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Abstract: The paper addresses the lexicographically maximal risk-disjoint/minimal
cost path pair problem that aims at finding a pair of paths between two given nodes,
which is the shortest (in terms of cost) among those that have the fewest risks in
common. This problem is of particular importance in telecommunication network de-
sign, namely concerning resilient routing models where both a primary and a backup
path have to be calculated to minimize the risk of failure of a connection between
origin and terminal nodes, in case of failure along the primary path and where band-
width routing costs should also be minimized. An exact combinatorial algorithm
is proposed for solving this problem which combines a path ranking method and a
path labelling algorithm. Also an integer linear programming (ILP) formulation is
shown for comparison purposes. After a theoretical justification of the algorithm
foundations, this is described and tested, together with the ILP procedure, for a set
of reference networks in telecommunications, considering randomly generated risks,
associated with Shared Risk Link Groups (SRLGs), and arc costs. Both methods
were capable of solving the problem instances in relatively short times and, in gen-
eral, the proposed algorithm was clearly faster than the ILP formulation excepting
for the networks with the greatest dimension and connectivity.

Keywords: Lexicographic shortest paths; Ranking; Pairs of paths; Telecommuni-
cation network design; Resilient routing models.

1 Introduction

Multicriteria shortest path problems have important applications in telecommunication net-

works, specially in network routing design. Overviews on multicriteria shortest path algorithms

with applications in this domain, were presented in Cĺımaco et al. (2016); Cĺımaco and Pascoal

(2012). State of art reviews, focusing on MCDA (Multicriteria Decision Analysis) modelling ap-

proaches, algorithms and their applications in network design, including routing problems, can
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be seen in Cĺımaco et al. (2016) and, in a broader context, in Cĺımaco and Craveirinha (2019).

A particular class of these problems, with great interest in the context of resilient routing design

(see a generic monography on this broad subject in Rak (2015)) involves, typically, the calcula-

tion of a pair of paths (corresponding to end-to-end routes), the primary or active path (AP)

(that carries the corresponding traffic flow under normal operating conditions) and the backup

or protection path (BP) (which is the path that carries that traffic when some failure affects

the AP). The two paths have to be computed and signaled, for each pair of origin-destination

nodes, so that the availability of the services supported by the pair may be guaranteed, as far as

possible, in the event of failures. This type of problems is of paramount importance having in

mind that very high levels of service availability (expressed through Service Levels Agreements

for different classes of connection demands) should be maintained in the event of failures and

the enormous amounts of traffic that can be lost in the event of failures in the physical or logi-

cal network structures, resulting for example from optical fiber cuts, switch/router or software

failures.

In the design of routing mechanisms with built-in survivability objectives, taking into account

the multi-layered structure of telecommunication networks, the concept of shared risk link group

(SRLG) is frequently used, which may be defined as a group of logical links (arcs of the functional

network graph representation) which share a common risk of failure. Usually the network

designer, based on the information about the SRLGs associated with the arcs, seeks to calculate

a pair of paths which are SRLG-disjoint, ensuring that no single fault of the AP will affect the

BP, a NP-complete problem as shown in Hu (2003). However, there may arise situations for

which no SRLG-disjoint path pair can be calculated, a case in which the aim of the routing

procedure may consist of finding a maximally SRLG-disjoint path pair, that is a path pair with

the minimal number of common SRLGs, so as to minimize the risk of simultaneous failure of

the two paths. Moreover, a key concern is bandwidth usage optimization, seeking to optimize

the use of bandwidth resources throughout the network links, in order to achieve the maximal

possible network traffic carrying capability. This is usually represented in terms of different labels

associated with the arcs of the network, representing the different risks, as well as additive path

cost functions, such that the cost of using a link is some function of its capacity and used

bandwidth. These considerations lead to a typical formulation of the routing problem with path

protection involving the lexicographic calculation of a pair of paths which are maximally label

disjoint, ideally with no label common to the AP and BP and, as a secondary objective, minimal

total cost.

Several heuristic algorithms for seeking totally SRLG-disjoint path pairs have been proposed

the performance of which, in terms of exactness, is usually evaluated by comparison with ex-

act solutions from Integer Linear Programming formulations, for problems tested in reference

2



networks. Heuristics for this problem were proposed in Rostami et al. (2007); Todimala and

Ramamurthy (2004); Xu et al. (2003). In Silva et al. (2011), a variant of the procedure in Hu

(2003) is proposed where the candidate APs are considered in order of ascending cost and a

BP with the minimum cost is calculated, leading to a final solution which is the pair with the

least number of common SRLGs. Various heuristics were proposed for calculating totally SRLG-

disjoint path pairs of minimal cost, namely Gomes et al. (2013a) and Gomes et al. (2013b). Also

various heuristics were proposed for tackling maximally SRLG-disjoint path pairs of minimal

cost lexicographic optimisation problems, considering variants of the objective functions or of

the constraints and various resolution approaches. In particular, Gomes et al. (2016) presents

two heuristics for tackling a lexicographic formulation of this type of problem which includes as

additional objectives, of highest priority, that the paths are maximally node and arc disjoint.

In this work, we present an exact algorithm for solving the lexicographic formulation of

the maximally risk-disjoint/minimal cost path pair problem. Noting that a one-to-one corre-

spondence between SRLGs and risks, or labels, can be specified, the proposed algorithm is a

lexicographic minimal label-minimal cost path pair algorithm which combines a path ranking

method – where possible paths are ranked by increasing order of cost by using the ranking al-

gorithm in Martins et al. (1999) – and a path labelling algorithm. This path labelling method

finds the shortest path among those which have the minimal number of labels in common with

the path fixed by the ranking. Also an Integer Linear Programming (ILP) formulation of the

lexicographic problem, inspired by Hu (2003), is shown for performance comparison purposes.

Extensive experiments for evaluating the computational performance of the proposed lexico-

graphic algorithm and the ILP formulation, considering four reference test networks used in the

analysis of resilient routing design models in telecommunication networks Orlowski et al. (2010)

and using various random labels and cost distributions, are presented. This will show that the

algorithm performs clearly more efficiently than the ILP method excepting for the networks with

the highest dimension and connectivity.

The remainder of this text is organized as follows. In Section 2 the notation and preliminary

definitions are introduced. The lexicographic version of the problem, the ILP formulation,

together with theoretical results used in the resolution method and the computational procedures

of the algorithm (in Sub-section 3.1), as well as an illustrative example (Sub-section 3.2), are

described in Section 3. At the end of Section 3, a study of the computational complexity of

the proposed resolution algorithms, is presented. The computational experiments for assessing

the performance of the lexicographic algorithm and of the ILP formulation in reference test

networks, considering various distributions of random risks and arc costs, and the conclusions

of these tests are also presented in this section (in Sub-section 3.4). Finally, conclusions on this

study and further work are drawn in Section 4.
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2 Definitions and notation

Let G = (N,A) denote a directed network, where N is the set of n nodes and A ⊆ N × N is

the set of m arcs. Given v1, vr ∈ N , a path from v1 to vr in G is a sequence p = 〈v1, v2, . . . , vr〉,
where (vi, vi+1) ∈ A, for any i = 1, . . . , r− 1. Let s, t ∈ N be called the source and the terminal

nodes, respectively, and P denote the set of paths in G from s to t (P 6= ∅). Hereafter, the term

path stands for a path with no repeated nodes.

Let L be the set of network labels (such that each label corresponds to one and only one

failure risk), ensuring a one-to-one correspondance between labels and SRLGs, and (i, j) ∈ A
be an arc in the network. Then, the following parameters are associated with the arc (i, j):

• Lij = {l1ij , . . . , lkij} ⊆ L, it consists of the set of risks which may affect (i, j), and

• cij ∈ R+
0 , it represents the cost for using the arc (i, j).

Let Al = {(i, j) ∈ A : l ∈ Lij} ⊆ A denote the set of arcs with label/risk l, which defines the

SRLG with label l.

The set of arc labels and the cost for a given path p ∈ P are defined by

l(p) =
⋃

(i,j)∈p

Lij and c(p) =
∑

(i,j)∈p

cij ,

respectively. Hereafter it is assumed that all cycles in the network have non-negative cost. Such

notions can be extended to pairs of paths in P . Given a pair of paths (p, q) ∈ P × P , the

following parameters are defined:

• the number of labels that are common to both paths is defined by l(p, q) = |l(p) ∩ l(q)|,
and

• the pair’s cost is defined by c(p, q) = c(p) + c(q).

3 The lexicographic maximally risk-disjoint shortest pair of paths
problem

Although the two objective functions introduced above, l and c, are both important, most

formulations consider that the minimization of the number of risks shared by the two paths

(hence the maximization of end to end service survivability in the event of failures) has higher

priority than the minimization of the cost. For this reason, in the following the lexicographically

maximal risk-disjoint shortest pair of paths (LMRDSPP) problem is considered. Firstly, a

linear integer formulation for this problem is presented. Afterwards, the proposed algorithm is

described after some preliminary theoretical results.
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The goal of the LMRDSPP problem is to find a pair of paths linking nodes s and t, which

minimizes the cost of the two paths, among those which have the minimal number of common

labels. The problem is stated as

minimize c(p1, p2)
such that l(p1, p2) = l∗

p1, p2 ∈ P
(1)

where
l∗ = min l(p1, p2)

such that p1, p2 ∈ P

In order to formulate the problem as an integer program, let us consider the pair of paths

(p1, p2) and let it be defined by the decision variables:

xkij =

{
1 if the arc (i, j) is in the path pk
0 otherwise

for any (i, j) ∈ A and k = 1, 2. Let us also consider the variables:

vkl =

{
1 if l is a risk in path pk
0 otherwise

for any l ∈ L and k = 1, 2, and

vl =

{
1 if risk l is shared by the pair of paths
0 otherwise

for any l ∈ L. The objective functions of the problem are:

l(p1, p2) =
∑
l∈L

vl,

for counting the number of shared risks of pair (p1, p2), and:

c(p1, p2) =
∑

(i,j)∈A

cij(x
1
ij + x2ij),

for computing the pair (p1, p2) total cost.
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Inspired by Hu (2003), the problem can be formulated as

minimize
∑

(i,j)∈A

cij(x
1
ij + x2ij) (2a)

such that
∑

(i,j)∈A

xkij −
∑

(j,i)∈A

xkji =


1, i = s
0, i ∈ N − {s, t}
−1, i = t

, i ∈ N, k = 1, 2 (2b)

∑
(i,j)∈Al

xkij ≤ min{n− 1, |Al|}vkl , l ∈ L, k = 1, 2 (2c)

v1l + v2l − vl ≤ 1, l ∈ L (2d)∑
l∈L

vl = l∗ (2e)

xkij ∈ {0, 1}, (i, j) ∈ A, k = 1, 2 (2f)

vkl ∈ {0, 1}, l ∈ L, k = 1, 2 (2g)

vl ∈ {0, 1}, l ∈ L (2h)

where

l∗ = min
∑
l∈L

vl (3a)

such that (2b)− (2d), (2f)− (2h)

The constraints (2b) are flow conservation constraints for the variables associated with each

path from node s to node t. The conditions (2c) ensure that for each risk, l, and each path,

pk, an arc, (i, j), with that risk, is in the solution only if the associated risk variable is vkl = 1.

These conditions also imply that the number of arcs in each path in the solution, for each risk,

does not exceed neither n−1 nor the number of arcs with that risk in the network. Additionally,

the set of constraints (2d) are used to relate the risk variables. These integer linear formulations

can be replaced by linear relaxations with respect to the variables xkij ,

0 ≤ xkij ≤ 1, (i, j) ∈ A, k = 1, 2.

3.1 Resolution approach

The search for an optimal solution of the LMRDSPP problem can be restricted to pairs of

loopless paths. This fact is proved below and will be used in the algorithm presented later on.

Proposition 3.1 At least one solution of the LMRDSPP problem is a pair of loopless paths

from s to t in G.
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Proof. Let us assume that any solution of the LMRDSPP problem contains at least one cycle,

that is, that if (p, q) is a lexicographically optimal pair for the LMRDSPP problem, then either

path p or path q contains a cycle. Let us also assume, with no loss of generality, that p is a

loopless path, contrary to q which has the form q = q1 � C � q2, where C is any of its cycles,

where the symbol � represents the concatenation of two paths. Therefore, the path q∗ = q1 � q2
has less loops than q = q1 � C � q2. If q∗ is not loopless, then the reasoning can be repeated

as many times as necessary to find a loopless path. Otherwise, (p, q∗) is a pair of simple paths

from s to t. Because l(q∗) ⊆ l(q) and because there are no negative cost cycles in the network,

then c(q∗) ≤ c(q) holds, and therefore

l(p, q∗) ≤ l(p, q) and c(p, q∗) ≤ c(p, q).

Additionally, due to the optimality of (p, q), the pair of paths (p, q∗) is also optimal and may be

a better solution, which contradicts the assumption. �

According to Proposition 3.1, it is sufficient to find pairs of loopless paths in order to solve

the LMRDSPP problem. The algorithm for finding an optimal pair of paths is based on three

main ideas:

• The first one is to list possible primary paths, say p, by increasing order of c.

• The second is to find the best backup path with respect to each primary path p. This

best backup path is a shortest path among those which have the least number of risks in

common with the path p. That is, the path can be found by solving the new problem

lexmin (l(p, q), c(p, q))
such that q ∈ P (4)

• Additionally, an upperbound on the number of risks shared by any two paths from s to t

is used, RiskUB. This value is updated as new pairs of paths are computed and it is used

to limit the search for pairs of paths that can be optimal.

The first of these points can be addressed by applying an algorithm for ranking paths by order

of their cost c, for instance one of the methods in Katoh et al. (1982); Martins et al. (1999); Yen

(1971). The second is handled by means of a dynamic programming algorithm described below.

Let p be a fixed primary path from s to t and RiskUB be the current number of shared

risks upperbound. The proposed method generates several paths extending an initial path

starting in s by adding one node at a time, for finding a path that optimizes problem (4), while

respecting the upperbound RiskUB. Several paths from s to another node i, i ∈ N , can be

found, therefore each one is identified as px, with x an index associated with the node i, and a

label Lx = [px, βx, π
r
x, π

l
x, π

c
x], with the following components:
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• px, the sequence of nodes in the path from s to x;

• βx, the network node which corresponds to x, i.e., i;

• πrx, the set of risks in p which also appear in the path px;

• πlx, the number of risks in p which also appear in the current path px;

• πcx, the cost of the path px.

When examining a given path px from node s to node i, it is intended to extend it by scanning

all the arcs (i, j) ∈ A, where βx = i. Additionally, the computation of more than one path

from s to i may be required, therefore different indexes are used to distinguish them. The value

πlx = |πrx| is just used for the sake of clarity of the presentation.

For this specific subproblem, the priority criterion is the number of risks shared by the two

paths. A counter example that this criterion does not satisfy Bellman’s Optimality Principle

is presented in the next subsection. This fact makes the comparison between paths/labels for

the same ending node harder. The dominance between two different labels Lx and Ly is defined

below, in order to enable this comparison.

Definition 3.1 Given the node i and two of its labels, Lx and Ly, such that βx = βy = i, label

Lx dominates label Ly if πrx ⊆ πry and πcx < πcy.

Proposition 3.2 shows that the dominated labels are of no use for finding an optimal solution

of problem (1).

Proposition 3.2 Let p be a path in P and RiskUB ≥ 0. If Lx is a dominated label of a given

node i and px is the corresponding path from s to i, then no path from s to t that contains px is

an optimal solution of (4).

Proof. Let q be any path from node i to node t, and by contradiction assume that px � q is a

lexicographic optimal path from s to t. By assumption the label Lx is dominated by another

label of node i, Ly, corresponding to the path py from s to i. Therefore, by Definition 3.1,

πry ⊆ πrx and πcy < πcx. If πry ⊆ πrx, then πly ≤ πlx and also l(p, py � q) ≤ l(p, px � q). Additionally,

πcy < πcx, thus c(py � q) < c(px � q) and c(p, py � q) < c(p, px � q). Therefore, py � q is better than

px � q, so px � q could not be optimal. This leads to a contradiction, which concludes the proof.

�

The algorithm starts with a path formed simply by the initial node, s, which is extended

depending on on the arcs that emerge from node s and on the comparison of each extension
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with paths previously found. The new extensions are stored as new labels to be scanned. The

analysis of a new label Lx, associated with a path px from node s to node βx = i is similar to that

of node s. Any arc (i, j) ∈ A is considered, associated with the label Ly = [py, βy, π
r
y, π

l
y, π

c
y],

where:

• py = px � 〈i, j〉;

• βy = j;

• πry = πrx ∪ Lij ∩ l(p);

• πly = |πry|;

• πcy = πcx + cij ;

provided that it does not exceed the current best number of shared risks and it is not dominated

by any other label already established for node j. Each label that is obtained corresponds to

a path between the nodes s and j, which may be part of an optimal path. Therefore, it is

compared to other paths previously generated and under the same conditions, so that they can

be discarded as early as possible in case they are dominated. Additionaly, when node j = t,

the minimum number of shared risks and the current optimal path are updated. The newly

generated labels are stored until they are scanned.

Given a path, p, and an upperbound on the number of shared risks, RiskUB, Algorithm 1

outlines the steps for finding a shortest path from s to t among those which have the fewest

risks in common with p. The goal of the method is to create a tree, rooted at node s, which

contains paths from s to any node i that correspond to non-dominated labels according to the

definition above. The tree is extended by scanning its nodes and considering the arcs emerging

from each of them. The control of the growth of the tree is based on two results. On the one

hand Proposition 3.2 is used to restrict the new labels that are created, as well as it allows to

discard some of the already created ones. On the other hand, the value RiskUB is updated

every time the best stored path from s to t is improved with respect to the number of shared

risks, and partial paths that lead to solutions worse than that one are never taken into account.

The dominance tests between labels on lines 14 and 17 in Algorithm 1 are implemented by

pairwise comparison of labels with respect to their sets of shared risks, their cardinality and the

corresponding costs. Hence, by using this form of “lazy evaluation” of the comparison between

labels, the label costs of two labels are only compared if one of the risks set is contained in the

other.

Algorithm 1 is combined with a general procedure for solving the LMRDSPP problem.

In this framework the primary paths are ranked by order of cost and the potential shortest
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backup path with the fewest labels in common with each of them is computed when calling

Algorithm 1. The best pair of paths is stored in the variable (BestP,BestQ), which is updated

after calling Algorithm 1 whenever the solution is improved. Like before RiskUB is another

auxiliary variable, used to store the best number of shared risks found so far by the method.

This variable is updated in Algorithm 1, before the pair (BestP,BestQ) is also changed. The

method is outlined in Algorithm 2 – designated hereafter as SLA (Single criterion Lexicographic

Algorithm).

The variable RiskUB stores an upperbound on the optimal number of shared risks. This

bound is improved whenever a pair of paths with fewer common risks than the current value is

generated, according to line 21 of Algorithm 1. Therefore, the following results holds.

Lemma 3.1 The sequence {l(pk, q)}k≥1, where (pk, q) are the pairs of paths generated by Algo-

rithm 2, k = 1, 2, . . ., is non-increasing.

The correctness of Algorithm 2 is proved in Proposition 3.3.

Proposition 3.3 The pair of paths output by Algorithm 2 is a lexicographically optimal solution

for the LMRDSPP problem.

Proof. Let us assume that the solution generated by Algorithm 2, say (p∗, q∗), is not an optimal

solution. That is, assume that another solution exists given by Algorithm 2, (p′, q′), such that

either l(p′, q′) < l(p∗, q∗) or l(p′, q′) = l(p∗, q∗) and c(p′, q′) < c(p∗, q∗).

Three situations may occur when ranking paths by order of cost in Algorithm 2:

1. The path p′ appears before path p∗ in the ranking. Then, because the pair (p′, q′) is the

result of an earlier call of Algorithm 1, by Lemma 3.1, l(p′, q′) ≥ l(p∗, q∗), and because

by assumption (p′, q′) dominates (p∗, q∗), l(p′, q′) = l(p∗, q∗) must hold. Additionally,

c(p′, q′) < c(p∗, q∗), and thus the pair (p∗, q∗) could not have been computed by Algorithm

1 nor be the output of Algorithm 2.

2. If p′ = p∗, then the pair of paths (p∗, q∗) could not have been computed by Algorithm 1,

given that it is dominated by the pair (p′, q′).

3. The path p′ appears after path p∗ in the ranking. Then, the result of Algorithm 1 when

considering p′ is either the pair (p′, q′) or another one, (p′, q′′), which is lexicographically

better than (p′, q′). By assumption the pair (p′, q′) dominates (p∗, q∗), therefore either

(p′, q′) or (p′, q′′) replaces the previous pair as the best solution and (p∗, q∗) could not be

the solution given by Algorithm 2.

In either case the pair (p∗, q∗) cannot be the solution given by Algorithm 2, as initially assumed.

�
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3.2 Example

As an example for the LMRDSPP problem, let us consider the network G1 in Figure 1a with

unitary arc costs, cij = 1, and the sets Lij defined by the different arc colors (or different letters

in the figures), for any (i, j) ∈ A. The full list of pairs of paths linking s = 1 to t = 4 in this

network is shown in Table 1 without repetition of the same pair of paths in reverse order. It

is worth noting that the algorithm does not prevent the generation of two equal paths in the

pair, even though such a solution would be useless in practice. The optimal solution for the

LMRDSPP problem is the pair of paths (〈1, 3, 4〉, 〈1, 3, 2, 4〉), with one shared risk (the green

one) and cost 5.

s t1

2

4

3

r

g

g g

g, b

r

(a) Network G1

s t1

2

4

3

r

g

b

g, b

r, b

(b) Network G2

Figure 1: Example networks

As a counter example that shows that Bellman’s Optimality Principle does not hold when

finding a shortest backup path with at most a given number of shared risks, consider the network

G2 in Figure 1b and the primary path p = 〈1, 3, 4〉, with the risks l(p) = {r, g, b}. Given the

labels associated with node 2

Lx = (〈1, 2〉, 2, {r}, 1, 1) and Ly = (〈1, 3, 2〉, 2, {g, b}, 2, 2),

the first is better than the latter in the sense that πlx = 1 < π1y = 2 and πcx = 1 < πcy = 2.

However, after extending each of these paths to node 4 by adding the arc (2, 4), the paths

identified by

Lx′ = (〈1, 2, 4〉, 4, {r, g, b}, 3, 2) and Ly′ = (〈1, 3, 2, 4〉, 4, {g, b}, 2, 3)

are obtained and, in this case, the latter label is better than the first because πlx′ = 3 > π1y′ = 2.

This means that two partial labels for the same node cannot be compared directly with respect

to the number of risks shared with the primary path, given that the objective function values

of their extensions depend on the risks of all the arcs.

Instead, when applying Algorithm 1 to the network G2 depicted in Figure 1b under the

above conditions, with p = 〈1, 3, 4〉 as the primary path and at most RiskUB = 3 risks shared

with path p, the trees in Figure 2 and the labels listed in Table 2 are found. Then, the best

pair of computed paths is (〈1, 3, 4〉, 〈1, 3, 2, 4〉), which has 2 shared risks and cost 5, as explained

next in detail.
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(c) Scan L3 (node 3)
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(d) Scan L5 (node 2)

Figure 2: Paths from 1 to 4 in network G2 with at most 3 risks in common with 〈1, 3, 4〉

The first label to consider is L1, for the initial node 1. Because two arcs emerge from node

1, two labels are created when the node corresponding to L1 is considered: one associated with

node 2, that is, path 〈1, 2〉, and another one associated with node 3, that is, path 〈1, 3〉 – Figure

2a. Assuming that L2 is the next label to be scanned, the path 〈1, 2, 4〉 is obtained, associated

with the label L4 – Figure 2b. Similarly, when scanning label L3, the paths 〈1, 3, 2〉 and 〈1, 3, 4〉
are obtained – Figure 2c. The first cannot be compared to the other path until node 2, 〈1, 2〉,
because their sets of risks are not contained in one another, therefore it is stored and associated

with the label L5. However, the second corresponds to a path until the terminal node with

exactly the same shared risks and cost as 〈1, 2, 4〉. Because it is not better than the former, it is

discarded. The next label to scan is L5, for path 〈1, 3, 2〉, which can be extended to 〈1, 3, 2, 4〉 –

Figure 2d. This path is also compared to the previous path to node 4, 〈1, 2, 4〉. The risks shared

by the new secondary path are included in those shared by the former and are only 2, thus it is

concluded that the former secondary path is dominated by the new one and RiskUB is updated

with 2. No further labels are added to the search tree, therefore the best pair of computed paths

is (〈1, 3, 4〉, 〈1, 3, 2, 4〉), which has 2 shared risks and cost 5.

When applying Algorithm 2 for finding the optimal pair of paths for the LMRDSPP problem

in the network G1 – Figure 1a, the initial upperbound is RisksUB=∞ and the following paths

are ranked:

• p1 = 〈1, 2, 4〉 and then q = 〈1, 3, 4〉 with 2 shared risks and cost 4. Then RiskUB is updated

to 2 and the best pair of paths to (BestP,BestQ) = (p1, q).

• p2 = 〈1, 3, 4〉 and then q = 〈1, 3, 2, 4〉 with 1 shared risk and cost 5. Then RiskUB is

updated to 1 and the best pair of paths is (BestP,BestQ) = (p2, q).

• p3 = 〈1, 2, 3, 4〉 and then q = 〈1, 3, 2, 4〉 with 1 shared risk and cost 6.

• p4 = 〈1, 3, 2, 4〉 and then q = 〈1, 3, 4〉 with 1 shared risks and cost 5.

At the end of the algorithm, the optimal pair of paths is (〈1, 3, 4〉, 〈1, 3, 2, 4〉).
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As another example of Algorithm 1, consider its application to the network G1 depicted

in Figure 1a when the primary path from node 1 to node 4 is p = 〈1, 2, 4〉 in G1 (one of the

shortest). Consider also that at most RiskUB = 3 risks are allowed to be shared with path p.

Then, Algorithm 1 produces the search tree in Figure 3 and the best pair of paths when p is

fixed is (〈1, 2, 4〉, 〈1, 3, 4〉), with 2 shared risks and cost 4.
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r g b

4
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Figure 3: Paths from 1 to 4 in network G1 with at most 3 risks in common with 〈1, 2, 4〉

When applying Algorithm 2 for finding the optimal pair of paths for the LMRDSPP problem,

the initial upperbound is RisksUB=∞ and the following paths are ranked:

• p1 = 〈1, 2, 4〉 and then q = 〈1, 3, 4〉 with 2 shared risks and cost 4. Then RiskUB is updated

to 2 and the best pair of paths to (BestP,BestQ) = (p1, q).

• p2 = 〈1, 3, 4〉 and then q = 〈1, 3, 2, 4〉 with 1 shared risk and cost 5. Then RiskUB is

updated to 1 and the best pair of paths is (BestP,BestQ) = (p2, q).

• p3 = 〈1, 2, 3, 4〉 and then q = 〈1, 3, 2, 4〉 with 1 shared risk and cost 6.

• p4 = 〈1, 3, 2, 4〉 and then q = 〈1, 3, 4〉 with 1 shared risks and cost 5.

At the end of the algorithm, the optimal pair of paths is (〈1, 3, 4〉, 〈1, 3, 2, 4〉).

3.3 Computational complexity

This section is devoted to the estimation of the computational complexity order of the presented

method. The method consists of two components: paths ranking (in Algorithm 1) and dynamic

programming for finding a shortest path among those with the fewest risks in common with a

path p (Algorithm 2).

Different ranking algorithms can be applied, but the time or the number of operations

executed by Algorithm 2 depends on the total number of paths ranked until the solution is

found. For instance, if only loopless paths are computed, Yen’s algorithm can be used, with

time of O(m + n log n + K1n g(m,n)) Yen (1971). Otherwise, if it is allowed to compute (and

discard) paths containing loops, the algorithm by Martins, Pascoal and Santos can be used, with

13



O(m+n log n+K2g(m,n, |L|)) Martins et al. (1999). Here O(m+n log n) is the time complexity

order for finding a shortest path, g(m,n, |L|) represents the number of operations required by

Algorithm 2, and K1 (K2) stands for the number of loopless paths (paths) analyzed by each

algorithm. If an upper bound for these numbers is not set in advance, as shown in Algorithm 2,

then all the loopless paths (paths) from node s to node t are listed.

The number of labels of a given node created by Algorithm 1 is at most the number of possible

paths from node s to that node. Considering that these paths may be any sorted sequence of

nodes with between 2 and n nodes, that number of paths is given by
n∑

k=2

P (n, k − 2), where

P (n, k) denotes the number of k-permutations of n nodes, and thus
n∑

k=2

P (n, k − 2) ≤ nn−1.

Moreover, scanning each label implies creating at most n new more labels. Creating a label

has time of O(|L|+ 2), and testing its dominance is done by comparing it with previous labels,

which requires at most

|L|∑
k=1

(
|L|
k

)
= 2|L| comparisons, and thus it has time of O(2|L|). Therefore,

Algorithm 1 is of O(nn−1(|L|+ 2|L|)), or simply O(nn−12|L|).

Proposition 3.4 The worst-case number of operations performed by Algorithm 1 is of O(nn−12|L|),

and Algorithm 2 is of O(m+n log n+K nn+12|L|) or of O(m+n log n+K nn2|L|), respectively,

if K paths are ranked with the Yen’s algorithm, or with MPS algorithm, respectively.

3.4 Computational experiments

Computational tests were run to assess the performance of the method introduced earlier as

well as to compare it with the mixed integer formulation given by (2) – (3). With this purpose,

Algorithm 2 (denoted by SLA) was coded in C language. In order to rank the simple paths in G

by order of cost, the code SLA uses the MPS algorithm, Martins et al. (1999). A maximal number

of 7 × 106 generated paths was imposed in the code. Additionally, the formulation (2) – (3),

hereafter designated as ILP, was solved with CPLEX 12.7. The imposition, in Algorithm 1, of

that bound on the number of generated paths is associated with computer memory requirements

and guarantees that, in the vast majority of the application ranges of the resolution method,

an optimal solution may be obtained. This will be shown in the experimental results described

next. This is a common procedure when combinatorial algorithms of this type are applied to

telecommunication networks and also for performance comparison with the ILP solutions in

terms of the resulting CPU times. As a consequence, there will be a few cases for which that

bound is attained so that the algorithm stops and only sub-optimal solutions are obtained. This
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will be illustrated in some results for the network Germany50, the one of greater dimension and

connectivity in the experimental setting.

All tests ran on an Intel® i7-6700 Quad core, with 8Mb of cache, a 3.4 GHz processor and

16 Gb of RAM, over openSUSE Leap 42.2

3.4.1 Test bed

The set of experiments used reference networks from the literature in telecommunications, men-

tioned in Betker et al. (2003); Orlowski et al. (2010) and summarized in Table 3. These include

the network Cost266, originated from the project COST266-Advanced Infrastructure for Pho-

tonic Networks Maesschalck et al. (2003) of the European Cooperation in the Field of Scientific

and Technical Research. It also includes NobelEU and Germany50, reference networks originated

from the European project NOBEL (NOBEL, 2019). These networks are undirected, therefore

each of their undirected arcs, {i, j}, was duplicated as two directed arcs in opposite directions,

(i, j) and (j, i). The values n and m in Table 3 refer to the number of nodes and arcs in the

used network representation.

The results presented in the following are mean values obtained for 10 different seeds and

45 origin-destination pairs, that is, 450 instances, for each set of parameters. For each arc

(i, j) ∈ A, the cost cij represents link occupation and is given by cij = 1/bij , where the available

bandwidths bij are randomly generated, according to the distributions shown in Table 4, in the

sets:

Ii = {2 + 2k : k = 20i, . . . , 20(i+ 1)− 1} (i = 0, 1, 2)

I3 = {2 + 2k : k = 60, . . . , 78}

The distributions D1, D2 and D3 represent uniformly, highly and lightly loaded networks, re-

spectively. The SRLGs Lij are uniformly generated between 1 and |L| = 15, 20, 25, with mean

number of SRLGs per arc α = 1, 2, 4

3.4.2 Test results

The average run times (in seconds) for each set of parameters are shown in Figures 4–8. In the

case of the Germany50 network, the code SLA was halted when the memory space mentioned

earlier was exceeded, which in this case happened for all the instances. For this reason, although

both the run times obtained by ILP and by SLA are presented in Figure 8, only the first ones

correspond to problems that ran until the end.

For the first four types of networks the two approaches tend to perform slower as α increased.

This behavior was more consistent for the code SLA and the increase in the CPU time can be

15



D1 D2 D3

0.012

0.024

0.036

0.048

0.060

T
im

es
(s
)

SLA

ILP

Figure 4: Mean CPU time in NSFFixedLabels network

D1

15 20 25

1

2

3

4

5

|L|

T
im

e
(s
)

D2

15 20 25

1

2

3

4

5

|L|

D3

15 20 25

1

2

3

4

5

|L|

α = 1 α = 2 α = 4 SLA ILP

Figure 5: Mean CPU time in NSFRandomLabels networks

explained by the more demanding comparison between node labels when the number of risks is

bigger. The CPU times for the ILP were always smaller than 6 seconds. In the case of code

SLA, the CPU times slightly increased with the size of the network, but were in general clearly

less than 1 second, excepting for the Germany50 network – Figure 8. It is important to note

that the proposed algorithm clearly outperformed the ILP procedure for all networks/instances

excepting in a particular situation for the Cost266 networks with distribution D2, |L| = 25 and

α = 4 – Figure 7 – and for the larger network, Germany50.

As mentioned earlier, the times of the code SLA shown in Figure 8 correspond to the mean

run times until the algorithm was halted due to the required memory space. The best solution

found by the algorithm was compared to the optimal solution obtained by the linear integer

formulation ILP for the Germany50 networks. The percentage of instances for which the code

SLA was capable of finding an optimal solution is reported in Table 5. According to these

results the optimal solution was found for most cases, and in the worst case the optimum could

not be found for 7% of the instances for distribution D3, with |L| = 15 and α = 1. Table 6

summarizes the results obtained for three instances of the Germany50 networks, with |L| = 15

labels and α = 1, for which SLA was not capable of finding an optimal solution. For these
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Figure 7: Mean CPU time in Cost266 networks

instances the obtained sub-optimal solutions include path pairs with one risk in common while

the optimal ones are risk-disjoint but have higher costs. Nevertheless, these were very rare cases,

in the considered experimentation setting, further noting that for all the instances, in the other

networks, the computed solutions were always optimal.

The CPU times of the proposed resolution method are fully compatible with resilient routing

operational design involving off-line calculation of pairs of primary and back-up protection paths

in various types of telecommunication transport networks such as optical networks or MPLS-

TP (Multiprotocol Label Switching-Transport Profile) networks. They are even compatible

with dynamic end-to-end protection mechanisms (for non real-time application) with up-dating

periods of not less than ten seconds for all typical network scenarios.
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4 Conclusions

We presented an exact algorithm for solving the lexicographic maximally risk-disjoint/minimal

cost path pair problem. This is the most common formulation of a routing design problem in

telecommunication networks, involving the joint calculation of an active and a back-up path

for each node to node connection, both paths being subject to failures represented through

SRLGs. The proposed resolution method is a lexicographic minimal label-minimal cost path

pair algorithm which combines a path ranking method and a path labelling algorithm. Also, an

Integer Linear Programming (ILP) formulation of this lexicographic problem, inspired by Hu

(2003), was considered for performance comparison purposes.

Extensive experiments for evaluating the computational performance of the proposed lexico-

graphic algorithm and the ILP formulation, applied to four reference test networks (commonly

used in the analysis of resilient routing design models in telecommunication networks) and using

various random labels and cost distributions, were carried out. These experiments have shown

that the algorithm performs clearly more efficiently than the ILP method excepting for the net-

works with the highest dimension and connectivity. The computational code ran from a few ms

to a few hundreds of ms in networks of low or medium size/connectivity and up to some seconds

for the greater networks. In general, the CPU times increased with the size of networks, the

connectivity and, in most cases, with the increase in the average number of SRLGs/labels per

arc.

These results make the proposed algorithm suitable for a wide range of applications in

telecommunication resilient routing design. Even for the larger networks, for which is less ef-

ficient than the ILP formulation, the algorithm may still be useful for practical or economic

reasons since it does not require the installing of CPLEX routines in all routers (or path compu-

tational elements) of the network with the inherent computational requirements and licensing
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costs for the network operator. Finally, a possible adaptation of the core algorithms to the

bicriteria optimisation version of the maximally risk-disjoint/minimal cost path pair problem,

deserves further investigation.
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Algorithm 1: Shortest path among those with the fewest risks in common with path
p (less than RiskUB)

input: Path p
Upperbound RiskUB
Pair of paths (BestP,BestQ)

output: Path q, the shortest among those with the fewest risks in common with p (less
than RiskUB)
Updated value of RiskUB

1 nX ← 1
2 Insert label LnX = [〈1〉, s, ∅, 0, 0] in X
3 q ← −
4 BestC ← c(BestP,BestQ)
5 while X 6= ∅ do
6 x← element in X
7 X ←− X − {x}
8 i← βx
9 for all (i, j) ∈ A do

10 δr ← πrx ∪ Lij ∩ l(p)
11 δl ← |δrj |
12 δc ← πcx + cij
13 if δl ≤ RiskUB then
14 if (δr, δl, δc) is not dominated by any other label of j then
15 nX ← nX + 1

16 Insert LnX = [px � 〈x, nX〉, j, δr, δl, δc] in X

17 Eliminate other labels of j dominated by (δr, δl, δc)
18 if j = t then
19 if δl < RiskUB then
20 q ← pnX
21 RiskUB ← δl

22 BestC ← δc

23 else if δl = RiskUB and δc < BestC then
24 q ← pnX
25 BestC ← δc
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Algorithm 2: Finding an optimal pair of paths for the LMRDSPP problem

1 (BestP,BestQ)← (−,−)
2 RiskUB ←∞
3 for k = 1, 2, . . . do
4 pk ← k-th shortest path from s to t
5 (pk, q)← Shortest path among those with the fewest risks in common with pk (with

bound RiskUB), obtained by Algorithm 1
6 if RiskUB < l((BestP,BestQ)) or (RiskUB = l(BestP,BestQ) and

c(pk, q) < c(BestP,BestQ)) then
7 (BestP,BestQ)← (pk, q)

Table 1: Pairs of paths from 1 to 4 in the network G1

Path pk Path q l(pk) ∩ l(q) l(pk, q) c(pk, q)

p1 = 〈1, 2, 4〉 〈1, 2, 4〉 {r, g, b} 3 4
〈1, 3, 4〉 {r, g} 2 4
〈1, 2, 3, 4〉 {r, g} 2 5
〈1, 3, 2, 4〉 {g, b} 2 5

p2 = 〈1, 3, 4〉 〈1, 3, 4〉 {r, g} 2 4
〈1, 2, 3, 4〉 {r, g} 2 5
〈1, 3, 2, 4〉 {g} 1 5

p3 = 〈1, 2, 3, 4〉 〈1, 2, 3, 4〉 {r, g} 2 6
〈1, 3, 2, 4〉 {g} 1 6

p4 = 〈1, 3, 2, 4〉 〈1, 3, 2, 4〉 {g, b} 2 6

Table 2: Paths from 1 to 4 in network G2 with at most 3 risks in common with 〈1, 3, 4〉

LnX px j πrx πlx πcx
L1 〈1〉 1 ∅ 0 0

L2 〈1, 2〉 2 {r} 1 1
L3 〈1, 3〉 3 {g} 1 1

L4 〈1, 2, 4〉 4 {r, g, b} 3 2

L5 〈1, 3, 2〉 2 {g, b} 2 2

L6 〈1, 3, 2, 4〉 4 {g, b} 2 3

Table 3: Test parameters

Network n m δ = m/n |L| α

NSFFixedLabels Betker et al. (2003) 11 52 4.7 21 1.5
NSFRandomLabels Betker et al. (2003) 14 42 3.0 15, 20, 25 1, 2, 4
NobelEU Orlowski et al. (2010) 28 80 2.9 15, 20, 25 1, 2, 4
Cost266 Orlowski et al. (2010) 37 114 3.1 15, 20, 25 1, 2, 4
Germany50 Orlowski et al. (2010) 50 176 3.5 15, 20, 25 1, 2, 4

22



Table 4: Available bandwidth distributions

I0 I1 I2 I3
D1 25% 25% 25% 25%
D2 70% 15% 10% 5%
D3 18% 18% 18% 46%

Table 5: Problems for which SLA found all optimal solutions (%) in the Germany50 network

α = 1 α = 2 α = 4

Dist.\|L| 15 20 25 15 20 25 15 20 25

D1 100 100 100 99 100 100 100 100 98
D2 100 100 100 100 100 100 100 100 99
D3 93 100 100 100 99 100 100 100 99

Table 6: Instances for which SLA did not obtain the optimal solutions in the Germany50 network

CPU time (ms) Best (l, c) found by SLA Optimal (l∗, c∗)

2442.225 (1, 1416.880) (0, 2396.6318)
2616.893 (1, 1381.037) (0, 2396.6318)
2827.702 (1, 1444.887) (0, 2760.8597)
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