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Abstract

Intensity-modulated radiation therapy is used worldwide to treat cancer patients. The objective of this treat-
ment is to deliver a prescribed radiation dose to the tumor while sparing, as much as possible, all the healthy
tissues, especially organs at risk (OAR). This means that the planning of a radiotherapy treatment should
take into consideration conflicting objectives: to be able to spare as much as possible the OAR guaranteeing,
at the same time, that the desired radiation is delivered to the volumes to treat. While the volumes to treat
can be adequately irradiated from almost any set of directions, the radiation directions that are chosen have
a determinant impact on the OAR. This means that those directions that provide an improved OAR sparing
should be selected. The choice of radiation directions (beam angles) can thus be interpreted as being fun-
damentally determined by the OAR, with the radiation intensities associated with each of these directions
being determined by the needed radiation to be delivered to the volumes to treat. In this work, we interpret
the radiotherapy treatment planning problem as a bi-level optimization problem. At the upper level, OAR
control the choice of the beam angles, which are selected aiming at OAR sparing. At the lower level, the opti-
mal radiation intensities are decided by the volumes to treat, considering the beam angle ensemble obtained
at the upper level. The proposed bi-level approach was tested using 10 clinical head-and-neck cancer cases
already treated at the Portuguese Institute of Oncology in Coimbra.

Keywords: bi-level optimization; derivative-free optimization; noncoplanar IMRT; automated treatment planning

1. Introduction

Radiation therapy is widely used to treat cancer patients with localized tumors. Radiation is de-
livered to the patient by a linear accelerator (linac) mounted on a gantry, which rotates around a
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central axis parallel to the couch where the patient lies. The couch may also rotate, increasing the
degrees of freedom of the possible directions from which the tumor can be irradiated, which enables
better quality treatment plans to be achieved. A treatment plan is coplanar if the couch is fixed in
a 0◦ angle during the whole treatment, being noncoplanar otherwise.

In intensity-modulated radiation therapy (IMRT), the head of the linear accelerator has a mul-
tileaf collimator that discretizes a beam into a set of beamlets. The multileaf collimator has a set
of right and left moving leaves that can block the radiation during determined periods of time.
These movements create beamlets with different intensities that allow the shaping of nonuniform
radiation intensity maps. This intensity modulation allows to improve the treatment precision, con-
forming the radiation to the volumes to treat, while sparing surrounding healthy tissues and or-
gans at risk (OAR) as much as possible. IMRT planning has two main goals: to assure that the
prescribed dose is provided uniformly to the planning target volume (PTV) while simultaneously
minimizing the radiation that reaches the OAR. These objectives are conflicting because radiation
needs to go through healthy tissues to reach the PTV. Furthermore, while the PTV may be effec-
tively irradiated from almost any direction, properly sparing the OAR can only be achieved if beam
irradiation directions are adequately chosen. This means that beam angle optimization (BAO) is
typically required to obtain a beam angle arrangement that leads to treatment plans with enhanced
OAR sparing. For a given beam ensemble, the radiation to be delivered from each beam is then
optimized (the fluence map optimization—FMO) aiming to fulfill the prescribed and the tolerance
doses.

A treatment plan is often selected by the medical physicist after some trial and error experi-
ences. First, the medical physicist, based on her/his own experience, manually selects a beam en-
semble. Then, the FMO takes place, considering these angles fixed. The resulting solution is then
analyzed by the medical physicist who may change some of the beam angles, or other input pa-
rameters considered in the FMO, aiming at increasing the quality of the treatment plan. The FMO
problem is solved again, and this laborious and time-consuming process is repeated until a satis-
factory treatment plan is obtained. It is not possible to assure that the treatment plans obtained
by this process are the best possible ones for each patient (Pugachev et al., 2001; Cabrera et al.,
2018). Automated treatment planning is nowadays considered essential to guarantee that treatment
plans with improved quality are consistently obtained with less intervention of the planner. Within
an automated framework, different formulations have been proposed for the BAO and the FMO
problems that are typically solved in a sequential manner. In this study, we propose an automated
bi-level optimization approach for IMRT treatment planning, where BAO and FMO problems
are, respectively, the upper and lower level problems. Therefore, the beam search is guided by the
quality of the solutions from the OAR’s point of view. The PTV will guide the definition of the
fluence map.

Bi-level optimization models (Bard, 1998; Dempe, 2002) enable to formulate optimization prob-
lems with a hierarchical structure between two decision levels. The leader (at the upper level) and
the follower (at the lower level) control different sets of variables and pursue different objectives in a
non-cooperative manner. The leader makes her/his decisions first. The follower reacts by choosing
an optimal solution according to her/his objective function on the feasible region restricted by the
leader. Thus, the lower level optimization problem is embedded in the upper level feasible region.
Although the decisions are made sequentially, the leader must incorporate the follower’s response
into his optimization process because it affects the value of the upper level objective function. This
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is a suitable formulation for representing conflicting and hierarchically related optimization prob-
lems. However, bi-level optimization problems are very difficult to solve, and even the linear bi-level
problem is NP-hard (Jeroslow, 1985; Dempe, 2002). Only optimal solutions for the lower level prob-
lem are feasible to the bi-level problem. The optimal solution of the bi-level problem is the one that
optimizes the upper level objective function among the solutions that satisfy all the upper level
constraints and are optimal for the lower level problem.

As far as we know, only one attempt has been made to apply bi-level programming to radiother-
apy treatment planning. Recently, Sayed et al. (2020) proposed a bi-level formulation to address the
BAO problem in intensity-modulated proton therapy (IMPT). The upper level decision variables
are the couch and gantry angles, which are discretized in 5◦ spacing angles to reduce the com-
putational effort. An IMPT multiobjective problem is considered at the lower level. A differential
evolution algorithm is applied to solve each of the upper and lower level problems. The FMO prob-
lem is run several times for each beam configuration considering different weights for the objective
functions, aiming at producing a set of Pareto-optimal solutions. This approach is different from
the one presented in this paper. Not only the algorithmic choices are different, but the way in which
the problem is modeled is also distinct (we make a clear distinction between dose-based target and
OAR objectives).

In the bi-level optimization approach for IMRT treatment planning optimization we propose in
this work, the OAR control the beam angles, and the PTV controls the radiation delivered. This
option is justified by the fact that the beam choice is mostly determined by the OAR. In addition,
the fulfillment of the prescribed and the tolerance doses and their optimization for the PTV is
assured at the lower level for each beam angle ensemble. Therefore, the final solution will be the
one that spares OAR as much as possible without jeopardizing the PTV coverage.

The proposed bi-level optimization approach was tested using 10 anonymized clinical head-and-
neck cancer cases already treated at IPO Coimbra. The resulting treatment plans were compared
with treatment plans considering equispaced beams, the option that is often used in the clinical
setting, since BAO is seldom performed. The paper is organized as follows. In the next section,
the clinical cases used to test the proposed bi-level approach are described. In Section 3, the bi-
level optimization approach is detailed. The computational experiment and the results obtained
are discussed in Section 4. The last section presents the conclusions.

2. Head-and-neck clinical cases

In this work, a pool of 10 anonymized head-and-neck cancer cases already treated at IPO Coimbra
were used to assess the interest of the bi-level approach proposed. The treatment for these selected
cases is particularly difficult to plan due to the proximity of very important organs and the tumor
area. The OAR considered in this study are the spinal cord, brainstem, oral cavity, left and right
parotids, and the remaining normal tissue, named as Body. The OAR can be classified as being serial
organs (if their functionality becomes compromised even if a small part of the organ is damaged) or
parallel organs (when the functionality is kept provided that only a small part of the organ has been
damaged). In head-and-neck cancer cases, two of the most important OAR are the spinal cord and
brainstem, which are serial organs. The other OAR are parallel. For the serial OAR, a maximum
dose has to be respected, whereas a mean dose is considered for the parallel OAR. The PTV is
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Table 1
Prescribed/tolerance doses

Tolerance dose

Structure Prescribed dose Mean Max

PTV70 70.0 Gy – –
PTV59.4 59.4 Gy – –
Left parotid – 26 Gy –
Right parotid – 26 Gy –
Oral cavity – 45 Gy –
Spinal cord – – 45 Gy
Brainstem – – 54 Gy
Body – – 80 Gy

composed of two regions where different radiation levels should be delivered, the tumor (PTV70)
and the lymph nodes (PTV59.4), with the subscripts referring to the dose to be delivered. The patient
structures are discretized into voxels (small volume elements) and the dose is computed for each
voxel being measured in Gray (Gy). The treatments were planned considering the prescribed and
tolerance doses presented in Table 1.

3. Bi-level optimization for IMRT

IMRT treatment planning optimization requires the computation of optimal fluence maps for each
of the beam angle directions that need to be optimally selected as well. A bi-level optimization ap-
proach is proposed to address simultaneously the noncoplanar BAO problem and the FMO prob-
lem.

3.1. Beam angle optimization approaches

Different formulation and optimization methods have been proposed to address the BAO prob-
lem. Some approaches are based on geometry data of the patient while others use the optimal
value of the FMO problem to guide the BAO search. Llacer et al. (2009) and Bangert and Oelfke
(2010) propose geometry-based approaches where the proportion of the OAR that overlaps the tu-
mor seen from each beam will determine the optimal beam ensemble. In these approaches, the
beam ensemble is selected before the FMO problem is tackled. Freitas et al. (2019) propose a
mixed-integer nonlinear optimization model addressing both dose intensity and beam selection.
In Cabrera et al. (2018), an algorithm is proposed to solve the BAO problem in two phases. In
the first phase, a set of beam ensembles is considered and, for each one, a local search is per-
formed to find a predefined number of BAO local optimal solutions. The solutions obtained in
the first phase are analyzed in a multiobjective perspective in the second phase, considering tu-
mor irradiation and OAR sparing objectives. Fiege et al. (2011) join the BAO and FMO prob-
lems into a single multiobjective optimization problem, which is solved by a multiobjective genetic
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algorithm embedded in a toolbox, where PTV irradiation and OAR sparing objectives are con-
sidered. Schreibmann et al. (2004) propose an interactive method that uses the genetic algorithm
NSGA-II to solve the BAO problem, considering the minimization of the square deviation of the
prescribed dose for the PTV, the square overdose (calculated only for the cases where dose value
exceeds the tolerance dose) for OAR and normal tissue, as well as the number of beams of the
beam ensemble, while a deterministic solver is used to solve the FMO problem. Nazareth et al.
(2015) use a genetic algorithm to obtain a five-beam IMRT treatment plan to treat a prostate pa-
tient. In Li et al. (2005), a particle swarm algorithm is proposed to select a beam ensemble with
five beams, obtained from a 10◦ gantry angle spacing set. Other approaches include matheuris-
tics based on tabu search (Obal et al., 2018), hybrid approaches (Bertsimas et al., 2013), branch
and prune (Lim and Cao, 2012), neighborhood search (Aleman et al., 2008), and gradient search
(Craft, 2007). In our previous works, the optimal value of the FMO function has been used to
guide the highly non-convex BAO problem, which is addressed using derivative-free algorithms
(Rocha et al., 2013a, 2013b, 2013c; Dias et al., 2014, 2015; Rocha et al., 2016, 2019; Carrasqueira
et al., 2021). Pattern search methods (PSM), in particular, proved to be well suited to address
this multimodel problem (Rocha et al., 2013a, 2013b, 2013c, 2016, 2019; Carrasqueira et al.,
2021). On one hand, by not making explicit or implicit use of derivatives, PSM have the abil-
ity to avoid local entrapment and evolve into more promising regions of the BAO search space.
On the other hand, as they require few function evaluations to obtain good solutions, they are
computationally time-competitive, which is very important in the presence of an expensive func-
tion in terms of computational time (each function evaluation takes approximately three to five
minutes).

3.2. Bi-level optimization—definitions

A general bi-level optimization problem can be formulated as follows:

minx,w F (x, w)

s.t. G(x, w) ≤ 0,

w ∈ argminŵ{ f (x, ŵ) : g(x, ŵ) ≤ 0},
(1)

where x ∈ R
n1 is the vector of variables controlled by the leader at the upper level and w ∈ R

n2 is the
vector of variables controlled by the follower at the lower level. F (x, w) and f (x, w) are the leader’s
and the follower’s objective functions, respectively, and G(x, w) ≤ 0, g(x, w) ≤ 0 represent general
constraints placed at each level.

The follower optimizes its objective function f (x, w) after variables x have been instantiated
by the leader. However, the leader’s decision is implicitly affected by the follower’s reaction. The
follower’s feasible region for a given x′ is W (x′) = {w ∈ R

n2 : g(x′, w) ≤ 0} and the corresponding
follower’s rational reaction set is �(x′) = {w′ ∈ R

n2 : w′ ∈ arg minw∈W (x′ ) f (x′, w)}. The feasible set
of the bi-level optimization problem, which is generally called inducible region, is IR = {(x, w) ∈
R

n1 × R
n2 : G(x, w) ≤ 0, w ∈ �(x)}. The bi-level optimization problem is equivalent to optimizing

the leader’s objective F (x, w) over IR. Finding a global optimal solution to a bi-level optimization
problem remains a great challenge due to its inherent nonconvexity.
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In (1), the optimistic formulation of the bi-level optimization problem is considered, which means
that, if multiple optimal solutions to the follower exist, then the one benefiting the leader the most
is selected. This is why the minimization at the upper level is formulated with respect to x and w.
Considering the context of radiotherapy treatment planning optimization, the optimistic formula-
tion is the only one that is adequate: if it is possible to spare more the OAR (upper level), while not
diminishing the irradiation of the targets (lower level), then this is the solution that should be cho-
sen. Although the existence of optimal alternative solutions in the lower level is not likely (sparing
more the OAR is usually only achieved at the expense of PTV coverage), in formal terms this is the
correct way of formulating the problem.

3.3. The proposed model

In the bi-level model for IMRT proposed in this work, the selection of beam irradiation directions
is made at the upper level with the main goal of finding a beam angular arrangement that improves
OAR sparing. The aim is to select a predefined number n of beams to irradiate the patient, trying
to choose beam directions that achieve the best OAR sparing in a feasible noncoplanar setting of
n ordered pairs xk = (θk, φk) of gantry angle θk and couch angle φk, k = 1, . . . , n. Thus, the pairs
x = (θ, φ) represent the upper level variables denoted above by x in the general bi-level model. The
lower level variables are the fluence intensities, which are represented by variables wj defining the
weight (the intensity) of each beamlet j. For each OAR structure r, the measure of its damage is
given by function Fr that calculates the square deviation of the delivered dose from the defined
tolerance dose, if the first exceeds the latter

Fr(x, w) = λr

∑
i∈V (r)

⎡
⎣

⎛
⎝ ∑

j∈Nb(x)

Di jw j − Tr

⎞
⎠

+

⎤
⎦

2

. (2)

Each pair x = (θ, φ) is discretized into a set of beamlets j. Nb(x) represent the set of beamlets that
are defined by x. For each of these beamlets, it is possible to calculate Di j : the radiation that is deliv-
ered to voxel i by beamlet j if it had unitary intensity. Tr is the tolerance dose for OAR r, V (r) is the
set of voxels of the structure r, λr is the penalty for the structure r and (·)+ = max{0, ·}. This means
that if a voxel of a given OAR is given a radiation dose above the tolerated dose prescribed then
this deviation will contribute to Fr. This function is thus dependent on both the beam arrangement
x = (θ, φ) and the intensities w that are determined in the lower level problem.

The objective function that guides the beam selection, Foar, is given by the sum of the individual
Fr functions for all the OAR, r = 1, . . . , SOAR, as follows:

Foar =
Soar∑
r=1

Fr(x, w). (3)

In the lower level, the beam arrangement is considered fixed. The intensity fluence maps are op-
timized aiming at providing the prescribed dose to the target, constrained by the tolerance dose
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levels established for the OAR. In this work, fs is considered for each target structure s of the PTV,
s = 1, . . . , Sptv:

fs(x, w) = λs

∑
i∈V (s)

⎡
⎣

⎛
⎝Ts −

∑
j∈Nb(x)

Di jw j

⎞
⎠

+

⎤
⎦

2

+ λs

∑
i∈V (s)

⎡
⎣

⎛
⎝ ∑

j∈Nb(x)

Di jw j − Ts

⎞
⎠

+

⎤
⎦

2

, (4)

where Ts is the prescribed dose for target s, V (s) is the set of voxels of the structure s, λs and λs are
the underdose and overdose penalties for structure s. Each target function assesses the deviation
between dose delivered and dose prescribed for each voxel of that target structure. In (4), the under-
dosage and overdosage are evaluated separately enabling different weights to be set for each case.
Note that overdosage of the target is harmful because it could promote the existence of biological
cell behaviors that would impact the treatment outcome. Thus, an uniform irradiation of the tumor
is the goal to be pursued.

The objective function of the FMO problem, fptv, is obtained by summing up the quadratic func-
tions fs relative to each target structure s, the tumor and the lymph nodes. The FMO problem is
modeled as a convex quadratic constrained optimization problem. The tolerance dose levels pre-
scribed to the OAR are included as constraints in order to assure that every feasible solution of
the bi-level problem fulfills these requirements. The FMO optimization problem is formulated as
follows:

min fptv =
Sptv∑
s=1

fs(x, w)

s.t.

Dr
max(x, w) ≤ Tr, ∀r : r is a serial OAR

Dr
mean(x, w) ≤ Tr, ∀r : r is a parallel OAR

wj ≥ 0, j ∈ Nb(x),

(5)

where Dr
max(x, w) is the maximum dose deposited in any voxel of a serial OAR r and Dr

mean(x, w)
stands for the mean dose considering all the voxels of a parallel OAR r.

Let W (x) = {Dr
max(x, w) ≤ Tr, ∀r serial OAR , Dr

mean(x, w) ≤ Tr, ∀r parallel OAR, wj ≥ 0, j ∈
Nb(x)}, that is, the feasible region of (5) for a given x. The complete bi-level formulation is presented
next, where the upper level represents the noncoplanar BAO problem and the FMO problem is at
the lower level:

minx,w Foar =
Soar∑
r=1

Fr(x, w)

s.t.

w ∈ argminŵ

⎧⎨
⎩

Sptv∑
s=1

fs(x, ŵ) : ŵ ∈ W (x)

⎫⎬
⎭ .

(6)
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3.4. Bi-level IMRT optimization algorithm

In this study, a bi-level algorithm has been designed to address the above bi-level formulation. This
algorithm combines a tailored PSM to tackle the upper level problem with an interior-point method
to solve the lower level problem for each instantiation of the upper level variables.

The highly nonconvex nature of the noncoplanar BAO problem advises the use of derivative-
free optimization methods. In this study, PSM are used to address the noncoplanar BAO problem.
PSM are derivative-free optimization methods that are able to avoid local entrapment and proved,
in previous works, that are suitable to address the BAO problem (Rocha et al., 2013a, 2013b, 2013c,
2016, 2019). PSM are directional direct search methods that use positive bases to move in a direc-
tion that produces a decrease in the objective function. A positive basis is composed of a minimum
set of directions (nonzero vectors) that positively span the search space. In this work, the positive
basis used is the set of 2n vectors [I; −I ] where I = [e1 · · · en] corresponds to the identity matrix.
Following each of these 2n directions corresponds to the rotation of each beam direction clockwise
and counterclockwise for a certain amount (step size) at each iteration. The step size was selected as
in Rocha et al. (2013a, 2013b, 2013c, 2016, 2019), being initialized as a power of 2 (α0 = 2i, i ∈ N).
At each iteration k, the step size αk remains constant if the iteration succeeds to improve the ob-
jective function value at current iterate, otherwise it is halved. As the initial beam variables x0 are
integers, the xk variables obtained after each iteration k continue to be integers, until the step-size
becomes smaller than αmin = 1, that means the stop criterion was reached. The main feature of a
positive basis is that for any given vector, in particular for the gradient vector, there is a vector of
the positive basis that forms an acute angle with the (unknown) gradient vector that corresponds
to a descent direction (Alberto et al., 2004). PSM are organized in two steps at every iteration.
The first step, called search step, provides a global search by using any strategy including taking
advantage of a priori knowledge of the problem at hand, as long as it searches only a finite number
of points. If this optional step fails to improve the objective function value, the second step, called
poll step, is applied. The poll step is performed around the current solution and follows stricter
rules. It uses the concepts of positive bases and guarantees convergence to a stationary point. The
interior-point method used to solve the lower level problem guarantees that optimal solutions to
the lower level problem are obtained, which is a required condition for such solutions being feasible
to the bi-level problem.

The proposed bi-level algorithm starts by solving the FMO problem for the initial beam en-
semble x0. At each iteration, the neighborhood of the current beam ensemble is searched aim-
ing at improving the current solution. The algorithm evolves iteratively, searching the neighbor-
hood of the current solution and, if it succeeds, the current beam ensemble is updated and the
step size remains constant, otherwise, the step size is halved. This process is repeated until the
stopping criterion (αk < αmin) is reached. The pseudocode of the bi-level algorithm is presented in
Algorithm 1.

The bi-level IMRT algorithm was implemented in Matlab, and integrates the matRad (Wieser
et al., 2017) built-in functions and IPOPT (Wachter and Biegler, 2006) to perform dose calcula-
tions and fluence optimization with the pattern search algorithm to improve the beam ensemble.
matRad is a research tool for radiation therapy treatment planning developed at German Cancer
Research Center. This open source software, written in Matlab, has a set of functionalities, includ-
ing data importing, dose calculation, and fluence dose optimization. This tool can be customized by
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Algorithm 1. Bi-level IMRT

Initialization:

• Set k ← 0;
• Choose the initial beam ensemble x0, α0 > 0 and αmin;
• Solve the FMO problem for x0, whose optimal objective value is fptv(x0, w0). Compute Foar(x0, w0);

Iteration:

1. In the neighborhood of the current beam ensemble, i.e., ∀x ∈ N (xk) = {xk ± αkei, i = 1, . . . , n},
(a) Solve the lower level FMO problem, obtaining fptv(x, w);
(b) Evaluate Foar(x, w);

If minN (xk ) Foar(x, w) < Foar(xk, wk) then
(xk+1, wk+1) ←− (x∗, w∗) : Foar(x∗, w∗) = minN (xk ) Foar(x, w);
αk+1 ←− αk;

Else
(xk+1, wk+1) ←− (xk, wk);
αk+1 ←− αk

2 ;
2. If αk+1 ≥ αmin return to step 1 and set k ←− k + 1;

selecting, from a set of options available, objectives, constraints, weights assigned to each structure
and solution methods. Thus, matRad provides flexibility to design a custom optimization proce-
dure in a fully automated manner, in the sense that after loading a patient with the prescribed and
tolerance doses as well as the number of beam angles, it can obtain a treatment plan with no further
interactions from the human planner.

4. Computational results

The proposed bi-level algorithm was used to obtain coplanar and noncoplanar treatment plans,
designated as cBlvl and ncBlvl , respectively, for 10 clinical head-and-neck tumor cases already
treated at IPO Coimbra, considering the prescribed and tolerance doses detailed in Table 1. Matlab
9.5 version was used to perform these computational experiments. Typically, IMRT treatment plans
are performed considering five to nine beams. In our work, beam ensembles with n = 7 beams were
considered for all the IMRT treatment plans obtained by the bi-level algorithm. This beam ensem-
ble cardinality was also adopted to obtain the IMRT equispaced coplanar solution, designated as
Equi, for all cases, serving as benchmark for the proposed bi-level approach. Equi treatment plans
are commonly used in clinical practice. Actually, most treatment planning softwares available do
not offer BAO tools, so choosing an equidistant solution is the least expensive alternative in terms
of time for the planner and, most of the times, it is possible to obtain a clinical acceptable plan hav-
ing this beam configuration as fixed. The computational effort required to obtain a treatment plan
using the bi-level approach, either coplanar or noncoplanar, was less than 12 hours, considering a
full dose calculation for every beam ensemble tested.
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Table 2
Objective function values for Equi and Blvl plans

Equi cBlvl ncBlvl

Case Foar fptv Foar fptv Foar fptv

1 5.1616 143.4511 3.7259 138.5956 3.0651 140.4492
2 8.2010 45.9343 7.0140 43.1398 5.7179 42.3107
3 14.0997 235.7002 10.4087 229.2430 9.5265 221.6536
4 10.3782 179.9890 8.5636 176.3051 6.4122 171.8532
5 14.3172 112.5368 11.4268 107.4270 10.1116 106.2023
6 29.5929 63.8701 23.9377 55.8450 21.9146 53.7113
7 12.4572 41.6579 9.9805 35.6820 7.6438 30.4945
8 11.8694 37.1265 8.4285 29.6631 8.3476 31.0571
9 10.2023 32.6350 7.5694 30.8678 5.3077 23.7488
10 1.9270 20.1468 1.7309 21.5536 1.3083 19.8778

The objective function values (Foar and fptv) of the solutions obtained by the bi-level approach,
in the upper and lower levels, respectively, are presented in Table 2. This table also includes the ob-
jective function values corresponding to Equi treatment plans. Considering the 10 cases analyzed,
the ncBlvl and cBlvl plans achieved an average reduction of, respectively, 34.53% and 21.01% for
the objective function Foar in relation to the Equi plans. Although both bi-level plans were able to
reduce significantly the objective function relative to OAR in all the tested cases, achieving bet-
ter OAR sparing, the largest reduction was obtained by the ncBlvl plans. Thus, OAR sparing is
achieved without jeopardizing tumor coverage, since the fptv objective function values correspond-
ing to ncBlvl plans are also lower in all cases.

Additional metrics are also used to assess the quality of treatment plans in terms of tumor cov-
erage and OAR sparing. The dose received by 95% of the PTV (D95) is a performance measure
commonly used to assess tumor coverage, which is herein considered. The results are depicted in
Fig. 1a and b, for tumor and lymph nodes, respectively. The horizontal lines are drawn in both fig-
ures indicating the 95% threshold of the prescribed dose. In clinical practice an acceptable treatment
plan should have PTV dose values above this threshold. As it can be observed, ncBlvl treatment
plans obtained the best tumor coverage for most of the cases, whereas the cBlvl plans could improve
the Equi treatment plan for many of the cases.

Aiming at further evaluating OAR sparing, the maximum and mean doses deposited in each
OAR are also considered, for serial and parallel OAR, respectively. The results relative to these
metrics are depicted in Fig. 2a–f, where the horizontal lines represent the tolerance dose levels for
the corresponding structures. For the serial organs, spinal cord, and brainstem, all plans fulfilled
the maximum tolerance doses with advantage for ncBlvl plans in terms of spinal cord sparing and
advantage for Equi plans in terms of brainstem sparing, where ncBlvl delivers slightly more dosage
but yet it lays significantly below the maximum tolerance dose. For the parallel organs, parotids,
and oral cavity, ncBlvl plans clearly outperformed cBlvl and Equi plans. For the Body, all treatment
plans’ outcomes are below the tolerance dose established. The coplanar bi-level approach obtains
intermediate results between equidistant and noncoplanar bi-level approaches for most of the cases
on the brainstem, left and right parotids, oral cavity, and Body.
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Fig. 1. Comparison of PTV coverage metrics (D95) obtained by Blvl and Equi treatment plans. The horizontal lines
displayed represent D95.

5. Conclusions

The two main problems of IMRT treatment planning are finding the optimal selection of beam
directions and finding the optimal fluence intensities for the corresponding beams. Optimal beam
directions can improve the quality of IMRT treatment plans, providing additional protection to
the healthy tissues, namely critical organs surrounding the tumor area, while the tumor remains
effectively irradiated. In this work, a new formulation has been adopted, modeling IMRT treatment
planning as a bi-level optimization problem, aiming to capture its hierarchical nature, where the
goal of delivering the prescribed dose to the target is embedded on the main goal, the OAR sparing.
In the upper level problem, the beam angles are selected aiming at minimizing the radiation received
by the OAR. In the lower level problem, the fluence intensity delivered through the selected beams
is modulated to fulfill the treatment plan dosimetric prescription.

The solution of the bi-level IMRT problem was obtained using the bi-level algorithm herein de-
signed. Both coplanar and noncoplanar instances of the problem were considered. In the upper
level there is the nonconvex BAO problem, which is addressed by a pattern search derivative-free
method. This method is based on a PSM, earlier tailored by the authors, which proved to be effec-
tive to solve the BAO problem, as it is able to escape local optima. In the lower level, an interior-
point optimization method implemented in the solver IPOPT was used to solve the FMO problem.

A pool of 10 clinical nasopharyngeal tumor cases already treated at IPO Coimbra was consid-
ered to assess the quality of the treatment plans obtained by the bi-level optimization approach
for coplanar and noncoplanar beam ensembles. The results were then compared to the coplanar
equidistant seven-beam solution, considered as a benchmark, which was significantly outperformed
in terms of both upper and lower level objective functions’ values. Treatment plans obtained by
the bi-level algorithm, either for coplanar or noncoplanar cases, could improve significantly OAR
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Fig. 2. Comparison of organ sparing metrics obtained by ncBlvl , cBlvl , and Equi treatment plans. The horizontal lines
displayed represent the tolerance (mean or maximum) dose for each structure.
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sparing and simultaneously maintain or increase PTV irradiation levels. These results show that
the bi-level approach for the BAO problem is an effective tool for achieving higher quality treat-
ment plans. While both plans obtained by the bi-level approach presented competitive results, the
noncoplanar plans outperformed the remaining ones. This confirms the capability of noncopla-
nar approaches to improve treatment plans quality compared to the corresponding coplanar ones.
In addition, the bi-level formulation relies on sparing OAR to perform beam selection, which re-
sembles the manual process followed by physicists. Therefore, this tool can be of great value in
supporting physicists’ decisions and help them to better understand the optimization process in
order to obtain better treatment plan.

In most previous BAO studies, including our own, a score (e.g., the optimal value of an objec-
tive function embedding physical criteria) is minimized with the goal of obtaining a compromise
solution considering two conflicting objectives: properly irradiate the PTV(s) and spare as much
as possible the OAR. Knowing that tumor irradiation is possible from any beam angle direction,
it is well known that organ sparing is the main role of BAO. This motivates the herein proposed
bi-level approach that fully explores this idea of expliciting the role of BAO for OAR sparing: the
solutions now obtained are driven by organ sparing alone, as long as tumor coverage is not com-
promised, while previous solutions aimed simultaneously at improving tumor coverage and organ
sparing, possibly overshadowing the main goal of BAO that is organ sparing. Choosing PSM for
the upper level was a natural choice due to its excellent performance in previous works when ad-
dressing highly nonconvex optimization problems. However, different strategies should be tested
in the search step of PSM in order to further improve computational times. Moreover, alternative
strategies/algorithms to PSM should also be tested within the proposed bi-level approach. This
approach should also be tested for different cancer sites, particularly the ones where organ spar-
ing might be particularly difficult to achieve. Moreover, it is also possible to consider algorithmic
choices for the lower level optimization. In this work an interior-point method was used. In pre-
vious works, we have also used nonconstrained quadratic models and gradient based methods for
fluence optimization. One of the future works that we plan on doing is to consider more expensive
ways of calculating optimal fluences in the lower level, namely using fuzzy inference systems, but
that also produce, in general, better solutions.
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