
University of Coimbra

Dissertation

Classification of Social Media Posts
according to their Relevance

Author:

Alexandre Pinto

Advisors:

Prof. Dr. Hugo Gonçalo Oliveira

Prof. Dr. Ana Oliveira Alves

Thesis submitted in partial fulfillment of the requirements

for the degree of Master in Informatics Engineering

Faculty of Sciences and Technology

Department of Informatics Engineering

September, 2016

University of Coimbra

Dissertation

Classification of Social Media Posts
according to their Relevance

Author:

Alexandre Pinto

Advisors:

Prof. Dr. Hugo Gonçalo Oliveira

Prof. Dr. Ana Oliveira Alves

Jury:

Prof. Dr. Bernardete Ribeiro

Prof. Dr. Bruno Cabral

Thesis submitted in partial fulfillment of the requirements

for the degree of Master in Informatics Engineering

Faculty of Sciences and Technology

Department of Informatics Engineering

September, 2016

To Rui, Ana and Adolfo.

Acknowledgements

I would like to thank my advisers, Prof. Hugo Gonçalo Oliveira and Prof. Ana Oliveira

Alves for all their guidance, support and helpful advice. I would also like to thank the

rest of the research team that was part of this project for their contributions.

I am grateful to my family, friends and anybody who somehow contributed and helped

me get where I am now.

ii

Abstract

Given the overwhelming quantity of messages posted in social networks, in order to to

make their utilization more productive, it is imperative to filter out irrelevant informa-

tion. This work is focused on the automatic classification of public social data according

to its potential relevance to a general audience, according to journalistic criteria. This

means filtering out information that is private, personal, not important or simply irrel-

evant to the public, improving the the overall quality of the social media information.

A range of natural language processing toolkits was first assessed while performing a

set of standard tasks in popular datasets that cover newspaper and social network text.

After that, different learning models were tested, using linguistic features extracted by

some of the previous toolkits. The prediction of journalistic criteria, key in the assess-

ment of relevance, was also explored, using the same features. A new classifier uses

the journalist predictions, made by an ensemble of linguistic classifiers, as features to

detect relevance. The obtained model achieved a F1 score of 0.82 with an area under

the curve(AUC) equal to 0.78.

Keywords: Relevance Assessment, Social Mining, Information Extraction, Natural

Language Processing, Automatic Text Classification

Resumo

Dada a grande quantidade de dados publicada em redes sociais, é imperativo filtrar

informação irrelevante. Este trabalho foca-se na detecção automática de dados sociais

públicos de acordo com a sua relevância para a audiência em geral. Isto significa filtrar

informação que é privada, pessoal, não importante, ou simplesmente irrelevante para o

público, melhorando assim a qualidade da informação.

Um conjunto de ferramentas de linguagem em processamento natural é testado em uma

série de tarefas padrão com um conjunto de dados que cobrem conteúdo jornaĺıstico e

texto social. Para além disso, diferentes modelos de aprendizagem são testados, usando

caracteŕısticas lingúısticas extráıdas através de tarefas de processamento de linguagem

natural, bem como critérios jornaĺısticos. O sistema final usa as previsões jornaĺısticas,

realizadas por um conjunto de classificadores lingúısticos, como atributos para detectar

relevância. O modelo obtido alcançou um valor de F1 de 0.82 com uma área debaixo da

curva(AUC) igual a 0.78.

Palavras chave: Detecção de Relevância, Extracção de Dados Sociais, Extracção

de Conhecimento, Processamento de Linguagem Natural, Classificação Automática de

Texto

Contents

Acknowledgements ii

Abstract iii

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Motivation . 1

1.2 Goals and Context . 3

1.3 Contributions . 4

1.4 Structure of the Dissertation . 4

2 Background 5

2.1 Definition of Relevance . 5

2.1.1 Relevance from an Information Retrieval Perspective 7

2.2 Natural Language Processing . 9

2.2.1 Language Knowledge Levels . 10

2.2.2 Issues in Social Media Text . 12

2.2.3 Common NLP-related Tasks . 13

2.3 Machine Learning and Text Classification 16

2.3.1 Data Gathering . 17

2.3.2 Preprocessing . 18

2.3.3 Feature Selection . 19

2.3.4 Feature Reduction . 21

2.3.5 Learning Methods . 21

2.3.6 Evaluation Metrics . 23

2.4 Relation to this work . 28

3 State of the Art 30

3.1 Scientific Overview . 30

3.1.1 Approaches to Social Media Text Classification 30

3.2 Technological Overview . 34

3.2.1 Common Data Sets . 34

3.2.2 Related Comparisons . 36

3.2.3 A Review of Current Tools . 39

v

Contents vi

3.2.4 Available Features in Current Tools 44

4 Performance of Different NLP Toolkits in Formal and Social Media
Text 47

4.1 Datasets . 48

4.2 Addressed Tasks and Compared Tools . 54

4.3 Comparison Results . 54

4.4 Discussion . 58

5 Experimental Analysis 60

5.1 Dataset . 63

5.2 Feature Extraction . 66

5.3 Baseline Results . 68

5.4 Feature Engineering Results . 73

5.5 Predicting Relevance through Journalistic Criteria 78

5.6 Discussion . 83

6 Conclusions 85

Bibliography 87

List of Figures

2.1 Two class hypothetical example with non linear decision boundary 17

2.2 Typical pipeline of a machine learning application 17

2.3 ROC curves of 3 hypothetical classifiers 27

2.4 Precision-Recall curves of 3 hypothetical classifiers 28

5.1 System Overview . 62

5.2 ROC Curves of a SVM Classifier using PoS tags as features 72

5.3 Precision-Recall Curves of a Minimum Distance Classifier using LDA
topic distributions as features . 73

5.4 ROC Curves of a kNN Classifier using Standardization and the Pearson
Correlation Filter . 77

5.5 Precision-Recall Curves of a Naive Bayes Classifier using Standardization
and the Pearson Correlation Filter . 77

5.6 Prediction of Relevance using Journalistic Criteria 79

5.7 ROC Curves of a Journalistic Based kNN Classifier 80

5.8 Precision-Recall Curves of a Journalistic Based kNN Classifier 81

5.9 ROC Curves of a Journalistic Based kNN Classifier, using Random Forests
for the intermediate classifiers . 82

5.10 Precision-Recall Curves of a Journalistic Based kNN Classifier, using Ran-
dom Forests for the intermediate classifiers 83

vii

List of Tables

2.1 Methods used in this work . 29

3.1 Available Features . 45

4.1 Example of the Annotated Data Format 49

4.2 Dataset properties . 50

4.3 Datasets with PoS Tags . 51

4.4 Datasets with Chunk Tags . 52

4.5 Datasets with NER Tags . 53

4.6 Dataset with Joint NER Tags . 54

4.7 Tokenization Performance Results . 55

4.8 PoS Performance Results . 56

4.9 Chunking Performance Results . 56

4.10 NER Performance Results . 56

4.11 NEC Performance Results . 57

4.12 NEC/NER Performance Results on the #MSM2013 Data set 58

5.1 Documents grouped by source, relevance label and query 64

5.2 Documents grouped by source, interestingness label and query 64

5.3 Documents grouped by source, controversialness label and query 64

5.4 Documents grouped by source, meaningfulness label and query 64

5.5 Documents grouped by source, novelty label and query 64

5.6 Documents grouped by source, reliability label and query 65

5.7 Documents grouped by source, scope label and query 65

5.8 Examples of messages in the dataset. 65

5.9 Answers on their labels and the resulting class 66

5.10 Feature sets used . 67

5.11 Baseline Results for the Mininmum Distance Classifier 69

5.12 Baseline Results for the k-Neareast Neighbor Classifier 69

5.13 Baseline Results for the Naive Bayes Classifier 70

5.14 Baseline Results for the Support Vector Machine Classifier 70

5.15 Baseline Results for the Decision Tree Classifier 71

5.16 Baseline Results for the Random Forest Classifier 71

5.17 Results of applying different Preprocessing and Feature Selection methods
with a Minimum Distance Classifier . 74

5.18 Results of applying different Preprocessing and Feature Selection methods
with a k-Nearest Neighbors . 74

5.19 Results of applying different Preprocessing and Feature Selection methods
with a Naive Bayes . 75

viii

List of Tables ix

5.20 Results of applying different Preprocessing and Feature Selection methods
with a Support Vector Machine . 75

5.21 Results of applying different Preprocessing and Feature Selection methods
with a Decision Tree . 75

5.22 Results of applying different Preprocessing and Feature Selection methods
with a Random Forest . 76

5.23 Results on predicting Relevance based on Journalistic Criteria 80

5.24 Results on Predicting Relevance by an Ensemble of Journalistic Classifiers 82

Chapter 1

Introduction

This chapter introduces the main objectives and contributions of this work. In the first

section, we present a quick motivation of the theme. In the second section, we detail the

goals and context of the project and its importance. The third section lists the main

contributions of this work. Finally, in the last section, we present the structure of the

following chapters of this dissertation.

1.1 Motivation

The Web has a strong aspect. People use it to communicate and share ideas. Social

networks are specially tailored for those activities and people resort to them to ask

questions, share observations and engage in meaningful discussions. They are also a

faster means of spreading and being aware of the recent news, mainly when compared to

traditional media like newspapers or magazines. Thus, social networks can be considered

a huge source of information and social data, but they still offer too much textual data

for a single person to consume. Mining the social Web for valuable information is thus

a goal that involves a large number of research challenges, including filtering useless

information and providing intelligent recommendations.

According to the Cambridge dictionary, relevance is “the degree to which something

is related or useful to what is happening or being talked about”. As a human notion,

relevance is hard to measure and define. It is usually a goal of information retrieval

methods in search engines, social media or news feeds and is often context-dependent.

1

Chapter 1. Introduction 2

In fact, information may be relevant under some context but irrelevant on another. For

more than fifty years, the concept of relevance has been studied, although often implied

with different terms, such as usefulness or searching, since searching is nothing more

than the retrieval of relevant answers for a given query [T. Saracevic, 2015].

Relevance is a very well studied concept in Information Retrieval. Nowadays, Infor-

mation Retrieval is a mature and well established field which already has very efficient

methods of searching relevant information. In this context, relevance of documents is

usually related to search queries. However, from the journalistic point of view, where

there are no hints or clues from the user such as query terms or search parameters, or

even context, it is still hard to measure and define the relevance of a particular content

and thus more research is needed in this direction.

People usually search for content that is relevant for a problem-at-hand. As time goes by

and technology advances, the world is becoming more globalized, the number of Internet

users that actively publish social content on the Web grows. Large social networks, such

as Facebook or Twitter, see their active user base increasing every single day in large

quantities. People search, share, connect and communicate with each other more easily.

Moreover, new content is constantly produced and if we think about it, the quantity

of irrelevant information grows faster than the relevant and actually useful information,

causing a shrinking in valuable content. In other words, the “signal-to-noise” ratio is

very low, meaning that most of the data is “noise”, and thus irrelevant. For example,

each time people want to search for some interesting content in social networks, they

very often need to go through a series of random texts, political or sports rants or even

propaganda and fake information that adds no value to the user, culminating with the

fact that a person might miss important notifications because they were overwhelmed

by uninteresting and irrelevant posts. This noise and pollution is ubiquitous in social

networks and is also very damaging to the end user, because intuitively irrelevant posts

creates unenthusiastic sentiments.

One of the main reasons for the previous issue is that social networks are people-centric

and not topic-centric, and as we follow more people, the likelihood of getting exposed

to irrelevant content increases. Therefore, it is important to create effective methods to

find the best and most relevant content [A. Rose, 2015, M. Wu, 2012a].

Michael Wu [M. Wu, 2012b] makes an important distinction between searching and

Chapter 1. Introduction 3

filtering. Due to the contextual and ambiguous nature of relevance, we can not simply

“search” for it, since a typical search implies that we already know exactly what we are

looking for. If this was the case, we could simple use effective Information Retrieval (IR)

methods to find the desired content. Search engines such as Bing or Google are already

very good at this task. Since we do not know exactly what we are looking for, i.e., there

is not clues such as search term queries, incoming or outgoing links, metadata, etc we

need to try another approach such as filtering, by eliminating the irrelevant information

first and keeping the relevant content.

1.2 Goals and Context

The work presented here was conducted at the Cognitive & Media Systems (CMS) Group

of the CISUC research center at the University of Coimbra and is developed within the

scope of the REMINDS1 project, established under the UT-Austin Portugal Program.

The REMINDS project is a joint work from the CRACS research unit of INESC TEC lab-

oratory, the Faculty of Sciences from the University of Porto, the University of Texas, at

Austin and the CISUC research center from the University of Coimbra, namely the pro-

fessors Hugo Gonçalo Oliveira and Ana Oliveira Alves and the master student Alexandre

Pinto. The REMINDS project is established under the UT-Austin Portugal Program

(2014) and aims to develop a system capable of detecting relevant information published

in social networks while ignoring irrelevant information such as private comments and

personal information, or public text that is not important. This will allow the resulting

system to predict new relevant information and help understanding how people decide on

what is relevant and what is not. The REMINDS members are a multidisciplinary team

with knowledge in text-mining, information retrieval, community detection, sentiment

analysis and on ranking comments on the social web. The startup INTERRELATE, a

company focusing on “Mining, interrelating, sensing and analyzing digital data” is also

a partner in this research.

Essentially, the goal of the project REMINDS will be tackled with four main different

approaches: Text Mining, Sentiment Analysis, Interaction Patterns & Network Topolo-

gies, and Natural Language Processing (hereafter, NLP). These different techiques wil

help tackle the problems discussed in the section 1.1.

1UTAP-ICDT/EEI-CTP/0022/2014

http://www.interrelate.pt
https://www.fct.pt/apoios/projectos/consulta/vglobal_projecto.phtml.en?idProjecto=137420&idElemConcurso=8525

Chapter 1. Introduction 4

While the projected system will be a combination of different filters that will rely on fea-

tures at different levels (e.g. social network communities, content popularity, sentiment

analysis, text mining), the present work exploits mainly Natural Language Processing

(NLP) features. Our approach thus requires the automatic annotation of the text of

social network posts by NLP tools, in order to extract linguistic features, then exploited

to learn an automatic classifier that will hopefully detect relevant posts.

1.3 Contributions

The development of this work lead to the following main contributions, further described

in this document:

• Analysis of the performance of Natural Processing Toolkits in different types of

text, such as social text and formal text culminating with the publication of a

paper describing the work [Pinto et al., 2016].

• Creation of a relevance filter that can detect relevant information published in

social networks, using linguistic features and employing different methods, with

F1 scores up to 0.85.

• Writing of a thesis report describing this work in detail.

1.4 Structure of the Dissertation

The remaining of this document is structured as follows: In the next chapter we provide

some background on the Natural Language Processing and Machine Learning (hereafter,

ML) fields, relevant for contextualizing our research and understanding the following

sections. Chapter 3 is an overview of the state of the art in social media text classifi-

cation, popular datasets and available NLP tools. Chapter 4 describes the performed

experiments with NLP tools, showing the benchmarks applied. Chapter 5 describes

the experiments performed towards the automatic detection of relevant content with

an analysis of the classification results obtained. Finally, Chapter 6 presents the main

conclusions of this work.

Chapter 2

Background

In this chapter we provide background knowledge required to understand the rest of the

document. We start by presenting, in the first section, a possible definition of the main

concept of this work, relevance. In the two last sections we give a quick introduction to

some basic concepts used in the NLP and ML fields.

2.1 Definition of Relevance

As relevance became a subject of research among the years, many tried to address its

definition. For instance, Saracevic [T. Saracevic, 1996, 2007] points out its nature and

manifestations, such as:

• System or algorithmic relevance - Relation between a certain query and the

retrieved objects obtained through some algorithm or procedure. Relevance is then

inferred through a comparison of the results. Search systems where a user needs

to input a search query and get quality results related to the search term are good

examples.

• Topical or subject relevance - Relation between the topic or subject of a query

and the topic or subject of the retrieved objects. Aboutness, which is a closely

related concept to relevance, deals with the organization and hierarchy of infor-

mation and can be used to provide results that more likely to be related to the

topic of the search term. An user searching for the concept “informatics”, will get

5

Chapter 2. Background 6

results that are at least related to the same field of study of the concept, i.e., the

same topic.

• Cognitive relevance or pertinence - Relation between the desired knowledge

by the user for a specific query and the actual retrieved objects. Cognitive relevance

is inferred through the informativeness, novelty and information quality of the

retrieved objects. As an example, a user might be searching for the programming

language ’R’ and obtain results about the alphabet letter, which was not what he

intended.

• Situational relevance or utility - Relation between the problem-at-hand and

the objects retrieved. To measure this relevance, criteria like usefulness may be

used. For example, an user might be searching for a solution on how to fix a

device, and although he does not know exactly what results he is expecting, he

can measure it by its usefulness, i.e., if it helped solving the problem.

• Motivational or affective relevance - Relation between the intents and goals

of a user and the retrieved objects. To measure this kind of relevance, metrics

like satisfaction, success or accomplishment may be used. In this case there is no

user input and thus is more related to the scope of this work which evaluates if a

particular content is somehow relevant.

Information quality is closely related to relevance, as it measures the value that the infor-

mation provides to the user. Since the Web is full of unstructured and inconsistent data,

it is important to find ways to measure the quality or relevance of the information for a

specific problem faced by a user. Saracevic [T. Saracevic, 2012] showed possible mea-

surements for assessing the quality of information, such as the intrinsic characteristics

of the text, the context of the information, its representation and access:

• Authority and verifiability: text should be elaborated by a credible and re-

spected entity;

• Objective and reliable: the information conveyed should avoid individual biases

and be trustworthy;

• Relevant, appropriate and comprehensive: the context of the information

should be related to the topic of the problem-at-hand and complete;

Chapter 2. Background 7

• Timeliness: well-timed information related to the task is typically useful;

• Organization, suitability and conciseness: express coherent and logical think-

ing, consistency across different sources, and representation in a simple and com-

pact manner;

• Availability, convenience, security and integrity: easy to access, easy to use,

good protection politics, and good ethics.

Quality and relevance measurement of information is usually a task performed by hu-

mans. Yet, if accurate enough, computer-assisted classification is obviously very useful

for the end user, which will save time otherwise spent on filtering irrelevant information,

and lead to a better experience overall. The scope of this work involves automating this

process by classifying instances as relevant or irrelevant.

2.1.1 Relevance from an Information Retrieval Perspective

To improve efficiency in traditional Information Retrieval, strings of text are mapped

to simpler representations. The process of mapping the contents of a document into

a compact representation that can be later used is sometimes called indexing. A very

common representation is the vector space model. In this model each document is

represented by a vector of words. Usually there is more than one document, therefore a

term× document matrixM is usually used, with each entry representing the importance,

relevance or weight of a given word in a certain document. Since the number of words can

be huge, a common problem with this kind of representation is the dimensionality of the

feature space. From the point of view of natural language, this brings questions such as

identifying the meaningful units of text (lexical semantics) and the rules for combination

(compositional semantics). Each cell of the term × document matrix measures the term

contribution for the classification task. In order to determine the value of these weights,

different approaches might be followed, typically one of the following[F. Sebastiani, 2002,

S. Yadav and B. Parne, 2015, A. Patra and D. Singh, 2013]:

• Boolean weighting - Each cell either has the value 1, if the word is present in

the document, or 0, if it not.

• Word frequency weighting - Word frequencies are used as the weights.

Chapter 2. Background 8

• Term Frequency–Inverse Document Frequency (TF-IDF) - This technique

takes into account the fact that a word might appear in other documents, decreas-

ing its weight when there are occurrences of the word in other documents.

tfidf(tk, dj)) = #(tk, dj) · log(
N

nk
)

where #(tk, dj) is the number of times the term tk appears in document dj , N is

total number of documents and nk is the number of documents where the term

tk appears. This follows the assumption that when a term occurs many times in

a text it contributes to characterize this document but the more often it appears

in other documents, the less it discriminates. It is also important to note that

TF×IDF does not account for the order of the words in the text, ignoring their

syntactic role, i.e., only the lexical semantics and not compositional semantics.

• Normalized TF-IDF - In order to normalize the vectors, length normalization

is usually used.

tfidf(tk, dj)) =
tfid(tk, dj)√∑N

1 [#(tk, dj) · log(Nnj
)]2

This is the most common used weighting method. It considers that the documents

might have different lengths.

These indexing techniques are useful to determine the most relevant terms.

Another classic reference in sorting documents by its relevance is the PageRank algo-

rithm, used by Google. PageRank uses the link structure of the web documents, i.e, a

directed graph where each node represents a web document and each edge is an outgoing

or incoming link from a given page (node), to produce a probability distribution repre-

senting the likelihood of a random person ending up on a particular page by randomly

surfing through the web. Using this structure, the PageRank (PR) of each document d,

can be obtained as follows[L. Page, S. Brin, R. Motwani and T. Winograd, 1999, Brin

and Page, 2012]:

Chapter 2. Background 9

PR(d) :=
1− α
N

+ α
∑

p∈O(d)

PR(p)

L(p)

where N is the total number of documents, L(p) is the number of outgoing links from the

page p belonging to the set of documents O that link to the document d. The constant

α represents the probability that an hypothetical user does not reach the target page

while surfing. Each page contributes equally to each of the outgoing links. Therefore, if

a document has many incoming links, its ranking rises.

These are good models to define the relevance of documents. Although the concept of

relevance is well-understood in the Information Retrieval field, it becomes challenging

to define when we are in the presence of only raw text and are restricted to textual

features such as features coming from the NLP field, where this work is included. It also

becomes a problem when we have no direct information from the user such as search

queries from where the terms might be extracted and used to retrieve the most related

information. In fact, in Information Retrieval there is a strong relationship with the

information given by the user, since the retrieved information has to be strongly related

to the user input and in our study problem we simply do not have that information.

2.2 Natural Language Processing

Humans communicate in natural language. In fact, this is a complex feature that sets

us apart from the other species. NLP has been a topic of study since the 50s, rising

from the intersection Artificial Intelligence (AI) and linguistics. According to Alan Tur-

ing (Turing, 1950), a fully intelligent system would have to possess natural language

processing capabilities, among others, in order to communicate. ELIZA (Weizembaum,

1966), a simulation of a Rogerian psychotherapist, is often cited as one of the first au-

tonomous system with NLP capabilities. Since then, there have been many attempts

at creating artificial bots up until recently with the rise of intelligent assistants such as

Google Now1, Cortana2 or Siri3. During a long period, NLP strongly followed symbolic,

hand-crafted rules approaches, backed by the Chomsky theoretical works. However, due

1https://www.google.com/search/about/learn-more/now
2https://support.microsoft.com/en-us/help/17214/windows-10-what-is
3http://www.apple.com/ios/siri

Chapter 2. Background 10

to the ambiguous nature of the natural language, these techniques often created am-

biguous results, meaning that there were more than one way to interpret the language.

In fact, one of the aspects that make NLP hard is the ambiguity present in natural lan-

guage. With the rise of machine learning techniques, the paradigm shifted to Statistical

Processing, relying more on probabilities, with varied success. Besides, large annotated

corpora were used to train machine learning algorithms [P. Nadkarni, L. Ohno-Machado

and W. Chapman, 2011].

Usually computers either try to understand the language in order to communicate or to

extract information from it. In this work, we are interested in the second case. Since

the Web is composed mostly of text, artificial models need to understand the written

languages in order to extract new knowledge and perform diverse tasks such as informa-

tion searching, machine translation or, in our case, text classification.

We e will use concepts and techniques from the domain of NLP to extract features from

text. Feature extraction is an important part of this work and affects directly the per-

formance of the classifier. This section provides a revision of important concepts and

techniques of this field that are useful in the feature extraction process.

2.2.1 Language Knowledge Levels

In a typical dialogue there are different types of knowledge involved. From the moment

that a person or system recognizes speech until the moment where it creates new dia-

logue, there is a set of intermediate steps a person or system need to know.

The following list represents the knowledge levels involved in a typical conversation [D.

Jurafsky and J. Martin, 2009]:

• Phonetics and Phonology - The participants involved in a conversation need

to know how to pronounce words and how to recognize them from speech.

• Morphology - In order to know how to form words, knowledge about the creation,

characterization and analysis is required. Usually, tasks such as lexical analysis

are performed in this step, by identifying stems, roots or part-of-speech.

• Syntax - In order to create phrases and glue together words, structural knowl-

edge such as the relationships between words is required. Usually, tasks such as

Chapter 2. Background 11

syntactic analysis are performed in this step. This includes identifying syntactic

dependencies between words, their syntactic categories or syntagmas.

• Semantics - This step is related to the meaning of single words (lexical seman-

tics) and also the meaning of grouped words (compositional semantics). Semantic

analysis is usually performed in this step. Since a word might have more than one

meaning, this disambiguation is solved in this phase.

• Pragmatics - Pragmatics relates to the relationships between the meaning and

the context. That is, depending on the context, the real intentions and goals of a

user might be expressed in nonexplicit ways.

• Discourse - This level relates to the relationships between different parts of a

text. Thus, this task usually involves determining to which previous parts of the

discourse some words, such as demonstratives or pronouns, are referring to.

Usually these levels are related to each other. NLP is a vast research area. We can

list four subareas of study: Speech Recognition, Speech Synthesis, Natural Language

Generation and Natural Language Understanding. In our case, we are interested in the

last one, since we need to have some understanding of the language in order to extract

features from it.

One the main problems in Natural Language is ambiguity. Ambiguity arises when

there are multiple interpretations or meanings and it affects all levels mentioned before.

It can occur at the word level (lexical ambiguity), at the the phrase level (syntactic

ambiguity), it can depend on the context (pragmatic ambiguity) or even at the discourse

level [D. Jurafsky and J. Martin, 2009]. There are other issues that make it hard, such as

non-standard English (or other languages), present in social networks feeds. Examples

of this are unusual spelling of words, hashtags, among others. Another problem is

expressions that are specific to the language and do not have a direct meaning such

as “get cold feet” or “lose face”. In terms of language technologies, some of them are

almost solved such as spam detection, Part-of-Speech (hereafter, POS) tagging or Name

Entity Recognition (hereafter, NER). Other tasks such as sentiment analysis, coreference

resolution, word sense disambiguation, parsing, machine translation and information

extraction are making good progress. However, problems such as question answering,

Chapter 2. Background 12

paraphrasing, summarization and dialog are still really hard to solve [D. Jurafsky and

J. Martin, 2009].

2.2.2 Issues in Social Media Text

In academic, official or business contexts, written documents typically use formal lan-

guage. This means that syntactic rules and linguistic conventions are strictly followed.

On the other hand, although typically used orally, informal language has become fre-

quent in written short messages or posts in social networks, such as Facebook or Twit-

ter. In opposition to news websites, where posts are more elaborated, complex and

with a higher degree of correctness, in text posted in social networks, it is common to

find shorter and simpler sentences that tend to break some linguistic conventions (e.g.

proper nouns are not always capitalized, or punctuation is not used properly), make

an intensive use of abbreviations, and where slang and spelling mistakes are common.

For instance, in informal English, it is common to use colloquial expressions (e.g. “look

blue”, “go bananas”, “funny wagon”), contractions (e.g. “ain’t”, “gonna”, “wanna”,

“y’all”), clichés (e.g. “An oldie, but a goodie”, “And they all lived happily ever after”),

slang (e.g. “gobsmacked”, “knackered”), abbreviations (e.g. “lol”, “rofl”, “ty”, “afaik”,

“asap”, “diy”, “rsvp”); the first and the second person, imperative (e.g. “Do it!”) and

usually active voices, in addition to the third person and the passive voice, which are

generally only present in formal text. Informal language poses an additional challenge

for NLP tools, most of which developed with formal text on mind and significantly

dependent on the quality of the written text.

Given the huge amounts of data transmitted everyday in social networks, the challenge

of processing messages written in informal language has received much attention in the

later years. In fact, similarly to well-known NLP shared tasks based on corpora written in

formal language, including the CoNLL-2000, 2002 or 2003 shared evaluation tasks[Tjong

Kim Sang and De Meulder, 2003], tasks using informal text have also been organized,

including, for instance, the Making Sense of Microposts Workshop (MSM 2013)4 or tasks

included in the SemEval workshops (e.g. Sentiment Analysis from Twitter [Rosenthal

et al., 2015]).

4http://microposts2016.seas.upenn.edu

http://microposts2016.seas.upenn.edu

Chapter 2. Background 13

2.2.3 Common NLP-related Tasks

NLP is a vast area with many subproblems. Here we list concepts that might be relevant

for this work, i.e., potential tasks that can laid the groundwork for the feature extraction

process. We can also divide these tasks in low-level tasks and high-level tasks that are

usually built on top of low-level tasks [P. Nadkarni, L. Ohno-Machado and W. Chapman,

2011]. We list some of the most popular task applied to the phrase “Jay visited back

home and gazed upon a brown fox and quail.”:

• Word Tokenization - Tokenization is usually the first step in NLP pipelines. It

is the process of breaking down sentences into words, identifying individual tokens

such as words or punctuation signals. Although this seems a relatively easy task,

it has some issues because some words may rise doubts on how they should be tok-

enized, such as words with apostrophes, or with mixed symbols. For above example

would become “Jay|visited|back| home|and|gazed|upon|a|brown|fox|and|quail|.|”

• Word Normalization - Text normalization is a frequent pre-processing task in

NLP applications. It usually involves transforming the word tokens into their

simpler forms. In order to achieve this, tasks such as case folding (converting

letters to lower case), lemmatization (reduce the variant forms such as inflections

and derivations to their original base form) or stemming (extraction of the root of

the word) methods are employed. Usually morphology analysis plays an important

role in this task. As an example, the previous phrase lemmatized would become

“Jay visit back home and gaze upon a brown fox and quail . ” or “jay visit back

hom and gaz upon a brown fox and quail .” when stemmed.

• Sentence Segmentation - This task detects sentence boundaries and segments

out sentences from text. Again the ambiguity of signs such as “.” makes this task

more difficult that it may seem at first, since they may belong to abbreviations,

numbers and not really an end of phrase.

• N-grams - N-grams are sequence of n contiguous words retrieved from a text.

They are very useful to build language models, i.e, models where the probabilities

of sequence of words are computed allowing for example, to predict the next word

in a sequence, machine translation, spell correction, among others. Other useful

application of n-grams is classification, i.e., an unigram model of a text, also called

Chapter 2. Background 14

bag-of-words. The bag-of-words model, along with the word counts may be used as

a vector of feature/value pairs for classification tasks. It is important to note that

with an unigram model, the notion of order is lost. High order n-grams may be

used to keep some order. For example, the bigrams from the above phrase would

be: {Jay visited, visited back, back home, home and, and gazed, gazed upon, upon

a, a brown, brown fox, fox and, and quail}. A problem with this model is that the

feature vector is very large and sparse, since for very small messages, most n-gram

counts will be zero. If gaps between words are allowed, we called them skip grams.

Skip grams are a generalization of n-grams since they include sequence of words

that are separated in the original text by some distance.

• Part-of-speech Tagging - The objective of the POS tagging is to determine

the correct part-of-speech class for each token in a sentence, according to a spe-

cific tagset. In this work, the tags of the Penn Treebank Project [Marcus et al.,

1993], popular among the NLP community, are used. The example phrase would

then become: Jay|NNP(Proper noun, singular) visited|VBD(Verb, past tense)

back|RB(Adverb) home|NN(Noun, singular) and|CC(Coordinating conjunction)

gazed|VBN(Verb, past participle) upon|IN(Preposition) a|DT(Determiner)

brown|JJ(Adjective) fox|NN(Noun, singular) and|CC(Coordinating conjunction)

quail|NN(Noun, singular) .|.

• Shallow Parsing - Chunking, also known as shallow parsing, is a lighter syn-

tactic parsing task. The main purpose is to identify the constituents groups in

which the words are organized, such as noun phrases (NP), verb phrases (VP)

or prepositional phrases (PP). Glued together, these chunks form the entire sen-

tence. They may also be nested inside each other forming a nested structure,

such as trees, where each leaf is a word, the previous node is the correspond-

ing POS tag and the head of the tree is the chunk type. The example phrase

would become: Jay|NP|Noun-phrase visited|VP|Verb-phrase back|O|Out-of-chunk

home|NP|Noun-phrase and|O|Out-of-chunk gazed|VP|Verb-phrase

upon|PP|Prepositional-phrase a|NP|Noun-phrase brown|NP|Noun-phrase

fox|NP|Noun-phrase and|O|Out-of-chunk quail|NP|Noun-phrase

• Name Entity Recognition/Classification - As the name implies, Name Entity

Recognition deals with the identification of certain types of entities in a text and

Chapter 2. Background 15

may go further classifying them into one of given categories, typically PERson,

LOCations, ORGanizations, all proper nouns, and sometimes others, such as dates.

Usually this task is also useful to link mentions in the text to a specific entity. This

usually involves other sub-problems such as Name Entity Disambiguation (NED),

where an entity is fully specified and reference resolutions where mentions are

linked to the original named entities. Although initials are a good indicator of

potential entities, in social media text this task is harder since users do not always

follow this rule, which complicates the process. In the example above, “Jay” would

be identified as a Person.

• Sentiment Analysis - Sentiment is a classification task where each piece of text

is classified according to their perceived sentiment, opinion or subjectivity. The

complexity of this task may range from simple positive/negative labeling to a a set

of ranking categories or even detecting complex attributes such as the source of

such sentiment, the target and the type of sentiment (love, hate, positive, negative,

neutral, etc). In classification tasks it is common to make extensive use of senti-

ment lexicons, i.e., a set of words labeled according to a certain type of sentiment,

attitude, opinion, mood, etc.

• Edit Distance -The string edit distance or Levenshtein distance, is a distance

metric between two strings equal to the minimum number of edits required to

transform one string into another.

• Latent Dirichlet Allocation (LDA) - Latent Dirichlet Allocation is a prob-

abilistic model of a corpus, where each document is represented by an explicit

probabilistic distribution of latent topics (unobserved) and each topic is defined

as a distribution over words. It is a process of discovering the topics that each

document (set of words) in a corpus (set of documents) contains. LDA assumes

that a given corpus was produced by a generative process and then tries to classify

each document with a set of topics that, according to that model, were likely to

have generated them. The generative process can be described as follows[D. M.

Blei and A. Y. Ng and M. I. Jordan and J. Lafferty, 2003]:

for document d in corpus D do

Choose the number of words N ∼ P (ξ) the document d will have

Choose a topic mixture θd ∼ Dir(α) for the document d

Chapter 2. Background 16

for word wd in document d do

Pick a topic for the word zw ∼Multinomial(θd)

Use the topic zw to generate the word from p(wd|zw, β)

The number of words N is usually generated from a Poisson distribution P (ξ), the

topic mixture from a Dirichlet Dir(α) distribution, the topic of a word according to

a Multinomial obtained from the topic mixture θd and the word itself wd according

to the probability distribution of the chosen topic zw.

These tasks give us a better understanding of the language and allows us to analyze it

and extract useful information that we can use as features for a predictive model. In

our work, we used tasks such as n-grams, part-of-speech tagging, chunking, name entity

recognition, sentiment analysis and latent dirichlet allocation in order to extract features

and establish the groundwork for the classification pipeline.

2.3 Machine Learning and Text Classification

The problem of Text Classification is to decide which of a predefined set of classes or

categories, a piece of text belongs to. Example applications of this nature are language

identification, sentimental analysis, opinion detection, spam detection, among many

others.

We usually describe the objects that we wish to recognize by a set of variables called

features, consisting of information that we extract from the study objects. In the case

of text classification, our study object is the text itself and we extract information using,

for example, tasks presented in section 2.2.3. Such features are then collected in vectors

of dimension d, called feature vectors, usually denoted by x. They represent points

in a d dimensional space, called feature space. Each point belongs to a class, usually

denoted by w and the combination of the feature vectors and their corresponding class

are called patterns. If we only have two target classes, as in this work (relevant or

irrelevant), we are in the presence of a binary classification problem.

Classification problems may be trivial for humans but are usually quite challenging for

automated systems, since we need to deal with a lot of issues such as finding a reasonable

number of distinguishing features good enough for classification, that are able to separate

Chapter 2. Background 17

Figure 2.1: Two class hypothetical example with non linear decision boundary

the target classes, or finding models that have good generalization capabilities (perform

well on unseen data), avoiding overfitting of the model to the training data. Figure 2.1

shows an hypothetical problem with two classes and two features. The main goal is then

to find the best decision boundary that results in the best generalization on testing data.

Figure 2.2: Typical pipeline of a machine learning application

Figure 2.2 shows the workflow of a typical machine learning application. Usually text

classification involves steps such as data gathering, preprocessing, feature selection/re-

duction, training,testing and the final evaluation. The main goal is to assign, with the

best accuracy possible, new labels to new documents.

2.3.1 Data Gathering

The first step is to collect the training and testing data such as sufficient and represen-

tative data. This usually implies tasks such as [J. Gama, A. Carvalho, K. Faceli, A.

Lorena and M. Oliveira, 2013]:

• Data Integration - The initial data might come from different sources, with

different formats or duplicated data. This step is important to create a single

repository of data.

• Data Balancing - As is often the case with real data, the data is usually not uni-

formly distributed across the different classes. Consequently, the trained models

Chapter 2. Background 18

tend to predict new data with the majority class. Techniques to artificially balance

the data might be employed here, such as reducing (Undersampling) / increasing

(Oversampling) the number of instances from the majority /minority classes. An-

other alternative might be performing a stratified sampling in order to keep a

significant number of instances in each class. Neighbor-based approaches [Mani

and Zhang, 2003, Laurikkala, 2001] or synthesization of new examples [Chawla

et al., 2002] are popular techniques used in this stage.

• Cleaning - The quality of the data is important. Sometimes the data will have

missing attributes or useless values. However, redundant or noisy data are im-

portant issues to be addressed, such as instances with very similar feature values,

attributes easily deducted from others or outliers.

Most of these steps were performed by the research team responsible for the data collec-

tion. Although, in this work some tasks such as removal of useless data and aggregation

of duplicates with different labels were needed.

2.3.2 Preprocessing

Some learning algorithms do not deal with certain types of data. In order to be able to

use them, the type of the attributes might be transformed to another suitable type. For

example converting symbolic features to equivalent numeric features, or the other way

around.

Another important issue to consider is the normalization of the data, such as converting

different attributes to the same scale, avoiding the dominance of some attributes and

decreasing the dispersion of the data. Some example of used techniques are shown next:

• Standardization - Standardization transforms each feature by removing their

mean and diving non-constant features by their standard deviation, obtaining data

normally distributed with zero mean and unit variance (ρxstd = 0,σxstd = 1)

xstd =
x− ρX
σX

Chapter 2. Background 19

• Normalization - Normalization involves scaling samples/features vectors to have

unit norm, usually achieved by diving by the euclidean norm of the vector.

xnorm =
x√∑
i xi

2

• Scaling - Scaling transform the features to lie between a minimum and a maximum

value. Typical ranges are [0,1] or [-1,1].

x[0,1] =
x−minx

maxx −minx

2.3.3 Feature Selection

Feature selection usually involves selecting a subset of the original set of features that

provide the biggest discriminatory power, i.e., are able to provide the best separation

between classes, result in the best performance of the classifier when trained and avoid

the curse of dimensionality. In fact, it has been said in the literature that exists a critical

feature dimension from where the performance degrades rapidily [Ribeiro et al., 2015].

Feature selection helps in removing irrelevant and redundant features and is usually

divided into filter methods, where a subset of features is selected, without considering

the predictive model and wrapper methods which use the classifier to rank and choose

the best feature set. This step, in conjunction with feature reduction, is likely to be one

of the most important steps in the pipeline. The following list shows common techniques

employed in feature selection:

• Information Gain - Information gain ranks each attribute by its ability to dis-

criminate the pattern classes. Features very informative will provoke the greatest

decrease in entropy when the dataset is split by that feature.

IG(S,A) = H(S)−
∑

v∈values(A)

|Sv|
|S|

H(Sv)

The Information Gain IG of a feature A is then equal to the decrease in entropy

achieved by splitting the dataset S by feature values v into smaller sets Sv, and

subtracting from the original entropy H(S) the average entropy of the splits.

Chapter 2. Background 20

• Gain Ratio - The gain ratio is simply the information gain normalized with

the entropy of the feature H(A). Since features with many values create lots of

branches, creating a bias towards these features, the gain ratio corrects this by

taking into account the number and size of branches of a split.

IGR(S,A) =
IG(S,A)

H(A)

• Fisher Score - The Fisher’s score select features with high class-separability and

low class-variability and is defined by:

F (x) =
|m1 −m2|2

s21 + s22

where m1 and m2 are the means from the feature values (for a 2-class problem)

and s1 and s2 are the standard deviations from the feature values of each class.

• Pearson Correlation - Pearson correlation can be used to select features that are

highly correlated with the target class and features with low correlation between

them. It is a useful measure to see how strongly related two features are. The

Pearson correlation gives values between -1 and 1, where absolute values closer to 1

mean a high correlation. The sign indicates whether there is a positive relationship

between the variables, that is, if a feature value increase or decreases, the other

increases/decreases as well (positive correlation) or if one variable increases/de-

creases, the other decreases/increases with it (negative correlation). Naturally, we

are interested in high absolute values for feature-class relationships and low values

feature-feature relationships.

This Pearson correlation ρ is defined as:

ρ =
covariance(a, b)

σa × σb

where a and b can be both feature vectors or a feature vector and a label vector.

• Chi-Square χ2 Test - The Chi-Square test ranks each attribute by computing

the χ2 statistic relative to the target class. This statistic is useful to see if there

is an independence relationship between the features and the target class. High

values of this statistic means that there is a strong dependence between a particular

feature and the target class leading to its selection for classification tasks.

Chapter 2. Background 21

2.3.4 Feature Reduction

Feature reduction is a important step that helps further reducing the dimensionality of

the problem, reduces the complexity of the problem and decreases the computational

costs. In order to reduce the dimensionality, it is important to keep only the most rele-

vant, informative and discriminative features. Techniques such as Principal Component

Analysis (PCA) may be employed in this stage, by aggregating multiple features through

linear combinations.

• Principal Component Analysis (PCA) - PCA is a popular unsupervised (ig-

nores class labels) dimensionality reduction technique that uses linear transforma-

tions to find the directions (principal components) with the highest variance. It

projects the original data into a lower dimensional space, with the new features

retaining most of information. PCA works by finding vectors (called eigenvectors)

with the highest amplitude (called eigenvalues) that represent the axes with the

highest variance. The original data is then project onto these axes.

2.3.5 Learning Methods

After every preprocessing and feature engineering step is completed, comes the learning

phase where a set of examples are shown to the classifier, including class labels (su-

pervised learning) or excluding them (unsupervised learning), and the learning process

starts. As a result, the classifier is then able to categorize, with a certain accuracy, new

unseen data. Some techniques are described bellow:

• Minimum Distance Classifier - Minimum Distance Classifiers are template

matching system where unseen feature vectors are matched against template proto-

types (vectors) representing the classes. This matching usually involves computing

the matching error between both feature vectors using for example the euclidean

distance as the error metric. This matching distance can simply be stated as :

‖x−mk‖

where x is the unseen feature vector and mk is the feature prototype for class k,

usually consisting in a feature vector with feature mean values obtained during the

Chapter 2. Background 22

training phase. After k tests are performed, the class belonging to the prototype

with the minimum distance is chosen.

• k-Nearest Neighbor (kNN) - The kNN is a simple and fast unsupervised algo-

rithm that classifies unknown instances based on the majority class from k neigh-

bors. This method starts by constructing a distance matrix between the training

samples and the new test sample and chooses the nearest k neighbors. Afterwards,

the majority label from these neighbors is assigned to the new data. For two-class

problems, k is usually an odd number to prevent ties.

• Naive Bayes - The Naive Bayes Classifier is a simple supervised probabilistic

model based on the Bayes’ theorem. The posterior probabilities are computed for

each class wj and the class with largest outcome is chosen to classify the feature

vector x. To achieve this result, the likelihood, prior and evidence probabilities

must be calculated, as shown below:

posterior probability =
likelihood · prior probability

evidence

P (ωj |x) =
p(x|ωj) · P (ωj)

p(x)

The main difficulty is to compute the likelihoods p(x|ωj) since the other factors are

obtained from the data. P (ωj) are the prior probabilities and p(x) is a normaliza-

tion factor which is sometimes omitted. Assuming independence of the features,

the likelihoods can obtained as shown bellow:

P (x|ωj) =

d∏
k=1

P (xk|ωj)

This simplification allows to compute the class conditional probabilities for each

feature separately, reducing complexity and computational costs.

• Support Vector Machines (SVM) - Support vector machines [Cortes and Vap-

nik, 1995] are optimization methods for binary classification tasks that map the

features to a higher dimensional space where an optimal linear hyperplane that

separates the existing classes exists. The decision boundary is chosen with the

help of some training examples, called the support vectors, that have the widest

Chapter 2. Background 23

separation between them and help maximizing the margin between the boundaries

of the different classes. The decision surface is in the “middle” of these vectors.

During the training phase, the coefficient vector w and the constant b that define

the separating hyperplane are searched such that the following error function is

minimized:

minimize
1

2
‖w‖2 + C

N∑
i

ξi s.t yi(w · φ(xi) + b) ≥ 1− ξi, ∀xi

where C is an arbitrary constant and ξ are slack variables used to penalize misclas-

sified instances that increase with the distance from the margin. If C is large, the

penalty for misclassification is greater. The vectors xi are the training instances.

This method makes use of a kernel function φ used to transform the input vectors

into higher dimensional vectors. New instances are then classified according to

which ”side” of the hyperplane they are located.

• Decision Tree - Decision Trees are supervised methods that learn rules based on

the training data to classify new instances. The built trees are simple to understand

and visualize. During training, each node of the tree is recursively split by the

feature that provides, for example, the best information gain.

• Random Forest - Random forests ares ensemble methods, i.e., they take into

consideration the prediction of several classifiers in order to improve the accuracy

and robustness of the prediction results. In the case of random forests, they train a

set of random trees with bootstrapped samples (samples drawn with replacement)

from the original training data. Each tree is grown by selecting m random features

from the d features and recursively splitting the data by the best splits. The

classification of new data is achieved by a majority vote.

Each classifier has its own advantages and disadvantages and the right technique should

be chosen according to the requirements of the problem-at-hand.

2.3.6 Evaluation Metrics

Experimental evaluation is an important step to assess the effectiveness of a classifier, i.e,

the quality of the decisions made by a predictive model on unseen data. In classification

Chapter 2. Background 24

tasks, predictions made by a classifier are either considered Positive or False (under some

category) and the expected judgments are called True or False (again, under a certain

category). Common metrics are [F. Sebastiani, 2002]:

• Accuracy - This measure provides a proportion of correctly classified instances

and correctly rejected instances (True Positives and True Negatives) among the

whole dataset.

Acc =
TP + TN

TP + TN + FP + FN

Acc = Accuracy TP = True Positives TN = True Negatives

FP = False Positives FN = False Negatives

• Precision - This measure provides a proportion of correctly classified instances

(True Positives) among all the positive identified instances (True Positives and

False Positives).

Pi =
TPi

TPi + FPi

Pi = Precision under Category i TPi = True Positives under Category i

FPi = False Positives under Category i

• Recall - This measure, sometimes called sensitivity, provides a proportion of cor-

rectly classified instances (True Positives) among the positive instances that were

and should have been correctly identified, i.e., the whole positive part of the dataset

(True Positives and False Negatives).

Ri =
TPi

TPi + FNi

Ri = Recall under Category i TPi = True Positives under Category i

FNi = False Negatives under Category i

Chapter 2. Background 25

• F-measure - This measure combines precision and recall and provides a balance

between them. It is computed as the harmonic mean between the two metrics

providing the same weight for both.

F1 =
2× Pi ×Ri
Pi +Ri

F1 = Harmonic Mean Pi = Precision under Category i

Ri = Recall under Category i

These metrics provides insights on how the model behaves. We can go further and

compute the previous estimations in different ways such as:

• Micro Averaging - In this case the entire text is treated as a single document

and the individual correct classifications are summed up.

Pµ =

∑|C|
i=1 TPi∑|C|

i=1 TPi + FPi

Pµ = Micro Precision, C = Set of Classes

TP = True Positives, FP = False Positives

Rµ =

∑|C|
i=1 TPi∑|C|

i=1 TPi + FNi

Rµ = Micro Recall, C = Set of Classes

TP = True Positives, FN = False Negatives

• Macro Averaging - In this case the precision and recall metrics are computed

for each document and then averaged.

Chapter 2. Background 26

PM =

∑|C|
i=1 Pi
|C|

PM = Macro Precision, C = Set of Classes

RM =

∑|C|
i=1Ri
|C|

RM = Macro Recall, C = Set of Classes

In addition to the previous averages, the standard deviation is a common dispersion

metric that may be computed as follows:

σ = 1
N−1

∑|N |
i=1 (xi − x̄)2

N = Number of samples, xi = Result of the i-th measurement

x̄ = Arithmetic mean of the N results

These evaluation methods can give different results. Macro averaging gives equal weights

for each class, even if there are unbalanced classes. On the other hand, micro averaging

gives equal weight to the documents under evaluation, but it can happen that large

classes dominate smaller classes. Therefore, macro averaging provides a sense of ef-

fectiveness on small classes, increasing their importance. Usually, the choice of which

method to use depends on the requirements of the application.

• Receiver Operating Characteristics (ROC) - ROC curves [Fawcett, 2006] are

useful graphs to visualize the performance of binary classifiers. They are useful

to compare the rates at which the classifier is making correct predictions (True

Positive Rate plotted on the Y axis) against the rate of false alarms (False Positive

Rate plotted on the X axis). Important points in this graph are the lower left point

(0,0), representing a classifier that never classify positive instances, neither having

False Positives or True Positives. On the other hand, the upper right point (1,1)

represents a classifier that classifies every instance as positive, disregarding if it is a

Chapter 2. Background 27

false positive or not. Finally, the point (0,1) represents the perfect classifier, where

every instance was correctly classified. Figure 2.3 illustrates this idea, showing

three hypothetical classifiers and the regions of good and poor performance, which

are above or below the line defined by a random classifier making correct random

guesses half of the time. The area bellow the ROC curve is called Area Under the

Curve (AUC) and is also a good measure. A perfect classifier would have an AUC

of 1.0 while a random classifier would only have 0.5.

Figure 2.3: ROC curves of 3 hypothetical classifiers: Perfect (A), good (B) and
random (C)

• Precision-Recall Curves (PR) - The Precision-Recall Curve plots the trade-off

between the precision and recall achieved by a classifier, by showing the recall

on the X axis and precision on the Y axis. An important point in this graph is

the upper right point (1,1) which represents the ideal classifier having maximum

precision and recall. Figure 2.4 shows three hypothetical classifiers and the areas

of good and bad performance, which are above or below the line defined by a

random classifier. The area bellow the PR curve is called Average Precision (AP)

and is also a good measure. A perfect classifier would have an Average Precision

of 1.0 while a random classifier would only have 0.5.

Chapter 2. Background 28

Figure 2.4: Precision-Recall curves of 3 hypothetical classifiers: Perfect (A), good
(B) and random (C)

• Stratified K-fold Cross Validation - A popular technique to evaluate the per-

formance of the system is to split the data into training and testing sets, using

the later to estimate the true generalization performance of the classifier. How-

ever, this may bring some issues such as the trade-offs between the percentage

splits or the representativity of the test set [Polikar, 2006]. A popular accepted

approach is to split the entire dataset into k representative partitions, using k− 1

of these partitions for training and the remaining one for testing. This process is

then repeated k times, (each time using a different test partition) and the results

averaged.

2.4 Relation to this work

In this chapter we started by defining some classical notions about relevance and how it

is a concept well studied in academic disciplines such as Information Retrieval. However,

it should be noted that these classical views are not aligned with the approach of this

Chapter 2. Background 29

work. Instead, we explore another direction by defining relevance in terms of journalistic

criteria, such as: controversialness, interestingness, meaningfulness, novelty, reliability

and scope. According to the relation between the previous attributes, a document should

be classified as relevant or irrelevant. Likewise, we can treat these attributes as their

own sub-problems.

The presented NLP tasks are also a crucial part of this work, since they provide the

features to be used in the classification experiments. Since the type of our study object

is raw text, the NLP field comes as a natural choice in tackling the problem of feature

extraction.

We also reviewed some important pattern recognition concepts. First, we define our task

as a binary problem, which has to classify text documents as either relevant or irrelevant.

It is important to note that mentioned sub-problems are also binary problems by them-

selves, meaning that a document can be classified as controversial or not uncontroversial,

interesting or uninteresting, meaningful or meaningless, new or old, reliable or unreliable

and finally wide or narrow. Since we are dealing with text, a common problem is the

high dimensionality of the feature space. Therefore, we may use well known techniques

to reduce the problem to its most important, informative and discriminatory attributes.

Finally, we use learning and evaluation methods to build and evaluate the accuracy our

models.

Table 2.1 summarizes this view by presenting the used journalistic relevance criteria,

the used natural language processing tasks and machine learning methods used.

Definition of Relevance NLP Tasks Machine Learning Methods

Criteria Extraction Preprocessing Selection Reduction Models Evaluation

Controversialness Part-of-Speech Standardization Info. Gain PCA MDC Accuracy

Informativeness Chunking Normalization Gain Ratio kNN Precision

Meaningfulness Named Entities Scaling Fisher NB Recall

Novelty Polarity of words Pearson SVM F1

Reliability LDA topics Chi-square DT ROC

Scope N-gram RF AP

Stemming k-Fold-CV

Lemmatization

Table 2.1: Methods used in this work

Chapter 3

State of the Art

In this chapter we perform a review of the literature, i.e., a review of the techniques

most used to solve text classification problems. This chapter is divided into two main

sections. In the first section we explore techniques used in the scientific literature.

We then proceed to the second section where we give a technological review. This last

section shows the difference between studying practical applications that solve real-world

problems and theoretical models of the reality.

3.1 Scientific Overview

Over the past decades, a large number of techniques has been applied to the automatic

classification of text with varied success. Although there is no accepted solution yet

that can globally solve the problem, there are many interesting approaches to tackle the

problem. In this section we make a short survey of different approaches. We also present

some standard data sets useful to determine which techniques are in general the best

computational methods.

3.1.1 Approaches to Social Media Text Classification

Huge quantities of information are spread everyday through social networks. Acknowl-

edging the fact that users, alone, are unable to deal with so much information, automatic

30

Chapter 3. State of the Art 31

methods have been developed to classify social media posts according to different as-

pects (e.g. sentiment [Nakov et al., 2013], categories [Sriram et al., 2010], mentioned

events [Ritter et al., 2012],popularity [Sriram et al., 2010, K. Fernandes, P. Vinagre and

P. Cortez, 2015] or virality [M. Guerini and C. Strapparava and G. Ozbal, 2011] of the

content). The previous methods can be used by content-based recommender systems

[Lops et al., 2011], and would hopefully help users to organize their content and filter

unwanted information.

Our work falls in the previous category of automatic approaches for the classification

of social media text, in this case, focusing on its relevance to a wide audience, from

a journalistic point of view. Previous work has explored the virality of social network

posts [M. Guerini and C. Strapparava and G. Ozbal, 2011] and attempted to define

certain phenomena in their messages, namely: virality (number of people that access it

in a given time interval), appreciation (how much people like it), spreading (how much

people share it), white and black buzz (how much people tend to comment it in a positive

or negative mood), raising discussion (the ability to induce discussion among users) and

controversy (the ability to split the audience into those that are pro and those against).

Some of the previous phenomena might also have impact on the relevance of a post.

After defining those phenomena[M. Guerini and C. Strapparava and G. Ozbal, 2011],

the same authors developed a SVM-based classifier for automatically predicting them

in posts of the social platform Digg, based only on the lemmas of the content words in

the story and snippet. They reached F1 measures of 0.78 for appreciation, 0.81 for buzz,

0.70 for controversiality, and 0.68 for raising-discussing.

Others have also relied on a SVM to classify consumer reviews as helpful or not [Zeng

and Wu, 2013]. For that purpose, 1 to 3-grams were exploited, together with the length

of the review, its degree of detail, the given rating, and specific comparison-related

keywords. With the best configuration, their accuracy reached 0.72.

The phenomena of popularity has some connections both with virality and relevance.

In fact, the prediction of popularity of web content has been surveyed elsewhere [Tatar

et al., 2014]. Most research on the topic has focused on the interactions of users (e.g.

reads, appreciation, comments, shares) [Szabo and Huberman, 2010]. Yu et al. [B.

Yu, M. Chen and L. Kwok, 2011] used SVMs and Naive Bayes classifiers to predict the

Chapter 3. State of the Art 32

popularity of social marketing messages, achieving accuracies of 0.72 and 0.68, respec-

tively. The used data was gathered from Facebook posts produced by top restaurant

chains and labeled as “popular” or “not popular” according to the number of likes. The

feature sets used consisted simply of word vectors using bag-of-words representations.

In fact, they found that words such as “win”, “winner”, “free” or “fun” were rated as

less popular. However, words such as “try”, “coffee”, “flavors” or “new” were rated as

more popular. To rank these words, they used a SVM classifier which used only boolean

features representing the presences or absences of the words. Such words were found to

be the most discriminant when classifying content as popular or not popular.

Based on the category of a news article, subjectivity of language used, mentioned named

entities and the source of the publisher, Bandari et al. [R. Bandari, S. Asur and B.

Huberman, 2012] achieved an overall accuracy of 0.84 on predicting the number of

tweets that would mention it. An acceptable popularity measure is the number of

times a publication is mentioned in other publications. Especially based on the features

of an author of a tweet (e.g. followers, favorites), Petrovic et al. [S. Petrovic and M.

Osborne and V. Lavrenko] predicted whether it would be retweeted or not, with an F1

measure of about 0.47. Hong et al. [L. Hong and B. Davison, 2011] also addressed the

same problem achieving an F1 score of 0.60. They used content features such as TF-IDF

scores and LDA topic distributions; topological features such as PageRank scores and

reciprocal links; temporal features such as time differences between consecutive tweets,

average time difference of consecutive messages and average time for a message to be

retweeted and finally meta information features such as whether a message has been

retweeted before or the total number of tweets produced by an user.

Fernandes et al. [K. Fernandes, P. Vinagre and P. Cortez, 2015] exploited a large set of

features to predict the popularity of Mashable news articles, based on the number of

times they would be shared. Considered features included the length of the article, its

title and its words, links, digital media content, time of publication, earlier popularity

of referenced news, keywords of known popular articles, and several NLP features, such

as topic, subjectivity and polarity. The best F1 measure (0.69) and accuracy (0.67) was

achieved with a Random Forest classifier.

Only based on the tweets content, tweets mentioning trending topics were classified as

related or unrelated (e.g. spam) with a F1 score of 0.79, using a C4.5 classifier, and 0.77,

Chapter 3. State of the Art 33

using a Naive Bayes, which also takes less time to train [D. Irani and S. Webb and C.

Pu, 2010]. Lee et al. K. Lee, D. Palsetia, R. Narayanan, Md. Ali, A. Agrawal and

A. Choudhary [2011] also address the problem of assigning trending topic to categories.

By using TF-IDF word vector counts, they achieved accuracies of 0.65 and 0.61 by

using Naive Bayes and SVM classifiers, respectively. In order to detect the context

from which certain tweets belong, Genc et al. [Y. Genc, Y. Sakamoto and J. Nickerson,

2011] gathered a set of tweets belonging to three different categorical events and tried to

classify them by finding clusters of similar tweets, achieving an average accuracy of 0.86.

In order to compute the similarity between tweets they used different methods such

as string edit distances and distances between associated Wikipedia articles (for each

tweet), as indicators of the distance between two tweets. This distance was computed

as the shortest path lenght, between the two wikipedia articles, in the categorical data

graph from Wikipedia.

The limitations of traditional bag-of-word classification models in microblogging plat-

forms have been pointed out, due to the short length of documents Sriram et al. [2010].

Alternatively, other features can be used, including the author’s name, presence of short-

ening of words and slangs, time-event phrases, opinioned words, emphasis on words,

currency and percentage signs and user mentions at the beginning and within the post.

The previous features were used to classify tweets into a set of categories (News, Events,

Opinions, Deals, and Private Messages) with an accuracy of 0.95. When combined with

a bag-of-words, there are no improvements. In fact, the author’s name seemed to be the

most relevant feature.

Figueira et al. [Figueira et al., 2016] used a reduced set of features in order to classify

social media posts from Google+, Youtube and Twitter, according to their relevance.

The feature set included normalized length of posts, number of occurrences of typical

certain words, such as swear words, the use of excessive punctuation and smileys/emoti-

cons. They also used two customized bag-of-words that are more likely to appear in

news and do not appear in chat and vice-versa, achieving a final F1 score of 0.68.

Frain and Wubben [A. Frain and S. Wubben, 2016] developed a satirical dataset which

contained articles labeled as Satire or Non Satire. Using features like profanity amounts,

punctuation amounts, positive and negative word counts, bag-of-words models using

unigrams and bigrams they achieved a F1 score of 0.89 using support vector classifiers.

Chapter 3. State of the Art 34

Liparas et al.[D. Liparas, Y. HaCohen-Kerner, A. Moumtzidou, S. Vrochidis and I.

Kompatsiaris, 2014] address the problem of classifying web pages by topic (Business,

Lifestyle, Science or Sports), by extracting textual and visual features. Textual features

included N-grams, ranging from unigrams to four-grams. Using random forests, they

obtained an average F1 score of 0.85 and an accuracy of 0.86. Kinsella et al. [S. Kin-

sella, A. Passant and J. Breslin, 2011] also investigate this problem by using additional

metadata retrieved from hyperlinks. They used text from message boards as the ob-

ject of analysis. By using a simple bag-of-words representation as the feature vectors,

they classified each concatenation of a post plus the metadata retrieved from external

links with a Multnominal Naive Bayes obtaining an F1 score of 0.90, showing a clear

improvement when using only the content of the message (0.85).

Although with a different goal, the previous works have focused on classifying social me-

dia posts automatically, according to some criteria, some of which (virality, helpfulness,

popularity, etc) related to our target goal, relevance, due to their context-dependence

and ambiguous nature. Our approach is also similar, as we rely on the extraction of a

set of features from each post and then apply a set of algorithms to learn a classifier

based on those features. In our case, only text and linguistic-related features are used.

3.2 Technological Overview

In the following sections we present a small survey of practical tools currently available

and available datasets. There is a wide range of frameworks and libraries available that

can be used to process languages and extract information. Usually they can be divided in

general purpose tools or systems developed in research contexts where a specific problem

is addressed.

3.2.1 Common Data Sets

Many different methods were developed to solve linguistic tasks. In order to evaluate

the performance of the developed systems and to determine the best approaches, it is

important to have the same terms of comparison like annotated data ready to test and

use. This way, the comparison of results is more reliable since the systems are tested

in the same settings. Therefore, the need for standard formats that allow to replicate

Chapter 3. State of the Art 35

experiments, easy exchange of data and testing of algorithms on standard corpora is an

important issue.

Many corpora have been developed in order to express in a clear and precise way real-life

data. Currently there are some datasets commonly used by the NLP community, like

large collections of annotated text and tree banks. We summarize the most popular

available collections usually used for text categorization and machine learning applica-

tions:

• Reuters Corpora - The Reuters corpora, distributed by NIST, is a large collec-

tion of news stories used in development and testing of NLP and ML systems.

• OTA - OTA is a collection of literary English texts that can be used as linguistic

corporas.

• ECI/MCI - The European Corpus Initiative offers a great collection of texts writ-

ten in many different languages. They offer these resources for research purposes

at low cost.

• ICE - ICE is a large collection of English texts with many regional varieties.

Each corpus follows a well-defined corpus design as well common grammatical and

textual annotations.

• 20 Newsgroups Data Set - The 20 newsgroups data set is a well-known col-

lection. It consists of a large number of documents partitioned across different

categories.

• WebKB Collection - The WebKB project aims to translate the the web content

to a symbolic representation better understandable by computers. They provide

large collections of web pages classified under a set of categories.

• MICASE - The MICASE collection contains many texts of spoken English, cat-

egorized under the speaker attributes (Position, Status, First language) and the

transcript attributes (Interactivity, Discipline, Event).

• PPCME - The PPCME offers large collections of simple text, PoS tagged text

and syntactically annotated text. The text comes from samples from the British

English prose across the history and its annotations are reviewed by expert human

annotators.

http://trec.nist.gov/data/reuters/reuters.html
http://ota.ox.ac.uk/catalogue/index.html
http://www.elsnet.org/resources/eciCorpus.html
http://www.elsnet.org/resources/eciCorpus.html
http://qwone.com/~jason/20Newsgroups
http://www.cs.cmu.edu/~webkb
http://quod.lib.umich.edu/m/micase/
http://www.ling.upenn.edu/hist-corpora/PPCME2-RELEASE-3/index.html

Chapter 3. State of the Art 36

• CoNLL Data Sets - The ConNLL yearly conference usually provides annotated

train and test data sets for its shared tasks. These shared tasks usually include

annotated data related to the chosen topic such as grammatical correction, coref-

erence, syntactic and semantic dependencies, name entity recognition, chunking,

among others.

• Tweets2011 Corpus - Tweets2011 was a microblog track from TREC conference

and they used data provided by Twitter for testing. This data contains millions of

tweets sampled across two weeks, containing both important and spam messages.

• RTC Corpora - The Rovereto Twitter Corpus is a collection of millions of an-

notated tweets. Each tweets is classified by the genre of the author.

• MPQA Corpora -The MPQA is a set of manually annotated collections such as

opinion corpus, debate corpus, arguing corpus and good/bad corpus.

• RepLab - In recent years, RepLab proposed an evaluation framework for providing

and evaluating automatic tools for the problem of Online Reputation management.

The RepLab 2013 dataset consists of manually annotated tweets, gathered from

the 1st June 2012 till the 31st Dec 2012, related to a selected set of entities. This

data is part of a competitive monitoring task, consisting of four main evaluation

tasks, such as: Filtering tweets according to their relation to a specific entity

(related/unrelated), polarity of the tweet (positive, negative or neutral) in relation

to a particular entity, topic detection and topic priority [Amigó et al., 2013].

3.2.2 Related Comparisons

González [González Bermúdez, 2015] highlights the particular characteristics of Twit-

ter messages that make common NLP tasks challenging, such as irregular grammatical

structure, language variants and styles, out-of-vocabulary words or onomatopeias, re-

minding the fact that there is still a lack of gold standards regarding colloquial texts,

especially for less-resourced languages. Therefore, preprocessing techniques are usually

employed as an initial step. Clark [A. Clark, 2003] developed a tool that applies a set

of tasks to noisy text coming from Usenet news. This tool follows an integrated ap-

proach where it identifies boundaries between tokens and sentences, corrects spelling

mistakes and identifies wrong capitalizations. Wong et al. [W. Wong, W. Liu and M.

http://www.cs.cmu.edu/~webkb
http://trec.nist.gov/data/tweets
http://clic.cimec.unitn.it/amac/twitter_ngram
http://mpqa.cs.pitt.edu/corpora
http://nlp.uned.es/replab2013

Chapter 3. State of the Art 37

Bennamoun, 2008] developed a spelling correction preprocessing system as part of a sys-

tem that builds an ontololgy from text coming from chat records. Besides, this system

also expands abbreviations and corrects improper casing. In order to achieve this, the

system tokenizes the input text and computes a sorted list of corrected suggestions for

each erroneous word identified by the system.

Besides comparing different NLP tools, we also analyze their performance in different

types of text, some more formal, from newspapers, and some less formal, from Twit-

ter. Similar comparisons, though with different goals, were performed by others. For

instance, in order to combine different NER tools and improve recall, Dlugolinský et

al. [Dlugolinský et al., 2013] assessed selected tools for this task in the dataset of

the MSM2013 task. This included the comparison of well-known tools such as ANNIE1,

OpenNLP2, Illinois Named Entity Tagger3 and Wikifier4, OpenCalais5, Stanford Named

Entity Tagger6 and Wikipedia Miner7.

Additional work by Dlugolinský et al. [Dlugolinsky et al., 2013] used the same evaluation

dataset, adding LingPipe8 to the set of assessed tools. The authors used GATE9 as the

evaluation framework considering strict and lenient matchings, depending on whether

responses were fully or partially correct, respectively. OpenCalais achieved the best

F1 scores for the LOC (0.74), MISC (0.27) and ORG(0.56) entities while Illinois NER

performed better on the PER (0.79) entity. However, LingPipe got the weakest F1 scores

in the LOC (0.30), ORG (0.07) and PER (0.35) entities. Stanford NER was the weakest

in identifying MISC (0.05) entities.

Godin et al. [Godin et al., 2013] also used the MSM2013 challenge corpus and performed

similar evaluations oriented to NER web services, such as AlchemyAPI10, DBpedia Spot-

light11, OpenCalais, and Zemanta12. Since the evaluated services use complex ontologies,

a mapping between the obtained ontologies and entity types was performed, with good

1https://gate.ac.uk/sale/tao/splitch6.html#chap:annie
2https://opennlp.apache.org
3https://cogcomp.cs.illinois.edu/page/software view/NETagger
4https://cogcomp.cs.illinois.edu/page/software view/Wikifier
5http://www.opencalais.com
6http://nlp.stanford.edu/software/CRF-NER.shtml
7http://wikipedia-miner.cms.waikato.ac.nz
8http://alias-i.com/lingpipe
9https://gate.ac.uk

10http://www.alchemyapi.com
11https://github.com/dbpedia-spotlight/dbpedia-spotlight
12http://www.zemanta.com

https://gate.ac.uk/sale/tao/splitch6.html#chap:annie
https://opennlp.apache.org
https://cogcomp.cs.illinois.edu/page/software_view/NETagger
https://cogcomp.cs.illinois.edu/page/software_view/Wikifier
http://www.opencalais.com
http://nlp.stanford.edu/software/CRF-NER.shtml
http://wikipedia-miner.cms.waikato.ac.nz
http://alias-i.com/lingpipe
https://gate.ac.uk
http://www.alchemyapi.com
https://github.com/dbpedia-spotlight/dbpedia-spotlight
http://www.zemanta.com

Chapter 3. State of the Art 38

F1 scores when using AlchemyAPI for the person (0.78) and location (0.74) type entities,

and OpenCalais for the organization (0.55) and miscellaneous (0.31) entities. Rizzo et al.

[Rizzo et al., 2012] also evaluated web services, such as Lupedia13, Saplo14, Wikimeta15

and Yahoo Content Analysis (YCA), but with focus on different kinds of well-formed

content and varying length, such as TED talks transcripts, New York Times articles and

abstracts from research papers. In fact, they evaluated the resulting NER and Disam-

biguation (NERD) framework, which unified the output results of the aforementioned

web services, supporting the fact that tools such as AlchemyAPI, OpenCalais and addi-

tionally DBpedia Spotlight perform well in well-formed contents, using formal language.

Rizzo et al. also report on the evaluation of datasets with colloquial text, namely Twit-

ter text from the MSM2013 challenge and newspaper text from the CoNLL-2003 Corpus

[Rizzo et al., 2014]. They report better NER results when using a combination of the

tested tools, achieving F1 results greater than 0.80 on he CoNLL-2003 dataset, for all

entity types and F1 results greater than 0.50 on the MSM-2013 dataset, except for the

miscellaneous type that obtained results less than 0.30.

Garcia and Gamallo [Garcia and Gamallo, 2015] report the development of a multilin-

gual NLP pipeline. To assess the performance of the presented tool, they performed

experiments with POS-tagging and NER. The POS-tagger performed slightly better

than well-known tools such as OpenNLP and Stanford NER, achieving a precision score

of 0.94 on the Brown Corpus. On the other hand, the NER module achieved F1 scores

of 0.76 and 0.59 on the IEER16 and SemCor17 Corpus, respectively.

Rodriquez et al. [Rodriquez et al., 2012] and Atdag and Labatut [Atdag and Labatut,

2013] compared different NER tools applied to different kinds of text, respectively bi-

ographical and OCR texts. Rodriguez et al. used Stanford CoreNLP, Illinois NER,

LingPipe and OpenCalais, on a set of Wikipedia biographic articles annotated with

person, location, organization and date type entities. Due to the absence of biography

datasets, the evaluated corpus was fully designed by the authors, i.e., the evaluated

corpus consisted of a series of Wikipedia articles which were annotated with the afore-

mentioned entity types. Although CoreNLP obtained the best F1 scores (0.60 and 0.44)

in two manually-annotated resources, there was not a tool that outperformed all the

13http://dbpedia.org/projects/lupedia-enrichment-service
14http://saplo.com
15https://www.w3.org/2001/sw/wiki/Wikimeta
16http://www.itl.nist.gov/iad/894.01/tests/ie-er/er 99/er 99.htm
17http://www.gabormelli.com/RKB/SemCor Corpus

http://dbpedia.org/projects/lupedia-enrichment-service
http://saplo.com
https://www.w3.org/2001/sw/wiki/Wikimeta
http://www.itl.nist.gov/iad/894.01/tests/ie-er/er_99/er_99.htm
http://www.gabormelli.com/RKB/SemCor_Corpus

Chapter 3. State of the Art 39

others in every entity type. They are rather complementary. Atdag and Labatut eval-

uated OpenNLP, Stanford CoreNLP, AlchemyAPI and OpenCalais using datasets with

the entity types person, location and organization manually annotated. They used data

from the Wiener Library, London and King’s College London’s Serving Soldier archive,

which consisted of Holocaust survivor testimonies and newsletters written for the crew

of H.M.S. Kelly in 1939. Once again, Stanford CoreNLP gave the best overall F1 results

(0.90) while OpenCalais only achieved 0.73.

3.2.3 A Review of Current Tools

In order to choose the correct tools for the job, many criteria have to be considered.

Usually good systems should be be open source, well-documented, extensible and easy

to adapt. Each tool has different features, work under different programming languages

and setups or have different learning curves. In the following list we detail common

frameworks and libraries used to develop NLP systems and, in some cases integrating

them to a machine learning pipeline. They are described and grouped in “standard”

toolkits, which means they were developed with no specific kind of text in mind, and

social network-oriented tools, which aim to be used in short messages from social net-

works.

Standard NLP toolkits:

• NLTK - The NLTK toolkit is a Python library developed within a coursed taught

at the University of Pennsylvania with good design goals in mind such as simplic-

ity, modularity and extensibility. The library is divided in independent modules

responsible for specific NLP tasks such as tokenization, stemming, tree represen-

tations, tagging, parsing and visualization. It also comes bundled with popular

corpus samples ready to be read. By default, NLTK uses the Penn Treebank Tok-

enizer, which uses regular expressions to tokenize the text. Its PoS tagger uses the

Penn Treebank tagset and is trained on the Penn Treebank corpus. The Chunker

and the NER modules are trained on the ACE corpus. It also includes modules for

text classification, providing methods for feature encoding, selection and standard

classifiers [E. Loper and S. Bird, 2002, S. Bird, 2006].

http://www.nltk.org/

Chapter 3. State of the Art 40

• Apache OpenNLP - OpenNLP is a Java library that uses machine learning

methods for common natural language tasks, such as tokenization, POS tagging,

NER, chunking and parsing. It can be used out-of-the-box since it comes bundled

with pre-trained models for different tasks ready for use. Besides, it is extensible,

has built-in support of many corpora formats and it is accessible by both appli-

cation and command line interfaces. Users can also train their own models.The

pre-trained models for English PoS tagging and chunking use the Penn Treebank

tagset. The Chunker is trained on the CoNLL-2000 dataset. The pre-trained NER

models cover the recognition of persons, locations, organizations, time, date and

percentage expressions. A classifier and evaluation metrics are also included.

• Stanford CoreNLP - The CoreNLP toolkit is a straightforward JAVA pipeline

that provides common natural language processing tasks. CoreNLP was build

with simplicity and reliability in mind, i.e., simple to set up run, since users do

not need to learn and understand complex installations and procedures seen in

other bigger and complex systems, like GATE [H. Cunningham and D. Maynard

and K. Bontcheva and V. Tablan, 2002] or UIMA [D. Ferrucci and A. Lally, 2004].

The most supported language is English, but other languages are also available C.

Manning, M. Surdeanu, J. Bauer, J. Finkel, J. Bethard and D. McClosky [2014].

Basically, the tool is fed with raw text and afterwards a series of annotator objects

add information resulting in a complete language analysis. This pipeline can then

easily be integrated in larger systems, as a component, that the user may be

developing. The CoreNLP tool performs a Penn Treebank style tokenization and

the POS module uses the Penn Treebank tagset. The NER component uses a

model trained on the CoNLL-2003 dataset.

• SpaCy - SpaCy is a library used for NLP written in Python/Cython. The main

goal is to be a reliable alternative to common toolkits like NLTK and others

that usually are more suitable for educational or research purposes. This way,

it can be used within industrial environments, like small companies, that usually

requires great speed, accuracy, documentation and concise APIs. The fact that

is written in Cython (language that compiles to C or C++) makes it faster than

other well-known tools. According to recent research SpaCy has one of the fastest

systems[Honnibal and Johnson, 2015, J. D. Choi, J. Tetreault and A. Stent, 2015].

https://opennlp.apache.org
http://stanfordnlp.github.io/CoreNLP
https://spacy.io

Chapter 3. State of the Art 41

• Pattern - The Pattern tool is a Python library that provides modules for web

mining, NLP and ML tasks. A common workflow is to use the methods to extract

data from the web (using the provided methods to access well-known APIs from

common services) and perform some processing on the data afterwards to get

results. The goal of the library is not providing methods for a single field but

rather a general cross-domain and ease-of-use functionality [T. D. Smedt and W.

Daelemans, 2012].

• GATE - GATE is a well-known architecture and flexible framework used to design

and develop natural language applications. It provides baseline methods for lan-

guage processing, including measurement of its performance and works under open

standards like JAVA and XML. The GATE frameworks stands on three types of

independent components: Language Resources (corpora, 1exicons), Processing Re-

sources (NLP algorithmic tasks, evaluation, pluggable ML implementations) and

Visual Resources. A great characteristic of the GATE framework is that the core

system is broken into smaller components that can be used, extended or replaced.

The user has a a wide range of possible configurations to work with. Besides,

the user can choose to use standard package ANNIE, which already encompasses

many common NLP tasks, or choose to create its own set of coupled components

to make a new application [H. Cunningham and D. Maynard and K. Bontcheva

and V. Tablan, 2002].

• UIMA - The UIMA framework is a distributed middleware architecture similar to

the GATE framework, used to develop NLP analysis engines that deal with large

volumes of unstructured data. Originally developed by IBM Research and now

maintained by the Apache Software Foundation, UIMA has four main modules:

Acquisition, Unstructured Information Analysis (UIA), Structured Information

Access (SIA) and Component Discovery (CD).

The acquisition module is responsible for gathering data from external sources

where web crawlers may employ this functionality. The UIA module is responsible

for processing the data through Text Analysis Engines (TAE), similar to the Pro-

cessing resources in GATE. This module is divided in smaller components, each

responsible for a NLP task. Each document is then attached to an analysis re-

port forming a structure called Common Analysis Structure (CAS). The results of

the UIA modules provide structured information (indexes, dictionaries, ontologies,

http://www.clips.ua.ac.be/pages/pattern
https://gate.ac.uk
http://uima.apache.org

Chapter 3. State of the Art 42

etc) for the SIA module, which can then be reused by the UIA module, creating a

feedback loop between these two components. This module is further divided into

semantic search, structured knowledge access and document metadata access com-

ponents. Finally, the CD module provides mechanism to find the right component

required for a specific task [D. Ferrucci and A. Lally, 2004].

• Treex - Tree is open-source and modular NLP framework written in Perl. Its

formerly purpose was to perform machine translation, but now aims to extend

this goal to other NLP tasks, such as tokenization, morphological analysis, POS

tagging, NER, among others. The Treex framework tries to avoid usual auxiliary

tasks common in other applications (reading documentation, compiling, training

models, writing scrips for data conversion, etc) by emphasizing on modularity and

reusability. The atomic unit of the framework is a block, which is a well-defined

routine with an input and an output specification that solves a specific NLP task.

This allows the creation of sequence of blocks that are applied to the data and

solve a bigger problem. Besides, different combination of blocks, create different

possible scenarios solving the same problem in different ways [M. Popel and Z.

Žabokrtskỳ, 2010].

• MontyLingua - MontyLingua is a natural language processor, written in Python

and developed in the MIT media labs, that extracts semantic information from raw

input texts, performing other middle tasks in the process, such as tokenization,

POS and chunking. A distinctive feature of MontyLingua is that it uses a Penn

Treebank Tag Set POS tagger enriched with common sense from ConceptNet, a

common-sense knowledge base [H. Liu, 2004, M. Ling, 2006].

• LinguaStream - LinguaStream is a Java platform for building processing streams,

i.e., a set of analysis components, each performing a desired task. A main feature

of LinguaStream is that allows the visualization of the design process, i.e., NLP

components may be chosen from a ”palete” and placed in a processing pipeline.

Each chosen component is configurable, that is, has a set of parameters, an input

and an output specification. LinguaStream is currently used for research and

teaching purposes as an integrated experimentation platform [F. Bilhaut and A.

Widlöcher, 2006].

http://ufal.mff.cuni.cz/treex
http://alumni.media.mit.edu/~hugo/montylingua
http://conceptnet5.media.mit.edu/
http://www.linguastream.org

Chapter 3. State of the Art 43

There are many other standard available tools that may be used to solve linguistic

problems. With a wide range of NLP tools, users can choose the right application that

satisfies his requirements such as the task at hand or the programming language . Most

of the tools are made with good ease-of-use in mind, are open-source and have a free

cost.

Social Network-Oriented Toolkits:

Following the fact that standard NLP tools perform poorly on informal and noisy text,

some tools aim to address this issue by building a customized NLP pipelines that take

in consideration the nature of these types of text. These tools are able to perform tasks

such as Tokenization and POS on tweets with greater performance than standard tools

trained on news data such as OpenNLP and Standford NLP.

• TwitterNLP - Alan Ritter’s TwitterNLP is a Python library that offers a NLP

pipeline for performing Tokenization, POS, Chunking and NER. The authors re-

duced the problem of dealing with noisy texts by developing a system based on a

set of features extracted from Twitter-specific POS taggers, a dedicated shallow

parsing logic, and the use of gazetteers generated from entities in the Freebase

knowledge base, that best match the fleeting nature of informal texts [A. Ritter,

S. Clark and O. Etzioni, 2011].

• CMU’s TweetNLP - CMU’s TweetNLP is Java tool that provides a Tokenizer

and a POS Tagger with available models, trained with a CRF model in Twitter

data, manually annotated by its authors. In addition to the typical syntactic

elements of a sentence, TweetNLP identifies content such as mentions, URLs, and

emoticons [K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. Mills, J. Eisenstein,

M. Heilman, D. Yogatama, J. Flanigan and N. Smith, 2011].

• TwitIE - The TwitIE pipeline is a plugin for the GATE framework specially tai-

lored for social media content, i.e., brief noisy text that usually contains many

mistakes, provide little context, make use of emoticons and tend not to follow

grammatical rules. The main goal of TwittIE is to extract named entities from

tweets since this is usually a hard problem to process in social media content be-

cause of its inner characteristics. On the other hand, NER is a very well studied

https://github.com/aritter/twitter_nlp
http://www.cs.cmu.edu/~ark/TweetNLP
https://gate.ac.uk/wiki/twitie.html

Chapter 3. State of the Art 44

problem for longer and well-formed texts. TwitIE reuses a set of processing com-

ponents from GATE, called ANNIE, namely the sentence splitter and the gazetteer

lists (lists of cities, organizations, days, etc), but adapts the others to the Twitter

kind of text, supporting language identification, Tokenization, normalization, PoS

tagging and NER. The TwitIE tokenizer follows the same tokenization scheme as

TwitterNLP. The PoS tagger uses an adptation of the Stanford tagger, trained on

tweets with the Penn Tree Bank tagset, with additional tags for retweets, URLs,

hashtags and user mentions K. Bontcheva, L. Derczynski, A. Funk, M. Greenwood,

D. Maynard and N. Aswani [2013].

3.2.4 Available Features in Current Tools

The presented solutions share some common characteristics and differ and innovate in

others, offering different degrees of support for feature extraction. Table 3.1 shows a

summary of the features presented.

C
h

a
p

ter
3
.

S
ta

te
o
f

th
e

A
rt

45

XXXXXXXXXSystem

Feature
Tokenization

Collocations/

Ngrams

Morphological

Analysis
POS NER Chunking Parsing

Coreference

Resolution

Sentiment

Analysis
Open IE Corpora Classification Evaluation

NLTK 3 3 3 3 3 3 3 7 7 7 3 3 3

OpenNLP 3 3 3 3 3 3 3 3 7 7 3 3 3

CoreNLP 3 3 3 3 3 3 3 3 3 3 3 3 3

SpaCy 3 7 3 3 3 3 3 7 7 7 3 7 7

Pattern 3 3 3 3 7 3 3 7 3 7 3 3 3

GATE 3 3 3 3 3 3 3 3 3 3 3 3 3

TwitIE 3 7 7 3 3 7 7 7 7 7 7 7 7

UIMA 3 3 3 3 3 3 3 3 3 3 3 3 3

Treex 3 7 3 3 3 7 3 7 7 7 7 7 7

TwitterNLP 3 7 7 3 3 3 3 7 7 7 3 3 3

TweetNLP 3 7 7 3 3 3 3 7 7 7 7 7 7

MontyLingua 3 7 3 3 3 3 7 7 7 3 7 7 7

LinguaStream 3 7 3 3 3 3 3 7 7 7 7 7 7

TextBlob 3 3 3 3 7 7 3 7 3 7 7 3 3

PyNLPl 3 3 7 7 7 7 7 7 7 7 7 7 3

PolyGlot 3 7 3 3 3 7 7 7 3 7 7 7 7

ClearNLP 3 7 3 3 3 7 3 3 7 7 7 7 7

Mate-tools 7 7 3 3 7 7 3 7 7 7 7 3 7

MITIE 3 7 7 7 3 7 7 7 7 3 7 7 7

OpenNER 3 3 7 3 3 7 3 3 3 7 7 7 7

MorphAdorner 3 7 3 3 3 7 7 7 7 7 7 7 7

CCG tools 3 7 3 3 3 3 3 3 7 7 7 7 7

CIS tools 3 7 3 3 7 7 3 3 7 7 7 7 7

NLP Compromise 3 3 7 3 7 7 7 7 7 7 7 7 7

FACTORIE 3 7 7 3 3 7 3 3 7 7 7 3 3

Freeling 3 7 3 3 3 7 3 3 7 7 7 7 7

LingPipe 3 3 3 7 7 3 7 7 3 7 7 3 3

MALLET 3 3 7 7 3 7 7 7 7 7 7 3 3

Table 3.1: Available Features

Chapter 3. State of the Art 46

As shown in Table 3.1, basic tasks such as Tokenization, Morphological Analysis, POS,

NER or Parsing are almost always supported since they are a very common part of NLP

pipelines. Other features, not so common, such as Coreference Resolution, Sentiment

Analysis or Open IE are supported by fewer systems. These features are usually more

specific and not always supported. Besides, some systems go further and provide ma-

chine learning capabilities, allowing new language models to be trained and evaluated.

We can also see that toolkits like Stanford CoreNLP and frameworks like GATE and

UIMA are very complete and flexible systems providing a wide range of features and

allowing new applications to be built on top of them such as TwitIE. Other tools focus

on single tasks and provide fewer features.

Feature extraction is an important step in ML applications. The NLP domain provides

a lot of freedom when choosing features that describe the problem, since the possible

number of features is huge. In fact, there are tookits specially designed for feature

generation, such as WCCL [A. Radziszewski, A. Wardyński and T Śniatowski, 2011]

and Fextor [B. Broda, P. Kedzia, M. Marcińczuk, A. Radziszewski, R. Ramocki and A.

Wardyński, 2013]. WCCL is a very expressive language that allows the extraction of

simple features, such as orthographic forms, lemmas, grammatical classes, among others

and complex features, such as morphological agreements. On the other hand, Fextor

starts by reading the document, iterating over its tokens, capturing their context (parts

of documents) and applying a feature extraction to each element of interest (tokens,

sentences, etc), reporting the end results.

Chapter 4

Performance of Different NLP

Toolkits in Formal and Social

Media Text

In this chapter, we assess a range of natural language processing toolkits with their

default configuration, while performing a set of standard tasks (e.g. tokenization, POS

tagging, chunking and NER), in popular datasets that cover newspaper and social net-

work text. The obtained results are analyzed and, while we could not decide on a single

toolkit, this exercise was very helpful to narrow our choice.

Performance of Different NLP Toolkits in Formal and Social

Media Text

There are many toolkits available for performing common natural language processing

tasks, which enable the development of more powerful applications without having to

start from scratch. They enable to perform NLP tasks, such as tokenization, PoS tagging,

chunking or NER. Choosing which tool to use, out of the range of available tools, may

depend on several aspects, including the kind and source of text, where the level, formal

or informal, may influence the performance of such tools. Moreover, users have also

to select the most suitable set of tools that meets their specific purpose, such as the

community of users, frequency of new versions and updates, support, portability, cost of

47

Chapter 4. Performance of Different NLP Toolkits in Formal and Social Media Text 48

integration, programming language, the number of covered tasks, and, of course, their

performance.

Before moving on to the relevance detection, we assess a range of natural language

processing toolkits with their default configuration, while performing a set of standard

tasks (tokenization, POS tagging, chunking and NER), in popular datasets that cover

newspaper and social network text. Conclusions taken from this comparison will be

considered in the next stage of this work.

Although the majority of the tested tools could be trained with specific corpora and

/ or for a specific purpose, we focused on comparing the performance of their default

configuration, which means that we used the available pre-trained models for each tool

and target task. This situation is especially common for users that either do not have

experience, time or available data for training the tools for a specific purpose. This

comparison is helpful to narrow our choice, supports our final decision and is also helpful

for other developers and researchers in need of making a similar selection.

4.1 Datasets

In order to evaluate the performance of the different NLP toolkits and determine the

best performing ones, the same criteria must be followed, including the same metrics and

manually-annotated gold standard data. Testing tools in the same tasks and scenarios

makes comparison fair and more reliable. For this purpose, we relied on well-known

datasets widely used in NLP and text classification research, not only in the evalua-

tion of NLP tools, but also for training new models. More precisely, we used different

gold standard datasets that cover different kinds of text – newspaper and social media.

Regarding newspaper text, we used a collection of news wire articles from the Reuters

Corpus1, previously used in the shared task of the 2003 edition of the CoNLL conference.

The POS and chunking annotations of this dataset were obtained using a memory-based

MBT tagger [Daelemans et al., 1996]. The named entities were manually annotated at

the University of Antwerp [Tjong Kim Sang and De Meulder, 2003].

1http://trec.nist.gov/data/reuters/reuters.html

http://trec.nist.gov/data/reuters/reuters.html

Chapter 4. Performance of Different NLP Toolkits in Formal and Social Media Text 49

In order to represent social and more informal text, we first used the annotated data

from Alan Ritter’s Twitter corpus2, with manually tokenized, POS-tagged and chunked

Twitter posts, also with annotated named entities. The collection of Twitter posts used

in the MSM 2013 workshop3, where named entities are annotated, was also used as a

gold standard for social media text.

The POS tags of the CoNLL-2003 dataset follow the Penn Treebank style4. Alan Ritter’s

corpus follows the same format, with the same POS-tags and additional specific tags

for retweets, @usernames, #hashtags, and urls. For the chunk tags, the format I|O|B-

TYPE is used in both datasets. This is interpreted as: the token is inside (I), in

the beginning (B) of a following chunk of the same type or outside (O) of a chunk

phrase [Ramshaw and Marcus, 1995]. The named entities in the CoNLL-2003 dataset

are annotated using four entity types, namely Location (LOC), Organization (ORG),

Person (PER) and Miscellaneous (MISC). In Alan Ritter’s corpus, entity types are not

exactly the same, so they had to be converted, as we mention further on this section.

The #MSM2013 corpus only contains annotated named entities and their types. To

ease experimentation, this corpus was converted to the same format as the other two.

Table 4.1 illustrates the annotation format for the experiments. Table 4.2 shows some

numerical characteristics of the used datasets.

Token POS Syntactic Chunk Named Entity

Only RB B-NP O

France NNP I-NP LOC

and CC I-NP O

Britain NNP I-NP LOC

backed VBD B-VP O

Fischler NNP B-NP PER

’s POS B-NP O

proposal NN I-NP O

. . O O

Table 4.1: Example of the Annotated Data Format

2https://github.com/aritter/twitter nlp/tree/master/data/annotated
3http://oak.dcs.shef.ac.uk/msm2013/challenge.html
4https://www.ling.upenn.edu/courses/Fall 2003/ling001/penn treebank pos.html

https://github.com/aritter/twitter_nlp/tree/master/data/annotated
http://oak.dcs.shef.ac.uk/msm2013/challenge.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Chapter 4. Performance of Different NLP Toolkits in Formal and Social Media Text 50

Dataset Documents Tokens Average Tokens per Document

CoNLL (Reuter Corpus) 946 203621 215

Twitter (Alan Ritter) 2394 46469 19

#MSM2013 2815 52124 19

Table 4.2: Dataset properties

It is clear that the Twitter datasets (Alan Ritter and #MSM2013) have a greater number

of documents with short sentences. On the other hand, the CoNLL dataset has longer

and more complex sentences. Tables 4.3 and 4.4 show the distribution of the POS

and chunk tags, respectively for Alan Ritter’s and CoNLL-2003 corpora. For the POS

tags, only those that account for more than one percent at least in one of the two

datasets, excluding punctuation marks, are shown. Noun phrases (NP), prepositional

phrases (PP) and verbal phrases (VP) are the most common chunks in both datasets.

Chapter 4. Performance of Different NLP Toolkits in Formal and Social Media Text 51

Dataset

Twitter (Alan Ritter) CoNLL (Reuter Corpus) Description

CC 305 (2.01 %) 3653 (1.79 %) Coordinating conjunction

CD 268 (1.76 %) 19704 (9.68 %) Cardinal number

DT 825 (5.43 %) 13453 (6.61 %) Determiner

IN 1091 (7.18 %) 19064 (9.36 %) Preposition or subordinating conjunction

JJ 670 (4.41 %) 11831 (5.81 %) Adjective

MD 181 (1.19 %) 1199 (0.59 %) Modal

NN 1931 (12.72 %) 23899 (11.74 %) Noun, singular or mass

NNP 1159 (7.63 %) 34392 (16.89 %) Proper noun, singular

NNS 393 (2.59 %) 9903 (4.86 %) Noun, plural

PRP 1106 (7.28 %) 3163 (1.55 %) Personal pronoun

PRP$ 234 (1.54 %) 1520 (0.75 %) Possessive pronoun

RB 680 (4.48 %) 3975 (1.95 %) Adverb

RT 152 (1.00 %) 0 Retweet

TO 264 (1.74 %) 3469 (1.70 %) to

UH 493 (3.25 %) 30 (0.01 %) Interjection

URL 183 (1.21 %) 0 Url

USR 464 (3.06 %) 0 User

VB 660 (4.35 %) 4252 (2.09 %) Verb, base form

VBD 306 (2.02 %) 8293 (4.07 %) Verb, past tense

VBG 303 (2.00 %) 2585 (1.27 %) Verb, gerund or present participle

VBN 140 (0.92 %) 4105 (2.02 %) Verb, past participle

VBP 527 (3.47 %) 1436 (0.71 %) Verb, non-3rd person singular present

VBZ 342 (2.25 %) 2426 (1.19 %) Verb, 3rd person singular present

Others 908 (5.98%) 10478 (5.15 %)

Table 4.3: Datasets with PoS Tags

Chapter 4. Performance of Different NLP Toolkits in Formal and Social Media Text 52

Dataset

Twitter (Alan Ritter) CoNLL (Reuter Corpus) Description

B-ADJP 241 (1.58 %) 2 (0.00 %) Begins an adjective phrase

B-ADVP 535 (3.52 %) 22 (0.01 %) Begins an adverb phrase

B-CONJP 2 (0.01 %) 0 Begins a conjunctive phrase

B-INTJ 384 (2.52 %) 0 Begins an interjection

B-NP 3992 (26.24 %) 3777 (1.85 %) Begins a noun phrase

B-PP 1027 (6.75 %) 254 (0.12 %) Begins a prepositional phrase

B-PRT 109 (0.72 %) 0 Begins a particle

B-SBAR 103 (0.68 %) 8 (0.00 %) Begins a subordinating clause

B-VP 1884 (12.39 %) 163 (0.08 %) Begins a verb phrase

I-ADJP 86 (0.57 %) 1374 (0.67 %) Is inside an adjective phrase

I-ADVP 66 (0.43 %) 2573 (1.35 %) Is inside an adverb phrase

I-CONJP 2 (0.01 %) 70 (0.03 %) Is inside a conjunctive phrase

I-INTJ 124 (0.82 %) 60 (0.03 %) Is inside an interjection

I-LST 0 36 (0.02 %) Is inside a list marker

I-NP 2686 (17.66 %) 120255 (59.06 %) Is inside a noun phrase

I-PP 10 (0.07 %) 18692 (9.18 %) Is inside a prepositional phrase

I-PRT 0 527 (0.26 %) Is inside a particle

I-SBAR 5 (0.03 %) 1280 (0.63 %) Is inside a subordinating clause

I-VP 842 (5.54 %) 26702 (13.11 %) Is inside verb phrase

O 27646 (20.47 %) 3113 (13.58 %) Is outside of any chunk.

Table 4.4: Datasets with Chunk Tags

For the NER evaluation, we stripped the IOB tags from the datasets whenever they were

present, and merged them in a single entity tag, i.e., different tags such as B-LOC and

I-LOC became simply LOC. Besides making comparison easier, this was made due to

some noticed inconsistencies on the usage of I’s and B’s. Table 4.5 shows the distribution

of the named entities in all of the used datasets.

Chapter 4. Performance of Different NLP Toolkits in Formal and Social Media Text 53

Dataset

Twitter (Alan Ritter) CoNLL (Reuter Corpus) #MSM2013

COMPANY 207 (0.45 %) 0 0

FACILITY 209 (0.45 %) 0 0

GEO-LOC 325 (0.70 %) 0 0

LOC 0 8297 (4.07%) 795 (1.53 %)

MISC 0 4593 (2.26%) 511 (0.98 %)

MOVIE 80 (0.17 %) 0 0

MUSICARTIST 116 (0.25 %) 0 0

ORG 0 10025 (4.92 %) 842 (1.62 %)

OTHER 545 (1.39 %) 0 0

PERSON 664 (1.43 %) 11128 (5.47 %) 2961 (5.68 %)

PRODUCT 177 (0.38 %) 0 0

SPORTSTEAM 74 (0.16 %) 0 0

TVSHOW 65 (0.14 %) 0 0

O 44007 (94.70 %) 169578 (83.28 %) 47015 (90.20 %)

Table 4.5: Datasets with NER Tags

We recall that the entity types in Alan Ritter’s corpus are more and different than the

other two. So, in order to enable comparison in the same lines, additional entity types

were considered as alternative tags for one of the types covered by the CoNLL-2003

dataset: LOC, MISC, ORG and PER. Table 4.6 shows the new entities distribution

after performing the following mapping:

• FACILITY and GEO-LOC became LOC

• MOVIE, TVSHOW and OTHER became MISC

• COMPANY, PRODUCT and SPORTSTEAM became ORG

• PERSON, MUSICARTIST became PER.

This mapping considered the annotation guidelines of the CoNLL-2003 shared task5.

5http://www.cnts.ua.ac.be/conll2003/ner/annotation.txt

http://www.cnts.ua.ac.be/conll2003/ner/annotation.txt

Chapter 4. Performance of Different NLP Toolkits in Formal and Social Media Text 54

Dataset

Twitter (Alan Ritter) CoNLL (Reuter Corpus) #MSM2013

LOC 534 (1.15 %) 8297 (4.07 %) 795 (1.53 %)

MISC 690 (1.48 %) 4593 (2.26 %) 511 (0.98 %)

ORG 458 (0.99 %) 10025 (4.92 %) 842 (1.62 %)

PER 780 (1.68 %) 11128 (5.47 %) 2961 (5.68 %)

O 44007 (94.70 %) 169578 (83.28 %) 47015 (90.20 %)

Table 4.6: Dataset with Joint NER Tags

4.2 Addressed Tasks and Compared Tools

In order to evaluate how good standard NLP tools perform against different kinds of text,

such as noisy text from social networks and formal text from newspapers, we performed

a set of experiments where the performance in common NLP tasks was analysed. The

addressed tasks were tokenization, POS-tagging, chunking and NER, as described

in section 2.2.3.

The tools compared in this phase were trained for English and are open, well-known

and widely used by the NLP community. Moreover, they were developed either in Java

or Python, which, nowadays, are probably the two languages more frequently used to

develop NLP applications and for which there is a broader range of available toolkits.

The compared tools were the following: NLTK toolkit6, Apache OpenNLP7, Stan-

ford CoreNLP8, Pattern9, Alan Ritter’s TwitterNLP10,CMU’s TweetNLP11

and TwitIE12, as described in section 3.2.3

4.3 Comparison Results

This section reports on the results obtained when performing the addressed tasks on

the gold standard datasets, presented earlier, using each toolkit. Tables 4.7, 4.8, 4.9,

4.10 and 4.11 show the precision (P), the recall (R) and the F1-scores for each scenario.

6http://www.nltk.org
7https://opennlp.apache.org
8http://stanfordnlp.github.io/CoreNLP
9http://www.clips.ua.ac.be/pages/pattern

10https://github.com/aritter/twitter nlp
11http://www.cs.cmu.edu/∼ark/TweetNLP
12https://gate.ac.uk/wiki/twitie.html

http://www.nltk.org
https://opennlp.apache.org
http://stanfordnlp.github.io/CoreNLP
http://www.clips.ua.ac.be/pages/pattern
https://github.com/aritter/twitter_nlp
http://www.cs.cmu.edu/~ark/TweetNLP
https://gate.ac.uk/wiki/twitie.html

Chapter 4. Performance of Different NLP Toolkits in Formal and Social Media Text 55

The presented results are macro averages, i.e., we computed the precision, recall and

F1 for each document (tweet or news) and then averaged the results. The standard

deviations associated with the computed macro-averages (σ) are also presented. Micro

averages were not computed because we were more interested in assessing the toolkits

performance in different documents and not to use the whole corpus as a large document,

which would lower the impact of less frequent tags.

More precisely, each table targets a different task, lines have the results for each tool

and there are three columns per corpus (P, R and F1). Table 4.7 targets tokenization,

table 4.8 POS-tagging, and table 4.9 chunking. Tables 4.10 and 4.11 show two different

NER results: entity identification (NER) only considers the delimitation of a named

entities, while entity classification (hereafter, NEC) also considers its given type. Table

4.11 has an additional line with the results of the best performing system that par-

ticipated in the CoNLL-2003 shared task R. Florian, A. Ittycheriah, H. Jing and T.

Zhang [2003], which combined four different classifiers (robust linear classifier, maxi-

mum entropy, transformation-based learning and a hidden Markov model), resulting in

F1 = 89% in named entity classification (NEC).

Task Tokenization

Data set CoNLL Alan Ritter - Twitter
HH

HHH
HHHH

Tool

Metric
P ± σ R ± σ F1 ± σ P ± σ R ± σ F1 ± σ

NLTK 0.95 ± 0.11 0.96± 0.10 0.95 ± 0.11 0.83 ± 0.14 0.91 ± 0.09 0.87 ± 0.12

OpenNLP 0.99 ± 0.02 0.99 ± 0.01 0.99 ± 0.02 0.92 ± 0.11 0.96 ± 0.06 0.94 ± 0.08

CoreNLP 0.73 ± 0.31 0.73 ± 0.31 0.73 ± 0.31 0.93 ± 0.13 0.95 ± 0.11 0.94 ± 0.12

Pattern 0.42 ± 0.30 0.41 ± 0.29 0.42 ± 0.29 0.76 ± 0.21 0.78 ± 0.20 0.77 ± 0.20

TweetNLP 0.97± 0.05 0.98 ± 0.02 0.98 ± 0.04 0.96 ± 0.07 0.98 ± 0.05 0.97 ± 0.06

TwitterNLP 0.95 ± 0.10 0.97 ± 0.09 0.96 ± 0.10 0.96 ± 0.07 0.97 ± 0.05 0.96 ± 0.06

TwitIE 0.85 ± 0.15 0.93 ± 0.11 0.89 ± 0.14 0.83 ± 0.16 0.89 ± 0.11 0.86 ± 0.13

Table 4.7: Tokenization Performance Results

Chapter 4. Performance of Different NLP Toolkits in Formal and Social Media Text 56

Task PoS Tagging

Data set CoNLL Alan Ritter - Twitter
HHH

HHH
HHH

Tool

Metric
P ± σ R ± σ F1 ± σ P ± σ R ± σ F1 ± σ

NLTK 0.65 ± 0.19 0.71 ± 0.18 0.68 ± 0.18 0.65 ± 0.19 0.71 ± 0.18 0.68 ± 0.18

OpenNLP 0.88 ± 0.10 0.88 ± 0.09 0.88 ± 0.10 0.70 ± 0.18 0.73 ± 0.17 0.71 ± 0.17

CoreNLP 0.67 ± 0.29 0.67 ± 0.29 0.67 ± 0.29 0.70 ± 0.19 0.71 ± 0.18 0.71 ± 0.18

Pattern 0.36 ± 0.24 0.35 ± 0.24 0.35 ± 0.24 0.61 ± 0.21 0.62 ± 0.21 0.61 ± 0.20

TweetNLP 0.83 ± 0.10 0.84 ± 0.09 0.84 ± 0.09 0.94 ± 0.08 0.96 ± 0.06 0.95 ± 0.07

TwitterNLP 0.83 ± 0.15 0.84 ± 0.15 0.83 ± 0.15 0.92 ± 0.11 0.93 ± 0.11 0.92 ± 0.11

TwitIE 0.78 ± 0.16 0.85 ± 0.12 0.82 ± 0.14 0.78 ± 0.17 0.84 ± 0.13 0.81 ± 0.14

Table 4.8: PoS Performance Results

Task Chunking

Data set CoNLL Alan Ritter - Twitter
HH

HHH
HHHH

Tool

Metric
P ± σ R ± σ F1 ± σ P ± σ R ± σ F1 ± σ

NLTK 0.70 ± 0.10 0.71 ± 0.10 0.71 ± 0.10 0.51 ± 0.16 0.56 ± 0.16 0.54 ± 0.16

OpenNLP 0.83 ± 0.13 0.83 ± 0.12 0.83 ± 0.12 0.44 ± 0.34 0.46 ± 0.36 0.45 ± 0.39

CoreNLP n/a n/a n/a n/a n/a n/a

Pattern 0.33 ± 0.22 0.32 ± 0.21 0.33 ± 0.21 0.54 ± 0.21 0.56 ± 0.20 0.55 ± 0.20

TweetNLP n/a n/a n/a n/a n/a n/a

TwitterNLP 0.82 ± 0.13 0.84 ± 0.12 0.83 ± 0.13 0.90 ± 0.12 0.91 ± 0.11 0.90 ± 0.11

TwitIE n/a n/a n/a n/a n/a n/a

Table 4.9: Chunking Performance Results

Task NER

Data set CoNLL Alan Ritter - Twitter
H
HHH

HHH
HH

Tool

Metric
P ± σ R ± σ F1 ± σ P ± σ R ± σ F1 ± σ

NLTK 0.88 ± 0.12 0.89 ± 0.11 0.89 ± 0.11 0.77 ± 0.16 0.84 ± 0.13 0.80 ± 0.15

OpenNLP 0.88 ± 0.09 0.88 ± 0.08 0.88 ± 0.08 0.85 ± 0.14 0.90 ± 0.11 0.87 ± 0.12

CoreNLP 0.70 ± 0.30 0.70 ± 0.30 0.70 ± 0.30 0.87 ± 0.15 0.89 ± 0.14 0.88 ± 0.15

Pattern n/a n/a n/a n/a n/a n/a

TweetNLP n/a n/a n/a n/a n/a n/a

TwitterNLP 0.88 ± 0.11 0.89 ± 0.10 0.88 ± 0.11 0.96 ± 0.07 0.97 ± 0.05 0.97 ± 0.06

TwitIE 0.74 ± 0.16 0.80 ± 0.14 0.77 ± 0.15 0.77 ± 0.17 0.83 ± 0.14 0.80 ± 0.15

Table 4.10: NER Performance Results

Chapter 4. Performance of Different NLP Toolkits in Formal and Social Media Text 57

Task NEC

Data set CoNLL Alan Ritter - Twitter
HHH

HHH
HHH

Tool

Metric
P ± σ R ± σ F1 ± σ P ± σ R ± σ F1 ± σ

NLTK 0.84 ± 0.12 0.84 ± 0.12 0.84 ± 0.12 0.75 ± 0.17 0.83 ± 0.14 0.79 ± 0.15

OpenNLP 0.87 ± 0.10 0.87 ± 0.09 0.87 ± 0.09 0.85 ± 0.15 0.89 ± 0.12 0.87 ± 0.13

CoreNLP 0.70 ± 0.30 0.70 ± 0.30 0.70 ± 0.30 0.87 ± 0.16 0.89 ± 0.14 0.88 ± 0.15

Pattern n/a n/a n/a n/a n/a n/a

TweetNLP n/a n/a n/a n/a n/a n/a

TwitterNLP 0.84 ± 0.13 0.85 ± 0.12 0.85 ± 0.12 0.95 ± 0.08 0.96 ± 0.07 0.95 ± 0.08

TwitIE 0.73 ± 0.17 0.80 ± 0.14 0.76 ± 0.16 0.77 ± 0.17 0.84 ± 0.14 0.80 ± 0.15

Florian et al. 0.89 0.89 0.89 ± 0.70 n/a n/a n/a

Table 4.11: NEC Performance Results

On the CoNLL dataset, which uses formal language, standard toolkits perform well.

OpenNLP excels with F1 = 99% in tokenization, 88% in POS-tagging and 83% in

chunking. In the NER task, NLTK (89%) and OpenNLP (88%) performed closely.

TwitterNLP also performed well in this dataset. This is not that surprising if we add

that the CoNLL-2003 dataset was one of the corpora TwitterNLP was trained on A.

Ritter, S. Clark and O. Etzioni [2011], and it is probably also tuned for this corpus.

As expected, the performance of standard toolkits, developed with formal text in mind,

decreases when used in the social network corpora. This difference is between 5-8%

for tokenization, 17% for POS-tagging, 17-40% for chunking, or 5-18% for NER. This

is not the case of Pattern, which performs poorly in the CoNLL corpus but improves

significantly when tokenizing, PoS tagging and chunking the Twitter corpora. Although

not developed specifically for Twitter, OpeNLP and CoreNLP still obtain interesting

results for tokenization and NER in its corpus (F1 > 80%).

Also as expected, in the Twitter corpus, the Twitter-oriented toolkits performed bet-

ter than the others. TweetNLP was the best in the tokenization (97%) and POS-

tagging (95%) tasks. TwitterNLP performed closely (96% and 92%). In the case of

TwitIE, the difference of performance in different types of text was not relevant. Once

again, it should be highlighted that TwitterNLP was trained with the Twitter corpus,

so this comparison is not completely fair. This is also why we used an additional cor-

pus, #MSM2013, which covers social network text. The results of the NER task in this

corpus, shown in table 4.12, confirm the good performance of TwitterNLP. In the last

Chapter 4. Performance of Different NLP Toolkits in Formal and Social Media Text 58

line of the previous table, we also present the official results of the best system that par-

ticipated in the #MSM2013 Concept Extraction Task, Habib et al.[Habib et al., 2013],

which apparently underperformed TwitterNLP. Habib et al. combined Conditional Ran-

dom Fields with Support Vector Machines for recognition and, for classification, each

entity was disambiguated and linked to its Wikipedia article, where the category was

extracted from.

Data set #MSM2013 - Twitter

Task NER NEC
HH

HHH
HHHH

Tool

Metric
P ± σ R ± σ F1 ± σ P ± σ R ± σ F1 ± σ

NLTK 0.83 ± 0.16 0.83 ± 0.16 0.83 ± 0.14 0.85 ± 0.14 0.85 ± 0.15 0.85 ± 0.13

OpenNLP 0.83 ± 0.14 0.86 ± 0.14 0.85 ± 0.14 0.84 ± 0.14 0.86 ± 0.13 0.85 ± 0.13

CoreNLP 0.73 ± 0.19 0.83 ± 0.16 0.78 ± 0.16 0.73 ± 0.19 0.84 ± 0.16 0.78 ± 0.16

Pattern n/a n/a n/a n/a n/a n/a

TweetNLP n/a n/a n/a n/a n/a n/a

TwitterNLP 0.90 ± 0.12 0.90 ± 0.12 0.90 ± 0.12 0.91 ± 0.11 0.91 ± 0.11 0.91 ± 0.11

TwitIE 0.61 ± 0.20 0.73 ± 0.18 0.66 ± 0.18 0.61 ± 0.20 0.73 ± 0.17 0.66 ± 0.18

Habib et al. 0.72 0.80 0.76 0.65 0.73 0.69

Table 4.12: NER/NEC Performance Results on the #MSM2013 Data set

4.4 Discussion

The results suggest that OpenNLP is the best choice for news text, and TwitterNLP for

social media text. Giving the fact that we are mostly dealing with social media text, in

this work we decided to use TweetNLP for the extraction of PoS tags and TwitterNLP for

the extraction of chunking and name entitiy tags, since they provided the best results.

Although the latter result was biased on the Twitter corpus, where TwitterNLP was

trained on, we also tested it on another corpus, where it got the best results. It should

be noticed that we ended up using datasets that were more appropriate for specific tasks.

For instance, although its text of the CoNLL-2003 dataset is tokenized, POS-tagged, and

chunked, it was specifically developed for a NER shared task. On the other hand, we did

not use the CoNLL-2000, developed for a chunking shared task. Although this dataset

was used to train some of the OpenNLP models, we should also consider its results in

the future.

Chapter 4. Performance of Different NLP Toolkits in Formal and Social Media Text 59

As expected, standard toolkits perform better in formal texts, while Twitter-oriented

tools got better results in social media text. Besides helping us to make a selection,

we believe that these results might be useful for potential users willing to select the

most appropriate tools for their specific purposes, especially if they do not have time or

expertise to train new models. Of course, we did not use all the available tools, especially

those available as web services, but we tried to cover an acceptable range of widely used

toolkits that cover several NLP tasks and developed in two programming languages

with a large community – Java and Python. We also regard that, with more available

manually annotated datasets, either with formal or informal language, we could always

re-train some of the available models and possibly increase the performance achieved

with most of the tested tools.

These initial experiments helped laying the ground work for the next stage of this work,

i.e., they helped extracting quality features needed for the relevance classification tasks.

Chapter 5

Experimental Analysis

This chapter describes the experiments carried towards our main goal. In the first

section, an overview of the REMINDS project is presented as well as the specific con-

tribution of this work. The second section describes the used dataset. The remaining

sections detail the experiments performed for the automatic detection of relevant so-

cial media posts, where results are analyzed and discussed. In section 5.3 we perform

baseline experiments using single sets of features and analyse their results. After that,

in section 5.4 we try to improve the results by applying a set of different feature se-

lection/reduction methods. Finally, in section 5.5 we present a two-tier meta-classifier

which uses the predictions of the first layer of classifiers as journalistic features to predict

relevance and the results. The results are analyzed and discussed.

Classification of Social Media Posts

The REMINDS system has at its classifier’s core a relevance filter, i.e., it classifies social

content based on its predicted relevance or irrelevance. Although it predicts potential

relevance, it is based on journalistic factors. In order to achieve this, the following

journalistic parameters should be considered:

• Interesting - Is the topic of the post interesting ?

• Controversy - Is the topic of the post controversial ?

60

Chapter 5. Experimental Analysis 61

• Meaningfulness - Is the information in the post meaningful for the majority of the

people or is it private or personal information ?

• Novelty - Is the information in the post new or already known ?

• Reliability - Is the information in the post reliable ?

• Scope - Does the information in the post have a wide or narrow scope ?

Figure 5.1 shows the whole REMINDS system in a diagram.

In the first stage, data from social networks is collected (1). Well-known platforms like

Twitter and Facebook are be the primary sources of social content. The raw social text

will then be manually annotated by people using a crowdsourcing technique. In order

to achieve this, the documents are manually annotated (2). After this manual process

is completed, linguistic features are extracted automatically from the texts (3). There

may be data processing afterwards in order to improve the performance of the generated

model (4). This stage is very important because it affects directly the performance of

the chosen learning algorithm. There is an intermediate stage where a predictive model

is generated through a learning algorithm (4, 5). In this case, a supervised model will

be trained. NLP features will be used to extract the inputs for the ML algorithm. For

instance, we may use probabilistic methods such as Bayesian Networks, search methods

such as Decision Trees, optimization methods such as Support Vector Machines or even

a model that combines different classifiers.

In the next phase, the model is tested against new data and is used to predict new

relevant information. Besides, it is also important to evaluate the model using common

evaluation metrics, such as precision, recall and F1, in order to extract conclusions about

the performance of the model. The feedback obtained in this phase can then be used

make improvements in the previous phases.

This work focus on the later phases of the process, that is, feature extraction and

selection (3, 4), training of a predictive model (5, 6) using linguistic features extracted

in the previous phase and testing and evaluation of the created model (7, 8). The end

result is a standalone classifier capable of detecting relevance from documents which

might be integrated in a system.

Chapter 5. Experimental Analysis 62

F
ig
u
r
e
5
.1
:

S
y
st

em
O

v
er

v
ie

w

Chapter 5. Experimental Analysis 63

5.1 Dataset

Our experiments were supported by textual messages gathered from Twitter and Face-

book, using their official APIs, in the period between the 16th to the 20th of April, 2016.

It is important to note that, during this process, text quality was preferred over text

quantity.

Tweets were retrieved with the following search queries: (i) “refugees” and ”Syria”;

(ii) “elections” and “US”; (iii) “Olympic Games”; (iv) “terrorism”; (v) “Daesh”; (vi) “Ref-

erendum” and “UK” and “EU”. The previous were selected due to their connection with

topics currently discussed on the news and social networks. Retweets were discarded.

Regarding Facebook, posts and comments were gathered from the official pages of sev-

eral international news websites, namely Euronews, CNN, Washington Post, Financial

Times, New York Post, The New York Times, BBC News, The Telegraph, The Guardian,

The Huffington Post, Der Spiegel International, Deutsche Welle News, Pravda and Fox

News. While most of the posts would be relevant, comments would contain more di-

verse information, from this point of view. This would ensure that relevant and irrelevant

information was kept. Also, only documents that met the following conditions were ac-

tually used: (i) between 8 and 100 words; (ii) written in English; (iii) not profanity

words; (iv) contained all the words from at least on of the search queries.

In days following their collection, the collected documents were uploaded to the Crowd-

Flower1 platform where an annotation task was launched. Given a post, volunteer con-

tributors were asked the following questions, using a 5-point Likert scale and regarding

journalistic criteria: (a) interesting, in opposition to not interesting (Interest) ; (b) con-

troversial or not (Controversy); (c) meaningful for a general audience in opposition to

private/personal (Meaningfulness); (d) new, in opposition to already known (Novelty);

(e) reliable or unreliable (Reliability); (f) wide or narrow scope (Scope); and (g) relevant

or irrelevant (Relevance). To ensure some degree of quality, the texts were classified by

at least three different contributors, all of them with the top Crowdflower level (3), either

from USA or UK, in order to control cultural differences. This monitoring was performed

another team, belonging to the main project, responsible for the data collection.

1https://www.crowdflower.com/

https://www.crowdflower.com/

Chapter 5. Experimental Analysis 64

To make our task a binary classification problem, each post had to be classified either as

relevant or irrelevant. For that purpose, the median of the answers given by the different

contributors was computed and, if it was 4 or 5, the post was considered to be relevant,

otherwise, irrelevant. The same method was employed for the others journalistic criteria.

Tables 5.1,5.2,5.3,5.4,5.5,5.6 details the number of documents grouped by social network,

query and label.

#Facebook Posts #Facebook Comments #Tweets

Search Word Relevant Irrelevant Relevant Irrelevant Relevant Irrelevant

“Refugees” + “Syria” 20 4 30 13 55 23
“Elections” + “US’ 21 8 21 14 29 39
“Olympic Games” 2 0 4 1 22 114
“Terrorism” 53 16 138 88 59 53
“Daesh” 2 0 14 12 26 30
“Referendum” + “UK” + “EU” 4 0 7 1 14 4

Table 5.1: Documents grouped by source, relevance label and query

#Facebook Posts #Facebook Comments #Tweets

Search Word Interesting Uninteresting Interesting Uninteresting Interesting Irrelevant

“Refugees” + “Syria” 21 3 30 13 55 23
“Elections” + “US’ 17 12 21 14 27 41
“Olympic Games” 2 0 5 0 21 115
“Terrorism” 57 12 163 63 67 45
“Daesh” 2 0 18 8 24 32
“Referendum” + “UK” + “EU” 3 1 6 2 13 5

Table 5.2: Documents grouped by source, interestingness label and query

#Facebook Posts #Facebook Comments #Tweets

Search Word Controversial Uncontroversial Controversial Uncontroversial Controversial Uncontroversial

“Refugees” + “Syria” 16 8 38 5 53 25
“Elections” + “US’ 10 19 20 15 32 36
“Olympic Games” 1 1 4 1 9 127
“Terrorism” 44 25 186 40 74 38
“Daesh” 2 0 17 9 26 30
“Referendum” + “UK” + “EU” 1 3 7 1 9 9

Table 5.3: Documents grouped by source, controversialness label and query

#Facebook Posts #Facebook Comments #Tweets

Search Word Meaningful Meaningless Meaningful Meaningless Meaningful Meaningless

“Refugees” + “Syria” 19 5 32 11 56 22
“Elections” + “US’ 25 4 21 14 32 36
“Olympic Games” 2 0 4 1 36 100
“Terrorism” 59 10 152 74 62 50
“Daesh” 2 0 18 8 26 30
“Referendum” + “UK” + “EU” 4 0 7 1 15 3

Table 5.4: Documents grouped by source, meaningfulness label and query

#Facebook Posts #Facebook Comments #Tweets

Search Word New Old New Old New Old

“Refugees” + “Syria” 17 7 11 32 38 40
“Elections” + “US’ 12 17 13 22 28 40
“Olympic Games” 2 0 5 0 54 82
“Terrorism” 32 37 73 153 53 59
“Daesh” 1 1 7 19 29 27
“Referendum” + “UK” + “EU” 2 2 2 6 12 6

Table 5.5: Documents grouped by source, novelty label and query

Chapter 5. Experimental Analysis 65

#Facebook Posts #Facebook Comments #Tweets

Search Word Reliable Unreliable Reliable Unreliable Reliable Unreliable

“Refugees” + “Syria” 18 6 13 30 40 38
“Elections” + “US’ 14 15 12 23 16 52
“Olympic Games” 2 0 2 3 43 93
“Terrorism” 41 28 61 165 34 78
“Daesh” 1 1 9 17 13 43
“Referendum” + “UK” + “EU” 4 0 1 7 10 8

Table 5.6: Documents grouped by source, reliability label and query

#Facebook Posts #Facebook Comments #Tweets

Search Word Wide Narrow Wide Narrow Wide Narrow

“Refugees” + “Syria” 15 9 21 22 39 39
“Elections” + “US’ 15 14 12 23 16 52
“Olympic Games” 1 1 4 1 19 117
“Terrorism” 41 28 87 139 41 71
“Daesh” 2 0 10 16 15 41
“Referendum” + “UK” + “EU” 3 1 0 8 9 9

Table 5.7: Documents grouped by source, scope label and query

In total, the data set contained 130 Facebook posts (FB post), 343 Facebook com-

ments (FB comment) and 468 tweets, in a total of 941 instances. Of those, 521 text

fragments were annotated as relevant, 420 as irrelevant, 552 as interesting, 389 as unin-

teresting, 549 as controversial, 392 as uncontroversial, 572 as meaningful, 369 as mean-

ingless, 391 as new, 550 as old, 334 as reliable, 607 as unreliable, 350 as wide and 591

as narrow.

Table 5.8 shows selected messages from the dataset and their source. For the same

selected messages, Table 5.9 shows the answers on their labels and the resulting class.

Content Source No. of Post

Putin: Turkey supports terrorism and stabs Russia in

the back

FB post 1

Canada to accept additional 10,000 Syrian refugees Tweet 2

Lololol winning the internet and stomping out daesh

#merica

Tweet 3

Comparing numbers of people killed by terrorism with

numbers killed by slipping in bath tub is stupid as eff.

It totally ignores the mal-intent behind terrorism, its

impact on way of life and ideology.

FB comment 4

Table 5.8: Examples of messages in the dataset.

Chapter 5. Experimental Analysis 66

Criteria
Answers

Class No. of Post
A1 A2 A3

Relevance

5 4 5 Relevant 1

4 5 5 Relevant 2

1 1 1 Irrelevant 3

2 4 3 Irrelevant 4

Controversialness

4 5 3 Controversial 1

3 3 4 Uncontroversial 2

1 1 1 Uncontroversial 3

2 5 4 Controversial 4

Interestingness

2 5 4 Interesting 1

4 4 4 Interesting 2

1 1 1 Uninteresting 3

2 4 4 Interesting 4

Meaningfulness

3 4 4 Meaningful 1

4 5 5 Meaningful 2

2 1 1 Meaningless 3

3 5 4 Meaningful 4

Novelty

4 2 4 New 1

4 3 4 New 2

2 5 1 Old 3

2 5 3 Old 4

Reliability

4 3 3 Unreliable 1

3 5 4 Reliable 2

1 2 1 Unreliable 3

4 3 3 Reliable 4

Scope

4 3 4 Wide 1

2 5 5 Wide 2

1 2 1 Narrow 3

2 4 3 Narrow 4

Table 5.9: Answers on their labels and the resulting class

5.2 Feature Extraction

Our classification model was learned from a set of linguistic features extracted from

each message. Initially, those were selected empirically and included: counts of PoS

Chapter 5. Experimental Analysis 67

tags, chunk tags, NE tags and 1 to 3-grams of tokens with cutoff frequency (f) of 3, i.e.,

token n-grams that did not appear at least 3 times in the entire corpus were excluded.

We also used 1 to 5 grams of lemmatized tokens (including stopwords and punctuation

signs), stems, PoS and chunk tags. Furthermore, we also included simple numerical

counts such as the total number of PoS tags, chunk tags, named entities, characters,

tokens, all capitalized words and their proportion in the phrase as well. Finally, we

included 3 sentiment features, namely the number of positive and negative words in

the message, according to Hu and Liu’s Opinion Lexicon2, which is a manually created

lexicon that includes English words with their associated polarity, i.e., according to their

perceived opinion (positive or negative). If a word was not there, it was considered to

be neutral. Table 5.10 details the feature sets used and the distinct number of features

of each kind. These features are extracted from common NLP tasks presented in section

2.2.3 are suitable for text classification tasks[Scott and Matwin, 1999, Moschitti and

Basili, 2004, B́ıró et al., 2008, Liu, 2010].

Feature Set #Distinct Features

PoS-tags 54
Chunk tags 23
NE tags 11
Total number of PoS/Chunk tags 2
Total number of Named Entities 1
Total number of positive/neutral/negative words 3
Total number of characters/tokens 2
Total number/proportion of all capitalized words 2
LDA topic distribution 20
Token 1-3grams 2711 (f ≥ 3)
Lemma 1-5grams top-750 (f ≥ 1)
Stem 1-5grams top-750 (f ≥ 1)
PoS 1-5grams (1-5) top-125 (f ≥ 1)
Chunk 1-5grams (1-5) top-125 (f ≥ 1)

Total 4,579

Table 5.10: Feature sets used

Naturally, some of the 4,579 distinct features of the initial set do not have enough dis-

criminative power and are not distinguishing or informative enough for the classification

task. Therefore, further feature selection/reduction methods should improve the quality

of the final predictions.

2https://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html#lexicon

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon

Chapter 5. Experimental Analysis 68

5.3 Baseline Results

This section describes baseline experiments, for detecting relevance, where we considered

different sets of features and did not apply any preprocessing or feature selection method.

We started with the full set of features and split the original feature set into smaller

ones where only specific features were included.

Several tools were used in our experiments. NLP features were extracted with the help

of TweetNLP [K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. Mills, J. Eisenstein,

M. Heilman, D. Yogatama, J. Flanigan and N. Smith, 2011], for PoS tagging, Twit-

ter NLP [A. Ritter, S. Clark and O. Etzioni, 2011], for chunk tagging and NER, both

using the pre-trained available models, and NLTK [S. Bird, 2006] for lemmatisation

and stemming. For extracting n-grams, scikit-learn’s3 [Pedregosa et al., 2011] tool was

used. Classification experiments were also performed with this machine learning toolkit.

Moreover, a GUI application was developed, in Python, using PyQT54, to aid in the ex-

ecution of the different steps of the machine learning pipeline such as feature extraction,

preprocessing, feature selection/reduction, classification and evaluation.

Tables 5.11, 5.12, 5.13, 5.14, 5.15 5.16 show the results of the different classification

methods applied to these smaller subsets of features. Each table presents the obtained

results: accuracy, precision, recall, F1-score, area under the ROC curve (AUC) and

average precision (AP). The minimum distance and the k-Nearest Neighbors (kNN)

classifiers use the Euclidean distance as the distance metric. The number of considered

neighbors was 29 since our training data contained a total of 846 instances (90% of the

dataset) and
√
N is usually a good starting point, according to [Duda et al., 2012]. The

SVM classifier uses a linear kernel with the constant C equal to 1 and the Random Forest

has a total of 96 trees, which is in the middle of the range [64,128] which provides a good

balance between AUC and processing time [Oshiro et al., 2012]. Finally, we performed a

10-fold stratified cross validation to obtain the average results and standard deviations.

3http://scikit-learn.org/stable
4https://pypi.python.org/pypi/PyQt5

http://scikit-learn.org/stable

Chapter 5. Experimental Analysis 69

Classifier Minimum Distance Classifer

Performance Metrics
Accuracy Precision Recall F1 AP AUC

Feature Set

Full feature set 0.57 ± 0.05 0.72 ± 0.14 0.41 ± 0.14 0.50 ± 0.11 0.73 ± 0.07 0.59 ± 0.05

Part-of-speech 0.57 ± 0.06 0.71 ± 0.15 0.42 ± 0.14 0.50 ± 0.11 0.72 ± 0.07 0.58 ± 0.06

Chunks 0.57 ± 0.05 0.71 ± 0.14 0.42 ± 0.13 0.51 ± 0.10 0.72 ± 0.07 0.59 ± 0.05

Named entities 0.57 ± 0.05 0.71 ± 0.14 0.42 ± 0.13 0.51 ± 0.10 0.72 ± 0.07 0.58 ± 0.05

Chars+Tokens+Allcaps+Allcaps-ratio 0.57 ± 0.06 0.71 ± 0.14 0.41 ± 0.14 0.50 ± 0.11 0.73 ± 0.07 0.59 ± 0.05

Positive+Neutral+Negative 0.56 ± 0.05 0.70 ± 0.15 0.41 ± 0.13 0.50 ± 0.11 0.72 ± 0.07 0.58 ± 0.05

LDA topic distribution 0.63 ± 0.15 0.65 ± 0.17 0.89 ± 0.17 0.73 ± 0.12 0.80 ± 0.09 0.60 ± 0.17

Token n-grams 0.57 ± 0.06 0.70 ± 0.16 0.46 ± 0.15 0.53 ± 0.11 0.73 ± 0.08 0.58 ± 0.06

Lemma n-grams 0.58 ± 0.05 0.71 ± 0.14 0.48 ± 0.15 0.55 ± 0.10 0.74 ± 0.07 0.60 ± 0.05

Stem n-grams 0.59 ± 0.05 0.72 ± 0.13 0.48 ± 0.15 0.55 ± 0.10 0.74 ± 0.06 0.60 ± 0.05

PoS n-grams 0.58 ± 0.05 0.71 ± 0.11 0.46 ± 0.16 0.53 ± 0.12 0.73 ± 0.05 0.59 ± 0.05

Chunk n-grams 0.57 ± 0.06 0.70 ± 0.15 0.43 ± 0.14 0.51 ± 0.11 0.72 ± 0.07 0.59 ± 0.05

Table 5.11: Baseline Results for the Mininmum Distance Classifier

Classifier k-Neareast Neighbors (kNN)

Performance Metrics
Accuracy Precision Recall F1 AP AUC

Feature Set

Full feature set 0.57 ± 0.05 0.60 ± 0.05 0.73± 0.12 0.65 ± 0.05 0.74 ± 0.03 0.55 ± 0.06

Part-of-speech 0.60 ± 0.06 0.61 ± 0.05 0.83 ± 0.09 0.70 ± 0.05 0.77 ± 0.03 0.58 ± 0.07

Chunks 0.58 ± 0.04 0.58 ± 0.04 0.76 ± 0.09 0.67 ± 0.04 0.75 ± 0.03 0.56 ± 0.05

Named entities 0.58 ± 0.07 0.62 ± 0.08 0.71 ± 0.11 0.65 ± 0.06 0.74 ± 0.05 0.57 ± 0.08

Chars+Tokens+Allcaps+Allcaps-ratio 0.57 ± 0.06 0.60 ± 0.05 0.70 ± 0.09 0.64 ± 0.05 0.73 ± 0.03 0.55 ± 0.06

Positive+Neutral+Negative 0.54 ± 0.06 0.58 ± 0.04 0.62 ± 0.15 0.59 ± 0.09 0.71 ± 0.05 0.53 ± 0.05

LDA topic distribution 0.62 ± 0.12 0.64 ± 0.13 0.85 ± 0.13 0.72 ± 0.09 0.79 ± 0.07 0.60 ± 0.14

Token n-grams 0.51 ± 0.05 0.72 ± 0.15 0.20 ± 0.09 0.30 ± 0.11 0.68 ± 0.08 0.55 ± 0.04

Lemma n-grams 0.59 ± 0.09 0.70 ± 0.14 0.47 ± 0.12 0.55 ± 0.11 0.73 ± 0.09 0.60 ± 0.09

Stem n-grams 0.57 ± 0.08 0.69 ± 0.15 0.43 ± 0.13 0.52 ± 0.12 0.72 ± 0.09 0.59 ± 0.08

PoS n-grams 0.58 ± 0.05 0.61 ± 0.05 0.61 ± 0.05 0.66 ± 0.06 0.74 ± 0.04 0.56 ± 0.06

Chunk n-grams 0.57 ± 0.05 0.60 ± 0.04 0.67 ± 0.10 0.63 ± 0.05 0.73 ± 0.03 0.55 ± 0.05

Table 5.12: Baseline Results for the k-Neareast Neighbor Classifier

Chapter 5. Experimental Analysis 70

Classifier Naive Bayes

Performance Metrics
Accuracy Precision Recall F1 AP AUC

Feature Set

Full feature set 0.60 ± 0.11 0.63 ± 0.11 0.73 ± 0.16 0.66 ± 0.12 0.75 ± 0.08 0.59 ± 0.12

Part-of-speech 0.58 ± 0.07 0.70 ± 0.13 0.33 ± 0.11 0.44 ± 0.10 0.70 ± 0.07 0.57 ± 0.05

Chunks 0.46 ± 0.03 0.50 ± 0.30 0.07 ± 0.06 0.12 ± 0.09 0.64 ± 0.11 0.51 ± 0.03

Named entities 0.58 ± 0.09 0.58 ± 0.09 0.77 ± 0.11 0.67 ± 0.06 0.75 ± 0.04 0.55 ± 0.10

Chars+Tokens+Allcaps+Allcaps-ratio 0.57 ± 0.04 0.57 ± 0.02 0.93 ± 0.07 0.70 ± 0.03 0.77 ± 0.02 0.53 ± 0.04

Positive+Neutral+Negative 0.55 ± 0.06 0.69 ± 0.12 0.34 ± 0.12 0.44 ± 0.12 0.70 ± 0.07 0.57 ± 0.05

LDA topic distribution 0.64 ± 0.13 0.67 ± 0.16 0.82 ± 0.13 0.72 ± 0.10 0.79 ± 0.08 0.62 ± 0.15

Token n-grams 0.61 ± 0.11 0.63 ± 0.11 0.71 ± 0.16 0.66 ± 0.11 0.75 ± 0.08 0.59 ± 0.11

Lemma n-grams 0.59 ± 0.10 0.68 ± 0.15 0.54 ± 0.12 0.59 ± 0.11 0.74 ± 0.08 0.60 ± 0.10

Stem n-grams 0.60 ± 0.09 0.68 ± 0.14 0.56 ± 0.12 0.60 ± 0.11 0.74 ± 0.08 0.60 ± 0.10

PoS n-grams 0.58 ± 0.06 0.70 ± 0.15 0.48 ± 0.17 0.54 ± 0.12 0.74 ± 0.07 0.59 ± 0.06

Chunk n-grams 0.56 ± 0.05 0.69 ± 0.12 0.42 ± 0.13 0.50 ± 0.10 0.71 ± 0.06 0.58 ± 0.05

Table 5.13: Baseline Results for the Naive Bayes Classifier

Classifier Support Vector Machine (SVM)

Performance Metrics
Accuracy Precision Recall F1 AP AUC

Feature Set

Full feature set 0.60 ± 0.10 0.67 ± 0.14 0.63 ± 0.08 0.64 ± 0.08 0.75 ± 0.07 0.60 ± 0.11

Part-of-speech 0.63 ± 0.08 0.66 ± 0.09 0.71 ± 0.21 0.66 ± 0.12 0.76 ± 0.06 0.62 ± 0.08

Chunks 0.58 ± 0.07 0.59 ± 0.05 0.75 ± 0.24 0.64 ± 0.15 0.64 ± 0.15 0.56 ± 0.06

Named entities 0.55 ± 0.09 0.51 ± 0.29 0.64 ± 0.42 0.51 ± 0.32 0.78 ± 0.03 0.54 ± 0.07

Chars+Tokens+Allcaps+Allcaps-ratio 0.54 ± 0.06 0.45 ± 0.23 0.74 ± 0.38 0.56 ± 0.28 0.77 ± 0.02 0.51 ± 0.04

Positive+Neutral+Negative 0.52 ± 0.05 0.59 ± 0.26 0.60 ± 0.40 0.48 ± 0.29 0.71 ± 0.15 0.51 ± 0.02

LDA topic distribution 0.64 ± 0.14 0.65 ± 0.16 0.85 ± 0.19 0.72 ± 0.13 0.79 ± 0.09 0.61 ± 0.16

Token n-grams 0.60 ± 0.09 0.65 ± 0.11 0.62 ± 0.11 0.63 ± 0.09 0.74 ± 0.06 0.59 ± 0.09

Lemma n-grams 0.59 ± 0.07 0.65 ± 0.11 0.61 ± 0.08 0.62 ± 0.06 0.74 ± 0.05 0.58 ± 0.08

Stem n-grams 0.61 ± 0.09 0.69 ± 0.14 0.62 ± 0.11 0.64 ± 0.08 0.76 ± 0.07 0.61 ± 0.09

PoS n-grams 0.58 ± 0.09 0.63 ± 0.12 0.63 ± 0.15 0.62 ± 0.11 0.73 ± 0.08 0.58 ± 0.10

Chunk n-grams 0.56 ± 0.06 0.59 ± 0.05 0.69 ± 0.17 0.62 ± 0.09 0.72 ± 0.05 0.54 ± 0.05

Table 5.14: Baseline Results for the Support Vector Machine Classifier

Chapter 5. Experimental Analysis 71

Classifier Decision Tree

Performance Metrics
Accuracy Precision Recall F1 AP AUC

Feature Set

Full feature set 0.58 ± 0.05 0.63 ± 0.08 0.63 ± 0.09 0.62 ± 0.05 0.73 ± 0.04 0.57 ± 0.06

Part-of-speech 0.57 ± 0.08 0.62 ± 0.09 0.60 ± 0.06 0.61 ± 0.05 0.72 ± 0.05 0.56 ± 0.08

Chunks 0.55 ± 0.04 0.59 ± 0.04 0.59 ± 0.06 0.59 ± 0.04 0.71 ± 0.03 0.54 ± 0.04

Named entities 0.53 ± 0.04 0.58 ± 0.04 0.55 ± 0.05 0.57 ± 0.04 0.69 ± 0.02 0.53 ± 0.04

Chars+Tokens+Allcaps+Allcaps-ratio 0.55 ± 0.04 0.59 ± 0.04 0.61 ± 0.07 0.60 ± 0.05 0.71 ± 0.03 0.54 ± 0.04

Positive+Neutral+Negative 0.53 ± 0.04 0.58 ± 0.04 0.51 ± 0.10 0.54 ± 0.07 0.68 ± 0.04 0.53 ± 0.04

LDA topic distribution 0.55 ± 0.07 0.60 ± 0.09 0.58 ± 0.08 0.59 ± 0.06 0.71 ± 0.05 0.54 ± 0.08

Token n-grams 0.55 ± 0.12 0.61 ± 0.14 0.61 ± 0.13 0.60 ± 0.11 0.72 ± 0.08 0.54 ± 0.13

Lemma n-grams 0.57 ± 0.10 0.63 ± 0.13 0.61 ± 0.11 0.61 ± 0.09 0.73 ± 0.08 0.57 ± 0.10

Stem n-grams 0.56 ± 0.08 0.62 ± 0.12 0.58 ± 0.10 0.59 ± 0.07 0.72 ± 0.06 0.55 ± 0.08

PoS n-grams 0.60 ± 0.06 0.64 ± 0.06 0.62 ± 0.08 0.63 ± 0.06 0.74 ± 0.04 0.59 ± 0.06

Chunk n-grams 0.56 ± 0.06 0.61 ± 0.06 0.59 ± 0.08 0.60 ± 0.06 0.71 ± 0.04 0.56 ± 0.06

Table 5.15: Baseline Results for the Decision Tree Distance Classifier

Classifier Random Forest Classifer

Performance Metrics
Accuracy Precision Recall F1 AP AUC

Feature Set

Full feature set 0.64 ± 0.06 0.66 ± 0.09 0.78 ± 0.10 0.71 ± 0.04 0.78 ± 0.04 0.62 ± 0.09

Part-of-speech 0.63 ± 0.07 0.66 ± 0.09 0.78 ± 0.11 0.70 ± 0.05 0.78 ± 0.04 0.62 ± 0.08

Chunks 0.60 ± 0.04 0.62 ± 0.04 0.70 ± 0.07 0.66 ± 0.04 0.74 ± 0.02 0.58 ± 0.04

Named entities 0.58 ± 0.06 0.62 ± 0.06 0.66 ± 0.07 0.64 ± 0.05 0.73 ± 0.04 0.56 ± 0.06

Chars+Tokens+Allcaps+Allcaps-ratio 0.55 ± 0.03 0.59 ± 0.03 0.61 ± 0.09 0.60 ± 0.05 0.71 ± 0.03 0.54 ± 0.03

Positive+Neutral+Negative 0.52 ± 0.04 0.57 ± 0.03 0.57 ± 0.09 0.57 ± 0.05 0.69 ± 0.03 0.51 ± 0.04

LDA topic distribution 0.60 ± 0.11 0.65 ± 0.16 0.75 ± 0.15 0.67 ± 0.10 0.77 ± 0.08 0.58 ± 0.13

Token n-grams 0.62 ± 0.10 0.66 ± 0.15 0.77 ± 0.16 0.69 ± 0.09 0.78 ± 0.07 0.60 ± 0.12

Lemma n-grams 0.63 ± 0.11 0.66 ± 0.16 0.78 ± 0.13 0.70 ± 0.09 0.78 ± 0.08 0.61 ± 0.13

Stem n-grams 0.64 ± 0.11 0.67 ± 0.15 0.78 ± 0.16 0.70 ± 0.10 0.79 ± 0.08 0.62 ± 0.12

PoS n-grams 0.62 +- 0.06 0.65 +- 0.10 0.77 +- 0.11 0.69 +- 0.04 0.77 +- 0.04 0.61 +- 0.08

Chunk n-grams 0.59 ± 0.04 0.59 ± 0.04 0.72 ± 0.10 0.66 ± 0.05 0.74 ± 0.03 0.57 ± 0.05

Table 5.16: Baseline Results for the Random Forest Classifier

The Naive Bayes and the SVM classier achieve the best accuracy(0.64) on the set consist-

ing of LDA topics. The Minimum Distance Classifier obtained the best precisions(0.72)

using the full dataset and n-grams of stems while the kNN classifier achieved also the

same precision(0.72) using ngams of tokens. The LDA topic distribution proved to be

a good feature set, achieving the best recall(0.89), F1 score(0.73) and average preci-

sion(0.80) using a Minimum Distance Classifier. In fact, it is possible that some topic

distributions were more likely to be associated with relevant data (or irrelevant) and

be highly influenced by some typical words. However, the Naive Bayes, the SVM and

the Random Forest obtained the best area under the ROC curve(0.62). To achieve this

AUC, the Naive Bayes used the LDA topics, the SVM used the PoS tags and the Random

Chapter 5. Experimental Analysis 72

Forest achieved the same result by using the full feature set, PoS tags and stem ngrams.

Surprisingly, for such a simple model such as the Minimum Distance Classifier, it got

fairly good results, suggesting that the distance between mean feature vectors is large

enough to discriminate both classes. The Random Forest, kNN and the Naive Bayes

always competed against the best results, while the Decision Tree did not performed so

well, achieving results just a little above a random classifier. Another important note

is that small subsets such as the countings of characters/tokens/allcaps/allcaps-ratio (4

features) were sometimes enough to make decent predictions. For example, using this

small set, the Naive Bayes achieved a F1 score of 0.70. On the other, the polarity set

did not performed very well. Although some feature sets work better in some cases and

worse in others, this suggest that a combination of the most informative features from

each set may improve the classification results.

Figure 5.2: ROC Curves of a SVM Classifier using PoS tags as features

Chapter 5. Experimental Analysis 73

Figure 5.3: Precision-Recall Curves of a Minimum Distance Classifier using LDA
topic distributions as features

Figure 5.2 shows the best average ROC curve obtained by a SVM classifier. For low

false positive rates (< 0.20), the SVM classifier achieves true positive rates a little

better random. However, if we are allowed to increase the false positive rate, the the

number of correctly identified instances increases, achieving true positive rates > 0.80

in some cases. Figure 5.3 shows the best average Precision-Recall curves obtained by

a Minimum Distance Classifier. It consistently shows fairy good trade-offs between the

obtained precision and recall values, achieving areas greater than 0.90 in some cases.

5.4 Feature Engineering Results

Successful removal of noisy and redundant data typically improves the overall classifi-

cation accuracy of the resulting model, reducing also overfitting. For this purpose, we

used different preprocessing methods such as: Standardization, Normalization and Scal-

ing and feature selection methods such as: information gain, gain ratio, chi-square (χ2),

Fisher Score, Pearson correlations and feature reduction techniques such as principal

component analysis. The PCA method was applied to 4 dimensions and the Pearson

Chapter 5. Experimental Analysis 74

correlations were used to exclude features that did not have a correlation of at least

0.2 with the target class. The classifiers were used with the same parameterization of

the baseline experiments. The 10-fold cross validation was performed as well, where

the feature selection/reduction methods were performed within each fold, using only the

training set, in order to avoid the feature selection methods using information from the

test set, such as labels, and thus avoiding bias.

In order to choose the number f of features we followed a very simple heuristic. We ap-

plied the χ2 statistic test to find the number of statistically significant features, i.e., fea-

tures that had a statistic score of χ2 > 10.83, meaning that they are very likely to be de-

pendent from the target class, with only a 0.001 chance of being wrong. The obtained size

was f = 201 and it was the number of selected features. Tables 5.17,5.18,5.19,5.20,5.21

and 5.22 show the obtained results for each classifier in predicting relevance.

Classifier Minimum Distance Classifier

Performance Metrics
Accuracy Precision Recall F1 AP AUC

Pipeline applied

Standardization + full feature set 0.57 ± 0.05 0.72 ± 0.14 0.41 ± 0.14 0.50 ± 0.11 0.73 ± 0.07 0.59 ± 0.05

Normalization + full feature set 0.57 ± 0.05 0.72 ± 0.14 0.41 ± 0.14 0.50 ± 0.11 0.73 ± 0.07 0.59 ± 0.05

Scaling[0,1] + full feature set 0.57 ± 0.05 0.72 ± 0.14 0.41 ± 0.14 0.50 ± 0.11 0.73 ± 0.07 0.59 ± 0.05

Standardization + information gain 0.57 ± 0.05 0.72 ± 0.14 0.41 ± 0.14 0.50 ± 0.11 0.73 ± 0.07 0.59 ± 0.05

Standardization + gain ratio 0.57 ± 0.05 0.58 ± 0.06 0.86 ± 0.17 0.68 ± 0.05 0.76 ± 0.04 0.53 ± 0.07

Standardization + chi square (χ2) 0.57 ± 0.05 0.72 ± 0.14 0.41 ± 0.14 0.50 ± 0.11 0.73 ± 0.07 0.59 ± 0.05

Standardization + fisher score 0.51 ± 0.07 0.62 ± 0.17 0.32 ± 0.13 0.41 ± 0.11 0.66 ± 0.09 0.53 ± 0.08

Standardization + pearson 0.65 ± 0.16 0.70 ± 0.15 0.63 ± 0.20 0.65 ± 0.18 0.77 ± 0.11 0.62 ± 0.16

Standardization + pearson + pca4d 0.65 ± 0.16 0.70 ± 0.15 0.63 ± 0.20 0.65 ± 0.18 0.77 ± 0.11 0.62 ± 0.16

Standardization + gain ratio + pca4d 0.57 ± 0.07 0.55 ± 0.08 0.86 ± 0.29 0.65 ± 0.19 0.75 ± 0.10 0.53 ± 0.06

Table 5.17: Results of applying different Preprocessing and Feature Selection methods
with a Minimum Distance Classifier

Classifier k-Nearest Neighbors (kNN)

Performance Metrics
Accuracy Precision Recall F1 AP AUC

Pipeline applied

Standardization + full feature set 0.57 ± 0.05 0.60 ± 0.05 0.73 ± 0.12 0.65 ± 0.05 0.74 ± 0.03 0.55 ± 0.06

Normalization + full feature set 0.57 ± 0.05 0.60 ± 0.05 0.73 ± 0.12 0.65 ± 0.05 0.74 ± 0.03 0.55 ± 0.06

Scaling[0,1] + full feature set 0.57 ± 0.05 0.60 ± 0.05 0.73 ± 0.12 0.65 ± 0.05 0.74 ± 0.03 0.55 ± 0.06

Standardization + information gain 0.58 ± 0.05 0.61 ± 0.05 0.75 ± 0.11 0.66 ± 0.04 0.75 ± 0.03 0.56 ± 0.05

Standardization + gain ratio 0.59 ± 0.06 0.59 ± 0.06 0.95 ± 0.11 0.72 ± 0.04 0.78 ± 0.03 0.55 ± 0.08

Standardization + chi square (χ2) 0.57 ± 0.04 0.60 ± 0.05 0.75 ± 0.11 0.66 ± 0.04 0.74 ± 0.03 0.55 ± 0.05

Standardization + fisher score 0.48 ± 0.06 0.58 ± 0.14 0.25 ± 0.16 0.33 ± 0.14 0.62 ± 0.09 0.51 ± 0.05

Standardization + pearson 0.62 ± 0.13 0.62 ± 0.13 0.87 ± 0.12 0.72 ± 0.10 0.78 ± 0.08 0.59 ± 0.14

Standardization + pearson + pca4d 0.65 ± 0.15 0.67 ± 0.17 0.85 ± 0.11 0.74 ± 0.11 0.80 ± 0.09 0.63 ± 0.16

Standardization + gain ratio + pca4d 0.54 ± 0.06 0.58 ± 0.05 0.66 ± 0.10 0.61 ± 0.06 0.71 ± 0.04 0.53 ± 0.06

Table 5.18: Results of applying different Preprocessing and Feature Selection methods
with a k-Nearest Neighbors

Chapter 5. Experimental Analysis 75

Classifier Naive Bayes

Performance Metrics
Accuracy Precision Recall F1 AP AUC

Pipeline applied

Standardization + full feature set 0.60 ± 0.11 0.63 ± 0.11 0.73 ± 0.16 0.66 ± 0.12 0.75 ± 0.08 0.59 ± 0.12

Normalization + full feature set 0.60 ± 0.11 0.63 ± 0.11 0.73 ± 0.16 0.66 ± 0.12 0.75 ± 0.08 0.59 ± 0.12

Scaling[0,1] + full feature set 0.60 ± 0.11 0.63 ± 0.11 0.73 ± 0.16 0.66 ± 0.12 0.75 ± 0.08 0.59 ± 0.12

Standardization + information gain 0.55 ± 0.08 0.67 ± 0.14 0.41 ± 0.17 0.48 ± 0.14 0.71 ± 0.08 0.57 ± 0.08

Standardization + gain ratio 0.53 ± 0.06 0.57 ± 0.07 0.63 ± 0.11 0.59 ± 0.06 0.70 ± 0.04 0.51 ± 0.07

Standardization + chi square (χ2) 0.55 ± 0.06 0.67 ± 0.14 0.43 ± 0.15 0.50 ± 0.11 0.71 ± 0.07 0.57 ± 0.06

Standardization + fisher score 0.50 ± 0.07 0.61 ± 0.16 0.27 ± 0.09 0.37 ± 0.11 0.64 ± 0.09 0.52 ± 0.07

Standardization + pearson 0.65 ± 0.16 0.66 ± 0.17 0.94 ± 0.11 0.76 ± 0.10 0.82 ± 0.09 0.61 ± 0.18

Standardization + pearson + pca4d 0.65 ± 0.16 0.66 ± 0.17 0.94 ± 0.11 0.76 ± 0.10 0.81 ± 0.09 0.61 ± 0.18

Standardization + gain ratio + pca4d 0.58 ± 0.05 0.58 ± 0.03 0.95 ± 0.10 0.95 ± 0.10 0.78 ± 0.02 0.54 ± 0.05

Table 5.19: Results of applying different Preprocessing and Feature Selection methods
with a Naive Bayes

Classifier Support Vector Machine (SVM)

Performance Metrics
Accuracy Precision Recall F1 AP AUC

Pipeline applied

Standardization + full feature set 0.58 ± 0.12 0.65 ± 0.14 0.57 ± 0.21 0.58 ± 0.17 0.73 ± 0.10 0.58 ± 0.12

Normalization + full feature set 0.58 ± 0.09 0.66 ± 0.13 0.58 ± 0.16 0.60 ± 0.10 0.74 ± 0.07 0.59 ± 0.10

Scaling[0,1] + full feature set 0.59 ± 0.11 0.65 ± 0.15 0.61 ± 0.19 0.61 ± 0.14 0.74 ± 0.09 0.59 ± 0.11

Standardization + information gain 0.54 ± 0.09 0.62 ± 0.14 0.53 ± 0.37 0.47 ± 0.28 0.71 ± 0.10 0.54 ± 0.07

Standardization + gain ratio 0.54 ± 0.06 0.57 ± 0.06 0.66 ± 0.09 0.61 ± 0.05 0.71 ± 0.04 0.52 ± 0.06

Standardization + chi square (χ2) 0.56 ± 0.11 0.61 ± 0.20 0.58 ± 0.34 0.54 ± 0.24 0.71 ± 0.14 0.56 ± 0.11

Standardization + fisher score 0.54 ± 0.09 0.57 ± 0.09 0.54 ± 0.29 0.53 ± 0.18 0.68 ± 0.10 0.54 ± 0.08

Standardization + pearson 0.65 ± 0.16 0.66 ± 0.17 0.94 ± 0.11 0.76 ± 0.10 0.81 ± 0.08 0.61 ± 0.18

Standardization + pearson + pca4d 0.64 ± 0.16 0.65 ± 0.17 0.94 ± 0.11 0.75 ± 0.10 0.81 ± 0.09 0.61 ± 0.18

Standardization + gain ratio + pca4d 0.59 ± 0.05 0.58 ± 0.04 0.96 ± 0.10 0.72 ± 0.04 0.78 ± 0.03 0.54 ± 0.06

Table 5.20: Results of applying different Preprocessing and Feature Selection methods
with a Support Vector Machine

Classifier Decision Tree

Performance Metrics
Accuracy Precision Recall F1 AP AUC

Pipeline applied

Standardization + full feature set 0.58 ± 0.06 0.63 ± 0.08 0.61 ± 0.09 0.61 ± 0.05 0.73 ± 0.04 0.57 ± 0.07

Normalization + full feature set 0.57 ± 0.06 0.62 ± 0.09 0.61 ± 0.11 0.61 ± 0.06 0.73 ± 0.05 0.57 ± 0.07

Scaling[0,1] + full feature set 0.58 ± 0.06 0.64 ± 0.09 0.62 ± 0.07 0.62 ± 0.05 0.73 ± 0.04 0.58 ± 0.07

Standardization + information gain 0.56 ± 0.08 0.62 ± 0.10 0.61 ± 0.09 0.61 ± 0.06 0.72 ± 0.05 0.56 ± 0.09

Standardization + gain ratio 0.53 ± 0.05 0.57 ± 0.05 0.70 ± 0.08 0.62 ± 0.04 0.72 ± 0.03 0.51 ± 0.06

Standardization + chi square (χ2) 0.54 ± 0.05 0.61 ± 0.08 0.56 ± 0.07 0.58 ± 0.04 0.70 ± 0.04 0.54 ± 0.06

Standardization + fisher score 0.52 ± 0.09 0.55 ± 0.11 0.51 ± 0.31 0.50 ± 0.20 0.67 ± 0.11 0.52 ± 0.07

Standardization + pearson 0.60 ± 0.18 0.64 ± 0.18 0.66 ± 0.17 0.65 ± 0.16 0.75 ± 0.12 0.59 ± 0.19

Standardization + pearson + pca4d 0.58 ± 0.19 0.63 ± 0.19 0.64 ± 0.15 0.63 ± 0.16 0.74 ± 0.12 0.57 ± 0.19

Standardization + gain ratio + pca4d 0.52 ± 0.05 0.57 ± 0.06 0.61 ± 0.10 0.58 ± 0.05 0.70 ± 0.03 0.51 ± 0.06

Table 5.21: Results of applying different Preprocessing and Feature Selection methods
with a Decision Tree

Chapter 5. Experimental Analysis 76

Classifier Random Forest Classifier

Performance Metrics
Accuracy Precision Recall F1 AP AUC

Pipeline applied

Standardization + full feature set 0.63 ± 0.09 0.67 ± 0.15 0.80 ± 0.18 0.70 ± 0.09 0.79 ± 0.07 0.61 ± 0.10

Normalization + full feature set 0.64 ± 0.11 0.66 ± 0.16 0.80 ± 0.19 0.70 ± 0.12 0.79 ± 0.09 0.62 ± 0.13

Scaling[0,1] + full feature set 0.64 ± 0.11 0.68 ± 0.16 0.80 ± 0.18 0.71 ± 0.12 0.79 ± 0.08 0.63 ± 0.12

Standardization + information gain 0.64 ± 0.10 0.68 ± 0.15 0.78 ± 0.13 0.71 ± 0.08 0.79 ± 0.07 0.62 ± 0.12

Standardization + gain ratio 0.53 ± 0.06 0.57 ± 0.06 0.67 ± 0.08 0.61 ± 0.05 0.71 ± 0.03 0.51 ± 0.07

Standardization + chi square (χ2) 0.62 ± 0.10 0.67 ± 0.16 0.76 ± 0.16 0.69 ± 0.09 0.78 ± 0.08 0.61 ± 0.11

Standardization + fisher score 0.53 ± 0.11 0.56 ± 0.10 0.53 ± 0.30 0.52 ± 0.19 0.67 ± 0.11 0.53 ± 0.09

Standardization + pearson 0.59 ± 0.18 0.64 ± 0.18 0.72 ± 0.13 0.67 ± 0.15 0.75 ± 0.11 0.58 ± 0.19

Standardization + pearson + pca4d 0.60 ± 0.18 0.64 ± 0.18 0.70 ± 0.13 0.66 ± 0.15 0.75 ± 0.12 0.59 ± 0.19

Standardization + gain ratio + pca4d 0.53 ± 0.05 0.58 ± 0.06 0.62 ± 0.09 0.59 ± 0.04 0.70 ± 0.03 0.52 ± 0.06

Table 5.22: Results of applying different Preprocessing and Feature Selection methods
with a Random Forest

In general, there was a very small increase in the accuracy (∼ 1− 2%) of the classifiers

when Standardization, Normalization or Scaling was applied alone, i.e., using the whole

feature set. The Minimum Distance Classifier, the kNN and the naive bayes achieved

the best accuracy(0.65), usually using a combination of the Pearson filter and PCA

analysis. The Minimum Distance Classifier achieved the best precision(0.72), using the

full feature set with some preprocessing or using the chi-square test as feature selector.

The kNN achieved a very good recall(0.95) by using the gain ratio to select the most

informative features, while the SVM classifier obtained the best F1 score(0.76) by using

the Pearson correlation filter. The naive bayes also obtained the best area under the

precision-recall curve, achieving 0.82. On the other hand, the kNN classifier obtained

the best area under the ROC curve(0.63). Surprisingly, the Pearson correlation filter

provided lead to better results, competing with the gain ratio method. The PCA also

lead to small improvements when applied after a feature selection method. Figures 5.4

and 5.5 show the best obtained curves.

Chapter 5. Experimental Analysis 77

Figure 5.4: ROC Curves of a kNN Classifier using Standardization and the Pearson
Correlation Filter

Figure 5.5: Precision-Recall Curves of a Naive Bayes Classifier using Standardization
and the Pearson Correlation Filter

Chapter 5. Experimental Analysis 78

Although the kNN classifier achieved a score of 0.63, for small rates of false positives

(< 0.4), the number of correctly classified instances is still low. For greater false positive

rates, the classifier is able to identify more more instances correctly. Regarding the

precision-recall curves, the naive bayes classifier achieved a fairly good result(0.82) for

the area under the curve, in some cases with areas greater than 0.90.

In general, the obtained results provide small improvements over the baseline results.

However, the baseline results compete in some cases. Depending on the requirements of

the system, one may have to compromise between high precisions or high recalls.

5.5 Predicting Relevance through Journalistic Criteria

In the previous section we focused on detecting relevance through textual features. Go-

ing further, we now describe the process of detecting relevance using an intermediate

layer of classifiers. Each intermediate classifier is focused on a single task, i.e., it detects

one of the following criteria: controversialness (controversial/not controversial), interest-

ingness (interesting/not interesting), meaningfulness (meaningful/meaningless), novelty

(new/old), reliability (reliable/unreliable) and scope (wide/narrow). Each one of these

classifiers has as input the textual data and outputs a single prediction of a journalistic

aspect. After this, the last classifier receives these journalistic predictions and outputs

the final relevance prediction. The intermediate journalistic classifiers start by extract-

ing the same textual features described in table 5.10 with possible preprocessing and

feature selection/reduction applied afterwards. The last classifier used these journalistic

predictions as its features. Figure 5.6 illustrates this idea.

Chapter 5. Experimental Analysis 79

Figure 5.6: Prediction of Relevance using Journalistic Criteria

Table 5.23 shows the results of training the relevance classifier, based on the 6 differ-

ent, manually annotated journalistic data. The only preprocessing method applied was

Standardization. For such a small feature set, we did not apply any feature selection or

reduction method, since they did not provide significant improvements. We used a vari-

ation of the SVM classifier, which uses a polynomial kernel, with the intent of achieving

a better decision boundary that could separate better the classes. Nevertheless, the

model parameters were the same as in the baseline experiments. Table 5.23 shows the

obtained results.

Chapter 5. Experimental Analysis 80

Training of a Relevance Classifier based on Journalistic Criteria

Performance Metrics
Accuracy Precision Recall F1 AP AUC

Classifier

Minimum Distance Classifier 0.80 ± 0.06 0.84 ± 0.07 0.80 ± 0.08 0.82 ± 0.06 0.87 ± 0.04 0.80 ± 0.06

K-Nearest Neighbors 0.82 ± 0.07 0.82 ± 0.07 0.86 ± 0.08 0.84 ± 0.06 0.88 ± 0.04 0.81 ± 0.07

Naive Bayes 0.81 ± 0.06 0.84 ± 0.07 0.81 ± 0.08 0.82 ± 0.06 0.88 ± 0.04 0.81 ± 0.06

SVM(Linear) 0.80 ± 0.06 0.82 ± 0.07 0.84 ± 0.08 0.83 ± 0.06 0.87 ± 0.04 0.80 ± 0.07

SVM(Polynomial Kernel) 0.81 ± 0.06 0.82 ± 0.07 0.86 ± 0.07 0.84 ± 0.06 0.88 ± 0.04 0.81 ± 0.07

Decision Tree 0.79 ± 0.07 0.81 ± 0.07 0.82 ± 0.08 0.81 ± 0.06 0.87 ± 0.04 0.79 ± 0.07

Random Forest 0.80 ± 0.07 0.81 ± 0.07 0.84 ± 0.07 0.82 ± 0.06 0.87 ± 0.04 0.79 ± 0.07

Table 5.23: Results on predicting Relevance based on Journalistic Criteria

From the observed results, it is clear that the SVM with the polynomial kernel and

the kNN classifiers achieved the best performance, with the latter achieving a better

accuracy(0.82). However, the Minimum Distance Classifier obtained the best overall

precision (0.84). For the rest of the metrics, the SVM with the polynomial kernel and

the kNN achieved the overall best recall(0.86), F1 score (0.84), average precision (0.88)

and AUC (0.81). The naive bayes also got the best areas under the precision-recall and

ROC curves. Figures 5.7,5.8 shows the ROC and Precision-Recall curves.

Figure 5.7: ROC Curves of a Journalistic Based kNN Classifier

Chapter 5. Experimental Analysis 81

Figure 5.8: Precision-Recall Curves of a Journalistic Based kNN Classifier

The kNN classifier achieved a decent area under the ROC curve(0.81), showing that even

for low false positive rates such as 0.2, it obtains decent true positive rates(> 0.7), on

average. Nevertheless, in some cases, it outperformed the AUC mark of 0.85. Regarding

the precision-recall curves, it achieved an area of 0.88, on a average, providing a good

flexibility with the trade-offs. For high values of recall, it also obtained similar high

values of precision.

Given these results, we decided to use the kNN model as our journalistic based, relevance

predictor, since it provided the best performance. As for the intermediate models, we

performed 6 experiments, each one consisting of using the best found pipeline(best F1

score) during the feature engineering experiments5.4 for each classifier. Table 5.24 details

the obtained results.

Chapter 5. Experimental Analysis 82

Relevance based on Journalistic Criteria

Performance Metrics
Accuracy Precision Recall F1 AP AUC

Intermediate Classifiers

Minimum Distance Classifiers 0.62 ± 0.11 0.66 ± 0.17 0.89 ± 0.19 0.72 ± 0.08 0.80 ± 0.06 0.59 ± 0.13

K-Nearest Neighbors 0.54 ± 0.08 0.63 ± 0.14 0.57 ± 0.17 0.57 ± 0.08 0.72 ± 0.05 0.54 ± 0.09

Naive Bayes 0.56 ± 0.01 0.56 ± 0.01 0.97 ± 0.03 0.71 ± 0.01 0.77 ± 0.01 0.52 ± 0.01

Linear SVMs 0.54 ± 0.03 0.56 ± 0.02 0.89 ± 0.08 0.68 ± 0.03 0.75 ± 0.02 0.50 ± 0.04

Decision Trees 0.55 ± 0.05 0.57 ± 0.03 0.78 ± 0.11 0.65 ± 0.05 0.73 ± 0.03 0.52 ± 0.05

Random Forests 0.79 ± 0.07 0.80 ± 0.08 0.84 ± 0.07 0.82 ± 0.06 0.86 ± 0.04 0.78 ± 0.08

Table 5.24: Results on Predicting Relevance by an Ensemble of Journalistic Classifiers

Random forests revealed to be the best option for the intermediate classifiers. They

achieved the best accuracy(0.79), precision(0.80) and F1(0.82) score. However, the naive

bayes obtained an outstanding value for recall of 0.97. Regarding the areas below the

ROC and precision-recall curves, the Random Forests also achieved the best values,

obtaining 0.78 and 0.86, respectively. Figures 5.9 and 5.10 show the ROC and precision-

recall curves, respectively.

Figure 5.9: ROC Curves of a Journalistic Based kNN Classifier, using Random Forests
for the intermediate classifiers

Chapter 5. Experimental Analysis 83

Figure 5.10: Precision-Recall Curves of a Journalistic Based kNN Classifier, using
Random Forests for the intermediate classifiers

The classifier got a good mean area under the ROC curve(0.78), meaning that is able

to identify and classify correctly most of the instances, even for low false positive rates.

Regarding the precision-recall graph, which has a good area under the mean curve(0.85),

the classifier consistently shows high values of precision, even when the recall increases.

Comparing with the initial baseline experiments, the general scenario is fairly better.

There was an improvement in accuracy of 15%, 8% in precision and recall, 9% in F1,

6% in average precision and 16% in AUC.

5.6 Discussion

The obtained results suggest that using a meta classifier that makes use of an interme-

diate tier of the best single strong models is the preferred method. By using a Random

Forest classifier to predict each one of the journalistic criteria, and a kNN classifier

to detect the final relevance, it was possible to achieve the best accuracy(0.79), preci-

sion(0.80) and F1 (0.82) score. In fact, seeing different aspects of the problem space

(different criteria) was helpful to reduce the generalization error and variance. This

Chapter 5. Experimental Analysis 84

method proved to be a good choice to be used in the REMINDS system.

Although with different goals, other system achieved similar F1 performances, such as

predicting spam or not spam(0.79) [D. Irani and S. Webb and C. Pu, 2010] by using

a Decision Tree (C4.5). Simiraly, Liparas et al.[D. Liparas, Y. HaCohen-Kerner, A.

Moumtzidou, S. Vrochidis and I. Kompatsiaris, 2014] achieved a F1 score of 0.85 by

using simple bigrams and metadata from the tweets, with a Naive Bayes, to classify web

pages by topic. Fernandes et al. [K. Fernandes, P. Vinagre and P. Cortez, 2015] also

used a Random Forest to predict the popularity of a web article, obtaining a F1 score

of 0.69.

Chapter 6

Conclusions

In this work, we described the REMINDS system which will have at its core a classifier

able to predict relevant information and filter out irrelevant information. More precisely,

this specific work dealt with the development of a classifier for predicting the relevance

of social media posts relying exclusively in linguistic features extracted from text as the

main distinction from other approaches, by other partners of the REMINDS project.

This document started with a brief overview of the academic disciplines where this work

is focused, NLP, ML & Text Classification, describing important concepts useful to

understand this work. We then made a survey of a wide range of existing techniques to

solve text classification problems and also presented a technological review of existing

software implementations that currently support NLP tasks and, in some cases, ML

techniques. Furthermore, we described the REMINDS system global architecture, with

focus on the parts that were the focus of this work.

We have shown that, using only the available pre-trained models, there is not one NLP

toolkit that overperformed all the others in every scenario and pre-processing task. Nev-

ertheless, it was an important step to decide which tools to use in the feature extraction

process.

We have tackled the problem of identifying social network messages as relevant or not,

from a journalistic point of view, and relying only on linguistic features. Based on a

dataset of social network messages annotated by volunteer contributors, the best rele-

vance classification model learned achieved a F1-score of 0.82. This model relied on a

set of intermediate classifiers using the Random Forest model, using linguistic features

85

Chapter 6. Conclusions 86

extracted from the textual data, with the end model based on a k-Nearest Neighbors

classifier. The presented results are higher than those obtained using single feature

sets with no preprocessing or feature selection/reduction applied, which highlights the

importance of these additional steps.

Regarding future work, several alternatives could be explored and potentially improve

the results. Starting with the feature extracting process, there are other NLP tasks that

could be explored, such as: Information extraction which extracts structured knowledge

like facts, events or relationships; relation extraction which identifies relationships be-

tween entities; dependency parsing which is useful to understand textual relations, such

as who did what, when, where and how which could also have been used as features.

On the other hand, different combinations of feature selection/reduction methods and

learning models as well, could be explored. Moreover, the resulting system can be inte-

grated with the alternative approaches, based on different features, in a larger relevance

mining platform, namely the REMINDS system.

Bibliography

T. Saracevic. Why is Relevance Still the Basic Notion in Information Science? (De-

spite Great Advances in Information Technology). In Proceedings of the International

Symposium on Information Science, Zadar, Croatia, May 2015.

A. Rose. Facebook is suffering an irrelevance crisis. http://www.marketingmagazine.co.

uk/article/1371570/facebook-suffering-irrelevance-crisis, November 2015. Accessed:

06.11.2015.

M. Wu. If 99.99% of Big Data is Irrelevant, Why Do We Need

It? . https://community.lithium.com/t5/Science-of-Social-blog/

If-99-99-of-Big-Data-is-Irrelevant-Why-Do-We-Need-It/ba-p/39310, February

2012a. Accessed: 06.11.2015.

M. Wu. Searching and Filtering Big Data: The 2 Sides of the “Rel-

evance” Coin. https://community.lithium.com/t5/Science-of-Social-blog/

Searching-and-Filtering-Big-Data-The-2-Sides-of-the-Relevance/ba-p/38074, Au-

gust 2012b. Accessed: 06.11.2015.

A. Pinto, H. Gonçalo Oliveira, and A. Oliveira Alves. Comparing the Performance of Dif-

ferent NLP Toolkits in Formal and Social Media Text. In Marjan Mernik, José Paulo

Leal, and Hugo Gonçalo Oliveira, editors, 5th Symposium on Languages, Applications

and Technologies (SLATE’16), volume 51 of OpenAccess Series in Informatics (OA-

SIcs), pages 1–16, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik. ISBN 978-3-95977-006-4. doi: http://dx.doi.org/10.4230/OASIcs.SLATE.

2016.3. URL http://drops.dagstuhl.de/opus/volltexte/2016/6008.

T. Saracevic. Relevance Reconsidered. In Information Science: Integration in Perspec-

tives. In Proceedings of the 2nd Conference on Conceptions of Library and Information

Science, volume 1, pages 201–218, Copenhagen, Denmark, 1996.

87

http://www.marketingmagazine.co.uk/article/1371570/facebook-suffering-irrelevance-crisis
http://www.marketingmagazine.co.uk/article/1371570/facebook-suffering-irrelevance-crisis
https://community.lithium.com/t5/Science-of-Social-blog/If-99-99-of-Big-Data-is-Irrelevant-Why-Do-We-Need-It/ba-p/39310
https://community.lithium.com/t5/Science-of-Social-blog/If-99-99-of-Big-Data-is-Irrelevant-Why-Do-We-Need-It/ba-p/39310
https://community.lithium.com/t5/Science-of-Social-blog/Searching-and-Filtering-Big-Data-The-2-Sides-of-the-Relevance/ba-p/38074
https://community.lithium.com/t5/Science-of-Social-blog/Searching-and-Filtering-Big-Data-The-2-Sides-of-the-Relevance/ba-p/38074
http://drops.dagstuhl.de/opus/volltexte/2016/6008

Bibliography 88

T. Saracevic. Relevance: A Review of the Literature and a Framework for Thinking on

the Notion in Information Science. Part III: Behavior and Effects of Relevance. Journal

of the American Society for Information Science and Technology, 58(13):2126–2144,

2007.

T. Saracevic. Keynote Address - Quality of Information: Considerations for Library and

Information Services in the Networked World. In Proceedings of the tenth International

Conference on University Libraries , Mexico City, Mexico, 2012.

F. Sebastiani. Machine Learning in Automated Text Categorization. ACM Computing

Surveys, 34(1):1–47, Mars 2002.

S. Yadav and B. Parne. A Survey on Different Text Categorization Techniques for Text

Filtration. In Proceeding of the 9th International Conference on Intelligent Systems

and Control, pages 1–5, Coimbatore, India, January 2015.

A. Patra and D. Singh. A Survey Report on Text Classification with Different Term

Weighing Methods and Comparison between Classification Algorithms. International

Journal of Computer Applications, 75(7):14–18, 2013.

L. Page, S. Brin, R. Motwani and T. Winograd. The PageRank Citation Ranking:

Bringing Order to the Web. 1999.

S. Brin and L. Page. Reprint of: The Anatomy of a Large-Scale Hypertextual Web

Search Engine. Computer networks, 56(18):3825–3833, 2012.

P. Nadkarni, L. Ohno-Machado and W. Chapman. Natural Language Processing: An

Introduction. Journal of the American Medical Informatics Association, 18(5):544–

551, 2011.

D. Jurafsky and J. Martin. Speech and Language Processing (2nd Edition). Prentice-

Hall, Inc., 2nd edition, 2009.

E. Tjong Kim Sang and F. De Meulder. Introduction to the CoNLL-2003 Shared Task:

Language-Independent Named Entity Recognition. In Walter Daelemans and Miles

Osborne, editors, Proceedings of CoNLL-2003, pages 142–147. Edmonton, Canada,

2003.

S. Rosenthal, P. Nakov, S. Kiritchenko, S. Mohammad, A. Ritter, and V. Stoyanov.

SemEval-2015 Task 10: Sentiment Analysis in Twitter. In Proceedings of the 9th

Bibliography 89

International Workshop on Semantic Evaluation (SemEval 2015), pages 451–463,

Denver, Colorado, June 2015. Association for Computational Linguistics. URL

http://www.aclweb.org/anthology/S15-2078.

M. P. Marcus, M. Marcinkiewicz, and B. Santorini. Building a Large Annotated Corpus

of English: The Penn Treebank. Comput. Linguist., 19(2):313–330, June 1993. ISSN

0891-2017. URL http://dl.acm.org/citation.cfm?id=972470.972475.

D. M. Blei and A. Y. Ng and M. I. Jordan and J. Lafferty. Latent Dirichlet Allocation.

Journal of Machine Learning Research, 3:2003, 2003.

J. Gama, A. Carvalho, K. Faceli, A. Lorena and M. Oliveira. Extracção de Conhecimento

de Dados - Data Mining. Śılabo, Lda, 2nd edition, 2013.

I. Mani and I. Zhang. kNN Approach to Unbalanced Data Distributions: a Case Study

nvolving Information Extraction. In Proceedings of workshop on learning from imbal-

anced datasets, 2003.

J. Laurikkala. Improving Identification of Difficult Small Classes by Balancing Class

Distribution. Springer, 2001.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic

Minority Over-Sampling Technique. Journal of artificial intelligence research, pages

321–357, 2002.

B. M. Ribeiro, A. Sung, D. Suryakumar, and R. Basnet. The Critical Feature Dimension

and Critical Sampling Problems. In Proceedings of the International Conference on

Pattern Recognition Applications and Methods, pages 360–366, 2015. ISBN 978-989-

758-076-5. doi: 10.5220/0005282403600366.

C. Cortes and V. Vapnik. Support-Vector Networks. Machine learning, 20(3):273–297,

1995.

T. Fawcett. An Introduction to ROC Analysis. Pattern Recogn. Lett., 27(8):861–874,

June 2006. ISSN 0167-8655. doi: 10.1016/j.patrec.2005.10.010. URL http://dx.doi.

org/10.1016/j.patrec.2005.10.010.

R. Polikar. Pattern Recognition. Wiley Encyclopedia of Biomedical Engineering, 2006.

http://www.aclweb.org/anthology/S15-2078
http://dl.acm.org/citation.cfm?id=972470.972475
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1016/j.patrec.2005.10.010

Bibliography 90

P. Nakov, S. Rosenthal, Z. Kozareva, V. Stoyanov, A. Ritter, and T. Wilson. SemEval-

2013 Task 2: Sentiment Analysis in Twitter. In Second Joint Conference on Lexical

and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh Inter-

national Workshop on Semantic Evaluation (SemEval 2013), pages 312–320, Atlanta,

Georgia, USA, June 2013. ACL Press.

B. Sriram, D. Fuhry, E. Demir, H. Ferhatosmanoglu, and M. Demirbas. Short Text

Classification in Twitter to Improve Information Filtering. In Proceedings of the 33rd

International ACM SIGIR Conference on Research and Development in Information

Retrieval, SIGIR ’10, pages 841–842, New York, NY, USA, 2010. ACM. ISBN 978-1-

4503-0153-4. doi: 10.1145/1835449.1835643.

A. Ritter, Mausam, O. Etzioni, and S. Clark. Open domain event extraction from Twit-

ter. In Proceedings of 18th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD’12, pages 1104–1112. ACM, 2012. ISBN 978-1-

4503-1462-6.

K. Fernandes, P. Vinagre and P. Cortez. A Proactive Intelligent Decision Support

System for Predicting the Popularity of Online News. In Progress in Artificial Intel-

ligence, volume 9273 of Lecture Notes in Computer Science, pages 535–546. Springer

International Publishing, 2015.

M. Guerini and C. Strapparava and G. Ozbal. Exploring Text Virality in Social Net-

works. In International AAAI Conference on Web and Social Media, 2011.

P. Lops, M. De Gemmis, and G. Semeraro. Content-based recommender systems: State

of the art and trends. In Recommender systems handbook, pages 73–105. Springer US,

2011.

Yi-Ching Zeng and Shih-Hung Wu. Modeling the Helpful Opinion Mining of Online

Consumer Reviews as a Classification Problem. In Proceedings of the IJCNLP 2013

Workshop on Natural Language Processing for Social Media (SocialNLP), pages 29–

35, Nagoya, Japan, October 2013. Asian Federation of Natural Language Processing.

A. Tatar, M. Dias de Amorim, S. Fdida, and P. Antoniadis. A survey on Predicting

the Popularity of Web Content. Journal of Internet Services and Applications, 5(1):

8:1–8:20, 2014. doi: 10.1186/s13174-014-0008-y.

Bibliography 91

G. Szabo and B. A. Huberman. Predicting the Popularity of Online Content. Commun.

ACM, 53(8):80–88, August 2010. ISSN 0001-0782. doi: 10.1145/1787234.1787254.

B. Yu, M. Chen and L. Kwok. Toward Predicting Popularity of Social Marketing Mes-

sages. In Social Computing, Behavioral-Cultural Modeling and Prediction, volume

6589 of Lecture Notes in Computer Science, pages 317–324. Springer Berlin Heidel-

berg, 2011.

R. Bandari, S. Asur and B. Huberman. The Pulse of News in Social Media: Forecasting

Popularity. In Proceedings of the 6th International AAAI Conference on Web and

Social Media, pages 26–33, Dublin, Ireland, June 2012.

S. Petrovic and M. Osborne and V. Lavrenko. RT to win! predicting message propaga-

tion in twitter. In Proceedings of the Fifth International Conference on Weblogs and

Social Media, Barcelona, Catalonia, Spain, July 17-21, 2011.

L. Hong and B. Davison. Predicting Popular Messages in Twitter. In Proceedings

of the 20th International Conference Companion on World Wide Web, pages 57–58,

Hyderabad, India, March 2011.

D. Irani and S. Webb and C. Pu. Study of Trend-stuffing on Twitter through Text

Classification. In Proceedings of 7th Collaboration, Electronic messaging, Anti-Abuse

and Spam Conference (CEAS), 2010.

K. Lee, D. Palsetia, R. Narayanan, Md. Ali, A. Agrawal and A. Choudhary. Twitter

Trending Topic Classification. In Proceedings of the 2011 IEEE 11th International

Conference on Data Mining Workshops, pages 251–258, December 2011.

Y. Genc, Y. Sakamoto and J. Nickerson. Discovering Context: Classifying Tweets

through a Semantic Transform Based on Wikipedia. In Foundations of Augmented

Cognition. Directing the Future of Adaptive Systems, volume 6780 of Lecture Notes in

Computer Science, pages 484–492. Springer Berlin Heidelberg, 2011.

Alvaro Figueira, M. Sandim, and P. Fortuna. An Approach to Relevancy Detection:

Contributions to the Automatic Detection of Relevance in Social Networks, pages 89–

99. Springer International Publishing, Cham, 2016. ISBN 978-3-319-31232-3. doi:

10.1007/978-3-319-31232-3 9. URL http://dx.doi.org/10.1007/978-3-319-31232-3 9.

http://dx.doi.org/10.1007/978-3-319-31232-3_9

Bibliography 92

A. Frain and S. Wubben. SatiricLR: a Language Resource of Satirical News Articles.

In Nicoletta Calzolari (Conference Chair), Khalid Choukri, Thierry Declerck, Marko

Grobelnik, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios

Piperidis, editors, Proceedings of the Tenth International Conference on Language

Resources and Evaluation (LREC 2016), Paris, France, may 2016. European Language

Resources Association (ELRA). ISBN 978-2-9517408-9-1.

D. Liparas, Y. HaCohen-Kerner, A. Moumtzidou, S. Vrochidis and I. Kompatsiaris. News

Articles Classification Using Random Forests and Weighted Multimodal Features. In

Multidisciplinary Information Retrieval, volume 8849 of Lecture Notes in Computer

Science, pages 63–75. Springer International Publishing, 2014.

S. Kinsella, A. Passant and J. Breslin. Topic Classification in Social Media Using Meta-

data from Hyperlinked Objects. In Advances in Information Retrieval, volume 6611 of

Lecture Notes in Computer Science, pages 201–206. Springer Berlin Heidelberg, 2011.

E. Amigó, J. Carrillo de Albornoz, I. Chugur, A. Corujo, J. Gonzalo, T. Mart́ın, E. Meij,

M. de Rijke, and D. Spina. Overview of RepLab 2013: Evaluating Online Reputation

Monitoring Systems. In Proceedings of the Fourth International Conference of the

CLEF initiative, pages 333–352, 2013.

M. González Bermúdez. An Analysis of Twitter Corpora and the Difference between

Formal and Colloquial tweets. In Proceedings of the Tweet Translation Workshop

2015, pages 1–7. CEUR-WS. org, 2015.

A. Clark. Pre-processing very noisy text. In Proceedings of Workshop on Shallow Pro-

cessing of Large Corpora, pages 12–22, Lancaster University, United Kingdom, March

2003.

W. Wong, W. Liu and M. Bennamoun. Enhanced Integrated Scoring for Cleaning Dirty

Texts. Computing Research Repository, 2008.

Š. Dlugolinský, P. Krammer, M. Ciglan, M. Laclav́ık, and L. Hluchý. Combining Named

Enitity Recognition Tools. In Making Sense of Microposts (# MSM2013), Rio de

Janeiro, Brazil, May 2013.

S. Dlugolinsky, M. Ciglan, and M. Laclavik. Evaluation of Named Entity Recognition

Tools on Microposts. In Intelligent Engineering Systems (INES), 2013 IEEE 17th

International Conference on, pages 197–202, San Jose, Costa Rica, June 2013. IEEE.

Bibliography 93

F. Godin, P. Debevere, E. Mannens, W. De Neve, and R. Van de Walle. Leveraging

Existing Tools for Named Entity Recognition in Microposts. In Making Sense of

Microposts (# MSM2013), pages 36–39, Rio de Janeiro, Brazil, May 2013.

G Rizzo, R. Troncy, S. Hellmann, and M. Bruemmer. NERD meets NIF: Lifting NLP

Extraction Results to the Linked Data Cloud. LDOW, 937, 2012.

G. Rizzo, M. van Erp, and R. Troncy. Benchmarking the Extraction and Disambiguation

of Named Entities on the Semantic Web. In International Conference on Language

Resources and Evaluation, pages 4593–4600, 2014.

M. Garcia and P. Gamallo. Yet Another Suite of Multilingual NLP Tools. In Lan-

guages, Applications and Technologies – Revised Selected Papers of 4th International

Symposium SLATE, Madrid, Spain, June 2015, CCIS, pages 65–75. Springer, 2015.

K. Joseba Rodriquez, M. Bryant, T. Blanke, and M. Luszczynska. Comparison of Named

Entity Recognition Tools for Raw OCR Text. In KONVENS, pages 410–414, Vienna,

Austria, 2012.

S. Atdag and V. Labatut. A Comparison of Named Entity Recognition Tools Applied

to Biographical Texts. In Systems and Computer Science (ICSCS), 2013 2nd In-

ternational Conference on, pages 228–233, Villeneuve d’Ascq, France, August 2013.

IEEE.

E. Loper and S. Bird. NLTK: The Natural Language Toolkit. In Proceedings of the ACL-

02 Workshop on Effective Tools and Methodologies for Teaching Natural Language

Processing and Computational Linguistics - Volume 1, ETMTNLP ’02, pages 63–70,

Philadelphia, Pennsylvania, 2002.

S. Bird. NLTK: The Natural Language Toolkit. In Proceedings of the COLING/ACL on

Interactive Presentation Sessions, COLING-ACL ’06, pages 69–72, Sydney, Australia,

2006.

H. Cunningham and D. Maynard and K. Bontcheva and V. Tablan. GATE: An Architec-

ture for Development of Robust HLT Applications. In Proceedings of the 40th Annual

Meeting on Association for Computational Linguistics, pages 168–175, Philadelphia,

Pennsylvania, 2002. Association for Computational Linguistics.

Bibliography 94

D. Ferrucci and A. Lally. UIMA: An Architectural Approach to Unstructured Informa-

tion Processing in the Corporate Research Environment. Natural Language Engineer-

ing, 10(3-4):327–348, September 2004.

C. Manning, M. Surdeanu, J. Bauer, J. Finkel, J. Bethard and D. McClosky. The Stan-

ford CoreNLP Natural Language Processing Toolkit. In Proceedings of 52nd Annual

Meeting of the Association for Computational Linguistics: System Demonstrations,

pages 55–60, Baltimore, USA, 2014.

M. Honnibal and M. Johnson. An improved non-monotonic transition system for de-

pendency parsing. 2015.

J. D. Choi, J. Tetreault and A. Stent. It Depends: Dependency Parser Comparison

Using A Web-based Evaluation Tool. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics and the 7th International Joint Conference

on Natural Language Processing, pages 387–396, Beijing, China, July 2015.

T. D. Smedt and W. Daelemans. Pattern for Python. The Journal of Machine Learning

Research, 13(1):2063–2067, 2012.

M. Popel and Z. Žabokrtskỳ. TectoMT: Modular NLP Framework. In Proceedings

of the 7th International Conference on Natural Language Processing, pages 293–304,

Reykjav́ık, Iceland, August 2010.

H. Liu. MontyLingua: An End-To-End Natural Language Processor with Common

Sense. Technical report, MIT, 2004.

M. Ling. An Anthological Review of Research Utilizing MontyLingua, a Python-Based

End-to-End Text Processor. Computing Research Repository, 2006.

F. Bilhaut and A. Widlöcher. LinguaStream: An Integrated Environment for Compu-

tational Linguistics Experimentation. In Proceedings of the 11th Conference of the

European Chapter of the Association for Computational Linguistics: Posters &

Demonstrations, EACL ’06, pages 95–98, Trento, Italy, 2006.

A. Ritter, S. Clark and O. Etzioni. Named Entity Recognition in Tweets: An Exper-

imental Study. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing, pages 1524–1534, Edinburgh, Scotland, July 2011.

Bibliography 95

K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. Mills, J. Eisenstein, M. Heilman,

D. Yogatama, J. Flanigan and N. Smith. Part-of-speech Tagging for Twitter: An-

notation, Features, and Experiments. In Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics: Human Language Technologies: Short

Papers - Volume 2, pages 42–47, Portland, Oregon, 2011.

K. Bontcheva, L. Derczynski, A. Funk, M. Greenwood, D. Maynard and N. Aswani.

TwitIE: An Open-Source Information Extraction Pipeline for Microblog Text. In

Proceedings of Recent Advances in Natural Language Processing, pages 83–90, Hissar,

Bulgaria, July 2013.

A. Radziszewski, A. Wardyński and T Śniatowski. WCCL: A Morpho-syntactic Feature

Toolkit. In Proceedings of the Balto-Slavonic Natural Language Processing Workshop

(BSNLP 2011), 2011.

B. Broda, P. Kedzia, M. Marcińczuk, A. Radziszewski, R. Ramocki and A. Wardyński.

Fextor: A Feature Extraction Framework for Natural Language Processing: A Case

Study in Word Sense Disambiguation, Relation Recognition and Anaphora Resolution.

In Computational Linguistics, volume 458 of Studies in Computational Intelligence,

pages 41–62. Springer Berlin Heidelberg, 2013.

W. Daelemans, J. Zavrel, P. Berck, and S. Gillis. MBT: A Memory-Based Part of Speech

Tagger-Generator. arXiv preprint cmp-lg/9607012, 1996.

Lance A Ramshaw and Mitchell P Marcus. Text Chunking using Transformation-Based

Learning. 1995.

R. Florian, A. Ittycheriah, H. Jing and T. Zhang. Named Entity Recognition through

Classifier Combination. In Walter Daelemans and Miles Osborne, editors, Proceedings

of CoNLL-2003, pages 168–171. Edmonton, Canada, 2003.

Mena Habib, Maurice Van Keulen, and Zhemin Zhu. Concept extraction challenge:

University of Twente at #msm2013. In Making Sense of Microposts (#MSM2013)

Concept Extraction Challenge, pages 17–20, 2013. URL http://ceur-ws.org/Vol-1019/

paper 14.pdf.

S. Scott and S. Matwin. Feature engineering for text classification. In ICML, volume 99,

pages 379–388, 1999.

http://ceur-ws.org/Vol-1019/paper_14.pdf
http://ceur-ws.org/Vol-1019/paper_14.pdf

Bibliography 96

A. Moschitti and R. Basili. Complex linguistic features for text classification: A com-

prehensive study. In European Conference on Information Retrieval, pages 181–196.

Springer, 2004.

I. B́ıró, J. Szabó, and A. A. Benczúr. Latent dirichlet allocation in web spam filtering. In

Proceedings of the 4th International Workshop on Adversarial Information Retrieval

on the Web, AIRWeb ’08, pages 29–32, New York, NY, USA, 2008. ACM. ISBN

978-1-60558-159-0. doi: 10.1145/1451983.1451991. URL http://doi.acm.org/10.1145/

1451983.1451991.

B. Liu. Sentiment Analysis and Subjectivity. Handbook of natural language processing,

2:627–666, 2010.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley

& Sons, 2012.

T. M. Oshiro, P. S. Perez, and J. A. Baranauskas. How Many Trees in a Random

Forest?, pages 154–168. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN

978-3-642-31537-4. doi: 10.1007/978-3-642-31537-4 13. URL http://dx.doi.org/10.

1007/978-3-642-31537-4 13.

http://doi.acm.org/10.1145/1451983.1451991
http://doi.acm.org/10.1145/1451983.1451991
http://dx.doi.org/10.1007/978-3-642-31537-4_13
http://dx.doi.org/10.1007/978-3-642-31537-4_13

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Goals and Context
	1.3 Contributions
	1.4 Structure of the Dissertation

	2 Background
	2.1 Definition of Relevance
	2.1.1 Relevance from an Information Retrieval Perspective

	2.2 Natural Language Processing
	2.2.1 Language Knowledge Levels
	2.2.2 Issues in Social Media Text
	2.2.3 Common NLP-related Tasks

	2.3 Machine Learning and Text Classification
	2.3.1 Data Gathering
	2.3.2 Preprocessing
	2.3.3 Feature Selection
	2.3.4 Feature Reduction
	2.3.5 Learning Methods
	2.3.6 Evaluation Metrics

	2.4 Relation to this work

	3 State of the Art
	3.1 Scientific Overview
	3.1.1 Approaches to Social Media Text Classification

	3.2 Technological Overview
	3.2.1 Common Data Sets
	3.2.2 Related Comparisons
	3.2.3 A Review of Current Tools
	3.2.4 Available Features in Current Tools

	4 Performance of Different NLP Toolkits in Formal and Social Media Text
	4.1 Datasets
	4.2 Addressed Tasks and Compared Tools
	4.3 Comparison Results
	4.4 Discussion

	5 Experimental Analysis
	5.1 Dataset
	5.2 Feature Extraction
	5.3 Baseline Results
	5.4 Feature Engineering Results
	5.5 Predicting Relevance through Journalistic Criteria
	5.6 Discussion

	6 Conclusions
	Bibliography

