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Abstract

Epilepsy is a severe medical condition affecting millions of people in the world. Detection and

prediction of epileptic events is an open problem and an active field of research in the medical and

neuroscience communities.

Patients with epilepsy are monitored at the service of Neurology from the Hospital de Santa Maria

in Lisbon for long periods where huge amount of data, such as EEG, ECG and video, is collected

in order to capture the appropriated number of epileptic episodes needed to characterize the dis-

ease. These episodes, impossible to predict, are random and sparse in time which makes the task of

analysis difficult and time consuming.

In this thesis an actigraphy device (an accelerometer) was designed and assembled to be plugged

into the amplifier used in the hospital to collected the EEG signals. This way the activity of the patient

on his non-dominant wrist (usually the left one) is recorded and stored simultaneously with the other

signals acquired during the exam avoiding to perform the usual complex procedure of signal alignment

and sampling frequency adjustment.

Algorithms for detection of specific movement patterns were designed in order to automatically

detect epileptic seizures with associated movement disturbances. The goal is to perform an automatic

annotation of the data collected during exam and help the technical staff in its analysis. In the future

these algorithms will be used in ambulatory systems to identify and record epileptic seizures in normal

life conditions of the patients.

Two prototypes were produced and tested at the hospital with real patients and the algorithms for

movement detection and epileptic seizure identification were designed, implemented and tested using

synthetic and real data. The EEG data from the patients were annotated and classified manually by

the technicians where all the paroxysmal events were identified and used for training and testing as

ground truth information.
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A total of 62 events from 4 patients, checked by the medical doctor, where used to train the detector

and validate the algorithm. An accuracy of more than 98% was achieved in detecting movements and

among them more than 84% were correctly classified as epileptic seizures.

The two prototypes are installed at the hospital where more data are being collected.

Keywords

Epilepsy, electroencephalography, accelerometer, seizures, detection, actigraphy
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Resumo

A epilepsia é uma condição médica grave que afeta milhões de pessoas no mundo. A detecção

e previsão de crises epilépticas é um problema em aberto e um campo ativo de pesquisa nas co-

munidades médica e de neurociência. Os pacientes com epilepsia são monitorizados no serviço

de Neurologia do Hospital Santa Maria em Lisboa durante longos períodos, durante o qual uma

grande quantidade de dados, tais como EEG, ECG e vídeo, é recolhida a fim de detectar o número

necessário de crises epilépticas necessário para caracterizar a doença. Estes episódios, impossíveis

de prever, são aleatórios e dispersos no tempo o que torna a tarefa de análise difícil e demorada.

Nesta tese foi projetado e montado um dispositivo de actigrafia (um acelerómetro) para ser conec-

tado ao amplificador usado no hospital para adquirir os sinais de EEG. Desta forma, a actividade

motora do paciente é gravada e armazenada simultaneamente com os outros sinais adquiridos du-

rante o exame evitando a realização do procedimento habitual e complexo de alinhamento de sinal

e ajuste da frequência de amostragem, usando o dispositivo no pulso não-dominante (usualmente a

esquerdo). Dois algoritmos para detecção de padrões de movimento específicos foram concebidos

a fim de detectar automaticamente crises epilépticas com distúrbios de movimento associados. O

objetivo é realizar uma anotação automática dos dados recolhidos durante o exame e ajudar os téc-

nicos na análise. Futuramente, estes algoritmos iram ser utilizados em sistemas ambulatórios para

identificar e registar as crises epilépticas em condições normais de vida dos pacientes. Dois pro-

tótipos foram produzidos e testados no hospital com pacientes reais e os algoritmos de detecção de

movimento e identificação de crise epiléptica foram concebidos, implementados e testados utilizando

dados sintéticos e reais. Os dados de EEG adquiridos nos pacientes foram anotados e classificados

manualmente pelos técnicos nos quais foram identificados e utilizados para treino e testes todos os

eventos paroxísticos.

Um total de 62 eventos adquiridos a partir de 4 pacientes, verificados pelo médico, foram utilizados
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para treinar o detector e validar o algoritmo. Uma precisão de superior a 98% foi atingida na detecção

de movimentos e entre eles mais de 84% foram corretamente classificados como crises epilépticas.

Os dois protótipos estão instalados no hospital onde mais dados estão a ser adquiridos.

Palavras Chave

Epilepsia, electroencefalografia, acelerómetro, crises, detecção, actigrafia
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1.1 Motivation

Epilepsy is a complex brain disorder characterized by the recurrent seizures that manifest them-

selves in several ways such as motor behaviours or muscles twitches, sensitive or sensorial experi-

ences and autonomic manifestations. These features represent a big interest for this study. Epileptic

seizures are characterized by changes of physiological or behavioural patterns that can be used to

identify an epileptic seizure.

Epileptic seizures can also be associated with neurocognitive impairment, lower levels of school

performance, other neurological disorders and an increased risk of trauma or even sudden onset

death. In addition, the financial and social costs associated with the chronic uncontrolled seizures to

the patient and his family are high. So, epileptic seizure detection provides the capacity to allow early

and correct treatment, can represent an important clinical tool.

Nowadays, the gold standard method to detect epileptic seizures is Video and EEG temporally

synchronized. The analysis of the data acquired from a patient for a week is made by a technician at

a early stage. He analyses all data for twenty four hours at time and marks all events such as seizures

or possible seizures which is a time consuming work. After that, the doctor will analyse the events

marked by technician and he will assess all events marked earlier.

In the current study, a tool which has been already used in other neurological disorders and even

in epilepsy is proposed with a different manner of use. An accelerometer is placed in the wrist with

the purpose to detect motor movements during the seizures. This device may help detect epileptic

seizures and also reduce the work time required to analyse the EEG data during long-term epilepsy

monitoring. The main goal of this study is to ease the work of the doctors and technicians who assess

the results of the long-term EEG monitoring. Thus, the developed device will be connected through

the same acquisition equipment which the EEG (electroencephalography) electrodes are connected,

setting aside the need to synchronize them.

It is true that the video gives almost the same information. However, the ACM (accelerometer)

signals are easier to process than video. We believe that these signals represent a big advantage in

epilepsy patients monitoring. Since these signals can be measured by a commercial accelerometer

separately and afterwards visually synchronized, which does not represent an very accurate method,

we believe that developing a device which will be connected through the same acquisition unit together
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with all other signals can represent a big advantage.

In a first stage, the device will be installed in the neurological department in Hospital Santa Maria,

in Lisbon. All experimental tests will be done with patients who are followed in this hospital department

for epilepsy monitoring.

Since this disease affects a lot of people worldwide and it is much more common than ones thinks,

this study can provide a good additional tool for both patient and doctor.

1.2 State of The Art

Epilepsy is one of the most common neurological disorders in the world. It is characterized by

recorrent burst of abnormal brain function. These "bursts" are known as epileptic seizures[9].

The patient is not the only one affected by the disorder but also family and friends suffer the

resulting consequences. Epilepsy is closely associated with psychological and social consequences.

The aetiology of the disease can be unclear which can be a problem as knowledge of the cause

is a very important step towards an accurate management of the disease. In the next chapter the

process of epilepsy’s characterization will be discussed in more detail.

In recent years, the definition of epileptic seizure has been discussed by International League

Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). They have reached a con-

sensus and the definition formally accepted by ILAE and IBE is that an epileptic seizure is a brief

occurrence of signs or symptoms due to abnormal neuronal activity of the brain.[9] In fact, an epilep-

tic seizure is a transient paroxysmal event as a result from an excessive discharge of a set neurones

in the brain leading to clinic manifestations[10]. An epileptic seizure is transient and demarcated on

time with an onset and offset. The most accurate method known to assess the onset and the termi-

nation of an electrical discharge in the brain is the EEG. Nevertheless, an ictal electrical discharge

may start in a set of neurones and may be spread through the brain before it becomes clear in EEG.

Furthermore, the clinical changes may be seen before or can be more clearly observed than EEG

changes or vice versa. Therefore, a time lag may exist between the onset of seizures in the EEG and

the onset of clinical changes. In order to identify these onsets temporally synchronized Video and

EEG is used. With this technique (video-EEG monitoring) it is possible to define that EEG changes

often appear first.
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Furthermore, it is important to follow a set of steps in order to achieve a correct treatment in which

the aim is a decrease of seizures. Firstly the aetiology must be found, secondly, a correct classification

of the type of epilepsy must be done, and finally choosing the correct treatment must be choosen. All

these steps will be described deeply in the next chapter.

1.2.1 Clinical manifestations

To classify an epileptic seizure more accurately, it is important to know more about the clinical

symptoms or signs related to it.

An epileptic discharge can be focal or generalized, depending if the epileptic seizure begins in a

limited part of one of the hemispheres of the brain or whether it begins simultaneously in extensive

cortical regions. [11] It is estimated that 60% or more of the epileptic patients have focal epilepsy [12]

and 60% of the partial seizures set off in the temporal lobes [13]. Partial seizures can be subdivided

into three groups: simple partial (i.e. focal seizures in which consciousness is preserved), complex

partial (in which the consciousness is impaired) and partial with secondary generalisation.

Any function controlled by the brain may be disturbed whether or not the electric discharge has

affected the area of the brain that it controls. The symptoms or signs that occur as a result of this

abnormal activity can be sensory, motor, autonomic, cognitive, behavioural or psychological. In this

case study, we are more interested in motor and autonomic signs. It is therefore of considerable

interest to know that motor manifestations may be restricted to a group of muscles or may involve all

voluntary muscles. Likewise, autonomic manifestations may occur during any type of epileptic seizure

and sometimes may be implicated in sudden onset death.They can also appear together with other

symptoms or signs.

The electrical discharges in the brain affect the sympathetic, parasympathetic and enteric ner-

vous system. The functions affected will be different depending on where the onset of the discharge

starts. The activity of the autonomic nervous system (ANS) is an easy non-intrusive way to as-

sess the changes in the brain. By studying the behavioural or physiological changes which result

from an abnormal activity of the ANS we can speculate about the epileptic seizure onset zone. The

parasympathetic and sympathetic systems control and regulate different functions such as heart rate,

perspiration and body temperature, etc. We can measured these biomarkers easily. Nowadays, some

of these can be measured simultaneously with EEG monitoring such as the ECG.
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Cardiac signals are robust and easy to record. It is reported in the literature that often occur

tachycardia phenomenons as a response to sympathetic changes. In spite of bradycardia that can

also occur, as a response to parasympathetic changes. In several studies tachycardia was shown to

be present in arround 90% of the epileptic seizures [14].

1.2.2 Video-EEG

Video-EEG (VEEG) is known as the most accurate method for monitoring patients who suffer

from epilepsy. This method has an high success rate of 80% for the detection and distinction of

paroxysmal behaviours[15]. VEEG enables the evaluation of seizure’s characteristics, localization of

the onset and quantification of the interictal and the ictal epileptic discharges and it also allows the

characterization of behavioural changes. Continuous monitoring using a split-screen with Video-EEG

enables the correlation of the electrical signal from EEG with the paroxysmal behaviours occurring

simultaneously.

In spite of being an expensive and time consuming procedure, the Video-EEG is a method with

an high value for the diagnosis and characterization of the disease. In fact, it is the gold standard

method. While the technician is watching the video he can mark the onset of the changes in the

patient’s behaviour. After that, when the EEG signal is analysed, the EEG onset is also marked

where there are changes in signal. By observing the signal from all electrodes placed in diferent

positions on the scalp, the origin of the electrical discharge may be extrapolated as well as when it

has started and how it is spreading. This is possible because when an alteration in electric signal

is observed, information about the onset time and about the electrode in which the first change was

detected is available. Information coming from the other electrodes in which alterations occur after

the first one complement the data, thereby enabling the analysis of these all informations.

In VEEG the temporal marks of the onset of the seizure and clinical manifestations over the EEG

monitorization records are made manually after the records are acquired and the entire record is

checked-up looking for clinical and/or electroencephalography seizures.This is a time-consuming task.

Despite all the advantages and high accuracy of VEEG, it is a relatively expensive monitoring

method, time consuming and it is limited to usage in a hospital environment. There are many associ-

ated costs such as standard hospital costs, equipment, technicians, doctors and nurses’ time.

According to Ghougassian et al. [16], a lot of studies have been made in order to examine the sen-
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sitivity and specificity of VEEG and all of them achieved an high correlation. They noted a high accu-

racy on non-epileptic seizures detection, which sometimes are misunderstood with epileptic seizures.

1.2.3 Actigraphy in brain disorders

Actigraphy is a non-invasive method of measuring movement. It is an accelerometer usually worn

on the wrist that records movements for a long period of time. The functioning principles of ac-

celerometers will be discussed throughout the next chapters. Actigraphy has been used in many

medical applications ranging from sleep disorders to detecting changes in physiological variables and

others. This technique is useful in medical applications with the purpose to determine changes in

frequency or amplitude on limbs motion. Nowadays, accelerometers are already used together with

EEG, EMG and ECG during polysomnography monitoring in order to study sleep diseases[17]. In

addition, accelerometers are also able to help in the evaluation of tremors Parkinson’s disease , and

in therapy for patients with cerebral palsy[18].

Some studies have been made in order to detect epileptic seizures with the help of actigraphy.
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Table 1.1: Three studies perfomed about detection of epileptic seizures in patients by means of accelerometry.

Article Sensor Sensivity General description Validation
Method

Measurement and
quantification
of generalized

tonic-clonic
seizures in epilepsy

patients
by means of

accelerometry -
An explorative study [19]

ADXL330
Three-dimensional

accelerometer
100%

Motion data
acquisition

system with a
display analysis

system/algorithm
for continuous

analysis of
acceleration signals.

Send data
to a notebook

located near the
patient.

Non-intrusive method.

VEEG

Detection of seizure-like

movements using
a wrist accelerometer [20]

Three-dimensional
accelerometer

Adjustable
1-100%

Smart-watch which
detects

rhythmic, repetitive
movements of
an extremity

and sends a signal
via bluetooth

to a computer, alarm
device and logs

the complete
event data.

Non-intrusive method.

VEEG

Long-term home monitoring
of hypermotor seizures

by patient-worn
accelerometers [21]

Three-dimensional
accelerometer 95.71%

System with four
Three-axis

accelerometers.
ACM signals
are recorded

synchronously
with standard VEEG

recordings.

VEEG
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Table 1.2: Three studies performed about detection of epileptic seizures in patients by means accelerometer
signals - continuation.

Article Clinical
Limitations

Type of
seizures
detected

Success
cases

(%)
Aim

Place
&

Time
monitoring

Measurement and
quantification
of generalized

tonic-clonic
seizures in epilepsy

patients
by means of

accelerometer signals -
An exploratory study [19]

Synchronization
is done

separately
from

the EEG
equipment.

It is checked
twice

a day by staff.
Seizures are
detected only
inpatients with
a specific type

of epilepsy.

GTCS � 75 %

Design
and

validation
of an

ACM-based
detection
system for

GTCS
detection

in real-time.

Forearm.
Long-term

home
monitoring.

Detection of seizure-like

movements using
a wrist accelerometer [20]

Non-synchronized
with

EEG signals.
Data is

reviewed
separately

and
then correlated.

Seizures are
detected

only inpatients
with a specific

type of epilepsy.

GTCS and
partial

seizures.
� 50%

Validate
a wrist-worn

motion
detector
to detect

tonic-clonic
seizures.

Wrist.
Ambulatory.

Long-term home monitoring
of hyper-motor seizures

by patient-worn
accelerometers [21]

Seizures are
detected only in
patients with a
specific type of

epilepsy.

GTCS 57.84%

Comparison
between

VEEG-based
seizure

detection
and

ACM data

Two wrists and
two ankles.
Long-term

home
monitoring.

In the tables above, table 1.1 and table 1.2, a comparison between three studies on the validation

of three different motion detectors was made. All of them have an high sensitivity to detect generalized

tonic-clonic seizures, which represent the most striking of seizures. An accelerometer device is able to

measure translational accelerations. As refered above the gold standard method for the diagnosis of

epilepsy is long Video-EEG monitoring. However, this is an intrusive method. Furthermore, it requires

the patient staying in an hospital environment during the exam. Thus, it can not detect seizures

outside the hospital.

As we know from literature [22], some epileptic seizures may include uncontrolled movements of
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the arms or even legs, depending on the type of epilepsy. Thus, these movements can easily visible in

accelerometers signals. The combination between the video-EEG and this device can hypothetically

have a very high precision to identify seizures. Moreover, the detection method using accelerometers

is a low cost and strictly non intrusive for the patient. Another advantage is that this device can provide

home monitoring for a long term, while VEEG can only be acquired in hospital environment and it is

also more expensive.

Actigraphy can detect abnormalities in the circadian cycle and sleep disorders which can adversely

affect epilepsy [23]. Since the relation between sleep and epilepsy is bidirectional because seizures

disturb sleep and sleep disorders have bad effects on seizure control, actigraphy can eventually be

an important tool to diagnosis sleep disorders in patients with epilepsy. It is therefore of crucial

importance to prove the relation between the data from actigraphy and the data from video-EEG.

Some studies were made to validate this correlation and some of them are described in tables above.

Another study was made to validate and assess the use of actigraphy as a tool in studying sleep

patterns in children with epilepsy[24]. It had an high correlation found on actigraphy data, saying that

more than 90% of the epileptic seizures had motor behaviour in children and it proves that actigraphy

is a good tool for analysing sleep-wake patterns in patients with epilepsy.

1.3 Original contributions

The accomplishment of this work required a multi-disciplinary approach. It was made a particular

effort to support the development of this device and algorithms performed with epilepsy studies that

have already been developed. The main contributions of this thesis are the following:

• a new device with a small, low-power, 3-axis accelerometer sensor connected through the EEG

equipment. This device is placed on the patient wrist and it is capable of detecting movements

in a non intrusive way.

• an algorithm to movement detection which will reduce the time consuming work of locating

seizures in EEG recordings.

• an algorithm to detect seizures onset which manifest themselves by involuntary movements or

activity arrest.
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• validation of the method based on data already analysed by the doctors proving the feasibility

of using the data to detect the seizure onset.

1.4 Thesis outline

Apart from the introduction chapter, on which the state of the art is presented, the thesis is divided

in five chapters. Chapter 2 consists in a description of epileptic seizures and epilepsy syndromes,

the classification methods, the treatments available and its impact in patients life. In addition, it is de-

scribed the gold standard method to monitoring epilepsy, electroencephalography, commonly referred

as EEG.

Since the sensor which was used is based on CMOS-MEMS technology, in chapter 3 MEMS

technology (micro-electromechanical systems) is described as well as CMOS technology (comple-

mentary metal oxide semiconductor). Furthermore, it is presented the operating mode of a typical

MEM-accelerometer. Finally, it will be described the accelerometer designed explaining his operation

mode and the experimental setup performed for this study.

In chapter 4 experimental results are presented. Firstly, noise filtering was done by estimating the

noise through processing signal methods. Secondly, the data was validated through a correlation

method related with the data from a commercial accelerometer. After that, it was developed an

algorithm to movement detection. Finally, the ACM data were correlated with the signals from EEG

in order to validate them to identify a seizure onset. In this chapter all methods are presented and

discussed.

In chapter 5 the experimental results are assessed and on this basis future work is discussed.
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Theoretical framework
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As mentioned in the last chapter, epilepsy is one of the most common neurological disorders

worldwide. It affects 50 million people worldwide[25]. Epilepsy is a chronic neurological disease which

results from an abnormal and synchronous electrical neuronal activity in the brain. For an appropriate

treatment, a correct classification of epileptic seizures and epilepsy syndrome must be done. In this

chapter, a definition of epilepsy and epileptic seizures, the classification method and some treatments

available are presented. Likewise, the impact of epilepsy in patient life will be referred. Moreover,

the gold standard method to monitoring patients with epilepsy is EEG. So, the detailed functioning

method of this tool, the engineering principles and the acquisition methods which it is based will be

described.

2.1 Definition of epilepsy and epileptic seizure

Epilepsy is a disease which is characterized by a longstanding predisposition to generate epileptic

seizures and by the other consequences related with this condition, such as cognitive, psychological

and social impairment. It envolves recurrent unprovoked seizures.

An epileptic seizure is a transient occurence of signs or symptoms due to abnormal neuronal ac-

tivity in the brain. Epileptic seizures may be focal, if they begin in a localized area in one of the brain’s

hemispheres, or generalized if the onset involves both hemispheres. Seizures manifest themselves

according to what function of the cortex is affected, and how the discharge spreads within the brain.

Epileptogenesis is a gradual proccess by which the brain develops epilepsy. Figure 2.1 illustrates

focal epileptogenesis, a process that contains multiple steps. An initial injury that can result from

many possible causes, may develop into a first seizure. The "latent phase" or "latent period" between

brain injury and clinical epilepsy is widely recognised to be a seizure-free, pre-epileptic state during

which several molecular events and structural changes gradually mediate the process of epileptoge-

nesis. This concept of "latent period" implies that epilepsy is not an immediate consequence of brain

injury[26]. During each step of this process, the different causes of epilepsy may lead to different

injuries in the brain affecting different parts of the brain, which in turn implies different manifestations

of the seizures.

Research clearly shows the increased incidence and prevalence of epileptic seizures according

to age[27]. The prevalence of epilepsy may be a result of other factors like brain tumour, trauma,
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Figure 2.1: Process of epileptogenesis

infection or developmental disabilities. However, in most part of the cases, epilepsy has an unknown

origin[28].

2.2 Classification of epileptic seizures and epilepsy syndromes

The first step in the management of an epileptic patient is the correct classification of the seizure

type and epilepsy syndrome (because epilepsy is a disorder defined by a particular group of features

that usually occur together). According to the cause, the location in the brain as we can see in figure

2.2, and the intensity of neuronal electric discharges, seizures can take very different forms and many

different clinical signs may be present.

Nowadays, there are two classifications systems: The International Classification of Epileptic

Seizures and The International Classification of Epilepsies and Epileptic Syndromes.

Partial seizures represent the most part of epilepsy cases [1] and they can be subdivided in two

types:

• Simple partial seizures are characterized by no loss of consciousness. During simple partial

seizures patients have symptoms such as motor symptoms, sensory symptoms (which can

be visual, auditory, olfactory, gustatory or even vertiginous), autonomic symptoms (which are

described later) and discognitive or physic symptoms.

• Complex partial seizures are characterized by loss of consciousness. These seizures may
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Figure 2.2: Brain topography from [1] page 5

begin as a simple partial seizures and then can be followed by an impairment of consciousness,

or the loss of consciousness may begin before. These seizures may occur associated with

automatisms like simple gestures or complex gestures, wandering and verbal automatisms.

Partial seizures may or may not be followed by a generalized seizure. Widespread brain damage

lead to generalized seizures and it is presumed that the major cause is genetic damage.[29] Both

partial and generalized seizures affect autonomic function during ictal, posictal and interictal states.

Epilepsy syndromes are divided according to several features such as etiology, interictal deficits,

seizure type, age of the onset and findings in EEG and neuroimaging. These are syndromes with

focal seizures, syndromes with generalized seizures, undetermined syndromes or special syndromes

[11]. In addition, epilepsy can be classified by aetiology as represented in figure 2.3 and described

below. As may be seen in figure 2.3 most of the patients with epilepsy have Idiopathic/cryptogenic

syndromes.

• Idiopathic syndromes means there is no apparent cause and it is presumed a genetic etiol-

ogy. In this case, epilepsy is a direct consequence of a genetic mutation which determine an

abnormality of electrical neuronal activity.

• Symptomatic epilepsies which means they have a clearly identified cause. This cause may be
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a tumour, a stroke or other brain abnormality.

• Cryptogenic epilepsies means that an etiology is suspected, but the exact cause cannot be

determined.

Figure 2.3: Incidence of epilepsy according to aetiology from Epilepsia. 1993 May-Jun; 34(3):453-68. Incidence
of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935-1984. Hauser WA, Annegers JF, Kuraldn
LT

Throughout recent years, a new diagnostic scheme for patients with epilepsy was proposed. This

takes in account five parameters: ictal phenomenology, seizure type, epilepsy syndrome, etiology and

impairment [11].

As stated above, a correct diagnosis is the first step for a correct treatment. With this purpose,

doctors start by identifying the semiology of the seizures which process is described below. After a

correct classification and identifying the seizures semiology, the most appropriate treatment is chosen.

2.2.1 Seizure Semiology

The precise localization of the epileptogenic zone is crucial for a correct choice of the treatment,

especially in the cases when epilepsy surgery is a possibility. The epileptogenic zone is defined as

the area of the brain to be removed so that the patient have no seizures after the surgery. It involves

the ictal onset zone where the seizures start in EEG. Thus, this area of the brain must be removed for

a complete abolition of the seizures[30]. Seizure semiology is an effective tool that enables locating
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the symptomatogenic zone which normally is near to the epileptogenic zone. This tool consists in

analysing the symptoms and signs during a seizure.

Epileptic paroxysmal events may manifest themselves in different ways. Depending on where

the onset location is, the discharge may lead to visual, abdominal, autonomic, auditory, olfactory,

gustatory or psychic auras[31].

Epileptic seizures are characterized based on the type of behaviour and brain activity.

• Autonomic seizures are epileptic seizures in which the main symptoms of disease are au-

tonomic alterations which manifest themselves as tachycardia, bradycardia or ictal vomiting.

Tachycardia and bradycardia are the increase or decrease the heart beat. Tachycardia often

precede ictal EEG changes if the seizure onset is in the right hemisphere of the brain. Seizures

in the left hemisphere of the brain are often more related with bradycardia[32]. Changes in car-

diac signals may provide an easiest way to identify where was the ictal onset in some patients,

thereby it can be a potencial biomarker. If the epileptic discharge spreads throughout the right

side of the brain, the reponse will be sympathetic and the heart rate will increase. In contrast, if

it spreads throughtout the left side, the response will be parasympathetic and the heart rate will

decrease [32][14].

• Dialeptic seizures are seizures in which the predominant symptomatology is a consciousness

disturbance.These consists on episodes of unresponsiveness or decrease responsiveness and

moreover they are associated with complete or partial amnesia for the episode [33].

• Motor seizures are an important focus in this study. Two motor symptoms (simple or com-

plex) can be seen in patients with epilepsy. First of all, these symptoms may be elementary

motor symptoms which are characterized by simple movements, such as clonus or tonic postur-

ing. Simple motor seizures include myoclonic seizures which are short muscle contractions and

are often present in genelarized seizures, tonic seizures which consist of continuous muscles

contractions and it can maniffest itself in patients with focal or generalized epilepsies, epileptic

spasms which is usually used to identify muscle contractions of relatively symmetric and finally,

versive seizures which manifest themselves as a forced and involuntary turning of the head

and eyes in one direction with neck extension associated [31]. Secondly, they may be complex

motor symptoms which include automatisms and complex postures. Automatisms are cordi-
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nated motor movements which involve muscles activity. Electromiography is used to measure

the muscles activity. In current case study, motor seizures will be studied deeply, once we want

use an actigraph to measure motor movements during seizures and relate them with the onset

of the seizure.

In order to precisely localize the epileptogenic zone, different exams are performed. These exams

include Magnetic resonance image (MRI), video and EEG and a correct semiology characterization

and all must indicate the same epileptogenic zone. If the results are not in line, the location of the

epileptogenic zone is inconclusive, and in that case an almost definitive solution, like surgery, is

discarded. Seizures semiology is a subjective tool especially because the same symptomatogenic

zone can be activated with a discharge from different epileptogenic zones and moreover this tool

does not always allow an accurate differentiation between focal and generalized epilepsy.

2.2.2 Autonomic nervous system in patients with epilepsy

All autonomic functions can be affected during a seizure, including parasympathetic and sympa-

thetic systems. Seizures usually activate sympathetic nervous activity and thereby changing the heart

rate and blood pressure. On the other hand, the activation of parasympathetic or the inhibition of sym-

pathetic may predominate in partial seizures [34]. The autonomic nervous system and his functioning

method assume an important knowledge in this work. This is because through that we may assess

the changes that occur during a seizure. In the autonomic nervous system, there are parallel chains

which connect the central nervous system and the effector cells. These parallel chains are constituted

by two neurons and the synapse between them is in a cell cluster called autonomic ganglion, outside

the central nervous system[2].

Figure 2.4: Overall plan of the autonomic nervous system from [2] page 217

As can be seen in figure 2.4 the nerve fibbers between the central nervous system and the gan-

glion are called Preganglionic fibber and those passing through the ganglion and then the postgan-
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glionic fibber connects the effector cells and the ganglion.

The autonomic nervous system (ANS) are subdivided into sympathetic and parasympathetic

components due the anatomical and physiological differences within ANS. The nerve fibbers of the

sympathetic and parasympathetic components leave the central nervous system at different levels.

The anatomical arrangements in sympathetic nervous system act all together as a single unit, there-

fore, some small segments act independently. On the other hand, the parasympathetic nervous

system is made up of components which act relatively independently.

Both autonomic nervous system and somatic nervous system are part of peripheral nervous sys-

tem. Nerve fibbers, which are called just nerves, connect the central nervous system with all receptors

and effectors in all parts of the body. The difference between somatic nervous system and autonomic

nervous system is that the neurons of the somatic innervate skeletal muscle, while the autonomic

neurons innervate cardiac muscle, glands and neurons in gastrointestinal tract.

We can assess to autonomic nervous system, for example, through the heart rate (HR) or blood

pressure (BP) . Several studies proved that partial and generalized seizures are associated with

a set of changes in heart rate, blood pressure, respiratory patterns, pupillary size, vasomotor and

sudomotor activity and others, affecting the sympathetic and parasympathetic nervous system [34].

These autonomic effects of seizures may result from the stimulation from limbic to hypothalamic areas.

It was proved that epileptic discharges from limbic structures are deeply connected with hypothalamic

regions, which may change autonomic functions between and during the seizures.

Relation between seizures and autonomic nervous system (ANS) is very important and complex.

An epileptic seizure is defined as an abnormal neuronal electrical activity of the brain which can

involve centres of regulation of autonomic activity. Autonomic symptoms may be present during,

before and aftermath the seizure and its propagation.

An electrical discharge in the brain, which results from an epileptic seizure, spreads throughout a

probable path as we can see in the figure 2.5.

The ictal impulse may imply Temporal lobe, frontal lobe or both. The insular cortex is involved

in both temporal and frontal seizures, and Hippocampus is involved only in temporal seizures. Af-

ter that, this activity spreads through the limbic system involving the amygdala, hypothalamus and

thalamus.[35] These will stimulate the ANS nuclei in medulla, including the nucleus tractus solitarius
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Figure 2.5: Probable paths of propagation of the epileptic electrical activity to the limbic system and autonomic
nuclei

(NTS) and ambiguus nuclei. Finally, the efferent discharges will be generated in both sympathetic and

parasympathetic components.

2.2.3 Treatment of epilepsy

The aim of treatment is to provide the patients with a normal lifestyle, ideally free of seizures. In the

majority of patients, anti-epileptic drugs are prescribed with the purpose of minimising the occurrence

of the seizures. However, it is important to be aware of the response to anti-epileptic drugs by the

patient. Since some of them may resist to the drugs, a long-term prognosis have to be done.

The anti-epileptic drugs are chosen based on the patient gender or age, on the type of seizures

(whether there have been recurrent seizures or if it is an isolated case and also if the seizures have

had a partial or generalised onset). After taking all of these factors into consideration, a drug is chosen

more efficiently. The aim of treatment is to stop the seizures without side effects or at least reduce

them. In order to choose the correct treatment, the patient must go through three steps. Firstly a
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drug is introduced with a careful increase. Secondly, whether the seizures continue, the dose should

be increased to the maximum quantity which is tolerated and then change the medicine in the case

the benefits of the drug does not compensate the side effects. Finally, if the seizures don’t stop, a

combination of two or more drugs should be done[36].

In some patients a surgical intervention can be considered. The resective surgery is limited

to those having an 80% of success rate against low rates of mortality or permanent neurological

deficit[36]. An higher success rate is achieved with an higher accordance about the localization of the

epileptogenic zone in the pre-surgical evaluation. Although, there are about 30% [28] [36] of patients

with epilepsy syndrome who are resistant to anti-epileptic drugs and surgical treatments.

However, there is an alternative to bad-candidates for resective epilepsy surgery. In patients with

drug resistant epilepsy, a vagal nerve stimulation (VNS) or deep brain stimulation (DBS) can be done.

To accomplish this, a surgery must be performed in order to implant a stimulator in the neck on the left

side of the vagus nerve[37]. The VNS directly affects the frequency of the seizures, however, it may

take some time until a satisfactory safety profile is achieved. DBS consists in a bilateral stimulation

of the anterior nucleus of the thalamus (ANT) by the implantation of two electrodes in this region

resulting in improved seizure control in humans[38].

2.3 Impact of epilepsy

People suffering from epilepsy can carry out all normal activities and have a normal professional

life. However, they must be careful with some things: drinking alcohol, fever, certain medicines that

stimulate the activity of central nervous system, flashing lights, etc.

Some symptoms could be related to epileptic seizures. These could be a consequence from

seizures or anything else that may cause the epilepsy or could be related, for example, with the side

effects of medicines. Moreover, epileptic seizures may lead to changes in autonomic systems and

thus could affect the sympathetic, parasympathetic and whole nervous system. A brief explanation of

the functioning of these systems will be presented later.

In addition to having seizures and apart from all damages that it represents on the instant that it

happens, the impact of epilepsy includes mood and behaviour disturbances and a decrease of quality

of life for the patients and for their family.
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Depending on the seizure onset location and also on whether it is focal or generalized, some

behavioural functions or physiological functions may be altered. The impact of epileptic seizures

when these happen on a long term, can result in irreversible consequences for the patients health,

including anxiety, memory and cognitive impairments, high blood pressure, changes in heart rate,

obesity, psychiatric problems, among others.

2.4 Clinical Electroencephalography

Electroencephalography (EEG) is a diagnostic clinical tool for assessing brain activity. EEG is tra-

ditionally interpreted by visual analysis of the signal traces, associating defined features of EEG, such

as the structure and symmetry of important spontaneous oscillations, relative frequencies and their

spacial organization and the presence of paroxysmal waveforms which represent epileptic discharges,

with particular brain states. In recent years, clinicians have learned to use these EEG features as a

powerful tool to identify focal or widespread cortical abnormalities. The EEG results from currents

flowing in and out of the cells. Ions flow in and out of cells creating ionic flow also in cellular space.

Actually, there are some small currents associated with proteins that work to restore ion balances, and

are thereby working against the electrochemical gradient, such as Na+, K+, Ca2+ and H+. These

flow currents follow Ohm’s Law, that can be written in the form:

I =
V

R
(2.1)

If we refer the cell membrane currents as conductance and considering that resistance is its recip-

rocal, the current may be expressed as:

I = g(E
m

� E
rev

) (2.2)

In equation 2.2 E
m

is the membrane potential and E
rev

is the reversal potential which is depen-

dent on a set of the concentrations inside and outside the cell. EEG records cerebral signals which

contain overlapped oscillations in a large range of frequencies. In humans, this range is recorded

from 0.05Hz to 600 Hz [1].Furthermore, the signal recorded may have some interference from ex-

tracerebral electrical sources, for example from muscles activity, as well as some attenuation. The

electrical signals recorded in EEG are the electrical value in volts (of the order of mV) for the flow of
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ions throughout the brain.

The main pathology in EEG findings from a patient with epilepsy is a spike, a transient, high

amplitude deflection in the local field potential (typically of the order of hundred micro volts). After the

spike of electric neuronal activity may be identified an amplitude attenuation with little activity. So the

interictal discharges often occur as isolated events, while the discharges that result from a seizure

appear in rhythmic trains.

The physiology requires a different sensor to record the different types of activity over the brain.

We can use microelectrodes for cellular events, mini electrodes to record from cortical columns, in-

tracranial electrodes to record from individual gyri and scalp electrodes to record from large cortical

areas. In the present study, it was performed a long-term monitoring in patients through video-EEG

with scalp electrodes.

2.4.1 Engineering principles

The instrument, which we use to measure the voltage, should ideally not disrupt the regular per-

formance of the circuit. Nowadays, in clinical environment an EEG machine is used to measure the

electrical signals from the brain discharges. The main aim of this measuring is that the measured

voltage most accurately reflect the real voltage from the discharges. In order to achieve this aim the

input resistance of the EEG machine should be much larger than the resistance of the source, which

normally may be measured on the electrodes. The electrode resistance is typically on the order of

less than 5k⌦ [1] and in the most clinical EEG equipment the input impedance is 100M⌦ or 200M⌦

for higher electrodes impedance [39]. It is always needed to check the skin-contact impedance.

Some recordings of EEG signals requires amplifying the signals. EEG voltages are measured at

each electrode relative to some chosen reference electrode. To measure these voltages a specific 18

kind of amplifier is employed, an instrumentation amplifier.

As we may see in figure 2.6 the output voltage is proportional to the difference between the two

input voltages, thereby measuring the potential difference between the electrode and the reference.

The general expression for a differencial amplifier is:

V
out

= A
d

⇥ (V+ � V�) +A
cm

⇥ 1

2
(V+ + V�) (2.3)

In equation 2.3 the differential gain is A
d

and the common-mode gain is A
cm

. A good differential
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Figure 2.6: Simple concept of a differential amplifier [1].

amplifier has a large A
d

, and it also has as small A
cm

as possible. The CMRR (common-mode

rejection ratio) is a measure for how well this amplifier rejects the average voltage. It is typically

expressed in the logarithmic decibel scale. In our equipment the CMRR of the EEG input is 105dB

or greater and in the bipolar input is 100dB or greater [39]. For a good differential amplifier we may

know that Common-mode rejection ratio (CMRR) must be at least 80dB, in order to the ratio of the

differential gain and the common-mode gain be 4 orders of magnitude.

In addition the lowpass, highpass and notch filters are very important for EEG recordings. In mod-

ern EEG equipments, the lowpass, highpass and notch filtering are handled by digital processing. The

concepts of lowpass and highpass filters can be combined to create bandpass filters. This enables

to acquire signals with frequency components only over a limited range bordered by the high and low

pass filters, thereby attenuating the very low and very high frequencies. The notch is a bandstop filter

which is used to eliminate the powerline noise (the most common interferencies from outside sources

are voltage sources which operate at 240V, 50Hz).

The EEG equipment is basically an ADC (analog digital conversor), which converts the electrical

signals from the biological system (analog signal) to digital representation. The digitisation of the

signal quantise along two dimensions: time and magnitude, which means that samples are acquired

at discrete and regular time intervals and converted to discrete magnitude values. The sampling

rate is always the same whether the magnitude of the input signal changes slowly or quickly over

time. The right choice of sampling rate is very important because it restricts the information available

in digitised series. The sampling frequency (f
s

) must satisfy the condition of the Nyquist sampling

theorem, which states that a continuous time signal can be represented by a set of samples, provided
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that the number of samples in each unit of time is at least double of the maximum frequency in the

signal. This theorem can be represented by the equation below [3]:

F
s

� 2⇥ f
MAX

(2.4)

In equation 2.4 f
MAX

is the limit of frequency from which the spectral density of power is not

significant. If f
s

> 2f
MAX

the additional frequency components can easily be filtered by a lowpass

filter with a bandwidth from 0 to f
MAX

, thereby reconstructing the original signal.

Figure 2.7: Aliasing consequence. [3].

If the frequency chosen is too small the sampling process may have consequences, which are

represented in figure 2.7. As can be seen above in the figure, the signal reconstruction can be a

sinusoidal wave with a very different frequency when compared with the original wave. This effect is

known as aliasing. To avoid the aliasing of noise above the Nyquist frequency limit, ADCs have an

analog filter prior to the digitisation step, called antialisasing filter.

Another important characteristic of an ADC is the signal resolution. The resolution of the analog

to digital conversion is limited. The ADC used in this study has 16 bits. With 16 bits, there are 65536

distinct possible values (216 = 65536). The number of bits to store each sample value is called bit-

depth. There is a easy relation between resolution, bit depht and the range (which is the maximum

voltage recorded) and that relation is represented in the equation 2.5.
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Resolution =
Range

2bitdepth � 1
(2.5)

For current EEG equipments, a typical dynamic range is from -5 to 5 mV. With a bitdepth equal to

16 bits, the resolution is:

5, 000� (�5, 000)µV

216 � 1
=

10, 000µV

65535
= 0, 153µV (2.6)

2.4.2 EEG acquisition

As already mentioned above, the current passing through an electronic machine is simply elec-

trons flowing through metal conductors. In biologic systems, there are no free electrons. Instead,

the flow of charges is composed by positively charged sodium cations (Na+) and negatively charged

chloride anions (Cl�). Thus, chemical reactions occur, where electrons are transferred between

the biological system and electrodes. For example, if the flow of charges from a biologic system to

electronic system is negative, an electron will be transferred from Cl� to a platinum electrode. The

electrodes material should not interact chemically with the electrolytes of the scalp, those include

gold, silver chloride, tin or platinum.

Electrodes are composed by a conductor added to a wire that may be connected into the input

of the recording machine. The current carries positive ions to the negative part of the junction and

inversely. Consequently, the electrode will be polarized. Furthermore it favours the current flow in one

direction and an opposes current flow in the opposite direction. The polarization of the electrodes can

lead to some distortions in the recordings. This effect can me minimized taking a few precautions.

In the current study we only use data from patients with monitoring made with scalp electrodes,

which are represented in figure 2.8 with the letter B.

Each scalp electrode is applied in a precise scalp location after preparing the scalp to reduce the

electrical impedance. The electrode resistance should be between 100⌦ and 5000⌦ , according with

the international standards for the EEG. In this study, it has been used a specific system of electrode

placement that was proposed by the American Electroencephalographic Society - ACNS in 1991 as

can be seen in figure 2.9 [1].

However, the most recommendable combination has at least 21 electrodes from the international

10-20 system. The anatomical location of the electrodes are designated by letters and odd-numbers
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Figure 2.8: The most common electroencephalographic electrodes[3].

if the electrodes are placed over the left side of the head or even-numbers whether the electrodes

are placed over the right side. The approximate anatomical location are designed by letters ("F" for

frontal, "Fp" for front temporal, "C" for central, "T" for temporal, "P" for parietal, "O" for occipital and

"z" indicate zero).

The system combination in figure 2.9 was designed for placing 75 electrodes over scalp locations.

The voltage at any point is measured with respect to another point. There is not an absolute value,

it always is a difference between two points. In electronic circuits this reference is typically the ground.

However, in EEG, the voltage on scalp is measured with respect to another point on the scalp or at

least the body. In the current study, two types of setups have been used: bipolar and referential. In a

referential montage, the voltage at each electrode is measured with respect to a common reference.

Ideally, the common reference electrode has not any activity with respect to the activity of interest. It

is usually used some reference electrodes which is A1 and A2 (both placed on the ear in opposite

sides), A1+A2 (both linked), Cz (placed on the neck-chest) and finally the average reference. The

average reference is derived by averaging the voltage in all active electrodes and it must exclude

artifacts from the calculation of the average reference, avoiding the contamination of the reference

electrode by electrode polarization and drift. In bipolar setups, both electrodes are connected as an

active electrode, thus there is no a common reference. A channel involving these two inputs will be

a difference between the active input minus the reference. The actigraph will be connected through
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Figure 2.9: Modified combination nomenclature (Copyright 1990 American Electroencephalography Society).

a bipolar channel, where the active channel will be the axis over that there is movement and the

reference will be the ground (i.e. 0V).

2.4.3 Recording non-cerebral potentials

Some non-cerebral potentials are recorded in EEG equipment in patients with epilepsy. An epilep-

tic discharge may affect some other functions from the normal functions of the human body.

• Eye movements are often recorded in EEG monitoring, once those movements can be help-

ful to distinguish from the possible similarities between frontal and anterior temporal cerebral

potentials. Eye movements are usually recorded through two channels (E1 and E2). Both chan-

nels are referenced to a common reference placed in the ear (A2). This arrangement allows to

27



distinguish between horizontal and vertical eye movements. Eye movement monitoring is also

used to detect REM (Rapid eye movements) sleep, which is a phase of sleep characterized by

a random movement of the eyes.

• The Heart beat is also recorded during the EEG monitoring. An EEG electrode is placed on

the neck or the chest and another one is placed at some distance away in order to record ECG

(Electrocardiogram) signals. That is because an epileptic discharge in the brain may increase

or decrease the heart rate depending on where was the onset of the discharge.

• Muscles activity is also monitored with EEG electrodes. An electrode is placed a few centimetres

below the mouth making records from EMG (electromiography) movements. This electrode will

be connected to the EEG equipment referenced to another electrode placed on the neck.

• In the current study we will measure movements of the arms placing an actigraph on the non-

dominant wrist. Since some types of epilepsy cause involuntary movements of the arms or legs

with some type of pattern if the onset of the epileptic discharge was in specific parts of the brain.

Finally, a continuous video is recorded over all the time of the monitoring in order to detect some

abnormal changes in patient behaviour. At the end, the technician can compare all the features and

make a more precise diagnosis.
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3
Actigraphy sensor
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An accelerometer is an electromechanical device that is usually used to measure acceleration.

An important concept that we must understand is the concept of acceleration. Assuming r the

distance vector from some given origin to a particle and v its vector velocity:

v =
dr
dt

(3.1)

Defining the linear momentum p of the particle as the product of particle mass and its velocity:

p = mv (3.2)

As a consequence of interactions with external objects or fields, the particle can experience forces

of various types. F is the vector sum of these forces. According to Newton’s second law of motion,

the motion of the particle in a reference frame is described by:

F =
dp
dt

(3.3)

and

p =
d

dt
(mv) (3.4)

As in most of the cases the mass of the particle is constant, equation 3.3 reduces to:

a =
d2r
dt2

(3.5)

Instantaneous acceleration is defined by equation 3.5 [40]. According to the International System

of Units the acceleration is referred as an a and it is measured in meters per second squared (m/s2)

[41].

There are many types of accelerometers reported in literature and they have a lot of different

applications.

Most accelerometers are too big and difficult to use in small devices since micro devices use

usually microelectronic circuits for their fabrication. Researchers developed a different type of ac-

celerometers smaller than these ones, the MEMS (microelectromechanical systems) accelerometers.
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In this chapter, MEMS technology principles are presented as well as a brief explanation of the

crystallography of single-crystal Si (Silicon) and a list of its properties are presented in order to classify

the importance of Si as a sensor cristal.

3.1 MEMS technology

Micro-electromechanical systems (MEMS) were one of the technological developments during the

last decade of the 20th century. MEMS are essentially composed by micro-fabricated mechanical

and electrical structures which work together for perception and control since that they may work

as sensors and actuators. MEMS lead to a lot of innovation in terms of processes, equipment and

materials. Due to its small size and simplicity of operation, MEMS accelerometer sensors are usually

used in gaming applications, mobile handsets, and more importantly in this study, on the human body

to analyse tremor and other changes in physical activity. [4]

The most notable elements of MEMS are micro sensors and micro actuators which are appropri-

ately characterized as "transducers". In the case of micro sensors, the device converts a measured

mechanical signal into an electrical signal. These micro sensors are able to sense several types

of measurements including temperature, pressure, inertial forces, chemical species, magnetic fields,

radiation, and in the case of the current study the acceleration.

MEMS technology uses techniques of micro-fabrication technology. However, there are some

differences between microelectronics circuits and MEMS. For example, while a microelectronic circuit

is internally compact and has compact structures, MEMS have holes, cavities, channels, cantilever

membranes and so on. In this study, a MEMS sensor based on silicon was used. The focus on MEMS

based on silicon is a result of the wide knowledge on silicon material and micro fabrication over the

last decades of research.

The use of MEMS technology has many advantages, like the miniaturisation of existing devices

and the development of new tools to interact with the micro-world. Miniaturisation brings a decreasing

of material consumption which reduce the cost of the devices. It can also increase the applicability

of MEMS in places where a traditional system does not fit. Moreover, MEMS can be related with

system integration, once the MEMS on silicon may be integrated directly with electronics. Thus,

MEMS technology not only make things smaller but often makes them better.[7]
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3.1.1 MEMS fabrication

Silicon (Si) wafers are usually used as substrates for bulk machining (which is the process used to

produce micro machinery or micro electromechanical systems), since they can be anisotropically wet

etched, therefore forming highly regular structures. Instead of dry etching plasmas, this technology

uses pools of liquid as tools.

Single-crystal Si is a great substrate choice based on its viability for integrating sensors and elec-

tronics on the same substrate, and its intrinsic mechanical stability. Silicon has a high cost per unit

area, but, on the other hand, it has a small feature size which allows its implementation in very small

devices. The employment of Si has a big advantage that derives from the easy process of accommo-

dation using thin film deposition equipment. It also provides more flexibility in design and manufactur-

ing than others. The major mentioned disadvantage of using Si is usually when the size of the device

is not important and there is no need to incorporate electronics in the same substrate and so there

is no need for the high cost. In addition, a huge advantage comes from being an easier-to-package

substrate.

The etching process involves transport of reactants to the surface, surface reactions and transport

of products from the surface. It is inherently an electrochemical process which involves electron

transfer processes as part of the surface reactions.

Surface micro machining is a process to build micro structures by deposition and etching of various

structural layers on the top of the substrate. Polycrystalline silicon is usually used as one of the layers,

since it has a high purity form of silicon commonly used by the electronic industry. An additional silicon

layer is added to etch out and create the necessary hole in the thickness direction. This structure will

be very oxide thin with a size of a few micrometres. This machining process has a huge advantage

allowing to build micro systems in which the electronic and the mechanical components are built in

the same substrate. The structures are built on the top of the substrate and not inside it, thus its

properties are not important as in bulk machining. Therefore the expensive structures of silicon can

be replaced by cheaper substrates.

Bulk micro machining is a process on which micro machinery or micro electromechanical systems

are built and where a silicon substrate is selectively etched to produce structures. One of the major

classes of bulk micro machining is wet bulk machining (WBM).
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WBM is usually done with the help of chemicals. During this process, the silicon substrate is

immersed into a solution of reactive chemicals and these etch the exposed regions of substrate at

measurable rates. Alkaline liquid solvents are usually used in this process to dissolve silicon which

has been left exposed by the photolithography masking step. The dissolution of the silicon with the

alkaline solvents is done in a highly anisotropic way. As is referred in literature, some crystallographic

orientations are dissolved 1000 times faster than others. [4] [5]

Figure 3.1: The diamond-type lattice of the silicon from two face-centred cubic unit cells. Si forms four covalent
bounds making tetrahedrons From [4]

In silicon anisotropic etching the plane [111] is etched at slower rate than all other planes. This is

because of the high density of silicon atoms exposed to the etchant solution in this direction as can

be seen in figure 3.1 by overlapping the plane [111] shown in figure 3.2.

Figure 3.2: The most common orientations used in the integrated circuits [100] [111] and micro machining [110]
From [5]

The high etch rate and selectivity of the wet bulk machining technology is a huge advantage for

the MEMS industry. The choice of the mask should take into account that it has to dissolve at a much

slower rate than the silicon substrate. The etch rate can be modified by the chemical composition

of the solution, changing the dopant concentration in the substrate, regulating the temperature of

etching or changing crystallographic planes of the substrate. With the purpose of controlling the
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etching process and to achieve uniform depths across the substrate, etched stops have been used

including dopant etch stops, electromechanical etch stops and also dielectric etch stop.

3.1.2 CMOS-MEMS technology

In order to facilitate the wiring of MEMS structures to integrated circuits CMOS MEMS technol-

ogy is used. CMOS-MEMS technology is the integration of MEMS technology with the mainstream

CMOS technology. To achieve an overall high performance from the devices, the parasitic capacitance

is reduced with a monolithic integration of the CMOS-MEMS. Monolithic integration is also known as

integration circuit (IC) which is a set of electronic circuits on a small plate (chip), usually silicon. A

post-CMOS MEMS technology provides robust and sensitive detecting structures. In this technology,

the fabrication of the CMOS circuit is independent from the MEMS structures, which enables inte-

grating on its high performance mechanical structures made of bulk materials with high electronics

performance.

The first main integration method for post-CMOS micro machining is to add, on the CMOS sub-

strates, MEMS structures and during which the CMOS layers are being un-etched over all structure

micro fabrication. A second method is to build the MEMS structures by performing micro machining

straightly in the CMOS thin film substrate or layers.

3.2 MEMS accelerometers

Firstly, it is important to define what an accelerometer is and how it works. Acceleration is mea-

sured due to the phenomenon of weight by an object related with a frame of reference of the ac-

celerometer. There are many types of accelerometers reported in literature [42]. Accelerometers are

capable of measuring acceleration in one, two or three orthogonal axes. They measure acceleration

which is a physical characteristic of a system and convert it in a electric value, such as voltage for

example. Acceleration is a measure of how fast the speed is changing as we can see in the equation

3.11.

The international system of units measure acceleration in m/s2 [41] and considers "g" as a unit of

acceleration equals to Earth’s gravity at sea level with a value of 9.81m/s2 [41].

From all the types of accelerometers two of them stand out. One of them is piezoelectric ac-

celerometer, such as name suggests it works based on the piezoelectric effect. This device has
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a piezoelectric quartz crystal on which an acceleration force is applied. The piezoelectric effect is

characterized for when the crystal is compressed, the charges accumulate in opposite sides of the

crystal contradicting their polarity. In a piezoelectric accelerometer, charge accumulates in the crystal

and it is converted and amplified into an output current or voltage. These devices only respond to

AC phenomenons such as shock or vibration, rather than DC phenomenons such as acceleration of

gravity.

Figure 3.3: Piezoelectric accelerometer [6]

The basis of operating a piezoelectric accelerometer is shown in figure 3.3. This type of ac-

celerometers is usually used in industrial applications and it converts the mechanical action into its

corresponding electrical output signal. It works very well at high temperatures and also at frequency

rate acquisition up to 100 KHz. Moreover the big advantages of piezoelectric are its wide frequency

response, they are intrinsically stable over wide temperature ranges, robust, they can be adapted for

different applications and piezoelectric accelerometers output voltages are linear and proportional to

measured rates of acceleration which simplifies the signal conditioning. They have among others

some common applications such as inertial navigation, drones and unmanned aerial vehicles, vehicle

stability control and automation.

The second type of accelerometers that will be described in this study is the capacitive accelerom-

eter. The main advantage of capacitive accelerometers is that no minimal additional processing is
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needed, since capacitors can operate both as actuators and sensors. They have a high sensitivity

and they work well independently of temperature changes. Capacitive sensing is independent of the

base material and depends on the change of capacitance when the geometry of the capacitor is

altered. Ignoring the fringing field effect near the edges, the parallel-plate capacitance is [43]:

C0 = ✏0✏
A

d
= ✏

A

1

d
(3.6)

In equation 3.6 ✏
A

= ✏0✏A where A is the area of the electrodes, d is the distance between them

and ✏ is the permittivity of the material between the electrodes. Either of these parameters has

influence in the capacitance measured and any variation of them will change the capacitance. These

variations have been used in MEMS sensing. Thus, accelerometers are based on a change in the

distance between the electrodes (d) or in the area of them (A).

Figure 3.4: Accelerometer structure. The proof mass is attached through springs (Ks : Springconstant) at the
substrate. In can move only over the vertical axis, up and down. Movable and fixed outer plates construct the
capacitors. [6]
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As shown in figure 3.4, a typical MEMS accelerometer is composed by a movable 0.1µgrams proof

mass with plates that is attached through a mechanical suspension system to a reference frame. Poly-

silicon springs suspend the structure over the wafer and set a resistance against acceleration forces

according with Hook’s Law. Capacitors are represented by the movable plates and the fixed outer

plates with 1.4µm gaps between the plates[44]. Capacitance difference is the measurement from the

deviation of the proof mass. For example, in figure 3.4 the free-space capacitance between the two

fixed outer plates and the movable plate C1 and C2 is function of the related displacements x1 and x2:

C1 = ✏
A

1

x1
= ✏

A

1

d+ x
= C0 �4C,C2 = ✏

A

1

x2
= ✏

A

1

d� x
= C0 +4C (3.7)

Assuming acceleration equals to zero, both the capacitance C1 and C2 assume the same value,

because x1 = x2 = x. If x 6= 0 the difference between the capacitance C1 and C2 is:

C2 � C1 = 24C = 2✏
A

x

d2 � x2
(3.8)

If 4C is measured, x can be found by solving the equation:

4Cx2 + ✏
A

x�4Cd2 = 0 (3.9)

Equation 3.9 can be simplified and for small displacements, 4Cx2 is negligible, thus it might be

suppressed. Equation 3.9 can be written as:

x ' d2

✏
A

4C = d
4C

C0
(3.10)

From equation 3.10 one concludes that the displacement x is roughly proportional to the capaci-

tance difference 4C. [43].

As shown in figure 3.4, every sensor has a lot of capacitors sets. All upper capacitors are wired

parallel for overall capacitance C1 and, in the same way, all lower ones for overall capacitance C2.

Otherwise capacitance difference would be too small to detect. This means that equation 3.10 is true

for all system and not only for one pair of capacitors. Assuming an ideal spring, according to Hook’s

Law, the spring has a restoring force F
s

and this force is proportional to the displacement x, (see

figure 3.4). In this way, F
s

= k
s

x, being k
s

the spring constant. From Newton’s second law of motion

F = m⇥a = m⇥ d

2
x

dt

2 . Assuming F = F
s

the acceleration can be written as a function of displacement:
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a =
K

s

m
x (3.11)

Making use of measured 4C the acceleration will be:

a = �k
s

d2

m✏
A

4C (3.12)

And based on the Second Newton’s Law

ma = m
d2x

dt2
= f

s

(x) (3.13)

Where f
s

is the spring restoring force[43].

3.3 Sensor

As mentioned earlier, an accelerometer is a device that measures two types of acceleration, dy-

namic acceleration which is experienced by an object relative to free-fall and static acceleration, the

change of gravity on a given sensitive axis to determine inclination angles [43]. In the current study,

one uses the Analog Devices Accelerometer ADXL335 which is a small, thin, low power, complete

3-axis accelerometer. Table 3.1 sums up the main characteristics of this device.

Table 3.1: Accelerometer ADXL335 characteristics [8]

Characteristic Range
Sensitive axis 3

Measurement Range ± 3.6 g typical
Sensitivity (Radiometric)

at each axis 300 mV/g

Operating Temperature -40 to 85oC
Operating Voltage 1.8 to 3.6V

The sensor is a poly-silicon surface-micro machined structure built on the top of a silicon wafer

which details of the structure are described in section 3.1.1. The device also contains signal condi-

tioned analog voltage outputs. This sensor is fabricated based on technology described in section

3.1.2.

The springs represented in figure 3.4 are poly-silicon springs on the respective sensor. These poly-

silicon springs suspend the structure over the surface of the wafer and provide a resistance against

acceleration forces. The operating mode was described in section 3.2. Remembering figure 3.4, the
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sensor’s fixed plates are driven by 180� out-of-phase square waves. This system can be designed as

a simple voltage divider whose output is looking forward through a buffer and demodulator.

Figure 3.5: Electric circuit that measures acceleration from capacitor changes[7]

Figure 3.5 represents the electric circuit that measures acceleration based on changes from ca-

pacitors. Voltage V
x

is the voltage of proof mass. Then,

(V
x

+ V0)C1 + (V
x

� V0)C2 = 0 (3.14)

and using equations 3.7 and 3.10:

V
x

= V0
C2 � C1

C2 + C1
=

x

d
V0 (3.15)

In equation 3.15 V
x

is a square wave with the amplitude proportional to acceleration. When there

is not acceleration (a=0) the proof mass does not move, and the voltage output is zero. If acceleration

is not equal to zero and positive (a>0), the voltage output V
x

changes proportional to alternating input

voltage V0 as one can see in equation 3.15. If we reverse the acceleration (a<0), V
x

gets negative

sign. Demodulator gives us the correct sign of acceleration, once it multiplies the input signal with

the square waves V0 which come from the oscillator. V
out

is the output voltage with the right sign of

acceleration and amplitude. Now we can write equation 3.11 as proportional to output voltage:

a =
K

s

d

mV0
V
x

(3.16)

As referred before, the ADXL335 is capable of sensing both static and dynamic acceleration.

These two types of acceleration are closely linked with each other and they are present at the output

of the sensor as a DC (Direct current) voltage imposed on a AC (Alternating current) signal. The DC

voltage has information about the static acceleration which include the angle at which the sensitive
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axis is relative to gravity vector. The AC outputs an amplitude voltage which is proportional to the

acceleration felt by the sensor relative to its axis of sensitivity.

Figure 3.6: Functional Block Diagram of ADXL335[8]

The block diagram of ADXL335 is displayed in figure 3.6 which represents a three-axis accelerom-

eter where there are three setups orthogonally placed similar to figure 3.4.

With the purpose to connect an accelerometer through the bipolar inputs of the EEG equipment,

a simple setup was designed.

Figure 3.7: Schematic diagram of the ACM device

Figure 3.7 represents the schematic of the ACM (accelerometer) device. The central yellow square

represents ADXL335 sensor with nine pins connected. Both VCC pins are connected to a 3.0V

battery. All four GND pins are connected to the ground. X
out

, Y
out

and Z
out

represent the output
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pins from the three-axis of the accelerometer. Each of these pins have an additional capacitor to set

the signal bandwidth of the device. This capacitors were added to implement low-pass filtering for

aliasing and noise reduction which is better explained in section 2.4.1. A capacitor of 0.1µF for C2, C3

and C4 was chosen to set a bandwidth of 50Hz according with the information in ADXL335 data sheet

[8]. Sensor outputs are connected to an header with four inputs, three axis and one ground. The

connection to the EEG equipment will be made through this header. In the left side of the figure there

is another header with a switch. Upper there is a power supply module with two 0.1µF capacitors,

placed closed the ADXL335 supply pins decoupling the accelerometer from noise from the power

supply. The accelerometer 3D view is shown in figure 3.8.

Figure 3.8: Actigraph’s evolution

Figure 3.9 shows the device’s evolution. In the top left-hand corner is displayed the first circuit

designed and manually assembled, in the top-right corner the second version designed in a printed

circuit board and in the bottom the last version of the device more small and thin than the others.

To acquire the ACM data, the hardware system with a three-dimensional accelerometer was devel-

oped and added to the acquisition unit that already exists. With the set-up represented in figure 3.10,

it is possible assess all the signals automatically, temporally synchronized using only one computer’s

window.
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Figure 3.9: Device evolution

Figure 3.10: Set-up of the patient while monitoring EEG, EMG, ACM, EOG, ECG signals - Block diagram
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4
Methods and experimental results
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In this chapter the experimental results will be presented and discussed. Firstly, it was applied

an algorithm in Matlab to remove high-frequency noise from the accelerometer signal. Secondly, the

data from the accelerometer designed in this study were validated through the correlation with the

data from a commercial accelerometer. After that, it was developed an algorithm to detect movement.

Finally, it will be presented an analysis of the ACM data to detect the seizure onset.

4.1 Noise filter

For noise analysis the data were acquired through a different acquisition equipment due to re-

source management reasons. The sampling frequency was 100Hz to this experiment. This data-set

was acquired in the "CENC-Centro de Sono" which is a private clinic for studying sleep diseases.

Ideally, for a fixed DC analog input, the output signal should be zero. However, due to noise, this

does not happen. This noise is due to thermal noise within the ADC and quantization noise due to

the analogue-to-digital conversion process. This noise is usually from Gaussian nature.

This experiment was performed wearing the device myself on my non-dominant wrist while I was

moving my arms in aleatory directions.

Figure 4.1: Noisy and filtered signal

For noise filtering it was applied a low-pass filter since noise is associated with high frequencies.

In order to filtering the "gravitational acceleration" it was added a sequential high pass filter. On the

top picture in figure 4.1 it is represented the original signal for 1.5 seconds. On the bottom picture in

figure 4.1 it is represented the filtered signal.
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For filtering this signal a non-recursive FIR (finite impulse response) filter of order 2 was designed.

This was performed with a function from MATLAB firgr(). To use this function we must select some

parameters. Firstly, we must set the bandwidth intended. Select the Fstop (stop frequency) and Fpass

(pass frequency) for the filter. In this case, a band pass filter was computed. After that we have to

select the order of the filter and the amplitude vector. Since frequency ripple arises in this filter and

in this case the variation means the insertion of loss against increasing frequency, the ripple vector

which contains the peak ripple per frequency band must be selected.

Table 4.1: Signal statistics

Value (V) Time (secs)
Max 3.756 0.310
Min 1.260 0.490
Peak to peak 2.496
Mean 2.171
Median 1.968
rmsNoise 2.315

In table 4.1 are presented the signal statistics after filtering noise. The rmsNoise is equal to 2.315

and according to the data-sheet of the sensor [8] the tabulated value for noise density the rms noise

is calculated by:

rmsNoise = NoiseDensity ⇤ (
p
BW ⇥ 1.6) (4.1)

From equation 4.1 the rmsNoise calculated from tabulated value is 2.68. Thus, the relative error

in percentage 13.62%.

4.2 Data validation

It is of crucial importance to be sure that the accelerometer designed detects movements as well

as a commercial one. With this purpose, the data has undergone a processing mode.

4.2.1 Proposed method

In order to validate the data recorded from the accelerometer designed in the current study, a

test using this device and another commercial accelerometer was done and both were placed on the

same wrist. MATLAB was used for all processing procedure.
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Both data from the accelerometer designed and data from the commercial accelerometer were

normalized according to equation 4.2, where X̃ is the normalized value, X is the real value and X
min

and X
max

represent the minimum and maximum value, respectively.

X̃ =
X �X

min

X
max

�X
min

(4.2)

Throughout this experiment the sampling frequency was F
s

= 100Hz. Figure 4.2 represents a

time interval. The horizontal axis represents the samples which correspond to time(s) ⇥ 100 and

vertical axis represents the signal normalized amplitude.

Figure 4.2: Representation of X-axis, Y-axis, Z-axis and magnitude signal.

Since the three axis are orthogonal, the amplitude is calculated through equation 4.3

Magnitude =
p

x2 + y2 + z2 (4.3)

In figure 4.3 both signals from the accelerometer used in this study and other commercial ac-

celerometer are plotted.

Due to the use of different computers to export the data from the two accelerometers, the data

are lagged. In order to align both signals, a simple method was performed. Figure 4.4 displays the
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Figure 4.3: Plot of the commercial accelerometer and accelerometer designed signals.

diagram block of the method used to align the two signals. Firstly, it was determined which signal is

longer. Secondly, it was computed the cross correlation of the two signals. In signal processing and

assuming that these signals are stationary and stochastic processes, the cross correlation r
yx

can be

put in the form:

r
yx

= y(l) ⇤ x(�l) (4.4)

or for discrete cases,

r
yx

=
1X

n=�1
x(n)y(n� l) (4.5)

In both equation 4.4 and equation 4.5 l is the lag parameter.

Figure 4.4: Method to align the signals - diagram block

The signal processing toolbox in MATLAB provides a function called xcorr() for sequence corre-
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lation computation. This function was used in this step to return the lag between the two signals and

the cross correlation sequence[45].

After that, the signals were align and then plotted as figure 4.5 shows.

Figure 4.5: Both signals align

4.3 Movement detector algorithm

For movement detection (MD) a simple algorithm was performed. These data were acquired from

patients in Hospital Santa Maria and with a sampling frequency of 1000Hz. To that end, a function

provided by a toolbox of MATLAB called findpeaks was used. Some input values had to be entered,

which include the minimum peak height and the minimum distance between peaks. This function

finds local maximums throughout the signal and returns the location through index values and the

amplitude value. After that, it was created a matrix with binary values.

Thus, the MD is composed by i) a non-causal low pass stretching filter and a ii) threshold (t)

binarization block. The width of i) is controlled by the parameter p which selects the time interval to

apply the algorithm.
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Figure 4.6: Structure of Movement detector (MD)

In figure 4.6 is displayed the structure of the MD algorithm.

For sensitivity which measures the proportion of positive cases that are correctly identified, let:

Sensitivity =
TP

TP + FN
⇥ 100% (4.6)

For Specificity which measures the proportion of negatives that are correctly identified, let:

Specificity =
TN

TN + FP
⇥ 100% (4.7)

For precision or positive predictive value which measures the proportion of true positives against

the total number of cases, let:

PPV =
TP

TP + FP
⇥ 100% (4.8)

For accuracy which is the proportion of true results among the total of the cases, let:

Accuracy =
TP + TN

TP + FP + TN + FN
(4.9)

In the equations above TP means "true positive", TN means "true negative", FP means "false

positive" and FN means "false negative". Note that these parameters are a function of the threshold.

In this case, it was used a threshold equals to 0.06. The output of the detector is a binary function

⌧(n)✏m, q, where m corresponds to movement with value ’0.1’ at the indexes returned by the function

findpeaks and q corresponds to quietness with value ’0’.

In a first approach this algorithm was applied in the signal recorded from the accelerometer de-

signed. In figure 4.7 is displayed the result.
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Figure 4.7: Plot of the MD and the original signal from the accelerometer designed

In table 4.2 are displayed all statistical values which were measured from the MD performance

throughout the signal recorded.

Table 4.2: Statistical measurements of MD

Sensitivity 98, 26%
Specificity 99, 70%
Accuracy 99, 68%
Precision 81, 79%

4.4 Data recorded

The aim of this work is to connect directly an accelerometer through a bipolar input of the EEG

equipment in order to make available in the same window all signals. Therefore, the accelerometer

described in the previous chapter was used. As in previous subsection, these data were acquired in

Hospital Santa Maria with a sampling frequency of 1000Hz.

Figure 4.8 is a print screen of the system software where are shown all signals recorded in the

same window. The data recorded from the accelerometer are represented in the last three channels.

These data were recorded from a child while he was in a long-term EEG monitoring in Hospital Santa

Maria over five days. In the figure, a paroxysmal event is represented as well as the changes over

all channels. If one assess all the signals can conclude that when the paroxysmal event begins
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Figure 4.8: All signals recorded represented in the same window

the amplitude and frequency of all signals increased drastically. Assessing all signals it is easy to

extrapolate when the event begun. As we can see in figure 4.8, alterations in ACM data occurred less

than one second later. The window’s width is fifteen seconds. A paroxysmal event may be epileptic

seizures whether the abnormal behaviours are caused by excessive, hyper synchronous activity of

the neurons in the brain[46].

In figure 4.9 are represented other paroxysmal events from the same patient. An awakening

event was identified and may be followed by an electric seizure. In this case the data are almost

synchronized with the changes over the other channels.

4.4.1 Data analysis

In order to prove that actigraphy is a good tool to identify an epileptic seizure, the data recorded

from different patients through EEG equipment in Hospital Santa Maria were processed and analysed.

Figure 4.10 display a block diagram about the method that was used to process and analyse the

data.

1. Firstly, data must be converted to be processed in MATLAB. This step is divided in two steps:

Convert data to European data format (.edf ) which is a simple and flexible format for exchange

and storage of multichannel biological and physical signals and then, convert data to a set
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Figure 4.9: All signals recorded represented in the same window. Paroxysmal event and possible electric
seizure. It was assessed by doctor as an epileptic seizure

legible by MATLAB. After that, data was converted using a toolbox from matlab called EEGLAB

to convert to .set format.

2. Since the data was acquired from bipolar inputs channel operations must be done. These are

simple subtract operations where the inactive input is subtracted from the active input.

3. A stretching filter was applied over the time interval during which seizures was detected by doc-

tors. In addition, data was normalized and filtered with a low-pass filter to filter high frequency

noise and with a high pass filter to filter "gravitational acceleration". Figures 4.11 and 4.12 show

the magnitude and phase response for the bandpass filter, respectively.

4. Event marks were made by technicians and afterwards assessed by a doctor as being or not

a seizure. Furthermore, MD algorithm was performed to detect movement at the onset of the

seizures.

Two epochs of 20 seconds each were selected to analysis. The first 20 seconds is the time before

the event mark and the last 20 seconds is the time after the event mark. The event was marked at 20

seconds. For this experiment, 62 events were marked by doctors and then they were analysed, 46

seizures, 9 paroxysmal events, 6 unknown events and 1 awakening forced.

Figure 4.13 displays one of the seizures in which was applied MD algorithm to detect the seizure
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Figure 4.10: Method to analyse the data recorded from patients while they worn an accelerometer

onset. The event was marked by doctor and it is temporally synchronised with involuntary movements

start. The validation was done by comparison between the video and the ACM signal. Sometimes,

depending on where the seizure onset is in the brain, motor activity may be interrupted during the

seizure. In figure 4.14, the seizure onset matches an activity arrest period marked with yellow colour

and the recover time is marked with red colour.

On the other hand, there may be no relevant changes in movement patterns at the time that the

patient is having an epileptic seizure. Figure 4.15 shows an example of this type of seizures.

The MD algorithm was applied over all signals to assess its performance. For that, sensitivity,

specificity and accuracy of the algorithm were calculated. These equations were described in section

4.3.
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Figure 4.11: Bandpass filter - magnitude response applied through the data that were acquired with a sampling
frequency of 1000Hz.

Figure 4.12: Bandpass filter - phase response applied through the data that were acquired with a sampling
frequency of 1000Hz.

Let

• True positive - a test in which the result is positive and it really is. In other words, the algorithm

detects movement and the patient was really moving his arm.

• False positive - a test in which the result is positive and it is not true. In other words, the algorithm

detects movement and the patient was quiet.

• True negative - a test in which the result is negative and it really is. In other words, the algorithm

does not detect movement and the patient was really quiet.

• False negative - a test in which the result is negative and it is not true. In other words, the

54



Figure 4.13: Example of MD in one of the seizures

Figure 4.14: Example of MD in one of the seizures

algorithm does not detect movement and the patient was moving his arm.

Table 4.3: MD performance

Sensitivity 74, 00%
Specificity 98, 28%
Accuracy 96, 80%

The parameters displayed in table 4.3 were calculated for each event and then the average of
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Figure 4.15: Example of MD in one of the seizures

all was estimated. The gross results are shown in appendix A where it is displayed the results for

algorithms performance in each seizure.

This method can reduce a lot the length of data to analyse by doctors but it also have a lot of false

positives, since it detects all movements, even if they are not related with the seizure onset.

4.4.2 Algorithm to detect seizures onset

With the purpose of detecting seizures onset, an algorithm was developed to identify patterns

at the time that seizure starts. To achieve this, it was implemented a theoretical framework called

matched filter which is an ideal filter to process a received signal. The matched filter maximises the

SNR of the filtered signal and has an impulse response that is a reverse time-shifted version of the

input signal.

Let the received signal be s0(t) + n0(t) and s(t) the transmitted signal:

s[t] =) s0[t] + n0[t]

s[t] goes through a filter with impulse response h[t], and picks up noise n[t] along the way. The

transformation occurs inside the linear time invariant system (LTI) called matched filter. LTI transfor-

mation is the single most important relationship in the field of communications since it gives us a way
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to relate input and output signals,

x[t] =) h[t] =) y[t]

The output at any moment in time will be:

y[n] =
1X

k=�1
↵
k

h[n� k]

Thus, the response of LTI is the summation of the weighted and shift input pulses. In time domain

it is the convolution between the impulse response of LTI and the signal received: y(t) = h(t) ⇤ x(t).

It is important to draw attention to two different types of changes in movement at the time that

seizure starts. Some seizures are characterized by involuntary movements and others by activity

arrest. Thus, the sets were divided according with the way that movement changed.

Table 4.4: Sets selected

Seizure No seizure
Involuntary movements Activity arrest Movement Quietness

Number of training data-sets 7 5 - -
Number of test data-sets 15 6 33 16

It was selected a trainee data-set in which the patient starts movements and other trainee set in

which the patient starts a quietness period.

Firstly, all data-sets are filtered following the same method described in section 4.1. After that,

they are filtered again with a low pass filter and then the sampling frequency was reduced by a factor

of 100. This reduction was done with decimate() function in MATLAB. Figure 4.16 and figure 4.17

display the magnitude response and phase response of the low-pass filter, respectively.

Secondly, the average signal X̄(t) of the trainee data-set must be calculated:

X̄(t) =
1

N

NX

i=1

x
i

(t) (4.10)

In equation 4.10 N is the number of trainee data-sets and x
i

(t)istheelementofeachdata�setattimet.Theaveragesignalistheh[t]ofthematchedfilter.

The h(t) was fitted and this fitted signal will be the signal input for the matched filter displayed in

figure 4.18.

As we have a time-domain template, its matched filter is a time-reversed version of itself. For

that a function called flipud() was used. This function returns a vector with the same length of the
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Figure 4.16: Low-pass filter - magnitude response

Figure 4.17: Low-pass filter - phase response

input column vector with the order of its elements reversed. The matched filter is nothing else than a

correlate that correlates with a given signal pattern.

Figure 4.19 displays the method to apply matched filter in an input signal. The input signal in this

figure is the signal to analyse. An average signal that results from the average signal of the trainee

set is added in a filter as a reference signal. This filter will find the epochs that are similar to the

reference signal and mark them with a spike. In short, the output signal is obtained by correlation of

a known signal(average signal) with an unknown signal to detect the presence of the input signal in

the analysed signal.

The data analysed by this filter were selected after the movement detection algorithm was applied.
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Figure 4.18: Average signal fitted with a polynomial curve for seizures that at t=20s starts movement, equation:
y(t) = a5⇥ x(t)5 + a4⇥ x(t)4 + a3⇥ x(t)3 + a2⇥ x(t)2 + a1⇥ x(t) + a0

Figure 4.19: Method to apply matched filter throughout an input signal

Only were analysed data with seizures in which there was movement, both involuntary movements

as well as activity arrest. The training data-set was different for data in which there was activity arrest

and involuntary movements, but both worked well. Firstly, we analysed the data from seizures which

manifest themselves by involuntary movements. Figure 4.20 displays the signal from accelerometer

(blue line), the marks made by doctors (green intervals) in epochs of 40 seconds, and the spikes

found by the algorithm. Fifteen seizures were marked and the algorithm only found eleven. So, for

this data-set the algorithm achieves the statistical values :
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Figure 4.20: Seizures detection algorithm results for data in which seizures manifest themselves by starting
movement.

• Sensitivity = 73.33%

• Specificity = 95.74%

• Accuracy = 90.32%

• PPV = 84.63%

PPV is the positive predictive value which is the proportion of positive results that are truly positive.

These statistical parameters result from equations in section 4.3.

Secondly, we applied the algorithm throughout a data set with other events marked like paroxysmal

events and forced awakenings. Figure 4.21 displays results for seizures (green interval) and events

(red interval) detection after running the algorithm throughout these data.

Considering both seizures and other events marked in EEG signal, we achieve better values for

statistical parameters:

• Sensitivity = 84.62%

• Specificity = 95.74%
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Figure 4.21: Seizures and events detection algorithm results for data in which seizures manifest themselves by
involuntary movements.

• Accuracy = 91.78%

• PPV = 91.77%

The data set in which seizures manifest themselves by activity arrest movement were also anal-

ysed. Figure 4.22 displays the input signal to be tested by matched filter and figure 4.23 displays the

output signal of the matched filter. In this case:

• Sensitivity = 92.30%

• Specificity = 80.00%

• Accuracy = 84.21%

• PPV = 70.59%

In an overall analysis we achieved statistical values with a sensitivity of 83.42%, specificity of

90.49%, accuracy of 88.77% and a positive predictive value of 82.33% which means we succeeded to

detect seizures that are truly seizures. As one can see in figure 4.22 there are some epochs without

seizures that have movement. The algorithm tests the signal’s shape.
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Figure 4.22: Input signal for data in which seizures manifest themselves by activity arrest.

Figure 4.23: Seizures and events detection algorithm results for data in which seizures manifest themselves by
activity arrest.
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Table 4.5: Gross results for the algorithm with seizures and events detection

Seizures Seizures detected Event Event detected
Y N FN Y Y TP
Y Y TP Y Y TP
Y Y TP Y Y TP
Y Y TP Y Y TP
Y Y TP Y Y TP
Y Y TP Y Y TP
Y Y TP Y Y TP
Y Y TP Y Y TP
Y Y TP Y Y TP
Y Y TP Y Y TP
Y Y TP Y Y TP
Y N FN Y Y TP
Y N FN Y Y TP
Y N FN Y Y TP
Y Y TP Y Y TP
Y Y TP Y Y TP
Y Y TP Y Y TP
Y N FN
Y Y TP
Y Y TP
Y Y TP

Table 4.6: Gross results for the algorithm with no events or seizures detection

No Seizures
or events

Event
detected

No Seizures
or events

Event
detected

No Seizures
or events

Event
detected

Y N TN Y N TN Y N TN
Y N TN Y N TN Y N TN
Y N TN Y N TN Y N TN
Y N TN Y N TN Y N TN
Y N TN Y N TN Y N TN
Y N TN Y N TN Y N TN
Y N TN Y N TN Y N TN
Y N TN Y N TN Y N TN
Y N TN Y N TN Y N TN
Y N TN Y N TN Y N TN
Y N TN Y N TN Y N TN
Y Y FP Y N TN Y Y FP
Y Y FP Y N TN Y Y FP
Y N TN Y N TN Y Y FP
Y N TN Y N TN Y Y FP
Y N TN Y N TN Y Y FP
Y N TN Y N TN Y N TN
Y N TN Y N TN Y N TN
Y N TN Y N TN Y N TN
Y N TN Y N TN Y N TN
Y N TN Y N TN Y N TN
Y N TN Y N TN Y N TN
Y N TN

The gross results of the algorithm performance throughout all data analysed are displayed in

tables 4.5 and 4.6. Table 4.5 shows results for seizures and events detection and table 4.6 shows
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results for no seizures or events data. If we take into account only seizures detection, the values of

sensitivity, specificity, accuracy and positive predictive value are 76.19%, 89.55%, 86.36% and 69.57%,

respectively, which means that a good proportion of positives that were identified as such and the aim

of this study was achieved.
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5
Conclusions and Future Work
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The goal of this study was to use a tool called actigraphy, which has already been used to monitor

other neurological diseases, for monitoring patients with epilepsy. Since all measurements of the

different signals were made by the same equipment, the accelerometer was connected through the

bipolar inputs of the same equipment. In this way, the big advantage of this work is that these signals

were temporarily synchronized with all others, which makes easier identifying the instant at which the

seizure started. This will ease the work of technicians and doctors which is nowadays a very time

consuming work.

Firstly, a simple electronic circuit was designed to connect the sensor to the EEG equipment. The

first step was to measure the signal to noise ratio and compare this value with the tabulated value.

The tabulated value is 2.68 and the value measured is 2.315. The SNR measured is less than the

value tabulated because it was tested in a noisy environment due to all equipments that usually work

in the infirmary apart from EEG equipment, video and others for transferring data.

Secondly, the validation of data was done. For this aim, cross-correlation of all the data was

done with data from a commercial accelerometer and from the accelerometer designed for this study.

We conclude that the data from the accelerometer matched well with the data from the commercial

accelerometer.

In order to identify movement changes an algorithm for movement detection was developed. First,

it was applied on the data used for validation. The algorithm had a sensitivity of 98.26%, a specificity

of 99.70%, an accuracy of 99.68% and a precision of 81.79%.

The data acquired from patients with epilepsy was then analysed. The movement detection al-

gorithm was applied over 46 seizures and 16 events and a manual validation was done, achieving

a sensitivity of 74%, a specificity of 98.28% and an accuracy of 96.80%. This validation was done by

plotting in the same figure movement detection results, ACM signal and events marked by doctors.

Due to the fact that this algorithm detects all movements, it has a lot of positives that are not seizure

(the statistical values are only for movement detection).

An algorithm for seizure detection based on signal patterns at the time that the seizure onset was

marked by the doctor was developed. This algorithm detects seizures automatically through epochs of

40 seconds, in which the seizure is marked at 20 seconds. The data analysed by this algorithm came

from the movement detection algorithm. It only were analysed seizures and events which manifest
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themselves by involuntary movements or sudden activity arrest. It achieves a sensitivity of 76.19%,

a specificity of 89.55%, an accuracy of 86.36% and a positive predictive value of 69.57%. These

measurements are for both seizures which manifest themselves by activity arrest or by involuntary

movements. We made the same analysis for both seizures and events detection and in this case

we achieved higher values of sensitivity, specificity, accuracy and positive predictive value of 83.42%,

88.77%, 90.49% and 82.33%, respectively. The detection of events achieved the maximum values

for these parameters because the algorithm succeeded in detecting all events and so the statistical

values increased.

From all experiments, we understand that some improvements should be done in the algorithms.

The results could be statistically more relevant if there were more data from different patients. It is dif-

ficult to acquire measurements because data is acquired in real patients over one week of continuous

monitoring of video and EEG.
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Table A.1: Gross results for movement detector algorithm

Event type Filtered Event detected MD
Y/N Feature assessed Comments Sensitivity Specificity Accuracy

Seizure Yes Y stop
movement

start of a
quietness

period
75,00% 94,01% 94,01%

Seizure Yes Y

stop
movement

and
recovered

time

start of a
quietness
period and

recover after
some seconds

66,67% 99,87% 99,86%

Seizure Yes Y start movement

start spikes
at the same

time that was
marked a
seizure

80,00% 98,46% 98,46%

Seizure Yes N 75,00% 100,00% 100,00%

Seizure Yes Y start movement

start spikes
at the same

time that
was marked

a seizure

66,67% 99,55% 99,55%

Seizure Yes N No differences
in movement 66,67% 99,55% 99,55%

Seizure Yes Y start movement

one spike
at the same
time of the

seizure onset

75,00% 99,75% 99,75%

Seizure Yes Y stop movement

three consecutive
spikes that are
followed by a

quietness period

66,67% 99,83% 99,83%

Seizure Yes N

No
differences

in
movement

long period
of quietness 66,67% 99,97% 99,97%

Seizure Yes Y start movement

frequency
and amplitude
of the signal

was increased
after a period

of low amplitud
and frequency

85,71% 94,81% 94,81%

Seizure Yes N

No
differences

in
movement

electroclinical
seizure 66,67% 99,91% 99,91%

Seizure Yes Y stop movement 80,00% 98,91% 98,91%
Event
mark Yes Y start movement 66,67% 99,37% 99,37%

A-2



Table A.2: Gross results for movement detector algorithm. Continue

Event
type Filtered Event detected MD

Y/N Feature assessed Comments Sensitivity Specificity Accuracy

Event
mark Yes Y

changes in
movement
patterns

frequency
of the signal

was increased
85,71% 97,22% 97,22%

Event mark Yes Y
changes in
movement
patterns

80,00% 98,38% 98,38%

Event mark Yes Y stop movement 85,00% 97,84% 97,84%

Seizure Yes Y stop movement
start of a
quietness

period
85,71% 99,51% 99,51%

Seizure Yes Y stop movement

a high spike
followed by

waves with much
lower amplitude

80,00% 93,87% 93,87%

Event mark Yes N 50,00% 99,95% 99,95%

Seizure Yes Y start movement

start spikes
at the same

time that was
marked a
seizure

75,00% 99,60% 99,60%

Seizure Yes Y start movement

start spikes
at the same

time that was
marked a seizure

70,83% 99,18% 99,18%

Paroxysmal Yes Y start movement

start spikes
at the same

time that was
marked a

paroxysmal event

96,88% 99,02% 99,02%

Paroxysmal Yes Y start movement

start spikes
at the same

time that was
marked a

paroxysmal event

87,50% 99,65% 99,65%

Seizure Yes N 50,00% 99,99% 99,99%

Seizure Yes Y start movement

start spikes
at the same

time that was
marked a seizure

66,67% 99,52% 99,52%

Seizure Yes Y stop movement
start of a
quietness

period
75,00% 99,65% 99,65%

Seizure Yes Y start movement

one spike
lagging 10s
behind the

seizure mark

75,00% 99,96% 99,96%

Seizure Yes Y start movement

start spikes
with high
amplitude

and frequency
at the same

time that was
marked a seizure

75,00% 96,61% 96,61%

Seizure Yes N No differences
in movement 71,73% 94,19% 94,19%
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Table A.3: Gross results for movement detector algorithm. Continue

Event type Filtered Event detected MD
Y/N Feature assessed Comments Sensitivity Specificity Accuracy

Seizure Yes Y

Sudden
decrease

of amplitude
and frequency

electroclinical
seizure 85,71% 95,90% 95,90%

Seizure Yes Y start movement electroclinical
seizure 80,00% 97,41% 97,41%

Seizure Yes Y stop movement electroclinical
seizure 75,00% 98,91% 98,91%

Seizure Yes Y start movement

start spikes
with high amplitude

and frequency
at the same time
that was marked

a seizure

76,92% 95,87% 95,87%

Seizure Yes Y stop movement
start of a
quietness

period
76,92% 97,60% 97,60%

Seizure Yes N 66,67% 99,99% 99,99%

Seizure Yes Y

Sudden
decrease

of amplitude
and frequency

a high spike
followed by
waves with
much lower
amplitude

and frequency

66,67% 96,55% 96,55%

Seizure Yes Y stop movement
start of

a quietness
period

80,00% 95,70% 95,70%

Seizure Yes Y start movement

start spikes
with high
amplitude

and frequency
at the same time
that was marked

a seizure

83,33% 96,09% 96,09%

Seizure Yes N 50,00% 99,97% 99,97%

Seizure Yes Y start movement

start spikes
with high
amplitude

and frequency
at the same

time that was
marked a seizure

79,17% 97,85% 97,85%

Seizure Yes N 80,00% 99,99% 99,99%

Seizure Yes N
paroxysmal
event follow
the seizure

89,89% 99,46% 99,45%

Paroxysmal Yes Y start movement
Seizure Yes N 50,00% 99,98% 99,98%

Seizure Yes Y start movement

a spike
followed

by a quietness
period

66,67% 99,26% 99,25%

A-4



Table A.4: Gross results for movement detector algorithm. Continue

Event type Filtered Event detected MD
Y/N Feature assessed Comments Sensitivity Specificity Accuracy

Paroxysmal Yes Y start movement

a spike
followed

by a quietness
period

73,68% 99,64% 99,64%

Seizure Yes N No changes 50,00% 99,54% 99,54%

Paroxysmal Yes Y start movement

start spikes
at the same

time that was
marked a

paroxysmal
event

84,21% 98,64% 98,64%

Paroxysmal Yes Y start movement

start spikes
at the same

time that was
marked a

paroxysmal
event

66,67% 99,58% 99,58%

Paroxysmal Yes Y start movement

start spikes
at the same

time that was
marked a

paroxysmal
event

85,71% 98,65% 98,65%

Seizure Yes N No differences
in movement 66,67% 99,95% 99,95%

Paroxysmal Yes N No differences
in movement 66,67% 99,81% 99,81%

Seizure Yes Y start movement

start spikes
at the same

time that was
marked a
seizure

75,00% 97,45% 97,45%

Forced awakening Yes Y start movement

start spikes
at the same

time that
was marked

the event

87,71% 97,06% 97,06%

Seizure Yes Y start movement

electroclinical
seizure. Start

spikes with
high amplitude
and frequency

77,78% 94,79% 94,79%

Seizure Yes Y start movement
start spikes

after a quietness
period

66,67% 98,35% 98,35%

Seizure Yes Y

first spike
at the same

time
in which the
clinical start
was marked

clinical start
lagging 17s
behind EEG

start

66,67% 100,00% 100,00%

Seizure No Y
spike with
maximum
amplitude

98,98% 92,36% 92,37%
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Table A.5: Gross results for movement detector algorithm. Continue

Event type Filtered Event detected MD
Y/N Feature assessed Comments Sensitivity Specificity Accuracy

Paroxysmal No Y start movement

start spikes
after a

quietness
period

97,06% 92,80% 92,80%

Seizure Yes N 58,82% 99,97% 99,97%

Seizure Yes Y start movement

start spikes
after

a quietness
period

50,00% 99,92% 99,92%
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