiments with a single node provided insight on the behaviour
of the databases and served to validate the methodology. Furthermore, many orga-
nizations use single node deployments of these databases.

Representativeness of the fault model — due to the time required for the exper-
iments, it was not possible to cover a very large range of faults. However, operator
faults are still very important in the context of data management, and the experi-
ments showed that they can lead to dangerous failures.

44

6. Conclusions and Future Work

This work proposes a methodology based on fault injection to assess and compare NoSQL
databases in terms of dependability attributes, with particular focus on availability and
data integrity. A tool, named NoSDep was developed to implement the methodology
and ease its use.

The tool and the methodology were applied in an experimental campaign that evaluated 3
leading NoSQL database solutions according to their dependability attributes. The results
showed the applicability of the methodology and also confirmed the usefulness of such a
tool.

From the point of view of NoSQL databases, the results clearly showed that the
benefits of NoSQL databases do not come without an associated cost. In fact, the
evaluated databases are very limited in guaranteeing the integrity of the data. During the
experiments, more than half of the tests executed resulted in a state that was inconsistent
with what was confirmed to the client. Additionally, the recovery times were in many
cases quite significant, particularly in faults based on forced restarts. Finally, the
results show the importance of the users carefully selecting the database that better fits
the objectives of their systems.

Future work includes expanding the fault model and performing new experimental cam-
paigns with larger (distributed) setups and larger workloads. It is the author’s belief that
after these tasks are performed, this work can give way to the proposal of dependabil-
ity benchmarks for NoSQL databases. Such benchmarks will allow the comparison,
in a standard way, of different systems and configurations according to dependability at-
tributes. They will also allow the analysis of the trade-offs between performance and
dependability.

45

[21]

References

Mongodb. URL https://www.mongodb.org/. Accessed: 2016-08-31.

Redis. URL http://redis.io/. Accessed: 2016-08-31.

Accumulo. URL https://accumulo.apache.org/. Accessed: 2016-08-31.
Aecrospike. URL http://www.aerospike.com/. Accessed: 2016-08-31.

Apache cassandra, . URL http://cassandra.apache.org/. Accessed: 2016-08-31.

Facebook’s instagram: Making the switch to cassandra from redis, a 75%

“insta” savings, . URL http://planetcassandra.org/blog/interview/
facebooks-instagram-making-the-switch-to-cassandra-from-redis-a-75-insta-savings/.
Accessed: 2016-08-31.

Couchbase, . URL http://www.couchbase.com/. Accessed: 2016-08-31.
Couchdb, . URL http://couchdb.apache.org/. Accessed: 2016-08-31.

DB-Engines Ranking - popularity ranking of database management systems. URL
http://db-engines.com/en/ranking.

Dynamodb. URL https://aws.amazon.com/dynamodb. Accessed: 2016-08-31.
Hbase. URL https://hbase.apache.org/. Accessed: 2016-08-31.
Memcached. URL http://www.memcached.org/. Accessed: 2016-08-31.

An elastic metadata store for ebay’s media platform. URL https:
//www.mongodb.com/presentations/elastic-metadata-store-ebay%E2%80%
99s-media-platform?c=574£f6104b6. Accessed: 2016-08-31.

Neodj, . URL https://neodj.com/. Accessed: 2016-08-31.
7 use cases of neodj, . URL https://neo4j.com/use-cases/. Accessed: 2016-08-31.
Orientdb. URL http://orientdb.com/orientdb/. Accessed: 2016-08-31.

8 surprising facts about real dockeradoption. URL https://www.datadoghq.com/
docker-adoption/. Accessed: 2016-08-31.

Riak kv. URL http://basho.com/products/riak-kv/. Accessed: 2016-08-31.
Titan. URL http://titan.thinkaurelius.com/. Accessed: 2016-08-31.

Veronika, Abramova and Jorge Bernardino. Nosql databases: Mongodb vs cassandra.
In Proceedings of the International C* Conference on Computer Science and Software
Engineering, C3S2E ’13, pages 14-22, New York, NY, USA, 2013. ACM. ISBN 978-
1-4503-1976-8. doi: 10.1145/2494444.2494447. URL http://doi.acm.org/10.1145/
2494444 .2494447.

Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Fundamental concepts of
dependability. University of Newcastle upon Tyne, Computing Science, 2001.

46

https://www.mongodb.org/
http://redis.io/
https://accumulo.apache.org/
http://www.aerospike.com/
http://cassandra.apache.org/
http://planetcassandra.org/blog/interview/facebooks-instagram-making-the-switch-to-cassandra-from-redis-a-75-insta-savings/
http://planetcassandra.org/blog/interview/facebooks-instagram-making-the-switch-to-cassandra-from-redis-a-75-insta-savings/
http://www.couchbase.com/
http://couchdb.apache.org/
http://db-engines.com/en/ranking
https://aws.amazon.com/dynamodb
https://hbase.apache.org/
http://www.memcached.org/
https://www.mongodb.com/presentations/elastic-metadata-store-ebay%E2%80%99s-media-platform?c=574f6104b6
https://www.mongodb.com/presentations/elastic-metadata-store-ebay%E2%80%99s-media-platform?c=574f6104b6
https://www.mongodb.com/presentations/elastic-metadata-store-ebay%E2%80%99s-media-platform?c=574f6104b6
https://neo4j.com/
https://neo4j.com/use-cases/
http://orientdb.com/orientdb/
https://www.datadoghq.com/docker-adoption/
https://www.datadoghq.com/docker-adoption/
http://basho.com/products/riak-kv/
http://titan.thinkaurelius.com/
http://doi.acm.org/10.1145/2494444.2494447
http://doi.acm.org/10.1145/2494444.2494447

[22]

[23]

[24]

[25]

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic
concepts and taxonomy of dependable and secure computing. IEEE Transactions on
Dependable and Secure Computing, 1(1):11-33, 2004.

E. Brewer. CAP twelve years later: How the "rules” have changed. Computer, 45(2):
23-29, February 2012. ISSN 0018-9162.

Eric A Brewer. Towards robust distributed systems. In PODC, volume 7, 2000.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
distributed storage system for structured data. ACM Trans. Comput. Syst., 26(2):
4:1-4:26, June 2008. ISSN 0734-2071. doi: 10.1145/1365815.1365816.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC 10, pages 143-154, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0036-0. doi: 10.1145/1807128.1807152. URL
http://doi.acm.org/10.1145/1807128.1807152.

DataStax. Big data challenges. URL http://www.datastax.com/
big-data-challenges.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: Amazon’s highly available key-value store. SIGOPS Oper.
Syst. Rev., 41(6):205-220, October 2007. ISSN 0163-5980. doi: 10.1145/1323293.
1294281.

Theo Haerder and Andreas Reuter. Principles of transaction-oriented database re-
covery. ACM Comput. Surv., 15(4):287-317, December 1983. ISSN 0360-0300. doi:
10.1145/289.291.

Coda Hale. You can’t sacrifice partition tolerance. URL http://codahale.com/
you-cant-sacrifice-partition-tolerance/.

R. Hecht and S. Jablonski. NoSQL evaluation: A use case oriented survey. In 2011
International Conference on Cloud and Service Computing (CSC), pages 336-341,
December 2011. doi: 10.1109/CSC.2011.6138544.

David Holmes. Inside the hotspot vm: Clocks, timers and scheduling events -
part i - windows. URL https://blogs.oracle.com/dholmes/entry/inside_the_
hotspot_vm_clocks.

Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. Fault injection tech-
niques and tools. Computer, 30(4):75-82, 1997. ISSN 0018-9162. doi: 10.1109/2.
585157.

Karama Kanoun and Lisa Spainhower. Dependability Benchmarking for Computer
Systems. John Wiley & Sons, October 2008. ISBN 978-0-470-37083-4.

Martin Kleppmann. Please stop calling databases cp or ap. URL https://martin.
kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or—-ap.html.

N. Leavitt. Will NoSQL Databases Live Up to Their Promise? Computer, 43(2):
12-14, February 2010. ISSN 0018-9162.

47

http://doi.acm.org/10.1145/1807128.1807152
http://www.datastax.com/big-data-challenges
http://www.datastax.com/big-data-challenges
http://codahale.com/you-cant-sacrifice-partition-tolerance/
http://codahale.com/you-cant-sacrifice-partition-tolerance/
https://blogs.oracle.com/dholmes/entry/inside_the_hotspot_vm_clocks
https://blogs.oracle.com/dholmes/entry/inside_the_hotspot_vm_clocks
https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html
https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html

[37]

[38]

[39]

[40]

[41]

Joao R. Lourenco, Bruno Cabral, Paulo Carreiro, Marco Vieira, and Jorge
Bernardino. Choosing the right NoSQL database for the job: a quality attribute
evaluation. Journal Of Big Data, 2(1):18, August 2015. ISSN 2196-1115.

D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do Internet services fail, and
what can be done about it? In 4th USENIX Symp. on Internet Technologies and
Systems (USITS’03), Seattle WA, USA, 2003.

Stephen Pimentel. The rise of the multimodel database.
URL http://www.infoworld.com/article/2861579/database/
the-rise-of-the-multimodel-database.html.

Dan Pritchett. Base: An acid alternative. Queue, 6(3):48-55, May 2008. ISSN
1542-7730. doi: 10.1145/1394127.1394128.

Tilmann Rabl, Sergio Gémez-Villamor, Mohammad Sadoghi, Victor Muntés-Mulero,
Hans-Arno Jacobsen, and Serge Mankovskii. Solving big data challenges for enterprise
application performance management. Proc. VLDB Endow., 5(12):1724-1735, 2012.
ISSN 2150-8097. doi: 10.14778/2367502.2367512.

Pramod J. Sadalage and Martin Fowler. NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence. Addison-Wesley Professional, 1st edition,
2012. ISBN 0321826620, 9780321826626.

Guthemberg Silvestre, Carla Sauvanaud, Mohamed Kaaniche, and Karama Kanoun.
An anomaly detection approach for scale-out storage systems. In 26th International
Symposium on Computer Architecture and High Performance Computing, Paris,
France, 2014.

B.G. Tudorica and C. Bucur. A comparison between several NoSQL databases with
comments and notes. In Roedunet International Conference (RoEduNet), 2011 10th,
pages 1-5, June 2011. doi: 10.1109/RoEduNet.2011.5993686.

L. Ventura and N. Antunes. Experimental Assessment of NoSQL engines Dependabil-
ity. In 12th Furopean Dependable Computing Conference (EDCC 2016), Gothenburg,
Sweden, 2016.

M. Vieira, N. Laranjeiro, and H. Madeira. Assessing robustness of web-services in-
frastructures. In 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’07), pages 131-136, June 2007.

Marco Vieira and Henrique Madeira. A Dependability Benchmark for OLTP Applica-
tion Environments. In Proceedings of the 29th International Conference on Very Large
Data Bases (VLDB’03), pages 742-753, Berlin, Germany, 2003. VLDB Endowment.
ISBN 0-12-722442-4.

48

http://www.infoworld.com/article/2861579/database/the-rise-of-the-multimodel-database.html
http://www.infoworld.com/article/2861579/database/the-rise-of-the-multimodel-database.html

	Introduction
	Contributions
	Thesis Structure

	Background and related work
	NoSQL
	Purpose and importance
	Trade offs
	NoSQL databases usage

	Performance Evaluation of NoSQL databases
	YCSB
	Dependability
	Attributes
	Threats
	Means

	Dependability assessment
	Dependability Assessment of NoSQL databases

	Research Objectives and Approach
	Research Objectives
	Approach
	Workload
	Fault Injection
	Experimentation
	Measures
	Metrics

	NoSDep - A Dependability Assessment Tool for NoSQL
	NoSDep
	Workload Manager
	YCSB and Logger
	Fault Injector
	SUT
	Dependability Evaluator
	Data Integrity
	Recovery Time
	Impact on the Throughput

	Experimental Campaign
	Experimental Setup
	Experimental procedure
	Results
	Discussion
	Threats to the Validity of the Experiment

	Conclusions and Future Work

