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ABSTRACT 

 

Now a day’s mobile robots are vastly used in many industries for performing different 

activities such as, manufacturing, security, automated transportation systems, material 

handling, warehouse management, packet distribution and arrangement ,and in 

working in accessible and dangerous sites ,etc. The goal of mobile robot is to reach a 

prescribed destination by using optimal path from all the paths available , and in least 

time, with certain precision and accuracy. To achieve this goal Navigation becomes 

one of the most important part for mobile robots. The problem of mobile robot 

navigation is very wide and complex. In the past years, there has been a tremendous 

progress in the area of autonomous robot navigation and a large variety of robots 

,robot navigation algorithms have been developed who demonstrated robust 

navigation capabilities indoors and non-urban outdoor environments. In this thesis , 

we present simulation of different kind of navigation techniques  for mobile robots 

designed to operate in static obstacles environments. We are using math works 

(MATLAB) software for simulation of navigation techniques . Problem of navigation 

of mobile robots can be sub divided into subparts i.e. mapping of environment 

,localization of mobile robot in its environment, obstacle avoidance, path planning 

from present position to final (Goal) position. In this work we first describe the 

technique that is  used to generate map of real world. After that we use object 

recognition technique in  MATLAB ,to solve the localization problem of mobile 

robot.Then we describe and do simulation on different maps of real world 

environment and using different software, for four different kinds of navigation 

techniques which are most popular among mobile robots. 

1. Artificial potential field based method. 

2. Rule based navigation. 

3. Probabilistic roadmap technique. 

4. Navigation by using artificial neural network. 
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CHAPTER1 

INTRODUCTION 

 

 1.1Background 

Robotics is the branch of technology that deals with the design, construction, 

operation, and application of robots, as well as computer systems for their control, 

sensory feedback, and information processing. These technologies deal with 

automated machines that can take the place of humans in dangerous environments or 

manufacturing processes, or resemble humans in appearance, behavior, and/or 

cognition[6]. The goal of mobile robot is to reach a prescribed destination by using 

optimal path from all the paths available , and in least time, with certain precision and 

accuracy. To achieve this goal Navigation becomes one of the most important part for 

mobile robots. The problem of mobile robot navigation is very wide and complex. 

Navigation is a field of study that focuses on the process of monitoring and 

controlling the movement of vehicle from one place to another place. The 

environment which a mobile robot can encounter, affects the complexity of navigation 

problem. Static environment with few obstacles has least complex and for fast 

changing dynamic environment has most complex navigation problem. Many research 

efforts has been made worldwide on different aspects of mobile robot navigation and 

many approaches has been proposed . The solution proposed for navigation problem 

can be classified according to similarities in their problem solving approach. They can 

be classified as Local navigation and Global navigation.Local navigation by reactive 

means is employed by techniques such as fuzzy systems, or field-based systems. In 

this a robot relies only on current or recent sensor data[2]. This is useful for rapid 

responses to avoid collisions. Local navigation is used mostly in  static 

environment.Global navigation looks at the broader objective of the robot, and 

identifies long-range paths for the robot to follow. The objective of the “Global 

Navigation” is to find an optimal path from  the robot’s current location to the goal 

position. The goal position could be fixed or moving (as in it docking of two mobile 
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robots).Example: Search Trees, Probabilistic techniques etc.

 

Figure1: Relationship between mobile robot research area[10] 

 

Robot navigation is defined by the ability of a mobile robot to determine its own 

position in its frame of reference and then to plan a path towards some goal location  

In order to navigate in an environment, the mobile robot requires representation, i.e. a 

map of the environment, and the ability to interpret that representation. Therefore 

navigation can be defined as the combination of the five fundamental abilities. 

Task of navigation of mobile robots is broken down into five subtasks . 

1. First of all map of environment is constructed based on information gathered 

from mobile robot sensors. 

2. Localization(Identifying the current location of the robot on map),and location of 

objects in its environment. 

3. Path planning of mobile robot from initial position to final position. 

4. Obstacle avoidance and changing the path to reach to its goal position .Choosing 

the optimal path from no of paths available .  



3 
 

5. Motion control, the mobile robot must modulate its motor output to move on 

optimal path.  

 

These days simultaneous localization and mapping (SLAM) techniques are used, 

which submerged two subtask of navigation ,mapping and localization into one 

subtask. For maximum usefulness, the techniques to achieve these tasks should 

be generalized. They should be usable in a wide variety of situations, work in 

both static and dynamic environments, and should be applicable to a large class 

of robots. These days different type of navigation techniques are used for solving 

navigation problems in mobile robots ,each with its advantages and 

disadvantages. 

 

1.2 Contributions 

 

.In this thesis first we try to solve the problem of  mapping and localization of 

mobile robot. For this we are using camera to first capture the image of real 

world environment then image is converted to  map of environment, which is 

readable to simulation software and mobile robots operating system, For this we 

are converting image to occupancy grid map. For solving localization problem 

we using array of overhanging camera and object recognition algorithms in 

software ( MATLAB), to localize mobile robot in indoor environment .After that 

we present simulation for four popular  navigation techniques which are: 

 

 

1. Artificial potential field based method : In this In this technique obstacles and 

goals are modeled as charged surfaces, and the net potential generates a force 

on the robot. These forces push the robot away from the obstacles, while 

pulling it towards the goal. 

2. Rule based navigation: In this type of navigation fuzzy rules are used to model 

the relationship between input information and control output and is 

distinguished by its robustness with respect to noise and variation of system 

parameters. 
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3. .Probabilistic roadmap technique:  The aim of the offline roadmap (graph) 

building stage is to randomly draw a small graph across the workspace. All 

vertices and edges of the graph should be collision-free so that a robot may use 

the same graph for its motion planning. 

4. Navigation by using artificial neural network: With the use of Artificial Neural 

Network, self decision making by robot is performed. By using ANN robot is 

designed for a real time implementation and act as intelligent system. Use of 

the ANN in system improves performance. 

 

Testing algorithm using Simulation is much faster than testing with real robot. 

Most of the time the Robots themselves are quite expansive the experimenting 

a  algorithm on it without testing it is not really the optimal way to design 

algorithms or test algorithms. 

 

1.3 Thesis overview 

The overview in this thesis are broadly divided into five chapters. First the 

introduction, Chapter 1, after that Chapter 2 provides literature review of navigation, 

mobile robot, mapping, localization, navigation techniques : Artificial potential field 

based method, Rule based navigation, Probabilistic roadmap technique, Navigation by 

using artificial neural network . in chapter 3 methodology and experimental setup are 

described in detail. In this section methods to construct map and localization 

algorithms are presented along this robot hardware design ,introduction of MATLAB 

and their related toolboxes image processing toolbox, robotics toolbox, arduino 

toolbox etc,software to generate dataset for Ann is also discussed . are also discussed 

in detail. In Chapter 4 Simulation of different navigation techniques on different real 

world environment and a detailed report of results and discussion has been given. This 

chapter summarizes the findings of all chapters discussed before.  Finally in Chapter 5 

conclusions of this research and future ways for further investigation has been 

discussed. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Map building 

Robot mapping is concerned with developing techniques that enable a mobile robot to 

construct and maintain a model of its environment based on spatial information 

gathered over time. the spatial information comes  from directly perceiving the 

environment through external sensors. however, many more ways of acquiring spatial 

information, including external representations such as floor plans, sketches, or 

written descriptions[1], as well as direct communication with other robots or with 

humans[2]. Robot mapping is a challenging problem because of the uncertainty 

inherent in the available spatial information and in the model itself, which always is 

an approximation of the real world. The problem of representing the environment in 

which the robot moves is a dual of the problem of representing the robot’s possible 

position or positions. Decisions made regarding the environmental representation can 

have impact on the choices available for robot position representation.  Three 

fundamental relationships must be understood when choosing a particular map 

representation[10]: 

1. The precision of the map must appropriately match the precision with which the 

robot needs to achieve its goals. 

2. The precision of the map and the type of features represented must match the 

precision and data types returned by the robot’s sensors. 

3. The complexity of the map representation has direct impact on the computational 

complexity of reasoning about mapping, localization, and navigation. 
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FIG2 : Incremental mapping information flow. 

 It is not an easy endeavor to compare existing mapping approaches in order to decide 

which one is most suitable under particular conditions. With regard to the spatial 

representations used in different mapping systems, we propose three general criteria 

to evaluate and compare different approaches: (1) extractability and maintainability, 

(2) information adequacy, and (3) efficiency and scalability. We are going to discuss 

these criteria in the following. 

(1)Extractability and maintainability 

It is crucial that a spatial model formulated within the chosen spatial representation 

approach can be constructed and maintained from the information available to the 

robot. This means we need to be able to formulate algorithms that take the input 

information and update the model accordingly. This requires managing the 

uncertainty in the input information.Generally, the information required by 

approaches that model the environment in a low-level sensor-near way seems to be 

much easier to extract and maintain because no sophisticated processing of the sensor 

data is needed. The effects of imperfect sensors can be explicitly modeled statistically. 

On the other hand, more abstract representations may have the advantage that the 

modeled relations can be more reliably derived from the sensor data, e.g., we might be 

able to reliably tell that a certain object is between two other objects, while it is much 

harder to determine the exact shape and location of an object.Extractability and 

maintainability of representation approaches can also vary significantly for different 
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kinds of environments. For instance, an approach may only be suitable for well-

structured indoor environments or rely on artificial unique landmarks. We will call 

representation approaches that can adequately represent arbitrary environments 

universal. 

(2)information adequacy  

Another aspect is information adequacy , that the level of detail is sufficient to 

support the regarded operations. However, demand for low computational costs and 

low space consumption  warrants a certain pursuit of sparseness: A representation 

should not contain extra information, information that is required neither for any of 

the operations nor for maintaining the model itself, and required information should 

only be represented at a level of detail that is really needed. 

(3)Efficiency and scalability   

The ways in which a certain kind of spatial information can be represented are 

limitless. As a mobile robot typically is supposed to work in real time, the operations 

should be as efficient as possible. Efficiency significantly depends on the way the 

information is represented. Typically, there are trade-offs involved in which one way 

of representing things favors a certain operation while making other operations more 

expensive. A good spatial representation, therefore, would be one which optimizes the 

overall performance over all operations working on the spatial model, which is rather 

difficult to assess. However, looking at the complete set of operations, and not only at 

the efficiency of map construction and map maintenance, will give a much better 

picture. In addition to the efficiency aspect, we will use the term scalability to discuss 

how well a representation approach scales with the size of the represented 

environment. This concerns efficiency of operations as well as space consumption. 

 

2.1.1Map representation  

In the following section, we review the literature on robot mapping regarding the 

spatial representation approaches employed. We distinguish between different basic 

spatial representation approaches, which are the elementary representation formalisms 

to describe an environment in a homogeneous way, and different organizational 
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forms, which describe different ways of combining basic spatial representation 

approaches to form more complex representation structures. 

 

FIG 3 Types of map representation[10] 

In this thesis we are using only occupancy grid map ,so we discuss only occupancy 

grid map. Occupancy Grid creates a 2-D occupancy grid object, which you can use to 

represent and visualize a robot workspace, including obstacles. The integration of 

sensor data and position estimates create a spatial representation of the approximate 

locations of the obstacles. Occupancy grids are used in robotics algorithms such as 

path planning. They are also used in mapping applications, such as for finding 

collision-free paths, performing collision avoidance, and calculating localization. You 

can modify your occupancy grid to fit your specific application. Each cell in the 

occupancy grid has a value representing the occupancy status of that cell. An 

occupied location is represented as true (1) and a free location is represented as false 

(0). The two coordinate systems supported are world and grid coordinates. The world 

coordinates origin is defined by Grid Location In World, which defines the bottom-

left corner of the map. The number and size of grid locations are defined by 

the Resolution. Also, the first grid location with index (1,1) begins in the top-left 

corner of the grid. Occupancy-based representations represent occupied and free parts 

of space equitably by decomposing space into cells and storing for each cell whether 

it is (at least partially) occupied or (entirely) free. 
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FIG 4 Occupancy grid map constructed using ROS[5]. 
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2.2 Localization of mobile robot 

 

localization has received the greatest research attention in the past decade and, as a 

result, significant advances have been made on this front.. Localization has been a hot 

topic in mobile robotics since the information of the robot pose (position and 

orientation) is an essential demand for many applications. In order to deal with 

general application, SLAM (simultaneous localization and mapping) has been 

proposed to study the environment expression and localization problem. Some 

excellent algorithms using 2D laser range finder [40], [41] have been proposed. Since 

dynamic obstacles appearance generally because of human activities, the robot pose 

error is accumulated gradually. However, cumulative error is difficult to eliminate 

if the mobile robots move fast [43]. What’s more, the position of some static obstacles 

could also be changed, so the robustness of mobile robots localization is of great 

significance. To achieve good performance in localization, it is very common to use 

map-based localization approaches for indoor mobile robots. And some methods need 

more than one sensor or modification of the environment. For example, cameras, 

lasers, and sonars are used in [42], [45] for working stably; the working space of 

mobile robots is limited [40], and mobile robots only required to be able to accurately 

reach several positions in industrial environments First,  describes how sensor and 

effectors uncertainty is responsible for the difficulties of localization. Then, describes 

two extreme approaches to dealing with the challenge of robot localization: avoiding 

localization altogether, and performing explicit map-based localization. 
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FIG 5.LOCALIZATION REPRESENTATION [33] 

 

To achieve good performance in localization, it is very common to use map-based 

localization approaches for indoor mobile robots. And some methods need more than 

one sensor or modification of the environment. For example, cameras, lasers, and 

sonar are used  for working stably; the working space of mobile robots is limited , and 

mobile robots only required to be able to accurately reach several positions in 

industrial environments; even the environment need to be modified with some 

markers such as QR code[45] 
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2.3Artifical potential field  

 

The “Artificial Potential Fields” (AFP) method involves modelling the robot as a 

particle in space, acted on by some combination of attractive and repulsive fields. In 

this technique obstacles and gods are modeled as charged surfaces, and the net 

potential generates a force on the robot. These forces push the robot away from the 

obstacles, while pulling it towards the goal. The robot moves in the direction of 

greatest negative gradient in the potential. Despite its simplicity this method can be 

effectively used in many simple environments. However, the simple APF method 

described above have several key problems . The field may contain local minima, 

especially when there are many obstacles in the environment. This can trap the robot, 

its a gradient-descent algorithm cannot escape from it local minimum. The robot may 

find itself unable to pass through small openings such as through doors. The robot 

may exhibit oscillations in its motions. The robot may be guided away from the goal 

by a moving obstacle which creates a moving local minimum. Being stuck in this 

”shadow“ means that the robot cannot move around the obstacle. There have been 

various attempts to address these issues in the APF. These have included virtual 

obstacles . created to offset minima, alternate field functions including harmonic 

functions  and distance transforms  with no local minima, by decreasing the repulsion 

of obstacles not in the robots direction of motion. This reduces the amount of 

oscillation, while still allowing the robot to avoid obstacles in its path. These are 

successful in the static environment, but may not be as suitable for the dynamic 

environment as the computational complexity is very high. The following methods 

attempt to utilise the simplicity of a field-based approach, but avoid the drawbacks 

listed above.[33] 

There are number of methods and algorithm initially developed  for single mobile 

robots working in environment containing static obstacles .Artificial potential field 

based navigation method is from one of the initially developed  navigation method 

.Due to its  simplicity this method can be effectively used in many simple 

environments and still popular in mobile robot navigation. This method was originally 

invented for robot manipulator path planning and  now is used often and under many 

variants in the mobile robots. This method is a reactive planning technique, where the 
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immediate distances from obstacles are considered to compute the immediate move, 

without much bothering about the future. In such a manner immediate actions lead to 

motion of the robot, ultimately reaching to the goal position. This methods solves the 

sub problems of navigation like localization, path planning ,and control of mobile 

robots .[34] The resulting artificial potential field is  a control law for the robot. Due 

to this field the robot can localize its position with respect to map, it can always 

determine its next required action based on the field. 

In this method artificial potential field is created across the robot's map and this field 

directs the robot to goal position .In this robot is modeled  as a particle in space, acted 

on by superposition of attractive and repulsive fields. In this technique obstacles and 

goal are modeled as charged surfaces, and the net potential generates a force on the 

robot. These forces push the robot away from the obstacles, while pulling it towards 

the goal. The robot moves in the direction of greatest negative gradient in the 

potential The basic idea behind all potential field approaches is that the robot is 

attracted toward the goal, while being repulsed by the obstacles .  In the simplest case, 

we assume that the robot is a point, thus the robot’s orientation is neglected and the 

resulting potential field is only 2D . If we assume a differentiable potential field 

function U(q) , we can find the related artificial force) F(q) acting at the position q = 

(x, y)  

. F(q) = –∇U(q) 

where ∇U(q) denotes the gradient vector of at position . 

The potential field acting on the robot is then computed as the superposition  of the 

attractive field of the goal and the repulsive fields of the obstacles. 

U(q) = U attractive(q) + U repulsive(q) 

Similarly, the forces for  attracting and repulsing part in given map 

F(q) = F attractive(q)–F repulsive(q) 

F(q) = –∇U attractive(q)–∇U repulsive(q)[33] 
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2.4 Fuzzy based navigation 

 

A sensor-based navigation algorithm, combines two types of obstacle avoidance 

behaviors, each for the convex obstacles and the concave ones is proposed byBarret, 

Benreguieg, and Maaref [14] . To avoid the convex obstacles the navigator uses either 

fuzzy tuned artificial potential field (FTAPF) method or a behavioural agent, however 

an automatically online wall-following system using a neuro-fuzzy structure has been 

designed for the concave one.  a virtual target approach for resolving the limit cycle 

problem in navigation of a behaviour-based mobile robot. The real target has been 

switched to a virtual location so that robot can navigate according to the virtual target 

until it detects the opening. The efficiency and effectiveness of the refined fuzzy 

behaviour-based navigation are demonstrated by means of both simulation and 

physical experiments. Aguirre Eugenio and Gonzalez Antonio [14] dealt with a hybrid 

deliberative-reactive architecture for mobile robot navigation for integrating planning 

and reactive control, and attention is focused on the design, coordination and fusion of 

the elementary behaviours. Saade and Khatib [19] have developed a data-driven fuzzy 

approach to provide a general framework for solving the Dynamic motion problem 

(DMP) problem of a mobile robot under some constraints[17]. The main advantage of 

the current approach over recent fuzzy-genetic one is that the robot can navigate 

successfully in the presence of moving obstacles and independently of the number of 

these obstacles. The proposed approach has also reveals the reduction in the travel 

time. The proposed algorithm has shown good results as compared to ANFIS on robot 

trajectory in terms of their length and the time required by the robot to reach the goal. 

The superiority of the new algorithm can be helpful in building fuzzy models without 

any compulsion of planting effort in gaining accurate and enormous number of data 

points. Li and Hseng (2003) have designed and implemented a new fuzzy controller 

for a car-like mobile robot (CLMR) that holds autonomous garage-parking and 

parallel-parking capacity by using real time image processing. The system consists of 

a host computer, a communication module, a CLMR, and a vision system. Fuzzy 

garage parking control (FGPC) and fuzzy parallel parking control (FPPC) have been 

used in order to control the steering angle of the CLMR. have presented a new method 

for the intelligent control of the nonholonomic vehicles. Fuzzy perception has been 
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directly used, both in design of each reactive behaviour and solving the problem of 

behaviour combination in order to implement a fuzzy behaviour based control 

architecture. The capabilities of the control system have been improved by 

considering teleoperation and planned behaviour, together with their combination 

with reactive ones. Experimental results have shown the robustness of the suggested 

technique. Abdessemed Foudil, Benmahammed Khier, and Monacelli Eric (2004) 

have used the fuzzy logic controller in the development of complete navigation 

procedure of a mobile robot in a messy environment. An evolutionary algorithm has 

been implemented in order to solve the problem of extracting the IF-THEN rule base. 

The validity of the proposed method has been demonstrated through simulation 

results. Demirli and Molhim (2004) have presented a new fuzzy logic based approach 

for dynamic localization of mobile robots. The proposed approach uses sonar data 

obtained from a ring of sonar sensors mounted around the robot. The angular 

uncertainty and radial imprecision of sonar data are modelled by possibility 

distributions.  

The information received from the adjacent sonar sensors are united, which helps in 

the reduction in the uncertainty in sonar impressions. In the beginning a local fuzzy 

map has been constructed with help of reduced models of uncertainty, and then fitted 

to the given global map of the environment to identify robot‟s location. This fit offers 

either a unique fuzzy location or multiple candidate fuzzy locations. Since the 

coordinates (x, y) and orientation of the identified locations are represented by 

possibility distribution, these locations are referred to as fuzzy locations. To reduce 

the number of candidate locations, a new set of candidate fuzzy location is obtained 

by moved the robot to a new position. By considering the robot‟s movement, a set of 

hypothesized locations is identified from the old set of candidate locations. The 

hypothesized locations are matched with the new candidate locations and the 

candidates with low degree of match are eliminated. This process is continued until a 

unique location is obtained. The matching process is performed by using the fuzzy 

pattern matching technique. The proposed method is implemented on a Nomad 200 

robot and the results are reported. Parhi [22 ] has described a fuzzy logic based 

control system for the navigation of multiple mobile robots in a cluttered 

environment, such that the robots do not collide to each other. For this he has used 

fuzzy logic controller to combine the fuzzy rules in order to direct the steering of the 
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robot to avoid the obstacles present in its path. Moreover Petri Net model has been 

used by implementing crisp rules to avoid the collision between the different mobile 

robots. Simulation and test results validate the system functions by enabling the 

robots to reach their goal without hitting the static obstacles or colliding with other 

robots[7]. Fatmi et al. [ 19 ] have demonstrated a successful way of constructing the 

navigation task in order to deal with problem of autonomous navigation of mobile 

robot. Issues of individual behaviour design and action coordination of the behaviours 

were addressed using fuzzy logic. 

Rule based navigation is an alternative to field-based methods. Rule based method use 

simple rules  like - “if left sensor active, turn right”, or they can be generalized by 

fuzzy logic and machine learning techniques. Simple rules are easy to use, but are 

often very limited to the environments for  which they are built. Fuzzy control 

systems, employing fuzzy set theory, have been proven to produce better performance 

than simple rules. However, these too are limited to environments highly similar to 

the one in which they were constructed. To overcome this limitation of fuzzy rule 

based system this method is used mostly in hybrid with other navigation problem 

solving approach. the Fuzzy Logic System by using membership functions that takes 

input from mobile robot  sensors and  gives output as left and right motor speed that 

implicitly controls the robot turn . Membership functions have a given pre-determined 

range of values that control the state of an input or an output. The fuzzy rule is a 

Iinguistic set of if-then statements. The fuzzy system is a result of a lot of manual 

tuning of the rules and membership functions, over a wide variety of scenarios 
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2.5 Probabilistic roadmap 

A probabilistic roadmap (PRM) is a network graph of possible paths in a given map 

based on free and occupied spaces. The robotics.PRM class randomly generates nodes 

and creates connections between these nodes based on the PRM algorithm parameters. 

Nodes are connected based on the obstacle locations specified in Map, and on the 

specifiedConnectionDistance. You can customize the number of nodes, NumNodes, 

to fit the complexity of the map and the desire to find the most efficient path. 

The PRM algorithm uses the network of connected nodes to find an obstacle-free path 

from a start to an end location. To plan a path through an environment effectively, 

tune the NumNodes andConnectionDistance properties. 

When creating or updating the robotics.PRM class, the node locations are randomly 

generated, which can affect your final path between multiple iterations. This selection 

of nodes occurs when you specify Map initially, change the parameters, or update is 

called. To get consistent results with the same node placement, use rng to save the 

state of the random number generation.  

Use the NumNodes property on the PRM object to tune the 

algorithm. NumNodes specifies the number of points, or nodes, placed on the map, 

which the algorithm uses to generate a roadmap. Using 

the ConnectionDistance property as a threshold for distance, the algorithm connects 

all points that do not have obstacles blocking the direct path between them. 

Increasing the number of nodes can increase the efficiency of the path by giving more 

feasible paths. However, the increased complexity increases computation time. To get 

good coverage of the map, you might need a large number of nodes. Due to the 

random placement of nodes, some areas of the map may not have enough nodes to 

connect to the rest of the map. In this example, you create a large and small number of 

nodes in a roadmap.[46] 

 

 

file:///E:/MATLAB/help/robotics/ref/robotics.prm-class.html
file:///E:/MATLAB/help/robotics/ref/robotics.prm-class.html
file:///E:/MATLAB/help/matlab/ref/rng.html
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FIG6 : probablistic road map  
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2.6 Artifical neural network 

Artificial neural networks are information-processing systems which have certain 

performance characteristics in common with biological neural networks [30]. 

Artificial neural networks have been evolved as generalizations of mathematical 

models of human cognition or neural biology, based on the following four 

assumptions [33]: 

1. "Information processing occurs at many simple elements called neurons." 

2. "Signals are passed between neurons over connection links." 

3. "Each connection link has an associated weight, which, in a typical neural net, 

multiplies the signal transmitted." 

4. "Each neuron applies an activation function (usually nonlinear) to its net input (sum 

of weighted input signals) to determine its output signal." A neural network can be 

characterized, firstly, by its structure of connections between the neurons (known as 

its architecture), additionally by its method of determining the weights on the 

connections (called its training, or learning, algorithm), and finally, its activation 

function. 

Neural networks are structured from a large number of simple processing 

components called neurons, units, cells, or nodes. Each neuron is connected to other 

neurons through directed communication links, each with a weight associated to it (as 

shown in Figure 1). The weights correspond to information being processed by the 

network to solve a problem. Neural networks can be applied to a wide selection of 

problems, such as storing and recalling data or patterns, grouping similar patterns, 

performing general mappings from input patterns to output patterns, classifying 

patterns, or finding solutions to constrained optimization problems 
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FIG 7 ann basic network[30] 

The internal state of a neuron is known as its activation or activity level, which is a 

function of the inputs it has received. Typically, activation is sent as a signal from one 

neuron to several other neurons. However, only one signal can be sent from each 

neuron at the same time, although that signal can be broadcast to several other 

neurons. For example, consider neuron 𝑌, shown in Figure 1, that receives inputs 

from neurons 𝑋1, 𝑋2, and 𝑋3. The activations (output signals) of these neurons are 

𝑥1, 𝑥2, and 𝑥3, respectively. In addition, the weights on the connections from 𝑋1, 𝑋2, 

and 𝑋3 to neuron 𝑌 are 𝑤1, 𝑤2, and 𝑤3, respectively. The net input, 𝑦_𝑖𝑛, to neuron 

𝑌 is the sum of the weighted signals from neurons 𝑋1, 𝑋2, and 𝑋3, that is: 

𝑦_𝑖𝑛 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 

Further, suppose that neuron 𝑌 is connected to neurons 𝑍1, and 𝑍2, with weights 𝑣1, 

and 𝑣2, respectively, as depicted in Figure 2. neuron 𝑌 sends its signal 𝑦 to each of 

these units. However, generally, the values received by neurons 𝑍1, and 𝑍2 will be 

different. Since each signal is scaled by the appropriate weight, 𝑣1 or 𝑣2. As shown in 

this simple example, in a typical network, the activations 𝑧1 and 𝑧2 of neurons 𝑍1, 

and 𝑍2 would depend on inputs from several neurons and not just one. [33] Even 

though the neural network in Figure  is very simple, the presence of an intermediate 

unit 𝑌 (also known as the hidden unit), together with a nonlinear activation function, 

gives the network the capability to solve many more problems than can be solved by a 

network with only input and output units. However, the difficulty to train (i.e., find 
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optimal values for the weights) a net with hidden units is more than a network 

 

FIG 8 neural network[30] 
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CHAPTER 3 

METHODOLOGY AND EXPERIMENTAL SETUP 

3.1.1 Mapping 

In this work we use a robot arena with an overhead camera as shown in Figure 30 . 

The camera can be easily calibrated and the image coming from the camera can be 

used to create a robot map, as shown in the  figure 31. This is a simplistic 

implementation of the real life scenarios where multiple cameras can be used to 

capture different parts of the entire workspace, and their outputs are fused to create an 

overall map used by different kinds of motion planning algorithms .In this section we 

are using image processing to create the map. Image processing is a discipline of 

computer science and applied mathematics that studies digital images and their 

transformations in order to improve their quality or extract information. 

 

 figure  10 : Over head camera system for creation of robot map[30] 
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Figure 11over head mobile camera to capture images 

 

 

 

 

 

Figure 12 image of robot real environment 
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STEPS TO CREATE OCCUPANCY GRID MAP BY USING OVERHEAD 

CAMERA: 

1. First an overhead camera captures a color image (RGB image). 

2.By using MATLAB image processing toolbox ,image processing  is done which has 

following steps. 

2.1.RGB image is converted to gray image. The gray level of an image is simply 

designed to have colors that are all expressed in gray. In fact, the "gray" is a color in 

which the components: red, green and blue have the same intensity in space RGB 

(Red, Green and Blue). The easiest method to convert the color image to another gray 

level is to calculate the luminance of a pixel using the following equation[45]: 

Gray = 0.299 × 0.587 × Red + Green + 0.114 × Blue     (1) 

2.2 Histogram equalization of gray image is done. 

2.3 Then the image is converted into binary image. 

2.4 After histogram equalization thersholding of the image is done. we must convert 

the image to grayscale input format and then converts this image grayscale by binary 

threshold. The output binary image from 1 (white) for all the pixels of the input image 

with higher luminance as the level and from 0 (black). Therefore it with the matlab 

command[45]. 

bw_ima = im2bw(RGB1,level_ima);        (2) 

3.Then this .jpg image (mostly) is converted into .bmt image. or .png according to 

need of software using. 

4. Then this .bmt image or .png image  can be used as occupancy grid map in 

simulation of navigation of  mobile robot. 
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3.1.2 LOCALIZATION 

 The camera can be easily calibrated and the image coming from the camera can be 

used to detect robot as shown in the  figure. This is a simplistic implementation of the 

real life scenarios where multiple cameras are used to capture different parts of the 

entire workspace, and their outputs are fused to locate an overall map used by the 

motion planning algorithms.  

 The same camera can also be used to capture the location of the robot at the start of 

the planning and also as the robot moves. This solves the problem of localization. An 

interesting looking region of interest becomes the goal of the robot to be used in the 

motion planning algorithms.As the robot passes from the range of overhead camera its 

start capturing video and with the help of MATLAB computer vision toolbox motion 

of mobile robot is tracked and mat file is generated which contain pixal 

value(coordinate value)all the values from where robot passes.In this way problem of 

localization for indoor mobile robot can be solved. x and y coordinate vale is shown 

in workspce of matlabas shown in fig 12 
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FIG12 :mobile robot tracking by using matlab. 
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3.1.3 POTENTIAL FIELD NAVIGATION 

 Artificial Potential Field based navigation is a reactive planning technique, where the 

immediate distances from obstacles are considered to compute the immediate move, 

without much bothering about the future. In such a manner immediate actions lead to 

motion of the robot, ultimately leading to the goal. All obstacles repel the robot with a 

magnitude inversely proportional to the distance. The goal attracts the robot. The 

resultant potential, accounting for the attractive and repulsive components is 

measured and used to move the robot. The potential field for a sample scenario is 

shown in Figure 2. Directions indicate the direction of the potential vector. The 

distance of the obstacles at all angles from the robot is measured. In this work we only 

use  5 distances at specific angles are measured to compute the repulsive potential. 

These are forward, left side, right side, forward left diagonal and forward right 

diagonal. The different inputs are summarized in Figure 10. 

 

 

 

 

FIG13 :representation of potential field 
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3.1.4 FUZZY RULE BASED NAVIGATION 

 Fuzzy based navigation is a reactive planning technique, where the immediate 

position and distances from obstacles is considered to compute the immediate move, 

without much bothering about the future. In such a manner immediate actions lead to 

motion of the robot, ultimately leading to the goal. In order to solve the problem using 

fuzzy logic, we first need to select a few inputs which best represent the situation that 

the robot is currently placed in. The decision of motion is made purely on the basis of 

these inputs and not the actual scenario. For this problem 6 inputs are selected. These 

are distance from the obstacle in front, distance from the obstacle at the front left 

diagonal, distance from the obstacle at the front right diagonal, angle between the 

heading direction of robot and the goal, distance of the robot from the goal and 

preferred turn. The different inputs are summarized in Figure 11. The last input, 

preferred turn indicates whether it would be beneficial to turn clockwise or anti-

clockwise, all other inputs ignored. A simple rule is used to set the parameter. If the 

front obstacle is far away, turn is so as to more face the goal. If the front obstacle is 

close and a new front obstacle is encountered, turn using the side of the goal is 

preferred. If the front obstacle is close and the same obstacle as encountered in the 

previous step is found, the same turn as made previously is repeated. 

 

 

 

 

FIG 14:  representation for direction of fuzzy logic program 
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3.1.5 PRBALABISTIC ROADMAP NAVIGATION 

TECHNIQUE 

 

 The algorithm has two stages: an offline roadmap (graph) building stage and an 

online planning/query stage. The aim of the offline roadmap (graph) building stage is 

to randomly draw a small graph across the workspace. All vertices and edges of the 

graph should be collision-free so that a robot may use the same graph for its motion 

planning. The PRM selects a number of random points (states) in the workspace as 

the vertices. In order to qualify being a vertex, a randomly selected point (state) must 

not be inside some obstacle. Let there be k number of states which is an algorithm 

parameter. Higher are the number of vertices or k, better would be the results with a 

loss of computational time. The algorithm then attempts to connect all pairs of 

randomly selected vertices. If any two vertices can be connected by a straight line, the 

straight line is added as an edge. The concept is shown in Figure 12. 

 

 

FIG 15: prm representation with a* algo computed path 

The online planning/query stage aims to use the roadmap (graph) developed earlier 

for planning the path of a robot. Since a graph is already known, any graph search 
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algorithm can be used. The code uses A* algorithm for the same. The weights of the 

edges is taken as the Euclidian distance between the connecting points, and the 

heuristic function (denoting the nearness of the point to the goal) is taken as the 

Euclidian distance to the goal. Both the functions are given as separate files from 

where they can be changed. 
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3.6 NAVIGATION BY USING ARTIFICIAL NEURAL 

NETWORK 

Navigation by using artificial neural network is a global navigation technique. For this 

technique we  can use mobile robot hardware along with MATLAB or Mrpt (Mobile 

Robot Programming Toolkit) along with MATLAB can be used.Description of mrpt 

is presented in next section.First step in this technique is to generate dataset for 

training and testing of neural network technique .Dataset is nothing but information 

gathered by running the robot several times in known environment condition .After 

getting dataset matfile is generated and this matfile which consists of raw data from 

mobile robot sensors is used for training of neural network and testing by using neural 

network toolbox in MATLAB.After that neural network takes input from mobile 

robot sensors and in output it gives control action to robot .For this technique we are 

using mrpt to generate the dataset by using known static environment map generated  

previously, inputs are selected in mobile robotics programming toolkit and move the 

robot in simulation using 4 keys of laptop keyboard i.e. up ,down ,left ,right. 

Environment condition :  

 

FIG 16  ENVIRONMENT FOR ANN SIMULATION [31] 
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The mobile robot designed has an laser sensor (a distance meter) and can scan the 

space in front from -90 to +90 degrees. The sensing has been made at ,  0 to 180 

degree angles. The signal of the sensor at these angle stored .rawlog file.Which can be 

converted to. .txt file . Files "vis..rawlog" are binary files generated through the 

MRPT library. They can be visualized, edited, and managed in many ways through 

the GUI application "RawLog Viewer". 

 The text files "vis_LASER.txt" and "vis_ODO.txt" have been automatically 

generated from the binary rawlog by "RawLogs Viewer". 

 The "xxx_LASER.txt" file contains one scan range per line. Values are in meters. 

The "xxx_ODO.txt" contains robot pose increments as measured by the odometry. 

Each  

   line contains 3 values: 

      -Ax: Increment in "x", in meters. 

      -Ay: Increment in "y", in meters. 

      -Aphi: Increment in "phi", in radians. Phi=0 is in the direction of "+X" axis. 

 

After generating the dataset .MATLAB 2017 neural network toolbox is used to train 

ing and testing of dataset  . It is trained using actual data and generates weights of 

connections for optimized condition using feedforward neural network  Algorithm 

and with ‘tanh’ sigmoid threshold function. 
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3.2 EXPERMINTAL SETUP 

 

FIG 17MOBILE ROBOT  

For experimental setup MATLAB 2016 , MATLAB 2017 are used for simulation of  

navigation technique, and mobile robot is also used for simulation of localization 

problem.Mobile Robot Programming Toolkit provides developers 

with portable and well-tested applications and libraries covering data structures and 

algorithms employed in common robotics research areas. It is open source,software. 

Mobile robot has following components. 

1. Arduino Uno which is based on Atmega 328p microcontroller which can 

process data in both digital and analog for input as well as output purpose. 

2. servo motors are arranged and mechanically fixed. 

3. Mobile  robot setup is wirelessly controlled by an app developed on MIT App 

Inventor which has four sliders which individually controls the position of each 

servo motor via HC-05 Bluetooth module. The Bluetooth module serially 

communicates with the microcontroller via TX and RX pins. 

4. Motor controler (h bridge). 

5. 2 standred wheel and one omni wheel. 

6. wheel encoder. 

7. dc motor 

https://www.mrpt.org/Supported_Platforms
https://www.mrpt.org/Unit_testing_in_MRPT
https://www.mrpt.org/Applications
https://www.mrpt.org/Libraries
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8. lipo battry  

9. utlrasonic sensor  

10. lidr sensor 

11. memory card module to store sensors data which is used to generate dataset. 

12. bread board and jumper wires  for connection. 
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CHAPTER 4  

SIMULATION AND RESULT ANALYSIS 

Simulation of navigation techniques  are done in MATLAB 2017(a) by using BIT 

map imageor .png image according to software used ,of real life scenario .In this 

simulation parameters like execution time, path length, learning rate ,error rate  is 

compared for different real maps there are 4 maps of real environment are used in this 

thesis 

SIMULATION PARAMETER 

All results on AMD A10-7300, 3.2 GHz  with 8GB RAM.  

For all results:  

source=[50 50]  

goal=[450 450]  

resolution of BIT map image used: 500×500 
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FIG 18 : Real map  used for simulation of mobile robot in MATLAB  for first 3 

navigation technique with red dot as intial robot poistion  and blue dot as goal 

poistion 

 

TABLE 1:SIMULATION RESULT OF POTENTIAL FIELD 

TECHNIQUE 

S.NO MAP  PATH 

LENGTH 

EXECUTION 

TIME IN SEC 

1 

 

808 5.2 

2 

 

785 2.67 

3 

 

COLLISION  

4 

 

COLLISION  
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TABLE 2:SIMULATION RESULT OF FUZZY LOGIC BASED 

TECHNIQUE 

S.NO MAP  PATH 

LENGTH 

EXECUTION 

TIME 

1 

 

890 6.5 

2 

 

785 3.05 

3 

 

ROBOT 

STOPED 

 

4 

 

777 2.86 
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TABLE 3:SIMULATION RESULT PROBABLISTIC ROADMAP 

BASED TECHNIQUE 

S.NO MAP  PATH 

LENGTH 

EXECUTION 

TIME 

1 

 

910 6.82 

2 

 

885 3.62 

3 

 

574 6.26 

4 

 

632 3.71 
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FOR ANN simulation is done using neural network toolbox of matlab 2017 with 

following conditions 

input :180  

output :3  

Netwok used :feedforward neural network 

result :correctlty classfied rate in trainig = 78.56 

           error in testing =0.2244 
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CHAPTER 5 

CONCLUSION , AND FUTURE SCOPE 

CONCLUSION 

In this thesis 4 navigation technique has been studied and simulation is done on 

Matlab 2017 .Ann has been studied only and result has been analyzed from research 

paper [31].following are the observation of  study : 

1. artificial potential field is the simplest from all ,but it is very basic it can be 

only used for static environmentt when using alone .its has one major 

drawback i.e local minima. 

2. fuzzy is better then potential field but only suitable till the condition not come 

that is not defined in fuzzy. It mostly suitable for know environment ,and has 

less time and space complexity then PRM. 

3. PRM is better then both of previous in many sense it always converges if path 

is available  are available but it has greater time and space complexity ,so it 

can be used in small indoor environments. 

4. ANN is better then all and can better used with noisy sensor data and in 

dynamic environment also it can be used .but training and testing data 

generation is main drawback of this technique ,and this data is not general 

.only can be used for same robot and same environment. 

 final conclision , these technique is depend on kind of robot and environment 

condition,So we should choose navigation technique according to environment 

condition and type of robot used. 
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FUTURE SCOPE 

There are clearly a number of robust techniques for various key sub-problems 

in robot navigation. There are also  wide variety of techniques which are well 

developed while not completely robust. However, there is still no known 

technique or combination of techniques which will result in a robust, 

generalized performance. The possibility of combining some of the more 

powerful techniques from each category, to result in a. general technique 

suitable to a wide variety of environments is still open. It is proposed that 

research be undertaken to combine of some of these techniques, in an effort to 

develop general robust navigation  system for mobile robot . 
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APPENDICES A 

MATLAB PROGRAM 

MATLAB CODE FOR ARTIFICAL POTENTIAL NAVIGATION 

 

map=int16(im2bw(imread('map10 (2).bmp'))); % input map read from a bmp file. for 

new maps write the file name here 

source=[50 50]; % source position in Y, X format 

goal=[450 450]; % goal position in Y, X format 

robotDirection=pi/8; % initial heading direction 

robotSize=[10 10]; %length and breadth 

robotSpeed=10; % arbitrary units  

maxRobotSpeed=10; % arbitrary units  

S=10; % safety distance 

distanceThreshold=30; % a threshold distace. points within this threshold can be taken 

as same.  

maxAcceleration=10; % maximum speed change per unit time 

maxTurn=10*pi/180; % potential outputs to turn are restriect to -60 and 60 degrees. 

k=4; % degree of calculating potential 

attractivePotentialScaling=300000; % scaling factor for attractive potential 

repulsivePotentialScaling=300000; % scaling factor for repulsive potential 

minAttractivePotential=0.5; % minimum attractive potential at any point 

  

%%%%% parameters end here %%%%% 

  

currentPosition=source; % position of the centre of the robot 

currentDirection=robotDirection; % direction of orientation of the robot 

robotHalfDiagonalDistance=((robotSize(1)/2)^2+(robotSize(2)/2)^2)^0.5; % used for 

distance calculations  

pathFound=false; % has goal been reached 

pathCost=0; 

t=1; 

imshow(map==1); 
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rectangle('position',[1 1 size(map)-1],'edgecolor','k') 

pathLength=0;  

if ~plotRobot(currentPosition,currentDirection,map,robotHalfDiagonalDistance) 

     error('source lies on an obstacle or outside map');  

end 

M(t)=getframe; 

t=t+1; 

  

if ~feasiblePoint(goal,map), error('goal lies on an obstacle or outside map'); end 

  

tic; 

while ~pathFound 

     

    % calculate distance from obstacle at front 

    i=robotSize(1)/2+1; 

    while true 

        x=int16(currentPosition+i*[sin(currentDirection) cos(currentDirection)]); 

        if ~feasiblePoint(x,map), break; end 

        i=i+1; 

    end 

    distanceFront=i-robotSize(1)/2; % robotSize(1)/2 distance included in i was inside 

the robot body  

     

    % calculate distance from obstacle at left 

    i=robotSize(2)/2+1; 

    while true 

        x=int16(currentPosition+i*[sin(currentDirection-pi/2) cos(currentDirection-

pi/2)]); 

        if ~feasiblePoint(x,map), break; end 

        i=i+1; 

    end 

    distanceLeft=i-robotSize(2)/2;   

     

    % calculate distance from obstacle at right 
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    i=robotSize(2)/2+1; 

    while true 

        x=int16(currentPosition+i*[sin(currentDirection+pi/2) 

cos(currentDirection+pi/2)]); 

        if ~feasiblePoint(x,map), break; end 

        i=i+1; 

    end 

    distanceRight=i-robotSize(2)/2;   

     

    % calculate distance from obstacle at front-left diagonal 

    i=robotHalfDiagonalDistance+1; 

    while true 

        x=int16(currentPosition+i*[sin(currentDirection-pi/4) cos(currentDirection-

pi/4)]); 

        if ~feasiblePoint(x,map), break; end 

        i=i+1; 

    end 

    distanceFrontLeftDiagonal=i-robotHalfDiagonalDistance; 

     

    % calculate distance from obstacle at front-right diagonal 

    i=robotHalfDiagonalDistance+1; 

    while true 

        x=int16(currentPosition+i*[sin(currentDirection+pi/4) 

cos(currentDirection+pi/4)]); 

        if ~feasiblePoint(x,map), break; end 

        i=i+1; 

    end 

    distanceFrontRightDiagonal=i-robotHalfDiagonalDistance; 

     

    % calculate angle from goal 

     angleGoal=atan2(goal(1)-currentPosition(1),goal(2)-currentPosition(2)); 

     

     % calculate diatnce from goal 

     distanceGoal=( sqrt(sum((currentPosition-goal).^2)) ); 
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     if distanceGoal<distanceThreshold, pathFound=true; end 

      

     % compute potentials 

     repulsivePotential=(1.0/distanceFront)^k*[sin(currentDirection) 

cos(currentDirection)] + ... 

     (1.0/distanceLeft)^k*[sin(currentDirection-pi/2) cos(currentDirection-pi/2)] + ... 

     (1.0/distanceRight)^k*[sin(currentDirection+pi/2) cos(currentDirection+pi/2)] + ... 

     (1.0/distanceFrontLeftDiagonal)^k*[sin(currentDirection-pi/4) 

cos(currentDirection-pi/4)] + ... 

     (1.0/distanceFrontRightDiagonal)^k*[sin(currentDirection+pi/4) 

cos(currentDirection+pi/4)]; 

      

     attractivePotential=max([(1.0/distanceGoal)^k*attractivePotentialScaling 

minAttractivePotential])*[sin(angleGoal) cos(angleGoal)]; 

     totalPotential=attractivePotential-repulsivePotentialScaling*repulsivePotential; 

      

     % perform steer 

     

preferredSteer=atan2(robotSpeed*sin(currentDirection)+totalPotential(1),robotSpeed

*cos(currentDirection)+totalPotential(2))-currentDirection; 

     while preferredSteer>pi, preferredSteer=preferredSteer-2*pi; end % check to get 

the angle between -pi and pi 

     while preferredSteer<-pi, preferredSteer=preferredSteer+2*pi; end % check to get 

the angle between -pi and pi 

     preferredSteer=min([maxTurn preferredSteer]); 

     preferredSteer=max([-maxTurn preferredSteer]); 

     currentDirection=currentDirection+preferredSteer; 

      

     % setting the speed based on vehicle acceleration and speed limits. the vehicle 

cannot move backwards. 

     preferredSpeed=sqrt(sum((robotSpeed*[sin(currentDirection) 

cos(currentDirection)] + totalPotential).^2)); 

     preferredSpeed=min([robotSpeed+maxAcceleration preferredSpeed]); 

     robotSpeed=max([robotSpeed-maxAcceleration preferredSpeed]); 
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     robotSpeed=min([robotSpeed maxRobotSpeed]); 

     robotSpeed=max([robotSpeed 0]); 

      

     if robotSpeed==0, error('robot had to stop to avoid collission'); end 

      

     % calculating new position based on steer and speed 

     newPosition=currentPosition+robotSpeed*[sin(currentDirection) 

cos(currentDirection)]; 

     pathCost=pathCost+distanceCost(newPosition,currentPosition); 

     currentPosition=newPosition; 

     if ~feasiblePoint(int16(currentPosition),map), error('collission recorded'); end 

      

     % plotting robot 

     if ~plotRobot(currentPosition,currentDirection,map,robotHalfDiagonalDistance) 

        error('collission recorded'); 

     end 

     M(t)=getframe;t=t+1; 

end 

fprintf('processing time=%d \nPath Length=%d \n\n', toc,pathCost);  
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MATLAB CODE FOR FUZZY RULE BASED NAVIGATION 

map=int16(im2bw(imread('map6.bmp'))); % input map read from a bmp file. for new 

maps write the file name here 

source=[50 50]; % source position in Y, X format 

goal=[450 450]; % goal position in Y, X format 

robotDirection=pi/4; % initial heading direction 

robotSize=[10 10]; %length and breadth 

robotSpeed=10; % arbitrary units  

maxRobotSpeed=10; % arbitrary units  

S=10; % safety distance 

distanceThreshold=30; % a threshold distace. points within this threshold can be taken 

as same.  

maxAcceleration=10; % maximum speed change per unit time 

directionScaling=60*pi/180; % fuzzy outputs to turn are restriect to -1 and 1. these are 

magnified here. maximum turn can be 60 degrees 

  

%%%%% parameters end here %%%%% 

  

fuz=readfis('fuzzyBase.fis'); % fuzzy inference system used. to read/edit use 

fuzzy(readfis('fuzzyBase.fis')) at the command line 

distanceScaling=(size(map,1)^2+size(map,2)^2)^0.5; % all inputs are scaled by this 

number so that all distance inputs are between 0 and 1. maximum distance can be 

distanceScaling 

currentPosition=source; % position of the centre of the robot 

currentDirection=robotDirection; % direction of orientation of the robot 

robotHalfDiagonalDistance=((robotSize(1)/2)^2+(robotSize(2)/2)^2)^0.5; % used for 

distance calculations  

pathFound=false; % has goal been reached 

prevTurn=0; % preffered turn at the previous time step, used for turning heuristic, see 

variable turn being set below. 

prevDistanceLeftDiagonal=distanceScaling; % diagonal distance at the previous time 

step, used for tracking obstacles, used for turning heuristic, see variable turn being set 

below.  
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prevDistanceRightDiagonal=distanceScaling; % diagonal distance at the previous 

time step, used for tracking obstacles, used for turning heuristic, see variable turn 

being set below.  

pathCost=0; 

t=1; 

imshow(map==1); 

rectangle('position',[1 1 size(map)-1],'edgecolor','k'); 

pathLength=0;  

if ~plotRobot(currentPosition,currentDirection,map,robotHalfDiagonalDistance) 

     error('source lies on an obstacle or outside map');  

end 

M(t)=getframe; 

t=t+1; 

  

if ~feasiblePoint(goal,map), error('goal lies on an obstacle or outside map'); end 

  

tic; 

while ~pathFound 

     

    % calculate distance from obstacle at front 

    for i=robotSize(1)/2+1:distanceScaling 

        x=int16(currentPosition+i*[sin(currentDirection) cos(currentDirection)]); 

        if ~feasiblePoint(x,map), break; end 

    end 

    distanceFront=(i-robotSize(1)/2)/distanceScaling; % robotSize(1)/2 distance 

included in i was inside the robot body  

     

    % calculate distance from obstacle at front-left diagonal 

    for i=robotHalfDiagonalDistance+1:distanceScaling 

d        x=int16(currentPosition+i*[sin(currentDirection-pi/4) cos(currentDirection-

pi/4)]); 

        if ~feasiblePoint(x,map), break; end 

    end 

    distanceFrontLeftDiagonal=(i-robotHalfDiagonalDistance)/distanceScaling; 



49 
 

     

    % calculate distance from obstacle at front-right diagonal 

    for i=robotHalfDiagonalDistance+1:distanceScaling 

        x=int16(currentPosition+i*[sin(currentDirection+pi/4) 

cos(currentDirection+pi/4)]); 

        if ~feasiblePoint(x,map), break; end 

    end 

    distanceFrontRightDiagonal=(i-robotHalfDiagonalDistance)/distanceScaling; 

     

    % calculate angle deviation to goal 

     slopeGoal=atan2(goal(1)-currentPosition(1),goal(2)-currentPosition(2)); 

     angleGoal=slopeGoal-currentDirection; 

     while angleGoal>pi, angleGoal=angleGoal-2*pi; end % check to get the angle 

between -pi and pi 

     while angleGoal<-pi, angleGoal=angleGoal+2*pi; end % check to get the angle 

between -pi and pi 

     angleGoal=angleGoal/pi; % re-scaling the angle as per fuzzy modelling 

     

     % calculate diatnce from goal 

     distanceGoal=( sqrt(sum((currentPosition-goal).^2)) )/distanceScaling; 

     if distanceGoal*distanceScaling<distanceThreshold, pathFound=true; end 

      

     % calculate preferred turn.  

     % this indicates, if the front obstacle is far away, turn so as to more face the goal 

     % if the front obstacle is close and a new front obstacle is encountered, turn using 

the side of the goal is preferred 

     % if the front obstacle is close and the same obstacle as encountered in the 

previous step is found, same turn is made 

     if (prevTurn==0 || prevTurn==1) && distanceFront<0.1 && 

(distanceFrontLeftDiagonal-

prevDistanceLeftDiagonal)*distanceScaling<maxRobotSpeed, turn=1; 

     elseif prevTurn==-1 && distanceFront<0.1 && (distanceFrontRightDiagonal-

prevDistanceRightDiagonal)*distanceScaling<maxRobotSpeed, turn=-1; 

     else turn=(angleGoal>=0)*1+(angleGoal<0)*(-1);prevTurn=turn; 
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     end 

     prevDistanceLeftDiagonal=distanceFrontRightDiagonal; 

     prevDistanceRightDiagonal=distanceFrontLeftDiagonal; 

      

     % pass all computed inputs to a fuzzy inference system 

     computedSteer=evalfis([distanceFront distanceFrontLeftDiagonal 

distanceFrontRightDiagonal angleGoal turn distanceGoal],fuz); 

     currentDirection=currentDirection+computedSteer*directionScaling; 

      

     % speed is set based on the front and diagonal distance so as not to make the robot 

collide, but make it slow and even stop before possible collission 

     % distances here include additional safety distance of S 

     distanceFrontSafety=max([distanceFront*distanceScaling-S 0]);  

     

distanceFrontLeftDiagonalSafety=max([distanceFrontLeftDiagonal*distanceScaling-

S 0]); 

     

distanceFrontRightDiagonalSafety=max([distanceFrontRightDiagonal*distanceScalin

g-S 0]); 

      

     % maximum speeds admissible as per the above safety distance 

     maxSpeed1=min([sqrt(2*maxAcceleration*distanceFrontSafety) 

maxRobotSpeed]); 

     maxSpeed2=min([sqrt(maxAcceleration*distanceFrontLeftDiagonalSafety) 

maxRobotSpeed]); 

     maxSpeed3=min([sqrt(maxAcceleration*distanceFrontRightDiagonalSafety) 

maxRobotSpeed]); 

     maxSpeed=min([maxSpeed1 maxSpeed2 maxSpeed3]); 

      

     % setting the speed based on vehicle acceleration and speed limits. the vehicle 

cannot move backwards. 

     preferredSpeed=min([robotSpeed+maxAcceleration maxSpeed]); 

     robotSpeed=max([robotSpeed-maxAcceleration preferredSpeed]); 

     robotSpeed=min([robotSpeed maxRobotSpeed]); 
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     robotSpeed=max([robotSpeed 0]); 

      

     if robotSpeed==0, error('robot had to stop to avoid collission'); end 

      

     % calculating new position based on steer and speed 

     newPosition=currentPosition+robotSpeed*[sin(currentDirection) 

cos(currentDirection)]; 

     pathCost=pathCost+distanceCost(newPosition,currentPosition); 

     currentPosition=newPosition; 

     if ~feasiblePoint(int16(currentPosition),map), error('collission recorded'); end 

      

     % plotting robot 

     if ~plotRobot(currentPosition,currentDirection,map,robotHalfDiagonalDistance) 

        error('collission recorded'); 

     end 

     M(t)=getframe;t=t+1; 

end 

fprintf('processing time=%d \nPath Length=%d \n\n', toc,pathCost);  
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PRM MATLAB PROGRAM 

map=im2bw(imread('MAP E-crop.bmp')); % input map read from a bmp file. for new 

maps write the file name here 

source=[10 10]; % source position in Y, X format 

goal=[450 450]; % goal position in Y, X format 

k=50; % number of points in the PRM 

display=true; % display processing of nodes 

 

%%%%% parameters end here %%%%% 

 

if ~feasiblePoint(source,map), error('source lies on an obstacle or outside map'); end 

if ~feasiblePoint(goal,map), error('goal lies on an obstacle or outside map'); end 

 

imshow(map); 

rectangle('position',[1 1 size(map)-1],'edgecolor','k') 

vertex=[source;goal]; % source and goal taken as additional vertices in the path 

planning to ease planning of the robot 

if display, rectangle('Position',[vertex(1,2)-5,vertex(1,1)-

5,10,10],'Curvature',[1,1],'FaceColor','r'); end 

if display, rectangle('Position',[vertex(2,2)-5,vertex(2,1)-

5,10,10],'Curvature',[1,1],'FaceColor','r'); end 

tic; 

while length(vertex)<k+2 % iteratively add vertices 

x=double(int32(rand(1,2) .* size(map))); 

if feasiblePoint(x,map), 

vertex=[vertex;x]; 

if display, rectangle('Position',[x(2)-5,x(1)-5,10,10],'Curvature',[1,1],'FaceColor','r'); 

end 

end 

end 

if display 

disp('click/press any key'); 

waitforbuttonpress; 
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end 

edges=cell(k+2,1); % edges to be stored as an adjacency list 

for i=1:k+2 

for j=i+1:k+2 

if checkPath(vertex(i,:),vertex(j,:),map); 

edges{i}=[edges{i};j];edges{j}=[edges{j};i]; 

if display, line([vertex(i,2);vertex(j,2)],[vertex(i,1);vertex(j,1)]); end 

end 

end 

end 

if display 

disp('click/press any key'); 

waitforbuttonpress; 

end 

 

%structure of a node is taken as index of node in vertex, historic cost, heuristic cost, 

total cost, parent index in closed list (-1 for source) 

Q=[1 0 heuristic(vertex(1,:),goal) 0+heuristic(vertex(1,:),goal) -1]; % the processing 

queue of A* algorihtm, open list 

closed=[]; % the closed list taken as a list 

pathFound=false; 

while size(Q,1)>0 

[A, I]=min(Q,[],1); 

n=Q(I(4),:); % smallest cost element to process 

Q=[Q(1:I(4)-1,:);Q(I(4)+1:end,:)]; % delete element under processing 

if n(1)==2 % goal test 

pathFound=true;break; 

end 

for mv=1:length(edges{n(1),1}) %iterate through all edges from the node 

newVertex=edges{n(1),1}(mv); 

if length(closed)==0 || length(find(closed(:,1)==newVertex))==0 % not already in 

closed 

historicCost=n(2)+historic(vertex(n(1),:),vertex(newVertex,:)); 

heuristicCost=heuristic(vertex(newVertex,:),goal); 
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totalCost=historicCost+heuristicCost; 

add=true; % not already in queue with better cost 

if length(find(Q(:,1)==newVertex))>=1 

I=find(Q(:,1)==newVertex); 

if Q(I,4)<totalCost, add=false; 

else Q=[Q(1:I-1,:);Q(I+1:end,:);];add=true; 

end 

end 

if add 

Q=[Q;newVertex historicCost heuristicCost totalCost size(closed,1)+1]; % add new 

nodes in queue 

end 

end 

end 

closed=[closed;n]; % update closed lists 

end 

if ~pathFound 

error('no path found') 

end 

 

fprintf('processing time=%d \nPath Length=%d \n\n', toc,n(4)); 

path=[vertex(n(1),:)]; %retrieve path from parent information 

prev=n(5); 

while prev>0 

path=[vertex(closed(prev,1),:);path]; 

prev=closed(prev,5); 

end 

 

imshow(map); 

rectangle('position',[1 1 size(map)-1],'edgecolor','k') 

line(path(:,2),path(:,1),'color','r'); 
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NEURAL NETWOK CODE 

%getting laser data values 

l=dlmread('D:\4th sem\path_planning\dataset_intel.tar\intel_LASER_.txt'); 

%getting odometry data values 

o=dlmread('D:\4th sem\path_planning\dataset_intel.tar\intel_ODO.txt'); 

%training the data 

TrainData = l(1:2:end,:); 

%testing the data 

TestData = l(2:2:end,:); 

%training the target 

TrainTarget = o(1:2:end,:); 

%testing the target 

TestTarget = o(2:2:end,:); 

  

TrainData=(mapminmax(TrainData'))'; 

% target_test = uint8(target_test); 

TestData=(mapminmax(TestData'))'; 

  

% setdemorandstream(pi); 

  

net = feedforwardnet([340,120,350], 'traingdx'); 

  

net.performFcn = 'mse'; 
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net.trainParam.goal=1e-2; 

net.trainParam.min_grad=1e-50; 

net.trainParam.epochs=1000; 

net.trainParam.mc=0.95; 

net.trainParam.mu=0.01; 

  

% net.trainParam.mu_max=1e20; 

  

  

TrainData = TrainData'; 

TestData = TestData'; 

  

TrainTarget = TrainTarget'; 

TestTarget = TestTarget'; 

  

net = train(net,TrainData,TrainTarget); 

  

% Train_error_rate 

err_tr=0; 

for p=1:size(TrainData,2) 

    y = sim(net, TrainData(:, p)); 

    actual_class = find(y==max(y)); 

    desired_class = find(TrainTarget(:,p)==max(TrainTarget(:,p))); 
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    if (desired_class~=actual_class) 

        err_tr=err_tr + 1; 

    end 

end 

err_rate_tr=err_tr/(size(TrainData,2)) 

Correctly_classified_rate_tr=100-(err_rate_tr*100) 

  

% Test_error_rate 

err_tst=0; 

for p=1:size(TestData,2) 

    y = sim(net, TestData(:, p)); 

    actual_class = find(y==max(y)); 

    desired_class = find(TestTarget(:,p)==max(TestTarget(:,p))); 

    if (desired_class~=actual_class) 

        err_tst = err_tst + 1; 

    end 

end 

err_rate_tst=err_tst/size(TestData,2) 

Correctly_classified_rate_tst=100-(err_rate_tst*100) 
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APPENDICES B 

ARUDINO PROGRAM FOR ROBOT CONTROL 

PROGRAM FOR ULTRASONIC  

#include <Servo.h> 

 

Servo myservo;  // create servo object to control a servo 

 

int pos = 0;    // variable to store the servo position 

int v1 = 0; 

int v2 = 0; 

int v3 = 0; 

int v4 = 0; 

int v5 = 0; 

 

float duration, distance; 

 

#define trigPin 13 //Sensor Echo pin connected to Arduino pin 13 

#define echoPin 12 //Sensor Trip pin connected to Arduino pin 12 

 

 

void setup() { 

pinMode(trigPin, OUTPUT); 
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pinMode(echoPin, INPUT); 

 

myservo.attach(8);  // attaches the servo on pin 9 to the servo object 

Serial.begin(9600); 

 

} 

 

void loop() { 

 

 

for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees 

// in steps of 1 degree 

myservo.write(pos);              // tell servo to go to position in variable 'pos' 

 

Serial.println(pos); 

 

digitalWrite(trigPin, LOW); 

delayMicroseconds(2); 

digitalWrite(trigPin, HIGH); 

delayMicroseconds(10); 

digitalWrite(trigPin, LOW); 

duration = pulseIn(echoPin, HIGH); 

distance = (duration/2) / 29.1; 
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Serial.println(distance); 

 

if(pos==0&&distance<10.00) 

{ v1=1; 

} 

if(pos==45&&distance<10.00) 

{ v2=1; 

} 

if(pos==90&&distance<10.00) 

{ v3=1; 

} 

if(pos==135&&distance<10.00) 

{ v4=1; 

} 

if(pos==180&&distance<10.00) 

{ v5=1; 

} 

 

Serial.println(v1); 

Serial.println(v2); 

Serial.println(v3); 

Serial.println(v4); 

Serial.println(v5); 
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delay(15); 

// waits 15ms for the servo to reach the position 

} 

for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees 

myservo.write(pos);              // tell servo to go to position in variable 'pos' 

//  Serial.println("angle"); 

Serial.println(pos); 

//Defining both the parameters in float 

digitalWrite(trigPin, LOW); 

delayMicroseconds(2); 

digitalWrite(trigPin, HIGH); 

delayMicroseconds(10); 

digitalWrite(trigPin, LOW); 

duration = pulseIn(echoPin, HIGH); 

distance = (duration/2) / 29.1; 

Serial.println(distance); 

 

 

if(pos==0&&distance<10.00) 

{ v1=1; 

} 

if(pos==45&&distance<10.00) 

{ v2=1; 
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} 

if(pos==90&&distance<10.00) 

{ v3=1; 

} 

if(pos==135&&distance<10.00) 

{ v4=1; 

} 

if(pos==180&&distance<10.00) 

{ v5=1; 

} 

 

Serial.println(v1); 

Serial.println(v2); 

Serial.println(v3); 

Serial.println(v4); 

Serial.println(v5); 

 

delay(15); 

} 

 

} 
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   PROGRAM FOR BLUETOOTH CONTROL   

#include <SoftwareSerial.h> 

 

SoftwareSerial BT(0, 1); //TX, RX respetively 

String readdata; 

 

void setup() { 

 BT.begin(9600); 

 Serial.begin(9600); 

  pinMode(3, OUTPUT); 

  pinMode(7, OUTPUT); 

  pinMode(5, OUTPUT); 

  pinMode(6, OUTPUT); 

 

} 

//-----------------------------------------------------------------------//  

void loop() { 

   

  Serial.println(analogRead(A0)); 

 delay(100); 

Serial.println(analogRead(A1)); 

 delay(100); 

  while (BT.available()){  //Check if there is an available byte to read 
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  delay(10); //Delay added to make thing stable 

  char c = BT.read(); //Conduct a serial read 

  readdata += c; //build the string- "forward", "reverse", "left" and "right" 

  }  

  if (readdata.length() > 0) { 

    Serial.println(readdata); 

 

  if(readdata == "1") 

  { 

    digitalWrite(3, HIGH); 

    digitalWrite (7, HIGH); 

    digitalWrite(5,LOW); 

    digitalWrite(6,LOW); 

    delay(100); 

  } 

 

  else if(readdata == "2") 

  { 

    digitalWrite(3, LOW); 

    digitalWrite(7, LOW); 

    digitalWrite(5, HIGH); 

    digitalWrite(6,HIGH); 

    delay(100); 
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  } 

 

  else if (readdata == "3") 

  { 

    digitalWrite (3,HIGH); 

    digitalWrite (7,LOW); 

    digitalWrite (5,LOW); 

    digitalWrite (6,LOW); 

    delay (100); 

    

  } 

 

 else if ( readdata == "4") 

 { 

   digitalWrite (3, LOW); 

   digitalWrite (7, HIGH); 

   digitalWrite (5, LOW); 

   digitalWrite (6, LOW); 

   delay (100); 

 } 

 

 else if (readdata == "5") 

 { 
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   digitalWrite (3, LOW); 

   digitalWrite (7, LOW); 

   digitalWrite (5, LOW); 

   digitalWrite (6, LOW); 

   delay (100); 

 } 
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