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Abstract

Context : Software comprehension and maintenance activities, such as refac-
toring, are said to be negatively impacted by software complexity. The meth-
ods used to measure software product and processes complexity have been
thoroughly debated in the literature. However, the discernment about the
possible links between these two dimensions, particularly on the benefits of
using the process perspective, has a long journey ahead.
Objective : To improve the understanding of the liaison of developers’ activ-
ities and software complexity within a refactoring task, namely by evaluating
if process metrics gathered from the IDE, using process mining methods and
tools, are suitable to accurately classify different refactoring practices and
the resulting software complexity.
Method : We mined source code metrics from a software product after a
quality improvement task was given in parallel to (117) software developers,
organized in (71) teams. Simultaneously, we collected events from their IDE
work sessions (320) and used process mining to model their processes and
extract the correspondent metrics.
Results : Most teams using a plugin for refactoring (JDeodorant) reduced
software complexity more effectively and with simpler processes than the ones
that performed refactoring using only Eclipse native features. We were able
to find moderate correlations (≈43%) between software cyclomatic complex-
ity and process cyclomatic complexity. Using only process driven metrics, we
computed ≈30,000 models aiming to predict the type of refactoring method
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(automatic or manual) teams had used and the expected level of software
cyclomatic complexity reduction after their work sessions. The best models
found for the refactoring method and cyclomatic complexity level predictions,
had an accuracy of 92.95% and 94.36%, respectively.
Conclusions : We have demonstrated the feasibility of an approach that al-
lows building cross-cutting analytical models in software projects, such as the
one we used for detecting manual or automatic refactoring practices. Events
from the development tools and support activities can be collected, trans-
formed, aggregated, and analyzed with fewer privacy concerns or technical
constraints than source code-driven metrics. This makes our approach agnos-
tic to programming languages, geographic location, or development practices,
making it suitable for challenging contexts such as in modern global software
development projects. Initial findings are encouraging, and lead us to sug-
gest practitioners may use our method in other development tasks, such as,
defect analysis and unit or integration tests.

Keywords: Software Complexity, Software Process Complexity, Software
Development Process Mining, Refactoring Practices

1. Introduction

“...All things - from the tiniest virus to the greatest galaxy - are, in
reality, not things at all, but processes...”1

—Alvin Toffler(1928-2016)2

A process3 is ”a series of actions taken in order to achieve a result”. In
many business areas, either on delivering products and/or services, the qual-
ity of the outcome is very often related with the process followed to build
it [1, 2, 3]. This is expected to be no different in the software development
domain. Therefore, to fully comprehend how software quality and improved
maintainability are achieved, one should look carefully to the process per-
spective to complement any code related analysis [4].

Software development is intrinsically a process and, accordingly, it is a
blend of activities performed by developers, often working from different

1In ”Future Shock”, Penguin Random House, New York, 1970.
2American writer, futurist, and businessman known for his works discussing modern

technologies, including the digital and the communication revolutions, with emphasis on
their effects on cultures worldwide.

3Adapted from https://dictionary.cambridge.org/dictionary/english/process
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locations and using a multitude of languages, tools and methodologies in
order to create a new product or maintain an existing one [4]. Since the
early days of software development, it was understood that programming is
an inherently complex and error-prone process, and to fully understand it,
we should mine, in a timely and proper manner, all facets of that process
[5]. Any relevant insights one may obtain should therefore originate from
the activities and/or artifacts recorded in software repositories during the
development life cycle.

Studies on estimating the effort to develop a certain artifact, the identifi-
cation of software defects, the prediction of time to solve bugs or on software
comprehension, and the detection of refactoring opportunities, are amongst
the most common use cases for those repositories [6, 7, 8, 9, 10, 11, 12].

Refactoring on its own is still a very challenging activity. The iden-
tification of components to refactor and the forecast of which methods to
embrace continue to be relevant topics for research [13, 14, 15, 16]. These
challenges emerge partially due to the significant functionality limitations
software repositories contain and the type of data they use [17].

Some authors confirm that developers perform refactoring tasks manually
more frequently than automatically [12]. Furthermore, it has been observed,
in a real-life scenario, that refactoring can be harmful when done manually,
using only IDE native features or simply driven by developers’ skills, as it
may introduce non-expected defects in the code [18].

On trying to comprehend software development processes, including refac-
toring practices, many data sources, methods, and tools have been used with
validated outcomes, but some others are yet to be fully exploited [19]. For
example, since Version Control Systems (VCS) are widely used by develop-
ers, researchers get easy access to historical data of many projects and use
file-based VCSs as the primary source of code evolution data [20]. Although
it is often convenient to use such repositories, research-based on VCS data is
imprecise and incomplete [17].

As such, answering questions that correlate code changes with other ac-
tivities (e.g., test runs, refactoring) is often unfeasible. Several reasons may
contribute to it, as for instance:

• developers may not commit all their tests and/or refactorings;

• there are many ways to refactor one version of the code, therefore
it is important to determine the refactoring activities sequences and
frequencies;

• often we cannot distinguish if a refactoring was done manually or
through a tool, just by comparing source code snapshots [21].
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1.1. Code vs. Process Analysis

Most published work on software quality-related issues is based on source
code metrics, especially on Java systems [22, 23, 24]. Tools for collecting
those metrics upon other frequently used languages, such as JavaScript or
Python, are often not available, which expose well the difficulties to repro-
duce the same research on projects having diverse languages. In case those
metric collection tools exist, they often require to share the source code with
third-party organizations [25], particularly on cloud-based platforms. Such
scenarios raise privacy and ownership issues on sensitive data. Source code
obfuscation does not mitigate this problem because developers need to keep
code semantics for interpreting the metrics in context.

Instead, mining the developers’ activities and behaviors, the same is to
say, to mine their development process fragments, may be a more feasible
approach since it is not specific to any programming language, geographic
location or development methodology followed.

Event data can be obfuscated without losing the process structure and
coherence, therefore, whoever is responsible to analyze the logs can apply
algorithms to discover process models in very similar ways as if the logs were
not obfuscated [26]. In other words, events from the development tools and
support activities can be collected, transformed and aggregated with fewer
privacy concerns and technical hurdles. As such, it has been pointed out that
software development event logs can be used to complement, or even replace,
source code data in software development analytics-related tasks [27].

1.2. Contributions

It is frequent to find software prediction models using source code and
ownership metrics [16]. However, periodically this data is not easily accessible
or has imprecisions. Nowadays, development teams use a diversity of lan-
guages, methodologies and tools, therefore, the collection and aggregation of
data from software projects remains a challenge. Additionally, process met-
rics have been found to be good predictors for modeling software development
tasks [28].

Thus, we proposed earlier [29] and are now evaluating deeper the use of
process metrics gathered from the IDE (Integrated Development Environ-
ment), as a way to enhance existing models or eventually, build new ones.

Software product and process metrics have long been proposed, as well as
techniques for their collection [30, 31, 32, 19, 33, 34, 35]. However, the asso-
ciation between product and process dimensions is only marginally discussed
in the literature [36]. In order to improve our understanding on the liaison
between the type of development activities executed and the resulting soft-
ware product characteristics, namely to ascertain if developers’ behavior has
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an impact on software product quality, we collected data during a software
quality improvement task (application of refactoring operations) given to 71
development teams. Regarding developers’ behavior, we recorded all events
corresponding to the activities/tasks/operations team members performed
within their IDE and used those events to mine the underlying process and
extract their metrics. Regarding software quality, we collected complexity
metrics before and after the refactoring actions took place. The main objec-
tives for this work are, therefore:

• to assess the use of software process metrics to facilitate and improve
the analysis and predictions on refactoring tasks and/or other generic
software activities;

• to evaluate a possible association between the complexity of the pro-
duced code and developers’ practices in different refactoring tasks;

• to build classification models for refactoring practices using only process
metrics and assess the prediction accuracy of such approach.

The rest of this paper is organized as follows: section 2 provides back-
ground related to the research area and emphasizes the need for the fol-
lowed approach; subsequent section 3 outlines the related work; the research
methodology and the study setup are presented in section 4; the results,
the corresponding analysis and implications can be found in section 5 and
threats to validity are discussed in section 6; the concluding comments and
the outline for future work are produced in section 7.

2. Background

Empirical software engineering and software analytics are now mature re-
search areas with substantial contributions to the software development best
practices [37]. The knowledge base created to support those achievements
took a great advantage from the experience gathered on analyzing past soft-
ware projects. Based on the maturity obtained, it was possible to derive
several models to measure software complexity, effort and relationships.

2.1. Early models

Lines of Code(LOC ). The identification and quantification of software
size/defect relationship did not happen overnight. The first known “size”
law, saying the number of defects D was a function of the number of LOC ;
specifically, D = 4.86 + 0.018 * i, was the result of decades of experience and
was presented by Fumio Akiyama [38].
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Cyclomatic Complexity. One of the most relevant propositions to as-
sess the difficulty to maintain software was introduced by Thomas McCabe
when he stated that the complexity of the code was more important than the
number of LOC. He argued that when his “cyclomatic complexity” metric
was over 10, the code is more likely to be defective [39]. This metric, un-
derpinned by graph theory, went through thorough validation scrutiny and
then became the first software metric recognized by a standardization body,
the NIST [31], what makes it even more relevant in the context of this journal.

Halstead Complexity. On trying to establish an empirical science of soft-
ware development, Maurice Howard Halstead, introduced the Halstead com-
plexity measures [40]. These metrics, which are computed statically from
the code, assume that software measurement should reflect the implementa-
tion or expression of algorithms in different languages, but be independent of
their execution on a specific platform. Halstead’s metrics were used, among
other things, to assess programmers’ performance in software maintenance
activities (measured by the time to locate and successfully correct the bug)
[41].

Effort Estimators. Later, Barry Boehm proposed an estimator for devel-
opment effort that was exponential on program size: effort = a ∗KLOCb ∗
EffortMultipliers, where 2.4 ≤ a ≤ 3 and 1.05 ≤ b ≤ 1.2 [42].

Henry and Kafura Metrics. These two authors defined and validated a
set of software metrics based on the measurement of information flow between
system components. Specific metrics are defined for procedure complexity,
software modules complexity, and module coupling [43].

The above models were the foundation knowledge for what is nowadays
often categorized as Software Development Analytics [44]. However, current
development methods, tools and data repositories are very different from the
past. Back in those years, software developers were mainly using a text editor
and a compiler. Software projects were essentially built employing a single
programming language, following a fairly simple development methodology
and the developers were rarely located in different geographies or across
multiple time zones. These workspace conditions have changed.
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2.2. Modern Days

In 2019, JetBrains4 polled almost 7000 developers about their develop-
ment ecosystem. Results show that more than 30 different programming
languages are being used and confirmed that web back-end, web front-end
and mobile applications are the type of applications mostly developed, with
figures of 60%, 46% and 23%, respectively. It was unanimous the adherence
of cross-platform development frameworks and 80% said they use any type
of source code collaboration tool, 75% use a standalone IDE and 71% use
a lightweight desktop editor. Almost 50% said they use continuous integra-
tion/delivery (CI/CD) and issue tracking tools. Less than 15% responded
that they use any sort of static analysis, code review and in-cloud IDE tools.
Table 1 presents the key takeaways from the mentioned survey.

In summary, currently, a software development ecosystem has to deal with
at least the following facets:

• Multi-Language Ecosystem. According to a recent work about
multi-language software development [45], the authors present evidences
that non-trivial enterprise software systems are written in at least 7
programming languages and, a previous work showed that in the open
source world alone, the average is 5 languages per project. Among
these, one may find general-purpose languages(GPL) such as Java or
C# and also domain-specific languages(DSL) like SQL and HTML,
and cross-language links are also quite common, meaning some code
artifacts are shared between languages. As a result, developers con-
firm they find more problems in activities such as implementing new
requirements (78%) and in refactoring (71%).

• IDE Evolution. A substantial change was carried in the Integrated
Development Environments (IDEs). Software development moved away
from the early days of the code editor. As confirmed by the Jetbrains
poll, developers now use powerful platforms and frameworks which al-
low them to be more productive on their jobs. This results from the
combination of different software development life cycle activities, such
as: requirements elicitation, producing analysis and design models, pro-
gramming, testing, configuration management, dependencies manage-
ment or continuous integration into one single tool such as Eclipse,
IntelliJ IDEA, Netbeans or Visual Studio Code. These tools sup-
port the needs of different stakeholders, as they embed a myriad of

4https://www.jetbrains.com/lp/devecosystem-2019/
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Table 1: Survey Key Takeaways*

Findings

Programming Languages Overall Results

Java The most popular primary programming language

JavaScript The most used overall programming language

Go The most promising language as 13% said they will adopt it

Python Most studied language as 27% said they used it in the last 12 months

Languages used in last 12 months

JavaScript(69%), HTML/CSS(61%), SQL(56%), Java(50%), Python(49%)

Shell Scripting(40%), PHP(29%), TypeScript(25%), C#(24%), C++(20%)

Development Environments(Operating Systems)

Windows(57%), macOS(49%), Unix/Linux(48%), Other(1%)

Type of Application Development

Web Back-End(60%), Web Front-End(46%), Mobile(23%), Libraries(14%)

Desktop(12%), Other Back-End(16%), Data Analysis(13%), Machine Learning(7%)

Type of Tests Used

Unitary(71%), Integration(47%), End-to-End(32%), Other(2%), Don’t Test(16%)

Targeted Mobile Operating Systems & Frameworks Used

Android(83%), iOS(59%), Other(3%)

React Native(42%), Flutter(30%), Cordova(29%), Ionic(28%), Xamarin(26%)

Regularly Used Tools

Source Code Collaboration Tool(80%), Standalone IDE(75%)

Lightweight Desktop Editor(71%), CI/CD Tool(45%), Issue Tracker(44%)

Static Analysis Tool(13%), Code Review Tool(10%)

*All values(%) represent the percentage of affirmative respondents

plugins available in their marketplaces. These plugins are not just avail-
able, they are properly customized for specific users/purposes, such as
for modellers, programmers, testers, integrators or language engineers.

• Low Code and No Code Paradigms. Modern software develop-
ment practices make consistent use of both approaches. They enable
faster development cycles requiring little to no coding in order to build
and deliver applications and processes. Low-code development plat-
forms are seen as advanced IDEs which employ drag-and-drop software
components and visual interfaces to replace extensive coding. With
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high-level visual modeling languages, they provide higher levels of ab-
straction that allow a major reduction in hand-coding to develop an
application [46]. In the extreme case we have no-code development
where, by definition, textual programming is banned, giving rise to
the so-called citizen developers. The most notable examples are online
application generators (OAGs) that automate mobile and web app de-
velopment, distribution, and maintenance, but this approach is claimed
to be pledged with security vulnerabilities [47]. This paradigm shift in
software development may also require a change in the way we assess
critical properties of a software project, such as, quality, maintainabil-
ity, and evolvability.

• Global Software Development. The aforementioned IDE platforms
facilitated collaboration and the adoption of Global Software Develop-
ment (GSD). Nowadays, a single software project often has developers,
testers and managers located in different time zones and distinct world
regions or countries [48].

• CI/CD and DevOps. Continuous Integration and Continuous De-
ployment (CI/CD) have seen an incremental usage in the last few years.
However, efficient CI/CD pipelines are rare, particularly in the mobile
apps world where developers seem to prefer the execution of ad hoc
tasks [49]. Whilst CI/CD focuses more on the automation of tools
along a defined software life cycle, DevOps has major concerns with the
responsiveness, responsibilities and processes within the development,
the deployment and the operational phases of software projects. Keep-
ing these intertwined processes compliant with organizational rules is
therefore a persistent requirement.

• Resource Coordination. It is still one of the fundamental prob-
lems in software engineering [50] and it can be characterized as a
socio-technical phenomenon. Understanding the dependencies between
development tasks and discover teams’ behaviours continues to be a
challenge in resource allocation and coordination of modern software
projects.

Software product repositories have many limitations in terms of the pro-
cess data they handle. For example, these repositories usually deal only
with source code and do not track the developers’ geographic location, their
workflows within the IDE nor the developers’ environment characteristics. A
complete repository of process related data with the communications, activi-
ties, decisions and actions taken by developers, testers and project managers,
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are, most of the time, if not always, neglected when the goal is to study a
development process. Usually, even if the authors claim they are studying a
process, they are often doing it using only artifact related data [36].

With the existing diversity of languages, methodologies, tools and the
fact that resources are now distributed across the world and originate from
multiple cultures with different skills, it is somewhat an anachronism to keep
using old methods to assess, for example, complexity or build cross-cutting
analytical models in current software projects. New approaches, supporting
multi-languages, being multi-process aware, and keeping geography diversity
transparent are called for, such as our pioneering approach for mining of
software development processes based on the IDE event logs. That approach,
dubbed Software Development Process Mining [29], allows reversing engineer
a complete software development process, just a process fragment or simply
ad hoc activities performed by developers, by mining event logs taken from
real software development activities.

3. Related Work

To address the incompleteness of data sources related with software repos-
itories, we strongly believe that Software Development Process Mining based
at least on the IDE(but not limited to) can play that role and Process Mining
tools and methods can be the vehicles to achieve that goal. Many authors
have followed similar paths, bringing not only evidences for its usefulness but
also valid contributions to improve established methods.

A decade ago, [51] mined software repositories to extract knowledge about
the underlying software processes, and [52, 53] have learned about user be-
havior from software at operations. [54] was able to extract events from
Eclipse and have discovered, using a process mining tool, basic developers’
workflows. Some statistics were computed based on the activities executed
and artifacts edited.

[55] presented an application of mining three software repositories: team
wiki (used during requirement engineering), version control system (devel-
opment and maintenance) and issue tracking system (corrective and adap-
tive maintenance) in the context of an undergraduate Software Engineering
course. Experimentation revealed that not only product but process quality
varies significantly between student teams and mining process aspects can
help the instructor in giving directed and specific feedback. However, in this
case, IDE usage mining was not contemplated.

The working habits and challenges of mobile software developers with
respect to testing were investigated by [49]. A key finding of this exhaustive
study, using 1000 Android apps, demonstrates that mobile apps are still

10



tested in a very ad hoc way, if tested at all. A another relevant finding
of this study is that Continuous Integration and Continuous Deployment
(CI/CD) pipelines are rare in the mobile apps world (only 26% of the apps are
developed in projects employing CI/CD) - authors argue that one of the main
reasons is due to the lack of exhaustive and automatic testing. Therefore,
distinguishing during development sessions the type of tests being done can
contribute to the overall software quality.

[56] explored if one can characterize and identify which commits will be
reverted. An identification model (e.g., random forest) was built and evalu-
ated on an empirical study on ten open source projects including a total of
125,241 commits. The findings show that the ’developer’ is the most deter-
minant dimension of features for the identification of reverted commits. This
suggests that assessing developers behaviors can lead to better understand
software products quality.

[57] studied the dialogue between users and developers of free apps in the
Google Play Store. Evidences found, showed that it can be worthwhile for
app owners to respond to reviews, as responding may lead to an increase in
the given rating and that studying the dialogue between user and developer
can provide valuable insights which may lead to improvements in the app
store and the user support process. We believe the same rationale may be
applied to comprehend the workflows and dialogues between developers and
project owners, and how that may impact software products.

Development activities were extracted by [58] from non-instrumented ap-
plications and used machine learning algorithms to infer a set of basic de-
velopment tasks. However, in this case, no process mining techniques were
used to discover any pattern of application usage. The extraction of usage
smells was the focus of [59], where a semi-automatic approach was adopted
to analyze a large dataset of IDE interactions using cluster analysis. Again,
process mining techniques were not used. Process mining was indeed used
by [60] to gain knowledge on software under operation (not under develop-
ment) by analyzing the hierarchical events produced by application calls(eg:
execution of methods within classes) at runtime.

[61] collected events from the IDE to measure program comprehension
and evaluated the correlation between developers’ activities and the time
they spent on them. Despite the fact that a process was being studied, no
evidence of using process mining methods was provided.

A few authors have also followed the route we suggested earlier and re-
sumed in [62]. As such, we are witnessing more evidences that it is indeed
a valid approach, therefore, [63] used process mining to evaluate developers’
coding behavior in software development processes. Process models were
discovered and used to classify the developers as low-performing and high-
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performing profiles. With a similar goal, in [64], a different miner algorithm
was assessed to obtain complementary results and in [65], developers’ profil-
ing was achieved by mining event logs from a web-based cloud IDE.

Finally, [16] highlights the importance of having more fine-grained pro-
cess metrics in prediction models and evaluated several machine learning al-
gorithms in predicting software refactoring opportunities. This work focuses
on deciding when, what and why to refactor, however, it does not address
which refactor practice was indeed applied.

The studies mentioned above used a multitude of process mining tech-
niques, statistics and machine learning methods. Different data source types
have been used to extract the information needed to support them. How-
ever, to the best of our knowledge, none of these works combine process
and product metrics with the aim of assessing potential correlations and/or
impacts between the process and the product. Moreover, none uses only pro-
cess metrics to discover work patterns or to predict development behaviors,
particularly, refactoring practices.

4. Study Setup

We setup an environment where the same well-defined tasks on software
quality assurance was performed independently by several teams.

Our research guaranteed that all teams had similar backgrounds and per-
formed the same task upon the same software system. This approach was
used to block additional confounding factors in our analysis. The task tar-
geted a complex open-source Java system named Jasml (Java Assembling

Language)5.
To understand the work developed by each team in each task, we collected

the corresponding IDE events for mining the underlying process. At the end
of each task, we also collected the modified Jasml project code for each team
and obtained the corresponding product metrics.

4.1. Subject Selection

Our subjects were the finalists (3rd year) of a B.Sc. degree on computer
science at the ISCTE-IUL university, attending a compulsory software en-
gineering course. They had similar backgrounds as they have been trained
across the same set of courses along their academic path. Teams were as-
sembled with up to 4 members each and were requested to complete a code
smells detection assignment, aiming at identifying refactoring opportunities
and then to apply them.

5http://jasml.sourceforge.net/
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4.2. Data Collection

The participants were requested to perform the refactoring tasks in two
different ways: Automatically and Manually.

The refactoring tasks had the following requirements:

• Automatic Refactoring(AR). This task was executed from March
1st to March 20th, using JDeodorant6. This tool suggests refactor-
ing opportunities by detecting, among others, the following four well-
known code smells: Long Method, God Class, Feature Envy and
Type Checking [66]. Once participants have detected the occurrences
of those code smells, they were required to apply JDeodorant’s fully
automated refactoring features to fix the critical ones.

• Manual Refactoring(MR). This task was pursued from March 21st

to 28th and differed from the previous one because JDeodorant auto-
matic refactoring capabilities were banned. Instead, subjects could use
Eclipse’s native interactive refactoring features or perform the refactor-
ings manually.

The Eclipse IDE has an internal event bus accessed by the interface
IEventBroker7 which is instantiated once the application starts. It contains
a publishing service to put data in the bus, whilst the subscriber service reads
what’s in that bus. Using this feature we developed an Eclipse plugin8

capable of listening to the actions developers were executing. Before the
experiment, the plugin was installed on each subject’s IDE, and later, all
subjects received an unique username/key pair as credentials.

6https://users.encs.concordia.ca/ nikolaos/jdeodorant/
7https://wiki.eclipse.org/Eclipse4/RCP/Event Model
8https://github.com/jcaldeir/iscte-analytics-plugins-repository
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A sample event instance collected with our plugin is presented in listing
1. The field tags are self explanatory.

Listing 1: Sample Eclipse Event Instance in JSON format

{
”team” : ”Team−10” ,
” s e s s i o n ” : ”dkoep74−a jodje5 −63j3k2 ” ,
” t imestamp begin ” : ”2019−05−03 16 : 5 3 : 5 2 . 1 44” ,
” timestamp end” : ”2019−05−03 16 : 5 4 : 0 4 . 4 68” ,
” fu l lname ” : ”John User ” ,
”username” : ” john ” ,
”workspacename” : ”Workspace1 ” ,
” projectname” : ”/ ja sml 0 . 10” ,
” f i l ename ” : ”/ ja sml 0 .10/ s r c / jasml . java ” ,
” extens i on ” : ” java ” ,
”categoryName” : ” Ec l i p s e Editor ” ,
”commandName” : ” F i l e Edi t ing ” ,
” categoryID” : ” org . e c l i p s e . u i . i n t e r n a l . Ed i torRe fe rence ” ,
”commandID” : ” i s c t e . p lug in . e c l i p s e . commands . f i l e . e d i t ” ,
” p lat form branch ” : ” Ec l i p s e Oxygen” ,
” p l a t f o rm ve r s i on ” : ” 4 . 7 . 3 . M20180330−0640” ,
” java ” : ” 1 . 8 . 0 171−b11 ” ,
” cont inent ” : ”Europe ” ,
” country ” : ”Portugal ” ,
” c i t y ” : ”Lisbon ” ,
. . . .
”hash” : ”00 b7c0ef94e02eb5138d33daf38054e3 ” //To de t ec t event tampering
}

4.2.1. Data Storage

Collected data was stored locally on each subject’s computer in a CSV file.
Whenever Internet connection was available, the same data was stored in real-
time in the cloud9. This storage replication mechanism allowed for offline and
online collection10. The final dataset, combining the two different sources,
was then loaded into a MySQL database table where the username and event
timestamps that formed the table’s unique key were used to detect and avoid
duplicated data insertions. Figure 1 presents the complete schema for the
data collection workflow. We use the BPMN standard process definition
language for that purpose [67].

4.2.2. Data Preparation

When the software quality task ended, we collected from each team their
projects’ code together with the events files containing the actions performed

9https://azure.microsoft.com/en-us/services/event-hubs/
10The plugin currently supports the collection of events locally in CSV and JSON files;

stream events to Azure Event Hub and Kafka remotely; and uses an integration with Trello
to extract project activities which can be triggered as manual events by the developers.
Kafka and Trello integrations were not used in this experiment.
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during the aforementioned activities. As such, each team produced and de-
livered two new Jasml projects, one for the automatic and another for the
manual refactoring. The events files would map events for the two different
tasks, as they were done in different time frames.

All events stored in the database were imported into the ProM process
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mining tool11 and converted to the IEEE eXtensible Event Stream (XES)
standard format [68]. The following event properties were mapped when
converting to XES format:

• team and session were used as CaseID since we were interested to
look into process instances of teams and their multiple development
sessions, not of individual programmers.

• Properties filename, categoryName and commandName forming a hi-
erarchical structure were used as the Activity in the process.

• The timestamp begin and timestamp end were both used as activity
Timestamps.

• Other properties were not used in the process discovery phase, however,
they were later used for metrics aggregation and context analysis.

4.3. Data Analysis

4.3.1. Context

All teams started with the same version of Jasml 0.10, therefore, we
had two relevant moments to get measures from:

1. The initial moment (t0), when we extracted the metrics for the initial
product version. However, we didn’t know how it was built, therefore,
we were missing12 the process metrics.

2. The end of the task (t1), when we extracted again the product metrics
for the changed Jasml 0.10 project of each team as they stand after
the refactoring sessions. In addition, we had also IDE usage events
which provide evidences on how the product was changed.

Following data extraction, we computed, for each product metric defined
in Table A.7, their relative variance as shown by Equation 1. The relative
variance variables were the ones we used in all RQs.

∆product metrics(t1-t0) =
product metrics(t1) − product metrics(t0)

product metrics(t0)
∗ 100 (1)

11Version 6.8, available at http://www.promtools.org
12In reality we may consider all of them to be zero
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The relative variance was used in order to generalize our approach, thus,
making it applicable in scenarios where different teams work on distinct soft-
ware projects.

Process metrics described in Table A.8 were derived from the events
dataset captured between moments (t0) and (t1), either by summing the
events or using the method described in 4.3.3. These metrics may be seen
as a representation of the effort done by each team during the refactoring
practices.

The complete workflow followed in data pre-processing, aggregation and
analysis is presented in Figure 2.

4.3.2. Product and Process Metrics

To extract software metrics we used the plugin built by Sauer13. Although
having more than a decade of age, it is still one of the more proven and
popular options regarding open source metrics plugins for Eclipse.

The plugin itself offers a simple interface and reporting capabilities with
which users can define optimal ranges and issue warnings for certain metrics,
as well as being able to export calculated metrics to XML files. The set of
metrics obtained by this plugin are presented in Table A.7 on Appendix A.1.

4.3.3. Process Discovery

Several well known algorithms exist to discover process models, such as,
the α-algorithm, the heuristics, genetic and the fuzzy miner amongst others
[69, 70]. Our need to discover and visualize the processes in multiple ways
lead us to choose the ProM’s StateChart Workbench plugin [60]. This plu-
gin, besides supporting process model discovery using multiple hierarchies
and classifiers, also allows to visualize the model as a Sequence Diagram and
use notations such as Petri Nets and Process Trees. This plugin is particu-
larly suitable for mining software logs, where an event structure is supposed
to exist, but it also supports the mining of other so-called generic logs.

Events collected from software in operation (e.g. Java programs) reveals
the presence of a hierarchical structure, where methods reside within classes,
and classes within packages [71]. The same applies to IDE usage actions
where identified menu options and executed commands belong to a specific
category of command options built-in the Eclipse framework. Supported
by this evidence, we used the Software log Hierarchical discovery method
with a Structured Names heuristic to discover the processes based on the
fact that the events were using a filename|category|command structure (e.g.
/jasml0.10/src/jasml.java|Eclipse Editor|File Open).

13http://metrics.sourceforge.net
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Several perspectives can be used to discover and analyze a business pro-
cess. The commonly used are: Control-Flow, Organizational, Social

and Performance. We have focused on the Control-Flow perspective in this
paper. It defines an approach that consists in analyzing how each task/ac-
tivity follows each other in an event log, and infer a possible model for the
behavior captured in the observed process.
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Process metrics, shown in Tables A.8 and A.9 on Appendix A.2, were ob-
tained using the discovery method described in 4.3.3, and by running queries
into the events database as presented in Figure 2.

4.3.4. Data Partitioning

We used the k-means clustering algorithm to compute new variables
based on the partition of the teams across different levels (clusters) of Pro-
cess Cyclomatic Complexity (PCC) and McCabe Cyclomatic Complexity
variance (∆VG) . The decision of how many clusters to use (k) was sup-
ported by a detailed analysis of the Elbow and Silhouette methods:

• Elbow Method. It is frequently used to optimize the number of clus-
ters in a data set. This heuristic, consists of rendering the explained
variation as a function of the number of clusters, and picking the el-
bow of the curve as the optimal number of clusters to use. In cluster
analysis, the elbow method runs k-means clustering on the dataset for
a range of values for k (say from 2-10), and then, for each value of k
computes an average score for all clusters. The distortion score is com-
puted as the sum of square distances from each point to its assigned
center [72].

• Silhouette Method. It is a commonly used approach of interpre-
tation and validation of consistency within clusters of data. Provides
a concise graphical representation of how well each object has been
classified within the corresponding cluster. The Silhouette value is a
measure of how similar an object is to its own cluster (cohesion) com-
pared to other clusters (separation). The silhouette can be calculated
with any distance metric, such as the Euclidean distance or the Man-
hattan distance, and ranges from -1 to +1. A high value indicates
that the object is well matched to its own cluster and poorly matched
to neighboring clusters. The clustering configuration is appropriate if
most objects have a high value. If many objects have a low or negative
value, then the clustering configuration may have too many or too few
clusters and, as such, requires further research before a decision on the
optimal number of k clusters is made [73].

4.3.5. Model Selection with Hyperparameter Optimization

To build, tune model parameters as recommended [74, 75], train, evaluate
and select the best-fit classification models presented in Tables 5 and 6, we
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used Weka and the Auto-Weka plugin. Weka (Waikato Environment for
Knowledge Analysis) is a popular suite of machine learning software written
in Java. It’s workbench contains a collection of visualization tools and al-
gorithms for data analysis and predictive modeling, together with graphical
user interfaces for easy access to this functionality [76]. Auto-Weka is
a plugin that installs as a Weka package and uses Bayesian optimization
to automatically instantiate a highly optimized parametric machine learning
framework with minimum user intervention [77].

4.3.6. Model Evaluation

Several evaluation metrics can be used to assess model quality in terms of
false positives/negatives (FP/FN), and true classifications (TP/TN). How-
ever, commonly used measures, such as Accuracy, Precision, Recall and
F-Measure, do not perform very well in case of an imbalanced dataset or
they require the use of a minimum probability threshold to provide a defini-
tive answer for predictions. For these reasons, we used the ROC14, which
is a threshold invariant measurement. Nevertheless, for general convenience,
we kept present in Tables 5 and 6 all the evaluation metrics.

ROC gives us a 2-D curve, which passes through (0, 0) and (1, 1). The
best possible model would have the curve close to y = 1, with and area under
the curve (AUC) close to 1.0. AUC always yields an area of 0.5 under
random-guessing. This enables comparing a given model against random
prediction, without worrying about arbitrary thresholds, or the proportion
of subjects on each class to predict [28].

4.4. Research Questions

The research questions for this work are:

• RQ1: How different refactoring methods perform when the goal is to
reduce complexity, future testing and maintainability efforts?.
Methods Used. Process Mining Model Discovery, Descriptive statis-
tics and Cluster Analysis.

• RQ2: Is there any association between software complexity and the
underlying development activities in refactoring practices?
Methods Used. Process Mining Model Discovery, Correlation Anal-
ysis using the Spearman’s rank correlation.

14Receiver operating characteristic (ROC) is a curve that plots the true positive rates
against the false positive rates for all possible thresholds between 0 and 1.
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• RQ3: Using only process metrics, are we able to predict with high
accuracy different refactoring methods?
Methods Used. Supervised and Unsupervised Learning Algorithms
with Hyperparameter Optimization.

• RQ4: Using only process metrics, are we able to model accurately the
expected level of complexity variance after a refactoring task?
Methods Used. Supervised and Unsupervised Learning Algorithms
with Hyperparameter Optimization.

5. Study Results

In this section, we present the experiment results with respect to our
research questions.

5.1. RQ1. How different refactoring methods perform when the
goal is to reduce complexity, future testing and maintainabil-
ity efforts?

In this RQ, we used as product metrics, the ones identified in section
4.3.2. Since IDE usage is a sequence of actions (it can be seen as a process,
or at least, as a process fragment), we used as process metrics the ones
identified in 4.3.3. Notice that both, product and process metrics, have been
computed to obtain the ∆ between t1 and t0.

Table 2: Teams’ Statistics

Task Mode Teams Dev. Ses. Evts. ∆VG PCC

Automatic Refactoring 32 65 150 10443 7.81% 166.5

Manual Refactoring 39 52 170 22676 2.69% 300.3

Total 71 117 320 33119

Dev - Developers, Ses - Sessions, Evts - Events,
∆VG - McCabe Cyclomatic Complexity Reduction %(mean),

PCC - Process Cyclomatic Complexity(mean)
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Table 3: Teams’ Refactoring Results

Metric Name Min. 1st Qu. Median Mean 3rd Qu. Max.

Automatic Refactoring

∆VG 2.68% 5.87% 6.95% 7.81% 8.84% 16.77%

PCC 24.0 77.0 168.5 166.5 218.2 407.0

Manual Refactoring

∆VG 0.32% 0.62% 0.94% 2.69% 3.92% 13.98%

PCC 53.0 152.0 275.0 300.3 407.0 738.0

Data Partition

VG LEVEL LOW = [0%, 4%]; MEDIUM = [4.1%, 9%]; HIGH = [>9%]

PCC LEVEL LOW = [0, 285]; HIGH = [>285]

∆VG - McCabe Cyclomatic Complexity Reduction %,
PCC - Process Cyclomatic Complexity

We had 32 teams performing automatic refactoring using the JDeodor-
ant plugin, and 39 doing manual refactoring supported only by the Eclipse
native features and/or driven by the developers experience and skills. Table
2 shows the total number of developers and their activities, here referred as
development sessions. In Table 3 we show measures of central tendency and
measures of variability regarding the distribution of ∆VG and PCC, together
with how both were partitioned.

Figure 3 provides evidence for selecting the optimal number of clusters
to partition the data according to LOW or HIGH levels of process cyclo-
matic complexity used in Figure 4. The same clustering method was used
to partition the different levels of software cyclomatic complexity as LOW,
MEDIUM or HIGH.
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Figure 3: Detecting optimal partitions of PCC

Observation 1: Automatic Refactoring achieves higher levels of
McCabe Cyclomatic complexity reduction. Consider relevant in Ta-
ble 2, how the mean of code cyclomatic complexity reduction (∆VG) for
automatic refactoring is almost three times the reduction when doing man-
ual refactoring. It is also relevant to mention, by looking at Figure 4, that
only four teams had high complexity levels in their work sessions when do-
ing refactoring using JDeodorant. Furthermore, from those, one team had
the major software complexity reduction(16.77%), whilst other had near the
lowest value of reduction(2.68%) within the automatic refactoring practice.
The observation of such different results raised the doubt about the com-
prehension, focus and behaviour of those two teams in the given task. This
demanded further investigation on their efficiency, for which, we provide some
evidences later using Figures 6 and 7.

Observation 2: Manual refactoring practices have higher process
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Figure 4: Refactoring Practices Comparison

cyclomatic complexity. We observe that teams doing manual refactor-
ing almost double the mean of process cyclomatic complexity (PCC), when
compared with the ones using the automatic features of JDeodorant. Being
deprived of the code smell detection plugin, these teams had to do more
manual work to potentially achieve the same results as the ones doing auto-
matic refactoring. This suggest that the refactoring plugin was working as
expected, thus reducing software complexity with less effort simply because
several code snippets may have been introduced automatically.

On the contrary, teams doing the task manually needed to do more code,
and therefore, more actions within the IDE to detect and correct the code
smells. As shown earlier in section 1, manual refactoring tasks can introduce
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Figure 5: Plotting teams according to levels of software and process cyclomatic complexity

non expected defects in the code and is seen as a practice to avoid.
Figure 4 plot the percentage of McCabe Cyclomatic Complexity per

method reduction obtained after both refactoring sessions. The different
colors plot the different levels of process cyclomatic complexity as discovered
from mining each team events log.
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Figure 7: Team 51 : High PCC but Low VG reduction (20% activities/files, 80% paths)

Observation 3: Even using JDeodorant, similar work efforts
does not mean the same level of gains in software complexity re-
duction. If it is apparent that, when using JDeodorant, the processes tend
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to have lower levels of complexity and obtained globally more gains in prod-
uct complexity reductions, the same cannot be said for teams doing manual
refactoring. These teams have a more heterogeneous process behavior since
they were free to apply refactoring functionalities without any guidelines
in detection and correction from a dedicated plugin. Figure 5 identifies all
teams and distributes them according to their levels of software and process
complexity.

From Figure 4, we can also observe that the team (11A) with the highest
reduction in code complexity (≈ 16.77%), had also a high level of process
complexity even if they were using the JDeodorant plugin. We can also
identify a team(51) doing automatic refactoring with high levels of process
complexity but having instead, very low gains in code cyclomatic complexity
reduction (≈ 2.68%). As such we investigated the activities of both teams in
order to identify potential reasons for this substantial variation.

Figures 6 and 7, represent the process flow views of both individual teams
regarding the files browsed and/or changed during the refactoring practice15.
Based on the same values for the activities and paths, we can clearly identify
that the team with high gains in VG reduction worked in less files (number
of nodes) and was focused evenly on all of them (dark blue nodes means more
actions on those files).

On the contrary, the team with low gains in VG, visited more files but
worked frequently on only 3 of them. This fuzzy behavior suggests lack of
focus and/or knowledge about the task to accomplish, and present a good way
to measure efficiency on development teams or individual developers. That
can be confirmed by comparing both teams statistics in Figure 8, where we
present product metrics, process metrics and extended process metrics scaled
to represent their position to the mean value of each action for both teams.

We highlight in the extended process metrics the fact that the team with
bigger VG reduction was the one with less frequencies in commands such as
: Undo, Cut, File Open, File Close plus other navigational and less produc-
tive actions. This team had also bigger frequencies in commands to detect
and fix code smells, such as: God Class, Duplicated Code and Type Check-
ing. However, the gains in the VG reduction were achieved at the cost of
increasing 28% the number of classes(NOC) and the lack of cohesion of meth-
ods(LCOM ) by ≈72%. On the process side, despite the fact that this team
had more work sessions(7), they touched less files, meaning their activities

15We acknowledge that the labels in these two diagrams, produced by the Disco tool, are
illegible in a printing version. However, since the figures are in vectorial format, they can
be zoomed in easily if this paper is read in its electronic version (pdf), the most probable
access medium.
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Figure 8: Teams(11A vs. 51) with distinct VG variance positioning but similar PCC levels

were less complex, and that is confirmed by the UF, NOA and PCC metrics.

5.2. RQ2. Is there any association between software complex-
ity and the underlying development activities in refactoring
practices?

With the evidences shown in RQ1 for the two distinct refactoring meth-
ods, one may question if the product complexity reduction gains are mono-
tonically correlated with the development activities which originated them.
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We used the Spearman correlation coefficient to measure the strength of
correlation between metrics of these two dimensions, product and process
complexities. This coefficient ranges from -1 to 1, where -1 and 1 correspond
to perfect negative and positive relationships respectively, and 0 means that
the variables are independent of each other.

To validate our results, we performed a significance test to decide whether
based upon this sample there is any or no evidence to suggest that linear cor-
relation is present in the population. As such, we tested the null hypothesis,
H0, and the alternative hypothesis, H1, to gather indication of which of
these opposing hypotheses was most likely to be true.

Let ps be the Spearmans’ population correlation coefficient both for au-
tomatic and manual refactoring, then we can thus express this test as:

H0: ps = 0 : No monotonic correlation is present in the practice.
H1: ps 6= 0: A monotonic correlation is present in the practice.

Automatic Refactoring. After computing the Spearman correlation coef-
ficient on the subset of teams doing automatic refactoring, and despite the
fact that some correlations were slightly negative as we expected, we got no
significant statistics on the correlation of ∆VG and PCC or any other pair
of metrics, as shown by Spearmans’ rho and p-value in Table 4.

Observation 4: No significant correlation was found between
product and process metrics on automatic refactoring practices.
Hence, we can say that we cannot reject the null hypothesis, H0, meaning
that a monotonic correlation cannot said to be found between code cyclo-
matic complexity and process cyclomatic complexity or any other process
metric.
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Table 4: Spearmans’ Correlation - Refactoring Tasks

Automatic Refactoring Manual Refactoring
∆VG ∆VG

Factors Spearmans’ rho p-value Spearmans’ rho p-value

PCC -0.02 0.9707 0.43 0.0432*

UF 0.01 0.5218 0.32 0.3427

SES 0.15 0.7489 0.24 0.2814

DEV -0.05 0.7342 0.03 0.8193

NPER -0.19 0.4976 0.32 0.0197*

NISP -0.10 0.6875 0.35 0.0120*

PCCPF -0.01 0.7787 0.45 0.0059*

NCAT -0.11 0.6309 0.39 0.0096*

NCOM -0.05 0.6240 0.42 0.0712

*Statistically significant if p-value < 0.05

Manual Refactoring. When analyzing the dataset with manual refactor-
ing activities, we found that product complexity reduction was moderately
correlated with the process cyclomatic complexity and several other metrics
process related. Table 4 presents Spearmans’ rho and p-value, highlighting
the significant correlations16.

Observation 5: A moderate correlation was found between prod-
uct metrics and process metrics on manual refactoring tasks. It
is relevant to highlight the presence of a moderate positive correlation be-
tween the product cyclomatic complexity reduction (∆VG) and the overall
process cyclomatic complexity(PCC) and per unique file touched(PCCPF).
This means that the more actions the teams have done within the IDE the
bigger the gains obtained in complexity reduction.

16Other product and process metrics were omitted due to the absence of significant
correlations
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Figure 9: Manual Refactoring correlation results

Observation 6: Weak to moderate correlations were found be-
tween product complexity reduction and IDE command categories.
Weak to moderate correlations emerge when we pair the product complex-
ity reduction with the number of the IDE command categories(NCAT), IDE
perspectives activated(NPER) and the number of distinct physical locations
from where the task was performed(NISP). Based on the significance tests,
we can reject H0, and accept H1, meaning that a monotonic correlation ex-
ists between code cyclomatic complexity and process cyclomatic complexity
as well as with the other highlighted metrics.
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Observation 7: No significant correlations were found between
any process metrics and product metrics, except for ∆VG. All prod-
uct and process metrics collected are shown in Tables A.7 and A.8.

Figure 9 plot only the significant correlations17 among all those we stud-
ied. As expected, process metrics show strong correlations between them-
selves, however, we find this result obvious and not relevant withing the
context of this study.

5.3. RQ3. Using only process metrics, are we able to predict with
high accuracy different refactoring methods?.

Process metrics have been confirmed as suitable predictors for many soft-
ware development prediction models. They were found not only suitable,
they performed significantly better than code metrics across all learning tech-
niques in several studies [78, 28].

Our goal was to use the process metrics described in Table A.8, to predict
if a refactoring task executed by a group of teams had been done automat-
ically, using the JDeodorant features, or manually, using only the Eclipse
native functionalities or driven by developers skills. Each subject in our
dataset has the class to predict labelled as AR and MR for automatic and
manual refactoring, respectively. In this case, we did not use metrics from
Table A.9 because that would introduce bias in our models since the process
extended metrics can easily be used to understand if developers used or not
IDE built in features or their own skills during a refactoring practice.

Table 5 present the results for the 5 best models we got out of the ≈30,000
we evaluated on our research. In this context, the machine learning models
used were built by assembling and testing supervised or unsupervised al-
gorithms adjusted with feature selection and hyperparameter optimization.
From the models built, the ones with higher ROC were chosen. A brief ex-
planation of each algorithm can be found in Appendix A.3, as well as the
code obtained from training Model 1.

Observation 8: Random Forest confirms its accuracy. Random
Forest models were found to be the ones with higher accuracy in predicting
refactoring opportunities in previous studies [16]. We observe the same be-
haviour. Random Forest shows twice in the top 5 of our best models, with a
ROC value of 0.983 and 0.939 for Model 1 and 2, respectively. In both cases,
the models were computed by a meta learner which builds an ensemble of
randomizable base classifiers, the Random Committee.

17Blank squares means non significant values
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Table 5: Detailed Model Evaluation

Model TP FP Pre. Rec. F-M. MCC ROC PRC

Model 1, RandomCommittee/RandomForest, Accuracy = 92.95%
AR 0.906 0.051 0.935 0.906 0.921 0.858 0.983 0.980

MR 0.949 0.094 0.925 0.949 0.937 0.858 0.983 0.987

W. Avg. 0.930 0.075 0.930 0.930 0.929 0.858 0.983 0.984

Model 2, RandomCommittee/RandomForest, Accuracy = 90.14%
AR 0.875 0.077 0.903 0.875 0.889 0.801 0.939 0.923

MR 0.923 0.125 0.900 0.923 0.911 0.801 0.939 0.948

W. Avg. 0.901 0.103 0.901 0.901 0.901 0.801 0.939 0.937

Model 3, Logistic Model Trees, Accuracy = 90.14%
AR 0.906 0.103 0.879 0.906 0.892 0.802 0.945 0.938

MR 0.897 0.094 0.921 0.897 0.909 0.802 0.945 0.951

W. Avg. 0.901 0.098 0.902 0.901 0.902 0.802 0.945 0.945

Model 4, RandomSubSpace/REPTree, Accuracy = 88.73%
AR 0.844 0.077 0.900 0.844 0.871 0.772 0.929 0.907

MR 0.923 0.156 0.878 0.923 0.900 0.772 0.929 0.935

W. Avg. 0.887 0.120 0.888 0.887 0.887 0.772 0.929 0.922

Model 5, Logistic Regression, Accuracy = 83.09%
AR 0.750 0.103 0.857 0.750 0.800 0.659 0.939 0.940

MR 0.897 0.250 0.814 0.897 0.854 0.659 0.939 0.950

W. Avg. 0.831 0.184 0.833 0.831 0.829 0.659 0.939 0.945

TP-True Positive, FP-False Positive, Pre-Precision, Rec-Recall,
F-M-F-Measure, MCC-Matthews Correlation Coefficient,
ROC-Receiver Operating Characteristic, PRC-Precision-Recall Curve,
AR-Automatic Refactoring, MR-Manual Refactoring,
W. Avg-Weighted Average

Our dataset is not imbalanced, thus, we have almost the same number
of subjects for each class, meaning we may use also the Accuracy metric
to complement our analysis. Model 1 and 2 had respectively, an accuracy of
92.5% and 90.14%.
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Figure 10: Feature importance for models on Table 5

During models computation phase, we also assessed which of the fea-
tures were more or less important to predict the refactoring practices: auto-
matic(AR) or manual(MR). Figure 10 shows their average importance.

Observation 9: Number of Activities, Developers and Com-
mands are the most relevant model features. These features show
among the ones with highest importance in the models we computed. We
recall that the number of activities (NOA) is a composite metric obtained
by the process mining extraction plugin using a hierarchical structure com-
posed of the filename, command category and commands issued during the
coding phase. Having a mid level importance we find the process cyclomatic
complexity and the number of development sessions.

Observation 10: Distinct IDE Perspectives and Operating Sys-
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tems have almost irrelevant importance. In our models, the different
types operating system used by the developers, the different number of IDE
perspectives and number of development locations (NISP) are irrelevant pre-
dictors in modeling the type of refactoring performed. We argue that, partic-
ularly the number of different locations from where the developers performed
their work require additional research in order to get any generalized conclu-
sions about this insight.

5.4. RQ4: Using only process metrics, are we able to model accu-
rately the expected level of complexity variance after a refac-
toring task?

To answer this RQ, we used not only the metrics from Table A.8, but
also the ones from Table A.9. During our analysis, it was clear that process
extended metrics, representing the commands issued by each developer/team,
added significant predictive power to the models computed. Therefore, to
predict the expected software cyclomatic complexity we needed to include
individual commands frequencies in addition to the process metrics used in
previous RQ. By doing this we were able to achieve models with higher
accuracy and good ROC values. However, in general, these models have
lower accuracy than the ones in RQ3.

Table 6 shows the top five models computed to predict the complexity
level gains obtained after a refactoring session, either using a dedicated plugin
or simply by using Eclipse features.

Observation 11: Locally Weighted Learning combined with a
Decision Table outperforms Random Forrest. Contrary to the pre-
vious RQ, in this case the best model is not based on a Random Forrest
algorithm. However, the latter show as the second best model in terms of ac-
curacy. The Locally Weighted Learning method uses an instance-based algo-
rithm to assign instance weights which are then used by a specified weighted
instances handler. It uses a stack of methods, initially a cluster like mech-
anism such as the LinearNNSearch and then a Decision Table to classify
the outcome. This shows up at no surprise since Decision Tables use the
simplest hypothesis spaces possible and usually outperform state-of-the-art
classification algorithms.
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Table 6: Detailed Model Evaluation

Model TP FP Pre. Rec. F-M. MCC ROC PRC

Model 1, LWL/LinearNNSearch/DecisionTable, Accuracy = 94.36%
LOW 0.968 0.000 1.000 0.968 0.984 0.972 0.991 0.992

MEDIUM 1.000 0.095 0.879 1.000 0.935 0.892 0.994 0.992

HIGH 0.727 0.000 1.000 0.727 0.842 0.832 0.992 0.967

Weighted Avg. 0.944 0.039 0.950 0.944 0.942 0.917 0.993 0.988

Model 2, Bagging/RandomForest, Accuracy = 83.09%
LOW 0.839 0.075 0.897 0.839 0.867 0.771 0.938 0.94

MEDIUM 0.828 0.095 0.857 0.828 0.842 0.737 0.971 0.945

HIGH 0.818 0.083 0.643 0.818 0.720 0.668 0.971 0.827

Weighted Avg. 0.831 0.085 0.841 0.831 0.834 0.741 0.957 0.926

Model 3, KStar, Accuracy = 78.87%
LOW 0.935 0.225 0.763 0.935 0.841 0.707 0.948 0.951

MEDIUM 0.862 0.143 0.806 0.862 0.833 0.713 0.945 0.915

HIGH 0.182 0.000 1.000 0.182 0.308 0.398 0.982 0.904

Weighted Avg. 0.789 0.157 0.818 0.789 0.755 0.661 0.952 0.929

Model 4, RandomCommittee/REPTree, Accuracy = 74.64%
LOW 0.903 0.300 0.700 0.903 0.789 0.603 0.895 0.873

MEDIUM 0.759 0.143 0.786 0.759 0.772 0.619 0.886 0.847

HIGH 0.273 0.000 1.000 0.273 0.429 0.491 0.932 0.738

Weighted Avg. 0.746 0.189 0.781 0.746 0.726 0.592 0.897 0.842

Model 5, LWL/LinearNNSearch/DecisionTable, Accuracy = 71.83%
LOW 0.871 0.300 0.692 0.871 0.771 0.569 0.843 0.803

MEDIUM 0.759 0.190 0.733 0.759 0.746 0.565 0.800 0.729

HIGH 0.182 0.000 1.000 0.182 0.308 0.398 0.823 0.541

Weighted Avg. 0.718 0.209 0.757 0.718 0.689 0.541 0.822 0.732

TP-True Positive, FP-False Positive, Pre-Precision, Rec-Recall,
F-M-F-Measure, MCC-Matthews Correlation Coefficient,
ROC-Receiver Operating Characteristic, PRC-Precision-Recall Curve,
LOW-Low level of Cyclomatic Complexity,
MEDIUM-Medium level of Cyclomatic Complexity,
HIGH-High level of Cyclomatic Complexity,
W. Avg-Weighted Average

Observation 12: Teams with LOW level of software complexity
gains are frequently spotted with higher F-Measure and ROC val-
ues. Our models perform better in detecting subjects achieving low levels of
complexity reduction. These are the most critical cases, as such, a software
development project manager can quickly detect the teams or individuals
responsible for those outcomes and implement actions to bring the project
under acceptable quality parameters.
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Observation 13: Process extended metrics have in general higher
importance than process standard metrics. From Figure 11 we can un-
derstand that 18 out of 30 metrics are related with the commands issued by
the developers. In general, these metrics have also higher importance in the
models. It is not surprising to find methods and class extraction commands
in the top of the list, with ≈86% and ≈56% importance, respectively. It was
however unexpected to find project export actions being so relevant (≈70%).
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Figure 11: Feature importance for models on Table 6 (Top 30 only)
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6. Threats to Validity

The following types of validity issues were considered when interpreting
the results from this article.

6.1. Construct Validity

We acknowledge that this work was supported by an academic environ-
ment and using subjects with different maturity and skills which we did not
assessed deeply upfront. Additionally, although some work has been done
in this domain, we are still just scratching the surface in mining develop-
ers’ activities using process mining tools. Some of these tools are not ready
yet to automate the complete flow of: collecting data, discover processes,
compute metrics and export results. As a consequence, the referred tasks
were mostly done manually, thus, introducing margin for errors in the data
metrics used in the experiment. To soften this, and to reduced the risk of
having incoherent data, we implemented the validation of metric values from
multiple perspectives. Another possible threat is related with the event data
pre-processing tasks before using the Process Mining tools to discover the
processes and associated metrics. Events were stored initially in a database,
and from there, queries were issued to filter, aggregate and select some pro-
cess related metrics. We used all the best practices in filtering and querying
the data. However, there is always a small chance for the existence of an
imprecise query which may have produced incorrect results and therefore,
impacted our data analysis.

6.2. Internal Validity

We used a cluster analysis technique supported by the Elbow and Silhou-
ette methods. This was used to partition the subjects according to different
software and process cyclomatic complexity levels. Even if this is a valid
approach, other strategies could have been followed, thus, results could vary
depending on the alternative methods used, since the models computed to
address RQ3 and RQ4 make use of this data partition approach. As men-
tioned earlier, our population was not very large and we had to use it for
training and test purposes. As such, our prediction models were all trained
using k-fold cross validation and using feature selection methods.

6.3. External Validity

We understood from the beginning there was a real possibility that events
collected and stored in CSV/JSON files on developers’ devices could be man-
ually changed. We tried to mitigate this threat of having data tampering by
using a hash function on each event at the moment of their creation. As such,
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each event contain not only information about the IDE activities, but also
a hash code introduced as a new property in the event for later comparison
with original event data. For additional precautions regarding data losses,
we implemented also real-time event streaming from the IDE to a cloud event
hub.

Our initial dataset contains events collected from a group of teams when
performing an academic exercise. Each user was provided with a username
and password to enter in the Eclipse Plugin. With this approach, we can
easily know which user was working on each part of the software and their
role in the whole development process. However, we cannot guarantee that
each developer used indeed their own username. This does not cause any
invalid results in the number of activities for example, but may introduce
some bias in the number of developers per team18.

6.4. Conclusion Validity

We performed an experiment using data from 71 software teams executing
well defined refactoring tasks. This involved 320 sessions of work from 117
developers. Since this is a moderate population size for this type of analysis,
we acknowledge this may be a threat to generalize conclusions or make bold
assertions. The Spearmmans’ correlation, a nonparametric measure (there-
fore having less statistical power) of the strength and direction of association
that exists between two variables, was done on 32 and 39 teams for automatic
and manual refactoring tasks respectively. These figures, although valid, are
close to the minimum admissible number of subjects for this type of analysis.
Nevertheless, the insights we unveil in this study should be able to trigger
additional research in order to confirm or invalidate our initial findings.

7. Conclusion

7.1. Main conclusions

Software maintenance activities, such as refactoring, are said to be very
impacted by software complexity. Researchers are measuring software prod-
uct and processes complexities for a long time and the methods used are
frequently debated in the software development realm. However, the com-
prehension on the links between these two dimensions has a long journey
ahead.

In this work, we tried to understand deeper the liaison of process and
software complexity. Moreover, we assessed if process driven metrics and

18A metric used on almost all RQs and identified as having a high importance
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IDE issued commands are suitable to build valid models to predict differ-
ent refactoring methods and/or the expected levels of software cyclomatic
complexity variance on development sessions.

We mined the software metrics from a software product after a software
quality improvement task was given to a group of developers organized in
teams. At the same time we collected events from those developers during
the change activities they have performed within the IDE.

To the best of our knowledge, this is the first study where, using proven
process mining methods, process metrics were gathered and combined with
product metrics in order to understand deeper the liaison of product and
process dimensions, particularly the cyclomatic complexities. Furthermore, it
brings to the attention of researchers the possibility to adopt process metrics
extracted from the IDE usage as a way to complement or even replace product
metrics in modeling the development process.

We can’t compare our study to any previous works, however, with a
small set of features, we were able to unveil important correlations between
product and process dimensions and obtain good models in terms of accuracy
and ROC when predicting the type of refactoring done or the expected level
of cyclomatic complexity variance after multiple sessions of development. We
used a refactoring task as our main use case, however, by taking a snapshot
of product and process metrics in different moments in time, one can measure
other development practices the same way.

7.2. Relevance for practitioners

This approach can be particularly relevant in cases where product metrics
are not available or are difficult to obtain. It can be also a valid approach to
measure and monitor productivity within and between software teams. As
we showed by analyzing the sessions complexity and the software cyclomatic
complexity variance, non efficient teams can easily be detected. Our method
easily support real-time data collection from individuals located in differ-
ent geographic zones and with a multitude of development environments.
Because the data collection is not dependent on code repositories and is de-
coupled from check-ins and/or commits, process and code analysis can be
performed before repositories are updated. Development organizations can
leverage this approach to apply conformance checking methods to verify the
adherence of developers’ practices with internally prescribed development
processes. This facilitates mainly the detection of low performance practices
and may trigger quick correction actions from project managers.
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7.3. Limitations

We are aware that in this work we used only events from the IDE usage.
This limits the generalization of the current method. However, our approach,
although valid on it’s own, may be used to complement project management
analysis based on other repositories. Events from tools containing informa-
tion about the documentation, project management decisions, communica-
tion between developers and managers, Q & A services, test suites and bug
tracking systems, together with our method and metrics can build more ro-
bust models to comprehend development practices and the relation between
software and processes followed to produce it.

7.4. Future Work

In the short term, we plan to apply a similar research approach, but in
another context. Instead of refactoring an existing product, we will collect
both product and process data for software development from scratch in the
context of a programming contest. We intend to assess how the adopted
process, both in terms of complexity and efficiency, influences effectiveness,
as measured by an automatic judge.

In a previous paper [62] we described how we found that even for a well-
defined software development task, there may be a great deal of process
variability, due to the human factor. Less focused teams produced more
complex process models, due to the spurious/non-essential actions that were
carried out and therefore were less efficient. Following this path and us-
ing clustering techniques, we expect to derive a catalog of process smells
and/or fingerprints to characterize development behaviors. Then, we will
use that taxonomy in a personal software process dashboard, that through
self-awareness is expected to foster improvement on process efficiency (e.g.
less wasted effort) and effectiveness (e.g. yield better deliverables).

We also consider that the following aspects deserve further research ef-
forts:

• Software Repository Diversity. Traditional software repositories
have limitations and imprecisions. To expand the analytics coverage
on the mining of software development processes, we should explore
non trivially used repositories, such as the IDE. This is particularly in-
teresting to drive studies aiming to combine development perspectives:
i) product quality and ii) the underlying development process.

• Software Development Process Mining Pipeline. Many pro-
cess mining tools are not ready for non-human intervention. Due to
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this reality, many metrics in this article had to be extracted semi-
automatically, using a tool but not dispensing user interaction. This
is a strong limitation in advancing research based on event data and
current process mining methods. A microservices-based architecture
seems to be a good alternative for building a coherent pipeline for soft-
ware development process mining.

• Data Sharing. Research combining software product and process
data is scarce and experiments in this area are difficult to design and
execute. To mitigate this problem, we expect an increment in shared
datasets containing this hybrid data, providing that privacy and/or
anonymity on sensitive information is guaranteed.
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Appendix A. Appendix

Appendix A.1. Product Metrics

Table A.7: Product Metrics Description

Name Description Scale

VG McCabe Cyclomatic Complexity (Avg. per Method) Numeric
PAR Number of Parameters (Avg. per Method) Numeric
NBD Nested Block Depth (Avg. per Method) Numeric
CA Afferent Coupling (Avg. per Package Fragment) Numeric
CE Efferent Coupling (Avg. per Package Fragment) Numeric
RMI Instability (Avg. per Package Fragment) Numeric
RMA Abstractness (Avg. per Package Fragment) Numeric
RMD Normalized Distance (Avg. per Package Fragment) Numeric
DIT Depth of Inheritance Tree (Avg. per Type) Numeric
WMC Weighted methods per Class (Avg. per Type) Numeric
NSC Number of Children (Avg. per Type) Numeric
NORM Number of Overridden Methods (Avg. per Type) Numeric
LCOM Lack of Cohesion of Methods (Avg. per Type) Numeric
NOF Number of Attributes (Avg. per Type) Numeric
NSF Number of Static Attributes (Avg. per Type) Numeric
SIX Specialization Index (Avg. per Type) Numeric
NOP Number of Packages Numeric
NOC Number of Classes (Avg. per Package Fragment) Numeric
NOI Number of Interfaces (Avg. per Package Fragment) Numeric
NOM Number of Methods (Avg. per Type) Numeric
NSM Number of Static Methods (Avg. per Type) Numeric
MLOC Method Lines of Code (Avg. per Method) Numeric
TLOC Total Lines of Code Numeric
TLOC Total Lines of Code Numeric

VG LEVEL Different levels of ∆VG (LOW, MEDIUM, HIGH) Categorical
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Appendix A.2. Process Metrics

Table A.8: Process Metrics Description

Name Description Scale

DEV Number of Developers Numeric
SES Number of User/Development Sessions Numeric
EVTS Number of Events Collected Numeric
NFILES Number of Unique Files Touched Numeric
NCOM Number of Unique Commands Issued in IDE Numeric
PCCPF Process Cyclomatic Complexity per File Touched Numeric
EC Number of Event Classes Numeric
NOA Number of Activities Numeric
NSS Number of Simple States Numeric
NCS Number of Composite States Numeric
NOT Number of Transitions Numeric
PCC Process Cyclomatic Complexity Numeric
NVER Number of Unique IDE Versions Numeric
NCAT Number of Unique Command Categories Numeric
NPLA Number of Unique IDE Platforms Numeric
NISP Number of Unique Geographic Locations Numeric
NOS Number of Unique Operating Systems Numeric
NPER Number of Unique Perspectives used in the IDE Numeric

PCC LEVEL Different levels of PCC (LOW, HIGH) Categorical
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Table A.9: Process-Extended Metrics Description

Category Name Scale

Refactor

Java-Extract Method Numeric
Java-Move - Refactoring Numeric
Java-Extract Class... Numeric
Java-Rename - Refactoring Numeric
Delete Resources Numeric
Java-Encapsulate Field Numeric
Java-Change Method Signature Numeric
Java-Move Type to New File Numeric

Eclipse Editor
File Open Numeric
File Editing Numeric
File Close Numeric

Eclipse View

Project Explorer Numeric
Package Explorer Numeric
Long Method Numeric
God Class Numeric
Code Smell Visualization Numeric
Type Checking Numeric
Feature Envy Numeric
Duplicated Code Numeric

Edit

Find and Replace Numeric
Copy Numeric
Paste Numeric
Cut Numeric
Delete Numeric
Undo Numeric
Redo Numeric

File

Import Numeric
Refresh Numeric
Save Numeric
Save All Numeric

Source Generate Getters and Setters Numeric
Compare Select Next Change Numeric

....... //List is truncated on purpose

....... //List size is ≈250

Text Editing Delete Previous Word Numeric
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Appendix A.3. Algorithms shown in Model Evaluations
RandomCommittee. Method for building an ensemble of randomizable base clas-

sifiers. Each base classifier is built using a different random seed number (but based one
the same data). The final prediction is a straight average of the predictions generated by
the individual base classifiers.

RandomSubSpace. This method constructs a decision tree based classifier that main-
tains highest accuracy on training data and improves on generalization accuracy as it
grows in complexity. The classifier consists of multiple trees constructed systematically
by pseudo-randomly selecting subsets of components of the feature vector, that is, trees
constructed in randomly chosen sub-spaces.

RandomForest. Method for constructing a forest of random trees. It consists of a learn-
ing method for classification, regression and other tasks that operates by constructing a
multitude of decision trees at training time and outputting the class that is the mode of
the classes (classification) or mean prediction (regression) of the individual trees.

RepTree. Fast decision tree learner. Builds a decision/regression tree using information
gain/variance and prunes it using reduced-error pruning (with back-fitting). Only sorts
values for numeric attributes once. Missing values are dealt with by splitting the corre-
sponding instances into pieces.

LMT. ’Logistic Model Trees’ are classification trees with logistic regression functions at
the leaves. The algorithm can deal with binary and multi-class target variables, numeric
and nominal attributes and missing values.

Logistic Regression. Method for building and using a multinomial logistic regression
model with a ridge estimator. Logistic regression is a statistical model that in its basic
form uses a logistic function to model a binary dependent variable, although more complex
extensions exist.

LWL. The Locally Weighted Learning method uses an instance-based algorithm to assign
instance weights which are then used by a specified WeightedInstancesHandler. Can do
classification (e.g. using naive Bayes) or regression (e.g. using linear regression).

LinearNNSearch. This method implements the brute force search algorithm for nearest
neighbour search.

DecisionTable. Builds and uses a simple decision table majority classifier.

Bagging. Method for bagging a classifier to reduce variance. Can do classification and
regression depending on the base learner.

KStar. Is an instance-based classifier, that is, the class of a test instance is based upon
the class of those training instances similar to it, as determined by some similarity func-
tion. It differs from other instance-based learners in that it uses an entropy-based distance
function.
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Appendix A.4. Best-Fit Models - Source Code

Listing 2: Best-Fit Model Code for Refactoring Practice Detection

1 /∗∗ Java code to implement the bes t model found . ∗/
2
3 /∗∗ Attr ibute Search ∗∗/
4 At t r i bu t eS e l e c t i on as = new At t r i bu t eS e l e c t i on ( ) ;

5 ASSearch asSearch = ASSearch . forName ( ”weka . a t t r i b u t e S e l e c t i o n . GreedyStepwise
↪→ ” , new St r ing [ ] { ”−C” , ”−R” }) ;

6 as . s e tSearch ( asSearch ) ;

7
8 /∗∗ Attr ibute Evaluat ion and S e l e c t i o n ∗∗/
9 ASEvaluation asEval = ASEvaluation . forName ( ”weka . a t t r i b u t e S e l e c t i o n .

↪→ CfsSubsetEval ” , new St r ing [ ] { ”−M” , ”−L” }) ;
10 as . s e tEva luator ( asEval ) ;

11 as . S e l e c tA t t r i bu t e s ( i n s t an c e s ) ;

12
13 /∗∗ Reduce Dimensions ∗∗/
14 i n s t an c e s = as . reduceDimens iona l i ty ( i n s t an c e s ) ;

15
16 /∗∗ Build C l a s s i f i e r ∗∗/
17 C l a s s i f i e r c l a s s i f i e r = Ab s t r a c tC l a s s i f i e r . forName ( ”weka . c l a s s i f i e r s . meta .

↪→ RandomCommittee” , new St r ing [ ] { ”−I ” , ”64” , ”−S” , ”1” , ”−W” , ”weka .
↪→ c l a s s i f i e r s . t r e e s . RandomForest” , ”−−” , ”−I ” , ”29” , ”−K” , ”13” , ”−
↪→ depth” , ”3” }) ;

18 c l a s s i f i e r . b u i l dC l a s s i f i e r ( i n s t an c e s ) ;

Listing 3: Best-Fit Model Code for expected Cyclomatic Complexity level detection

1 /∗∗ Java code to implement the bes t model found . ∗/
2
3 /∗∗ Attr ibute Search ∗∗/
4 At t r i bu t eS e l e c t i on as = new At t r i bu t eS e l e c t i on ( ) ;

5 ASSearch asSearch = ASSearch . forName ( ”weka . a t t r i b u t e S e l e c t i o n . GreedyStepwise
↪→ ” , new St r ing [ ] { ”−C” , ”−R” }) ;

6 as . s e tSearch ( asSearch ) ;

7
8 /∗∗ Attr ibute Evaluat ion and S e l e c t i o n ∗∗/
9 ASEvaluation asEval = ASEvaluation . forName ( ”weka . a t t r i b u t e S e l e c t i o n .

↪→ CfsSubsetEval ” , new St r ing [ ] { ”−L” }) ;
10 as . s e tEva luator ( asEval ) ;

11 as . S e l e c tA t t r i bu t e s ( i n s t an c e s ) ;

12
13 /∗∗ Reduce Dimensions ∗∗/
14 i n s t an c e s = as . reduceDimens iona l i ty ( i n s t an c e s ) ;

15
16 /∗∗ Build C l a s s i f i e r ∗∗/
17 C l a s s i f i e r c l a s s i f i e r = Ab s t r a c tC l a s s i f i e r . forName ( ”weka . c l a s s i f i e r s . l a zy .

↪→ LWL” , new St r ing [ ] { ”−K” , ”60” , ”−A” , ”weka . core . ne ighboursearch .
↪→ LinearNNSearch” , ”−W” , ”weka . c l a s s i f i e r s . r u l e s . Dec i s ionTable ” , ”−−” ,
↪→ ”−E” , ”auc” , ”−S” , ”weka . a t t r i b u t e S e l e c t i o n . GreedyStepwise ” , ”−X” , ”2
↪→ ” }) ;

18 c l a s s i f i e r . b u i l dC l a s s i f i e r ( i n s t an c e s ) ;
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