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RESUMO 

A existência de variabilidade nas propriedades de solo e rochas é há muito reconhecida e o seu 

impacto tem sido alvo de estudo por parte de diversos autores. Com o aparecimento do 

Eurocodigo 7 tem sido dada uma maior relevância a este temática e conceitos como valor 

característico e análise probabilística têm ganho notoriedade em detrimento dos conceitos 

determinísticos usados no passado. Como referido por Uzielli et al. (2006) “Abordar a incerteza 

não aumenta o nível de segurança, mas permite um projeto mais racional já que o engenheiro 

pode em consciência calibrar a sua decisão tendo em conta a performance desejada ou 

expectável para a estrutura”. 

O presente trabalho tem como principal objetivo modelar numericamente a variabilidade 

existente em solos e rochas e de avaliar qual o seu impacto no comportamento de obras 

geotécnicas. Em primeiro lugar será feita a descrição do estado atual do conhecimento desta 

temática de forma a explicitar a importância do conceito de variabilidade bem como dos 

principais parâmetros necessários para a sua caracterização. Será feita igualmente a revisão dos 

algoritmos mais frequentemente utilizados para simular a variabilidade onde será dado destaque 

ao Método da Subdivisão Local (LAS) usado no presente trabalho. 

A simulação numérica da variabilidade exigiu o desenvolvimento de diversos programas de 

cálculo cuja descrição detalhada é apresentada. Destacam-se entre estes: um gerador de campos 

aleatórios (UC2DRF) que permite reproduzir a maioria dos tipos de variabilidade existente nos 

maciços, a adaptação de um algoritmo de elementos finitos (UCGeoCode) para possibilitar 

correr as múltiplas análises numéricas e um programa intermediário entre ambos (MAT.PROP) 

que permite aplicar a variabilidade gerada aleatoriamente às propriedades mecânicas desejadas. 

Referem-se igualmente os diversos softwares que foram desenvolvidos com o intuito de facilitar 

a interpretação de resultados. 

Por último, e com o intuito de aferir o impacto da introdução da variabilidade serão efetuadas 

três aplicações de prática comum em engenharia geotécnica. Analisa-se em primeiro lugar a 

capacidade de carga de uma fundação contínua isolada. Posteriormente, avalia-se o 

comportamento de duas fundações contínuas. E por último, analisa-se o impacto da escavação 

de um túnel profundo. O estudo destas aplicações irá permitir validar a metodologia usada bem 

como avaliar o impacto que a variação dos parâmetros selecionados tem na resposta geotécnica 

e estrutural com a consequente implicação resultante para o dimensionamento destas estruturas. 
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ABSTRACT 

The presence of variability in soil and rock properties has been widely acknowledged and its 

impact studied by several authors. With the introduction of Eurocode 7 the impact of variability 

has become increasingly relevant and notions such as characteristic value and probabilistic 

analysis have been gaining notoriety in detriment of the deterministic concepts used in the past. 

As mentioned by Uzielli et al. (2006) “Addressing uncertainty does not increase the level of 

safety, but allows a more rational design as the engineer can consciously calibrate his decision 

on a desired or required performance level of a structure”. 

The present work has the main purpose of modelling numerically the variability observed in 

soils and rock masses and evaluate its influence on the behaviour of geotechnical structures. 

Primarily, a description of the current state of knowledge will be provided so that the 

importance of the concept and of the principal parameters required for its characterization can 

be understood. A review of the algorithms most commonly used to simulate variability will also 

be presented emphasizing the Local Average Subdivision (LAS) method, which is used in the 

present work. 

Modelling variability in not a direct process and demanded the development of several 

programs. From these it should be mentioned: the random field generator (UC2DRF) which 

enables the simulation of diverse types of variability, the upgrade of the finite element code 

(UCGeoCode) so that multiple analyses could be performed and an intermediate program 

(MAT.PROP) that allows the application of the randomly generated variability to the desired 

mechanical properties of the soil. Several other softwares were also developed in order to 

simplify the interpretation of the numerical results. 

Finally, with the objective of assess the influence of the introduction of variability three 

ordinary applications of the current geotechnical engineering practice will be presented. 

Primarily, the bearing capacity of a strip footing will be analysed. Subsequently the behaviour 

of twin strip footings will be assessed. Lastly, the impact of the excavation of a deep tunnel will 

be discussed. The study of these applications will allow the validation of the used methodology 

and the evaluation of the impact that the variation of the chosen parameters has on the 

geotechnical and structural response with the consequent implications for the design of this type 

of structures. 
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1 INTRODUCTION 

“Unfortunately, soils are made by nature and not by man, and the products of nature are always 

complex… As soon as we pass from steel and concrete to earth, the omnipotence of theory 

ceases to exist. Natural soil is never uniform. Its properties change from point to point while 

our knowledge of its properties are limited to those few spots at which samples have been 

collected. In soil mechanics the accuracy of computed results never exceeds that of a crude 

estimate, and the principal function of theory consists in teaching us what to observe in the 

field.” 

Karl von Terzaghi 

1.1 General considerations 

The existence of variability in properties of the materials in civil engineering is an undeniable 

fact. Though manufactured materials like concrete and steel can have the variability in its 

properties controlled both during production and post production, natural materials like soils 

and rocks are subject to random chemical and physical processes making it so that their 

properties cannot be controlled. 

In a traditional geotechnical approach samples are retrieved from a few pointwise locations and 

a more or less refined local representative value of the properties within a given area is 

estimated. A single calculation based on those values and on a usually rough estimative of the 

field stresses is performed and structures are then designed to withstand the acting forces by the 

inclusion of a safety factor. This approach is prone to cause structural failure when the safety 

factor is not large enough and to have an economic impact when the safety factor used reflects 

an overestimation of the acting stresses or an underestimation of the properties of the soil. In 

order to overcome the afore mentioned issues the reliability based approach has been picking 

up momentum. In a reliability based approach instead of decision making process relying on a 

safety factor it relies on a probability of failure established accordingly. 

So that probability of failure can be accessed methods of generating multiple scenarios, random 

fields, have been developed. In the present work the Local Average Subdivision (LAS) method 

will be used. Through the generation of random fields multiple calculations can be performed 
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until the desired reliability revel is achieved making the geotechnical structural design both 

efficient and impervious. 

1.2 Goals of the dissertation 

This dissertation aims to establish a reliability based design methodology that could be applied 

to the design of geotechnical structures as well as its validation throughout the process. It is 

also this work’s objective to assess the impact of the variation of parameters related with the 

statistical distribution and spatial distribution of soil and rock properties on structural response. 

The approach established will hopefully allow for the analyses of situations where neglecting 

to consider the existence of variability could have undesired consequences. 

So that variability could be included in numerical analyses, a number of tools and procedures 

will be developed or created allowing for the sequential computation of multiple calculations. 

Finite elements method will be used to analyse the impact that each random field has on each 

considered structure. 

1.3 Structure outline 

The dissertation was divided in five chapters. Following this introductory section (Chapter 1) 

where an introduction to the main topic of the present work and to its main goals are presented, 

Chapter 2 provides a review on the current state of knowledge regarding the subject of soil and 

rock variability. In this chapter the most commonly used algorithms to simulate variability are 

also presented and its advantages and pitfalls discussed in detail. 

In Chapter 3 a detailed presentation of the software developed for numerically simulate and 

evaluate the influence of variability of soils and rocks is provided. Particularly emphasis will 

be given to the random field generator and to its potentialities when modelling different aspects 

of inherent variability.  

Chapter 4 presents three applications, a strip footing, a twin strip footings and a deep tunnel, in 

which the influence of a number of parameters related with soil and rock and soil variability is 

inferred by performing multiple parametric studies. 

Finally, in Chapter 5 the final conclusions from the developed work and recommendations 

about possible future works and developments around the subject are presented. 
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2 VARIABILITY IN SOILS AND ROCKS 

2.1 General Considerations 

2.1.1 Concepts 

Soil and rocks are materials whose properties are heterogeneous in space and variable in 

magnitude (Zhang, 2013). The determination of their properties often relies on tests performed 

in a laboratory or at a few pointwise locations in the field, both limited to a number of samples 

and conditioned by a certain level of interference (Bourdeau & Amundaray, 2005). The notion 

of variability implies an observable manifestation of heterogeneity of one or more physical 

parameters or processes that can be described through the analysis of a sufficient number of 

samples. The notion of uncertainty reflects the decision making process required when 

addressing the observed variability (Uzielli et al., 2006). The characterisation of uncertainties 

in geotechnical engineering, mainly in the input parameters used in the design, allows the 

evaluation of the impact that variability may cause in the performance of the structure through 

the assessment of a probability of failure. The existence of ground properties’ variability leads 

to a level of uncertainty both when choosing input parameters in a problem and when analysing 

its output. Christian (2004) has concluded that regarding uncertainty three methodologies can 

be followed: (1) it could be ignored by being conservative, as long as the structure or system is 

robust enough to be able to withstand anything; (2) using observational methods by considering 

possible designing methods, monitoring their application during construction and modify / 

adjust them depending on the results; or (3) quantifying uncertainty through a reliability 

approach derived from the observational method using probabilistic methods.  

The spatial variability of soils and rocks is one of the main sources of structural damage and 

the malfunctioning of built systems. Cases have been identified where the variability of soil 

stiffness and strength induced differential settlements which had severe consequences on 

structural response (Breysse et al., 2004). Uncertainty is often described as being related with 

three main causes (Bourdeau & Amundaray, 2005; Pedro et al., 2012):  

 (1) inherent soil and rock variability - mostly caused by weathering, in which rocks are 

subjected to physical, chemical and biological phenomena, being transformed into materials 

with weaker properties (Dasaka & Zhang, 2012) or soil variability related with depositional 

processes that occurred during its formation. This kind of uncertainty accounts for intrinsic 
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variations within a relatively homogeneous soil horizon (Bourdeau & Amundaray, 2005). 

Inherent variability can also be related with lithological heterogeneity, manifested through 

intercalation of soft and stiff layers or resulting from large-scale geologic and geomorphic 

processes (Uzielli et al., 2006). 

 (2) limited availability of information - most problems on geotechnical engineering are 

solved on the basis of a few discrete observations (Rackwitz, 2000). The number of samples 

obtained from each site are often constrained by the time and by the economic resources 

available and consequently are not enough in order to obtain a representative value of its 

properties. Even if a high number of samples can be characterised it is not certain that they will 

properly describe the variability within the area of study. 

 (3) imperfect information – due to measurement errors, soil disturbance, sample size 

effect, test imperfections, difference between stress conditions in the field and in the laboratory, 

a level of uncertainty derives from the fact that site investigation techniques can not properly 

and accurately quantify soil properties. Therefore, a difference between test results and the 

actual value of a certain property is expected (Orchant et al., 1988).  

Despite the existence of several empirical deterministic expressions in order to evaluate 

possible modes of failure it is expected that a failure surface will follow the weakest path, that 

is, through areas where it has lower resistance, and consequently it is paramount to identify 

such areas. In a traditional approach the soil is considered to be spatially homogeneous, effects 

of heterogeneity are ignored and consequently there is no uncertainty. Though safety factors 

are generally applied when using a deterministic approach, not accounting for uncertainty may 

lead to failure. The introduction of Eurocode 7, the European standard for geotechnical design, 

in 2010, provides a broad framework for the design of all different types of geotechnical 

structures with an involved risk analysis approach (Orr, 2012). Eurocode 7 proposes a way of 

dealing with uncertainties regarding both limited information and imperfect information, while 

still acknowledging its existence. This is achieved through several recommendations proposed 

in Application Rule §1.3(2) in EN 1997-1, that specifies conditions regarding both the 

qualifications of the personnel gathering data and performing the design. A minimum number 

and type of field and laboratory tests to be performed for soil classification and the requirement 

of a generation of a Geotechnical Design Report are also enforced by section 3.4.1(1) and by 

Part 2 of Eurocode 7 (EN 1997-2). To what inherent variability is concerned Eurocode 7 states 

that the representative value to be chosen when studying any given soil is the characteristic 

value defined as a cautious estimate of the parameter governing the studied limit state: 

“Geotechnical investigations shall provide sufficient data concerning the ground and the 

ground-water conditions (...) for a proper description of the essential ground properties and a 

reliable assessment of the characteristic ground parameters to be used in design calculations” 
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(EN 1997-1 §1.3.2(1)P). The space, number and depth of the investigation points required by 

Eurocode 7 is dependent on the type of structure to be built. The minimum number of 

identification tests to be performed for each parameter proposed by Eurocode 7 is summarized 

in Figure 2.1a) and depends on the quality of data already available as well as prior knowledge 

of material properties. In the figure PSD refers to particle size distribution, Consistency to 

Atterberg tests, P/d represents particle density determination and BDD the bulk density.  

    

 a) b) 

Figure 2.1 – a) Number of samples to be tested for each stratum (Bond & Harris, 2008); b) Spatial variation for 

soil properties (Phoon & Kulhawy, 1999);  

While the uncertainty related with limited availability of information and its imperfection is 

considered epistemic, hence subjective, uncertainty regarding inherent soil and rock variability 

is considered to be objective but aleatory caused by spatial variability of soil and rock properties 

(Suchomel & Masin, 2010). The inherent variability causes that ground properties vary from 

point to point even within the same stratum (Bourdeau & Amundaray, 2005). The variations 

are caused by multiple factors, acting together or isolated, such as: differences in mineral 

composition, stress history, water content and mineral composition as well as a number of 

physical and chemical processes that can occur depending on the environmental conditions. 

These cause variations in soil and rock strength and stiffness properties that translate directly 

in the response of the material when loaded.  

Anisotropy refers to any directional dependence in a material property. Soils are generally 

recognized to be anisotropic in their mechanical properties: strength, stiffness and permeability 

(Nishimura, 2005). Generally soil properties vary in all directions and consequently have an 

anisotropic spatial variability. Even sedimentary soils which appear homogeneous present 

properties that vary from point to point. Soil properties vary both horizontally and vertically 
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mostly due to the depositional environment, degree of weathering, confinement and physical 

environment (Jones et al., 2002; Cho & Park, 2010), although some degree of homogeneity is 

usually found in the horizontal direction (Uzielli et al., 2006). In contrast, a residual soil or a 

rock frequently present anisotropy in all directions. These aspects should be recognized and 

taken into account in each phase of variability estimation. 

In spite of the occurrence of variability, spatial correlation between soil and rock properties in 

space is expected to happen as a result of its natural or man-made fabric. This means that values 

of a certain property at location X and the same property at X+Δh, with Δh being the distance 

between the locations, are correlated. This correlation is dependent on the spatial arrangement, 

shape, size and condition of the particles and it is highly site specific. The spatial variation of 

soil properties in a given direction can be described by Equation 1 (Phoon & Kulhawy, 1999): 

𝜉(𝑧) = 𝑡(𝑧) + 𝑤(𝑧) 1 

Where ξ is the value of the soil property in the field, t a deterministic trend component, w a 

random component and z the depth as shown in Figure 2.1b), though same principle is applied 

to any given direction. The trend can be determined by fitting a deterministic function to the 

data or by employing a moving average procedure. The random component can be estimated 

through methods that will later be detailed. This random component is associated with a scale 

of fluctuation, which is the difference between the value it assumes and the trend it is expected 

to follow, and is directly correlated with the standard deviation of a statistical model. The scale 

of fluctuation presented in Figure 2.1b) is defined as the proportionality constant in the limiting 

expression of the variance function, and its formulation can be found in Vanmarcke (2010). 

The characterisation of variable parameters simply based on their mean and standard deviation 

is usually not enough since it is frequently observed that two different sites present similar mean 

and standard deviation values but display significant differences in spatial distribution (Uzielli 

et al., 2006). Consequently, the determination of the spatial variation when describing soil 

variability is very important. By acknowledging the existence of spatial variation the 

representative value of any soil property also became dependent of the volume of the problem 

to be solved. 

2.1.2 Typical Statistical Distributions in Soils and Rocks 

The use of probability theory is useful when modelling the behaviour of a variable parameter. 

Data gathered through sampling can be used to extrapolate and fit a statistical distribution for 

each individual property or for a combination of properties. Based on these distributions 

probabilistic models can be created and tested, theoretically, under an infinite number of 

material properties combinations in order to define the most representative behaviour, as shown 
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in Figure 2.2. The fit of probability density functions is only adequate for practical purposes as 

long as it applies to well-known soil or rock properties (Arsyad, 2008). In order to perform 

statistical estimation of soil properties the establishment of the correlation structure is required. 

This can be achieved through moment estimators, inverse estimation from stochastic 

interpolations or the maximum likelihood method (Degroot & Baecher, 1993). It can also be 

performed through bootstrap-resampling in which data sets are numerically generated by 

randomly subsampling the available data and then compute estimators by summarizing these 

samples’ variability (Bourdeau & Amundaray, 2005). 

 

Figure 2.2 – Probabilistic models based on statistical distributions (Uzielli et al., 2006); sample moments: 

average and standard deviation 

Laboratory tests conducted show that properties in natural soils appear to have random 

variations that follow a Gaussian statistical distribution or a transformation of it, mainly a 

lognormal distribution, where the exponential of the values fit a normal distribution (Lumb, 

1966; Griffiths & Fenton, 2001). As for the strength parameters Wolff et al. (1995) and Lacasse 

& Nadim (1996) suggest that a Gaussian statistical distribution can also be fitted to the friction 

angle, ϕ’, as well as a normal or lognormal distribution for the undrained shear strength, Su, for 

silty clays and clays respectively. These suggestions were also supported by studies performed 

by other authors (Suchomel & Masin, 2009; Suchomel & Masin, 2010; Chen et al., 2012). The 

deformability parameters, E’ and Eu, are expected to follow an identical function of ϕ’ and Su 

for cohesionless and cohesive soils, respectively. Lacasse & Nadim (1996) also suggested that 

for CPT results a lognormal probability density function is suitable for sands and a normal or 
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lognormal probability density function is suitable in silty clays and clays respectively for the 

tip resistance values. 

The evaluation of properties in rocks is even more complex than in soils due to its nature. The 

heterogeneity observed in these materials is strongly dictated by tectonic movements, physical 

and chemical processes, faults and joints that affect its strength and stiffness properties making 

difficult to define a single representative value. As consequence, instead of defining a strength 

or stiffness variable directly it is usual to estimate those properties through the use of 

geomechanical classifications. From the several classifications available in the literature the 

Geological Strength Index (GSI), developed by Hoek (1994), is often used since the rock 

properties can be derived by simple expressions and is intertwined with Hoek-Brown failure 

criterion (Hoek et al., 2002), which is the most broad criterion employed for accurately 

reproduce the failure envelope of rock massifs (Cai, 2011). The Hoek-Brown failure criterion 

is based on the strength of the rock mass and on the GSI value which can be estimated though 

the tables proposed by Marinos & Hoek (2001) or correlated with the Rock Mass Rating system 

(RMR) (Bieniawski, 1973). The strength of the rock mass depends on the properties of the intact 

rock pieces and also upon the freedom of those pieces to slide and rotate under different stress 

conditions (Hoek, 2007), while GSI value is obtained based on the geological description of the 

rock structure or block size as well as joint conditions. Block size is dependent on the number 

of joints, their spacing, orientation, size and persistence, it is, therefore, a volumetric expression 

of joint density. Studies found that a lognormal distribution could be fit to joint spacing 

(Dershowitz & Einstein, 1988; Cai, 2011) and its orientation, defined by dip direction and dip, 

usually follow the von Mises-Fisher distribution (Cai, 2011). The joint size can be described 

through several statistical distributions though studies found that lognormal was the most 

suitable (Dershowitz & Einstein, 1988). The joint surface conditions, controlled by alteration, 

large-scale waviness and small-scale smoothness, follow a Gaussian distribution (Cai et al., 

2004; Cai, 2011). The GSI values derived from such parameters follow a normal distribution 

according to the central limit theorem (Cai, 2011). Other parameters such as uniaxial 

compressive strength and Young’s moduli tend also to follow normal distributions. All the afore 

mentioned conclusions are based on empirical observations and therefore may vary depending 

on site conditions. 

2.2 Methods for Simulate the Variability of Soils and Rocks 

So that variability can be simulated random fields are used in order to reproduce a number of 

possible distributions of a given variable within a finite field. A random field is a random 

process consisting of an indexed set of random variables generated in a defined 

multidimensional area (Vanmarcke, 2010). Unlike a deterministic approach where only a single 

calculation is performed resulting in a single Safety Factor value, the analysis of multiple 
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random fields has the advantage of enabling a reliability based design associated with the 

concept of probability of failure. In order to characterise a Random Field (RF) at least three 

parameters are required: mean, standard deviation and a function that relates the properties of 

any two points at any given location, auto-correlation function (Ching et al., 2015). Therefore, 

when generating a RF for a given property a probabilistic model must be assigned to it, as 

described on the previous section. Furthermore a finite dimension or dimensions for the field 

must be fixed so that it can be increasingly sub-divided depending on the level of refinement 

expected or required of it.  

Several algorithms have been developed in order to generate scalar multidimensional random 

fields of a given property A brief explanation of the most commonly used methods will 

subsequently be provided as well as a detailed characterization of the algorithm used in this 

work. It should be noted that only the generation of 1D, 2D and 3D random fields are significant 

since all the methods presented are stationary and variation with time are neglected. One of the 

presented methods (TBM) is unable to perform one dimensional random fields.  

In order to thoroughly understand the presented algorithms there is an underlying statistical 

assumption that must be detailed. In every algorithm that will be introduced only the variables 

required to characterize a Gaussian field, mean and covariance structure, that is standard 

deviation, are required. These are referred in technical literature as the first two moments of the 

target field. In spite of the existence of methods relying on the four sample moments of the 

field: mean, standard deviation, skewness and kurtosis they will not be referred in this work 

and a detailed explanation of such methods can be found in Uzielli et al., 2006. Non-Gaussian 

fields can be obtained from a Gaussian field through a transformation function. However, care 

must be taken since mean and covariance structure must also be transformed. 

2.2.1 Covariance Matrix Decomposition (CMD) and Moving-Average Method (MA) 

Covariance matrix decomposition (CMD) and moving average (MA) methods have been 

thoroughly described by Le Ravalec et al. (2000) and Fenton & Griffiths (2008). These methods 

rely on the expression of a property as an average of an underlying white noise process. The 

afore mentioned white noise consists of a Gaussian white noise, that is, a n-dimensional field 

of uncorrelated normal deviates, random variables with zero mean and unit variance that follow 

a Gauss probabilistic distribution. 

CMD was developed by Cholesky (Tanabe & Sagae, 1992) and it is of relatively simple 

implementation in one dimension. It consists on the establishment of a covariance matrix that 

is obtained through the product of an upper and a lower triangular matrix so that one is the 

transpose of the other. By multiplying the previously determined upper triangular matrix with 
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a vector of uncorrelated normal deviates and adding the local average expected it is possible to 

obtain a random distribution of a given property along one dimension. 

MA method is considered as an improvement to the CMD method. Instead of requiring the use 

of a covariance matrix it requires the use of a convoluted function, which is the product of a 

function and its inverse, eliminating the need of the cumbersome matrix decomposition process, 

thus, making this method of easier computation and consequently more time efficient. 

Both methods have several problems within their formulation, namely when it comes to 

choosing a covariance matrix and function, respectively, due to the nonuniqueness of the 

triangular matrix resulting from the CMD or from the convoluted function obtained from the 

covariance function in the MA method. Another difficulty is related with the necessity of 

truncating the Gaussian white noise since its possibility of assuming any real value affects the 

reliability of the results obtained through both methods. Furthermore, it is expected that in two 

dimensions, when generating a random field of square dimensions using the MA method (K2), 

the number of white noise realizations to be around rK2, with r being the ratio between the 

incremental distance between points of the underlying white noise and the increment of the 

physical process (Fenton & Griffiths, 2008), which is significantly larger than in other methods 

resulting in impractical calculation times and makes the method prone to considerable round-

off errors. When calculating a random field for the same square field using the CMD method a 

total of K4 realizations are expected making it only useful to employ when calculating small 

fields. 

2.2.2 Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT) methods 

The Fourier Transform methods are based on the spectral representation of homogeneous mean 

square continuous fields (Griffiths & Fenton, 2008). DFT uses a divide and conquer approach 

that consists on a matrix-vector product that requires N2 complex additions and multiplications 

in order for it to be evaluated (Duhamel & Vetterli, 1990). The DFT method consists on 

expressing a n-dimensional integral that abides on a spectral representation of mean contiguous 

fields through a n-dimensional sum that is evaluated at each point in space x which makes it so 

the method can be computationally slow for reasonable field sizes and typical spectral density 

functions. The underlying idea of the method is to map the original problem into several sub-

problems in such way that the effort of performing the mapping of the sub-problems and its 

evaluation is smaller than the effort required to evaluate the complete problem. The advantage 

of the method is that the number of divisions can be applied recursively to the sub-problems 

leading to the reduction of the level of complexity involved.  

FFT is an efficient way of computing the general equation of the DFT method assuming that 

both space and frequency can be discretized into equispaced points. That factor results on an 
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efficiency increase of the method. FFT takes advantage of the fact that the calculation of the 

coefficients of the DFT can be carried out iteratively, reducing computation time as well as 

round-off errors associated with the computation of the method (Cochran et al., 1967). 

However, the assumption that the process associated with the randomization of the field has 

zero mean and is real and discrete is required (Fenton & Griffiths, 2008; Griffiths & Fenton, 

2008). Other of the problems of the FFT method is that, regardless of the target covariance 

function, the covariance function resulting from the algorithm is always symmetric about the 

midpoint of the field (Fenton, 1994). However, this limitation can be circled around by 

generating a field with the dimensions twice as big in both directions and keeping only one 

quadrant of the field. This methodology keeps the variance and average of the field within 

reasonable values. 

2.2.3 Turning Bands Method (TBM) 

The basic concept of the Turning Bands Method (TBM) is to transform a multidimensional 

simulation into the sum of a series with equivalent unidimensional simulations (Jones et al., 

2002). The objective is to preserve the statistics of the true field, particularly the measure of the 

degree of spatial dependence between samples along a specific support of the stationary random 

field. In order to use TBM it must be assumed that the field has a second-order stationarity, a 

constant mean and standard deviation, and is isotropic. However, it is possible to transform the 

normal distribution resulting from the application of the method into other statistical 

distributions. 

In two dimensions the algorithm proceeds as follows: one arbitrary origin within or near the 

domain of the field to be generated is chosen; a line i crossing the domain and having the 

direction of a random vector is selected; a realization of a one-dimensional process along the 

line i is generated accordingly; the process is repeated orthogonally for as many lines needed 

until proper discretization of the field is achieved. The field must then be normalized by 

dividing each unidimensional process by the square root of the number of lines. TBM method 

is, therefore, highly dependent on the knowledge of the one-dimension covariance structure. 

The method causes errors due to the existence of streaks within the field itself resulting from 

the lines chosen in order for it to be performed. These streaks can cause paths of reduced 

resistance or crack propagation if the field is to be submitted to further calculation. Despite that 

TBM is considered the most accurate method when using a larger number of lines though it 

results in cumbersome computation. 

2.2.4 Local Average Subdivision (LAS) 

The Local Average Subdivision (LAS) method is the most difficult to implement amongst the 

mentioned methods but one of the easiest to use when coded since no decisions have to be made 
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during the process regarding its parameters (Fenton & Griffiths, 2008). By acknowledging the 

fact that most properties in engineering practice are represented by the average value within the 

analysis domain, that is a local average, Fenton & Vanmarcke (1990) developed the LAS 

method. This method allows for random field generation along 3 dimensions with the advantage 

of keeping the statistics consistent with the field resolution at each level (Pedro et al., 2012). 

Though the method was developed so that the random field has a stationary Gaussian 

distribution it can be used to generate random fields with other statistical distributions, namely 

log-normal distribution, through transformation functions. It is also worth noticing that a 

systematic bias in the variance field is observed in a two dimensions which magnitude varies 

with the number of subdivisions and the covariance function though a quantitative analysis of 

its influence is yet to be performed (Griffiths & Fenton, 2008). 

This method is ideal for combined use with finite element modelling using low-order 

interpolation functions since it guarantees freedom to change mesh resolution without losing 

stochastic accuracy (Griffiths & Fenton, 2008). In spite of only being suitable for stationary 

processes due to its formulation, that is processes that can be described by its second order 

statistics, average and variance, that remain constant throughout the domain, a non-stationary 

mean and variance can be added to the process through a simple transformation expressed by 

Equation 2 where X(t) represents the results obtained from the method through a stationary 

process, μ(t) the average value that varies along one of the directions, σ(t) the standard deviation 

that can also be variable along the same direction and Y(t) the resulting non-stationary process. 

This is useful for simulation of CPT results where sometimes the values increase with depth. 

Y(t) = μ(t) + σ(t) ∙ X(t) 2 

In the present work only the case of 1D and 2D generations will be explained since the generated 

fields employed in this research will be two dimensional and a thorough explanation of the 

method in 1D is useful in order to fully understand it. 

LAS starts from a given initial average Z1
0 associated with a pre-determined statistical 

distribution and standard deviation both constant on the entirety of the domain and divides it 

equitably from level to level until the required precision is reached. The number of divisions is 

an input parameter of the method and its definition is dependent on the discretization intended, 

which is directly related with the number of individual points to be expected as output. This is 

mostly relevant when it is required for a finite elements mesh to have different properties in 

each individual Gauss point. In such case the number of divisions must be sufficient to 

guarantee that the distance of each subdivision is smaller than the distance between two 

consecutive Gauss points. 
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In one dimension this method can be easily understandable as having a top-down structure as 

shown in Figure 2.3a). The algorithm proceeds as follows: the initial field having an initial 

average Z1
0 is subdivided into two fields having means Z1

1 and Z2
1 obtained from a Gauss 

distribution which are conditioned on the value of Z1
0, averaging Z1

0. These new fields have a 

correct standard deviation according to averaging theory and are correlated with each another. 

This process is repeated for the generation of other levels. The values at each level are obtained 

through the addition of a random Gaussian noise. The correlation of every value on the same 

level is accomplished through a covariance matrix obtained from a spatial correlation function.  

The definition of the space correlation function is a key point of the method because it 

establishes mathematically the existing relationship between the values assumed for a given 

property in two separate points in space. In one dimension the Gauss-Markov expression 

(Equation 3) is of most common use (Zhang, 2013; Wang, 2014). This equation allows for the 

determination of the existent correlation (ρ(|τ|) given a standard deviation (σ), a distance 

between averages (τ) and a spatial correlation distance (θ). The spatial correlation distance 

establishes the length interval in which properties are expected to be correlated. A small 

correlation distance will imply that significant variations of a properties’ value will occur within 

a smaller space while a higher correlation distance implies that there is small variation on the 

value of the same property. Theoretically this means that if the space correlation distance is 

equal to zero the value of the property at each point is uncorrelated with the value of the same 

property at any other point. In contrast, if the space correlation distance value is infinite the 

result would be an isotropic uniform field.  

𝜌(|𝜏|) = 𝜎2 × 𝑒𝑥𝑝 (
−2|𝜏|

𝜃
) 3 

       

 a) b) 

Figure 2.3 – LAS (adapted from Fenton & Griffiths (2008)): a) 1D; b) 2D 
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In 2D the algorithm follows similar steps. As shown in Figure 2.3b) the initial field having 

average Z1
0 associated with a standard deviation and having a statistical distribution constant 

along the domain is divided into four subdivisions with same dimension and having means 

correlated with Z1
0 as explained previously.  

The main difference between the 1D and 2D algorithms resides on the space correlation 

function through which the covariance matrix is obtained. The Markov function used is this 

work has been employed by several authors (Fenton & Griffiths, 2008; Zhang, 2013; Li et al., 

2015) and is shown in Equation 4. The Markov expression used represents a circular function 

if isotropic correlation distances are applied and an elliptical function if anisotropic spatial 

correlation distances are used. The introduction of rotation to anisotropic random fields is 

obtained through modifications to the coordinate system of the elliptical  function as explained 

in Zhang (2013). 

𝜌(𝜏𝑖𝑗) = 𝜎2 × 𝑒𝑥𝑝 [−2 (
|𝜏𝑖𝑗,𝑥|

𝜃𝑥
+

|𝜏𝑖𝑗,𝑦|

𝜃𝑦
)] 4 

In this equation τij,x and τij,y are the distances between elements i and j in the x and y directions, 

respectively. If the correlation distances in both directions (θx and θy) assume the same value 

than the correlation function is isotropic and can be further simplified. However, if θx is 

different from θy an anisotropic random field can be generated. In this case the algorithm 

proceeds as follows: the direction with the smaller space correlation value is stretched so that 

the reason between the lengths is inverse from the reason between the θ values. As an example 

if θx is equal to 2 and θy is equal to 1 the length in the y direction is multiplied by 2 so that 

Ly/Lx=θx/θy. From there the algorithm proceeds accordingly and after the generation of the field 

it is cropped to its initial size as shown Figure 2.4. This process does not require code change nor 

does it result in loss of efficiency, though it is expected, in spite of generally the field being 

anisotropic, that small neighbourhoods of points in the final resolution tend to follow an 

isotropic correlation structure because the algorithm itself is incapable of preserving anisotropy 

(Griffiths & Fenton, 2008).  

 

Figure 2.4 – Generation of an anisotropy field with LAS method 
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The afore mentioned algorithm for the LAS method in 2D generates random fields having the 

horizontal and vertical axis as the main directions of correlation. As a result they control the 

directions of variability accounting only for transverse anisotropy which may be insufficient in 

some problems, per instance, when the direction of the layers of stratification within a soil has 

an angle with the horizontal direction. Rotated anisotropy can be achieved by introducing the 

angle α between one of the main directions and the horizontal axis. In such case, and considering 

that the main directions of the field remain orthogonal, an auxiliary field can be generated 

having as main axis the horizontal and vertical directions with such dimensions so it can 

accommodate its rotation to the main directions and its cropping to fit the size of the original 

field as displayed in Figure 2.5.  

 

Figure 2.5 – Generation of a rotated field 

In order to calculate the values for i+1 levels the values at level i must be known so that a 

Markov expression can be used. Because of that while computing the LAS method storage must 

be provided for 2N-1 values in one dimension or 4/3(N2) in two dimensions assuming that N is 

the desired number of intervals of the process. This makes the method cumbersome to compute 

for a number of subdivisions higher than 10. 

2.2.5 Comparison of methods 

The choice of which method to use to generate a random field must be suited to each particular 

problem. In the present work LAS will be used since it was already in a late stage of 

implementation when this work began. In the technical literature only FFT, TBM and LAS 

methods are advised to simulate variability due to the fact that all the other afore mentioned 

methods, although potentially accurate, tend to be computationally slow and therefore not 

suitable for most problems in engineering practice. To what efficiency is concerned LAS or 

TBM with a small number of lines are the algorithms with smaller run-times, though this is 

often a negligible aspect since the time it takes to generate the field is generally insignificant 

when compared with the time it takes to subsequently process and analyse it. 
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When it comes to accuracy when keeping the mean and covariance structure Griffiths & Fenton 

(2008) states that the best algorithm is probably the TBM method using a large number of lines, 

there isn’t, however, clear rules regarding the number of lines required to avoid streaking when 

using the TBM algorithm since it depends not only of the dimensions of the field but also of the 

covariance function used. The FFT method requires symmetry in the covariance structure of 

the realizations and consequently symmetry regarding the standard deviation on the final 

resolution of the field is expected to occur. This drawback can be surpassed by manipulating 

the field, although that implies slower run times that increase significantly with the number of 

dimensions. FFT is also the most suitable method when it comes to time dependent applications 

since it employs spectral density functions. The LAS method is the logical choice if the problem 

requires a local average representation and, as previously stated, is the easier to use once coded 

and generally the most efficient though a bias in the variance field, especially in two or higher 

dimensions, is to be expected. 
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3 NUMERICAL MODELLING OF VARIABILITY 

3.1 Introduction 

In order to simulate variability a number of programs were created or further developed so that 

a level of reliability could be reached. Previous to this work the random field generator 

(UC2DRF) developed by Pedro et al. (2012) only allowed for the generation of up to 99 fields 

and had limited capabilities. In the current version (v6.2) the program can generate up to 999 

fields and several other features were implemented such as the possibility to generate fields 

having a lognormal statistical distribution, field rotation, non-stationary processes and layering 

as well as the combined effect of multiple conditioning. A software (MAT.PROP) capable of 

serving as an intermediate between the random field generator and the finite element software 

(UCGeoCode) was developed making the process, which previously had to be done manually, 

automatic, more user friendly and efficient. The finite element software was updated so it could 

handle the sequential calculation of multiple fields. Finally, a software that allows for the 

interpretation of results in bulk was developed since previously it was only possible to output 

results from single calculations. 

It should be emphasized the large increase of efficiency obtained by performing the 

interpolation of the random fields and the finite element mesh in bulk outside the finite element 

method software reducing the calculation time. As an example, 100 calculations can currently 

take less computing time than a single calculation performed previously if all the process is 

taken into account. Soil and rock correlations from the literature were also implemented in order 

to obtain variability in multiple parameters from single variable random fields. 

In the following sections the main features of all the software upgraded and developed during 

this research are going to be presented and discussed in detail. 

3.2 Random Field Generator 

UC2DRF is a software developed at the Geotechnics Laboratory of the Civil Engineering 

Department of University of Coimbra that is currently on version 6.1. This program allows for 

the generation of 2D random fields using the LAS method. It can create random fields for a 

single variable with isotropic or anisotropic spatial correlations. In its current version the 

software allows for: 
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- Different dimensions of the field, making it suitable for problems where the relationship 

between the horizontal and the vertical dimensions of the domain are not 1:1. However, 

the generated field must always be rectangular which is not always the case in real case 

studies namely slope stability, though this apparent limitation can be overcome when the 

interpolation between the field and the finite elements mesh is performed. 

- Generation of multiple random fields, allowing for up to 999 different fields to be 

generated with the same initial characteristics. If needed several instances of software can 

be run with the same input though studies have suggested that the use of 200 fields is 

sufficient to establish a pattern (Fenton & Griffiths, 2008; Pedro et al., 2012).  

- High levels of subdivision of the field, the software generates 4n points for every 

subdivision level being n the number of subdivisions. As explained this feature is relevant 

when trying to achieve variability within every Gauss point of a finite element mesh. For 

most cases the generation of 8 levels has proven to be reasonable amounting a total of 

65536 different points. 

- Random or fixed seed generation which makes the user able to control the starting point 

from which the stochastic white noise process has its beginning. This feature allows the 

generation of the same field more than once making it possible to reproduce performed 

calculations as well as clearly assess the influence of every change in each input 

characteristic.  

- Normal or log-normal types of statistical distributions for the variables, since they were 

proven to be the most common statistical distributions of properties in natural soils and 

rocks. Other statistical distributions can be added by using transformation functions as 

stated in 2.2.4. 

- Option to generate uniform fields, useful for calculations using standard techniques such 

as EC7 methodology. This can be achieved by two methods. Through the truncation of 

the variable by imposing a minimum and maximum values equal to the average value or 

by defining the standard deviation as having zero value. 

- Truncation of the distribution, this can be done in order to avoid negative or extreme and 

non-acceptable low/high values. This is due to the fact that the domain of the normal 

distribution is infinite introducing inaccuracy when estimating properties. As an example 

due to its formulation GSI cannot assume a value above 100, if truncation of the highest 

value wasn’t performed there would be a probability that some points would assume 

values that surpass the acceptable threshold. Identical case occurs for the angle of shear 
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strength that cannot assume values above π/2 radians. The truncation of lower values, 

particularly negative, can be avoided by employing a lognormal distribution which 

domain goes from zero to infinity.  

- Anisotropy of the field, the spatial correlation distances in the horizontal and vertical 

directions relative to the field can be adjusted in order to simulate in-situ conditions. 

- Layering, at the current stage of development it can only perform horizontal layering. The 

presence of several materials with different properties can be simulated. This is 

particularly interesting when studying the behaviour of geotechnical structures in the 

presence of multi-layered soil conditions. 

- Rotation of the field, accounting for every condition of soil deposition as well as tectonic 

history that may have rotated the layers of the soil from the horizontal position. In the 

current version the assumption that the main directions of the variability remain 

orthogonal after rotation is made, making it impossible to generate fields with generalized 

anisotropy (non-orthogonal) and rotated generalized anisotropy (non-orthogonal). 

- Increment with depth of the average assigned to the property, allowing for non-stationary 

random field generation accounting for variations of properties with depth related with 

gravity forces and confinement that cause the increase of properties’ values with the 

increase of depth within soil layers as illustrated in Figure 2.1b). 

In the following sections the several features and potentialities of the program will be 

exemplified and discussed. 

3.2.1 Normal and Lognormal Distributions 

As mentioned UC2DRF can generate random fields following normal and lognormal 

distributions. In Figure 3.1 two fields were generated having the field size of 100×100m2 with 

a single layer, 8 subdivision levels, a stationary average value of 100, standard deviation of 50, 

isotropic spatial correlation distances of θx=θy=10 and truncated between the values of 0 and 

200. As can be observed Figure 3.1 (a) presents the result of a Gaussian statistical distribution 

and (b) the result of a lognormal distribution. In Figure 3.1(c) the theoretical curves (T) for both 

statistical distributions are plotted against the results obtained from UC2DRF (RF). It is possible 

to verify that the results obtained closely resemble the theoretical curves validating the 

implementation. An accumulation of values can be observed at the truncation limits resulting 

from the fact that the domain of both statistical distributions is infinite, therefore, theoretically, 

there is probability of occurrence of values that fall outside the acceptable range of the field. In 

such case the values obtained automatically take the value of the minimum and maximum 
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values allowed. It is worth noting that due to the mathematical formulation of the lognormal 

statistical distribution, for the same average, the value with higher frequency, that is the mode, 

tends to be smaller than in the case of a normal distribution.  

 

Figure 3.1 – Normal and lognormal distributions 

3.2.2 Number of levels 

The number of subdivisions performed directly affects the resolution of the field. In Figure 3.2 

the discretization of the field with 3 (a), 6 (b) and 9 (c) levels of subdivision is presented. As 

can be observed the increase of the number of subdivisions results in a higher resolution of the 

field, though it may not be noticeable for high levels of subdivision due to the size of the plot, 

due to the increasing number of points with different properties generated. The amount of levels 

of subdivision must be appropriate for the problem at hand. In case of problems where fields 

with large dimensions are required it is advised to perform a high number of subdivisions (8 to 

9 levels recommended) in order to achieve variability in every point of the field, whereas in a 

field with reduced dimensions that may not be required with the advantage of reducing the 

computation time needed. 

 

Figure 3.2 – Number of levels 
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3.2.3 Standard deviation 

The increment of variability within the field can be shown as a direct result of increasing the 

value for the standard deviation of the model. In Figure 3.3 5 fields were generated for a field 

size of 100×100m2 with a single layer, 8 subdivisions, a stationary average value of 100, 

isotropic spatial correlation distances of θx=θy=10 and truncated between the values of 0 and 

200 with a Gaussian statistical distribution. The standard deviation assumed the values of 0 (a) 

resulting in a uniform field, 2 (b), 10 (c), 25 (d) and 50 (e). The resulting fields are plotted in 

Figure 3.3(a)-(e), respectively and, as expected, show that the increase of the standard deviation 

corresponds to a proportional increase of variability in the field. In Figure 3.3(f) the theoretical 

normalized curves (T) for normal statistical distributions as well as the results obtained through 

the generation of the random fields (RF) for the corresponding standard deviation values of 0, 

10 and 50 are displayed. The comparison reveals a good agreement between the theoretical 

curves and the results of the field for all standard deviation tested. Naturally, for a standard 

deviation of 0 all the points are concentrated in the average value of 100. 

Similar conclusions can be asserted for the lognormal distribution. In Figure 3.4 are plotted the 

results obtained from the random field generation with lognormal statistical distribution in the 

same conditions as before. Similarly, as in the Gauss distribution case, is possible to observe 

that an increase in the value of the standard deviation increases the variability within the field, 

however, for small standard deviations that difference is not as evident as in the fields generated 

using a Gauss distribution, given the formulation of the lognormal distribution. In spite of that 

in Figure 3.4(f), by superimposing the theoretical curves (T) corresponding to a lognormal 

distribution with standard deviations of 10 and 50 with the correspondent results obtained 

through the software (RF), it is possible to confirm that the range of values obtained depends 

of the standard deviation value initially imposed. 

 



Modelling the Influence of Soil Variability  
on Geotechnical Structures 3 – NUMERICAL MODELLING 

Diogo António Carvalho Ferreira 22 

 

Figure 3.3 – Effect of standard deviation on normal distribution 

 

 

Figure 3.4 – Effect of standard deviation on lognormal distribution 

3.2.4 Truncation 

The limits for truncation are usually set as the lower and upper limits the variable within the 

field is desired to present in the field’s final resolution. As mentioned this aspect is relevant 

when studying properties that are strictly positive or have upper limits such as the friction angle. 

However, they must be carefully chosen taking into account the average and the standard 

deviation of the field so that the values obtained for the property still follow the desired 

statistical distribution. If the truncation limits are not large enough the variable may have a 

uniform distribution with emphasis on the boundaries that will be more pronounced when the 

difference between the mean value and the truncation limits tends to zero. The effect of the 
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truncation applied to the field is shown in Figure 3.5 for 3 situations: (a) lower truncation at 80, 

(b) upper truncation at 120 and (c) both lower (80) and upper (120) truncation. In Figure 3.5(d)-

(e) are the respective normalized probability density functions as well as the results obtained 

for each field. As expected the plots of the distribution show clearly the effect of the truncation 

performed with concentrated peak values in the limit values imposed. The effect on the fields 

is more difficult to visualise although some variations in the colour pattern can be observed. 

 

 

Figure 3.5 – Effect of truncation 

3.2.5 Spatial correlation and anisotropy 

In order to evaluate the influence of the spatial correlation distance 3 random fields with 

dimensions of 100×100m2 were generated following a Gauss statistical distribution with mean 

value of 100 and standard deviation of 25 truncated between the values of 0 and 200. The 

isotropic spatial correlation distances used in the fields were θx=θy=10 (a), 50 (b) and 100 (c). 

Figure 3.6 displays the generated fields for the 3 cases. The results show that variability decreases 

when the spatial correlation distance increases. These results are in agreement with the 

theoretical premises of the method, which state that when the spatial correlation distance 

assumes an infinite value a uniform field is generated and when it assumes a null value every 

point in the field assumes different uncorrelated values for the property for which the simulation 

is intended. 
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The influence of anisotropy was evaluated by generating three random fields in identical 

conditions but having an anisotropic correlation. For this case the value of θx was maintained 

equal to 10 and the value of θy was varied. Values of θy=10 (a) (isotropic), 20 (b) and 100 (c) 

were tested. In Figure 3.7 are displayed the fields generated with UC2DRF and is possible to 

verify a decrease on variability in the direction where the spatial correlation distance was 

increased. For a ratio (θx/θy) of 10 the field appears to be layered in the vertical direction. This 

feature is extremely useful to simulate conditions where directional anisotropy is expected to 

exist, such as in sediment deposition and rock foliation.  

 

Figure 3.6 – Isotropic spatial correlation 

 

Figure 3.7 – Anisotropic spatial correlation 

3.2.6 Anisotropy direction 

By varying the angle between the directions of the field and the horizontal and vertical cartesian 

axis is possible to introduce anisotropy directions in the field. In order to demonstrate this 

possibility 3 random fields with dimensions of 100×100m2 were generated following a Gauss 

statistical distribution with mean value of 100 and standard deviation of 25 truncated between 

the values of 0 and 200. In all cases an anisotropy ratio of 5 (θy=10; θy=50) was imposed. The 

anisotropy directions tested where: (a) the axis of the field are parallel to the horizontal and 

vertical cartesian axis; (b) an angle of 45⁰ and; (c) an angle of -45⁰. Figure 3.8 shows the results 
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obtained for the 3 fields where a noticeable rotation in the axis of the field can be visualised. 

This feature, in combination with anisotropic spatial correlation distances, can simulate 

conditions similar to those resulting from tectonic actions and stress conditioning. 

 

Figure 3.8 – Anisotropy direction 

3.2.7 Multi-layering 

As mentioned previously in its current version the UC2DRF program is able to create a 

multitude of layers with independent characteristics. As an example in Figure 3.9 are presented 

random fields with (a) one layer; (b) two layers and (c) four layers having different statistical 

distributions. This option, combined with other features, is ideal for simulate the results from 

in-situ tests such as SPT and CPTu, since allows the generation of fields that express directly 

the output of the tests performed making them more realistic.  

 

Figure 3.9 – Multi-layering 

3.2.8 Average increment with depth 

A non-stationary average process is attained by adding an increment depending on depth to the 

values obtained from the stationary process of the LAS method. This allows for the generation 

of random fields that can account for the presence of gravity forces that result in increments 

both in pressure and confinement. In Figure 3.10 the effect of the average increment in the 
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generation of two random fields is shown. In (a) a random field of 100x100m2 was generated 

with a Gaussian statistical distribution having values of mean, standard deviation and isotropic 

correlation distance of 100, 10 and 10, respectively, whilst in (b) a field with identical 

conditions was generated with the only difference of having an average increment per metre 

depth of 0.5. The differences can be observed in (c) where the resulting values as well as the 

average value and the increment at x=1m are plotted for both the stationary and non-stationary 

processes. This process can be applied to any given number of layers. In Figure 3.10 (d) the 

generation a random field with 2 layers having different statistical distributions as well as 

characteristics is presented and in (e) the generation of the same field but with an average 

increment with depth per metre of 1 and 0.5 for the first and second layers, respectively, is 

shown. The impact of the average increment in both layers can be asserted through the 

observation of (f) where the resulting values on a random x coordinate are plotted for both cases 

as well as the averages and theoretical increments for both layers. The results obtained in both 

cases highlight the differences when considering an increment of the average value with depth 

and validate the non-stationary average process implemented in UC2DRF. 

 

 

Figure 3.10 – Average increment with depth 

3.2.9 Extreme cases 

By combining several options available within the software it is possible to generate extreme 

cases for situations that occur in nature. In Figure 3.11 are presented examples of random fields 
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displaying those characteristics generated through the software. In (a) spatial correlations 

distances θx and θy of 100 and 10, respectively, were used resulting in layers having horizontal 

direction, simulating sedimentary deposits of soils. In (b) values of θx=10 and θy=100 were used 

resulting in a random field with predominantly vertical orientation, which can simulate the 

vertical faults of rock massifs. Finally, in (c) is shown a case where the properties of the soil 

have singular random points with either lower or higher resistance. This is achieved by having 

anisotropic correlation distances (θx/θy=10) as well as having a very small correlation distance 

in one of the directions relatively to the field size (θy=1m). With this type of field is possible to 

simulate boulders in soil and weathered rocks massifs. 

 

Figure 3.11 – Extreme cases 

3.2.10 Real Cases 

The software can and should be used to recreate and model the parameters of a given region 

based on reliable data collected in the field and tested in the laboratory. In Figure 3.12 an 

example is presented from data gathered through a CPTu test. Having as reference the tip 

resistance, qc, measured during the test it was fitted based on a trial-and-error approach, where 

rough estimates were used, a layering and a set of statistical distributions that could reproduce 

as accurately as possible the real results. The division, average, standard deviation and spatial 

correlation distance were estimated and fitted based on the CPTu data. In total the deposit was 

divided into 7 different layers and for each of them a Gaussian distribution was selected with 

average values of 1, 25, 1, 3.5, 1, 3 and 7.5 MPa and standard deviations of 1, 7.5, 0.3, 3.5, 0.7, 

1 and 3 MPa (from the surface to the maximum depth). It must be noted that in the case 

presented it was assumed anisotropy in the depositional plane and consequently a ratio of 10 

(θx/θy) was chosen. However, these assumptions were solely based from a single CPTu test 

which in practice may not be advised since the deposit may not present a horizontal 

stratification. In Figure 3.12 (b) and (c) the results of the CPTu are plotted against the output of 

UCRF2D in two x coordinates (x=1m; x= 19m). The agreement between the random field and 

the CPTu result is very good and prove that the code developed can be employed to simulate 

real cases of variability. 
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Figure 3.12 – CPTu modelling 

The parameters used to generate a random field can be, at first, based on an observational 

analyses of the area that is meant to be studied. In Figure 3.13 3 real cases of rock masses 

presented by Zhang (2013) are displayed. The first case (a) is a granite with an isotropic 

structure; (b) represents a rock mass with foliation and; (c) shows also a rock mass with rotated 

foliation. In an attempt to enhance the applications of the program 3 random fields were 

generated with the purpose of trying to visually reproduce the distributions observed in the 3 

mentioned cases.  

 

 

Figure 3.13 – Real cases, visual representation 

The adjustment achieved after a couple of trial-and-error attempts, where only the average and 

standard deviation of the qc value were iterated, is illustrated in Figure 3.13 (d), (e) and (f), 

respectively, and can be considered very satisfactory in all 3 cases. However, it must be stated 
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that the generated random fields only represent approximations of the observable characteristics 

and that the variable fitted does not correspond to any property in particular but a set of 

characteristics that allow for the visual representation. 

3.3 Analytical and Theoretical Correlations for Soils and Rocks 

The random variables generated by UC2DRF do not always represent a direct property or a 

parameter of a constitutive law since random fields can be used to simulate field tests (CPT, 

SPT). Therefore there is a need for transform the output of UC2DRF into a property that a finite 

element program can use. With that purpose the program MAT.PROP was developed during 

the period of this research. This program serves as an intermediate between UCRF2D and 

UCGeoCode, the finite element software that was used in this work and that will later be 

explained. It allows for the integration of random fields in the finite element calculations 

making it possible to run numerical models that include variability in rock and soil properties.  

MAT.PROP starts by reading the input file of UCGeoCode so that it can determine the 

coordinates of the Gauss points of the finite element mesh. Afterwards, having as reference the 

random field coordinates and output values it defines through interpolation the value that the 

variable should assume in each Gauss point of the finite element mesh, assuring that there is 

compatibility between the random field and the finite element mesh used in the analyses. This 

process is highly dependent on the resolution of the random field as well as the number of 

elements in the finite elements mesh. After interpolation, the variable that is calculated for each 

Gauss point can be modified by selecting a pre-defined correlation. In the current version of the 

program there are implemented several empirical correlations that allow the conversion of one 

or a multitude of properties defined solely based on the input variable. As output the software 

writes a file containing for each Gauss point of the finite element mesh the soil properties in a 

format that can be directly read by UCGeoCode. The software also allows for the processing of 

multiple random fields conditioned to a single finite element mesh providing individual output 

files for each random field and queue file useful for UCGeoCode automation.  

As mentioned previously it is very important that the resolution of the finite element mesh be 

coherent with the discretization of the field. Figure 3.14 presents the results of a study where that 

problem is highlighted. In (a), (b) and (c) three random fields generated with UC2DRF with 3, 

5 and 7 subdivision levels are presented. Subsequently, the program MAT.PROP was used to 

interpolate the three random fields for three different meshes that had a discretization of 16, 

256 and 4096 elements. In (d), (e) and (f) the interpolation performed between the mesh with 

16 elements and each random field is shown; in (g), (h) and (i) the interpolation that was made 

for the mesh with 64 elements is presented; while in (j), (k) and (l) the interpolation between 

the mesh with 4096 elements and the three reference random fields is displayed. 
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Figure 3.14 – MAT.PROP interpolation 

It should be noted that each finite element is quadrangular and has 4 Gauss points. The number 

of elements used in each mesh was defined so that it could be directly related with the three 

reference random fields generated. As a result the mesh with 16 elements had the same number 

of Guass points as the field generated with 3 levels of subdivision. The mesh of 256 elements 

corresponds to the field with 5 levels of subdivision and finally the mesh with 4096 elements 

matches the field generated with 7 levels of subdivision. These 3 pairs are highlighted in Figure 

3.14 and correspond to the (a) – (d) in green, (b) – (h) in blue and (c) – (l) in red. As expected 

for these 3 pairs the interpolation performed is almost exact since the number of points in field 
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and mesh are equal. A different scenario is observed in the extreme cases. When fields with 

high number of subdivision (c) are interpolated to a poor mesh (16 elements), (e) and (f), the 

results reveal great discrepancies with the gauss points of the mesh being excessively 

highlighted making the distribution of properties uneven and centred in their location. In the 

opposite scenario is possible to observe that fields with low subdivision levels (a) when 

interpolated for highly refined meshes, (g) and (j), lose resolution and originate much smoother 

contours. As a conclusion the ideal is to have some degree of compatibility between random 

field subdivision and mesh discretization in order to avoid smoothing and accentuated contours. 

The available correlations were taken from the available literature and represent empirical 

approximations that may not apply to the reality of every situation and whose validation is 

required in every application performed.  

3.3.1 Available parameters 

MAT.PROP allows the user to set the variable of the random field to a corresponding soil or 

rock parameter associated with a constitutive numerical model implemented in UCGeoCode. 

The parameters currently available are presented in Table 1. When this option is selected the 

material property assumes directly the random variable value while all the other parameters of 

the constitutive model selected remain constant. 

Table 1 – Available parameters in MAT.PROP 

UCGeoCode constitutive model Soil parameter Units 

Mohr-Coulomb Angle of shear resistance º 

Mohr-Coulomb Cohesion kPa 

All models Deformability Modulus kPa 

Tresca Undrained strength kPa 

Tresca Undrained deformability modulus kPa 

Hoek-Brown / Simplified Hoek-Brown Compression strength kPa 

Cam-Clay / Simplified Cam-Clay Inclination of the virgin compression line - 

Cam-Clay / Simplified Cam-Clay Inclination of the swelling line - 

Cam-Clay / Simplified Cam-Clay Gradient of the critical state line - 

3.3.2 Available correlations 

Through UC2DRF only a random field of a single variable can be obtained. In this stage of 

development of the program only one variable is independent and consequently in order to 

introduce variability in more than one parameter a correlation with the input variable must be 

used. The application of correlations in order to derive soil and rock parameters is very common 

in geotechnics due to the difficult in characterise the soils and rocks appropriately. Most of 

them are found through experimentation and have a regional validity, although in most cases 
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their range of application is generalised. A list of several correlations have been compiled by 

several authors such as Kulhawy & Mayne (1990) and Ameratunga et al. (2015). In the current 

version of MAT.PROP the following correlations are implemented: 

(1) Geological Strength Index (GSI) 

This option is available for Hoek-Brown and Simplified Hoek-Brown failure criteria. Besides 

the field variable (GSI) this correlation requires the input of the constant of the intact rock mi, 

the deformation modulus of the intact rock σci and the disturbance factor D. The GSI correlation 

proposed by Hoek et al. (2002) and Hoek & Diederichs (2006) affects several parameters 

(Equations 5, 6, 7 and 8) making them variable although related with the GSI. 

𝑚𝑏 = 𝑚𝑖 ∙ 𝑒𝑥𝑝 (
𝐺𝑆𝐼 − 100

28 − 14𝐷
) 5 

𝑠 = 𝑒𝑥𝑝 (
𝐺𝑆𝐼 − 100

9 − 3𝐷
) 6 

𝑎 =
1

2
+

1

6
∙ (𝑒𝐺𝑆𝐼 15⁄ − 𝑒20/3);  𝑎 = 0.5 𝑖𝑓 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 𝐻𝑜𝑒𝑘 𝐵𝑟𝑜𝑤𝑛 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 7 

𝐸𝑚 = 𝐸𝑖 ∙ (0.02 +
1 − 𝐷/2

1 + 𝑒(
60+15𝐷−𝐺𝑆𝐼

11
)
) 8 

(2) Undrained Shear Strength (Su) (Duncan & Buchignani, 1976) 

This correlation is an option available for Tresca failure criterion where the undrained shear 

strength, Su, acts both as the input random variable and output parameter and the undrained 

deformability modulus, Eu, is also an output parameter. Duncan & Buchignani (1976) proposed 

the correlation presented in Figure 3.15a) where the overconsolidation ratio OCR and the 

plasticity index PI are also required as input. Through nonlinear multiple regressions it was 

possible to fit the data in the figure to Equations 9, and 10 which were implemented in the 

software. 

If 0 ≤ PI < 30 (𝑅2 = 0.902) −  𝐸
𝑢

/𝑆𝑢 = 1494.360 − 930.255 ∙ 𝑙𝑜𝑔(𝑂𝐶𝑅) − 19.186 ∙ 𝑃𝐼 9 

If 30 ≤ PI ≤ 50 (𝑅2 = 0.919) −  𝐸
𝑢

/𝑆𝑢 = 970.276 − 403.796 ∙ 𝑙𝑜𝑔(𝑂𝐶𝑅) − 11.359 ∙ 𝑃𝐼 10 

If 50 ≤ IP < 100 (𝑅2 = 0.917) −  𝐸
𝑢

/𝑆𝑢 = 421.763 − 213.082 ∙ 𝑙𝑜𝑔(𝑂𝐶𝑅) − 2.320 ∙ 𝑃𝐼 11 
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Figure 3.15 – Correlations proposed: a) Duncan & Buchignani (1976); Kulhawy & Mayne (1990) 

(3) Undrained Shear Strength (Su) (Kulhawy & Mayne, 1990) 

This is also an option available for Tresca failure criterion where, in similarity with the previous 

correlation the Su is the random variable and one output parameter along with the Eu. Kulhawy 

& Mayne (1990) proposed the correlation presented in Figure 3.15b) where the angle of shear 

resistance in triaxial compression ϕ’tc, the compression index Cc and the OCR are also required 

as input. In this case it was also used a nonlinear multiple regression in order to fit the data of 

the figure to Equations 12 and 13 which were then implemented in the software. 

If 0.1≤CC<0.2 (R2=0.942): 

𝐸𝑢/𝑆𝑢 = 573.471 − 31.743 ∙ 𝜙
𝑡𝑐

− 1550.215 ∙ 𝑙𝑜𝑔(𝐶𝐶) − 637.383 ∙ 𝑙𝑜𝑔(𝑂𝐶𝑅) 12 

If 0.2≤CC≤0.5 (R2=0.886): 

𝐸𝑢/𝑆𝑢 = 447.376 − 10.444 ∙ 𝜙
𝑡𝑐

− 587.033 ∙ 𝑙𝑜𝑔(𝐶𝐶) − 237.455 ∙ 𝑙𝑜𝑔(𝑂𝐶𝑅) 13 

(4) N (SPT) for cohesive soils 

This correlation is available for Tresca failure criterion. Besides the field variable (N(SPT)) it 

requires the input of parameters A, m and K. Based on the number of blows of the SPT the 

general expressions 14 and 15 were implemented in the software for estimation of the undrained 

shear strength and of the undrained deformability modulus. In Table 2 are presented values 

suggested in the literature for the additional input parameters required by this correlation. 
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𝑆𝑢 = 𝐴 ∙ 𝑁𝑚 14 

𝐸𝑢 = 𝐾 ∙ 𝑆𝑢 15 

Table 2 - SPT recommended parameters for soils with cohesion 

Reference A m K 

Hara et al. (1974) 29 0.72 - 

Kulhawy & Mayne (1990) 6 1 - 

Bowles (1996)    

- Clay and silt (PI>30%) - - 100 - 500 

- Silty or sandy clay (PI<30%) - - 500 - 1500 

(5) N (SPT) for cohesionless soils 

This correlation is available for Mohr-Coulomb failure criterion. The field variable is either the 

number of blows, N, or the normalised number of blows for energy rate and atmospheric 

pressure, N1(60). Besides one of these parameters it requires the input of up to 5 additional 

parameters A, B, m, K and M. The general expressions implemented are presented in Equations 

16, 17, 18 and 19 and are employed depending on the selection of the field variable, N or N1(60). 

The effective vertical pressure σ’v0, required by some expressions, is automatically determined 

by the software based on the input file from UCGeoCode. The values suggested in the literature 

for the required additional parameters are presented in Table 3.  

Normalised value N1(60): 

𝜙′ = (𝐴 ∙ 𝑁1(60))𝑚 + 𝐵 16 

𝐸′ = 𝐾 ∙ (𝑁1(60)) + 𝑀 17 

Non-normalised value N (Kulhawy & Mayne, 1990): 

𝜙′ = 𝑡𝑎𝑛−1 [
𝑁

12.2 + 20.3 (
𝜎′𝑣0

100
)

]

0.34

  18 

𝐸′ = 𝐾 ∙ (√
100

𝜎′𝑣0
∙ 𝑁 + 𝑀) 19 
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Table 3 - SPT recommended parameters for cohesionless soils  

Reference A B m K M 

Shioi & Fukui (1982) 0.45 20 1 - - 

Décourt (1989) 362036.6 4.8 0.22 - - 

Hanataka & Uchida (1996) 20 20 0.5 - - 

Webb (1970) - - - 479 15 

Bowles (1996)      

     - Sand - - - 500 15 

     - Saturated sand - - - 250 15 

     - Gravelly sand - - - 1200 6 

     - Clayey sand - - - 320 15 

     - Silts, sandy silt - - - 300 6 

(6) CPT tip resistance qc for cohesive soils  

This correlation is available for Tresca failure criterion. Besides the field variable, qc, it requires 

the input of parameters N and K. General expressions were implemented in the software, 

presented in Equations 20 and 21. Table 4 presents the values recommended in the literature 

for the afore mentioned parameters. As in previous expressions the value of the effective 

vertical pressure is automatically calculated and therefore not required as an input parameter. 

𝑆𝑢 =
𝑞

𝑐
− 𝜎′𝑣0

𝑁
 20 

𝐸𝑢 = 𝐾 ∙ 𝑆𝑢 
21 

Table 4 - CPT recommended parameters for soils with cohesion 

Reference N K 

Bowles (1996) 15±7 - 

Bowles (1996)   

- Clay and silt (PI>30%) - 100 - 500 

- Silty or sandy clay (PI<30%) - 500 - 1500 

(7) CPT tip resistance qc for cohesionless soils 

This correlation is available for Mohr-Coulomb failure criterion. Besides the field parameter, 

qc, it requires the input of parameters A, B and K. In order to calculate the angle of shear strength 

the user can choose between Robertson (2012) expression and a general expression containing 

the afore mentioned parameters. These expressions are presented in Equations 22, 23, 24 and 

25 and Table 5 contains the values recommended in the literature for the additional parameters. 
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As is the case of previous expressions the effective vertical pressure, when required, is 

automatically calculated by the software.  

𝜙′ = 𝑡𝑎𝑛−1 [
1

2.68
∙ (𝑙𝑜𝑔 (

𝑞
𝑐

𝜎′𝑣0

) + 0.29] 𝑅𝑜𝑏𝑒𝑟𝑡𝑠𝑜𝑛, 2012 22 

𝜙′ = 𝐴 + 𝐵 ∙ 𝑙𝑜𝑔 (
𝑞

𝑐

𝜎′𝑣0

) General expression 23 

𝜙′ = 𝐴 + 𝐵 ∙ 𝑙𝑜𝑔 (
𝑞

𝑐

1000
) EC2: Part 2 (2007) 24 

𝐸′ = 𝐾 ∙ 𝑞
𝑐
 25 

Table 5 - CPT recommended parameters for cohesionless soils  

Reference A B K 

Mayne (2007) 17.6 11 - 

Robertson & Campanella (1983) 17.2 11.6 - 

Bowles (1996)    

- Sand - - 2 – 4 

- Saturated sand - - 3.5 – 7 

- Clayey sand - - 3 – 6 

- Silts, sandy silt - - 1 – 2 

 

3.4 Finite Element Program 

UCGeoCode is a Finite Element code designed specifically for soil calculation whose 

development at University of Coimbra started by Almeida e Sousa (1998). Written in 

FORTRAN language it was developed to perform 2D calculations and later being updated in 

order to perform 3D analyses. The software as suffered several updates along the years making 

it able to handle elasto-plastic calculations. The program as a wide range of constitutive models 

that make it suitable to simulate the behaviour of different types of materials. The implemented 

loading and boundaries conditions allow for the numerical modelling of the detailed 

construction sequence of almost all geotechnical structures. In the latest development the 

consolidation theory was implemented (Cruz, 2008) which provided an additional and useful 

feature to the already vast capabilities of the program. Since the program was already developed 

and only minor adjustments were performed in this research it will not be given in this 

dissertation a detailed description of how the program runs. More detailed information can be 

found in Almeida e Sousa (1998) and Cruz (2008). However, for facilitate the integration of 
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UCGeoCode with the remaining software employed is displayed in Figure 3.16 the representative 

flowchart of UCGeoCode structure.  

It is just worth mention that in this dissertation the UCGeoCode code was adapted in order to 

be able to perform calculations considering variability on all materials. This was achieved by 

connection the output of MAT.PROP program to the input of UCGeoCode. Furthermore, it was 

developed the possibility of performing up to 999 calculations using the same finite element 

mesh but associated with up to 999 different random fields of one or multiple properties, as 

defined in MAT.PROP. 

3.5 Interpretation of Results 

Interpret is a software that was upgraded in order to process the output of up to 999 UCGeoCode 

sequential analysis. It automatically reads the output from each calculation and has the 

possibility of create a file with the desired results at any or every stage of the calculation for 

specific nodes (displacement) or Gauss points (stresses) of the finite element mesh used in the 

analysis. It is also able to create files containing stage results for each calculation that can be 

read by post-process program GID so that graphical analyses can be obtained if required (GID, 

2012). It was also coded in the program the output of the envelopes of displacements and 

stresses of all the analysis processed. 

Additionally, two more software’s were developed in this research for the analyses of specific 

applications. Though these software’s already existed, substantial alterations had to be 

performed so that they would be able to handle with up to 999 fields. Forces1RF and Forces2RF 

were developed for a single deep tunnel and twin superficial tunnels applications specific 

analyses. Both are capable of calculate the forces, hoop and bending moment, applied on the 

lining and the pressure around the contour of the excavation. The latter has also the possibility 

of output the displacements, vertical and horizontal, at ground surface and in the contour of the 

excavation of both tunnels.  

Moreover, a form was developed for Microsoft Office Excel that automatically processes the 

data outputted either from Interpret, Forces1RF or Forces2RF dividing it into bins so that the 

distribution of values within every batch of calculations can be quickly analysed and visualised 

through an histogram. As default the number of bins is calculated from 𝑁 = √𝑛 being N the 

number of bins and n the number of observations which results in 32 bins if n=1000. However, 

it is possible to ignore the recommended number of bins and select the number desired. In that 

case the limits of each bin as well as average values, frequency and cumulative density are 

recalculated automatically and the output and histogram are adapted to the modifications. 
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Figure 3.16 – Representative flowchart of UCGeoCode structure, adapted from Cruz (2008) 
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4 APLICATIONS 

4.1 Introduction 

So that the implication of introducing variability when modelling geotechnical structures could 

be verified in a tangible way, three applications are going to be analysed. These are purposely 

simple applications, common to the geotechnical engineering practice, so that the direct impact 

of the introduction of variability in the behaviour of each examined structure could be clearly 

assessed. 

The first application aims to infer the impact of the statistical distribution chosen to describe 

the random variable. The type of distribution, normal or lognormal, and the impact of its 

standard deviation will be assessed through the study of the bearing capacity of a strip rigid 

footing loaded under undrained conditions. The obtained results will be compared with both 

the solution obtained through a deterministic analysis as well as the theoretical solution 

established by Prandtl (1920). In the second application the influence of other parameters that 

control the generation of the random fields and the effect of considering multiple variable 

parameters will be analysed through the study of two twin strip footings subjected to vertical 

loading. In order to highlight the importance of introducing variability the results will be 

compared to those obtained with the deterministic analysis, allowing the observation of multiple 

aspects that a simple deterministic analysis cannot capture and that can influence the design of 

such structures. Finally, the third application aims to evaluate the implications of the 

introduction of variability on a rock mass when studying a deep tunnel excavated under an 

isotropic stress state. Beside the analysis of the influence of the standard deviation of the input 

variable (GSI) and of the isotropic spatial correlation distance, particularl attention is given to 

the assessment of the degree and direction of anisotropy in the rock mass. 

In all applications the following methodology was followed: generation of random fields with 

the desired parameters using UC2DRF; employment of constitutive models and interpolation 

for the finite element mesh of each application with MAT.PROP; calculation of all analysis 

using UCGeoCode; extraction of the desired results for interpretation using the several 

programs developed and presented in 3.5. 
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4.2 Strip Footing 

4.2.1 General Considerations 

The present analysis aims to quantify the influence of the type of statistical distribution selected 

and of the standard deviation used in the generation of the random fields. A simple case of a 

single strip footing with 2m width, B, placed on the soil ground surface was analysed. The soil 

was assumed to have an elasto-plastic behaviour with a Tresca yield surface where only 

undrained bearing is considered. The soil properties adopted in the deterministic analysis were: 

Su=100kPa; υ=0.49; E=100MPa and γ=20kN/m3. The footing was considered to be rigid and 

the analyses were performed under displacement control meaning that uniform vertical 

displacements, d, were imposed at the entire base of the footing. The displacements applied 

were increased throughout 23 stages until a ratio of d/B=0.03 was reached. The 2D mesh 

(assuming plain strain conditions) considered in the analysis is shown in Figure 4.1 and 

comprises 634 quadrilateral elements with 8 nodal points and 4 Gauss points for tension control. 

It has dimensions of 40×10m, which were considered to be adequate given the dimension of 

the footing. In terms of boundary conditions, all displacements were restricted in the bottom 

boundary while no horizontal displacements were allowed along the vertical boundaries of the 

mesh.  

 

Figure 4.1 – Mesh used (θx=θy=2): (a) standard deviation of 5; (b) standard deviation of 15; (c) standard 

deviation of 30 
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The capacity of a vertically loaded shallow strip footing on undrained conditions can be 

expressed by Equation 26 were Qmax is the maximum vertical load applied, A is the area of the 

footing, Su the undrained strength of the soil and Nc the bearing capacity factor (Potts et al., 

2001). In the present study, considering a continuous footing, the area is equal to the foundation 

width, 2m, and the Su equal to 100kPa. The bearing capacity Nc, for the present conditions 

should theoretically be equal to 5.14 (2+π) (Prandtl, 1920) for both smooth and rigid footings 

though it is shown to vary with the smoothness of the footing as well as the interface considered 

between the soil and the footing (Potts et al., 2001). Based on these values the theoretical 

bearing capacity of the footing analysed in this case would be 1028kN. 

𝑄𝑚𝑎𝑥 = 𝐴𝑆𝑢𝑁𝑐 26 

 

The introduction of the variability was considered assuming that Su is the variable parameter 

within the field and all the other soil properties remain constant throughout all analyses. In the 

generation of the variable fields the spatial correlation distances were kept isotropic and equal 

to 2m and the Su values below 0 and above 200 were truncated. A total of 2 cases were studied 

in this application and its analyses are summarised in Table 6. The first one aims to infer the 

impact that the type of statistical distribution of the input variable has on the maximum bearing 

capacity of the footing and the second one aims to establish the influence of the standard 

deviation of the input variable. The variability considered for the fields is well illustrated in 

Figure 4.1 where 3 of the multiple random fields used in the analyses with (a), (b) and (c) 

corresponding to fields with lognormal distributions having standard deviations of 5, 15 and 

30, respectively, are shown. The simple visualization of the figure allows to understand the 

influence of this parameter in the soil parameters. 

Table 6 – Single strip footing study cases 

Case STD Input distribution law 

1 Statistical distribution 15 Normal – Lognormal 

2 Standard deviation (STD) 5; 10; 15; 20; 30 Lognormal 

 

Given the random nature of the fields running one single analysis is not enough to define the 

pattern of the behaviour. The introduction of variability implies that multiple calculations have 

to be performed in contrast with the deterministic case where only one analysis is required. 

Fenton & Griffiths (2008) recommend the minimum of 500 realizations for each variable 

parameter. In the present work 999 realizations were performed for every case in order to 

establish a reliable pattern. In Figure 4.2 the moving average results of the bearing capacity of 
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the footing determined for the last stage of all analysis is presented for a case having a standard 

deviation of 15 and a lognormal statistical distribution. From the figure is possible to observe 

that the number of realizations performed is sufficient to establish a trend. However, there is a 

slight difference of about 7% between the trend value and the theoretical bearing capacity which 

can be justified due to the plastification that occurs in the analyses where poor soil strength 

characteristics are found. These analyses translate in a much lower bearing capacity that cannot 

be compensated by the other analysis where better soil properties are found leading to the 

difference observed. 

 

Figure 4.2 – Qmax moving average 

4.2.2 Case 1: Statistical distribution 

In order to evaluate the influence of the type of distribution two cases were analysed. In the first 

a normal distribution was assumed for the Su while in the other a lognormal distribution was 

considered. For each case a total of 999 calculations were performed in order to establish a 

pattern as demonstrated previously. In both cases a standard deviation of 15 and an isotropic 

correlation distance of 2m were considered in the generation of the random fields. 

In Figure 4.3 the minimum, average and maximum load-vertical displacement (normalised by 

the width of the footing) curves for a point located in the centre of the footing of all the analysis 

performed are presented in (a), (b) and (c), respectively. The minimum and maximum envelopes 

determined are a direct result of the chosen statistical distribution with the normal distribution 

displaying a wider range of values given its formulation. As expected, the difference between 

distributions is particularly larger for the minimum curves due to the tail of the normal 

distribution, while for the maximum a smaller discrepancy is observed. The average value of 

the load displacement curve appears to be independent of the statistical distribution chosen for 

the input variable and is a direct result of the standard deviation adopted. These results enhance 

the impact of introducing variability with differences of almost 50% in comparison with the 

deterministic curve and the theoretical value.  
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Figure 4.3 – Minimum, average and maximum load displacement curves effect of statistical distribution 

The distribution of the bearing capacity values obtained in the 999 analysis for both statistical 

distributions are presented in Figure 4.4 for 4 different levels of imposed displacements. For 

the lowest displacement (a), d/B=0.0025, a concentration of values around the deterministic 

value is obtained and the results resemble a lognormal distribution regardless of the type of the 

input distribution, which is justified since for the level of displacements imposed the soil is 

mostly within elastic range. With the displacement increment the distribution of values changes 

its shape and became similar to a normal distribution, even for the lognormal input curve, which 

is justified due to the generalised increase of plastification in the soil. It is possible to verify 

that the range of values obtained increases in proportion with the imposed displacements with 

the wider range corresponding to a normal statistical distribution as input in all the stages, which 

is directly related to the tails of this distribution. It can also be noticed that with the increase of 

displacement the average bearing capacity value progressively became smaller than the 

deterministic result. As mentioned previously, this difference may be explained by the different 

levels of plastification of the soil. Based on the obtained results it is possible to conclude that 

the input distribution has some influence in the results, and particularly on the extreme cases 

when a normal distribution is employed. However, the output results are essentially dependent 

of the constitutive laws and tend to follow a normal distribution if plasticity occurs, regardless 

of the input distribution type. 

The fitting parameters for a normal distribution of the resulting bearing capacities (d/B=0.03) 

are displayed in Table 7 for the last increment of displacement and show an overall good 

agreement for both input distributions, with the input lognormal distribution presenting the best 

adjustment (K-S provides the Kolmogorov-Smirnov goodness of the fit relative to zero, with 

negative values representing a deficit and positive a surplus). In the table are also presented the 

probabilities of the bearing capacity falling within certain ranges (having the theoretical value 

as reference). The probability results are higher in the lognormal input case and show that for 

an interval of ±5% only 21.6% of the bearing capacity values will occur. With the introduction 

of variability a variation of nearly ±20% was found in the bearing capacity highlighting its 
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impact and the benefits of its consideration in comparison with a traditional deterministic 

approach. 

 

Figure 4.4 – Bearing capacity distribution – statistical distribution; (a) d/B=0.0025, (b) d/B=0.0045, (c) 

d/B=0.012, (d) d/B=0.03 

Table 7 – Fitting parameters and probability of bearing capacity with statistical distribution of the input variable 

Input 

distribution 

Fitting parameters of normal 

distribution 

Probability of bearing capacity within 

interval 

μ (kN) σ (kN) K-S 1028±5% 1028±10% 1028±20% 

Normal 965.4 98.3 -1.94 17.0% 33.3% 82.4% 

Lognormal 975.2 71.9 -0.34 21.6% 41.9% 98.3% 

 

4.2.3 Case 2: Standard deviation 

For this analysis a lognormal statistical distribution was used for the value of the undrained 

strength of the soil since it is the one recommended in the literature as presented in 2.1.2. As 

expected the variation of the standard deviation of the input variable has a noticeable effect on 

the bearing capacity of the footing. In Figure 4.5 the minimum (a), average (b) and maximum 

(c) curves obtained for each standard deviation value considered are presented. As expected the 

increase of standard deviation will result in wider range of values, since more variability can be 

found in the field. This is particularly evident for the minimal envelope since smaller standard 

deviations imply poor strength characteristics of the soil, hence, more plastification and lower 

bearing capacity. On the upper bound the influence of the standard deviation is not so expressive 

since, regardless of the standard deviation, there is always plastification once a level of 

displacement is imposed. The average value of the load displacement curves can be shown as 

to be inversely proportional to the increment of the standard deviation value. This fact can be 

justified by two factors. As a result of the statistical distribution used, since the median value 
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of Su decreases with the increment of its standard deviation due to the non-symmetry of the 

lognormal distribution, and also due to the plastification of the soil as mentioned. 

 

Figure 4.5 – Minimum, average and maximum load displacement curves effect of standard deviation 

The distribution of the bearing capacity of the 999 analysis performed is presented in Figure 

4.6 for 4 different levels of displacements imposed and for the standard deviations of 5, 15 and 

30. Just like in the previous case studied the results show that for small levels of displacements 

imposed (a) a lognormal distribution is obtained. With the increase of displacements the results 

tend to follow a normal distribution. However, it is noticeable that for all displacements levels 

the distributions obtained are directly related with the standard deviation considered for the 

input variable. The increase of this parameters results in a wider range of values and on an 

average value of the bearing capacity that progressively decreases in comparison with the 

deterministic value. The results presented in Figure 4.7 and Table 8 are conclusive regarding the 

influence of the standard deviation of the input variable. In the figure are represented the 

average bearing capacity (a), the standard deviation (b) and the covariance (c) of the fitted 

normal distributions to the results of the last displacement level. In (a) a noticeable decrease of 

the average value of the bearing capacity is observable resulting from the formulation of the 

lognormal distribution and of the fact that the higher the standard deviation, the higher the 

probability of zones with lower resistance underneath the footing. The standard deviation of the 

bearing capacity (b) increases significantly with the increase of the standard deviation of Su 

resulting in a wider range of values for the bearing capacity. The combined effect of both 

parameters can be directly translated in the evolution of the covariance (c). This property tends 

to increase with the increment of the standard deviation and can be associated to a measurement 

of the increase of variability that is achieved with the increase of the standard deviation of the 

input variable.  

The probability of the bearing capacity falling within certain ranges (having the theoretical 

value as reference) are presented in Table 8. As expected the results show that the increase of 

the standard deviation of the input variable translates into a considerable decrease of the 
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probability of occurrence. For the higher value of the standard deviation analysed only 10.7% 

of the bearing capacity values will occur within the ±5% interval while it is expected that more 

than 30% of the values fall outside the ±20% range. 

 

Figure 4.6 – Bearing capacity distribution - standard deviation; (a) d/B=0.0025, (b) d/B=0.0045, (c) d/B=0.012, 

(d) d/B=0.03 

 

Figure 4.7 – Average, standard deviation and covariance variation with standard deviation of the input variable 

Table 8 – Fitting parameters and probability of bearing capacity with standard deviation of the input variable 

Standard 

Deviation 

Fitting parameters of normal 

distribution 

Probability of bearing capacity within 

interval 

μ (kN) σ (kN) K-S 1028±5% 1028±10% 1028±20% 

5 1033.9 29.1 -2.31 61.3% 91.7% 100.0% 

10 1004.3 50.7 0.02 35.2% 63.6% 100.0% 

15 975.2 71.9 -0.34 21.6% 41.9% 98.3% 

20 934.6 89.3 0.00 13.2% 26.7% 89.4% 

30 912.2 121.3 4.97 10.7% 21.4% 69.6% 
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4.3 Twin Strip Footings 

4.3.1 General Considerations 

A study on twin strip footings subject to simultaneous vertical loading was performed in order 

to evaluate the impact of the introduction of variability on risk analysis. The mesh considered, 

presented in Figure 4.8, is comprised of 798 quadrilateral elements with 8 nodal points and 4 

Gauss points for tension control. Two equal sized strip footings having 1m width (B=1m) and 

distance between centres of 3m (3B) were placed at the upper middle point of the mesh. As in 

previous application, the single strip foundation, the soil beneath the footings was assumed to 

have an elasto-plastic behaviour with a Tresca yield surface where only undrained bearing was 

considered. The following properties were considered for the soil: average value of Su=100kPa 

with truncation values set so that no truncation effects were expected (minimum equal to 0 and 

maximum equal to 200 kPa), Eu=100MPa, υ=0.49 and γ=20kPa. Vertical distributed loads were 

applied simultaneously to both foundations along 23 stages until a value of 514kN (theoretical 

maximum bearing capacity for this problem according with Prandtl (1920)) was reached. For 

both footings vertical displacements were registered at the extremities and centre of the footing, 

which allowed for the calculation of the individual rotation of each footing and the relative 

rotation between the centres of the two.  

 

 

Figure 4.8 – Mesh used (θx=θy=4): (a) standard deviation of 30; (b) standard deviation of 15 

In order to introduce variability a lognormal distribution was considered for the undrained 

strength of the soil. Several variations of the parameters that control the generation of the 

random fields were evaluated in this application. In Figure 4.8 are presented two cases of the 

undrained strength random field considered in the analyses. As it is possible to observe there 

are significant differences between the fields just when a different standard deviation is 

considered. The cases analysed are summarised in Table 9 and comprise three different studies. 
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The first study case aims to infer the effect of the standard deviation (STD) of the input variable 

has on the behaviour of the footings. The second study case is performed in order to assess the 

influence of the isotropic spatial correlation distance (θx). In the third and final study case the 

variability of the undrained deformation modulus, Eu, is added to the variability of the undrained 

strength of the soil by multiplying the value of Su at each Gauss point of the mesh by a constant 

(K). The value chosen for the constants represent the limits for clay and silt and silty or sandy 

clay as proposed by Bowles (1996) and already presented in Table 2. Finally, based on the 

overall obtained results a brief discussion about the possible failure mechanisms of the footings 

is presented. 

Is important to refer that also in this application and for each case 999 calculations were 

performed. This number has proven to be sufficient to establish a pattern as can be seen in 

Figure 4.9 where the moving average of the relative vertical displacements (dR) of the footings 

for the last stage of the analyses are presented. As can be seen from the figure stabilisation of 

the relative displacement occurs for around 500 analyses and for a value almost equal to the 

predicted in the deterministic case (solid black line). 

Table 9 – Twin strip footings study cases 

Case STD θx  K 

1 Standard deviation (STD) 5,10; 15; 20,30 4m - 

2 Isotropic spatial correlation 15 2m, 4m, 8m - 

3 Multivariable 15 4m 500, 1000, 1500 

 

 

Figure 4.9 – Relative displacements moving average (θx=4m; STD=15) 

4.3.2 Case 1: Standard deviation 

In this study 5 different standard deviation (5, 10, 15, 20 and 30) of the Su were analysed while 

maintaining whole the other parameters unchanged. As to be expected the variation of the 

standard deviation of the input variable has a major impact on the response of the soil 

underneath the footings. In Figure 4.10 the minimum, average and maximum load-vertical 
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displacement curves for a point located in the centre of the footings of all the analysis performed 

for standard deviation of 5, 15 and 30 are presented. (a), (b) and (c) figures correspond to the 

left footing and (d), (e) and (f) to the right footing. As can be shown, when considering 

minimum displacements, the soil is proven to have an almost elastic behaviour throughout the 

entire loading, except in the case of standard deviation of 5 where some plastification occurs 

for loads above 450kN. This is to be expected since the increment in the standard deviation 

value directly increases the probability of occurrence of values of Su significantly higher than 

the average value, consequently increasing the soil strength directly underneath the footings. 

The average values, (b) and (e), show an increase of displacements with the increment of the 

standard deviation due to the fact that the variable Su was introduced having lognormal 

statistical distribution which makes it so that for the same average value, the higher the value 

of standard deviation, the lower the mean value of Su, originating an increase in the average of 

the displacements. The maximum values, presented in (c) and (f), increase significantly with 

the increment of standard deviation as expected. This is caused by fact that zones with lower 

strength beneath the footings are also more likely to occur with the increment of standard 

deviation. It is interesting to note that minimum, maximum and even average curves predicted 

in all cases differ significantly from the deterministic case where no variability was introduced, 

highlighting the role that variability can have to detect different scenarios. 

 

 

Figure 4.10 – Minimum, average and maximum load displacement curves (standard variation) 

In Figure 4.11 the distribution of the total rotations, wtot, between the footings determined for 

the 999 analysis performed with standard deviations of 5, 15 and 30 is shown for safety factors 

of 3, 2, 1.5 and 1 in (a), (b), (c) and (d), respectively. The total rotation was determined 
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considering the relative vertical displacement at the centres of each footing divided by its 

distance and the safety factor (SF) was calculated by dividing the maximum load applied 

(514kN) by the load at a given stage. When the SF is equal to 3 in all three cases considered the 

rotations are almost zero (deterministic value) in the majority of the calculations. This is due to 

the fact that only 33% of the average maximum load is applied and, therefore, the soil is either 

within the elastic range or at the beginning of the plastic phase. For a SF=2 an increase of the 

range off the rotations is noticeable even though a concentration of values around the 

deterministic value (zero) is still visible especially for small standard deviation values. When 

the load is increased and a SF=1.5 is reached the range of values for the rotations increases 

significantly, although centred in the value of zero, for all standard deviations. In the limit case 

(SF=1) an even higher variability is observed, and particularly for standard deviation of 30. 

With the introduction of variability, the footings no longer settle equally and relative 

displacements and rotation occur. This new behaviour of the footings could not have been 

foreseen during the design stage if just deterministic analysis were performed. 

 

 

Figure 4.11 – Relative rotations – standard deviation: (a) SF=3, (b) SF=2, (c) SF=1.5, (d) SF=1 

In order to further assess the impact of the results Gauss distribution curves were fitted to the 

distribution of the total rotation, between both footings, and to the individual rotation of each 

footing separately, wright and wleft, taken as the relative displacement measured at the extremities 

of the footing divided by its width (1m). In Figure 4.12 the evolution of the standard deviation 

values of the fitted Gauss distribution of the rotations with the standard deviation of the input 

variable is shown for (a) SF=3, (b) SF=2, (c) SF=1.5 and (d) SF=1. For SF=3 the standard 

deviation of the rotations only shows a minimal increase for standard deviation values of the 

input variable higher than 20. This a consequence of that for the loading applied at that stage 
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the soil underneath the footings is mostly in elastic behaviour, hence the settlements of both 

foundations will be equal in magnitude and no rotation is observed. For SF=2 and SF=1.5 the 

standard deviation values of the rotations will only increase noticeably for standard deviations 

of the input variable higher than 20, again due to the fact that for lower standard deviations of 

the input variable the values of Su will be closer to the average value and therefore, exhibit a 

behaviour close to the deterministic value. For SF=1 the standard deviation value of the 

rotations increases exponentially with the increment standard deviation value of the input 

variable due to the fact that the soil beneath the footings is mostly in plastic state, regardless of 

the standard deviation considered. Figure 4.12 also allows to observe that significant rotations 

within each footing are likely to occur although in lower values than those observed for the 

global rotation. This again is a behaviour that the deterministic case cannot foreseen and that 

might have significant implications in the design. 

Finally, in Table 10 the fitted Gauss distribution parameters of the total rotation for each value 

of standard deviation of Su and for SF=2, SF=1.5 and SF=1 are presented. In the table are also 

displayed the probabilities of the total rotation exceeding the values of 1/500, 1/300 and 1/150 

at each safety factor. The values of 1/500, 1/300 and 1/150 account for the values of differential 

rotations past which cracking in building coatings, cracking in structural walls and structural 

damage in common buildings are expected to occur respectively (Bjerrum, 1963; Rankin, 1988; 

Boscardin & Cording, 1989; Burland, 1995). From the table is possible to observe that despite 

the increase of variability given by the variation of the standard deviation only for the extreme 

cases and when a SF=1 a change in the average value of the distribution (μ) is observed. In the 

case of the standard deviation (σ) that increase is more relevant particularly for SF higher than 

2 as stated previously. The evaluation of the probability of damage in the footings shows that 

for SF higher than 2 no problems are likely to occur. When the SF decreases to 1.5 a reasonable 

risk of damage is observed for high standard deviation values of the Su. In the limit case, as 

expected, the probability of damage is very high, regardless of the standard deviation 

considered. The results obtained show that if a SF higher than 2 is used in the design, as 

recommended by Bowles (1996), the probability of damage is very low although with the 

introduction of variability is possible to account for it. 
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Figure 4.12 – Relative rotation standard deviation variation with input variable standard deviation: (a) SF=3, (b) 

SF=2, (c) SF=1.5, (d) SF=1 

Table 10 – Structural damage probability effect of the standard deviation 

STD 

Fitting parameters Probability of rotation exceeding  

μ  σ 1/500 [%] 1/300 [%] 1/150 [%] 

SF  SF  SF  SF  SF  

2 1.5 1 2 1.5 1 2 1.5 1 2 1.5 1 2 1.5 1 

5 0.0 0.0 -0.6 0.0 0.2 23.0 0.0 0.0 45.6 0.0 0.0 43.3 0.0 0.0 37.8 

10 0.0 0.0 0.3 0.0 0.5 48.3 0.0 0.0 48.7 0.0 0.0 47.6 0.0 0.0 44.8 

15 0.0 0.0 1.2 0.1 1.4 89.8 0.0 7.5 49.6 0.0 0.8 49.2 0.0 0.0 47.6 

20 0.0 0.1 -0.8 0.1 3.1 134.0 0.0 26.9 49.2 0.0 14.7 48.8 0.0 1.6 48.0 

30 0.0 -0.1 -10.4 1.6 21.7 276.4 11.3 46.4 49.4 2.1 43.6 48.0 0.0 37.8 47.6 

4.3.3 Case 2: Isotropic spatial correlation distance 

In the second study case the magnitude of the isotropic spatial correlation (θx=θy) was varied 

maintained all other parameters constant and assuming a standard deviation of 15. The impact 

of the magnitude of the isotropic spatial correlation on the behaviour of the footings was 

evaluated for 3 cases, θx=2, 4 and 8m, which were considered relevant given the dimension of 

the model and the interaction zone of the two footings. In Figure 4.13 the minimum, average, 

and maximum load-vertical displacement curves for a point located in the centre of the footings 

of all the analysis performed are presented for the 3 cases analysed. As observed for the 

influence of the standard deviation, if the minimum values for the displacements are considered, 

(a) and (d), the soil beneath the footings behaves almost as an elastic material and the spatial 

correlation has a minimal effect resulting in displacements smaller than those determined for 

the deterministic case. The average values, presented in (b) and (e) show identical curves 

independently of the spatial correlation distance adopted and appear just to be influenced by 

the standard deviation of the input variable adopted. Finally, the maximum curves, (c) and (f), 

represent the most interesting results. As can be seen the smaller maximum curves are obtained 

for the smaller value of the spatial correlation distance (2m) and no visible difference is 

observable for the values of 4 and 8m. This is a direct consequence of the relationship between 
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the spatial correlation distance and the area affected by the footings. For values smaller than 

4m (distance between the centres of the footings) and given the properties of the random fields 

at least a part of the soil underneath the footings has reasonable strength, while for higher values 

is possible to have analyses where all the soil underneath the footings presents poor strength 

characteristics, resulting in higher settlements. Naturally, for spatial correlation distances higher 

than the area affected by the two footings, the results will tend to became similar as obtained 

for the 4 and 8m studies. 

 

 

Figure 4.13 – Minimum, average and maximum load displacement curves (isotropic spatial correlation distance) 

The distribution of the results of the 999 analysis performed for each case of the total relative 

rotations between the two footings is presented in Figure 4.14. As expected for a decrease of 

the SF a wider range of values is obtained for the total rotations, which are justified by the 

increase of plastification in the analysis. However, based the analysis of the histograms is not 

clear the influence of the variation of the spatial correlation distance, although it appears that 

higher values correspond to higher dispersion of values. 

In order to clarify this point the evolution of the standard deviation of the total rotations, 

determined by fitting the Gauss distribution to the results presented in Figure 4.14, against the 

spatial correlation distance is plotted in Figure 4.15. Superimposed in the figures are also the 

results obtained for the adjustment of the rotations of the individual footings (wright, wleft). It is 

possible to observe that SF=3 no rotations occur given the elastic behaviour of soil for this load. 

For the subsequent safety factors the standard deviation of the total rotation increases 

significantly. However, is possible to verify that for a spatial correlation higher than 4 the 
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standard deviation modifies its behaviour and appear to stabilise although is not possible to 

generalise a trend based solely in the cases analysed. As for the individual rotation of each 

footing it appears that there is no particular influence of the spatial correlation value adopted. 

This result was expected given the width of the footings (1m) being half of the smallest value 

studied (2m) and therefore there is a high probability that the entire footing is being located 

upon soil with poor strength characteristics. 

In Table 11 the probability of exceeding a total rotation of 1/500, 1/300 and 1/150 when varying 

the isotropic spatial correlation is shown alongside the fitting parameters for the Gauss 

distribution. As can be observed the noticeable differences begin to occur for SF higher than 

1.5, where the probability of inducing cracking on building coatings (1/500) significantly 

increases when transitioning from a spatial correlation distance of 2 to 4m and stabilizing past 

that value. Once again this can be explained by the fact that 4m may be sufficient to influence 

both footings whilst a smaller spatial correlation is not. For SF=1 generalised plastification and 

consequence high probability of damage occurs regardless of the spatial correlation distance 

value adopted. 

 

 

Figure 4.14 – Relative rotations – magnitude of isotropic spatial correlation distance (a) SF=3, (b) SF=2, (c) 

SF=1.5, (d) SF=1 
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Figure 4.15 – Relative rotation standard deviation variation with magnitude of spatial correlation distance (a) 

SF=3, (b) SF=2, (c) SF=1.5, (d) SF=1 

Table 11 - Structural damage probability effect of isotropic spatial correlation 

θx 

Fitting parameters Probability of rotation exceeding  

μ σ 1/500 [%] 1/300 [%] 1/150 [%] 

SF  SF  SF  SF  SF  

2 1.5 1 2 1.5 1 2 1.5 1 2 1.5 1 2 1.5 1 

2m 0.0 0.0 -0.6 0.0 0.7 62.3 0.0 0.1 48.4 0.0 0.0 47.6 0.0 0.0 45.6 

4m 0.0 0.0 1.2 0.1 1.4 89.8 0.0 7.5 49.6 0.0 0.8 49.2 0.0 0.0 47.6 

8m 0.0 0.0 2.7 0.1 1.5 109.4 0.0 8.9 50.4 0.0 1.2 49.6 0.0 0.0 48.8 

4.3.4 Case 3: Multivariable 

In the third and final case the influence of introducing variability into a second variable is 

evaluated by performed 3 additional analyses. In these, beside the variability of Su, it was 

considered that the undrained deformation modulus, Eu, was also variable while all the other 

parameters remained unchanged. However, the variability of the latter was conditioned to the 

former through the application of Equation 15. Values of K corresponding to 500, 1000 and 

1500 were considered for the 3 analyses. It should be noted that the deterministic case and the 

analysis considering only the variability of Su the undrained deformation modulus, Eu, was kept 

constant and equal to 100MPa which correspond to adopt a K=1000.  

The introduction of variability in more than one parameter is shown to influence decisively the 

behaviour of the footings. Figure 4.16 shows for the right and left footings the minimum, 

average and maximum load-vertical displacement curves for a point located in the centre of the 

footings for all the analysis performed of the 3 cases studied. In the figure are also plotted for 

reference the deterministic case and the equivalent analysis when only varying Su (sing var). 

The minimum curves, (a) and (d), reveal that a noticeable impact occurs in the stiffness of the 

soil beneath the footing showing that an increase of K translate in higher Eu and consequently 

in a stiffer response of the soil although within the elastic range. Identical results are observed 

for the average and maximum curves where the differences in stiffness are even more 



Modelling the Influence of Soil Variability  
on Geotechnical Structures 4 - APLICATIONS 

Diogo António Carvalho Ferreira 56 

perceptible due to the plastification of the soil. The comparison between the single variable 

calculation (blue solid line) with the results obtained from considering E=1000Su (red solid line) 

allow to directly evaluate the influence of considering a second parameter variable in the 

analysis. As expected the introduction of a second variable induces more variability in the 

results, although that is only very noticeable after plastification occurs. 

 

 

Figure 4.16 – Minimum, average and maximum load displacement curves (multivariable) 

The distribution of the results of the 999 analysis performed for each case of the total rotation 

of the footings is shown to be directly influenced by the stiffness variation for every safety 

factor considered. Figure 4.17 shows those distributions for SF=3, SF=2, SF=1.5 and SF=1 in 

(a), (b), (c) and (d), respectively. When considering any safety factor it can be observed that the 

smaller the stiffness the larger is the range of the total rotations, even when only 33% of the 

maximum average load is applied, showing that the introduction of variability in multiple 

parameters translates into more variable results. This effect is even clearer on Figure 4.18 where 

the standard deviation of the fitted Gauss distribution to the results of the total rotation are 

plotted against parameter K. As expected an increase of K (higher stiffness) translates in a lower 

standard deviation. However, the reference standard deviation value for a single variable is 

lower than the determined for the case where K=1000 highlighting the influence of variability. 

An identical result is observed, although at a smaller scale, for the individual rotations of each 

footing. Table 12 summarises the parameters of the fitted Gauss distribution and the probability 

of damage for different levels. The results confirm that the introduction of a second variable 

results in higher probabilities of damage, which naturally increase with the decrease of the 

stiffness (K).  



Modelling the Influence of Soil Variability  
on Geotechnical Structures 4 - APLICATIONS 

Diogo António Carvalho Ferreira 57 

 

 

Figure 4.17 – Relative rotations - multivariable (a) SF=3, (b) SF=2, (c) SF=1.5, (d) SF=1 

 

Figure 4.18 – Relative rotation standard deviation variation with introduction of multivariable variability (a) 

SF=3, (b) SF=2, (c) SF=1.5, (d) SF=1 

Table 12 - Structural damage probability – multivariate variability 

K 

Fitting parameters Probability of rotation exceeding  

μ σ 1/500 [%] 1/300 [%] 1/150 [%] 

SF  SF  SF  SF  SF  

2 1.5 1 2 1.5 1 2 1.5 1 2 1.5 1 2 1.5 1 

500 0.0 -0.1 -4.5 0.6 2.9 242.5 0.0 23.9 49.2 0.0 12.1 48.8 0.0 0.0 48.0 

1000 0.0 0.0 -2.4 0.3 1.5 121.1 0.0 9.5 48.7 0.0 1.5 48.0 0.0 0.0 47.2 

1500 0.0 0.0 -0.5 0.2 0.9 77.6 0.0 1.4 47.9 0.0 0.0 48.0 0.0 0.0 46.4 

4.3.5 Failure mechanisms 

The calculations performed show that there are 8 possible failure mechanisms for the footings. 

Each of the two footings can individually rotate clockwise or anticlockwise and the relative 
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rotation between them can also be clockwise or counter clockwise amounting to eight possible 

combinations. It should be mentioned that in the deterministic case there is no rotation between 

both footings (relative displacement at the centre equal to zero), the left footing rotates 

clockwise and the right footing anticlockwise, i.e., the footings rotates toward each other.  

Figure 4.19 shows three different mechanisms identified for analyses which have the exact same 

input variables, average value of Su of 100, standard deviation of 15 and isotropic spatial 

correlation distances of 4m, and therefore only differ due to the randomly generated field. In 

(a) is possible to see that both foundations rotate anticlockwise and there is also a anticlockwise 

rotation between them, in (b) both foundations present a slight rotation anticlockwise with a 

significant clockwise rotation between them and, finally, in (c) both foundations rotate 

clockwise with also a relative clockwise rotation between them.  

In each case performed throughout this study all 8 possible failure mechanism combinations 

were observed in the 999 analysis calculated. In total, in the nearly 10000 analysis performed, 

each mechanism occurred with an almost equal probability of roughly 12.5%. This nearly equal 

distribution leads to the conclusion that despite the footings being spaced only 3m apart they 

behave almost independently and show no significant mutual influence. 

          

          

          

Figure 4.19 – Examples of failure mechanisms 
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4.4 Deep Tunnel 

4.4.1 General considerations 

So that the influence of rock mass variability on geotechnical structures can be assessed, a study 

on a deep tunnel having circular section subject to a uniform stress state was performed. The 

2D mesh used is presented in Figure 4.20, and is a quadrilateral with dimension 120m having 

an 8m diameter tunnel centred. The mesh has 812 solid elements with 8 nodal points and 4 

Gauss points for stress evaluation. The lining was simulated through solid elements with 0.20m 

thickness having linear elastic behaviour with a Young’s modulus of 20 GPa and a Poisson’s 

coefficient of 0.25. The boundary conditions were set so that no displacements were possible 

at the limits of the mesh. A uniform and isotropic stress state of 1MPa was assumed in order to 

simulate the typical conditions found in deep tunnels. The effect of gravity forces was neglected 

by considering that the elements of the mesh have null unit weight.  

 

Figure 4.20 – Finite elements mesh used – deep tunnel: (a) STD=7, θx=10m, θx/θy=1, α=0; (b) STD=7, θx=75m, 

θx/θy=7.5, α=45 

Simplifications were admitted so that the 3D effects normally associated to the excavations of 

tunnels could be reproduced in a 2D simulation (Moller, 2006). In order to account for the three-

dimensional effects generated by the excavation, that usually translate in stress redistribution, 

through arch effect, onto the surrounding massif as well as into the lining, and the time delay 

with which the lining is installed in comparison to the front of the excavation, the stress 

relaxation method was employed (Potts et al., 2001). This method suggests that the simulation 

of the excavation can be performed in two separate stages. Firstly, the elements of the tunnel 

are removed and a percentage of resulting stresses (α) are applied in the contour of the 

excavation, then, on a second stage, the lining is installed, and the remainder of the unbalanced 

stresses is applied (1-α) so that a final equilibrium state is achieved. In deep tunnels the stress 

relief factor (α) can be estimated through the convergence-confinement method (Panet & 
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Guenot, 1982). In the present analysis a stress relief factor of 80% was considered to be 

adequate given the dimensions of the tunnel, the stress state and the characteristics of the rock 

mass. Hence, the construction stages adopted were, the excavation of the tunnel through the 

removal of its elements (140) and application of 80% of the resulting stresses onto the contour 

of the excavation followed by a second stage where the lining was installed and applied the 

remaining stresses (20%). 

For the rock mass the Hoek-Brown failure criterion was adopted (Hoek et al., 2002). As 

mentioned in section 3.3.2 the required parameters for the definition of the rock properties are 

the GSI, the constant of the intact rock mi, the deformation modulus of the intact rock, σci , the 

Poisson's coefficient, υ, and the disturbance factor, D. In order to have more realistic results the 

deterministic parameters adopted correspond to a real rock mass, in this case the complex C5 

as presented in Pedro (2007). The GSI was the parameter elected to be variable within the field 

since it simultaneously affect the strength and deformability of the rock mass as demonstrated 

in 2.1.2. A normal distribution was considered for the GSI as suggested by Cai (2011). For the 

deterministic analysis the average value of 46 was adopted as proposed by Pedro (2007). 

Table 13 – Rock mass parameters 

GSI avg 46 

GSI min 32 

GSI max 60 

Ei (MPa) 8100 

σci (MPa) 21 

υ 0.25 

mi 9 

D 0 

 

Just like in the previous applications 999 analysis were run for each case considered. In Figure 

4.21 the moving average of the relative displacements Dr of points A and B, located at the centre 

of the upper and lower sides of the tunnel (vertical convergence), are presented for the 999 runs 

for a field having a standard deviation of 7 and isotropic spatial correlation of 10m. The moving 

average results of Dr allows for the reasoning that 500 realizations would be sufficient. In this 

case it is possible to observe that the average value is almost identical to that obtained with the 

deterministic analysis. That occurs since for the geometry, conditions and parameters adopted 

there is almost no plastification in the rock mass, hence, being within the elastic range. 
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Figure 4.21 – Number of calculations – Deep tunnel 

With this application it is intended to evaluate not just the influence of the standard parameters 

that control the generation of the field, standard deviation, isotropic spatial correlation, but also 

the advanced features implemented in UC2DRF, namely the degree and direction of the 

anisotropy in the field. The study cases analysed in this application are presented in Table 14. 

In the first case three values of the standard deviation and of the isotropic correlation distance 

were employed in a total of nine analysis performed. In the second case a degree of isotropic 

was introduced by varying θx and the ratio θx/θy. Finally, the rotation of the anisotropy of the 

field was evaluated by varying α while keeping all the other parameters constant.  

Table 14 – Study cases – Deep tunnel 

Case STD θx (m) θx/θy α (°) 

1 
Standard deviation (STD) and 

isotropic spatial correlation 
5, 7, 9 5, 10, 20 1 0 

2 Anisotropic spatial correlation 7 
10, 20, 

50, 100 

0.1, 0.2, 0.5, 

1, 2, 5, 10 
0- 

3 Rotation 7 75 7.5 
-90, -62.5, -45, -22.5, 0, 

22.5, 45, 62.5, 90 

 

4.4.2 Deterministic analysis 

So that the influence of variability can be asserted 3 deterministic calculations were performed 

for the average value of GSI as well as for the minimum and maximum values proposed by 

Pedro (2007). The Hoek-Brown parameters used in each analysis are presented in Table 15. As 

expected, given the initial stress conditions, each calculation originates uniform radial 

displacements, forces and pressures in the lining. The results are summarised in Table 16. It is 

worth mention that the minimum value considered for the GSI originates displacements, forces 

and pressures that are significantly larger in comparison with the ones resulting from the other 

analysis. These are consequence of the plastification of the rock mass that occurs for this small 

value of GSI. As a consequence of the radial symmetry of the mesh and the loading conditions 

the bending moment are equal to zero in all three analyses. 
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Table 15 – Hoek-Brown criterion parameters 

GSI σci (MPa) mb s a Ei (MPa) 

32 27 0.79346 0.00052 0.51953 751 

46 27 1.30820 0.00248 0.50755 1934 

60 27 2.15686 0.01174 0.50284 4212 

Table 16 – Deterministic analysis results 

GSI Displacement (mm) Convergence (mm) Hoop Force (kN) Lining Pressure (KPa) 

32 6.03 12.06 533 128 

46 2.47 4.93 338 82 

60 1.17 2.35 199 48 

4.4.3 Case 1: Standard deviation and isotropic spatial correlation distance  

The impact of the variation of the standard deviation and of the isotropic spatial correlation is 

presented below. The values of standard deviation of 5, 7 and 9 were chosen so that the 

probability between the minimum and maximum values of the GSI are approximately 99.5%, 

95% and 90% respectively.  

In Figure 4.22 the results of the total displacements for 5 different analyses are presented. In (a) 

are illustrated for reference the total displacements of the deterministic analysis (GSI=46); in 

(b) the results obtained for a calculation having isotropic spatial correlation distance of 10m 

and standard deviation of 5; (c), (d) and (e) are, respectively the results obtained for random 

calculations with standard deviation of 7 and isotropic spatial correlation distances of 5, 10 and 

20m, respectively, and (e) is the result of a random calculation having standard deviation of 9 

and 10m spatial correlation distance. The differences between the results are both quantitatively 

and qualitatively noticeable. The spatial distribution of the total displacements is no longer 

radial and uniform as in the deterministic analysis and becomes preferably oriented according 

to the weak zones introduced in the massif. The effects are also noticeable in the magnitude of 

the displacements that are significantly different than those obtained in the deterministic case. 

The introduction of variability causes noticeable asymmetry in the deformation of the tunnel. 

This asymmetry implies the possibility of asymmetric hoop force and lining pressure diagrams 

that cannot be predicted by performing a simple deterministic analysis. 



Modelling the Influence of Soil Variability  
on Geotechnical Structures 4 - APLICATIONS 

Diogo António Carvalho Ferreira 63 

  

Figure 4.22 – Representative total displacements: (a) deterministic; (b) STD=5, θx=10; (c) STD=7, θx=5; (d) 

STD=7, θx=10; (e) STD=7, θx=20; (f) STD=9, θx=10 

When analysing the variation of the vertical displacement at the central point of the upper side 

of the tunnel (A) with GSI standard deviation and isotropic spatial correlation over the 999 

calculations several conclusions can be drawn. Figure 4.23 presents the distribution of the 

displacement at point A for a standard deviation of (a) 5, (b) 7 and (c) 9 for the three spatial 

correlation distances analysed. Superimposed in the figure are the values obtained for the 

deterministic analysis for reference. The figure show that the increase of the spatial correlation 

distance implies a wider range of displacements. However, the effect of this parameter is 

smaller than the influence observed for the standard deviation were even wider distributions 

occur for the same isotropic correlation distance. The results appear to follow a lognormal 

distribution weak its peak around the deterministic average value of GSI and only for a higher 

standard deviations and spatial correlation distances surpass the values given by the limits of 

the GSI. This results are even more visible in Figure 4.24, where the average value of the 

vertical displacement (a) is shown to increase with the value of standard deviation between 

around 2 and 10% but to remain almost constant when varying the isotropic spatial correlation 

distance. The median value calculated for the 999 analysis of each case (b), is higher than the 

value obtained in the deterministic analysis, tends to decrease with the isotropic spatial 

correlation distance but increases with standard deviation of GSI. The standard deviation values 

obtained for the displacement density curves are shown to increase with the standard deviation 

of GSI and with the spatial correlation distance, having a significant influence for a standard 

deviation value of 9. The statistical analysis shows that the determination of the probability of 
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occurrence of displacements exceeding a given value is directly influenced by the standard 

deviation and by the spatial correlation distance, increasing with both parameters. 

 

Figure 4.23 – Distribution of the vertical displacement with standard deviation and isotropic spatial correlation 

 

Figure 4.24 – Vertical displacements variation with standard deviation and isotropic spatial correlation 

The effect of standard deviation and magnitude of the isotropic spatial correlation on the hoop 

force envelopes around the tunnel surface is presented in Figure 4.25. (a), (b) and (c) correspond 

to standard deviations of 5, 7 and 9 respectively. As can be observed, an increase of the value 

of the standard deviation and of the spatial correlation distance, corresponds to higher forces 

will be applied in the lining, which envelopes approaches the values expected for the minimum 

and maximum values of GSI although never surpassing the afore mentioned values. However, 

when the results are compared with the reference GSI value is possible to observe that the 

deterministic analysis is incapable of predicting the magnitude and asymmetry of forces that 

can be resultant of the introduction of variability in the rock mass. This can have a major impact 

in the design of the lining of the tunnel since an increase of nearly 28% on the hoop forces is 

predicted just when a small standard deviation is considered in the analysis. Furthermore, that 

increase is likely to be asymmetric causing additional problems in the lining design. A random 

result with isotropic spatial correlation and correspondent standard deviation was also plotted 

for each STD value further demonstrating the expected and random asymmetry resulting from 

the introduction of variability. 
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Figure 4.25 – Hoop force envelope variation with standard deviation and isotropic spatial correlation 

4.4.4 Case 2: Anisotropic spatial correlation 

In order to evaluate the anisotropy of the field 999 calculations were performed for values of 

θx/θy of 0.1; 0.2; 0.5; 1; 2; 5 and 10 in fields generated having a standard deviation value of 7. 

In Figure 4.26 five examples of the fields considered in the analysis corresponding to θx/θy (a) 

0.2; (b) 2; (c) 5; (d) 0.5 are presented. The influence of anisotropy is clear in the figures where 

is possible to visualize that the ratio of 5 and 0.5 almost corresponds to having layers in the 

rock mass in the horizontal and vertical directions, respectively.  

However, and despite the clear differences between the fields, the introduction of an anisotropic 

spatial correlation distance did not imply significant differences in the displacement distribution 

over all calculations, with the variation of the average and median values of the distribution 

being smaller than 2% in comparison with the corresponding isotropic case. A similar result 

was observed for the hoop force envelopes. Although these results appear strange they confirm 

that the execution of multiple analysis tend, in average, to resemble the deterministic case, 

which is an assurance that the analysis are well performed. Based solely on the average results 

the introduction of anisotropy, regardless of its degree, appear to bring no meaningful variations 

for this particular application. However, when the extreme results are analysed is possible to 

observe some influence of the anisotropy. In Figure 4.27 the vertical (A-B) and the horizontal 

(C-D) variations in percentage of the maximum convergence verified in the analyses relatively 

to the deterministic value are plotted against the anisotropy ratio. As shown both the vertical 

and horizontal convergence have a minimum difference when θx/θy=1, i.e. isotropic conditions. 

However, for values lower than 1 the difference of the vertical convergence (A-B) increases 

considerably with the decrease of the θx/θy ratio. This result is justified since for ratios lower 

than 1 the rock mass becomes vertically layered (Figure 4.26(d)), hence, the probability of 

vertical weaker bands affecting simultaneously the crown and bottom of the tunnel is 

considerable resulting in higher variations of the convergence (up to 45%). For ratios higher 

than 1 the rock mass progressively becomes horizontally layered and a similar effect, increase 

of differences, is observed. Naturally this increase is smaller than the observed in the other 
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direction, since the bands are now horizontal, and is a direct function of the value of the spatial 

correlation distance, which in this case is 10m and consequently the entire tunnel can be located 

within a weaker band. It is also interesting to note that for high θx/θy ratios there is a stabilisation 

of the variation, which is justified by the fact that the layering in the horizontal direction is 

already formed and, therefore, an increase of the anisotropy in this direction does not affect the 

result of the vertical convergence. Similar conclusions can be drawn for the convergence in the 

horizontal direction (C-D) that follows a mirrored behaviour.  

 

Figure 4.26 – Examples of random fields having anisotropic spatial correlations: (a) θx/θy=1; (b) θx/θy=0.5; (c) 

θx/θy=2; (d) θx/θy=0.2 

 

Figure 4.27 – Maximum convergence variation with anisotropic spatial correlation  

4.4.5 Case 3: Field rotation 

For evaluating the influence of the rotation of anisotropy random fields were generated for 

different angles α while keeping constant a standard deviation value of 7, a θx=75m and an 

anisotropy ratio of θx/θy=7.5. In Figure 4.28 examples of random fields generated for (a) α=-

90°; (b) α=-67.5°, (c) α=--45°; (d) α=-22.5°; (e) α=0°; (f) α=22.5°; (g) α=45°; (h) α=67.5° are 

presented. From the figures is possible to observe that bands of rock masses are created with 

approximately the direction imposed by α.  



Modelling the Influence of Soil Variability  
on Geotechnical Structures 4 - APLICATIONS 

Diogo António Carvalho Ferreira 67 

The rotation of the field is expected to have a similar impact to that observed when the degree 

of anisotropy was varied, with the only difference being the direction where the maximum 

convergence is observed. In fact, the results obtained for the hoop force, lining pressure and 

displacement envelopes lead to the conclusion that the minimum and maximum values are not 

a function of the rotation since no pattern could be established. A further analysis on the 

distribution of the convergence throughout the 999 runs show that the rotation of the anisotropy 

directly influences the standard deviation of the statistical distribution, as can be seen in Figure 

4.29. From the figure is possible to verify that the standard deviation (a) is shown to have a 

minimum value for the vertical convergence (A-B) for α=0, which corresponds to the formation 

of horizontal bands, and a maximum in the opposite direction (α=-90 and 90). For the horizontal 

convergence (C-D) exactly the opposite occurs with the minimum observed for α=-90 and 90 

and the maximum for α=0. When the field presents different anisotropy directions a similar 

behaviour can be observed. For instance, the convergence E-F has a maximum for α=-45° 

(anticlockwise rotation from the horizontal axis) and a minimum for α=45°, and the opposite 

occurs for the convergence G- H. When analysing the covariation of the convergences (b) the 

afore mentioned conclusions become more evident. These results have a direct impact when 

computing the probability of the convergence exceeding a given value since the average value 

of the convergences throughout the calculations shows random and negligible variations 

between each rotation and therefore the probability becomes inversely proportional to the 

covariance. 

 

Figure 4.28 – Examples of rotated random fields: (a) α=-90º; (b) α=-62.5º; (c) α=-45º; (d) α=-22.5º; (e) α=0º; (f) 

α=22.5; (g) α=45º; (h) α=62.5º 
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Figure 4.29 – Variation of (a) standard deviation and (b) covariance of the convergence distribution with the 

rotation of the field
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5 CONCLUSIONS AND FURTHER WORKS 

5.1 Conclusions 

The existence of variability in soil and rock massifs is known to have implications in 

geotechnical and structural behaviour. So that this fact could be made evident several 

considerations regarding the existence and forms of variability as well as the parameters that 

condition its characterization were presented and discussed. From the most common algorithms 

available for numerically simulate variability in soils and rock massifs the LAS method was 

chosen due to its reliability as well as computation efficiency. The employment of random fields 

entails that multiple calculations have to be performed so that a pattern can be established and 

a tendency can be extrapolated. For the calculations presented in this work a substantial amount 

of computer capabilities were required due to the large number of parameters to vary as well as 

the number of calculations required. 

In order to properly model variability within a given area a software capable of running the 

LAS algorithm for the generation of multiple random fields was further developed and several 

features were added to its routine, namely the possibility of varying the input statistical 

distribution, layering, non-stationary processes and field rotation, making it suitable to 

accurately simulate real case variability. A program capable of translate the random variable of 

the field into parameters of constitutive laws for soils and rocks through theoretical correlations 

as well as handling the interpolation between the random field and the finite element mesh was 

created. Furthermore, the already existing finite element algorithm was upgraded so that it could 

handle variable parameters and perform multiple calculations automatically. A couple of 

programs as well as an excel form were also developed so that result analysis could be 

efficiently performed in bulk.  

So that the influence of variability could be assessed 3 applications were performed whose 

primordial objective was to infer the impact of the variation of the parameters required for the 

definition of the LAS algorithm namely the standard deviation, the isotropic spatial correlation 

distance and the degree and ratio of anisotropy.  

The first application concerned the evaluation of the impact of introducing variability in the 

bearing capacity of a single strip footing. The random variable selected was the undrained 

strength of the soil, Su. Based on the analyses performed several conclusions can be withdrawn: 
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- The statistical distribution of the input variable has a noticeable effect on the range of the 

bearing capacity with the normal distribution presenting wider values than the lognormal 

distribution essentially due to its tail. However, the average results show small variation 

regardless of the distribution chosen for input.  

- It was also noticed that the distribution of the results of the bearing capacity followed a 

lognormal distribution for smaller stress levels in the soil than tended to change to a normal 

distribution when plastification occurs. These results were observed to be independent of 

the distribution selected for the input variable, Su. 

- The standard deviation is a very important parameter since it is shown to have influence 

not only in the minimum and maximum values obtained for the bearing capacity but also 

in the average values that decrease with the increment of standard deviation. In fact, the 

average bearing capacity is shown to decrease with the standard deviation of Su whilst the 

standard deviation of the bearing capacity is shown to increase. 

- The obtained results highlight that the introduction of variability, even if small, can produce 

an impact of more than 30% in the value of the bearing capacity when compared with the 

theoretical or the deterministic value. This difference if not account in design can lead to a 

malfunction of the footing or ultimately to its failure. 

The second application aimed to infer the implications of the variation of several parameters 

used to characterize variability on twin strip footings subject to simultaneous vertical loading. 

The parameters whose diversity was considered were standard deviation of Su, the isotropic 

spatial correlation distance and multiple dependent variables. The main conclusions were: 

- As before, standard deviation plays an important role in the displacement and rotation 

distribution of both footings. Increments in the standard deviation value will imply a wider 

range of results as well as condition the average value obtained in the load-displacement 

curves. As a result, the increase of the standard deviation value will imply the increase of 

the probability of structural damage due to the differential settlements and consequent 

rotations of the footings that occur. 

- The higher the spatial correlation distance magnitude the higher the likelihood that zones 

of weaker resistance condition the response of each individual footing as well as their 

combined behaviour, having similar effects to the increment of standard deviation though 

less conspicuous. 
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- The introduction of variability in both strength and stiffness of the soil originates an even 

higher dispersion of displacements ad rotations in the footings. The results confirm that the 

introduction of a second variable translates in a higher probability of damage, which 

naturally increase with the decrease of the stiffness. 

- The deterministic analysis is only capable of predicting one failure mechanism for the two 

footings. With the introduction of the variability eight different failure mechanism could 

be found enabling a more comprehensive behaviour of the footings that should be taken 

into consideration during design stages. The probability associated to each possible failure 

mechanism was roughly the same from which it can be concluded that despite its proximity 

the footings are not strongly affected by each other. 

In the third application the influence of the variation of the rock mass standard deviation, of 

isotropic spatial correlation distance and of degree and direction of anisotropy on the excavation 

of a deep tunnel were analysed. The results obtained enabled the following conclusions: 

- Standard deviation and isotropic spatial correlation have similar effects to those presented 

in previous applications having direct impact on the displacements of the tunnel and forces 

acting on the lining, which increases substantially (more than 25%) comparatively with the 

deterministic analysis. 

- Variations of the ratio of anisotropy (θx/θy) affect the maximum horizontal and vertical 

convergences. The horizontal convergence was shown to increase with the increment of 

θx/θy and the vertical convergence to decrease with it. These results are justified by the 

vertical/horizontal bands (layering of soil) of weak rock mass that are formed when the 

anisotropy increases and that accentuate the displacements in those areas. 

- The direction of anisotropy of the random fields is shown to influence the distribution of 

the convergences along the tunnel contour, most prominently, the standard deviation of it, 

which is a function of the direction of anisotropy. This fact conditions the probability of 

the convergence exceeding a given value. 

- With the introduction of variability it was observed asymmetry on the displacements and 

forces of the lining which were not possible to predict by the deterministic analysis where 

only a uniform pattern was found. This result demonstrates the importance of modelling 

the variability of soils and rock massifs since abnormal behaviours can be discovered 

leading to an improvement in the design of this type of structures. 
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Based on the application performed it is possible to conclude that the standard deviation of the 

input variable has a significant impact on the variability, which increases with its increment. 

Identical conclusion, though in a smaller scale, was observed for the spatial correlation distance, 

although it was found that this parameter is problem dependent and consequently should be 

evaluated in each case. As for the degree and direction of anisotropy of the random field it was 

observed that these factors have only an impact in the extreme cases, although its analysis 

should be further investigated since they might be very significant in other applications such as 

slope stability and excavations. 

The adopted methodology, though certainly can be upgraded, has proven to be useful when 

modelling variability of soils and rocks. The applications performed with this methodology 

provided results, both in magnitude and behaviour, which simple deterministic analysis could 

not predict. Consequently, the use of this tool can improve and optimise the design of 

geotechnical structures making them both more reliable and profitable.  

5.2 Further works 

Following the present work some remarks must be made. Despite the fact that the developed 

methodology represents a step forward in the right direction there are features whose 

implementation would be deemed as useful: 

- Ability to condition the random fields at set locations allowing for the direct integration of 

field test results in the generation of the random fields. This would represent a more reliable 

approach to simulate practical applications that could even have the advantage of reducing 

the number of realizations required for each parameter. Though this is theoretically 

possible in the current version of UC2DRF, the software is not capable of integrating the 

influence that a fixed value may have on its neighbourhood; 

- 3D random field generation making the study of problems with three-dimensional nature 

possible such as tunnels, excavations, drainage, wave propagation among others;  

- Possibility of having multiple independent variables without the need of them to be 

correlated. This can be performed by combining multiple single variable random fields. 

- Integration of variability on dynamic calculations making it possible to analyse the 

behaviour of a given soil with heterogeneous properties in case of dynamic solicitations. 

The analyses performed are merely theoretical, although representative of common 

geotechnical structures. For this methodology to be used in practice a combined approach using 

random fields and geo-statistics must be followed in order to properly establish the magnitude 
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of the parameters used. The influence that the introduction of variability has on the response of 

structures must be studied independently for each case. Furthermore, there are combinations of 

parameters that are not covered on the present work that are expected to influence the 

geotechnical and structural behaviour of such structures. It must be stated that due to the 

introduction of variability in the studied applications the results obtained for each application 

cannot be directly extrapolated to similar structures though similar methodologies are expected 

to be suitable.  
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