
	

	
	

	
	

	
	
	
	
	
	

	
	
	
	

	
	

	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

Moments Share:
Collaborative sharing of
photos	
	

Bruno Mota Antunes da Cunha
bcunha@student.dei.uc.pt

Supervisors:
David Rodrigues
Hugo Gonçalo Oliveira
September 1st, 2016

Masters	in	Informatics	Engineering	
Dissertation/Internship	2015/2016	
Final Report

	 2	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	
	
	
	
	

	
	
	

	
	
	
	
	
	

	
	
	

	
	
	
	

	
	
	
	 	
Undergraduate:	
Bruno	Mota	Antunes	da	Cunha	
bcunha@student.dei.uc.pt,	bruno.cunha@wit-software.com	
	
Supervisor	at	University	of	Coimbra:	
Hugo	Gonçalo	Oliveira	
hroliv@dei.uc.pt	
	
	
Supervisor	at	WIT	Software:	
David	Rodrigues	
david.rodrigues@wit-software.com

Department of Informatics Engineering
Faculty of Sciences and Technology
University of Coimbra
Pólo II, Pinhal de Marrocos, 3030-290 Coimbra

Tel: +351239790000 | Fax: +351239701266 | info@dei.uc.pt
	

WIT Software, S.A.
Centro de Empresas de Taveiro
Estrada de Condeixa, 3045-508 Taveiro, Coimbra

Tel: +351239801030 | Fax: +351239801039 | info@wit-software.com

	

	
	 	

	 5	

Acknowledgements	
	
	
In	 the	 first	place	 I	would	 like	 to	express	my	gratitude	 to	WIT	Software	 for	giving	me	 the	
opportunity	 to	 work	 in	 such	 outstanding	 conditions,	 alongside	 proficient	 and	 friendly	
coworkers	who	taught	me	a	lot.	
	
A	 special	 consideration	 for	 my	 two	 supervisors,	 David	 Rodrigues	 and	 Hugo	 Gonçalo	
Oliveira,	who	were	exceptional	 to	me	during	these	past	12	months.	They	were	extremely	
helpful	every	time	I	needed.	
	
Furthermore,	I	would	like	to	thank	my	family	for	the	continuous	support	that	I	was	given	
since	the	very	first	day	when	I	 joined	the	university.	Without	them	this	experience	would	
not	be	possible.	
	
Lastly	I	would	like	to	thank	all	my	colleagues	trainees,	we	had	a	great	time	during	the	year	
and	it	certainly	helped	making	our	internship	easier.	
	
	
	 	

	 6	

	 	

	 7	

Abstract	
	

	
Mankind	 is	 steadily	 becoming	 more	 involved	 with	 technology	 in	 the	 everyday	 life.	 A	
significant	 percentage	 of	 people	 own	 a	 smartphone,	 and	 Internet	 connectivity	 has	 never	
had	such	a	reach	as	it	happens	nowadays.	This	means	that	everything	can	be	connected,	at	
any	time.	Smartphones	can	be	useful	to	a	wide	amount	of	tasks,	and	to	support	this	reality,	
everyday	new	mobile	applications	arise.		
	
Though,	there	is	one	particular	use	case	that	is	not	properly	explored	by	any	application	as	
of	today.	When	a	group	of	friends	go	on	vacations	together,	they	often	take	umpteen	photos	
with	 their	 smartphones.	 And	 today	 this	 scenario	 triggers	 an	 issue.	 Why	 does	 not	 every	
member	of	the	group	have	access	to	the	photos	taken	by	everyone,	immediately?	Why	do	
they	 have	 to	wait,	 commonly,	 for	weeks	 and	weeks,	 until	 everyone	 decides	 to	 share	 the	
contents	with	the	group?	This	is	what	happens	today,	but	this	internship	intends	to	solve	
this	problem	with	a	mobile	application:	Momentum.		
	
This	internship	will	focus	on	developing	an	iOS	application	prototype	for	Momentum,	with	
the	purpose	of	solving	the	previously	stated	problem	in	an	innovative	way.	Momentum	will	
offer	the	users	a	private	space	for	sharing	their	photos	in	a	collaborative	way.	
	
	

	
	
	
	
	
	
	
	
	
	
	

Keywords:	 “Collaborative	 Albums”,	 “iOS”,	 “Mobile	 Applications”,	 “Momentum”,	 “Photo	
Sharing”,	“Private	Events”,	“Public	Events”,	“Swift”	

	
	
	
	

	

Table	of	Contents	
Moments Share:	..	1	
Collaborative sharing of photos	...	1	

1	 Introduction	..	3	
1.1	 Context	...	3	
1.2	 Problem	..	3	
1.3	 Target	Audience	..	4	
1.4	 Motivation	...	4	
1.5	 Goals	..	5	
1.6	 Document	Structure	...	6	

2	 State	of	the	Art	...	7	
2.1	 Direct	Competitors	...	7	
2.1.1	 Moments	...	8	
Comet	...	9	
2.1.2	 WedPics	...	10	
2.1.3	 Cluster	..	11	
2.1.4	 Togethera	..	13	

2.2	 Features	...	15	
2.2.1	 Comparison	..	16	

2.3	 Indirect	Competitors	...	18	
2.3.1	 Facebook	...	18	
2.3.2	 Snapchat	..	18	
2.3.3	 Dropbox	...	19	
2.3.4	 Google	Photos	...	19	
2.3.5	 Instagram	..	19	
2.3.6	 Flickr	...	20	

2.4	 Conclusion	...	20	
3	 Methodology	...	23	
3.1	 Agile	...	23	
3.2	 Sprints	..	23	
3.3	 Sprint	Meetings	...	23	
3.4	 Planning	...	24	
3.5	 User	Stories	...	24	
3.6	 Product	Backlog	..	30	

4	 Architecture	..	31	
4.1	 Decisions	..	31	
4.1.1	 Objective-C	vs.	Swift	...	31	
4.1.2	 Back-end	framework	...	32	
4.1.3	 Persistence	...	32	
4.1.4	 Summary	...	34	

4.2	 Spring	Boot	Fundamentals	..	34	
4.3	 iOS	Fundamentals	...	36	
4.3.1	 Application	life	cycle	..	36	
4.3.2	 iOS	design	patterns	...	37	
4.3.3	 Persistence	in	iOS	..	40	
4.3.4	 Concurrency	..	42	

	 9	

4.4	 User	Authentication	...	44	
4.5	 Docker	..	44	
4.6	 Mockups	...	44	

5	 Implementation	and	Evaluation	..	47	
5.1	 First	semester	..	47	
5.1.1	 First	sprint	..	48	
5.1.2	 Second	Sprint	..	49	
5.1.3	 Third	Sprint	...	49	

5.2	 Second	semester	...	51	
5.3	 Evaluation	...	52	
5.3.1	 Usability	tests	..	52	
5.3.2	 Functional	tests	..	53	
5.3.3	 Code	metrics	and	complexity	...	53	

6	 Conclusion	...	55	
7	 Bibliography	...	57	
	
	

	

Table	of	Figures	
	
FIGURE	1	-	MOMENTS	SCREENSHOTS	...	8	
FIGURE	2	-	COMET	SCREENSHOTS	...	9	
FIGURE	3	-	WEDPICS	SCREENSHOTS	..	11	
FIGURE	4	-	CLUSTER	SCREENSHOTS	...	12	
FIGURE	5	-	TOGETHERA	SCREENSHOTS	..	14	
FIGURE	6	-	ARCHITECTURE	DIAGRAM	...	35	
FIGURE	7	-	IOS	APP	LIFE	CYCLE	[42]	...	36	
FIGURE	8	-	MVVM	MODEL	[43]	...	38	
FIGURE	9	-	DELEGATION	EXAMPLE	[44]	..	39	
FIGURE	10	-	ADDING	AN	OBSERVER	..	40	
FIGURE	11	-	POSTING	A	NOTIFICATION	..	40	
FIGURE	12	-	THE	CODE	THAT	WILL	BE	TRIGGERED	..	40	
FIGURE	13	-	MOCKUP	EVENTS	SCREEN	..	45	
FIGURE	14	-	MOCKUP	EVENT	VIEW	..	46	
FIGURE	15	-	MOMENTUM	SPRINT	3	SCREENSHOTS	...	50	
FIGURE	16	-	EXAMPLE	OF	STORYBOARD	DEVELOPMENT	...	54	

	
	
	
	
	

	

Index	of	Tables	
	
TABLE	1	-	MOMENTUM'S	DIRECT	COMPETITORS	..	17	
TABLE	2	-	MOMENTUM'S	USER	STORIES	..	28	

	

Glossary	
	
	

Agile	Software	
Development	 	

Agile	Software	Development	is	a	conceptual	structure	
for	software	engineering	projects	that	presents	
functional	versions	of	the	product	on	each	iteration,	
rather	that	just	at	the	end	of	the	project.	

API	 Application	Programming	Interface	is	a	group	of	
routines	and	protocols	that	makes	software’s	
functionalities	available	to	third	parties	without	the	
need	to	know	the	implementation	details.	

Git	 Git	is	a	distributed	version	control	system	for	
software	development	that	supports	distributed	
workflows.	

GitLab	 GitLab	is	the	open	source	self-hosted	Git	repository	
manager	used	at	WIT	Software.	

Product	Backlog	 The	Product	Backlog	is	the	instrument	that	contains	a	
project’s	user	stories,	their	priority	and	their	
estimated	effort.	

Redmine	 Redmine	is	the	online	platform	that	contained	
Momentum’s	backlog.	It	is	an	open	source	web-based	
project	management	tool.		

Sprint	 Sprint	is	an	iteration	of	the	Agile	Development	
process.	It	is	its	core	unity,	and	usually	lasts	between	
1	to	4	weeks.	

Spring	Boot	 Spring	Boot	offers	a	quick	way	to	start	a	Spring	
project.	Removes	Spring	configuration’s	boilerplate	
and	allows	the	developer	to	start	coding	right	away.	

Swift	 Swift	is	the	latest	programming	language	from	Apple	
destined	to	Apple’s	operating	systems.	

User	Story	 User	Story	in	Agile	software	development	
technologies	is	a	phrase	that	represents	what	a	
certain	character	of	the	system	should	be	able	to	do.	
User	stories	help	identifying	the	system’s	
requirements.	

	

	

	
	

Acronyms	
	
	
API	 Application	Programming	Interface	

APP	 Application	

DB	 Database	

HTTP	 Hypertext	Transfer	Protocol	

iOS	 Apple’s	Mobile	Operating	System	

JPA	 Java	Persistence	Application	Programming	Interface	

JSON	 JavaScript	Object	Notation	

MVC	 Model-View-Controller	Design	Pattern	

NoSQL	 Non	relational	Databases	

OS	 Operating	System	

PDF	 Portable	Document	Format	

REST	 Representational	State	Transfer	

SDK	 Software	Development	Kit	

SQL	 Structured	Query	Language	

URL	 Uniform	Resource	Locator	

UX	 User	Experience	

XML	 Extensible	Markup	Language	

	
	
	

	 1	

	 2	

	
	 	

	 3	

1 INTRODUCTION	
	
The	present	document,	together	with	all	the	appendices,	is	part	of	the	work	done	at	
WIT	Software	during	this	one-year	internship.	The	internship	work	was	supervised	
by	 Hugo	 Gonçalo	 Oliveira,	 PhD	 professor	 at	 the	 Department	 of	 Informatics	
Engineering	of	 the	University	of	Coimbra,	and	David	Rodrigues,	Software	Engineer	
at	WIT	Software.	
	
	
1.1 Context	
	
The	 internship	 is	 the	 final	 course	of	 the	Master’s	degree	 in	Computer	Science	and	
Engineering,	 from	 the	Department	 of	 Informatics	 Engineering	 of	 the	University	 of	
Coimbra.		The	work	was	supervised	by	Hugo	Gonçalo	Oliveira,	PhD	professor	at	the	
Department	 of	 Informatics	 Engineering	 of	 the	 University	 of	 Coimbra,	 and	 David	
Rodrigues,	Software	Engineer	at	WIT	Software.	
	
WIT	Software’s	office	of	Coimbra,	Portugal,	is	where	the	internship	took	place.	WIT	
Software	plays	a	big	role	on	the	development	of	mobile	applications	worldwide.	The	
company	is	based	in	Portugal,	with	headquarters	in	Lisbon	and	offices	in	Coimbra,	
Porto	and	Leiria.	
	
	
1.2 Problem	
	
Consider	 this	 scenario:	A	group	of	 friends	decide	 to	go	on	vacations	 together,	 and	
each	 element	 of	 the	 group	 brings	 its	 smartphone	 to	 the	 trip.	 As	 it	 is	 common	
amongst	those	journeys,	the	elements	of	the	group	start	taking,	but	the	contents	are	
not	 automatically	 shared	 by	 any	 app.	 The	 excuse	 is	 often	 the	 same:	 “No	 problem	
buddy,	 as	 soon	 as	 I	 get	 home	 I	 will	 send	 the	 pictures	 to	 everyone”.	 Thus	 what	
happens	 is	during	 the	holidays	several	people	capture	 their	own	memories,	but	at	
the	end	not	everyone	has	control	over	all	 the	pictures	that	were	taken.	And	worse	
than	 that,	 in	 some	 cases	 the	 group	has	 to	wait	 several	weeks,	 if	 not	 even	months	
until	everything	is	properly	shared	between	the	group	members.	
	
There	 will	 be	 two	 different	 types	 of	 events:	 public	 and	 the	 private	 events.	 The	
aforementioned	scenario	would	fit	in	the	private	event	type,	once	desirably	the	data	
should	remain	protected	from	public.	
	
The	 idea	of	naming	Momentum	for	a	private	group	has	to	do	with	the	 intention	of	
sharing	 any	 moment	 on	 someone’s	 life	 with	 the	 ones	 they	 wish.	 A	 trip	 to	 the	
Balkans,	 a	 summer	 festival	 in	 California	 or	 holidays	 spent	 in	 a	 winter	 resort,	 are	
examples	of	possible	Momentums.	They	work	like	a	shared	folder	where	the	group	
members	drop	their	contents	in	a	collaborative	way.	

	 4	

	
The	product	in	development	allows	not	only	the	group	members	who	go	on	the	trip	
to	create	a	Momentum	and	therefore	publish	and	consume	the	contents	posted	by	
the	others,	but	also	their	grandmothers,	e.g.,	and	family	members,	to	be	able	to	join	
the	 group	without	 posting	 permissions.	 A	 non-publisher	member	 of	 a	Momentum	
may	still	comment	and	react	to	any	photograph	posted	by	the	publishers.	The	only	
constraint	is	precisely	regarding	posting.		
	
Still	 regarding	 the	 Momentums,	 there	 is	 one	 extra	 characteristic,	 which	
differentiates	them	from	the	Events.	Momentums	may	have	an	expiration	date.	Upon	
creation,	 the	Momentum’s	owner	 is	 in	charge	to	decide	 if	 the	Momentum	will	self-
destruct	after	a	chosen	period	of	time	or	not.	
	
1.3 Target	Audience	
	
The	audience	of	Momentum	will	be	very	wide,	mainly	because	it	has	the	goal	of	not	
cutting	 off	 any	 slice	 of	 the	 population.	 Nowadays	 a	 very	 wide	 spectrum	 of	 the	
population	is	active	on	the	internet	and	on	social	networks,	and	this	prototype	aims	
to	capture	all	its	width.	Though,	the	main	target	audiences	are	teens/young	adults,	
both	male	and	female.	
	
Momentum	will	be	suitable,	e.g.,	for	a	public	official	event,	like	a	summer	festival	or	
a	 rock	 concert,	 due	 to	 having	 as	 core	 feature	 the	 possibility	 of	 gathering	 all	 its	
pictures	in	one	place.	
	
And	the	possibility	of	creating	a	temporary	Momentum	will	be	extremely	handy	to	
groups	 of	 friends,	 while	 on	 vacations	 or	 partying	 e.g..	 Knowing	 that	 those	
publications	will	have	a	 limited	 time	 frame	before	 self-destruction	may	encourage	
some	 users	 to	 use	 this	 product.	What	 supports	 this	 idea	 is	 the	 belief	 that	 certain	
photos	are	only	posted	if	users	know	they	will	not	last	forever,	which	generally	has	
to	do	with	privacy	issues.	Otherwise	users	do	not	even	publish	the	contents.		
	
Momentum	 can	 be	 very	 convenient	 basically	 in	 any	 kind	 of	 event,	 e.g.	 a	wedding.	
One	member	starts	by	creating	an	Event,	which	can	happen	before,	during	or	after	
the	wedding,	and	invites	the	wedding	members.	Furthermore,	all	the	members	may	
post	 pictures,	 while	 having	 access	 to	 the	 contents	 taken	 by	 every	 other	 member	
participant.	
	
1.4 Motivation	
	
This	 section	 describes	 the	 reasons	why	 the	 undergraduate	 selected	 an	 internship	
concerning	 mobile	 technologies	 development	 and,	 most	 particularly,	 photos	 and	
videos	sharing	mobile	applications.	
	

	 5	

According	 to	 Pew	 Research	 Center	 [1],	 as	 of	 July	 2015,	 68%	 of	 the	 United	 States	
population	owns	a	smartphone,	and	that	number	has	been	growing	steadily	over	the	
past	 few	 years.	 46%	 of	 the	 United	 States	 smartphone	 owners	 say	 it	 is	 something	
“they	 could	 not	 live	 without”	 [2].	 These	 numbers	 represent	 the	 addiction	 that	
smartphones	 are	 turning	 into,	 and	 affect	 a	 relatively	 large	 part	 of	 the	 world	
population.	 European	 statistics,	 despite	 presenting	 lower	 values	 than	 the	
American’s,	demonstrates	that	the	number	of	smartphones	is	also	increasing,	and	it	
is	predicted	to	continue	to	rise	on	the	next	years,	according	to	Statista [3]	.	
	
Regarding	 iOS	 apps,	 as	 of	 July	 2015	 there	 were	 approximately	 1.5	 million	
applications	on	Apple’s	App	Store	[4],	a	slightly	smaller	number	when	compared	to	
the	Android	market	 (1.6	million	 applications).	 That	 confirms	 the	 influence	mobile	
applications	have	over	the	global	population.	
	
Moreover,	 looking	 into	 the	 chart	 with	 the	 most	 downloaded	 applications	 in	 the	
United	 States	 App	 Store,	 several	 apps	 can	 be	 found	 whose	 aim	 involves	 sharing	
personal	 photos.	 This	 demonstrates	 the	 trend	 that	 is	 emerging	 nowadays.	 People	
are	 increasingly	 getting	 more	 and	 more	 interested	 on	 applications	 that	 allow	
innovative	ways	for	sharing	photographs.	As	an	example,	one	of	those	applications	
is	a	direct	competitor	of	Momentum:	Moments	which	belongs	to	Facebook	and	was	
ranked	18th	by	the	beginning	of	January	2016	[5].		
	
Nevertheless,	all	these	applications	have	a	set	of	limitations,	e.g.,	they	do	not	ensure	
the	 privacy	 of	 their	 groups,	 they	 do	 not	 provide	 both	 public	 and	 private	 groups	
creation	within	the	same	app,	etc.	There	are,	 in	fact,	some	interesting	applications,	
but	 none	 of	 them	 is	 able	 to	 totally	 fulfill	 user’s	 expectations.	 The	 applications	
available	 nowadays	 all	 lack	 some	 important	 features	 that	will	 be	 implemented	 in	
Momentum,	and	the	complete	analysis	between	Momentum	and	its	competitors	will	
be	performed	hereafter.	
	
Finally,	the	problem	earlier	described	is	real,	and	having	the	opportunity	to	solve	it	
by	developing	a	mobile	application	that	can	be	a	success	worldwide	is	the	reason	for	
this	internship.	
	
	
1.5 Goals	
	
The	main	 goal	 of	 this	 internship	 is	 to	 develop	Momentum,	 an	 app	 that	 allows	 the	
users	to	share	their	photos	in	a	very	easy	way,	by	creating	events.	The	events	may	
be	public	or	private.	The	public	events	will	be	known	as	Events,	while	 the	private	
ones	will	be	called	Momentums.	Momentums	can	be	temporary	or	permanent.	
	
The	 application	 is	 intended	 to	 be	 cross-platform,	 i.e.	 not	 exclusively	 targeting	 a	
concrete	operating	 system.	 It	will	 be	possible	 for	 a	user	 to	use	Momentum	on	his	
iPhone	and	on	his	Android	device.	

	 6	

	
Nevertheless	 this	 internship’s	 goal	 is	 to	 develop	 a	 prototype	 of	 the	 application	
Momentum	for	iOS	devices.	Thus,	the	undergraduate	is	expected	to	acquire	technical	
knowledge	on	the	mobile	development	segment,	and	gain	experience	on	application	
prototypes	production.	
	
However	there	was	another	mark	to	accomplish	by	the	end	of	January/beginning	of	
February	 of	 2016.	 WIT	 Software	 was	 represented	 at	 Barcelona’s	 Mobile	 World	
Congress	 2016	 [6],	 the	 self-proclaimed	 world’s	 largest	 gathering	 for	 the	 mobile	
industry.	
	
In	 order	 to	match	 the	 expectations	 set	 at	 the	 beginning	 of	 the	 academic	 year,	 the	
student	implicitly	had	short-term	goals,	namely:	

- Learn	iOS	and	the	Swift	programming	language	
- Improve	his	Java	knowledge,	by	working	with	Spring	Boot	
- Master	his	databases	skills,	due	to	using	PostgreSQL	
- Learn	Riak	S2,	an	open	source	alternative	to	Amazon	S3	
- Learn	GitLab,	a	Git	repository	manager	
- Learn	 to	 use	 Docker,	 that	 fixes	 the	 issues	 caused	 by	 deploying	 an	

application	over	different	operating	systems	
- Get	familiar	with	Agile	software	development	

	
	
	
1.6 Document	Structure	
	
The	document	consists	of	7	chapters,	the	introduction	that	is	described	here,	and	the	
following	chapters:	

- State	of	the	art:	a	complete	study	involving	Momentum’s	competitors	and	
features.	

- Methodology:		presents	the	methodology	followed	during	the	internship.		
- Architecture:	 describes	 the	 main	 issues	 that	 emerged	 upon	 the	

architecture	designing.	
- Implementation	 and	 evaluation:	 there	will	 be	 a	 description	 of	 the	 code	

implementation	and	the	flow	of	development	over	the	year,	and	the	tests	
that	were	performed	on	the	prototype.	

- Conclusion:		exposes	the	student’s	final	thoughts	regarding	this	one-year	
internship.		

	 7	

2 STATE	OF	THE	ART	
	
This	chapter	is	a	summary	of	the	complete	study	regarding	the	State	of	the	Art.	
	
During	this	stage,	 the	undergraduate	started	by	selecting	which	applications	could	
be	considered	important	for	the	analysis	of	the	direct	competitors,	in	the	State	of	the	
Art,	 and	 they	 were	 put	 side	 by	 side	 in	 order	 to	 be	 compared	 and	 to	 check	 their	
similarities	and	differences.	
	
During	 this	stage,	 the	undergraduate	started	by	selecting	which	 features	would	be	
considered	important	in	order	to	differentiate	Momentum	from	its	competitors.	
	
Afterwards,	 it	was	possible	 to	determine	 the	 list	 of	 features	 that	 could	be	used	 to	
differentiate	 Momentum	 from	 its	 direct	 competitors.	 Each	 of	 the	 competitors	 is	
followed	by	a	small	description,	explaining	what	the	application	does,	what	was	well	
achieved	 by	 their	 developers	 and	 what	 are	 their	 negative	 features	 that	 can	 be	
explored	by	Momentum.	The	results	are	then	shown	in	a	table.	
	
Furthermore,	 the	 set	 of	 indirect	 competitors	 is	 described,	 containing	 a	 small	
description	 too	 and	 a	 few	 reasons	why	 they	 are	 considered	Momentum’s	 indirect	
competitors.	
	
At	the	end	of	this	chapter,	there	is	a	small	conclusion	stating	how	could	Momentum	
be	 different	 from	 the	 actual	 applications,	 in	 order	 to	 be	 a	 better	 solution	 to	 the	
customers.		
	
This	study	is	focused	on	the	following	points:	

• Most	popular	direct	competitors	of	Momentum	
• Features	that	influence	the	market	
• Most	popular	indirect	competitors	of	Momentum	

	
	
	
	
2.1 Direct	Competitors	
	
This	 section	 describes	 a	 small	 group	 of	 iOS	 apps	 that	 provide	 similar	 features	 to	
Momentum’s,	and	thus	can	be	considered	direct	competitors.	
	
We	 considered	 as	 direct	 competitors	 the	 applications’	 whose	 main	 focus	 was	 to	
share	photos	and	videos	with	friends	and	family	in	a	private	way.	The	following	iOS	
applications	were	analyzed:	
	

-					Moments [7]	

	 8	

- Comet	[8](Previously	called	Crossroad)	
- WedPics [9]	
- Cluster [10]	
- Togethera [11]	

	
	
2.1.1 Moments	
	
Launched	 on	 June	 15th	 2015,	Moments	 belongs	 to	 Facebook	 and	 currently	 is	 only	
available	in	the	United	States.	
	
Moments	 currently	 figures	 in	 the	 top	20	of	App	 Store	 free	 apps	 [5],	 and	has	been	
rising	steadily	in	the	charts	in	the	past	weeks.	There	is	a	trend	emerging	around	this	
sort	of	applications	nowadays	and	these	numbers	serve	as	an	example.	People	are	
showing	their	interest	in	this	market	segment	and	thus	it	must	be	better	explored.	
	

	
Figure	1	-	Moments	Screenshots	

	
The	 application	 consists	 in	 albums	 (moments)	 shared	by	 a	 group	of	 people.	Upon	
creation,	the	moment	creator	selects	which	friends	they	want	to	invite,	by	accessing	
his	Facebook	contacts.	Afterwards,	any	moment	member	can	post.	The	application	
has	a	very	interesting	feature	that	is	to	compile	the	moment’s	pictures	and	adding	a	
customizable	soundtrack.	The	outcome	stands	out	for	its	originality.	Another	feature	
that	should	be	emphasized	is	the	face	detection	mechanism,	original	from	Facebook.	

	 9	

It	 is	 promised	 that	 each	 of	 our	 friends	 will	 be	 automatically	 tagged,	 but	 at	 the	
moment	it	is	not	that	effective.	And	the	application	presents	us	the	photos	sorted	by	
location	and	by	date.	
	
To	 summarize,	 what	 makes	 this	 application	 stand	 out	 from	 the	 crowd	 is	 its	
extremely	simple	and	original	design,	combined	with	the	other	features.	
	
	
	
Comet	(former	Crossroad)	
	
This	 competitor	was	 launched	on	 January	2nd	2014	 in	Paris	by	Mathieu	Chabasse,	
Aurélien	 Sibiril,	 Florent	 Hobein	 and	 Mathieu	 Spiry,	 originally	 under	 the	 name	
Crossroad.	
	
For	 the	 first	18	months	 the	app	was	exclusively	available	 in	France,	and	since	 last	
September	2015	it	is	on	App	Store	worldwide.	
	

	
Figure	2	-	Comet	Screenshots	

	
Comet	has	a	 lot	of	similarities	with	the	other	competitors,	and	focus	on	allowing	a	
user	to	create	an	album	and	share	it	with	his	friends.	The	contacts	list	is	obtained	by	
accessing	the	device’s	contacts,	and	the	photos	are	then	displayed	by	chronological	
order,	starting	from	the	oldest	or	from	the	newest.	

	 10	

	
Furthermore	it	 is	also	possible	to	export	any	album	to	the	user’s	device,	and	share	
straight	 from	 the	 app	 to	other	 services.	The	design	 is	 also	very	 appealing	 and	 the	
simplicity	is	once	more	a	key	attribute	on	this	application.	
	
	
	
2.1.2 WedPics	
	
WedPics	aims	 into	a	particular	 target:	weddings.	A	member	of	 the	engaged	couple	
creates	the	private	group	and	sets	his/her	fiancée/fiancé.	They	will	become	admins	
of	 the	event,	which	means	 they	can	set	guest’s	permissions,	 remove	guests,	delete	
contents	and	change	 the	wedding	details.	The	event	 is	 intended	 to	 remain	private	
although	by	 sharing	 it	with	 the	guests	 it	may	not	work	 that	way,	 since	one	public	
link	 is	 generated.	 Other	 options	 of	 inviting	 people	 are	 available	 such	 as	 sending	
email	requests,	sms	and	Facebook	invites.	
	
Then	all	the	guests	are	free	to	post	contents	to	the	group,	and	the	app	made	a	good	
work	on	giving	users	 the	possibility	 to,	during	the	upload,	define	the	album	which	
the	uploaded	contents	should	be	related	to,	e.g.,	reception,	ceremony,	engagement,	
etc.		
	
The	app	has	no	advertisement	at	all,	but	 it	has	some	paid	features.	A	user	can	pay	
inside	the	application	to	physically	print	some	photos,	according	to	its	region,	after	
choosing	one	of	the	suggested	formats.	
	

	 11	

	
Figure	3	-	WedPics	Screenshots	

	
The	 idea	 of	 the	 app	 is	 great,	 although	 its	 main	 target	 is	 too	 limited.	 Why	 not	
developing	such	an	application	for	different	kinds	of	event	besides	weddings?	
	
The	 company,	 Deja	 Mi,	 Inc.	 has	 headquarters	 in	 Raleigh,	 North	 Carolina.	 The	
application	received	nearly	10M	of	funding	by	the	end	of	2015,	and	was	launched	in	
December’s	1st	2010	[12].	
	
	
2.1.3 Cluster	
	
Cluster	Labs,	 Inc.	 is	 a	 San	Francisco	based	 company	 that	owns	 several	 similar	 iOS	
applications:	 Cluster,	 TripCast	 [13],	 ChurchSnaps	 [14],	 Daily	 Kiddo	 [15]	 and	
Homeroom	[16].	Despite	having	different	names,	the	apps’	architecture	is	precisely	
the	same	and	the	decision	of	having	different	names	 is	nothing	more	than	a	smart	
marketing	move	to	reach	a	wider	audience.	
	
The	 core	 app	 is	 Cluster,	 launched	 in	 2013	 in	 San	 Francisco,	 California.	 Brenden	
Mulligan	and	Taylor	Hughes	were	its	founders.		
	
The	 company	 received	 1.6M	 seed	 from	 6	 investors	 in	 August	 2013	 (Baseline	
Ventures,	First	Round,	Freestyle	Capital,	Google	Ventures	and	Sherpa	Capital)	[17].	
	

	 12	

Cluster	has	a	very	appealing	design.	A	user	can	belong	to	several	different	groups,	as	
almost	 all	 the	 other	 competitors	 here	 enumerated.	 In	 the	 groups	 menu	 we	 can	
search	 for	 their	 names,	 although	 this	 is	 the	 only	 searching	 feature	 inside	 the	
application.	Each	group	has	 the	members	 invited	by	 the	 group	owner	or	by	other	
user	with	such	privileges.		
	

	
Figure	4	-	Cluster	Screenshots	

	
Groups	 have	 only	 a	 name	 and	 a	 cover	 photo,	 which	 by	 default	 is	 the	 first	 photo	
uploaded.	
	
Contents	are	displayed	in	a	timeline	feed	and	in	a	custom	photos	and	videos	gallery.	
In	this	last	section	contents	can	be	sorted	according	to	different	properties	such	as	
date	 that	 they	were	posted,	newest	date	 first,	oldest	date	 first,	person	who	posted	
and	most	 liked	 contents.	 Those	 are	 basically	 the	 only	metadata	 associated	 to	 the	
pictures	and	contents,	since	they	have	no	hashtags	and	no	geotag	property.	Thus	no	
intelligent	 mechanism	 offers	 the	 possibility	 to	 organize	 the	 data	 in	 any	 different	
way.	
	
Users	of	a	group	can	invite	friends	by	sending	invitations.	Invitations	may	arrive	by	
email,	sms	or	generated	public	link.		

	 13	

	
The	data	 the	user	posts	 comes	 from	 the	user	device’s	 gallery	or	 from	 the	device’s	
camera.	Once	 the	contents	are	uploaded	 into	 the	groups	 they	may	be	exported	by	
generating	an	external	public	link.	
	
	
2.1.4 Togethera	
	
The	 responsible	 company	 is	 called	 Generic	 Ventures	 Limited	 and	 it	 is	 based	 in	
London,	UK.	It	was	founded	in	2013	by	Sokratis	Papafloratos	and	Matt	Dempsey,	by	
the	time	Togethera	was	launched.	At	the	beginning	the	application	was	exclusively	
for	iOS,	then	Android	and	Web	versions	followed.	
	
Until	 September	 2015	 Togethera	 raised	 roughly	 $	 715k	 in	 seed	 financing,	mostly	
from	European	Entrepreneurs.	
	
Togethera	 allows	 creating	 an	 event	 and	 immediately	 sharing	 photos,	 videos	 and	
notes.	 Then	 we	 can	 invite	 our	 friends	 to	 join	 and	 we	 have	 a	 small	 private	 circle	
where	any	member	can	share	contents	within	the	group.	
There	are	a	few	points	that	distinguish	this	app	from	the	competition.	To	start,	the	
possibility	of	auto-backing	up	the	contents	of	a	group	into	a	Dropbox	account	should	
be	 highlighted,	 even	 though	 it	 is	 a	 premium	 feature.	Notice	 that	 this	 requires	 not	
only	having	an	account	on	Dropbox,	but	also	having	the	necessary	available	space	in	
this	third	party	account.	
	
Furthermore,	this	app	has	a	premium	account	that	enables	the	user	to	upload	100	
photos	and	videos	per	post,	extends	video’s	maximum	duration	to	5	minutes,	auto	
backs	up	all	the	data	into	Dropbox,	and	removes	all	the	advertisement.	
The	app’s	design	let’s	us	quickly	and	easily	move	between	our	close	friends	and	all	
our	 created	 or	 joined	 groups,	 simply	 by	 tapping	 a	 button	 in	 the	 top	 part	 of	 the	
screen.	
	

	 14	

	
Figure	5	-	Togethera	Screenshots	

	
It	 is	 possible	 to	 invite	 friends	 in	 order	 to	 participate	 in	 a	 group	 by	 generating	 a	
public	 link.	 Anyway	 this	 is	 not	 as	 bad	 as	 other	 app’s	 public	 links	 since	 this	 one	
allows	 the	 user	 to	 reset	 it.	 Although	 in	 the	 student’s	 opinion,	 other	 ways	 of	
member’s	invitation	would	constitute	a	safer	approach.	
	
The	auto-refreshing	property	of	this	application	cannot	remain	unnoticed,	as	well	as	
the	 great	work	performed	by	 the	design	 team,	who	achieved	an	 extremely	 simple	
and	 clean	 user	 interface.	Moreover	 the	 possibility	 of	 posting	 contents	 to	multiple	
groups	at	the	same	time	is	a	good	point.	
	
On	the	other	hand,	one	of	the	drawbacks	of	the	Togethera	application	is	the	lack	of	a	
searching	field.	
	
	
	
	 	

	 15	

2.2 Features	
	
This	section	will	enumerate	the	 features	that	are	believed	to	enrich	an	application	
who	share	the	same	purposes	of	Momentum.	
	
After	 analyzing	 the	 biggest	 direct	 competitors	 of	 Momentum,	 it	 was	 possible	 to	
select	 a	 group	 of	 features,	 which	 allow	 a	 differentiation	 between	 all	 the	 involved	
applications.	
	
Those	features	try	to	cover	all	the	important	tasks	that	an	application	should	have	
implemented.	In	order	to	share	our	photos	privately	among	family	and	friends,	e.g.,	
a	few	set	of	properties	are	required	to	the	app.		On	the	other	hand,	in	case	of	public	
events,	the	concerns	have	to	be	slightly	different.		
	
Below	are	the	features	that	were	considered:	
	

• Public	events	-	Events	that	are	created	in	order	to	host	photos	about	
a	certain	occurrence.	Every	user	may	join.	
	

• Private	events	-	Events	that	are	created	in	order	to	host	photos	about	
a	 certain	 occurrence.	 Users	 are	 only	 able	 to	 join	 with	 personal	
invitation.	

	
• Temporary	events	 -	Events	that	are	created	in	order	to	host	photos	

about	 a	 certain	 occurrence	 for	 a	 limited	 period	 of	 time.	 After	 that	
period,	the	events	and	its	contents	disappear.	
	

• Cross-platform	-	Application	that	will	exist	on	several	platforms,	e.g.	
iOS	or	Android.	

	
• Like/React	to	a	post	-	Liking	or	expressing	other	feelings	for	a	photo.	

	
• Comment	a	post	-	Append	a	text	commentary	to	a	photo.	

	
• Login	with	other	services	-	Chance	of	using	the	app	by	login	in	other	

service,	like	Facebook	or	Google,	e.g..	
	

• Share	to	other	services	-	Export	the	pictures	to	other	platforms,	such	
as	Facebook	or	Instagram.	

	
• Download	photo	 -	 Possibility	 of	 downloading	 a	 photo	 to	 the	 user’s	

device.	
	

• In-app	camera	-	Access	the	camera	inside	the	own	application	to	take	
photos.	

	 16	

	
• Thumbnails	 of	 photos	 -	 Visualize	 thumbnails	 of	 the	 contents,	 to	

provide	a	faster	user	experience.	
	

• Photo	in	full-screen	-	Display	the	photos	in	full-screen	mode.	
	

• Update	event	automatically	-	Refresh	the	event	without	any	manual	
action	

	
• Search	-	Text	input	that	offers	the	user	a	search	mechanism.	

	
• Tag	people	-	Tag	users	on	photos.	

	
• Access	Facebook	contacts	-	Connect	with	Facebook	to	get	user’s	list	

of	friends.	
	

• Zoom	in	photos	-	Zoom	in/out	the	pictures,	by	pinching	in/out.	
	

• Hashtags	on	photos	-	Relate	the	photos	with	topics.	
	

• View-only	permission	in	events	 -	 Inside	 the	same	event	 there	may	
be	users	with	posting	privileges	and	others	without	them.	

	
• Find	nearby	events	 -	 Access	 device’s	 location	 to	 find	 public	 events	

nearby.	
	

• Receive	notifications	-	Receive	notifications	from	the	application.	
	

• Sort	events	by	location	-	List	events	based	on	location.	
	

• Sort	events	by	date	-	List	events	based	on	a	specific	time	frame.	
	

• Favorites	events	-	Display	a	list	with	the	user’s	favorite	events.	
	

• Map	view	-	Show	a	map	view	of	the	events.	
	

• Receive	suggestions	for	events	 -	Be	invited	to	join	events	based	on	
the	user’s	preferences.	

	
2.2.1 Comparison		
	
The	 following	 table	 represents	 the	 comparative	 analysis	 between	Momentum	and	
its	direct	competitors.	To	distinguish	the	applications,	the	previously	described	list	
of	features	was	used	in	order	to	highlight	the	differences.	
	

	 17	

	

FEATURES	
MOMENTUM	 CLUSTER	 COMET	 TOGETHERA	 MOMENTS	 WEDPICS	

PUBLIC	EVENTS	 ✔	 ✖	 ✖	 ✖	 ✖	 ✖	

PRIVATE	EVENTS	 ✔	 ✔	 ✔	 ✔	 ✔	 ✔	

TEMPORARY	EVENTS	 ✔	 ✖	 ✖	 ✖	 ✖	 ✖	

CROSS-PLATFORM	 ✔	 ✔	 ✔	 ✔	 ✔	 ✔	

LIKE/REACT	TO	A	POST	 ✔	 ✔/✖	 ✔/✖	 ✔	 ✔/✖	 ✔/✖	

COMMENT	A	POST	 ✔	 ✔	 ✔	 ✔	 ✔	 ✔	

LOGIN	WITH	OTHER	SERVICES	 ✔	 ✔	 ✔	 ✖	 ✔	 ✔	

SHARE	TO	OTHER	SERVICES	 ✔	 ✖	 ✔	 ✔	 ✔	 ✖	

DOWNLOAD	PHOTO	 ✔	 ✔	 ✔	 ✔	 ✔	 ✔	

IN-APP	CAMERA	 ✔	 ✔	 ✖	 ✖	 ✖	 ✔	

THUMBNAILS	OF	PHOTOS	 ✔	 ✔	 ✔	 ✔	 ✔	 ✔	

PHOTO	IN	FULL-SCREEN	 ✔	 ✔	 ✔	 ✔	 ✔	 ✖	

UPDATE	EVENT	AUTOMATICALLY	 ✔	 ✔	 ✔	 ✔	 ✔	 ✖	

SEARCH	 ✔	 ✔	 ✖	 ✖	 ✔	 ✖	

TAG	PEOPLE	 ✔	 ✖	 ✖	 ✖	 ✔	 ✔	

ACCESS	FACEBOOK	CONTACTS	 ✔	 ✖	 ✔	 ✖	 ✔	 ✔	

ZOOM	IN	PHOTOS	 ✔	 ✔	 ✔	 ✔	 ✔	 ✖	

HASHTAGS	ON	PHOTOS	 ✔	 ✖	 ✖	 ✖	 ✖	 ✖	

VIEW-ONLY	PERMISSION	IN	EVENTS	 ✔	 ✖	 ✖	 ✖	 ✖	 ✖	

FIND	NEARBY	EVENTS	 ✔	 ✖	 ✖	 ✖	 ✖	 ✖	

RECEIVE	NOTIFICATIONS	 ✔	 ✔	 ✔	 ✔	 ✔	 ✔	

SORT	EVENTS	BY	LOCATION	 ✔	 ✖	 ✖	 ✖	 ✔	 ✖	

SORT	EVENTS	BY	DATE	 ✔	 ✖	 ✖	 ✖	 ✔	 ✖	

FAVORITE	EVENTS	 ✔	 ✖	 ✖	 ✖	 ✖	 ✖	

MAP	VIEW	 ✔	 ✖	 ✖	 ✖	 ✖	 ✖	

RECEIVE	SUGGESTIONS	FOR	EVENTS	 ✔	 ✖	 ✖	 ✖	 ✖	 ✖	
Table	1	-	Momentum's	direct	competitors	

	 18	

	
2.3 Indirect	Competitors	
	
This	 section	 describes	 a	 small	 group	 of	 iOS	 apps	 that	 do	 not	 rival	 directly	 with	
Momentum,	but	have	the	power	to	steal	customers	from	WIT	Software’s	application	
by	offering	similar	services.	
	
Every	application	from	the	list	below	includes	at	least	one	feature	that	Momentum	
provides,	but	none	implements	them	all.	In	addition,	most	of	the	applications	below	
described	often	offer	a	much	wider	set	of	functionalities.	
	
Unlike	our	app,	some	of	these	apps	do	not	allow	the	user	to	create	private	events	in	
order	to	share	contents	with	a	group	of	friends,	while	others	do	not	support	public	
events.	Regarding	the	temporary	event	 feature	that	Momentum	provides,	only	one	
application	from	this	list	does	something	similar,	Snapchat.		
	
The	indirect	competitors	are:	

• Facebook [18]	
• Snapchat	[19]	
• Dropbox	[20]	
• Google	Photos	[21]	
• Instagram	[22]	
• Flickr	[23]	

	
2.3.1 Facebook	
	
Facebook	is	the	all	time	most	downloaded	app	for	iOS	[24].	The	social	network	itself	
is	also	the	biggest	of	all	 time,	with	over	1.55	billion	monthly	active	users	as	of	 the	
third	quarter	of	2015	 [25].	The	set	of	 functionalities	 they	provide	 is	huge.	With	no	
surprises,	creating	private	and	public	groups	that	allow	sharing	photos	and	videos	
are	some	of	them.	
	
Nobody	really	questions	the	efficiency	of	this	application.	And	naturally	it	is	not	in	a	
direct	fight	with	Momentum,	since	the	features	we	focus	and	the	features	Facebook	
covers	are	not	the	same.		
	
	
	
2.3.2 Snapchat	
	
Snapchat	 does	 not	 look	 like	 a	 rival	 at	 first	 glance.	 But	 it	 may	 become	 one,	
considering	 some	 of	 Momentum’s	 features.	 In	 Momentum,	 users	 may	 create	 an	
event	 that	 self-destructs	 at	 a	 certain	 date,	 which	 is	 precisely	 the	 core	 feature	 of	
Snapchat,	where	photos	and	videos	are	stored	temporarily.	
	

	 19	

Snapchat	 was	 released	 by	 three	 students	 from	 Stanford	 University:	 Evan	 Spiegel,	
Bobby	Murphy	and	Reggie	Brown	in	September	2011.		
	
According	 to	 the	 app’s	 statistics,	 we	 figure	 out	 Snapchat	 has,	 by	 May	 2015,	 100	
million	daily	active	users	worldwide	[26],	and	as	of	January	2016	it	is	the	fifth	most	
popular	application	for	iOS	[27].	This	product	was	worth	$15	billion	by	the	last	time	
it	raised	money	[28].	
	
	
2.3.3 Dropbox	
	
With	400	million	users	and	300.000	apps	built	on	the	Dropbox	platform,	as	of	June	
2015,	Dropbox	is	one	of	the	big	players	in	the	online	photography	storage	segment	
[29].	
	
This	 application	 saves	 user’s	 photos,	 videos,	 and	 other	 files,	 and	 displays	 them	
sorted	 by	 date	 or	 alphabetic	 order.	 There	 is	 also	 the	 possibility	 to	 create	 shared	
folders	with	our	friends.	These	folders	then	become	private	and	are	only	accessible	
through	 invitations	 or	 through	 a	 public	 link.	 Dropbox	 also	 has	 an	 auto-backup	
option,	but	is	not	possible	to	set	it	up	in	order	to	automatically	share	the	photos	to	a	
shared	folder.	
	
Dropbox	launched	a	few	months	back	a	standalone	application	(Carousel)	with	the	
purpose	of	presenting	user’s	photos	in	a	new	and	innovative	way,	but	the	solution	
did	not	run	as	expected	and	it	will	be	discontinued	on	March	2016	[30].	
	
	
	
2.3.4 Google	Photos	
	
Google	Photos	is	very	similar	to	Dropbox.	It	connects	with	user’s	Google	account	to	
retrieve	 their	 stored	 contents	 and	 display	 them	 in	 a	 very	 original	 way	 too.	 Once	
more,	 how	 the	 screen	 presents	 the	 user	 its	 photos	 and	 videos	 is	 definitely	 a	 plus	
sign,	and	the	app	allows	the	private	groups	creation	too,	just	like	Dropbox.	
	
Although,	 following	 the	 Dropbox	 footprints,	 there	 is	 not	 the	 possibility	 to	 create	
public	events,	nor	temporary	events.	
	
2.3.5 Instagram	
	
This	 one	 is	 slightly	 different	 from	 the	 previous	 competitors.	 It	 does	 not	 provide	
private	 events	 creation,	 nor	 temporary	 events	 creation,	 but	 there	 is	 something	
similar	to	the	concept	of	a	public	event.	
	
Let’s	suppose	a	summer	festival	will	occur,	and	the	organization	wants	to	gather	all	
future	photos	taken	by	the	crowd	in	one	place.	Nowadays	it	happens	in	Instagram,	

	 20	

through	 the	 use	 of	 Hashtags.	 Each	 element	 of	 the	 crowd	 just	 has	 to	 append	 the	
hashtag	to	its	post	and	every	content	will	be	related.	But	this	mechanism	originates	
some	issues:	what	if	the	people	use	different	Hashtags	like	“SummerFestival15”	and	
“SummerFestival2015”?	And	what	if	the	hashtag	has	been	used	for	other	purposes	
at	the	same	time?	Those	are	the	questions	that	Momentum	answers.		
	
2.3.6 Flickr	
	
Flickr	 looks	 like	 Instagram	 and	 Facebook	 somehow.	 It	 is	 a	 social	 network	where	
users	 can	 follow	 and	 be	 followed	 by	 others.	 Additionally	 they	 can	 create	 groups.	
These	 groups	may	 be	 public	 or	 private,	 although,	 as	 it	 happens	 in	 Facebook,	 the	
application	does	not	center	its	design	on	the	groups.		
	
Flickr	 is	 a	 social	 network.	 Its	 main	 focus	 is	 publishing	 photography	 for	 the	
community,	not	to	share	contents	in	groups	publicly	or	privately.	
	
	
2.4 Conclusion	
	
After	a	deep	study	over	the	main	direct	and	indirect	competitors	that	are	available	
on	the	App	Store,	there	is	a	true	conviction	that	Momentum	can	stand	out	from	the	
crowd.		
	
First	of	all,	Momentum	will	provide	the	possibility	of	creating	private	and	public	
events,	and	a	very	few	set	of	competitors	do	the	same	(Facebook,	Flickr).	The	
difference	these	two	applications	is,	Facebook	and	Flickr	are	not	appealing	enough	
to	encourage	the	user	to	use	these	two	features,	at	least	not	as	appealing	as	
Momentum.	Momentum	will	have	the	public	and	private	events	screen	always,	at	
maximum,	two	taps	away	from	the	user’s	position	in	the	app.	
	
	
	
So	it	is	believed	that	the	simplicity	of	Momentum’s	design	will	play	a	big	role	on	this	
competition.	For	example	in	Facebook,	to	create	an	Event	and	upload	a	photo	it	
requires	14	taps	to	complete	this	action,	not	considering	the	user	login.	On	Flickr	the	
experience	is	quite	similar	to	Facebook.	The	result	is	that	Facebook	and	Flickr	are	
not	centered	on	this	action	so	their	users	do	not	get	intuitively	attracted	to	perform	
this	behavior.	Momentum	will	focus	on	both	creating	public	and	private	events,	with	
a	proper	user	experience	directed	to	these	two	features.	
	
Another	difference	is	that	none	of	the	applications	studied	offer	the	possibility	of	
creating	temporary	events.	Snapchat	offers	something	similar:	to	share	pictures	and	
videos	temporarily.	Momentum	will	take	this	idea	and	implement	a	slightly	different	
concept:	to	create	private	events	temporarily,	i.e.,	events	that	will	only	last	for	a	

	 21	

period	of	time,	before	being	destructed.	As	previously	mentioned,	this	can	be	a	very	
interesting	feature	from	Momentum.	
	
Comparing	with	the	direct	competitors,	none	of	Momentum	direct	competitors	
allow	creating	public	events.	And	regarding	the	private	ones,	Momentum	will	
implement	an	innovative	and	creative	user	experience	to	provide	a	smoother	UI	to	
its	users,	in	order	to	be	a	successful	application.		
	

	 22	

	
	 	

	 23	

3 METHODOLOGY	
	
In	 this	chapter,	 the	methodology	used	by	the	undergraduate	during	the	 internship	
will	be	explained.		
	
3.1 Agile	
	
The	internship	follows	an	agile	software	development.	Agile	development	works	as	
a	conceptual	structure	for	software	engineering	projects.		
	
Contrarily	 to	 the	 Waterfall	 model,	 where	 software	 teams	 separate	 the	 software	
development	 through	 several	 stages	 (conception,	 initiation,	 analysis,	 design,	
construction,	 testing,	 production/implementation	 and	 maintenance),	 those	 stages	
run	 as	 a	 cascade,	 i.e.,	 after	 finishing	 one	 stage	 the	 process	 will	 not	 rollback	 to	 a	
previous	stage,	on	the	Agile	model	the	development	phases	are	iterative.		
	
The	development	team	usually	presents	multiple	intermediary	versions	of	the	final	
product	 to	 the	 client,	 since	 this	 way	 it	 is	 easier	 to	 identify	 if	 something	 is	 not	
meeting	the	client’s	expectation.	 In	some	cases,	even	the	requirements	 initially	set	
by	 the	 client	 are	 not	 those	 that	 they	wished	 to	 see	 implemented.	 In	 the	waterfall	
model,	that	would	be	severe	because	the	first	time	the	client	would	see	the	working	
prototype	it	might	be	already	too	late	to	change	something.	On	the	other	hand,	in	an	
agile	approach	modifications	are	much	easier	to	handle.	
	
The	 Agile	 approach	 that	was	 followed	 during	 the	 internship	 allowed	 the	 student,	
e.g.,	 to	 rollback	 his	 first	 version	 of	 the	 application	 in	 February,	 after	 the	 first	
usability	 tests,	 and	 start	 again.	 In	 a	 Waterfall	 model	 this	 procedure	 would	 be	
harsher.	
	
	
3.2 Sprints	
	
Each	iteration	is	called	a	sprint,	and	is	 like	an	own	software	project	 inside	itself.	A	
sprint	usually	lasts	between	one	and	four	weeks,	and	often	contains	the	same	stages:	
planning,	requirements	analysis,	design,	coding,	unit	testing	and	acceptance	testing.	
At	the	end	of	the	sprint	the	outcome	is	presented	to	the	project’s	stakeholders.	The	
purpose	is	having	an	available	release	at	the	end	of	each	sprint.	
	
During	the	development	of	Momentum	a	sprint	took,	on	average,	10	working	days,	
i.e.,	two	weeks.	
	
3.3 Sprint	Meetings	
	

	 24	

At	the	end	of	each	sprint,	a	meeting	occurs.	During	Momentum’s	development,	 the	
characters	of	the	meeting	were	essentially	the	undergraduate	and	its	supervisor	at	
WIT	 David.	 Occasionally,	 a	 third	 person	 intervened:	 Momentum’s	 Manager,	 WIT	
Software’s	Engineer	Luis	Guilherme.	The	sprint	intention	is	to	evaluate	the	previous	
sprint,	figure	out	what	went	wrong	and	why,	and	plan	the	next	sprint.	
	
3.4 Planning	
	
At	the	beginning	of	the	internship,	one	of	the	goals	of	the	student	was	to,	 together	
with	his	supervisor	at	WIT,	define	what	features	would	be	implemented	during	the	
internship	 and	 what	 features	 would	 be	 left	 for	 future	 implementation.	 It	 is	
important	to	enlighten	that	the	purpose	of	the	internship	in	WIT	Software	is	not	to	
develop	 a	 fully	 functional	 product	 ready	 to	 be	 commercialized,	 but	 rather	 to	
implement	a	prototype	of	 that	product.	With	 this	 taken	 into	account,	 a	 set	of	user	
stories	was	planned.	
	
The	user	stories	were	formerly	assigned	a	priority	and	a	theme,	and	later	a	t-shirt	
size.	 Finally,	 each	 user	 story	 originated	 a	 set	 of	 tasks	 that	 are	 closer	 to	what	 the	
developer	would	implement.	
	
	
3.5 User	Stories	
	
One	of	the	most	important	parts	of	the	Agile	paradigm	is	choosing	the	user	stories.	
Those	descriptions	consist	of	a	sentence	divided	by	three	parts:	the	first	represents	
the	character,	the	second	demonstrates	the	action	to	be	performed	and	the	third	is	
the	purpose	of	the	action,	even	though	this	last	one	is	optional.	
	
One	example	of	a	user	story	would	be:	“As	an	user,	I	want	to	create	an	event	to	share	
my	photos	with	my	friends”.	
	
Since	 the	 internship	 has	 followed	 the	 Agile	 paradigm,	 the	 user	 stories	 changed	
throughout	the	route.	
	
The	initial	full	set	of	user	stories,	as	well	as	the	final’s,	are	reported	below:	

	
	 	

	 25	

Initial	User	Stories	

Theme	 ID	 User	Story	

Sign	Up	 SU01	 As	a	visitor,	I	want	to	sign	up	using	my	Facebook	account.	

Authentication	 AU01	 As	a	visitor,	I	want	to	sign	in	using	my	Facebook	account.	

	 AU02	 As	a	user,	I	want	my	session	to	be	automatically	renewed.	

	 AU03	 As	a	user,	I	want	to	log	out.	

Account	 AC01	 As	a	user,	I	want	to	delete	my	account	and	all	my	content.	

	 AC02	 As	 a	 user,	 I	 want	 to	 control	 if	 mobile	 data	 can	 be	 used	 to	 upload	 and	
download	content.	

	 AC03	 As	 a	 user,	 I	 want	 to	 control	 if	 photos	 and	 videos	 taken	 in	 the	 in-app	
camera	should	be	kept	locally	in	the	device’s	gallery.	

	 AC04	 As	 a	 user,	 I	want	 to	 export	my	 contacts	 to	 the	 service	 to	 quickly	 share	
content	with	my	colleagues,	friends	or	family.	

Transfers	 TR01	 As	 a	 user,	 I	 want	 my	 uploads	 and	 downloads	 to	 continue	 when	 the	
application	goes	background.	

	 TR02	 As	a	user,	I	want	to	check	the	progress	of	uploads	and	downloads.	

Moment:	
Management	 MM01	 As	 a	 user,	 I	 want	 to	 create	 a	 new	moment	 from	 a	 selection	 of	 photos	

already	taken	in	the	past	to	share	with	my	colleagues,	friends	or	family.	

	 MM02	 As	a	user,	I	want	to	create	a	new	moment	to	aggregate	all	photos	taken	in	
the	future	for	a	certain	time	frame.	

	 MM03	 As	a	user,	I	want	to	see	whom,	of	my	contacts,	is	already	registered	in	the	
service	to	share	a	moment	with	them.	

	 MM04	 As	 a	user,	 I	want	 to	 see	whom,	of	my	 contacts,	 is	 not	 registered	 in	 the	
service	to	invite	them	to	share	a	moment	with	me.	

	 MM05	 As	a	user,	 I	want	to	create	groups	of	contacts	to	help	me	share	content	
with	more	than	one	person	easily.	

	 MM06	 As	 a	 user,	 I	 want	 to	 be	 notified	 when	 someone	 invites	 me	 to	 join	 a	
moment.	

	 MM07	 As	a	moment's	member,	I	want	to	see	who	has	joined	the	moment.	

	 26	

	 MM08	 As	a	moment's	member,	I	want	to	see	who	has	a	pending	invitation.	

	 MM09	 As	a	moment's	member,	I	want	to	be	notified	when	a	member	joins	the	
moment.	

	 MM10	 As	a	moment's	member,	I	want	to	leave	a	moment.	

	 MM11	 As	a	moment's	owner,	I	want	to	give	a	name	to	my	moment.	

	 MM12	 As	a	moment's	owner,	I	want	to	invite	more	contacts	to	join	my	moment.	

	 MM13	 As	 a	moment's	 owner,	 I	want	 to	 remove	 contacts	 and	 all	 their	 content	
from	my	moment.	

	 MM14	 As	a	moment's	owner,	I	want	to	delete	my	moment.	

Moment:	
Visualization	 MV01	 As	 a	 user,	 I	want	 to	 see	 the	moments	 that	 I	 have	 created	 and	 also	 the	

ones	I	have	joined.	

	 MV02	 As	a	moment's	member,	I	want	to	visualize	a	list	of	thumbnails	of	photos	
and	videos	belonging	to	the	moment.	

	 MV03	 As	 a	 moment's	 member,	 I	 want	 to	 visualize	 photos	 and	 videos	 in	 full	
screen.	

	 MV04	 As	a	moment's	member,	I	want	to	visualize	photos	and	videos	sorted	by	
date.	

	 MV05	 As	a	moment's	member,	I	want	to	visualize	photos	and	videos	grouped	by	
place.	

	 MV06	 As	a	moment's	member,	I	want	to	visualize	new	content	inside	a	moment	
in	real	time	without	the	need	to	manually	refresh.	

	 MV07	 As	a	moment's	member,	 I	want	to	be	notified	when	someone	adds	new	
content	and	the	app	is	not	currently	running.	

	 MV08	 As	a	moment's	member,	I	want	to	visualize	who	posted	a	photo	or	video.	

	 MV09	 As	a	moment's	member,	I	want	to	see	a	geographic	view	of	all	the	photos	
and	videos.	

Moment:	
Interaction	 MI01	 As	a	moment's	member,	 I	want	to	add	new	photos	and	videos	from	the	

in-app	camera	to	the	moment.	

	 MI02	 As	a	moment's	member,	 I	want	to	add	new	photos	and	videos	from	the	
device's	gallery	to	the	moment.	

	 MI03	 As	 a	moment's	member,	 I	want	 to	delete	 any	photo	or	 video	added	by	
me.	

	 MI04	 As	a	moment's	member,	I	want	to	download	photos	and	videos.	

	 27	

	 MI05	 As	a	moment's	member,	I	want	to	comment	photos	and	videos.	

	 MI06	 As	a	moment's	member,	I	want	to	like	photos	and	videos.	

	 MI07	 As	a	moment's	member,	I	want	to	add	a	reaction	to	photos	and	videos.	

Event:	
Management	 EM01	 As	a	user,	I	want	to	create	an	event	publicly	available	to	gather	all	content	

regarding	a	certain	occurrence.	

	 EM02	 As	a	user,	I	want	to	add	an	event	to	my	favorites	to	have	an	easy	access	
to	it.	

Event:	
Visualization	 EV01	 As	a	user,	I	want	to	search	events	available.	

	 EV02	 As	a	user,	I	want	to	see	nearby	events	based	in	my	current	location.	

	 EV03	 As	 a	 user,	 I	want	 to	 visualize	 a	 list	 of	 thumbnails	 of	 photos	 and	 videos	
belonging	to	the	event.	

	 EV04	 As	a	user,	I	want	to	visualize	photos	and	videos	in	full	screen.	

	 EV05	 As	a	user,	I	want	to	visualize	photos	and	videos	sorted	by	date.	

	 EV06	 As	a	user,	I	want	to	visualize	photos	and	videos	grouped	by	place.	

	 EV07	 As	 a	 user,	 I	 want	 to	 visualize	 new	 content	 inside	 an	 event	 in	 real	 time	
without	the	need	to	manually	refresh.	

	 EV08	 As	a	user,	I	want	to	visualize	who	posted	a	photo	or	video.	

Event:	
Interaction	 EI01	 As	a	user,	I	want	to	add	new	photos	and	videos	from	the	in-app	camera	

to	an	event.	

	 EI02	 As	a	user,	I	want	to	add	new	photos	and	videos	from	the	device's	gallery	
to	an	event.	

	 EI03	 As	a	user,	I	want	to	delete	any	photo	or	video	added	by	me.	

	 EI04	 As	a	user,	I	want	to	download	photos	and	videos.	

	 EI05	 As	a	user,	I	want	to	comment	photos	and	videos.	

	 EI06	 As	a	user,	I	want	to	like	photos	and	videos.	

	 EI07	 As	a	user,	I	want	to	add	a	reaction	to	photos	and	videos.	

Camera	 CA01	 As	a	user,	I	want	an	in-app	camera	to	publish	a	picture	or	a	video	directly	
in	a	moment,	flash	or	event.	

	 28	

Table	2	-	Momentum's	user	stories	

	
Final	User	Stories	

	

	 CA02	 As	 a	 user,	 I	want	 an	 easy	way	 to	 select	 the	moment,	 flash	 or	 event	 to	
where	I	want	to	publish	the	picture	or	video.	

	 CA03	 As	 a	 user,	 I	 want	 to	 see	 a	 different	 layout	 to	 easily	 distinguish	 if	 I’m	
posting	to	a	flash	or	not.	

Theme	 ID	 User	Story	

Sign	Up	 SU01	 As	a	visitor,	I	want	to	sign	up	using	my	phone	number.	

Authentication	 AU01	 As	a	visitor,	I	want	to	sign	in	using	my	phone	number.	

	 AU02	 As	a	user,	I	want	my	session	to	be	automatically	renewed.	

	 AU03	 As	a	user,	I	want	my	session	to	expire	after	a	period	of	time.	

Account	 AC01	 As	a	user,	I	want	to	delete	my	account	and	all	my	content.	

	 AC02	 As	 a	 user,	 I	 want	 to	 control	 if	 mobile	 data	 can	 be	 used	 to	 upload	 and	
download	content.	

	 AC03	 As	a	user,	I	want	to	control	if	photos	taken	in	the	in-app	camera	should	be	
kept	locally	in	the	device’s	gallery.	

	 AC04	 As	 a	 user,	 I	want	 to	 export	my	 contacts	 to	 the	 service	 to	 quickly	 share	
content	with	my	colleagues,	friends	or	family.	

Transfers	 TR01	 As	 a	 user,	 I	 want	 my	 uploads	 and	 downloads	 to	 continue	 when	 the	
application	goes	background.	

	 TR02	 As	a	user,	I	want	to	check	the	progress	of	uploads	and	downloads.	

Event:	
Management	 EM01	 As	a	user,	I	want	to	create	a	new	event	from	a	selection	of	photos	already	

taken	in	the	past	to	share	with	my	colleagues,	friends	or	family.	

	 EM02	 As	a	user,	 I	want	to	create	a	new	event	to	aggregate	all	photos	taken	in	
the	future	for	a	certain	time	frame.	

	 EM03	 As	a	user,	I	want	to	see	whom,	of	my	contacts,	is	already	registered	in	the	
service	to	share	an	event	with	them.	

	 29	

	 EM04	 As	 a	user,	 I	want	 to	 see	whom,	of	my	 contacts,	 is	 not	 registered	 in	 the	
service	to	invite	them	to	share	an	event	with	me.	

	 EM05	 As	a	user,	 I	want	to	create	groups	of	contacts	to	help	me	share	content	
with	more	than	one	person	easily.	

	 EM06	 As	 a	 user,	 I	 want	 to	 be	 notified	 when	 someone	 invites	 me	 to	 join	 an	
event.	

	 EM07	 As	an	event's	member,	I	want	to	see	who	has	joined	the	event.	

	 EM08	 As	an	event's	member,	I	want	to	see	who	has	a	pending	invitation.	

	 EM09	 As	 an	 event's	member,	 I	want	 to	 be	notified	when	 a	member	 joins	 the	
event.	

	 EM10	 As	an	event's	member,	I	want	to	leave	an	event.	

	 EM11	 As	an	event's	owner,	I	want	to	give	a	name	to	my	event.	

	 EM12	 As	an	event's	owner,	I	want	to	invite	more	contacts	to	join	my	event.	

	 EM13	 As	an	event's	owner,	I	want	to	remove	contacts	and	all	their	content	from	
my	event.	

	 EM14	 As	an	event's	owner,	I	want	to	delete	my	event.	

Event:	
Visualization	 EV01	 As	a	user,	I	want	to	see	the	events	that	I	have	created	and	also	the	ones	I	

have	joined.	

	 EV02	 As	an	event's	member,	 I	want	to	visualize	a	 list	of	thumbnails	of	photos	
belonging	to	the	event.	

	 EV03	 As	an	event's	member,	I	want	to	visualize	photos	in	full	screen.	

	 EV04	 As	an	event's	member,	I	want	to	visualize	photos	sorted	by	date.	

	 EV05	 As	an	event's	member,	I	want	to	visualize	photos	grouped	by	place.	

	 EV06	 As	an	event's	member,	 I	want	to	visualize	new	content	 inside	a	event	 in	
real	time	without	the	need	to	manually	refresh.	

	 EV07	 As	 an	 event's	member,	 I	want	 to	 be	 notified	when	 someone	 adds	 new	
content	and	the	app	is	not	currently	running.	

	 EV08	 As	an	event's	member,	I	want	to	visualize	who	posted	a	photo.	

	 EV09	 As	an	event's	member,	I	want	to	see	a	geographic	view	of	all	the	photos.	

	 30	

	
	

	
	
3.6 Product	Backlog	
	
All	the	user	stories	were	saved	into	the	product	backlog,	which	is	an	online	platform	
that	 contains	 all	 the	 dynamic	 specifications	 of	 the	 project.	 Each	 user	 story	 has	 a	
category	and	number	of	points	assigned.	Story	points	correspond	to	the	estimated	
time	 required	 to	 implement	 a	 certain	 user	 story.	 To	 estimate	 this	 value	 in	 Agile	
software	development,	 one	of	 the	most	 common	methods	 is	using	 t-shirt	 sizes.	T-
shirt	sizes	are	values	from	XS	to	XXL	that	follow	the	Fibonacci	sequence	in	the	way	
that	they	refer	with	the	number	of	days,	hence	points,	that	they	are	assigned:	

• XS	is	the	smallest	measurement	unit	and	corresponds	to	1	working	day,	i.e.,	8	
points.	

• S	corresponds	to	2	working	days,	and	16	points	
• M	relates	to	3	working	days,	and	24	points	
• L	points	to	5	days,	and	40	points	
• XL	means	8	working	days,	and	64	points	
• XXL	is	called	Epic,	and	means	this	user	story	has	to	be	split	into	smaller	task

Event:	
Interaction	 EI01	 As	an	event's	member,	I	want	to	add	new	photos	from	the	in-app	camera	

to	the	event.	

	 EI02	 As	 an	 event's	 member,	 I	 want	 to	 add	 new	 photos	 from	 the	 device's	
gallery	to	the	event.	

	 EI03	 As	an	event's	member,	I	want	to	delete	any	photo	added	by	me.	

	 EI04	 As	an	event's	member,	I	want	to	download	photos.	

	 EI05	 As	an	event's	member,	I	want	to	comment	photos.	

	 EI06	 As	an	event's	member,	I	want	to	like	photos.	

	 EI07	 As	an	event's	member,	I	want	to	add	a	reaction	to	photos.	

Camera	 CA01	 As	 a	 user,	 I	 want	 an	 in-app	 camera	 to	 publish	 a	 picture	 directly	 in	 an	
event.	

	 CA02	 As	 a	 user,	 I	 want	 an	 easy	 way	 to	 select	 the	 event	 to	 where	 I	 want	 to	
publish	the	picture.	

	 31	

4 ARCHITECTURE	
	
This	chapter	specifies	the	architecture	was	designed	for	Momentum’s	prototype	and	
the	decisions	that	had	to	be	taken	before	the	development	phase.	
	
The	architecture	planning	took	place	after	the	creation	of	the	user	stories,	and	right	
before	 the	 start	 of	 the	 development	 stage.	 During	 this	 phase,	 many	 questions	
emerged:	

• Where	should	the	photos	be	stored?	
• Which	kind	of	database	should	be	used:	relational	or	non	relational?	
• Should	the	iOS	application	be	developed	in	Objective-C	or	Swift?	
• In	 the	 back-end,	 which	 framework	 should	 be	 used?	 And,	 e.g.,	 in	 Java	 or	 in	

Python?	
• How	should	we	handle	user	authentication?	
• To	deploy	the	application	should	we	use	Docker?	

	
The	undergraduate	did	not	have	any	real	life	experience	in	choosing	the	architecture	
for	 a	 real	 system	 until	 the	 beginning	 of	 this	 academic	 year,	 so	 this	 task	 was	 an	
interesting	challenge	since	its	first	moment.	
	
4.1 Decisions	
	
The	 prototype	 that	 is	 being	 developed	 focuses	 mainly	 on	 the	 mobile	 application,	
although	the	back-end	and	the	database	management	are	also	taken	care.	
	
We	will	start	the	section	by	describing	the	front-end	solution	at	first	place.	
	
4.1.1 Objective-C	vs.	Swift	
	
At	the	very	beginning	of	the	internship,	both	the	student	and	his	supervisor	at	WIT	
discussed	 whether	 should	 they	 use	 Objective-C	 or	 Swift	 to	 develop	 the	 iOS	
application.	 Once	 more,	 the	 front-end	 component	 of	 the	 system	 was	 the	 biggest	
focus	of	the	internship,	so	this	was	an	important	decision.	
	
On	 the	 other	 hand,	 there	 is	 Objective-C,	 iOS’s	 and	 the	 OS	 X’s	 main	 programming	
language	since	the	1980’s.	It	is	a	very	stable	language,	and	is	completely	compatible	
with	his	successor.	Due	to	its	long	existence,	this	programming	language	gathered	a	
large	 support	 community	 on	 the	 Internet,	 which	 constitutes	 an	 advantage	
comparing	 to	 Swift.	 Furthermore,	 most	 of	 the	 applications	 on	 the	 market	 were	
developed	in	Objective-C.	
	
On	 the	 other	 hand,	 Swift	 is	 the	 brand	 new	 programming	 language	 by	 the	 Apple	
developer’s	 team,	 and	 is	 expected	 to	 last	 for	 quite	 a	 few	 decades,	 just	 like	 its	

	 32	

predecessor.	Although	both	languages	can	be	interpreted	by	the	same	iOS	compiler,	
they	have	strictly	different	syntaxes.	
	
Swift’s	syntax	is	similar	to	Java	and	Python,	languages	that	the	student	worked	with	
during	the	university.	Thus,	Swift	would	represent	a	smoother	learning	curve	to	the	
student,	since	he	did	not	have	any	experience	in	iOS	systems	as	of	the	beginning	of	
the	internship.	Oppositely,	Objective-C	language	is	harder	to	learn	for	beginners	in	
iOS,	and	does	not	have	similarities	with	the	programming	languages	that	the	student	
was	familiar	with.	
	
For	 those	reasons,	 right	at	 the	beginning	of	 the	 internship,	 the	undergraduate	and	
his	supervisor	at	WIT	agreed	on	taking	Swift	as	the	chosen	programming	language	
for	implementing	the	Momentum’s	mobile	application.	
	
	
4.1.2 Back-end	framework	
	
The	 back-end	 of	 the	 product	 was	 never	 intended	 to	 be	 the	 main	 focus	 of	 the	
internship.	Though,	it	was	implemented	too	in	order	to	give	support	to	Momentum’s	
mobile	 application.	 WIT	 Software	 gave	 the	 student	 total	 freedom	 to	 choose	 the	
programming	 language	 he	 felt	 most	 comfortable	 with.	 Due	 to	 the	 student’s	
experience	during	his	degree,	Java,	alongside	Python	were	the	two	first	possibilities	
to	emerge.	
	
The	student	asked	for	his	coworkers’	opinions,	spoke	with	more	experienced	people	
about	the	project	and	ended	up	being	advised	that	Spring	Boot	would	fit	perfectly	in	
his	model.	 	The	support	 community	 in	 the	 Internet	 is	great,	 and	since	 the	 student	
was	 already	 familiar	with	 the	 Java	 language	 there	were	 no	 reasons	 not	 to	 choose	
Spring	Boot.	
	
The	back-end	was	therefore	developed	in	Java	using	Spring	Boot.		
	
	
4.1.3 Persistence	
	
In	any	back-end	service,	one	of	the	core	features	has	to	do	with	persisting	the	data.		
	
First	 of	 all,	 it	 is	 important	 to	 take	 into	 account	 several	 important	 requirements	
related	 to	our	data	structure,	such	as	 the	kind	of	data	 to	store.	The	contents	 to	be	
persisted	 were	 essentially:	 photos,	 videos,	 their	 metadata,	 user	 profiles	 and	 the	
events.	So	the	data	was	divided	into:	contents	and	metadata.	
	
4.1.3.1 Contents	persistence	
	
For	the	pictures	and	videos	the	doubts	were:	should	we	persist	them	in	databases	or	
in	distributed	data	stores?	

	 33	

	
Initially,	distributed	data	stores	and	simple	databases	were	compared.	The	student	
realized	 that	 storing	 pictures	 or	 videos	 on	 non-distributed	 databases	 overloads	
them.	And	databases	are	often	the	first	parts	of	a	system	to	fail	when	scaling	occurs.	
Additionally,	in	case	database	migration	is	necessary,	distributed	data	stores	proved	
to	 be	 the	best	 solution	 since	 it	 is	 easier	 to	move	paths	 to	 the	pictures	 and	 videos	
from	table	to	table	than	moving	whole	contents.	
	
Afterwards,	 the	 goal	was	 to	 find	 good	 distributed	 data	 store	 candidates.	 The	 idea	
was	to	store	this	data	on	cloud	providers,	since	 there	are	 interesting	quality/price	
ratios	on	some	of	the	players	of	this	area.		
	
Amazon	 S3	 [31]	 was	 one	 of	 them.	 In	 fact,	 the	 student	 had	 already	 had	 the	
opportunity	 to	 try	 this	 service	 previously.	 The	 feedback	 was	 great.	 Amazon	 S3	
guarantees	 at	 least	 99.99%	 of	 availability	 for	 the	 user’s	 objects,	 provides	 great	
scalability,	is	low-cost	compared	to	its	competition	and	can	be	integrated	with	a	list	
of	other	services.		
	
But	the	solution	had	to	be	open	source.	That	was	a	constraint	set	by	WIT	Software.		
	
Then,	another	very	interesting	solution	emerged,	Riak	S2	has	almost	all	Amazon	S3’s	
advantages	but	 is	open	source	 [32].	 	This	 specification	would	ensure	a	cost	 saving	
solution,	at	least	at	first	glance.	
	
Another	particularity	of	Riak	S2	was	that	its	migration	to	Amazon	S3,	once	needed,	
would	be	very	simple	due	to	both	apps	sharing	a	similar	API.	
	
The	undergraduate	realized	that	the	most	accurate	solution	for	this	scenario	would	
be	storing	the	photos	and	videos	on	Riak	S2.	
	
Riak	S2	is	an	open	source	service,	and	provides	high	availability	and	scalability.	
	
	
4.1.3.2 Metadata	persistence	
	
Next	step	would	be	deciding	where	to	persist	the	remaining	data	that	would	not	fit	
in	Riak	S2,	like	the	photos	and	videos	metadata,	the	users	profiles,	and	so	on.	
	
At	 this	 point,	 we	 could	 follow	 two	 paths:	 the	 relational	 and	 the	 non-relational	
databases.	Both	of	them	have	their	pros	and	cons,	and	the	decision	of	which	one	to	
use	naturally	caused	a	big	impact	on	the	system	development.	
	
We	knew	 in	advance	Momentum	would	require	a	 lot	of	 relationships	between	 the	
entities	such	as:	user	to	photo,	user	to	event,	event	to	photo,	etc.	A	user	may	belong	
to	several	events,	and	an	event	may	have	multiple	users	enrolled.	In	this	situation,	a	
relational	database	would	be	the	best	fit.	Likewise,	on	the	relational	model	enables	

	 34	

join	operations	over	the	database,	and	data	integrity	is	ensured,	as	well	as	atomicity,	
which	would	be	very	important,	e.g.,	for	transactions,	or	when	the	system	wants	to	
delete	an	user	from	two	different	lists	at	once.		
	
Relational	databases	would	always	be	a	good	solution	since	they	are	in	the	business	
for	 many	 decades	 and	 achieved	 great	 success	 since	 its	 very	 beginning.	 The	 non-
relational	model	only	emerged	recently.	
	
An	 alternative	 would	 be	 MongoDB	 [33],	 that	 would	 offer	 flexibility	 over	 the	 data	
structure,	better	scalability,	it	would	cut	out	the	overhead	caused	by	the	other	model	
indexes,	and	a	 few	more	advantages.	But	 the	disadvantages	were	more	difficult	 to	
handle.	The	many-to-many	relationships	between	the	user,	the	event	and	the	photo	
entities,	e.g.,	would	not	become	so	clear	in	MongoDB	while	compared	to	PostgreSQL.	
MongoDB	 does	 not	 provide	 join	 table	 operations,	 as	 well	 as	 the	 ACID	 properties	
(atomicity,	 consistency,	 integrity	 and	 durability)	 that	 MongoDB	 does	 not	 support	
and	 PostgreSQL	 does.	 The	 join	 table	 operations	 revealed	 very	 handy	 during	 the	
Spring	 Boot	 implementation,	 and	 the	 atomicity	 and	 data	 consistency,	 e.g.,	 will	 be	
important	when	dealing	with	the	databases.	
					
The	decision	was	to	use	PostgreSQL	[34],	which	can	be	considered	a	hybrid	solution,	
since	 it	 gathers	 the	 best	 of	 both	 the	 relational	 and	 the	 non-relational	 worlds.	 It	
provides	 the	 flexibility	 that	 characterizes	 so	 well	 the	 non-relational	 model,	 once	
PostgreSQL	 supports	 JSON	 fields,	 and	 has	 way	 less	 overhead	 than	 the	 relational	
model.	It	is	a	relational	database	that	embraces	the	NoSQL	best	attribute.	
	
	
4.1.4 Summary	
This	prototype	would	consist	of	a	mobile	application,	developed	in	Swift	[35],	and	a	
back-end	application	developed	 in	 Java,	 taking	 advantage	of	 Spring	Boot	 [36].	 The	
back-end	 part	will	 also	 connect	 to	 a	 database,	 PostgreSQL	 [34],	 and	 a	 distributed	
data	 store,	 Riak	 S2	 [32],	which	means	 this	 prototype	will	 play	 the	 role	 of	 a	 cloud	
provider	 too,	 even	 though	 it	 may	 not	 be	 the	 case	 of	 the	 Momentum’s	 final	
application.	The	final	version	of	Momentum	will	have	two	options	though,	to	store	
the	data	in	its	own	servers	or,	 instead,	work	with	external	cloud	providers	such	as	
Dropbox	[20]	or	Google	Drive	[37].	
	
	
	
4.2 Spring	Boot	Fundamentals	
	
Spring	Boot	[36]	is	a	simple	way	to	create	Spring-powered	applications	and	services.	
Developers	can	start	coding	right	from	the	first	moment,	without	wasting	too	much	
time	in	setting	up	application’s	configurations.	
	

	 35	

Using	 Spring	 Boot	 initializer	 [38],	 the	 developer	 just	 selects	 which	 dependencies	
they	want	to	 include,	and	Maven	[39]	 (which	is	part	of	Spring	Boot	projects)	takes	
care	 of	 the	 rest.	 All	 the	 project	 configurations	 are	 on	 a	 file	 named	
application.properties,	so	there	is	no	need	to	maintain	any	xml	file.	
	
The	JPA	[40]	(Java	Persistence	API)	and	the	Hibernate	[41]	dependencies	were	used	
in	order	to	establish	the	connection	with	the	PostgreSQL	database,	and	annotations	
to	 avoid	 the	 tedious	and	old-fashioned	XML	used	 to	wire	 the	Spring	Boot’s	beans.	
The	 code	 was	 organized	 according	 to	 the	 following	 layers:	 service	 layer,	 domain	
layer,	controller	layer	and	the	configurations	layer.	
	
A	 simple	 architecture	 diagram	 containing	 the	main	 entities	 of	 this	 project	 can	 be	
visualized	in	Figure	6.	
	

	
Figure	6	-	Architecture	diagram	

	 36	

	
	
	
4.3 iOS	Fundamentals	
	
In	 this	section	 the	 iOS	will	be	detailed,	 including	some	of	 its	best	practices,	design	
patterns	and	developing	techniques.	
	
	
4.3.1 Application	life	cycle	
	
In	this	section	the	iOS	application	life	cycle	will	be	described.	
	
An	 application	 can	 have	 one	 of	 the	 following	 states:	 not	 running,	 inactive,	 active,	
background	and	suspended.	
	

	
Figure	7	-	iOS	App	life	cycle	[42]	

	
	

	 37	

• Not	running	
Once	 in	 this	state,	 the	application	does	not	consume	any	computational	resources.	
The	application,	either	was	not	launched	by	the	system	or	was	already	terminated.	
	

• Inactive	
When	 the	 application	 is	 in	 an	 inactive	 state	 it	 means	 that	 although	 the	 app	 is	
running	in	the	foreground,	it	is	not	receiving	events.	Usually	the	application	remains	
in	 this	 state	 for	 a	 very	 short	 period	 of	 time,	 immediately	 before	 a	 transition	 to	
another	state.	
	

• Active	
In	this	state	the	application	is	running	smoothly	in	the	foreground.	The	application	
is	visible	to	the	user	and	its	events	are	being	received	and	handled.	This	is	the	most	
frequent	state	of	an	app	running	in	the	foreground.	
	

• Background	
This	is	the	state	that	an	application	has	when	performing	a	task	while	being	hidden	
from	 the	 user.	 If	 code	 is	 being	 executed	 and	 the	 application	 is	 not	 running	 in	 the	
foreground,	 then	 this	 is	 the	 state.	The	operating	 system	 limits	 the	 activity	of	 such	
apps	 usually	 by	 180	 seconds	 of	 execution.	 Most	 applications	 however	 only	 pass	
though	this	state	very	briefly,	in	order	to	become	suspended.	
	

• Suspended	
Oppositely	to	the	previous	state,	in	this	one	the	application	is	in	the	background	but	
not	performing	any	code.	After	the	time	frame	allowed	by	the	operation	system	to	
run	in	background	expires,	the	application	reaches	this	state.	It	remains	in	memory	
until	 the	 operative	 system	 needs	 to	 reallocate	 space	 for	 the	 apps	 running	 in	 the	
foreground,	in	case	a	low-memory	condition	occurs.	
	
	
4.3.2 iOS	design	patterns	
	
In	this	section	the	iOS	Design	Patterns	used	during	the	internship	will	be	detailed.	
	
The	design	patterns	are	a	topic	that	should	not	be	underestimated	by	a	programmer,	
since	they	help	developers	to	write	better	code,	code	that	is	easy	to	reuse	and	easy	
to	understand.	Keeping	the	code	well	structured,	clean	and	easy	to	read	is	halfway	
to	achieve	the	developer’s	goals	and	deliver	a	solid	and	robust	project	to	the	client.	
	
Thereon,	 the	 most	 common	 design	 patterns	 on	 iOS	 can	 be	 included	 on	 three	
different	categories:	Creational,	Structural	and	Behavioral.		
	
On	the	course	of	the	internship,	the	following	design	patterns	were	adopted	by	the	
undergraduate:	

• Creational:	Singletons	

	 38	

• Structural:	MVVM,	Delegates	and	Protocols	
• Behavioral:	Observer,	Notifications,	Persistence		

	
	
MVVM	
The	 Model-View-ViewModel	 is	 a	 small	 variation	 of	 the	 most	 widely	 used	 on	 iOS,	
Apple	MVC	model.	The	biggest	difference	is	that	contrarily	to	the	Apple	MVC	model,	
on	 MVVM	 the	 presentation	 logic	 remains	 separated	 from	 the	 view.	 The	 four	
components	of	the	MVVM	are	the	model,	the	view	model,	the	view	controller	and	the	
view.		
	
The	view	model	owns	the	model,	and	consequently	is	updated	by	it.	The	view	model	
also	updates	and	is	own	by	the	view	controller.	Lastly,	the	view	controller	manages	
the	view	and	implements	all	its	logic.	Comparing	to	the	Apple	MVC	model,	the	major	
difference	on	this	scenario	would	be	that	the	view	and	the	view	controller	would	be	
one	single	element.	The	following	image	illustrates	the	above-mentioned	behavior.	
	

	
Figure	8	-	MVVM	model	[43]	

	
Some	 important	 advantages	 of	 using	 this	model	 are	 that	 the	 views	 become	more	
reusable	and	the	app	is	easier	to	test.	
	
	
Delegation	
	
Delegation	is	…	
	

	 39	

	
Figure	9	-	Delegation	example	[44]	

	
	
Singleton	
	
Singleton	 is	 a	 creational	design	pattern [45]	 that	 ensures	 that	 a	 class	has	only	one	
instance.	 That	 instance	 can	 be	 accessed	 from	 anywhere	 in	 the	 application,	 in	 a	
thread-safe	way	once	initialized	with	the	word	let	(which	means	that	the	instance	is	
immutable),	 and	 supports	 lazy	 initialization	 since	 Swift	 lazy	 initializes	 class	
constants	and	variables.	
	
An	example	of	 its	usage	on	 the	Momentum	app	 is	when	 recording	 important	data	
regarding	the	user	session	or	 the	user	account,	e.g.,	 the	account	 id,	 the	user	name,	
the	authentication	tokens,	the	account	email	or	the	account	phone	number.		
	
Observation	and	Publish-Subscribe	
	
The	 observer	 software	 design	 pattern	 consists	 on	 an	 object	 maintaining	 a	 list	 of	
dependents.	 The	 object	 then	 notifies	 its	 dependents,	 called	 observers,	 usually	 by	
calling	one	of	their	methods.	
In	Swift,	the	two	most	common	popular	ways	of	implementing	the	Observer	pattern	
are	by	using	the	Notifications	or	the	KVO	Key	value	observer.	
	
Notifications	 are	 based	 on	 the	 Publish-Subscribe	 model,	 i.e.,	 one	 object	 plays	 the	
publisher	 role	 and	 sends	 messages	 to	 other	 objects,	 which	 are	 the	 listeners	 or	
subscribers.	 The	 publisher	 does	 not	 need	 to	 know	 anything	 regarding	 the	
subscribers.	An	example	of	where	this	technique	is	used	on	the	project	is,	e.g.,	when	
launching	 the	 feed	 screen.	The	application	 sends	an	HTTP	 request	 to	 the	backend	
requesting	the	list	of	events	where	the	user	belongs,	and	continues	running	its	code.	

	 40	

Later,	 when	 the	 response	 arrives,	 the	 object	 that	 ordered	 the	 HTTP	 request	 is	
notified	and	some	code	is	triggered.	
	
A	simple	code	snippet	is	illustrated	below:	
	

	
Figure	10	-	Adding	an	observer	

	
Figure	11	-	Posting	a	notification	

	
Figure	12	-	The	code	that	will	be	triggered	

	
	
The	notification	above	illustrates	two	classes,	the	class	of	the	observer	that	contains	
the	figures	8	and	10,	and	the	class	of	the	publisher,	which	includes	the	figure	9.	Once	
the	observed	has	been	added	and	the	notification	is	sent,	the	specified	method	of	the	
observer	class	is	triggered.	
	
	
4.3.3 Persistence	in	iOS	
	
Other	 important	 aspect	 of	 the	Momentum	 iOS	 app	was	 its	 persistence.	 If	 relevant	
data	can	be	stored	in	the	user’s	device,	plenty	of	network	data	transfer	is	avoided	as	
well	 as	 a	potentially	 significant	 amount	of	 time	 is	 saved,	which	 results	 in	 a	better	
user	 experience.	 Being	 able	 to	 store	 relevant	 data	 on	 the	 device	 revealed	 to	 be	
crucial.	
	
In	order	to	 implement	persistence	there	were	several	options	to	choose	 from,	and	
the	most	popular	for	the	iOS	are	the	following:	
	

• Property	 Lists.	 Colloquially	 referred	 to	 as	 plists	 [46],	 a	 property	 list	 is	 a	
structured	 data	 representation	 used	 in	 iOS	 as	 a	 convenient	 way	 to	 store,	
organize	 and	 access	 standard	 types	 of	 data.	 They	 are	 essentially	 an	
abstraction	for	representing	simple	hierarchies	of	data.	The	data	represented	
in	a	plist	can	be	either	a	primitive	type	or	a	container	of	values.	A	primitive	
type	of	data	means	that	the	item	is	a	string,	a	number,	binary	data,	a	date	or	a	
Boolean	value.	Alternatively,	containers	of	data	can	be	either	dictionaries	or	
arrays	of	primitive	items.		
	

• User	Defaults.	User	Defaults	[47]	is	a	property	list	that	is	used	to	store	simple	
data,	such	as	settings	 to	determine	the	application’s	default	state	at	startup	

	 41	

or	 its	 behavior	 by	 default.	 This	 option	 is	 meant	 to	 store	 small	 pieces	 of	
information	 like	 single	 values,	 user	 preferences	 or	 settings.	 Those	 objects	
must	be	a	property	 list,	 i.e.,	 instances	of	 type	NSData,	NSString,	NSNumber,	
NSDate,	 NSArray	 or	 NSDictionary.	 A	 defaults	 database	 is	 created	
automatically	for	each	user	and	can	store,	e.g.,	user’s	high	score.	
	

	
• SQLite.	The	most	popular	database	engine	in	the	world	[48].	It	is	open	source,	

cross-platform	 and	 consists	 in	 a	 simple	 transactional	 SQL	 database	 engine.	
This	relational	database	is	small	and	light,	requires	no	previous	configuration	
and	is	safe	against	concurrent	accesses.	
	

• CoreData.	 CoreData	 is	 an	 object	 relational	 mapping	 framework	 created	 by	
Apple.	Unlike	SQLite,	CoreData	focuses	more	on	objects	instead	of	traditional	
table	database	methods.	CoreData	[49]	fetches	records	faster	than	SQLite,	but	
it	 also	 uses	 more	 memory	 and	 storage	 space.	 This	 framework	 allows	
developers	to	store	and	retrieve	data	in	an	object-oriented	way.	The	mapping	
of	 the	 objects	 into	 database	 does	 not	 require	 any	 SQL	 coding	 by	 the	
programmer,	 as	 this	 procedure	 is	 hidden.	 This	 solution	 was	 introduced	 in	
2009	 in	 the	 iOS	 3.0	 version,	 fact	 that	 helped	 creating	 a	 robust	 community	
around	CoreData.	Support	is	easy	to	find	online,	as	well	as	external	libraries	
that	 were	 built	 around	 this	 framework.	 CoreData	 requires	 a	 bit	 of	 pre-
configuration	 such	 as	 creating	 the	managed	 object	model	 and	building	 and	
initializing	the	CoreData	stack,	factors	that	can	be	avoided	by	adopting	some	
third	party	CoreData	based	libraries.	
	

• Realm.	 Realm	 is	 a	 cross-platform	 mobile	 database	 especially	 dedicated	 to	
mobile	applications.	It	is	extremely	simple	to	implement	in	an	iOS	project	and	
does	not	rely	either	 in	CoreData	or	 in	SQLite.	This	proprietary	data	storage	
solution	 was	 released	 in	 July	 2014,	 and	 there	 is	 not	 a	 consistent	 support	
community	 yet.	 Even	 though,	 according	 to	 Realm’s	 developers,	 its	 product	
provides	a	faster	solution	than	the	competitors.	

	
After	a	deep	study	of	all	 the	possibilities	that	the	 iOS	has,	and	after	 facing	up	each	
competitor’s	 aforementioned	 advantages	 and	 disadvantages,	 the	 undergraduate	
decided	 for	 the	 CoreData.	 However,	 instead	 of	 the	 genuine,	 robust	 framework	
created	 and	 maintained	 by	 Apple,	 he	 chose	 an	 alternative	 third	 party	 library:	
CoreStore.	
	
CoreStore	 is	 a	 wrapper	 library	 for	 CoreData,	 that	 allows	 the	 developer	 to	 take	
advantage	 of	 the	CoreData	model	without	 all	 its	 boilerplate	 code	 and	with	 Swift’s	
language	 elegance	 and	 type	 safety.	 The	 library	 is	 often	 updated	 by	 its	 author	
(usually	once	per	week	at	least),	and	has	a	big	support	community	over	the	Internet,	
reasons	 that	 make	 CoreStore	 one	 of	 the	 most	 recommended	 CoreData	 based	
libraries	available	to	the	developers.	

	 42	

	
	
	
4.3.4 Concurrency	
	
In	 this	 section	 it	 will	 be	 explained	 how	 does	 the	 concurrency	 work	 in	 the	 iOS	
environment.		
	
Concurrency	 is,	 naturally,	 one	 of	 the	most	 important	 topics	 in	 the	 process	 of	 iOS	
development.	As	in	any	computational	resource	nowadays,	often	emerges	the	need	
for	 performing	 multiple	 tasks	 simultaneously.	 To	 accomplish	 that,	 iOS	 provides	
Grand	Central	Dispatch,	a	C	 language	based	API	 that	offers	support	 for	concurrent	
code	execution	in	iOS.	
	
The	most	 typical	procedure	of	running	a	piece	of	code,	or	 task,	concurrently	using	
GCD	is	by	sending	it	a	closure.		The	closure	can	be	seen	as	passing	a	function	as	an	
argument	 to	 another	 function	 running	 in	 a	 different	 thread,	 i.e.,	 asking	 the	 new	
thread	to	run	a	certain	task	during	or	after	its	execution.	
	
GCD	executes	tasks	in	two	different	ways,	serially	or	concurrently.	When	tasks	are	
executed	 serially	 it	 means	 that	 one	 task	 only	 starts	 when	 the	 antecessor	 task	
finishes.	On	the	other	hand,	concurrent	tasks	may	execute	at	the	same	time.	
	
Another	 issue	 to	 bear	 in	 mind	 is	 the	 difference	 between	 synchronous	 and	
asynchronous	functions.	The	former	only	returns	at	the	end	of	 its	execution,	while	
the	latter	returns	immediately,	continuing	its	execution	on	a	different	thread.	
	
Furthermore,	 concurrent	 code	 can	 run	with	 or	without	 parallelism.	On	multi	 core	
devices,	 generally	GCD	provides	parallelism,	 i.e.,	 different	 threads	executing	at	 the	
same	time.	If	the	device	is	single	cored	then	instead	of	parallelism,	GCD	uses	context	
switch.	 In	 this	 case	 the	 one	 single	 thread	 often	 changes	 its	 context,	 consequently	
storing	and	loading	back	the	different	contexts.	Regarding	parallelism,	 it	 is	not	the	
developer’s	 job	 to	decide	how	 it	will	 be	 carried	out,	 it	 is	Grand	Central	Dispatch’s	
responsibility.	
	
The	mechanisms	used	by	GCD	to	execute	its	tasks	are	queues.	Queues	can	be	serial	
or	concurrent.	Serial	queues	guarantee	that	its	tasks	are	executed	and	finished	on	a	
FIFO	order	(first	come	first	served).	Oppositely,	concurrent	queues	only	guarantee	
that	 its	 tasks	 start	 their	 execution	 in	 a	 FIFO	 order,	 i.e.,	 a	 task	 can	 start	 first	 than	
another	but	 finish	 for	 last.	The	outcome	of	 this	 last	 scenario	uniquely	depends	on	
the	operating	system,	and	can	result,	e.g.,	in	race	conditions	[50].	
	
Natively,	the	GCD	provides	5	different	queues	to	the	developer	environment:	
	

	 43	

• The	main	queue,	that	is	responsible	for	updating	the	app’s	views.	Any	change	
on	 the	 application’s	 views	 must	 be	 performed	 in	 this	 queue.	 Also,	 post	
notifications	should	be	executed	here.	
	

• The	user	interactive	queue.	This	queue	is	most	suitable	for	tasks	that	require	
very	low	latency,	such	as	the	handling	of	events	or	anything	that	guarantees	a	
good	user	experience.	
	

• The	 user	 initiated	 queue,	which	 is	 intended	 to	 perform	 tasks	 that	 the	 user	
created	but	can	continue	running	on	backgrounds.	
	

• The	utility	queue.	Designed	 for	 long	 tasks,	 such	as	 involving	networking	or	
long	computations.		
	

• The	 background	 queue.	 The	 background	 queue	 should	 be	 used	 for,	 i.e.,	
prefetching	or	querying	data,	or	tasks	that	do	not	require	user’s	 interaction	
in	real	time.	
	

Any	 other	 queue	 can	 be	 easily	 created	 with	 a	 few	 lines	 of	 code,	 either	 serial	 or	
concurrent	[51].	
	
	
	 	

	 44	

4.4 User	Authentication	
	
Authentication	is	an	important	property	in	almost	any	service,	nowadays.	And	so	it	
is	on	Momentum.	It	is	important	to	keep	track	of	who	is	using	our	application,	what	
permissions	do	they	have	and	which	events	and	momentums	do	they	belong	to,	for	
example.	
	
Authentication	
In	 this	 section	 the	 process	 of	 authentication	 will	 be	 described.	 This	 process	 is	
composed	by	four	major	steps.	
	
Initially	the	app	sends	an	HTTP	post	request	to	the	back-end	containing	the	msisdn	
[52].	After	 receiving	 the	msisdn	phone	number,	 the	server	generates	an	OTP	code	
[53]	 that	 subsequently	 is	 sent	 by	 SMS	 to	 the	 target	mobile	 device.	 The	 system	 is	
implemented	in	such	a	way	that	the	user	has	30	seconds	to	send	the	OTP	code	back	
to	the	back-end.	After	this	threshold,	or	in	case	the	code	sent	by	the	user	was	not	the	
correct	one,	the	user	must	repeat	the	previous	post	request,	containing	the	msisdn,	
in	order	to	receive	another	code	and	conclude	the	 login	process.	After	sending	the	
correct	 OTP	 code,	 the	 app	will	 receive	 the	 user	 id,	 an	 access	 token	 and	 a	 refresh	
token,	encapsulated	in	a	JSON	Web	Token	[54].	
	
The	access	 token	 is	used	on	each	 iteration	of	 the	communication	between	the	app	
and	 the	back-end,	and	has	a	validity	of	24	hours.	The	refresh	 token	 is	 required	so	
that	the	access	token	can	be	renewed.	Every	time	that	a	refresh	token	request	is	sent	
the	back-end	returns	two	new	tokens.		
	
4.5 Docker	
	
Docker	 [55]	 is	 a	 software	 container,	 i.e.,	 a	 complete	 filesystem	 that	has	everything	
set	 to	 run.	 This	 component	 receives	 the	 developer’s	 code,	 optionally	 the	 system	
libraries	or	other	 features	 that	 can	be	 installed	on	a	 server,	wraps	 it	up,	 compiles	
and	 runs.	 Using	 Docker	 ensures	 that	 our	 code	 will	 run	 always	 the	 same	 way,	
regardless	of	the	environment.	
	
Docker	was	 a	 solution	 that	 the	 student’s	 supervisor	 at	WIT	 suggested	 in	 order	 to	
avoid	program’s	deployment	errors	and	to	quicken	its	process	of	deployment.	
	
4.6 Mockups	
	
Another	important	attribute	of	the	internship’s	architecture	was	the	mockups.	They	
were	provided	by	WIT’s	design	team	after	the	student’s	submission	of	the	system	
user	stories,	and	they	served	as	guidelines	for	the	undergraduate’s	implementation.	
	
The	first	screen	would	be	reached	right	after	the	user	authentication.	The	user	
opens	the	app,	signs	in	and	will	see	the	list	of	Events	above.	

	 45	

	

	
Figure	13	-	Mockup	Events	screen	

	
The	mockup	placed	above	shows	the	Momentum	expected	output	for	the	available	
events	enumeration.	The	numbers	refer	to:	

• 1:	this	screen	will	have	a	search	field.	
• 2:	there	will	be	a	connection	to	the	user	Momentums.	
• 4:	the	final	prototype	will	access	the	map	view.	
• 5:	there	will	be	a	shortcut	to	the	app’s	settings.	

	
This	view	contains	a	list	of	Events,	each	with	a	name,	a	description,	a	logo	and	a	
background	image.	When	tapping	into	one	of	the	displayed	events,	the	user	moves	
to	the	Event	view.	

	 46	

	
Figure	14	-	Mockup	Event	view	

	
	
The	previous	mockup	shows	the	screen	view	of	an	Event.	The	numbers	refer	to:	

• 2:	add	a	new	content	to	the	Event	from	the	user	device’s	gallery.	
• 3:	post	a	photo	or	video	from	the	device’s	gallery.	

	
This	screen	contains	the	list	of	contents	that	belong	to	this	Event.	Tapping	on	each	of	
them	will	open	the	content	in	full-screen	mode,	and	the	arrow	on	top-left	takes	the	
user	back	to	the	previous	screen.	
	

	 47	

	
	

5 IMPLEMENTATION	AND	EVALUATION	
	
This	chapter	will	describe	the	code	implementation	and	the	flow	of	development	
over	the	year,	and	the	tests	that	were	performed	on	the	prototype.	
	
	
5.1 First	semester	
	
This	 section	 describes	 how	 the	 development	 evolved	 from	 the	 day	 the	 internship	
program	 started,	 September	 14th	 of	 2015,	 until	 the	 end	 of	 the	 third	 sprint	 of	
development,	on	January	8th	of	2016.	
	
During	the	first	3	weeks	of	the	internship	the	basics	of	iOS	systems	were	learnt,	as	
well	 as	 Swift’s	 programming	 language.	 In	 order	 to	 accomplish	 this	 the	 student	
attended	 to	 the	 “Developing	 iOS	8	apps	with	Swift”	online	course	by	Paul	Hegarty	
from	Stanford	University.	This	course	contained	all	the	classes	recorded	at	Stanford	
University,	and	all	its	materials	in	pdf	format.	
	
Afterwards,	 some	 changes	 on	 the	 initial	 internship’s	 program	 occurred	 but	
everything	was	set	clear	by	the	middle	of	October.	The	following	assignment	was	to	
perform	a	deep	study	over	the	state	of	the	art.	The	company	provided	the	necessary	
tools	 to	 fulfill	 this	 job,	 which	 required	 having	 an	 iOS	 device.	 The	 student	
downloaded	 about	 20	 applications	 and	 tested	 all	 their	 features.	 Some	 of	 the	
applications	were	not	even	available	on	the	Portuguese	App	Store	but	he	managed	
to	 find	an	alternative	 to	 try	 them.	The	 competitor	 applications	were	all	 compared	
and,	during	this	analysis,	the	student	retained	a	list	of	great	ideas	to	put	in	practice	
on	 his	 prototype.	 The	 result	 of	 this	 analysis	 was	 shared	 with	 the	 student’s	
supervisor	 at	WIT	 and,	 at	 the	 end	 of	 this	 stage,	 the	 path	 to	 follow	 seemed	 to	 be	
clearer.	
	
The	following	step	was	to	identify	the	user	stories	that	would	fit	in	our	system.	
	
Several	versions	of	the	user	stories	were	drafted,	by	both	the	undergraduate	and	his	
supervisor	at	WIT.	Additionally,	a	 theme	and	a	 t-shirt	size	were	appended	to	each	
user	story.	
	
As	stated	in	the	methodology	section,	the	t-shirt	size	is	an	important	component	of	
the	Agile	programming	methodology	and	lets	the	workers	estimate	an	idea	of	how	
long	a	specific	task	will	take.	
	
The	theme	of	the	user	stories	only	helped	us	to	categorize	each	user	story.	
	

	 48	

After	 the	 user	 stories	 selection,	 another	 very	 important	 step	 took	 place:	 the	
architecture	 decisions.	 The	 project	 was	 quite	 complex,	 compared	 to	 the	 ones	 the	
undergraduate	used	to	be	involved	in	during	college,	so	this	time	an	extra	effort	was	
given.	A	lot	of	implementations	questions	arose	on	the	student’s	mind	as	it	is	stated	
on	 the	 architecture	 chapter.	 Some	 of	 the	 questions	 involved	 concepts	 that	 were	
partially	unexplored	by	the	student,	and	thus	raised	deep	research	work.	
	
After	 facing	 all	 these	 architectural	 decisions,	 it	was	 time	 to	 start	 coding.	 The	 first	
development	sprints	took	place.	
	
Later,	by	 the	end	of	 the	year	of	2015,	we	could	say	 that	 the	development	had	run	
remarkably	well.	The	first	goal	of	the	internship	was	to	have	a	functional	prototype	
to	present	at	Barcelona’s	World	Mobile	Congress	 in	February	2016,	 and	work	has	
been	done	in	that	direction.	
	
By	 the	 time	 this	 document	 was	 written,	 there	 were	 already	 three	 development	
sprints	done,	following	the	Agile	programming	methodology.	
	
	
5.1.1 First	sprint	
	
The	first	sprint	marked	the	beginning	of	the	development	stage.	The	planning	was	
performed	previously	and	all	the	tasks	were	assigned	to	the	product	backlog,	on	the	
Redmine	platform.	Thus,	the	first	sprint	consisted	in	the	following	tasks:	

• Implementation	of	the	back-end	server	using	Spring	Boot	
• Implementation	of	the	PostgreSQL	database	
• Connect	the	server	with	the	database	
• Create	an	iOS	app		
• Use	Facebook	SDK	to	login	and	logout	from	the	app	

	
From	the	mobile	application’s	point	of	view,	this	sprint	was	quite	simple.	The	first	
screen	of	 the	app	contains	a	 login	button	 that	 the	user	should	 tap.	Afterwards	 the	
application	 requests	 a	 Facebook	 login.	 If	 successful,	 the	 user	 is	 redirected	 to	
Momentum’s	 logged	 in	 screen.	 Momentum	 would	 get	 some	 data	 from	 the	 user’s	
Facebook	 account	 such	 as	 email,	 name	 or	 birthday,	 e.g..	 This	 screen	 had	 a	 logout	
button	that	would	log	the	user	out	and	get	him	back	to	the	former	screen,	where	he	
would	have	to	repeat	the	login	procedure.	
	
	
	
	
	
The	main	challenge	had	 to	do	essentially	with	 the	back-end	 in	Spring	Boot,	which	
revealed	 to	 be	 more	 complex	 than	 the	 Swift	 app	 in	 this	 introductory	 step.	 The	

	 49	

student	had	almost	no	experience	 in	 Spring	Boot	or	 Swift/iOS	applications,	which	
helped	turning	the	experience	into	a	very	interesting	challenge.		
	
5.1.2 Second	Sprint	
	
	
The	second	sprint	started	right	after	the	end	of	the	first	one.	At	its	end,	the	student	
and	his	supervisor	at	WIT	gathered	in	order	to	analyze	the	past	sprint	and	discuss	
the	next	one.	For	the	second	sprint,	the	tasks	below	enumerated	were	planned:	

• Define	the	overall	schema	of	the	back-end	
• Implement	the	entity	for	the	event	and	the	user	
• Manage	the	relationship	between	the	entities	
• Pass	the	entities	between	the	back-end	and	the	mobile	application	
• Create	API	for	event	creation	
• On	the	app,	allow	simple	events	creation	

	
At	this	point,	the	major	issues	had	to	do	with	the	Spring	Boot	server	developing	and	
debugging.	 Setting	 the	 relationships	 between	 the	 entities	 and	 implementing	 the	
right	annotations	was	not	trivial.	
	
On	 the	mobile	application,	 the	 logged	 in	 screen	presented	a	button	 that	allowed	a	
simple	 creation	 of	 events	 for	 testing	 purposes.	 Still,	 in	 this	 sprint,	 the	 student	
learned	 how	 to	 pass	 objects	 in	 Swift	 to	 the	 back-end,	 by	 using	 JSON,	 and	 the	
opposite,	converting	JSON	into	Swift	objects	without	using	external	libraries.	
	
5.1.3 Third	Sprint	
	
The	third	sprint	started	on	December’s	21st	and	lasted	the	usual	10	working	days,	
until	 January	8th	of	2016.	This	sprint	 focused	more	on	the	mobile	application	than	
the	 previous	 ones.	 A	 document	 with	 the	 iOS	 application’s	 mockups	 has	 been	
provided	 by	 the	 design	 team	 of	WIT	 Software,	 and	 the	 aim	 of	 this	 sprint	 was	 to	
implement	those	mockups.	The	following	tasks	were	stated	on	the	project’s	backlog	
for	the	sprint	number	3:	

• Display	the	list	of	events	on	the	iOS	app	
• Show	all	the	pictures	for	each	event	
• Implement	the	missing	entities	and	APIs	on	the	back-end	
• Fill	the	screen	with	the	colors	chosen	by	the	design	team	

	
The	outcome	was	 slightly	different	 from	 the	 expected,	 but	 the	 appreciation	of	 the	
student’s	supervisor	at	WIT	and	Momentum’s	Manager	was	positive.		
	

	 50	

	
Figure	15	-	Momentum	Sprint	3	Screenshots	

	
On	the	one	hand,	the	feature	of	displaying	all	the	pictures	of	an	event	was	not	fully	
developed,	 because	 the	 mobile	 application	 was	 not	 handling	 properly	 the	 post	
entity,	 where	 the	 picture	 belonged.	 So,	 instead,	 the	 application	 was	 displaying	
default	 photos	 just	 to	 demonstrate	 how	 the	 contents	 would	 be	 displayed	 on	 the	
device’s	screen.	
	
On	the	other	hand,	tasks	that	were	scheduled	for	future	sprints	were	implemented,	
such	as	uploading	photos	from	the	device’s	gallery	to	the	application.	This	happened	
in	order	to	test	the	flow	of	the	photos,	sent	from	the	mobile	application	to	the	back-
end	 and	 vice-versa.	 Since	 it	 worked	 well	 and	 the	 task	 was	 useful	 for	 the	 future	
sprints,	the	student	decided	to	keep	it	on	this	sprint’s	prototype.	
	
To	better	handle	the	JSON	sent	from	the	Spring	Boot	server	to	the	iOS	app,	the	
student	made	some	research	over	some	of	the	most	popular	Swift	libraries,	such	as	
Alamofire	[56]	and	Argo	[57].	Alamofire	simplifies	the	HTTP	networking	on	Swift,	
with	clearer	syntax	for	each	HTTP	methods,	e.g..			Argo	provides	an	easier	handling	

	 51	

of	JSON	in	swift.	They	were	included	in	the	project,	once	they	shown	some	
advantages	over	the	Swift	native	language.	
	
The	 back-end	 had	 a	 few	 changes,	 once	 the	 entities	were	 not	 implemented	 by	 the	
beginning	of	the	sprint	and	they	were	needed	in	order	to	accomplish	the	goals	from	
this	 sprint.	 Additionally,	 the	 necessary	 APIs	 were	 created	 to	 retrieve	 the	 list	 of	
events,	 and	 the	 contents	 of	 each	 event.	 The	 APIs	 follow	 the	 HTTP	 protocol,	 and	
receive	mostly	get	and	post	requests.	
	
The	colors	specified	by	the	design	team	were	put	in	practice,	as	well	of	most	of	the	
components	 presented	 on	 the	 document	 mockups.	 The	 feedback	 the	 student	
received	from	his	supervisor	at	WIT	and	from	Momentum’s	Manager	was	positive.	
	
	
5.2 Second	semester	
	
The	following	section	will	report	the	work	developed	in	the	second	semester	of	the	
internship,	i.e.	from	February	until	August.	
	
After	the	internship’s	interim	delivery	and	resulting	presentation	at	the	University,	
the	Mobile	World	Congress	took	place	 in	Barcelona	from	February	22nd	to	25th.	As	
expected,	WIT	Software	was	present	and	 the	prototype	developed	during	 the	 first	
semester	 of	 the	 internship	 was	 shown	 to	 the	 fair	 participants.	 Even	 though	 the	
undergraduate	was	not	present,	feedback	was	given	to	him	as	the	fair’s	participants	
found	the	prototype	an	interesting	solution,	despite	 its	early	state	of	development.	
By	 having	 aroused	 curiosity	 and	 positive	 discussions	 with	 several	 MWC’s	
participants,	 the	 undergraduate	 and	his	 supervisor	 in	WIT	 Software	 fell	 confident	
regarding	the	path	being	tracked.	
	
Continuously,	the	student	projected	some	usability	tests	in	order	to	receive	some	
feedback	regarding	the	current	prototype.	To	consult	them,	refer	to	Appendix	A.	
	
The	outcome	of	those	usability	tests	had	a	major	importance	for	the	course	of	the	
internship.	
	
The	student	analyzed	the	results	of	the	usability	tests	and	due	to	its	unexpected	
outcome,	further	suggestions	were	transmitted	to	his	supervisor,	David.	The	student	
and	its	supervisor	formerly	agreed	on	slightly	shifting	a	few	characteristics	on	the	
application,	and	new	mockups	were	requested	to	WIT’s	design	team.	
	
Having	the	new	User	Interface	mockups	written	by	the	design	team,	the	student’s	
path	was	to	rebuild	its	mobile	prototype	from	scratch.	It	was	not	a	hard	setback	
since	the	major	development	occurred	during	the	first	semester	focused	on	the	
back-end,	and	that	work	was	not	affected	by	this	change.	

	 52	

The	detailed	analysis	of	the	sprints	performed	during	the	second	semester	can	be	
found	in	Appendix	C.	
	
	
	
	
5.3 Evaluation	
	
The	following	section	will	report	the	techniques	used	by	the	student	in	order	to	
evaluate	the	Momentum	iOS	prototype.	
	
During	the	internship	two	different	types	of	tests	were	run:	Usability	tests	and	
Functional	tests.	
	
	
5.3.1 Usability	tests	
	
Usability	tests	are	an	important	technique	to	measure	how	efficient	an	application	is	
in	order	 to	meet	 its	 intended	purpose.	The	main	 characteristics	 that	 influence	 the	
usability	 of	 an	 application	 are	 the	 interaction	 efficiency,	 its	 error	 rates,	 the	
learnability,	memorability	and	its	subjective	satisfaction.	
	
So	 that	 the	 usability	 tests	 could	 be	 meaningful,	 the	 user	 segmentation	 would	
desirably	have	to	be	somehow	familiar	with	the	iOS	system.	Furthermore,	due	to	the	
company’s	privacy	police,	Momentum’s	details	 should	not	become	public,	 thus	 the	
testers	 were	 all	 performed	 on	 WIT	 Software’s	 employees.	 The	 tests	 involved	 six	
different	 testers,	 once	 according	 to	 Jim	 Herbsleb	 and	 Jakob	 Nielsen	 this	 value	 is	
enough	to	detect	more	than	80%	of	the	issues.		
	

	 53	

	
Jakob	Nielsen’s	study	

	
Summarily,	usability	tests	let	the	programmer	know	how	easy	its	product	is	to	the	
clients.	They	consist	on	the	following	points:	
	

• Select	one	use	case	from	the	most	important	features.	
• Notify	the	tester	about	which	use	case	he	is	expected	to	perform,	and	track	its	

actions.	
• Compare	the	testers	results	

	
The	full	set	of	usability	tests	run	on	the	application	can	be	found	in	Appendix	A.	
	
	
5.3.2 Functional	tests	
	
Functional	tests	are	a	quality	assurance	process	that,	basically,	describe	what	the	
system	does.	
	
The	full	set	of	functional	tests	run	on	the	application	can	be	found	in	Appendix	A.	
	
	
5.3.3 Code	metrics	and	complexity	
	
In	this	section	there	will	be	shown	a	few	statistics	of	the	project,	so	that	its	
complexity	could	be	estimated.	
	
The	statistics	focused	more	on	the	iOS	application,	since	they	were	the	main	focus	of	
the	internship.	The	most	noteworthy	statistics	were:	

	 54	

• The	last	version	of	the	prototype	counts	with	37	classes	of	the	presentation	
logic,	i.e.,	directly	related	to	the	User	Interface.	These	classes	have	between	
150	and	200	lines	of	code.		
	

• The	prototype	has	18	classes	that	belong	to	the	application	logic.	These	
classes	have	between	75	and	750	lines	of	code	each	one.	

	
• The	prototype	has	8	classes	of	the	Model	layer.	These	classes	have	all	less	

than	50	lines	of	code.	
	

• The	prototype	used	8	different	external	libraries,	e.g.	for	networking	
communication,	Json	parsing,	data	storing,	etc.	

	
• The	iOS	application	has	around	9500	lines	of	code	combined.	

	
• Moreover,	there	is	some	logic	on	the	project’s	Storyboard	that	could	not	be	

tracked,	since	the	developing	environment	does	not	involve	coding.	
	
Below	is	an	example	of	an	instance	of	a	UIViewController	that	was	implemented	
using	the	iOS	Storyboard.	
	

	
Figure	16	-	example	of	storyboard	development	

	 55	

6 CONCLUSION	
	
The	final	chapter	sets	the	end	of	the	report	and	of	this	one-year	internship	at	WIT	
Software.	
	
What	 we	 have	 today	 is	 an	 iOS	 application	 that	 allows	 the	 users	 to	 share	 their	
favorite	moments	with	their	friends	and	relatives,	with	a	commodity	and	ease	of	use	
that	we	found	uncommon.		
	
Nevertheless,	the	application	is	not	going	to	be	released	in	the	App	Store	by	the	time	
of	 writing	 this	 report.	 Doing	 so	 requires	 a	 team	 specially	 dedicated	 to	 the	
application,	ready	to	give	support	to	the	product	whenever	it	is	the	occasion,	and	at	
the	moment	WIT	Software	cannot	proceed	in	such	a	scenario.	
	
It	is	time	to	present	some	personal	thoughts	on	my	internship.	
	
I	chose	this	internship	as	my	number	one	option	because	I	always	felt	interested	in	
mobile	software	development	and	throughout	the	degree	at	the	university	I	did	not	
have	 the	 opportunity	 to	 master	 those	 skills.	 By	 taking	 this	 route,	 I	 managed	 to	
conciliate	 exploring	 the	 mobile	 software	 development	 field	 with	 working	 on	 a	
cutting	edge	software	development	company,	as	well	as	mastering	my	programming	
and	computer	engineering	skills.	
	
I	 found	 the	 experience	 very	 enriching.	 I	 faced	 and	 overcame	 several	 obstacles	
throughout	 the	 year,	 and	 at	 the	 end	 I	 presented	 a	 fully	 functional	 prototype,	 as	
expected	at	the	beginning	of	the	internship.	This	was	my	first	time	working	on	a	tech	
company,	 and	 I	met	 extremely	 committed,	 friendly	 and	professional	 coworkers	 at	
WIT	 Software’s	 office	 in	 Coimbra.	 I	 worked	 with	 technologies	 I	 have	 never	 used	
before,	 such	 as	 iOS,	 the	 Swift	 programming	 language,	 Spring	 Boot	 for	 server	 side	
development	 and	 Git	 for	 versioning	 control,	 and	 I	 found	 very	 good	 working	
conditions.	 Meanwhile	 I	 had	 the	 opportunity	 to	 do	 what	 I	 like	 the	 most,	 while	
evolving	both	as	a	professional	and	as	a	person,	and	contributing	to	the	company.	
	
While	developing	this	prototype,	I	covered	most	of	the	stages	of	developing	a	real-
world	 product,	 such	 as	 the	 state	 of	 the	 art,	 the	 requirements	 analysis,	 the	
development	planning,	 the	development,	 the	 tests	and	 the	 further	need	 to	 rethink	
the	plan	based	on	the	tests	results,	and	the	documentation.	
	
During	the	first	semester,	the	main	tasks	that	I	would	enhance	were	studying	the	iOS	
environment	from	the	very	beginning,	starting	the	development	of	the	back-end	and	
developing	a	light	version	of	the	Momentum	mobile	application,	which	was	the	core	
of	the	internship.	Afterwards,	at	the	beginning	of	the	second	semester,	the	usability	
tests	that	were	performed	generated	a	shift	on	Momentum’s	user	interface,	and	thus	
a	new	version	of	the	mobile	application	was	built.	That	version	is	the	final	one	that	is	
presented	at	the	end	of	the	internship.	

	 56	

	
The	skills	I	acquired	during	my	internship	were	important	for	me,	for	my	career	and	
for	my	company	as,	on	July	2016,	I	was	integrated	on	a	new	team	at	WIT	Software	
for	developing	software	for	iOS.	
	
Overall,	I	am	very	proud	of	my	internship,	it	made	me	evolve	a	lot.	
	
	

	 57	

	

7 BIBLIOGRAPHY	
	
[1
]		
Pew	Research	Center,	2004.	[Online].	Available:	
http://www.pewinternet.org/data-trend/mobile/device-ownership/.	[Accessed	
16	1	2016].	

[2
]		
P.	R.	Center,	2004.	[Online].	Available:	
http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/.	
[Accessed	16	1	2016].	

[3
]		
Statista,	[Online].	Available:	
http://www.statista.com/statistics/494572/smartphone-users-in-central-and-
eastern-europe/.	[Accessed	14	1	2016].	

[4
]		
Statista,	[Online].	Available:	
http://www.statista.com/statistics/276623/number-of-apps-available-in-
leading-app-stores/.	[Accessed	20	1	2016].	

[5
]		
App	Annie,	[Online].	Available:	
https://www.appannie.com/apps/ios/top/?device=iphone.	[Accessed	16	1	
2016].	

[6
]		
Mobile	World	Congress,	22-25	2	2016.	[Online].	Available:	
http://www.mobileworldcongress.com/.	

[7
]		
Facebook,	Inc.,	[Online].	Available:	http://momentsapp.com/.	

[8
]		
M.	Chabasse,	A.	Sibiril,	F.	Hobein	and	M.	Spiry.	[Online].	Available:	
http://cometapp.io/.	

[9
]		
Deja	Mi,	Inc.,	1	12	2010.	[Online].	Available:	https://www.wedpics.com.	

[1
0]		
Cluster	Labs,	Inc.,	2013.	[Online].	Available:	https://cluster.co.	

[1
1]		
S.	Papafloratos	and	M.	Dempsey,	Generic	Ventures	Limited,	2013.	[Online].	
Available:	https://www.togethera.com.	

[1
2]		
S.	Perez,	11	2	2015.	[Online].	Available:	
http://techcrunch.com/2015/02/11/wedding-app-wedpics-raises-6-5-million-
from-shark-tanks-barbara-corcoran-and-others/#.hmodqoe:Emzd.	

[1
3]		
Cluster	Labs,	Inc.,	[Online].	Available:	https://tripcast.co/.	[Accessed	12	1	2016].	

[1
4]		
Cluster	Labs,	Inc.,	[Online].	Available:	https://churchsnaps.com/.	[Accessed	12	1	
2016].	

[1
5]		
Cluster	Labs,	Inc.,	[Online].	Available:	https://dailykiddo.com/.	[Accessed	12	1	
2016].	

[1
6]		
Cluster	Labs,	Inc.,	[Online].	Available:	https://gethomeroom.com/.	[Accessed	12	
1	2016].	

	 58	

[1
7]		
Sarah	Perez,	Tech	Crunch,	22	8	2013.	[Online].	Available:	
http://techcrunch.com/2013/08/22/photo-sharing-app-cluster-snags-
instagram-seed-investor-steve-anderson-others-to-lead-1-6m-round-launches-
version-1-0/.	

[1
8]		
M.	Zuckerberg,	Facebook,	4	2	2004.	[Online].	Available:	
https://www.facebook.com/.	

[1
9]		
E.	Spiegel,	B.	Murphy	and	R.	Brown,	9	2011.	[Online].	Available:	
https://www.snapchat.com/.	

[2
0]		
D.	Houston	and	A.	Ferdowsi,	6	2007.	[Online].	Available:	
https://www.dropbox.com/.	

[2
1]		
Google,	28	5	2015.	[Online].	Available:	https://photos.google.com/.	

[2
2]		
K.	Systrom	and	M.	Krieger,	10	2010.	[Online].	Available:	
https://www.instagram.com/.	

[2
3]		
Ludircorp,	2	2004.	[Online].	Available:	https://www.flickr.com/.	

[2
4]		
F.	Van	Allen,	Techlicious,	8	9	2015.	[Online].	Available:	
http://www.techlicious.com/blog/top-10-apple-iphone-and-ipad-apps-of-all-
time-most-downloaded/.	[Accessed	17	1	2016].	

[2
5]		
Statista,	Statista,	[Online].	Available:	
http://www.statista.com/statistics/264810/number-of-monthly-active-
facebook-users-worldwide/.	[Accessed	20	1	2016].	

[2
6]		
C.	Smith,	DMR	Digital	Statistics,	15	12	2015.	[Online].	Available:	
http://expandedramblings.com/index.php/snapchat-statistics/.	[Accessed	19	1	
2016].	

[2
7]		
App	Annie,	16	1	2016.	[Online].	Available:	
https://www.appannie.com/apps/ios/top/?device=iphone.	[Accessed	16	1	
2016].	

[2
8]		
S.	Aslam,	7	10	2015.	[Online].	Available:	
http://www.omnicoreagency.com/snapchat-statistics/.	[Accessed	16	1	2016].	

[2
9]		
C.	Smith,	DMR	Digital	Statistics,	7	11	2015.	[Online].	Available:	
http://expandedramblings.com/index.php/dropbox-statistics/.	[Accessed	16	1	
2016].	

[3
0]		
Dropbox,	Inc,	Dropbox,	[Online].	Available:	https://carousel.dropbox.com/.	
[Accessed	18	1	2016].	

[3
1]		
Amazon	Web	Services,	Inc.,	[Online].	Available:	https://aws.amazon.com/s3/.	
[Accessed	14	1	2016].	

[3
2]		
Basho	Technologies,	Inc.,	[Online].	Available:	http://basho.com/products/riak-
s2/.	[Accessed	14	1	2016].	

[3
3]		
MongoDB,	Inc.,	2009.	[Online].	Available:	https://www.mongodb.org/.	[Accessed	
15	1	2016].	

[3 The	PostgreSQL	Global	Development	Group,	1996.	[Online].	Available:	

	 59	

4]		http://www.postgresql.org/.	[Accessed	14	1	2016].	
[3
5]		
Apple,	Inc.,	2	6	2014.	[Online].	Available:	http://www.apple.com/swift/.	

[3
6]		
Pivotal	Software,	Inc.,	[Online].	Available:	http://projects.spring.io/spring-boot/.	
[Accessed	14	1	2016].	

[3
7]		
Google,	[Online].	Available:	https://www.google.com/intl/pt-PT/drive/.	

[3
8]		
Pivotal	Software,	Inc.,	[Online].	Available:	http://start.spring.io/.	[Accessed	14	1	
2016].	

[3
9]		
The	Apache	Software	Foundation,	2002.	[Online].	Available:	
https://maven.apache.org/.	[Accessed	14	1	2016].	

[4
0]		
Java	Community	Process,	2006.	[Online].	Available:	
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-
140049.html.	[Accessed	14	1	2016].	

[4
1]		
Red	Hat,	[Online].	Available:	http://hibernate.org/orm/.	[Accessed	14	1	2016].	

[4
2]		
Apple,	Inc.,	21	10	2015.	[Online].	Available:	
https://developer.apple.com/library/ios/documentation/General/Conceptual/D
evPedia-CocoaCore/MVC.html.	[Accessed	17	1	2016].	

[4
3]		
A.	Furrow,	"objc.io/issues/13-architecture/mvvm/,"	1	06	2014.	[Online].	
Available:	https://www.objc.io/issues/13-architecture/mvvm/.	[Accessed	30	7	
2016].	

[4
4]		
V.	Ngo,	9	12	2014.	[Online].	Available:	
https://www.raywenderlich.com/86477/introducing-ios-design-patterns-in-
swift-part-1.	

[4
5]		
Wikipedia,	23	5	2016.	[Online].	Available:	
https://en.wikipedia.org/wiki/Software_design_pattern.	

[4
6]		
A.	Inc.,	24	3	2010.	[Online].	Available:	
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/P
ropertyLists/AboutPropertyLists/AboutPropertyLists.html.	

[4
7]		
A.	Inc.,	17	9	2014.	[Online].	Available:	
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Fou
ndation/Classes/NSUserDefaults_Class/.	

[4
8]		
A.	Prusak,	19	2	2016.	[Online].	Available:	https://dzone.com/articles/ios-
databases-sqllite-vs-core-data-vs-realm	.	

[4
9]		
Z.	Tamim,	15	12	2012.	[Online].	Available:	
http://www.appcoda.com/introduction-to-core-data/.	

[5
0]		
Wikipedia,	"en.wikipedia.org/,"	21	05	2016.	[Online].	Available:	
https://en.wikipedia.org/wiki/Race_condition.	[Accessed	25	05	2016].	

[5
1]		
B.	Ruud,	"raywenderlich.com,"	7	1	2015.	[Online].	Available:	
https://www.raywenderlich.com/79149/grand-central-dispatch-tutorial-swift-
part-1	.	[Accessed	11	3	2016].	

	 60	

[5
2]		
Msisdn,	"http://www.msisdn.org/,"	msisdn,	[Online].	Available:	
http://www.msisdn.org/.	[Accessed	29	04	2016].	

[5
3]		
Wikipedia,	"en.wikipedia.org/,"	[Online].	Available:	
https://en.wikipedia.org/wiki/One-time_password.	

[5
4]		
Auth0,	"https://jwt.io/,"	[Online].	Available:	https://jwt.io/.	

[5
5]		
Docker,	Inc.,	13	3	2013.	[Online].	Available:	https://www.docker.com/.	[Accessed	
14	1	2016].	

[5
6]		
Alamofire	Software	Foundation,	[Online].	Available:	
https://github.com/Alamofire/Alamofire.	[Accessed	14	1	2016].	

[5
7]		
thoughtbot,	inc.,	[Online].	Available:	https://github.com/thoughtbot/Argo.	
[Accessed	14	1	2016].	

[5
8]		
Go-Globe,	[Online].	Available:	http://www.go-globe.hk/blog/mobile-apps-
numbers/.	[Accessed	18	1	2016].	

[5
9]		
P.	Webb	and	D.	Syer,	Pivotal	Software,	Inc.,	6	8	2013.	[Online].	Available:	
https://spring.io/blog/2013/08/06/spring-boot-simplifying-spring-for-
everyone.	[Accessed	14	1	2016].	

[6
0]		
SwiftyJSON,	[Online].	Available:	https://github.com/SwiftyJSON/SwiftyJSON.	
[Accessed	14	1	2016].	

[6
1]		
IETF	OAuth	WG,	2006.	[Online].	Available:	http://oauth.net/2/.	

[6
2]		
J.	Nielsen,	3	2000.	[Online].	Available:	https://www.nngroup.com/articles/why-
you-only-need-to-test-with-5-users/.	

	
	
	
	

