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ABSTRACT 

As a consequence of the industrial and socio-demographic changes of the last decades, the 

characteristic land use practices of extensive agro-pastoral systems in the region of Alentejo, 

Southern Portugal are being gradually abandoned and the consequences are still little 

understood. Land use changes are important drivers of environmental degradation, 

modification and fragmentation of habitats with the subsequent alterations of global carbon 

and hydrological cycles, global and regional climate, and decline in biodiversity.  

This work aims to contribute to a better understanding of the effects of abandonment in 

ecosystems with a long history of human management, as is the case of the agro-pastoral 

systems of Southern Portugal. Three land use categories were selected to represent a decrease 

in land use intensity (‘grazing’, ‘intermediate succession’ and advanced succession’). Following 

abandonment, secondary succession is expected to occur with consequent changes in soil 

characteristics and vegetation composition and structure. Because plant species differ in their 

functional traits and in their effects on ecosystem processes, an effect of land use change at 

this level may also be expected. Plant traits relate to universal plant functions of growth (e.g. 

light and nutrient acquisition, water use efficiency) and persistence (e.g. recruitment, dispersal, 

defence against herbivores and other disturbances). They provide a widely applicable 

framework for interpreting community shifts along environmental gradients, including 

secondary succession.  

The main objectives were to (1) identify changes in vegetation composition and structure 

in response to decreasing land use intensity; (2) Identify functional groups and changes in 

species traits in response to decreasing land use intensity; (3) Identify the effect of decreasing 

land use intensity in key ecosystem processes such as decomposition and above-ground net 

primary productivity (ANPP). 



 

Overall, the results from the present study showed that abandonment resulted in changes 

in species composition and richness, in plant functional traits and functional groups and in 

ecosystem processes (biomass, ANPP and decomposition). Secondary succession resulting 

from abandonment of grazing showed stronger changes in vegetation composition and 

structure than in soil characteristics. Among the soil chemical properties tested, only 

phosphorus, carbon and organic matter were affected by land use change. Phosphorus 

decreased with abandonment while organic matter and carbon showed an increase. Species 

richness decreased sharply after land abandonment, and this was associated with a strong 

turnover in species composition from grazed to abandoned sites as the vegetation changed 

from annual herbaceous to shrub-dominated communities. One single species (Cistus ladanifer) 

accounted for more than 50% of relative cover in the areas abandoned for a longer time, 

suggesting that this species might have an important role in possible changes in ecosystems 

processes. 

The species that colonized the different land use categories differed in plant functional 

traits. Therophyte life form, short canopy height, high specific leaf area (SLA), low leaf dry 

matter content (LDMC) and small seeds with dispersal structures were dominant at grazed 

plots. Within abandoned plots, chamaephytes dominanted at ‘intermediate succession’ plots 

and decrease in favour of nanophanerophytes in ‘advanced succession’ plots. Canopy height, 

LDMC and seed mass increase with abandonment time while SLA decreased. Functional 

response groups were found by combining life form and SLA and these were found to be 

sufficient to describe vegetation change. Therophytes with medium SLA were the dominant 

functional group in grazed areas, while nanophanerophytes with medium or low SLA were 

associated with later phases of abandonment. At intermediate stages of succession the 

dominant group was chamaephytes with medium SLA but functional diversity was highest as 

all the groups, except hemicriptophytes with medium SLA, were represented.  



Our study showed an increase in total above-ground biomass with abandonment 

indicating a positive effect of the shift to woody vegetation on total above-ground biomass. 

ANPP significantly increased in plots abandoned for longer time. This increase was strongly 

related with the increase in the cover of Cistus ladanifer. This is a pioneer species that colonises 

degraded areas and forms one of the first stages of succession of woody communities. Under 

favourable conditions, C. ladanifer can grow fast and attain large amounts of biomass in a short 

time and quickly spreads over recently disturbed areas.  

Regarding decomposition, shrub litter was found to be higher than herbaceous litter in 

nutrient content, especially nitrogen, which seemed to favour higher initial decomposition 

rates but lower decomposition rate in the longer term. Overall, decomposition was slower in 

abandoned than in grazed plots and this was positively correlated with the content of cellulose 

and hemicellulose of initial litter. Lower rates of decomposition were also found to be related 

to the increase in LDMC, a trait strongly linked to physical attributes of the leaves.  

 

 



 

 



RESUMO 

Em consequência da rápida evolução da indústria e alterações sócio-demográficas das 

últimas décadas, assistiu-se a um abandono gradual das práticas de agricultura e pastorícia 

extensivas típicas dos sistemas agro-silvo-pastoris do Alentejo. Os efeitos desse abandono nas 

características da vegetação e no funcionamento do ecossistema são ainda pouco conhecidos. 

As alterações no uso do solo conduzem à perda, modificação e fragmentação de habitats e a 

consequentes alterações dos ciclos globais da água e do carbono, do clima regional e global, 

bem como a uma diminuição da biodiversidade.  

Este trabalho pretende contribuir para um melhor conhecimento dos efeitos do abandono 

de práticas de gestão extensivas em áreas em que estas são praticadas há séculos, como é o 

caso dos sistemas agro-pastoris do sul de Portugal. Para tal, foram seleccionadas três áreas 

representativas de diferentes intensidades de uso do solo (‘pastoreio’, ’sucessão intermédia’ e 

‘sucessão avançada’). O abandono das práticas agro-pastoris dá início a um processo de 

sucessão secundária, o qual, é geralmente, acompanhado por alterações físico-químicas do solo 

bem como por alterações da composição e estrutura da vegetação. As espécies vegetais 

diferem quer nos atributos funcionais que as caracterizam quer no modo como influenciam o 

funcionamento dos ecossistemas. Os atributos funcionais estão relacionados com aspectos 

como o crescimento (aquisição de luz e nutrientes, eficiência no uso da água) e a sobrevivência 

(dispersão, regeneração, protecção contra herbívoros e outras perturbações). Estes permitem 

interpretar variações nas comunidades vegetais ao longo de gradientes ambientais, nos quais se 

pode incluir a sucessão secundária. Em resposta ao abandono, foram objectivos deste trabalho 

identificar: (1) alterações na composição e estrutura da vegetação; (2) grupos funcionais e 

variações nos atributos funcionais; (3) efeitos na biomassa e produtividade primaria da parte 

aérea, bem como na taxa de decomposição da folhada. 



 

Os resultados deste estudo demonstraram que o abandono tem como consequências a 

alteração da composição e número de espécies, dos atributos funcionais e grupos funcionais, 

bem como das propriedades do ecossistema estudadas (biomassa e produtividade primária da 

parte aérea, e decomposição da folhada). Os efeitos do abandono de práticas agro-pastoris 

extensivas nas áreas de estudo foram mais visíveis na composição e estrutura da vegetação do 

que nas características do solo. De entre os parâmetros do solo determinados, apenas se 

registaram alterações no conteúdo em fósforo, carbono e matéria orgânica. Observou-se uma 

diminuição de fósforo e um aumento de carbono e matéria orgânica em função do tempo de 

abandono. A riqueza específica diminuiu significativamente após o abandono e foi 

acompanhada por uma considerável alteração da composição florística, sendo que 

comunidades maioritariamente compostas por herbáceas anuais foram substituídas por 

comunidades arbustivas. Nas áreas de ‘sucessão avançada’ há dominância de uma espécie, 

Cistus ladanifer, responsável por mais de 50% da cobertura relativa, o que sugere que esta 

espécie pode ter um efeito importante no funcionamento destes ecossistemas. 

As espécies presentes nas diferentes categorias de uso do solo apresentaram diferenças nos 

atributos funcionais. Atributos associados às áreas com pastoreio incluem, forma de vida 

terófita, plantas de pequeno porte, área específica da folha (SLA) elevada, teor de matéria seca 

da folha (LDMC) baixo, sementes pequenas com mecanismos de dispersão. Relativamente às 

áreas abandonadas, os caméfitos dominam nas áreas de ‘sucessão intermédia’, diminuindo em 

favor dos nanofanerófitos nas áreas de ‘sucessão avançada’. Os atributos altura da copa, 

LDMC e massa da semente aumentaram com o tempo de abandono enquanto a SLA 

diminuiu. Através da combinação de dois atributos, forma de vida e SLA, foi possível 

identificar grupos funcionais de resposta. Terófitos com SLA média foram o grupo funcional 

dominante nas áreas de pastoreio, enquanto os nanofanerófitos com SLA média ou elevada 

foram o grupo dominante nas áreas de ‘sucessão avançada’. Em fases intermédias da sucessão 



o grupo dominante foram os caméfitos com SLA média, mas a diversidade de grupos 

funcionais foi mais elevada do que nas restantes categorias pois todos os grupos, com 

excepção de hemicriptófitos com SLA média, estavam representados.  

O estudo apresentado mostrou um aumento da biomassa da parte aérea total com o 

aumento do tempo de abandono indicando um efeito positivo da substituição de espécies 

herbáceas por espécies arbustivas na biomassa aérea total. A produtividade primária líquida da 

parte aérea foi significativamente mais alta nas áreas abandonadas há mais tempo. Este 

aumento deveu-se em grande parte ao aumento da cobertura de Cistus ladanifer. Esta espécie é 

pioneira na colonização de solos degradados e forma um dos primeiros estados da sucessão de 

comunidades arbustivas. Em condições favoráveis esta espécie pode acumular grandes 

quantidades de biomassa em pouco tempo e rapidamente colonizar áreas recentemente 

perturbadas.  

A análise da qualidade inicial da folhada mostrou valores mais elevados de azoto na 

folhada das áreas abandonadas, o que parece ter contribuído para a decomposição rápida 

destes tipos de folhada em fases iniciais e mais lenta em fases mais tardias. Em termos gerais, a 

decomposição da folhada foi mais lenta nas áreas abandonadas do que nas áreas com 

pastoreio. Os resultados mostraram uma correlação positiva entre a taxa de decomposição e o 

conteúdo inicial de celulose e hemicelulose da folhada. Adicionalmente, registou-se uma 

correlação negativa entre a taxa de decomposição e a LDMC, um atributo relacionado com a 

composição estrutural das folhas. 
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Land use changes are important drivers of environmental and biodiversity changes 

worldwide (Vitousek and Mooney 1997, Sala et al. 2000), leading to the loss, modification and 

fragmentation of habitats with the subsequent alterations of global carbon and hydrological 

cycles, global and regional climate, and decline in biodiversity (Foley et al. 2005).  

In Europe, land abandonment and a decrease of land use intensity is a widespread 

tendency that is expected to increase, particularly in lands that are economically marginal for 

production (Puidgefábregas and Mendizabal 1998, Rounsevell et al. 2005), such as parts of the 

regions with Mediterranean climate.  

Mediterranean landscapes are the result of the interaction of a long history of 

anthropogenic disturbances (cultivation, grazing, timber and fuel wood) with natural 

disturbances (such as fire, floods and extreme droughts) and a variable climate (Lavorel and 

Richardson 1999, Gallego-Fernández et al. 2004). The agro-silvo-pastoral systems of South 

Portugal are an example of such complex interactions (Pinto-Correia and Mascarenhas 1999). 

They likely originated from mixed forests of holm and cork oak and other species with 

persistent leaves and are the result of centuries of human management (Capelo and Catry 

2007). Their long management history implies that land use legacies are an essential 

component when attempting to understand their current dynamics and that they should be 

considered when interpreting community and ecosystem response to current land use changes 

(Quétier et al. 2007).  

For a local biota, the regional species pool consists of a specific set of species that 

represent the outcome of history, biogeography and evolutionary processes (Naeem and 

Wright 2003). Ecosystems respond to shifts in land use by changes in structure (e.g. plant 

cover, plant functional type composition) and function (e.g. primary production, 

decomposition, nitrogen dynamics, Aguiar et al. 1996). Particularly in areas with long history of 

management, land abandonment may be expected to cause modifications in the number and 
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identity of the species present, community structure, and variations in stocks and fluxes of 

carbon and nitrogen (Chapin III et al. 2000). Understanding how changes in plant 

communities, such as species richness and composition, influence ecosystem processes 

requires an understanding of the functional traits of the species involved (Chapin III and 

Walker 1997, Chapin III et al. 2000), as well as an understanding of the effects of land use 

change on plant functional traits and on ecosystem processes (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 - Feedbacks between human activities, global change, and biotic and abiotic controls on 

ecosystem processes. Human activities cause environmental and ecological changes of global 

significance. These global changes contribute to changing both the biodiversity and the abiotic 

controls. Various aspects of the biotic community influence the range and proportion of species traits. 

The traits can indirectly affect ecosystem processes by altering the abiotic controls or directly affect 

ecosystem processes. Altered ecosystem processes can feedback to further change biodiversity either 

directly or through further changes in the abiotic controls (dotted lines). Modulators are abiotic 

conditions that influence process rates (e.g. soil temperature and moisture) but are not directly 

consumed in the process (Chapin III 2003). This figure is modified from (Chapin III et al. 2000 and 

Hooper et al. 2005). 
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PLANT FUNCTIONAL TRAITS AND PLANT FUNCTIONAL GROUPS  

Plant functional traits are morphological, physiological or phenological features 

measurable at the individual level, from the cell to whole-organism level, without reference to 

the environment or any other level of organization (Woodward and Kelly 1997, Violle et al. 

2007). A trait may be either continuous or categorical, it may show different attributes along 

environmental gradients or through time, and it can either be a response and/or effect trait 

(Diaz and Cabido 2001, Violle et al. 2007). It relates to universal plant functions of growth (e.g. 

light and nutrient acquisition, water use efficiency) and persistence (e.g. recruitment, dispersal, 

defence against herbivores and other disturbances, Weiher et al. 1999). Plant functional traits 

provide a widely applicable framework for interpreting community shifts along environmental 

gradients (Hodgson 1999 Cornelissen 2003, Lavorel 2007). The analysis of plant functional 

trait response to environmental variation, as well as of their effects on ecosystem function, has 

been guided by the recognition that plants like all living organisms are constrained for 

performing alternative functions simultaneously with a limited amount of available resources 

(Weiher et al. 1999, Westoby, et al. 2002). Therefore, plants need to establish trade-offs 

between different functions in order to adapt to the environment. An example is the trade-off 

between rapid acquisition of resources and the conservation of resources, often associated to 

specific leaf area (SLA, Westoby et al. 2002). Species with high SLA tend to also have higher 

leaf nitrogen content, higher photosynthetic capacity, and generally faster turnover of plant 

parts that permit flexible response to the spatial patchiness of light and soil resources giving 

short-term advantage over species with low SLA (Garnier et al. 1997, Reich et al. 1997, 

Westoby et al. 2002). A second example is the fecundity and seed mass trade-off, which relates 

to establishment opportunities and success in the face of hazards. Seed mass and fecundity are 

negatively correlated: plants with small seeds have higher fecundity, while species with large 
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seeds generally germinate better and have seedlings with better survivorship (Westoby 1998, 

Turnbull et al. 1999) but produce fewer seeds. 

Plant functional groups are non-phylogenetic assemblages of species based on common 

sets of traits which can be affected in a similar way by environmental factors (functional response 

groups) and/ or have similar effects on major ecosystem processes (functional effect groups, Diaz 

and Cabido 2001). Plant functional groups have been seen as a tool for the simplification of 

floristic complexity in global vegetation models and for monitoring the effects of global 

change or management on vegetation distribution and ecosystem processes (any process 

measured at the ecosystem level, such as above-ground biomass, decomposition; Lavorel et al. 

2007, Violle et al. 2007). Although this classification can be quite useful, in practice, defining 

the different functional groups is often difficult because this requires arbitrary decisions as to 

where a boundary between groups lies (Hooper et al. 2005). Additionally, traits and functional 

groups that are of interest for one ecosystem process or response to one environmental factor 

may not be of interest for others (Lavorel and Garnier 2002). Finally, traits that determine 

how a species responds to disturbance or environmental change (response traits) may differ 

from those that determine how that species affects ecosystem processes (effect traits, Diaz 

and Cabido 2001). Understanding the links between functional response traits/groups, and 

effect traits/groups remains a significant challenge (Hooper et al. 2005, Lavorel et al. 2007). 

According to Lavorel et al. (2007), continuous traits should be used for the classification of 

plants into functional groups. The focus should be on functional traits that can together 

represent the key response and effects of vegetation at various scales from ecosystems to 

landscapes, biomes and continents, and that can be used to develop a satisfactory functional 

classification for global scale modelling of ecosystems. Therefore, from all the possible traits 

within a individual, those of interest for functional classification should fulfil four criteria: (1) 

have some relationship to plant function, (2) be relatively easy to observe and quick to 
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quantify, (3) be measured in a way that can be standardized across a wide range of species and 

growing conditions (4) have a consistent ranking – not necessarily absolute constant values – 

across species when environmental conditions vary (Hodgson et al. 1999, Weiher et al. 1999, 

Lavorel et al. 2007). A list of plant traits was proposed by Weiher et al. (1999) and the links 

between plant traits and their response to environmental filters and their effects on ecosystem 

processes were presented by Lavorel and Garnier (2002). Links between traits relevant for this 

study and their response to environmental filters and/or effect on ecosystem processes are 

summarized in Table 1. 

 

SPECIES TRAITS AND ENVIRONMENTAL GRADIENTS  

Environmental factors can be seen as filters that constrain which species from a regionally 

available pool can persist at a site. Filtering operates by changing the proportion of the 

different genotypes of a community and it strongly determines which traits and functions can 

survive at any particular site. Major environmental filters include climate, disturbance regime 

and biotic interactions (Díaz et al. 2007). The Mediterranean region has a long history of 

disturbances such as fire, grazing and ploughing, with an important effect for the 

Mediterranean vegetation.  

Several traits have been related to disturbance (e.g.  Noy-Meir et al. 1989, Fernández-Alés et 

al. 1993, Landsberg et al. 1999, Pausas and Bradstock 2007) but few general patterns have been 

found. Disturbed habitats seem to favour ruderal species, which are short-lived plants of rapid 

growth investing a large proportion of resources in reproduction and devoting little resources 

to defence (Grime 2001). Plant species tolerant to soil disturbance by ploughing are usually 

short and have prostrate habit or flat rosettes, high fecundity and a small dormant seed pool 
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Table 1 – Relevant traits and their links to environmental response and ecosystem effects. Traits in the 

table include the plant functional traits used in following chapters of this dissertation. Adapted from 

(Cornelissen 1996, Lavorel and Garnier 2002, Cornelissen et al. 2003, Garnier et al. 2007, Quested et al. 

2007).  

 Environmental response Ecosystem effect 

Vegetative traits   

 Life form Reflects strategies and associated 
traits for avoidance, tolerance and 
regeneration being a good 
predictor for responses to 
disturbance such as fire and 
grazing. 

Associated to primary 
productivity (carbon 
stock, resource 
capture and growth 
rate), flammability, 
and decomposition 

 Canopy height (plant height)  Associated with competitive 
vigour and response to 
disturbance 

Associated to light 
capture, fire spread 
and competition  

Leaf dry matter content (LDMC, is the 

oven-dry mass of a leaf divided by its 

water-saturated fresh mass) 

Is related to 
flammability, drought 
tolerance, growth rate, 
and decomposition  

Specific leaf area  (SLA, is the one-

sided area of a fresh leaf divided by its 

oven dry mass) 

Leaf carbon concentration (LNC) 

Leaf nitrogen concentration (LCC) 

Leaf phosphorus concentration (LPC) 

Are linked to the establishment 
phase and persistence of plants. 
Are correlated to relative growth 
rate and are involved in a trade 
off between rapid production of 
biomass and efficient 
conservation of nutrients. LDMC 
is also related to resistance to 
grazing. 

 

Related to primary 
productivity (carbon 
fixation and growth 
rate) 

 Type of mycorrhiza 
Is an indicator of nutrient uptake 
strategy 

Related to primary 
productivity (resource 
capture) 

Regenerative traits    

   Seed mass Indicator of seed production, 
dispersal ability and persistence in 
the seed bank 

 

   Dispersal mode Indicator dispersal ability  

   Onset of flowering Related to grazing response  
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 (McIntyre et al. 1995, Lavorel et al. 1999). Plant traits often linked with grazing response 

include life history, canopy height plant habit, architecture, or growth from (Lavorel et al. 

1997, McIntyre et al. 1999). However, the history of grazing, as well as site productivity, seem 

to play an important role in determining what plant traits are consistently associated with 

grazing (Diaz et al. 2007). Results from a meta-analysis of plant response to grazing, based on 

197 studies indicated that, overall, grazing favours annual over perennial plants, short plants 

over tall, prostrate over erect, and stoloniferous and rosette architecture over tussock 

architecture (Diaz et al. 2007). No consistent pattern was found for growth form. Specific leaf 

area, representing a fundamental trade-off between growth and defence, has also been 

suggested to be linked with grazing response (Westoby 1999, Cingolani et al. 2005). Westoby 

(1999) suggested that plants with high SLA should be favoured under heavy, non-selective 

grazing (species with high SLA may be advantaged by faster regrowth) while plants with low 

SLA should predominate under moderate to low grazing.  

Regenerative traits (e.g. seed mass, dispersal, persistence in the seed bank) are of great 

importance for evaluating the response to soil disturbance and fire. It is commonly assumed 

that the main traits allowing persistence after stand-replacement fires are the resprouting 

capacity and the ability to form a persistent seed bank (Pausas et al. 2004), the latter also 

important in plant persistence after soil disturbance (Fernández Alés et al. 1993, Luzuriaga et al. 

2005).  

Succession may also be seen as a gradient, a complex environmental gradient where the 

availability of resources is strongly altered (Bazzaz 1996). A general pattern in species traits 

response to succession seems to be the replacement of fast-growing species (high SLA and 

LNC, low LDMC) acquiring external resources rapidly, which dominate immediately following 

abandonment, with slower growing species (low SLA and LNC, high LDMC), which tend to 

conserve internal resources more efficiently and generally dominate later stages of succession 
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(Garnier et al. 2004). The relation of plant traits with abandonment and succession is 

approached in Chapter 2. 

 

SPECIES TRAITS AND ECOSYSTEM PROCESSES 

Species traits affect ecosystem processes directly through changes in biotic controls and 

indirectly through changes in abiotic controls (Chapin III et al. 2000; Fig. 1). The species traits 

that are most likely to affect ecosystem processes are those that modify the availability, capture 

and use of soil resources such as water and nutrients, those that affect the trophic structure 

within a community, and those that influence the frequency, severity, and extent of 

disturbances such as fire (Chapin III and Walker 1997). 

A well documented mechanism by which species traits affect resource availability is 

through differences in litter quality, which influences the turnover rate of nutrients in litter 

and soil organic matter (Hobbie 1992). Litter quality varies markedly between species or 

species groups (Quested et al. 2003). Cornelissen et al. (1999) found that slow growing, 

evergreen, woody species from the British flora differ in litter quality and several leaf traits 

(lower SLA and palatability) from deciduous woody species and, consequently, decompose 

slower than the latter. However, this difference was not present in plant species from 

Mediterranean-type ecosystems where differences in leaf decomposition rate were not 

consistently different (Gallardo and Merino 1993, Gillon et al. 1994). It was suggested that, in 

ecosystems under relatively strong drought stress, deciduous plants possess protective leaf 

traits that resemble those of evergreens, even in the more favourable season for growth 

(Cornelissen et al. 1999). Species characteristic from later successional stages, as well as species 

adapted to low nutrient and/or dry sites, usually produce litter with lower concentrations of 

nitrogen and phosphorus and with higher concentrations of lignin, tannins, waxes and other 

recalcitrant compounds that negatively affect microbes and lead to low decomposition rates 
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(Cornelissen 1996, Gallardo 2000). On the contrary, early successional, as well as high-

resource species produce rapidly decomposing litter (Grime 2001, Chapin III 2003).  

Another mechanism by which species alter resource supply is through associations 

between plants and nitrogen-fixing micro-organisms, and mycorrhizal associations between 

plant roots and fungi (Chapin III et al. 2000). Nitrogen fixation and mycorrhizal associations 

increase the ability of plants to utilize different nutrient pools, thereby enhancing primary 

production and speeding succession (Read 1994, Klironomos et al. 2000, Read and Perez-

Moreno 2003). 

Grazing has a major impact on ecosystem processes because it influences the quantity and 

quality of resources that become available for decomposers (Wardle and Bardgett 2004). 

Herbivores transfer plant tissue to the soil before nutrient resorption can occur, they select 

preferentially nutrient-rich tissues, and they excrete nutrients in readily available form, short-

circuiting the decomposition process (Hobbie 1992, Bardgett 2005). Plant traits related to 

protection against herbivores, such as physical leaf toughness, physical barriers (e.g. wax, 

spines, hairs) and secondary compounds also affect soil microorganisms resulting in slower 

decomposition rates (Cornelissen 1996, Cornelissen et al. 2003).  

Some traits of plant species strongly influence the probability or severity of many 

disturbances (Chapin III 2003). Fire is a common disturbance in Mediterranean vegetation 

and important traits linked with this kind of disturbance include those that relate to 

flammability and fire spread (Lavorel and Garnier 2002). Traits influencing flammability 

include those that determine tissue moisture, such as water content, and those conferring 

drought resistance (Table 1). Fire spread is related to the total biomass accumulation and its 

spatial arrangement, which are linked to traits such as canopy height and structure (Table 1, 

Cornelissen et al. 2003).  
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Other ways in which plant species affect their environment include effects on soil 

structure and chemical properties, which in turn influence hydrology, plant growth, 

biogeochemical cycling, and the activity of soil organisms (Eviner and Chapin 2003). Plant 

species can influence microclimate by influencing surface temperature, humidity, water loss 

and light (Moro et al. 1997, Berendse 1998). A study in an annual grassland of California 

showed that different plant species differed in their effects on soil labile carbon, soil 

temperature, and soil moisture, which are chemical soil properties with great importance in 

ecosystem functioning (Eviner 2004). Species effects on soil temperature were most 

pronounced during the cold winters, when temperature is limiting plant and microbial activity, 

while species effects on soil moisture become stronger in the warm, dry spring (Eviner 2004). 

The chemical properties of plant litter and exudates influence many chemical properties of the 

soils, such as pH and nutrient content (Berendse 1998, Van Breemen and Finzi 1998, Knops et 

al. 2002).  

 

Biomass production 

Biomass production and accumulation integrate plant responses to biotic and abiotic 

features of their environment. Plant biomass may be used to estimate primary production, 

nutrient pools, species dominance, responses to experimental manipulations or fuel loads for 

fire (Northup et al. 2005).  

Net primary productivity (NPP) is the amount of carbon and energy that enters 

ecosystems and represents the net carbon gain over a particular time period (usually a year). It 

is the best summary variable of ecosystem processes, being the result of numerous interactions 

among elements, organisms and environment, and it can be considered as an integrative 

variable of the functioning of the whole ecosystem (McNaughton et al. 1989).  
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Net primary productivity is influenced by the resources available and by environmental 

conditions, and the relative importance of these factors varies with scale and ecosystem 

(Chapin III and Eviner 2003). At the global scale, water is the most limiting resource of 

above-ground primary productivity (ANPP)  and changes in ANPP are often related to mean 

annual precipitation (Jobbágy and Sala 2000). At regional or local scales the variation in 

primary productivity depends on soil resources and disturbance regime (Díaz et al. 2005).  

Biomass and net primary productivity also vary among species and life forms. Differences 

result from a wide range of plant traits, including growth rate, allocation patterns, phenology, 

nutrient use efficiency, resource requirements, traits that influence assess to resource pools (e.g. 

root depth or symbiosis with mycorrhiza or N-fixing microorganisms), and traits that 

influence conditions that limit growth (e.g. temperature and moisture, Chapin III and Eviner 

2003). Therefore, changes in structure and composition of vegetation are often accompanied 

by changes in biomass and net primary productivity (Chapin III et al. 2002).  

 

Litter decomposition – a key process 

Decomposition is a key process in the functioning of ecosystems enabling the recycling of 

chemical elements (Chapin et al. 2002). Through decomposition the fixed carbon incorporated 

into above and belowground biomass returns to the atmosphere as CO2 and is incorporated 

into the soil as stable soil organic matter (Schulze et al. 2002). Decomposition also means the 

return of nutrients, other than carbon, to mineral form which can be used by plants for 

biomass production (Berg and Laskowski 2006b). The rate at which decomposition occurs 

determines the availability of these nutrients to plant and therefore influences primary 

production (Berg and Laskowski 2006b). 

The pattern of litter mass loss varies during the decomposition process and three main 

phases can be identified (Chapin 2002). During the first phase leaching of the cell solubles is 
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the predominant process; therefore initially there is a rapid decrease in litter weight due to the 

loss of rapidly metabolizable compounds or simply readily leachable substances (Fig. 2). The 

second phase involves a combination of fragmentation by soil animals, chemical alteration by 

soil microbes and leaching of decay products from litter. The second phase is controlled by 

litter quality. Litter with lower concentrations of nitrogen and phosphorus and with higher 

concentrations of lignin, tannins, waxes and other recalcitrant compounds that negatively 

affect microbes lead to low decomposition rates (Berg 2000). The final phase occurs quite 

slowly and involves chemical alteration of organic matter that is mixed with mineral soil and 

leaching of breakdown products to other soil layers and is often regulated by lignin 

decomposition (Berg and Laskowski 2006a). 

Litter decomposition is controlled by abiotic factors such as climate and soil chemical and 

physical properties and by biotic factors such as litter quality and the nature and abundance of 

the decomposer organisms (Coûteaux et al. 1995, Aerts 1997). Climate is known to influence 

the biodiversity of microbial and animal communities, as well as the duration and the intensity 

of their activity, through its effects on temperature and soil moisture (Coûteaux et al. 1995). 

Temperature affects decomposition directly by promoting microbial activity and indirectly by 

altering soil moisture (decomposers are more productive under warm moist conditions), and 

the quantity and quality of organic matter input to the soil (Chapin III et al. 2002). 

Consequently, climate strongly determines decomposition rate, particularly in Mediterranean 

ecosystems where there is a temporal asynchrony of favourable temperature and moisture 

conditions (Moro and Domingo 2000). Mediterranean ecosystems benefit from pulses of 

moisture, which can speed decomposition, but in contrast the soil surface tends to frequently 

dry rapidly during the periods of favourable moisture and temperature conditions (autumn 

and spring), thereby preventing the formation of stable communities of soil micro-organisms 

and slowing down decomposition (Gallardo 2000). 
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Figure 2 - Representation of the three major phases of litter decomposition, and time scales for leaf-

litters from two contrasting environments (warm tropic and cold tundra). Leaching dominates the first 

phase of decomposition. Substrate composition changes during decomposition because labile 

substrates, such as cell solubles, are broken down more quickly than are recalcitrant compounds, such 

as lignin and microbial cell walls. Figure taken from (Chapin III et al. 2002) 

 

 

Although climate is the factor that most strongly influences decomposition, within a 

particular climatic region, litter quality is the factor exerting the strongest control on litter 

decomposability (Aerts and Chapin 2000). A large number of studies assessed the relationship 

between several litter chemical and physical parameters (such as foliar nutrients, components 

of leaf structure and plant defences), and decomposition rates in different ecosystems (e.g. 

(Gallardo and Merino 1993, Gillon et al. 1994, Berg 2000, Pérez-Harguindeguy et al. 2000, 

Wardle et al. 2002, Aerts et al. 2003, Quested et al. 2007). In general terms, fast growing (high 

foliar nutrient contents), poorly defended species, which dominate early stages of succession, 

produce litter with high decomposition rates while slower growing, better defended species, 

which are common in later stages of succession, produce poor-quality litter with low 
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decomposition rates (Cornelissen et al. 1999, Grime 2001). The relationship between litter 

quality and decomposition with secondary succession is further discussed in Chapter 4.  

 

SECONDARY SUCCESSION 

After disturbance, ecosystems undergo succession, which can be defined as a reasonably 

directional and predictable change in communities resulting from biotically driven changes of 

the physical environment (Odum 1969). In the absence of disturbances, it culminates in a 

stabilized ecosystem in which the developed community is in equilibrium with the prevailing 

environment (Odum 1969, Noble and Slatyer 1980). Secondary succession, in opposition to 

primary succession, which occurs in an area originally devoid of life, generally begins with a 

more mature soil containing a sizable bank of seeds and vegetative propagules (Crawley 1997, 

Chapin 2002). The type of disturbance initiating secondary succession influences the 

successional pattern, particularly in the case of managed areas, where the past land uses have 

an important influence on the vegetation dynamics and may lead to different successional 

patterns (Bonet 2004).  

Different theories exist to explain the adaptation of plants and mechanisms of successional 

change. The model of species replacement states that plant species modify their environment 

creating conditions that favour the establishment of other species but becomes less suitable 

for its own persistence (Clements 1936, Correia 1998). According to other authors, species 

from different stages of succession are present at a site at the beginning of succession and it is 

this initial species composition that determines the future shifts in dominance. This theory 

suggests that there is a gradual replacement of species based on their longevity rather then a 

substitution of one group of species by another (Egler 1954 in Noble and Slatyer 1980). More 

recently Connell and Slatyer (1977) proposed three main types of pathways to explain 

successional sequences: (1) Facilitation pathway, where species change their environment so 
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that it favours the establishment of other species; (2) Tolerance pathway, in which later 

successional species become established and grow in the presence of earlier species because  

they can grow at lower light and nutrient availability; (3) Inhibition pathway, which assumes 

that early successional species inhibit the establishment and growth of species from later 

successional stages (Noble and Slatyer 1980). By the same time Grime (1977) proposed a 

three-strategy model based on primary strategies – competititors, stress tolerators and ruderals 

(CSR). This theory derives from a two-dimensional ordination of the favourability of the 

environment and the level of disturbance, in which one of the extremes (unfavourable, 

disturbed sites) is uninhabitable, leaving a triangle. Competitors occur in conditions of low 

stress and low disturbance. Stress tolerators occur in unfavourable but undisturbed sites were 

the resistance to environmental extremes is an important selective force. Ruderals occur in 

environments that are favourable but disturbed and that, therefore, offer little competition for 

resources (Grime 2001). Tilman (1982 in Bazzaz 1996) explains succession in terms of 

availability of resources, especially nutrients and light. He assumes that throughout succession 

there is an inverse gradient of nutrient and light availability, i.e., an area changes with 

succession from low-nutrient and high-light environment to high-nutrient and low-light 

environment. The competition for limiting resources is important in the determination of the 

dominant species. In this model it is assumed that competing species experience trade offs in 

their resource requirements such that a superior competitor for one resource is an inferior 

competitor for other resources (Tilman 1990). To cope with succession of agricultural fields, 

Gleason & Tilman (1990) proposed the transient dynamics hypothesis. Succession is the result 

of dynamics where the species of early stages of succession having a strong colonization ability 

and/ or fast growth rate are progressively replaced by species with a strong root biomass and/ 

or low tissue nitrogen content (Gleason and Tilman 1990). 
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Nutrient and vegetation dynamics along the succession gradient 

Nutrient dynamics in ecosystems is governed by the balance between supply from the soil 

and demand by the plants and it is generally agreed that the availability of soil nutrients 

changes during ecological succession (Vitousek et al. 1989, Bazzaz 1996). The most dramatic 

changes in the soil occur in the first year of succession and the major factors in these changes 

are the addition of organic matter, the development of a litter layer and the stabilization of the 

soil surface (Bazzaz 1996). Initial soil characteristics such as fertility, temperature and 

moisture, and the nature of disturbance that initiates the succession are important 

determinants of nutrients dynamics during succession (Foster et al. 2003 Chapin 2002). The 

disturbances that initiate secondary succession generally cause increased nitrogen availability in 

the disturbed site because the removal of the dominant vegetation increases soil temperature 

and moisture causing an increase in decomposition and nitrogen release (Vitousek et al. 1989). 

Additionally the initial colonists in secondary succession are often fast-growing species with 

high nutrient contents and relatively high rates of decomposition and nutrient release (Grime 

2001). After this initial pulse nitrogen is expected to decline. The pattern of changes during 

succession of old-fields, however, is less clear and may depend on the duration and intensity 

of agricultural use (Vitousek et al. 1989). The availability of phosphorus, in contrast, usually 

declines with community age, as soil phosphorus is lost by erosion, chemical inactivation and 

transfer to intractable organic complexes (Fitter and Hay 1987). 

During secondary succession there are various developments, which include increasing 

modifications of the soil and micro-climate by the vegetation, increasing interaction between 

plants, declining frequency of seedling establishment, and increasing stratification of the 

vegetation (Bazzaz 1996). Early successional species are usually short-lived and typically have 

high relative growth rates, supported by high rates of photosynthesis and nutrient uptake. 

These species reproduce at an early age, allocate a large proportion of net primary productivity 
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to reproduction and usually have good dispersal ability (Grime 2001). As succession proceeds 

there is a gradual shift in dominance to species that have lower resource requirements and 

grow more slowly (Rees et al. 2001). 

The main factors determining the species present in different stages of succession include 

colonization, initial floristic composition, life history traits and interactions between species 

(Neeman and Izhaki 1996). The ability of species to colonize new sites is related to several 

regeneration traits, such as seed dispersal, seed germination, seed mass and seedling 

competition and establishment (Chapin et al. 1994). The changes in species composition that 

occur after the initial colonization of a site result from a combination of life history traits of 

colonizers, facilitation and competitive interactions, herbivory and stochastic variation in the 

environment (Noble and Slatyer 1980, Bazzaz 1996).  

Facilitation involves processes in which early successional species make the environment 

more favourable for the growth of later successional species (Chapin III et al. 2002), and has 

been referred to be important in harsh environments (Pugnaire et al. 1996). Mechanisms of 

facilitation include microclimate amelioration, increased water availability, and improved soil 

fertility, and nitrogen fixation and mycorrhizal associations (Rodriguez-Echeverria and Pérez-

Fernández 2003, Maestre et al. 2005, Callaway and Pugnaire 2007). Nitrogen-fixing 

associations are commonly found in developing communities, at middle stages of succession. 

As N concentration in the soil increases, the benefits to the fixing species decline and the cost 

of symbiosis presumably remain, rendering the species less competitive (Fitter and Hay 1987). 

In contrast, and because phosphorus usually declines with succession, the benefits of having 

mycorrhiza would be expected to be an advantage and to increase as the community matures 

(Schulze et al. 2002). Short-lived plants that colonize early stages of succession are the ones 

most commonly found to be non-mycorrhizal (Read 1994). 
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Competitive interactions include competition among neighbours for limited resources and 

competition by chemical interference (Crawley 1997). Competition for resources such as light, 

water, nutrients and space are important in plant communities and become intense during 

succession as vegetation develops and biomass increases (Bazzaz 1996). Competition by 

chemical interference, i.e., allopathic phenomena, are an important factor influencing 

community composition and structure, particularly in Mediterranean ecosystems where 

harsher climatic conditions seem to increase the production of allelopathic compounds 

(Herranz et al. 2006). Allelopathic phenomena have been reported for some Mediterranean 

shrubs, in particular for species belonging to the Cistaceae family (Chaves and Escudero 1997)   

The importance of herbivory in ecosystem function has been approached in previous 

sections. Regarding the role of herbivores in succession, it differs among ecosystems and 

successional stage (Chapin III et al. 2002). In grasslands, herbivores prevent the establishment 

of woody species that might otherwise transform grasslands into shrubland and forests 

(Chapin III et al. 2002) thereby slowing down succession.   

 

FROM INDIVIDUAL PLANTS TO COMMUNITIES OR ECOSYSTEMS – THEORY AND 

RESULTS FROM EMPIRICAL STUDIES 

It is in linking vegetation structure and ecosystem processes where the use of plant 

functional traits provides the greatest contribution (Díaz et al. 1999). A framework to link 

plant traits and ecosystem processes was proposed by Chapin III et al. (2000). This framework 

was further refined by Lavorel and Garnier (2002) and it proposes that environmental changes 

will lead to changes in community composition and thus in plant traits, and these in turn will 

affect ecosystem functioning (Fig. 1). This is based on the hypothesis that plant traits can 

simultaneously explain individual plant responses to environmental changes, and effects on 
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ecosystem processes (Lavorel and Garnier 2002). The overlap between response and effect 

traits (Table 1) seems to be strong for traits related with the resource axis (e.g. SLA, LNC, 

LDMC) and week for regeneration traits associated with response to disturbance (Lavorel et al. 

2007).  

An approach used to link species effect traits to ecosystems processes is based on the 

effect of dominants, known as the biomass ratio hypothesis (Grime 1998). The biomass ratio 

hypothesis states that the extent to which a plant species affects ecosystem functions is likely 

to be closely predictable from its contribution to the total biomass. Community-aggregated 

traits, which are the average community value for a trait weighed by species abundance, allow 

the combination of information on community structure and plant traits, and they can be used 

to relate plant traits to ecosystem functioning or to detect the average functional response of 

vegetation to environmental factors (Violle et al. 2007). When the community-aggregated traits 

are calculated for variable traits, i.e. for traits differing in value according to treatment levels, 

then a change in their values can be caused either by variability of traits within species, by a 

change in species composition, or both (Garnier et al. 2004). For the test of the mass ratio 

hypothesis of ecosystem functioning the change in aggregated traits is probably the most 

important community characteristic (Garnier et al. 2007). Such a test was conducted for the 

project Vista (box 2) site in Southern France by Garnier et al. (2004). The authors showed that 

community-aggregated SLA, LDMC and LNC were correlated with specific above-ground net 

primary productivity (SANPP – expresses productivity on a community basis instead of 

ground area basis), but relationships between these traits and biomass and ANPP where not 

significant.  
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STRUCTURE AND OBJECTIVES 

In the context of present land use changes, this work aims to contribute to a better 

understanding of the effect of abandonment on ecosystems with a long history of human 

management, such as the extensive agro-pastoral systems of South Portugal. Abandonment is 

a major factor leading to secondary succession in these areas, and its consequences are still 

little understood. These land use changes are followed by alterations in the soil characteristics 

 
Box 2. Project VISTA – Vulnerability of ecosystem services to land use change in traditional 

agricultural landscapes (2003-2005) 

 

The project aimed at compiling an integrated assessment of the vulnerability of European 

traditional agro-pastoral landscapes to land use change that would assist land managers and 

regional policy makers for the prioritisation of sustainable development strategies. The project 

used the conceptual framework of Plant Functional Traits (PFT) to predict the dynamics of, and 

the services provided by, traditional agro-pastoral landscapes and applied a new scenario-based 

approach to integrate ecological, socio-cultural and economic data in order to represent current 

and potential future trends, shaped by global and regional contexts. The project involved 11 

sites, in marginal agricultural areas, from 9 countries. 

The present work was mostly carried out under the framework of the work package named 

“Linking plant traits to population and ecosystem functioning”. The main objectives of this 

work package were: 

1. Based on a core list traits proposed by Weiher (1998) aiming at an understanding of 

vegetation, to test whether traits selected (“soft” traits) are reliable surrogates for the underlying 

functions and processes (” hard” traits) they are supposed to capture. These relate to patterns of 

resource acquisition and use, competitive ability and plant demography 

2. To test, using a network of 11 sites, how some of these soft traits vary along gradients 

of land use change, identifying the direct underlying gradients in each case 

3. To identify relationships between species traits and ecosystem processes 

4. To establish synthetic indices of ecosystem functioning and indicators that can be used 

to assess and predict impacts of land-use changes on ecosystem services 

5. To feed data bases of plant traits for Western and Mediterranean Europe 
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and vegetation composition and structure. The species present at a site, as well as those that 

colonize throughout succession, have a set of functional traits that allow them to colonize and 

persist, that determine their response to environmental factors, and that will determine the 

change in species richness and composition throughout succession (Fig. 3). The species that 

colonize different stages of succession likely differ in plant functional traits that influence rates 

of biomass accumulation and quality of the litter produced with consequences for ecosystem 

processes, such as above-ground net primary productivity and litter decomposition. 

 

 

 
 
Figure 3 - Land use change contributes to changing species diversity in term of richness, composition 

as a result of changes in species response traits. Changes in species effect traits affect ecosystem 

processes (adapted from Chapin III et al. 2000, Lavorel and Garnier 2002). As discussed above, 

response and effect traits may or may not coincide. 

 

 

The objectives of this thesis were to:  

1. Identify changes in vegetation composition and structure in response to decreasing 

land use intensity (Chapters 1 and 2) 

Land use change 

(Agricultural abandonment; grazing abandonment or reduction) 

Response traits 

Effect traits 

Community structure 

Richness 

Composition 

Ecosystem processes 

(Productivity, Decomposition) 
? 
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2. Identify functional groups and changes in species traits in response to decreasing land 

use intensity (Chapter 2) 

3. Identify the effect of decreasing land use intensity in key ecosystem processes such as 

decomposition and above-ground biomass and net primary productivity (Chapters 3 

and 4).  

 

 REFERENCES 

Aerts, R., Caluwe, H. and Beltman, B. 2003. Plant community mediated vs. nutritional 

controls on litter decomposition rates in grasslands. Ecology 84: 3198-3208. 

Aerts, R. and Chapin, F. S. 2000. The mineral nutrition of wild plants revisited: A re-

evaluation of processes and patterns. Advances in Ecological Research, 30: 1-67. 

Aerts, R. 1997. Climate, leaf chemistry and leaf litter decomposition in terrestrial 

ecosystems: a triangular relationship. Oikos 79: 439-449. 

Aguiar, M. R., Paruelo, J. M., Sala, O. E. and Lauenroth, W. K. 1996. Ecosystem responses 

to changes in plant functional type composition: An example from the Patagonian steppe. 

Journal of Vegetation Science 7: 381-390. 

Bardgett, R. 2005. The biology of soil. A community and ecosystem approach. Oxford Press, 

Oxford.  

Bazzaz, F. A. 1996. Plants in changing environments. Linking physiological, population, and 

community ecology. Cambridge University Press, Cambridge. 

Berendse, F. 1998. Effects of dominant plant species on soils during succession in 

nutrient-poor ecosystems. Biogeochemistry 42: 73-88. 

Berg, B. and Laskowski, R. 2006a. Changes in substrate composition and rate-regulating 

factors during decomposition. Advances in Ecological Research 38: 102-155. 

Berg, B. and Laskowski, R. 2006b. Litter decomposition: a guide to carbon and nutrient 

turnover. Advances in Ecological Research, 38: 1-12. 

Berg, B. 2000. Litter decomposition and organic matter turnover in northern forest soils. 

Forest Ecology and Management 133: 13-22. 



 
Introduction 

 25 

Bonet, A. 2004. Secondary succession of semi-arid Mediterranean old-fields in south-

eastern Spain: insights for conservation and restoration of degraded lands. Journal of Arid 

Environments 56: 213-233. 

Callaway, R. M. and Pugnaire, F. I. 2007. Facilitation in plant communities. In: Pugnaire, 

F. I. and Valladares, F., (eds.) Functional plant ecology. Pages 435-455. CRC Press.  

Capelo, J. and Catry, F. 2007. Biologia, Ecologia e distribuição da azinheira. In: Silva, J. S., 

(ed.) Os montados - Muito para além das árvores. Pages 119-129, Lisboa.  

Chapin III, F. S. 2003. Effects of plant traits on ecosystem and regional processes: a 

conceptual framework for predicting the consequences of global change. Annals Botany 91: 

455-463. 

Chapin III, F. S. and Eviner, V. T. 2003. Biogeochemistry of terrestrial net primary 

production. In: Holland, H. D. and Turekian, K. K., (eds.) Treatise on geochemistry. Pages 215-

247. Elsevier. 

Chapin III, F. S., Matson, P. A. and Mooney, H. A. 2002. Principles of terrestrial ecosystem 

ecology. Springer-Verlag, New York. 

Chapin III, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, 

H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M. C. and Díaz, S. 2000. 

Consequences of changing biodiversity. Nature 405: 234-242. 

Chapin III, F. S. and Walker, B. H. 1997. Biotic control over the functioning of 

ecosystems. Science 277: 504-504. 

Chapin III, F. S., Autumn, K. and Pugnaire, F. 1993. Evolution of suites of traits in 

response to environmental stress. American Naturalist 142: 79-92. 

Chaves, N. and Escudero, J. C. 1997. Allelopathic effect of Cistus ladanifer on seed 

germination. Functional Ecology 11: 432-440. 

Cingolani, A. M., Posse, G. and Collantes, M. B. 2005. Plant functional traits, herbivore 

selectivity and response to sheep grazing in Patagonian steppe grasslands. Journal of Applied 

Ecology 42: 50-59. 

Clements, F.E. 1936. Nature and structure of the climax. Journal of Ecology 24: 252-284 

Connell, J.H. and Slatyer, R.O. 1977. Mechanisms of succession in natural communities 

and their role in community stability and organization. American Naturalist 111: 1119-1144 

Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., 

Reich, P. B., Steege, H., Morgan, H. D., van der Heijden, M. G. A., Pausas, J. G. and Poorter, 

H. 2003. A handbook of protocols for standardised and easy measurement of plant functional 

traits worldwide. Australian Journal of Botany 51: 335-380. 



 
Introduction 

 26 

Cornelissen, J. H. C., Pérez-Harguindeguy, N., Díaz, S., Grime, J. P., Marzano, B., Cabido, 

M., Vendramini, F. and Cerabolini, B. 1999. Leaf structure and defence control litter 

decomposition rate across species and life forms in regional floras on two continents. New 

Phytologist 143: 191-200.  

Cornelissen, J. H. C. 1996. An experimental comparisson of leaf decomposition rates in a 

wide range of temperate plant species and types. Journal of Ecology 84: 573-582. 

Correia, O. 1998. Sucessão ecológica. Cadernos de Ecologia 1: 47-88 

Coûteaux, M. M., Bottner, P. and Berg, B. 1995. Litter decomposition, climate and litter 

quality. Trends in Ecology and Evolution 10: 63-66. 

Crawley, M. J. 1997. The structure of plant communities. In: Crawley, M. J., (ed.) Plant 

ecology. Pages 475-555. Blackwell Science, Oxford. 

Díaz, S., Lavorel, S., Chapin III, F. S., Tecco, P. A., Gurvich, D. E. and Grigulis, K. 2007. 

Functional diversity - at the crossroads between ecosystem functioning and environmental 

filters. In: Canadell, J., Pitelka, L. F. and Pataki, D., (eds.) Terrestrial ecosystems in a changing world. 

Pages 81-91. Springer-Verlag, New York. 

Diaz, S., Lavorel, S., McIntyre, S., Falczuk, V., Casanoves, F., Milchunas, D. G., Skarpe, 

C., Rusch, G., Sternberg, M., Noy-Meir, I., Landsberg, J., Zhang, W., Clark, H. and Campbell, 

B. D. 2007. Plant trait responses to grazing - a global synthesis. Global Change Biology 13: 313-

341. 

Díaz, S., Tilman, D., Fargione, J. and al., e. 2005. Biodiversity regulation of ecosystem 

services. In: Hassan, R., Scholes, R. and Ash, N., (eds.) Millennium ecosystem assessement. 

Ecosystems and Human well-being: current state and trends. Island Press.  

Diaz, S. and Cabido, M. 2001. Vive la difference: plant functional diversity matters to 

ecosystem processes. Trends in Ecology and Evolution 16: 646-655. 

Díaz, S., Cabido, M., Zak, M., Martínez Carretero, E. and Araníbar, J. 1999. Plant 

functional traits, ecosystem structure and land-use history along a climatic gradient in central-

western Argentina. Journal of Vegetation Science 10: 651-660. 

Eviner, V. T. 2004. Plant traits that influence ecoystem processes vary independently 

among species. Ecology 85: 2215-2229. 

Eviner, V. T. and Chapin, F. S. 2003. Functional matrix: a conceptual framework for 

predicting multiple plant effects on ecosystem processes. Annual Review Ecology Systematics 34: 

455-485. 

Fernández Alés, R., Laffraga, J. M. and Ortega, F. 1993. Strategies in Mediterranean 

grassland annuals in relation to stress and disturbance. Journal of Vegetation Science 4: 313-322. 



 
Introduction 

 27 

Fitter, A.H. and Hay, R.K.M. 1987. Environmental physiology of plants. 2nd ed. Academic Press. 

London. 

Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. 

S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., 

Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N. and Snyder, P. K. 

2005. Global consequences of land use. Science 309: 570-574. 

Foster, D., Swanson, F., Aber, J., Burke, I., Brokaw, N., Tilman, D. and Knapp, A. 2003. 

The importance of land-use legacies to ecology and conservation. Bioscience 53: 77-88. 

Gallardo, A. 2000. Decomposición de hojarasca en ecosistemas mediterráneos. In: 

Zamora, R. and Pugnaire, F. I., (eds.) Ecosistemas Mediterráneos - Analisis funcional. Pages 95-122. 

CSIC-AEET.  

Gallardo, A. and Merino, J. 1993. Leaf Decomposition in 2 Mediterranean Ecosystems of 

Southwest Spain - Influence of Substrate Quality. Ecology 74: 152-161. 

Gallego-Fernández, J. B., García-Mora, M. R. and García-Novo, F. 2004. Vegetation 

dynamics of Mediterranean shrublands in former cultural landscape at Grazalema Mountains, 

South Spain. Plant Ecology 172: 83-94. 

Garnier, E., Cordinnier, P., Guillerm, J. L. and Sonié, L. 1997. Specific leaf area and leaf 

nitrogen concentration in annual and perennial grass species growing in Mediterranean old-

fields. Oecologia 111: 490-498. 

Garnier, E., Cortez, J., Billés, G., M-L, N., Roumet, C., Debussche, M., Laurent, G., 

Blanchard, A., Aubry, D., Bellmann, A., Neill, C. and Toussaint, J.-P. 2004. Plant functional 

Markers capture ecosystem properties during secundary succession. Ecology 85: 2630-2637. 

Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., Eriksson, O., 

Fortunel, C., Freitas, H., Golodets, C., Grigulis, K., Jouany, C., Kazakou, E., Kigel, J., Kleyer, 

M., Lehsten, V., Leps, J., Meier, T., Pakeman, R., Papadimitriou, M., Papanastasis, V., 

Quested, H. M., Quétier, F., Robson, M., Roumet, C., Rusch, G., Skarpe, C., Sternberg, M., 

Theau, J. P., Thébault, A., Vile, D. and Zarovali, M. P. 2007. Assessing the effects of land use 

change on plant traits communities and ecosystem functioning in grasslands: a standardized 

methodology and lessons from an application to 11 european sites. Annals of  Botany 99:967-

985. 

Gillon, D., Joffre, R. and Ibrahima, A. 1994. Initial litter properties and decay rate: a 

microcosm experiment on Mediterranean species. Canadian Journal of Botany 72: 946-954. 

Gleason, S. and Tilman, D. 1990. Allocation and the transient dynamics of competition 

during succession in poor soils. Ecology 71: 1144 -1155 



 
Introduction 

 28 

Grime, J. P. 2001. Plant strategies, vegetation processes and ecosystem properties. 2nd ed. John Wiley 

& Sons. Chichester.  

Grime, J. 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder 

effects. Journal of Ecology 86: 902-910. 

Grime, J. 1977. Evidence for the existence of three primary strategies in plants and its 

relevance to ecological and evolutionary theory. American Naturalist 111: 1169-1194 

Herranz, J. M., Ferrandis, P., Copete, M. A., Duro, E. M. and Zalacain, A. 2006. Effect of 

allelopathic compounds produced by Cistus ladanifer on germination of 20 Mediterranean 

taxa. Plant Ecology 184: 259-272. 

Hobbie, S. E. 1992. Effects of Plant-Species on Nutrient Cycling. Trends in Ecology and 

Evolution 7: 336-339. 

Hodgson, J. G., Wilson, P. J., Hunt, R., Grime, J. P. and Thompson, K. 1999. Allocating 

C-S-R plant functional types: a soft approach to a hard problem. Oikos 85: 282-294. 

Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. 

H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, A. J., Vandermeer, 

J. and Wardle, D. A. 2005. Effects of biodiversity on ecosystem functioning: A consensus of 

current knowledge. Ecological Monographs 75: 3-35. 

Jobbágy, E. G. and Sala, O. E. 2000. Controls of grass and shrub aboveground production 

in the Patagonian steppe. Ecological Applications 10: 541-549. 

Klironomos, J. N., McCune, J., Hart, M. and Neville, J. 2000. The influence of arbuscular 

mycorrhizae on the relationship between plant diversity and productivity. Ecology Letters 3: 137-

141. 

Knops, J., Bradley, K. L. and Wedin, D. 2002. Mechanisms of plant species impact on 

ecosystem nitrogen cycling. Ecology Letters 5:454-466. 

Landsberg, J., Lavorel, S. and Stol, J. 1999. Grazing response groups among understorey 

plants in arid rangelands. Journal of Vegetation Science 10: 683-696. 

Lavorel, S., Díaz, S., Cornelissen, J. H. C., Garnier, E., Harrison, S. P., McIntyre, S., 

Pausas, J., Pérez-Harguindeguy, N., Roumet, C. and Urcelay, C. 2007. Plant functional types: 

are we getting any closer to the Holly Grail? In: Canadell, J., Pitelka, L. F. and Pataki, D., (eds.) 

Terrestrial ecosystems in a changing world. Pages 149-164. Springer-Verlag, New York.. 

Lavorel, S. and Garnier, E. 2002. Predicting changes in community composition and 

ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545-

556. 



 
Introduction 

 29 

Lavorel, S., McIntyre, S. and Grigulis, K. 1999. Plant responses to disturbance in a 

Mediterranean grassland: How many functional groups? Journal of Vegetation Science 10: 661-672. 

Lavorel, S. and Richardson, D. M. 1999. Diversity, stability and conservation of 

mediterranean-type ecosystems in a changing world: an introduction. Diversity and Distributions 

5: 1-2.  

Lavorel, S., McIntyre, S., J., L. and T.D.A., F. 1997. Plant functional classifications: from 

general groups to specific groups based on response to disturbance. Trends in Ecology and 

Evolution 12: 474-478. 

Luzuriaga, A. L., Escudero, A., Olano, J. M. and Loidi, J. 2005. Regenerative role of seed 

banks following an intense soil disturbance. Acta Oecologica 27: 57-66. 

Maestre, F. T., Valladares, F. and Reynolds, J. F. 2005. Is the change of plant-plant 

interactions with abiotic stress predictable? A meta-analysis of field results in arid 

environments. Journal of Ecology 93: 748-757. 

McIntyre, S., Lavorel, S., Landsberg, J. and Forbes, T. D. A. 1999. Disturbance response 

in vegetation - towards a global perspective on functional traits. Journal of Vegetation Science 10: 

621-630. 

McIntyre, S., Lavorel, S. and Tremont, R. M. 1995. Plant life-history attributes: their 

relationship to disturbance response in herbaceous vegetation. Journal of Ecology 83: 31-44. 

McNaughton, S. J., M. Oesterheld, D. A. Frank, and K. J. Williams. 1989. Ecosystem- level 

patterns of primary productivity and herbivory in terrestrial habitats. Nature 341: 142-144. 

Moro, M. J. and Domingo, F. 2000. Litter Decomposition in Four Woody Species in a 

Mediterranean Climate: Weight Loss, N and P Dynamics. Annals of  Botany 86: 1065-1071. 

Moro, M. J., Pugnaire, F. I., Haase, P. and Puigdefabregas, J. 1997. Effect of the canopy of 

Retama sphaerocarpa on its understorey in a semiarid environment. Functional Ecology 11: 425-

431. 

Naeem, S. and Wright, J. P. 2003. Disentangling biodiversity effects on ecosystem 

functioning: deriving solutions to a seemingly insurmountable problem. Ecology Letters 6: 567-

579. 

Neeman, G. and Izhaki, I. 1996. Colonization in an abandoned East-Mediterranean 

vineyard. Journal of Vegetation Science 7: 465-472. 

Noble, I. R. and Slatyer, R. O. 1980. The subject of vital attributes to predict successional 

changes in plant communities subject to recurrent disturbances. Vegetatio 43: 5-21 



 
Introduction 

 30 

Northup, B. K., Zitzer, S. F., Archer, S., McMurtry, C. R. and Boutton, T. W. 2005. 

Above-ground biomass and carbon and nitrogen content of woody species in a subtropical 

thornscrub parkland. Journal of Arid Environments 62: 23-43. 

Noy-Meir, I., Gutman, M. and Kaplan, Y. 1989. Responses of Mediterranean Grassland 

Plants to Grazing and Protection. Journal of Ecology 77: 290-310. 

Odum, E. P. 1969. Strategy of Ecosystem Development. Science 164: 262-270 

Pausas, J. G. and Bradstock, R. A. 2007. Fire persistence traits of plants along a 

productivity and disturbance gradient in mediterranean shrublands of south-east Australia. 

Global Ecology and Biogeography 16: 330-340.  

Pausas, J. G., Bradstock, R. A., Keith, D. A., Keeley, J. E. and Network, G. F. 2004. Plant 

functional traits in relation to fire in crown-fire ecosystems. Ecology 85: 1085-1100. 

Pérez-Harguindeguy, N., Díaz, S., Cornelissen, J. H., Vendramini, F., Cabido, M. and 

Castellanos, A. 2000. Chemistry and thoughness predict leaf litter decomposition rates over a 

wide spectrum of functional types and taxa in central Argentina. Plant and Soil 218: 21-30. 

Pinto-Correia, T. and Mascarenhas, J. 1999. Contribution to the extensification/ 

intensification debate: new trends in the Portuguese montado. Landscape and Urban Planning 46: 

125-131. 

Pugnaire, F. I., Haase, P., Puigdefabregas, J., Cueto, M., Clark, S. C. and Incoll, L. D. 1996. 

Facilitation and succession under the canopy of a leguminous shrub, Retama sphaerocarpa, in 

a semi-arid environment in south-east Spain. Oikos 76: 455-464. 

Puigdefabregas, J. and Mendizabal, T. 1998. Perspectives on desertification: western 

Mediterranean. Journal of Arid Environments 39: 209-224. 

Quested, H., Eriksson, O., Fortunel, C. and Garnier, E. 2007. Plant traits relate to whole-

community litter quality and decomposition following land use change. Functional Ecology, 21: 

1016-1026 

Quested, H. M., Cornelissen, J. H. C., Press, M. C., Callaghan, T. V., Aerts, R., Trosien, F., 

Riemann, P., Gwynn-Jones, D., Kondratchuk, A. and Jonasson, S. E. 2003. Decomposition of 

sub-arctic plants with differing nitrogen economies: A functional role for hemiparasites. 

Ecology 84: 3209-3221. 

Quétier, F., Thébault, A. and Lavorel, S. 2007. Plant traits in a state and transition 

framework as markers of ecosystem response to land-use change. Ecological Monographs 77: 33-

52. 



 
Introduction 

 31 

Read, D. J. 1994. Plant-microbe mutualisms and community structure. In: Schulze, E. D. 

and Mooney, H. A., (eds.) Biodiversity and ecosystem function. Pages 181-209. Springer-Verlag, 

Berlin.  

Read, D. J. and Perez-Moreno, J. 2003. Mycorrhizas and nutrient cycling in ecosystems - a 

journey towards relevance? New Phytologist 157: 475-492. 

Rees, M., Condit, R., Crawley, M., Pacala, S. and Tilman, D. 2001. Long-term studies of 

vegetation dynamics. Science 293: 650-654. 

Reich, P. B., B.Walters, M. and Ellsworth, D. S. 1997. From tropics to tundra: Global 

convergence in plant functioning. Proceedings of the  National Academy of Sciences 94: 13730-13734. 

Rodríguez-Echeverría S. and Pérez-Fernández M.A. 2003. Soil fertility and herbaceous 

facilitation mediated by Retama sphaerocarpa. Journal of Vegetation Science, 14: 807-814 

Rounsevell, M. D. A., Ewert, F., Reginster, I., Leemans, R. and Carter, T. R. 2005. Future 

scenarios of European agricultural land use II. Projecting changes in cropland and grassland. 

Agriculture Ecosystems and Environment 107: 117-135. 

Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-

Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, 

H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M. and Wall, D. H. 

2000. Biodiversity - Global biodiversity scenarios for the year 2100. Science 287: 1770-1774. 

Schulze, E.-D., Beck, E. and Müller-Hohenstein, K. 2002 Plant Ecology. Springer, Berlin. 

Tilman, D. 1990. Constrains and tradeoffs: towards a predictive theory of competition and 

succession. Oikos 58: 3-15. 

Turnbull, L. A., Rees, M. and Crawley, M. J. 1999. Seed mass and the 

competition/colonization trade-off: a sowing experiment. Journal of Ecology 87: 899-912. 

Van Breemen, N. and Finzi, A. C. 1998. Plant-soil interactions: ecological aspects and 

evolutionary implications. Biogeochemistry 42: 1-19. 

Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. and Garnier, E. 

2007. Let the concept of trait be functional! Oikos 116: 882-892. 

Vitousek, P. M. and Mooney, H. A. 1997. Human dominantion of Earth's ecosystems. 

Science 277: 494-499. 

Vitousek, P. M., Matson, P. A. and Vancleve, K. 1989. Nitrogen Availability and 

Nitrification during Succession - Primary, Secondary, and Old-Field Seres. Plant and Soil 115: 

229-239. 



 
Introduction 

 32 

Wardle, D. A. and Bardgett, R. D. 2004. Human-induced changes in large herbivorous 

mammal density: the consequences for decomposers. Frontiers in Ecology and the Environment 2: 

145-153. 

Wardle, D. A., Bonner, K. I. and Barker, G. M. 2002. Linkages between plant litter 

decomposition, litter quality, and vegetation responses to herbivores. Functional Ecology 16: 585-

595. 

Weiher, E., van der Werf, A., Thompson, K., Roderick, M., Garnier, E. and Eriksson, O. 

1999. Challenging Theophrastus: A common core list of plant traits for functional ecology. 

Journal of Vegetation Science 10: 609-620. 

Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. and Wright, I. J. 2002. Plant 

ecological satregies: some leading dimensions of variation between species. Annual Reviewof 

Ecology and Systematics 33: 125-159. 

Westoby, M. 1999. Generalization in functional plant ecology: The species sampling 

problem, plant ecology strategy schemes and phylogeny. In: Francisco I. Pugnaire, F. V., (ed.) 

Handbook of functional plant ecology. Pages 847-872. Marcel Dekker, New York.  

Westoby, M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil 

199: 213-227. 

Woodward, F.I. and Kelly, C.K. 1997. Plant functional types: towards a definition by 

environmental constraints. In: Smith TM, Shugart HH, Woodward FI (eds). Plant Functional 

Types. Pages 3-19. Cambridge University Press, Cambridge. 

Woodward, F. I. and Cramer, W. 1996. Plant functional types and climatic changes: 

Introduction. Journal of Vegetation Science 7: 306-308. 

 

 



 

 

 

 

CHAPTER 1 

 

SITE CHARACTERIZATION: VEGETATION COMPOSITION AND SOIL PROPERTIES 

 

 



 

 

 

 



 

35 
 

INTRODUCTION 

Current and historical human activity is an unavoidable subject when studying the 

structure and function of ecosystems because it strongly influences modern vegetation 

patterns (Foster et al. 2003).  

The South of Portugal, and in particular the region of Baixo Alentejo, has a long history of 

human activities that date from pre-roman times (Serrão 1963) and that lead to great 

transformations in the vegetation. The original vegetation, thought to be formed by holm oak 

woods mixed with other species with persistent leaves (such as Quercus suber, Olea europaea var. 

sylvestris) has been transformed throughout history by human activities (Onofre 2007). These 

are thought to date from Palaeolithic times and to have intensified through time with increases 

in cultivated areas and with the demand of wood for naval construction in the XV and XVI 

centuries (Capelo and Catry 2007). A review by Roxo et al. (1998) describing the history of 

land use in the municipality of Mértola indicates that, in the beginning of the 18th century, 

most of the area was covered with montado and matorral that were used as commons for 

hunting, collecting of honey and firewood, and grazing (sheep, pigs and goats). A significant 

increase in the population of the municipality at the end of the 18th century followed by 

policies focusing on the enlargement of agricultural production at the end of the 19th century 

resulted in the enlargement of the areas used for cereal growth and pasture (Roxo et al. 1998). 

In addition, the wheat campaign, which lasted from 1926 until the late 60’s, strongly 

contributed to the transformation of vegetation and landscape in this part of the country 

(Roxo et al. 1998, Capelo and Catry 2007). This long history of human occupation and activity 

has been followed, since the last decades of the 20th century, by a decline in land use intensity 

(Pinto-Correia and Vos 2004).  

The colonization of recently disturbed areas with annuals and short-lived species and their 

subsequent replacement with perennials, tall shrubs, and trees during post-disturbance 
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succession has been frequently reported (e.g. Houssard et al. 1980, Debussche et al. 1996, De 

Bello et al. 2005). However, the types and duration of disturbances strongly affect vegetation 

dynamics following abandonment (Chapin III et al. 2002, Bonet 2004, Peco et al. 2005). 

Secondary succession after disturbance is determined both by the pre-disturbance community 

and by the input of propagules from the surrounding landscape (Tatoni and Roche 1994, 

Pugnaire et al. 2006). Centuries of agricultural practices may have limited the availability of 

propagules, thus influencing the rate and pattern of secondary succession after abandonment 

(Lavorel et al. 1999, Bonet 2004).  

The imprints of past land use on soil properties, likely caused by agriculture, burning and 

grazing may also have important consequences for the function and dynamics of ecosystems 

(Foster et al. 2003). Agricultural practices cause a decrease in soil carbon and nitrogen due to a 

decreased plant organic inputs and to increased decomposition and erosion (Knops and 

Tilman 2000, Post and Kwon 2000) Additionally, soil properties are known to change during 

secondary succession (Vitousek et al. 1989, Bautista-Cruz and del Castillo 2005). Some authors 

report changes in soil carbon (Knops and Tilman 2000, Post and Kwon 2000), nitrogen 

(Knops and Tilman 2000) and phosphorus (Ruecker et al. 1998) during secondary succession. 

Soil carbon and nitrogen content, and organic matter increased with age of abandonment 

while phosphorus decreased, in old-field in southern France (Escarré et al. 1983). 

The main objective of this chapter is to present a characterization of the study site. First 

we present a short summary of recent land use and land cover changes, which have served as 

basis for the selection of the study site and for the different land use categories within the site. 

Second, we look at soil physical and chemical properties and vegetation composition within 

each land use category. 
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STUDY SITE  

The study site (Monte do vento, Mértola) is located in the Southeast of Portugal (Fig. 1), at 

about 37º48’21.72’’ N and 7º40’44.96’’ W. 

 

 

Figure 1 -. Location of the study site. Map of Portugal (taken from Atlas do Ambiente) and part of the 

military map nº 541 (Amendoeira da Serra).  - Limits of the study site (Monte do Vento).  

 

The climate is Mediterranean with mean annual temperature of 16.8º C and mean annual 

rainfall around 438 mm (Fig. 2), with large inter-annual fluctuation. Most of the precipitation 

is concentrated during the autumn and winter months. Summers are dry and hot. The main 

bedrock is schist and the type of soil occurring in the study site is a poor and shallow lithosol 

of non-calcareous schist (Roxo et al. 1998). Soils are characterized by stony, dominantly 

Monte do Vento 
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mineral, often thin horizons that merge into or rest on shattered hard rock at no great depth 

below the surface. Their effective depth is normally close to 10 cm (Cardoso 1965). 
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Figure 2 - Climatic diagram of Mértola from 1974 to 2004 (data from the Instituto Nacional de 

Meteorologia, Portugal).  

 

Land use 

A recent assessment of changes in land use and land cover from 1958 to 2000 in 

Amendoeira da Serra (area of the study corresponds the military map nº 541, Amendoeira da 

Serra), where the study site is inserted, was done by Van Doorn (2007). As a consequence of 

the wheat campaign, in 1958 the landscape was very homogeneous, dominated by arable / 

grassland (66%) almost without tree cover. The areas of high dense matorral were limited to 

the steep river banks and the area occupied by montado was small (16%). The trend in land 

cover change that occurred in the following decades reflects an extensification in cultivation, 

with declining activities like ploughing and other types of soil tillage. There was a decline in 

the area occupied by arable / grassland and a gradual increase in the areas occupied by 

montado and matorral. Forestation programs for less favoured areas as part of the second 
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pillar measures of the CAP favoured the emergence of forest plantations (occupying an area 

of 30 % in 2000). At present, the land use is dominated by extensive farming systems and the 

main land use activities are livestock (mainly sheep) raising and some cereal production, 

mainly for fodder. Some land owners practice a rotation cycle, generally of 3 years with one 

year of cereal growing and 2 years of fallow in combination with grazing while others only 

have livestock. There are also land owners that use their land for hunting reserves or new 

forest plantations (often holm or cork oak but mixed or pine plantations are also found). This 

extensive use of soil in combination with heterogeneous physical conditions has resulted in 

various densities of shrub cover, representing different degrees of the intensity and type of 

management.  

Within the area surveyed by the above mentioned study, a site (Monte do Vento) was 

selected where different land uses and land cover types coexist. 

 

METHODS 

Experimental design 

At the study site, three land use categories were selected to represent a decrease in land use 

intensity (Fig. 3). Common to the three land use categories is past land use, which consisted of 

rotation of crops / fallow / pasture. The first category, ‘grazing’ (Fig. 4), corresponds to areas 

of pasture where cropping stopped more recently (about 7 years before the beginning of this 

study in 2003). These are grasslands with disperse cork and holm trees, and are used for 

extensive grazing by sheep (0.99 CU/ha). The herd visits the area twice a year, at the end of 

winter and beginning of summer. The two other categories, ’intermediate succession’ and 
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‘advanced succession’1 correspond to abandoned areas. ‘Intermediate succession’ plots are 

abandoned for 10 to 15 years (Fig. 5). ‘Advanced succession’ plots are abandoned for 20 or 

more years (Fig. 6) and likely correspond to areas where soils first showed signs of 

degradation or stoniness too high for agricultural machinery.  

 

 

 

 

Figure 3 - Main land cover types in the study site and land use categories selected for this study, scale 

1:4000. Map and land cover types adapted from (Van Doorn 2007). Symbols represent the position of 

the three plots within each land use category.  

                                                 
1 The names of land use categories were chosen to fit existing categories from project VISTA. We do not intend 
to discuss whether category names are appropriate considering the time of abandonment. 

Forest plantation          Grazing 
Low, scattered shrub, 20-50% shrub cover    Intermediate succession 
Middle, discontinuous shrub, 50-75% cover    Advanced succession 
Pasture/arable <20% shrub cover 
Urban area 
Water lines/reservoirs 

Land cover             Land use category 
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Figure 4 - General view of ‘grazing’ land use category. 

 

 

Figure 5 - General view of ‘intermediate succession’ land use category. 

 

Selection and estimation of time since abandonment of the land use categories were based 

on aerial photographs and land cover maps (Van Doorn 2007), personal interviews to 

landowners and management plans or reports from ADPM (Associação de Defesa do 

Património de Mértola). Abandonment refers only to ploughing, as no data was available for 

cessation of grazing.  

Within each land use category, three permanent plots where set. Plot size was adapted to 

the type of vegetation resulting in plots with 900 m2 in ‘grazing’ and 2500 m2 in ‘intermediate’ 

and ‘advanced succession’.  
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Figure 6 - General view of ‘advanced succession’ land use category 

 

Data collection 

Vegetation sampling 

Vegetation composition was obtained by recording species presence and percent cover in 

15 quadrats randomly distributed within each plot of the three land use categories. The size of 

the quadrats was scaled to the size of the occurring type of vegetation resulting in quadrates of 

0.25 m2, 2 m2, and 4 m2, in the land use categories ‘grazing’, ‘intermediate succession’, and 

‘advanced succession’, respectively (Kent and Coker 1992). Species nomenclature follows 

Tutin et al. (1964-1980). Percent cover of each species, inside each plot was then obtained as 

the mean value of the 15 quadrats. In addition, five a priory groups (annual herbs, perennial 

herbs, small shrubs, tall shrubs and trees) were identified. 

 

Soil sampling and analysis 

The methodology used for soil sampling and analysis is described in Garnier et al. (2007). 

Soil samples (0-5 cm horizon) were collected at the end of the winter period. In each plot, 

twelve cores, distributed on the whole plot area, were collected and bulked to make a 

composite sample representative of the plot. Prior to analysis, soils were crumbled by hand, 
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dried for one week at room temperature and then sieved through a 2mm mesh. The following 

variables were measured: pHwater, texture (sand, loam and clay), total carbon and nitrogen 

concentrations, and available phosphorus (Olsen procedure). The soil analyses were done by 

the “Laboratoire d’Analyses des sols” of the National Institute for Agronomic research 

(INRA, Arras, France). The water holding capacity was derived from the texture data, using a 

modified version of the equation provided by Saxton et al. (1986; see 

http://www.bsyse.wsu.edu/saxton/).  

 

Data analysis 

Significant differences in soil parameters among land use categories were tested with one-

way analysis of variance on untransformed data. Mean differences were separated with 

Tukey’s HSD test at 5% level of significance. All statistical analyses were performed with SPSS 

14.0 for windows (SPSS, Inc. Chicago, IL).  

 

RESULTS AND DISCUSSION 

Vegetation composition 

A total of 99 species belonging to 24 botanical families and 71 genera were recorded 

(Appendix 1). The most numerous family was Leguminosae with 21 species (21.21 %), 

followed by Compositae (17.17 %), Gramineae (16.16 %), Cistaceae (6.06 %), and 

Caryophyllaceae (6.06%), together representing 66.66 % of the total number of species. 

‘Grazing’ land use category was mostly composed of annual species (Fig. 7, Appendix 1), 

representing 97.35% of plant cover, in accordance to what has been reported for many 

Mediterranean pastures (e.g Peco 1989, Lavorel et al. 1999, Azcarate et al. 2002). The most 
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abundant species include forbs with basal rosette or prostrate growth which is seen as an 

adaptation to grazing (Noy-Meir et al. 1989). 

‘Intermediate succession’ land use category was composed of a mixture of herbaceous 

species, mostly annuals, and shrub species (Appendix 1), representing 33.52% and 65.1% of 

plant cover, respectively. ‘Advanced succession’ plots were composed of tall, more or less, 

dense shrubs (Fig. 7), where the most abundant species was Cistus ladanifer (Appendix 1).  

The tree species found were often a combination of Quercus rotundifolia and Quercus suber, 

and usually scarce and disperse (Appendix 1).  

Land use category
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Figure 7 - Change in relative cover of different a priori groups after abandonment. Land use categories: 

G – grazing, I – Intermediate succession, A – advanced succession. 

 

 

Similarly to many studies in Mediterranean old-fields (e.g. Houssard et al. 1980, Escarré et 

al. 1983, Debussche et al. 1996, Bonet and Pausas 2004) in the first years after cessation of 

agriculture the vegetation is dominated by annual species. The results from this study differ 
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from other studies in Mediterranean areas in the lower number and cover of perennial 

herbaceous and the lower amount of time needed to reach a high cover of woody species. In 

the present study, woody species accounted for about 65 % of plant cover after a decade of 

abandonment. This pattern can be attributed to an early colonization of the shrub species 

facilitated by their life history traits and to the availability of seeds. The dominant shrub 

species found in intermediate and advanced succession were also present in grazing land use 

category but with very low percent cover (Appendix 1).  

 

Soil characterization along the succession gradient 

Soil texture results indicated that all land use categories have sandy loam soils and 

statistical analyses of soil texture data did not show significant differences in clay (F=0.467, 

p>0.05), silt (F=0.352, p>0.05), and sand (F=0.404, p>0.05) content between land use 

categories.  

Soil water holding capacity, pH and soil nitrogen content did not differ significantly among 

land use categories but phosphorous significantly decreased, while the C:N ratio significantly 

increased with time of abandonment (Table 1).  

A decrease in phosphorous after cessation of agricultural practices, as well as, higher 

values in grazed grasslands compared to ungrazed scrublands was reported in a study from 

another Mediterranean area (Ruecker et al. 1998). Higher values of phosphorus in grazed areas 

may be related to grazing and to the subsequent return of phosphorus in faeces (Ruecker et al. 

1998). Other causes may also be possible. On the one hand, larger fertilizer load in more 

recently abandoned plots may contribute to higher values of phosphorus in these plots, and in 

contrast absorption by plants or immobilization in the soil (Escarré et al. 1983) may contribute 

to the decrease of phosphorus with abandonment time.  
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Table 1 - Soil nitrogen (N), carbon (C), phosphorus (P), carbon to nitrogen ratio (C:N) and water 

holding capacity (WHC) in the three land use categories. Values are means ± 1 s.e. (n=3). The results 

of the one-way ANOVA are presented in the last row (* p < 0.05). Values with different superscript 

letter were significantly different (significance of Tukey-test given at p<0.05).  

 
N  

(mg g-1) 

C  

(mg g-1) 

P  

(mg g-1) 

C:N 

 

Organic matter 

(mg g-1) 

WHC 

(%) 
pH 

G 
1.44± 

0.14 

12.73± 

1.61 

0.010± 

0.001(a) 

8.81± 

0.39(b) 

21.96± 

2.79 

0.23± 

0.003 

5.48± 

0.02 

I 
1.56± 

0.01 

13.87± 

0.43 

0.008± 

0.0006(a,b) 

8.87± 

0.28(b) 

23.92± 

0.73 

0.23± 

0.01 

5.63± 

0.13 

A 
1.48± 

0.12 

15.93± 

1.07 

0.006± 

0.0004 (b) 

10.84± 

0.55(a) 

27.49± 

1.85 

0.22± 

0.004 

5.56± 

0.11 

One-way Anova      

F 0.355 2.006 7.008* 7.547* 2.006 0.426 0.597 

 

 

Soil nitrogen was not significantly different nor did it show any trend following 

abandonment. Although some studies carried out in Mediterranean areas have shown an 

increase in soil nitrogen after abandonment (e.g. Escarré et al. 1983, Peco et al. 2006) it has also 

been suggested that succession following a period of chronic disturbance (i.e. prolonged 

agricultural use) does not follow such clear patterns; the duration and intensity of disturbance 

may control whether nitrogen availability and potential nitrification increase or decrease early 

in such seres (Vitousek et al. 1989). 

Soil carbon and organic matter were also not significantly different between land use 

categories, which is due to the outlier values obtained for one of the grazed plots. These two 

variables showed an increasing trend with abandonment time (Table 1) and, if we remove the 

outlier plot, soil carbon and organic matter content are significantly higher in ‘advanced 

succession’ than in ‘grazing’ (F=8.01, P=0.023). Increases in soil organic matter and carbon 

content were found in other old-field studies in Mediterranean areas (Escarré et al. 1983) and 
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non-Mediterranean areas (Knops and Tilman 2000). Soil organic matter pools and carbon 

availability are controlled by the formation of organic matter through primary production and 

its loss through decomposition (Zak et al. 1990). Grazed plots are dominated by annual plants, 

which generally have lower content of carbon and C:N ratios, and  have higher rates of 

decomposition than the woody species (Cornelissen et al. 1999, Dorrepaal et al. 2005) that 

dominate abandoned plots. Additionally, grazed plots likely have lower organic matter inputs 

to the soil because part of the production is consumed by herbivores. Moreover, the 

retranslocation of nutrients from senescing leaves prior to abscission is highly developed in 

Cistus ladanifer for nitrogen and phosphorus, as is often the case in Mediterranean shrubs that 

colonize soils of low fertility (Núñez-Olivera et al. 1993, Fioretto et al. 2003). The increase in 

shrub cover with abandonment time may therefore result in the input of litter that has higher 

C:N ratio and is poorer in phosphorus than that resulting from herbaceous species, 

contributing to higher values of soil C:N and carbon and to lower values of phosphorus in 

‘advanced succession’ plots. 
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INTRODUCTION 

Vegetation change has traditionally been described by changes in species composition. 

However, the need to predict the effects of climate and land use change on vegetation 

structure and ecosystem functioning at regional and global scale has lead to an ongoing effort 

to identify plant functional traits and types that relate to climate and land use change 

(McIntyre et al. 1995, Díaz and Cabido 1997, Lavorel et al. 1997). By now, the approaches to 

classify species range from expert knowledge (Noble and Gitay 1996) to multivariate 

techniques based solely on trait attributes of species, e.g. ‘emergent groups’(Kleyer 1999, 

Gondard et al. 2003) with a subsequent testing of the functionality with correlation techniques. 

While the first approach is not reproducible, the second is criticised for potentially leading to 

functional groups with low predictive power, because the response of the species to the 

environment is ignored (Nygaard and Ejrnaes 2004). So far, no classification method has been 

accepted as a standard procedure (Nygaard and Ejrnaes 2004).  

If traits are not only singly analysed but sets of trait states are combined, plant functional 

groups or syndromes can be created by grouping species with similar response to 

environmental factors (Lavorel et al. 1997). In this study we aimed to describe species 

compositional changes and identify functional groups in response to land use change in an 

extensive agro-pastoral system in the region of Alentejo, Southern Portugal. As a consequence 

of the rapid industrial and socio-demographic changes of the last decades, the characteristic 

extensive land use practices of these systems are being gradually abandoned and the 

consequences are still little understood. In this study we therefore focussed our analysis on the 

functional consequences of abandonment ranging from a current extensive grazing system to 

scrublands found after 20 years of abandonment. 

Traits such as life form, canopy height, dispersal mode and seed mass have been identified 

as responsive to various types of grassland disturbance, and especially grazing (e.g. Fernández 
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Alés et al. 1993, McIntyre et al. 1995, Lavorel et al. 1999, Peco et al. 2005). Since the ecological 

response of plant communities may be linked to structural traits of species in vegetation that is 

or has been subjected to these types of disturbances (Lindborg and Eriksson 2005) these traits 

provide a good starting point to find response traits to abandonment. Plant height and leaf 

traits associated with resource economy, such as specific leaf area (SLA) and leaf dry matter 

content (LDMC), have been shown to be relevant to response to grazing abandonment and to 

succession (Prach et al. 1997, Diaz et al. 2001, Kahmen and Poschold 2004, Louault et al. 

2005). Plant height can be related to competition and has generally been reported to increase 

during succession (e.g. Prach et al. 1997, Kahmen and Poschold 2004), while small-stature 

plants seem to be favoured by grazing (Noy-Meir et al. 1989, Fernández Alés et al. 1993, 

Lavorel et al. 1999, Sternberg et al. 2000, Peco et al. 2005). The association between small 

seeded species and disturbance, as well as seed mass increases in response to abandonment 

have been previously demonstrated for Mediterranean (e.g. Fernández Alés et al. 1993, Lavorel 

et al. 1999, Garnier et al. 2004a) and non-Mediterranean areas (Kahmen and Poschold 2004). 

In systems like the one studied, shrubs sprout frequently and are kept at low frequencies 

by herbivore pressure or clearing (Pereira and Fonseca 2003, Plieninger et al. 2004). Therefore, 

and based on previous studies that have consistently reported the replacement of annuals 

species by perennials and shrubs during post-disturbance succession in Mediterranean areas 

(e.g Debussche et al. 1996, Bonet and Pausas 2004, De Bello et al. 2005, Peco et al. 2005) we 

expect life form dominances will strongly shift in response to decreasing land use. The 

response of other traits is less obvious and only few studies have examined plant trait 

responses in this or in systems with some similarities (e.g. Montado, Dehesa). In a Spanish 

Dehesa seed mass and dispersal structures were found to be associated with grazing 

abandonment, where larger seed and the presence of dispersal structures were the traits with 

the strongest relationship to abandonment (Peco et al. 2005). Abandonment was linked to a 
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decrease in SLA and an increase in LDMC in South-eastern Mediterranean France (Garnier et 

al. 2004b) as in the Spanish Dehesa (Peco et al. 2005). However, these studied communities 

were mostly composed of herbaceous species and because our sites have a strong woody 

component the applicability of these findings needs to be validated.  

Our analysis of vegetation and functional changes in response to abandonment was 

organised in three steps. First we analysed vegetation changes using a species-based approach, 

examining the response of species diversity to abandonment and the positioning of species in 

the environmental space using redundancy analysis (RDA). Second, we used a functional 

approach by building functional response groups, thereby identifying the response of groups 

of species carrying suites of functional traits. Finally we examined changes in community-

aggragted, considering traits associated with two ecosystem processes that are key to the 

provision of services to local stakeholders, flammability and primary productivity (Lavorel and 

Garnier 2002, Garnier et al. 2004b).  

 

METHODS   

Study area 

The study site (Monte do Vento, Mértola) is located in the Southeast of Portugal, at about 

37º48’21.72’’ N and 7º40’44.96’’ W. 

At the study site, three land use categories were selected to represent a decrease in land use 

intensity. The first category, ‘grazing’, is used for extensive grazing by sheep (0.99 CU/ha). 

The two other categories, ’intermediate succession’ and ‘advanced succession’, represent areas 

that were abandoned, 10 to 15 years, and 20 or more years ago, respectively. Within each land 

use category three permanent plots were set. Please refer to Chapter 1 of this dissertation for a 

more detailed description of the study site and land use categories.  
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Vegetation and plant traits 

Vegetation composition was obtained by recording species presence and percent cover in 

15 quadrats randomly distributed within each plot of the three land use categories. Please refer 

to Chapter 1 for a more detailed description of vegetation sampling. 

We selected a set of functional traits that are thought to be relevant to disturbance 

response and are linked to main plant population processes such as dispersal, establishment 

and persistence (McIntyre et al. 1999). Collecting trait data for all species demands a great 

effort. Therefore, a compromise must be achieved between effort and accuracy (Pakeman and 

Quested 2007). Data was collected for the most abundant species (species making at least 80% 

of plant cover; Garnier et al. 2007, Pakeman and Quested 2007), representing 22, 14 and 4 

species in ‘grazing’, ‘intermediate’ and ‘advanced succession’ land use categories respectively 

(see Appendix 1 for a list of measured species). We measured the continuous traits canopy 

height, specific leaf area (SLA), leaf dry matter content (LDMC) and seed mass for each land 

use category in which the species occurred, to account for trait intraspecific variability 

(Garnier et al. 2007). The categorical traits life form, pollination mode, type of mycorrhiza, and 

dispersal mode were collected at the species level independently of land use category since 

these traits are regarded as stable traits (Cornelissen et al. 2003). Measuring traits in different 

local populations of the same species under different disturbance regimes provides an insight 

into ecosystem processes that would be hard on a species composition base only (Díaz et al. 

1999). The measurement of functional traits followed standard methodologies (for a more 

detailed description see in Garnier et al. 2007).  

Plant trait measurements 

For the measurement of leaf traits, we collected 15 intact, full-grown leaves per species. 

The leaves were collected, as much as possible, from plants in full light situations, or from the 

outer canopy for tall woody species and stored in moist paper in a cool box until processing. 
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Water-saturated fresh mass was recorded. Afterwards, leaves were scanned and the projected 

area determined with ImageJ software (Abramoff et al. 2004). Finally, leaves were oven-dried 

at 60ºC for 72 h and re-weighed. SLA was calculated as the one-sided area of the fresh leaf 

divided by its oven-dry mass (m2kg-1). LDMC was calculated as the oven-dry mass of a leaf 

divided by its water-saturated fresh mass (mg g-1).  

Conopy height was obtained by measuring plant hight at the end of the growing season on 

30 individuals per species per land use.  

To determine seed mass, a variable number of seeds, depending on seed size, from 15 

individuals of each species was collected. Dispersal structures and fruit flesh were removed as 

carefully as possible. Seeds were dried to a constant mass at 60ºC before weighing. Small seeds 

were weighted in groups and the weight of one seed determined by dividing the weight by the 

number of seeds.  

Life form was divided into therophytes, geophytes, hemicryptophytes, chamaephytes and 

nanophanerophytes (woody species higher than 0.5 m and lower than 2 m). Mycorrhiza type 

was taken from Gonçalves et al. (2005). Dispersal and pollination mode as well as life form 

were gathered from the literature (Franco 1971; van der Pijl 1982, Franco 1984; Talavera et al. 

1993; Franco and Afonso 1998; Azcarate, et al. 2002, Bastida and Talavera 2002, Koelewijn 

and Van Damme 2005) and authors’ observations.  

Community aggregated-traits 

Community-aggregated traits (hereafter community-trait) can be used both to detect the 

average functional response of vegetation environmental factors and to link plant traits to 

ecosystem functioning (Violle et.al. 2007). The values of traits at the community level were 

calculated from species abundance and plant traits (Garnier et al. 2007). For continuous traits 

this was done as: 



 
Chapter 2 

 58 

∑
=

×=
n

i

iiagg traitpTrait
1

 

where n is the number of most abundant species,  pi is the relative contribution of species i to 

the community, and traiti is the trait value of species i. For categorical traits, the relative 

contribution of each particular attribute was calculated as the sum of relative abundances of 

species within that attribute. In both cases, this was done for the species that collectively made 

up at least 80% of plant cover. The two traits considered at the community level were LDMC, 

in relation to flammability (Saura-Mas and Lloret 2007), and SLA as a marker for specific 

primary productivity (Garnier et al. 2004b). 

 

Statistics 

The data consists of lists of species frequencies, species traits and land use categories of 

the sites. 

To evaluate the potential usefulness of different measured traits, we analysed the 

relationships between pairs of continuous traits on untransformed data, using Spearman rank 

correlations, calculated for the whole set of measured species. Relationships between 

continuous and categorical traits were tested by nonparametric analysis (Kruskal-Wallis). 

Differences in mean species number per quadrat were tested using a randomisation tests 

(Manly 1997). 

To visualise species composition change between land use categories we used an 

ordination technique. A redundancy analysis (RDA; Canoco 4.5 TerBraak) was performed in 

which each land use category was represented by a single variable. Contrary to the functional 

approach, we used all species in the ordination and not only the most abundant. To evaluate 

the compositional turnover between land use categories we also calculated the Jaccard 

similarity index (McCune and Grace 2002) between all plots. Subsequently a mean similarity 
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was calculated for all quadrates from one treatment in combination with all quadrates from 

the other treatment as well as for subplots within the same treatment. 

Differences in community-SLA and community-LDMC between different land use 

categories were tested using randomisation test (Manly 1997). 

Functional group classification 

The classification procedure aimed to group species according to their traits in a way that 

the resulting groups show a significant response to land use. This task involved three parts 

(Lehsten et al. in press). First a large number of classifications of plant groups was generated 

based on a single trait or a trait combination. Secondly, the response of each plant 

classification to land use was tested using a null model. In a third step, an optimisation criteria 

was applied and the optimal classification chosen.  

Generating all possible plant group classifications as a first step is not feasible for 

continuous traits given the enormous amount of possible combinations. To generate a 

sufficient set of plant classifications it is necessary to limit the maximum number of plant 

groups per classification. Since there are only four land use classes, we classified the 

continuous traits into a maximum of three groups (this does not apply for categorical traits for 

which the full set of possible classification were used). Additionally, the minimum width of 

each plant group (i.e. difference in the trait values defining the groups) as well as the minimum 

difference of at least one plant group for different classifications was fixed to account for 

measurement precision. This value was set to 8 m²kg-1 for SLA, 50 mg g-1 for LDMC, 8 cm for 

canopy height and 0.5 mg for seed mass.  

In the second step, the test of response was performed using an extension of the ‘fourth 

corner method’ (Legendre et al. 1997; Lehsten et al. in press) for each classification. Finally, the 

optimisation criterion of the third step selected the plant classification with the highest 

number of significant responses. A detailed description of the procedures for generating a 
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sufficient number of classifications, testing the responsiveness of the classification by a new 

developed null model and choosing the optimal classification is given in the Appendix. 2  

 

RESULTS 

Species response to land use change 

The lowest number of species was found for ‘advanced succession’ (40). In ‘grazing’ as 

well as in the ‘intermediate succession’ a total of 75 species were found. The number of 

species per quadrat decreased significantly from ‘grazing’ to ‘intermediate succession’ (p < 

0.001) and from there to ‘advanced succession’ (p < 0.001, Fig. 1). While the average species 

number per subplot differed strongly between land use categories, differences in the total 

richness per land use category were less pronounced.  

 

G I A

Land use category

0

10

20

30

40

Sp
ec
ie
s 
nu
m
be
r

a

b

c

 
Figure 1 - Species number per plot. Land use categories. G: grazing, I: intermediate succession, A: 

advanced succession. The median of species numbers of all categories are significantly different from 

each other (p<0.001). The sample size is 45 quadrates. 

 

The effect of land use change on the plant community and individual plant species was 

determined by redundancy analysis. The primary axis of difference between sites was closely 
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related to ‘grazing’ (corr. coeff. = 0.95), while the second canonical axis was correlated to 

‘intermediate succession’ (corr. coeff. = 0.93). All canonical axes were significant (Monte 

Carlo permutation test p<0.001). Figure 2 shows that vegetation composition differs strongly 

between the land use categories. 

 

 

Figure 2 - Species response to land use change. Species are displayed as symbols and factors as arrows. 

The species symbol is chosen according to the final classification into plant functional response 

groups. Only the most abundant species (making 80% of plant cover) are classified, remaining species 

are symbolised by crosses as low cover species. Significance of all factors on plant community is tested 

by Monte Carlo permutation test (p<0.005).       

 

The strong differences in vegetation composition between land use categories were also 

shown by the results of the Jaccard similarity index. The average Jaccard similarity for all 

grazed plots versus all plots with ‘intermediate succession’ was 0.23, while for ‘grazing’ versus 

‘advanced succession’ it was 0.06, indicating that on average only 1-2 species were shared by 

plots between of the two treatments. The results indicated higher compositional turnover 
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between ‘grazing’ and ‘advanced succession’ land use category than between either ‘grazing’ 

and ‘intermediate succession’ or ‘intermediate’ and ‘advanced succession’ (average similarity 

was 0.18). The mean Jaccard index within the treatment was 0.50, 0.31, and 0.42 for ‘grazing 

land’, ‘intermediate succession’ and ‘advanced succession’ land use categories, repectively. 

 

Associations among traits 

A positive correlation was found between LDMC and canopy height (R2 = 0.59, p < 0.05) 

while a negative correlation was found between SLA and canopy height (R2 = 0.41, p < 0.05). 

No significant correlations were found between other combinations of continuous traits. Life 

form was associated with canopy height (p < 0.05), SLA (p < 0.05) and LDMC (p < 0.05), but 

not with the other traits. This association is mostly due to growth form. Herbaceous species 

(therophytes, geophytes and hemicriptophytes) tend to be smaller (p < 0.001), have lower 

LDMC (p<0.01) and higher SLA (p<0.01) than shrubs (chamaephytes and 

nanophanerophytes). No associations between other combinations of traits were found.  

 

Response of single plant traits 

In the first step we optimised functional response groups for each trait singly and 

calculated the response to the land use category (see Table 1). A valid functional classification 

was found for each of the investigated traits. However, for some traits the classification 

contained many groups with a non significant response to some of the land use categories. 

The response of canopy height was related to land use intensity. Small plants (canopy 

height < 18 cm) had a positive response to grazing while medium sized plants with a canopy 

height between 18 cm and 71 cm responded positively to intermediate and advanced 

succession. Plants taller than 71 cm responded positively only to advanced succession.  
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Table 1 - Optimal classification and response of species according to single traits. A plus sign (+/++) 

denotes a positive response at the p <0.05 / p < 0.01 level. Minus signs indicate negative a response, 

n.s. is used if the p-values were above 0.05. A positive response indicates that the plant groups reach a 

higher coverage than expected by the null model. Land use categories: G: grazing; I: intermediate 

succession; A: advanced succession; life forms: thero: therophytes; geo: geophytes; hemi: 

hemicryptophytes, shrub: chamaephytes and nanophanerophytes; mycorrhiza: AM: vesicular arbuscular 

mycorrhiza; ECM: ectomycorrhiza; dispersal mode: U- unassisted, W-wind, E-exo-zoochory and 

pollination: S-self-pollinated, W- wind, I- insect, M- mixed. 

Trait Attribute G. I. A. 

LDMC <270 ++ - - - - 

(mg g-1) 270-470 - - ++ - - 

 >470 - - - ++ 

Life form The ++ - - - - 

 Geo - - ++ - - 

 hCr ++ - - - - 

 Ch - - ++ - - 

 nPh - - n.s. ++ 

Seed mass <0.2.1 ++ - - - - 

(mg) >2.1 - - ++ ++ 

SLA <12 - - - - ++ 

(m² kg-1) 12-16 - - ++ - - 

 >16 ++ - - - - 

Pollination S ++ n.s. - - 

 W ++ - - - - 

 I - - n.s. ++ 

 M ++ n.s. - - 

Mycorrhiza no ++ - - - - 

 AM ++ ++ - - 

 ECM - - - - ++ 

Height <18 ++ - - - - 

(cm) 18-71 - - ++ ++ 

 >71 - - - - ++ 

Dispersal U - - ++ ++ 

 W ++ - - - - 

 E ++ n.s. - - 
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Seed mass was positively related to abandonment with low seed mass being found in 

‘grazing’ and higher seed mass in the other two land use categories. Specific leaf area showed a 

negative response to decreased levels of land use and LDMC was positively related to 

abandonment. 

Therophytes showed a positive response to ‘grazing’, together with hemicryptophytes. The 

only geophyte, Carlina corymbosa, and chamaephytes responded positively to ‘intermediate 

succession’ while nanophanerophytes had a positive response to ‘advanced succession’.   

The pollination and dispersal mode showed only a weak response to the land use category.  

All species except Rumex acetosella, Silene gallica and Cistus ladanifer had arbuscular mycorrhiza. 

Hence, arbuscular mycorrhiza showed a positive response to all land use categories, except 

‘advanced succession’, which is dominated by Cistus ladanifer, the only species with ecto-

mycorrhiza. The species without mycorhiza (Rumex acetosella, Silene gallica) responded positively 

to grazing. 

 

Plant Functional Response Groups 

The previous set of analyses showed that several single traits responded strongly to land 

use. Considering the low number of land use categories we decided to combine not more than 

two traits to derive final functional response groups (FRGs). We tested all combinations of 

the categorical trait life form with each of the four continuous traits. The combination of life 

form and SLA resulted in the classification with the highest explanatory value according to our 

optimisation criterion (Table 2).  All groups responded significantly to all land use categories. 

This classification also had the lowest number of positive responses to different treatments 

and hence the clearest plant type - treatment allocation.   
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Table 2 - Optimal classification of functional response groups using two traits. A plus sign (+/++) 

denotes a positive response at the p < 0.05 / 0.01 level. Minus signs indicate a negative response.  

Land use categories: G: grazing; I: intermediate succession; A: advanced succession; Life forms: Th: 

therophytes; Geo: geophytes; hCr: hemicryptophytes, Ch: chamaephytes, nPh nanophanerophytes  

Trait attributes of FRG Land use category Species per group Height (cm) Seed mass (g) 

Life form SLA (m2 kg-1) G. I. A.  ± sd ±sd 

Th 12-30 ++ - - - - 16 10.8±6.7 0.63±0.90 

Th >30 ++ + - - 5 11.6±6.5 0.77±1.0 

Geo 12-30 - - ++ - - 1 21.4 1.24 

hCr 12-30 ++  - - - - 3 9.6±5.8 0.22±0.23 

Ch 12-30 - - ++ - - 3 61.4±14.9 0.76±0.77 

nPh <12 - - - - ++ 1 136 0.2 

nPh 12-30 - - + ++ 1 77 2.5 

 

 

Therophytes with medium SLA were related to ‘grazing’, while therophytes with high SLA 

occurred both in ‘grazing’ and ‘intermediate succession’ land use categories. All geophytes, 

hemicryptophytes and chamaephytes have a medium SLA. Their response was therefore 

similar to the response derived in the single trait analysis of life form. Nanophanerophytes 

were separated into medium SLA (Genista hirsuta), which was related to intermediate and 

advanced succession, and low SLA (Cistus ladanifer), which showed a positive response to 

‘advanced succession’ only. Since the classification was made using treatment specific trait 

measurement (Garnier et al. 2007), a single species could belong to more than one functional 

response group. For example Brachypodium distachyon and Tolpis barbata were classified as 

belonging to two groups therophytes with medium SLA, in ‘grazing’, as well as therophytes 

with high SLA, in ‘intermediate succession’, since the measured SLA values varied between 

the treatments. In Fig. 2, they are assigned to the Therophytes with high SLA.  
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Response of Community-aggregated traits 

At the community level, LDMC was lowest in ‘grazing’ and significantly increased 

(p<0.001) thereafter with decreasing human impact (see Fig. 3). On the contrary, SLA 

significantly decreased (p<0.001) with abandonment as herbaceous dominated communities 

are progressively replaced by shrub dominated communities. This replacement of species with 

high SLA and low LDMC with species of opposite traits suggests an increase in flammability 

and a decrease in productivity and decomposition.  

 

DISCUSSION  

Species response to land use change 

Land use change in the in the study site, as in other Mediterranean ecosystems 

(Debussche et al. 1996, Peco et al. 2005) is mostly associated with succession after 

abandonment and thus with secondary successional vegetation change. As indicated by the 

mean Jaccard index, the compositional turnover is always greater between than within land use 

types. Abandonment had therefore a strong effect on vegetation composition in Montado 

areas, with the strongest effects being observed during the initial stages after the abandonment 

of grazing. Relatively large changes in species composition in relation to abandonment have 

also been reported in other studies in Mediterranean region (Noy-Meir et al. 1989, Peco et al. 

2005).  

Similarly to species composition, species richness was also strongly affected by 

abandonment. Not surprisingly the highest species diversity was associated to grazing. 

Grazing, even if light and intermittent, considerably increases the number, size and diversity of 

gaps in the grassland allowing the germination and establishment of species that were not able 

to do so in the closed canopy (Noy-Meir et al. 1989). The decrease in species diversity with 
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decreasing land use intensity is mostly a consequence of the replacement of short lived 

herbaceous species by shrubs (see Debussche et al. 1996). 
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Figure 3 - Community-aggregated traits, trait values are weighted by percentage cover. Significant 

differences (p<0.001) in median values are signalled by different letters. Land use categories: G – 

grazing, I – intermediate succession, A – advanced succession. Only the most abundant species 

(making 80% of total cover) are used. 
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Response of individual plant traits 

Our results confirm that small stature and short life span are traits linked to the ability to 

cope with disturbance, while taller plants and the chamaephyte and nanophanaerophyte life 

forms are related to abandonment in the Mediterranean (e.g. De Bello et al. 2005, Peco et al. 

2005). Small plants were more frequent in grazed plots than in abandoned plots, even when 

only herbaceous species were taken into account (data not shown). The decrease in frequency 

and intensity of disturbance results in the accumulation of standing biomass and in the 

increase in the competition for light (Grime 2001) favouring plants with a taller canopy. 

Contrary to other studies, hemicryptophytes had a small representation in the vegetation and 

were not favoured by abandonment. Our findings seem to support the hypothesis that in 

extensive agro-pastoral systems lack of recolonization by hemicryptophytes results from the 

absence of seed source in the landscape (Lavorel et al. 1999). Environmental filters act by 

removing species that lack traits attributes for persisting under a particular set of conditions 

(Diaz et al. 1998). Centuries of intensely managed agriculture may have eliminated disturbance-

intolerant species and may have acted as such a filter. 

With regards to regenerative traits, our study shows that grazing favours species with 

small seeds while abandonment favours species with heavier seeds. Small seed size has been 

related to larger seed production (Turnbull et al. 1999), better chances of surviving herbivore 

gut passage (Pakeman et al. 2002, Peco et al. 2005) and to seed persistence in the soil 

(Thompson et al. 1993, Peco et al. 2003), an essential characteristic in grazed Mediterranean 

annual pastures where bare ground is open to recruitment every autumn and rainfall is variable 

(Ortega et al. 1997). The increase in seed mass with abandonment time has also been reported 

previously (e.g. Lavorel et al. 1999, Garnier et al. 2004a, Peco et al. 2005). This response may be 

related to the fact that plants with larger seeds generally germinate better, are better able to 

establish and survive under a wide range of conditions (Westoby 1998, Turnbull et al. 1999). 
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Contrary to findings by Peco et al. (2005) in Dehesa grasslands, unassisted seed dispersal was 

more related to abandoned areas and the presence of dispersal structures was associated to 

disturbance. Dispersal by wind is frequent among species that are relatively tall within their 

respective habitat. For understorey plants wind dispersal is less advantageous than other 

modes (Wilson and Traveset 2000). At our study sites wind dispersal becomes less important 

as abandoned areas progress toward a taller and denser canopy. Similarly, animal dispersed 

species, mostly dispersed by adhesive structures or accidental ingestion of seed by grazers, 

decreased in importance with increasing time of abandonment.  

Finally our analysis of leaf traits confirmed that species with high SLA and low LDMC are 

more frequent in grazed areas, and that SLA decreases while LDMC increases with 

abandonment. Likewise, Garnier et al. (2004b) observed a replacement of fast-growing species 

(high SLA and low LDMC) which dominate the early stages following abandonment, by 

slower growing species (low SLA and high LDMC) as succession proceeds in abandoned 

vineyards. This consistent response is of particular interest as it confirms for a site with a 

strong woody component results previously obtained for herbaceous vegetation.  

 

Plant functional response groups 

In order to identify plant functional types in relation to secondary succession in the study 

site we tested all combinations of life form, seed mass, canopy height, SLA, type of 

pollination, mycorrhiza and dispersal. The combination of the two traits, life form and SLA 

was found to be optimal. Therophytes with high SLA were associated to both grazing and 

intermediate succession, while therophytes with medium SLA were associated to grazing. 

Therophytes with medium SLA are the most abundant group in grazing land use category 

(74.8 % of plant cover) and were the group most strongly affected by abandonment. Lower 

SLA is usually associated with low palatability and therefore to mechanisms of grazing 
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resistance (Cornelissen et al. 1999). Although the response of plant species to grazing may be 

diverse, in situations of water and nutrient scarcity such as those of the present study grazing 

avoidance should be favoured against grazing tolerance (Diaz et al. 2001). Plants found under 

grazing generally have prostate growth, which supports the hypothesis of grazing avoidance. 

Therophytes with high SLA appeared less sensitive to abandonment than therophytes 

with medium SLA. Abandonment from grazing at our sites resulted in an increase in 

vegetation height and biomass, which holds true even when shrubs are excluded from the 

analyses (unpublished data). Hence, less light is available for therophyte plants growing in 

intermediate succession when compared to grazing. Specific leaf area is known to be strongly 

affected by light and to increase at lower light levels (Poorter et al. 2006). The observed 

decrease in community weighted mean SLA in intermediate succession as compared to grazing 

may be attributed to a combination of species turnover, as indicated by the results of the 

Jaccard index, and of within species variability in trait values (De Bello et al. 2005). The land 

use category intermediate succession is indeed dominated by chamaephytes with medium SLA 

(e.g. Lavandula stoechas, helychrisum stoechas, L. viridis), but all other groups, except 

hemicryptophytes with medium SLA, also occur to a smaller extent. Measuring traits which 

were not considered as stable i.e. canopy height, SLA, LDMC and seed mass for each land use 

category at which the species occurred (Garnier et al. 2007) made it possible to detect intra-

specific as well as inter-specific responses. For example, Brachypodium distachyon and Tolpis 

barbata were classified as belonging to therophytes with medium SLA in grazing land use 

category and as therophytes with high SLA in intermediate land use category. Our 

methodology for analysis, which focuses on functional groups with different combinations of 

trait values as opposed to mean responses of single traits, was able to detect such responses 

although their direction was opposite to the community mean (Pillar et al. 1999, Louault et al. 

2005). We thereby also highlighted changes in functional diversity in response to post-grazing 
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succession (de Bello et al. 2006). Likewise, our analyses separated nanophanerophytes into 

medium SLA (Genista hirsuta) and low SLA (Cistus ladanifer), and both groups were related to 

advanced succession land use category showing the coexistence of species with different 

strategies in the same community. Genista hirsuta is a summer deciduous species while Cistus 

ladanifer is semi-deciduous. Deciduous leaves are characterised by higher SLA compared to 

semi-deciduous (Villar et al. 2006). 

 

Response of community-aggregated traits 

Traits of dominant plants are known to strongly influence the functioning of ecosystems 

(Grime 1998). Important traits affecting ecosystem processes are those that relate to 

availability, capture and use of soil resources that affect the trophic structure and influence the 

frequency, severity and extent of fire (Chapin III and Walker 1997). Effects of traits of 

dominant species have recently been demonstrated for key ecosystem processes such as 

decomposition (Aerts and Chapin 2000, Garnier et al. 2004b, Kazakou et al. 2006) and 

productivity (Aerts and Chapin 2000, Garnier et al. 2004a). High community-SLA and low 

community-LDMC tend to be associated to higher productivity and faster decomposition. 

The observed decrease in community-SLA and increase in community-LDMC after 

abandonment therefore suggest a decrease in productivity and decomposition rate with 

abandonment of grazing, with likely consequences on the carbon and nutrient cycles. LDMC 

is also an indicator of flammability (Lavorel and Garnier 2002, Garnier et al. 2004a, Saura-Mas 

and Lloret 2007). The replacement of herbaceous species with taller, more flammable shrub 

species, having higher biomass (more fuel), can be expected to lead to an increase in frequency 

as well as severity of wild fires. Additionally, shrub encroachment can lead to a further 

deterioration of pasture quality and consequently to more abandonment. On the other hand 

scrubland areas provide habitat for many bird and mammal species, some of which are of 
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interest for hunting. In fact, increase of scrubland will increase local diversity of breeding 

birds, even though it decreases the conservation value of the area as farmland species of high 

conservation value are replaced by widespread scrubland species (Moreira et al. 2005). 

Abandonment therefore leads to a complex set of changes in ecosystem processes that local 

people derive services from, with concurrent positive and negative impacts that will need to be 

taken into account for future management. 
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ABOVEGROUND BIOMASS AND PRODUCTIVITY IN AN EXTENSIVE AGRO-PASTORAL 

SYSTEM: FROM HERBACEOUS TO SHRUB DOMINATED COMMUNITIES 
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INTRODUCTION 

The agro-pastoral systems of South Portugal, as most Mediterranean rangelands, have 

originated from natural forests following the removal of trees by human activities such as 

clearing, burning and grazing (Pulido et al. 2001). When agricultural practices decrease or stop, 

succession generally leads to the invasion by woody plants. In the studied system 

abandonment lead to a change in vegetation structure and composition that resulted in the 

replacement of herbaceous dominated communities with shrub dominated communities. 

Shrub encroachment has been reported in many grassland and savanna ecosystems in North 

and South America, in Africa and Australia (e.g. Van Auken 2000, Bowman 2002, Hughes et al. 

2006), often as a result of  overgrazing of herbaceous species or changes in fire regime (Van 

Auken 2000, Asner et al. 2004). It has also been reported in Greek rangelands as a 

consequence of decreasing land use intensity (Karakosta and Papanastasis 2007, Zarovalli et al. 

2007). Woody encroachment is likely to cause substantial alterations in the sequestration and 

cycling of carbon and nitrogen (Briggs et al. 2005, Hughes et al. 2006) because grasslands are 

generally expected to have high biomass turnover, productivity and nutrient cycle, and only 

moderate capacity for carbon sequestration in biomass when compared to woody 

communities (Díaz and Cabido 1997, Gill and Burke 1999). Increases in above-ground carbon 

storage with shifts to woody vegetation have been reported by some authors (e.g. Jackson et al. 

2002, Asner et al. 2003, Hughes et al. 2006). Several specific aspects of ecosystem function, 

among which is above-ground net primary productivity (ANPP) were directly affected by the 

relative abundance of the grass and shrub functional types in a study in the Patagonian steppe 

(Aguiar et al. 1996). Above-ground primary productivity decreased as shrubs increased because 

shrubs did not fully compensate for the decrease in grass production (Aguiar et al. 1996). 

Zarovalli et al. (2007), and Karakosta and Papanastasis (2007) noted a decrease in herbaceous 

biomass and production as woody species cover increased. Considering the productivity of 
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herbaceous and woody components together, Huenneke et al. (2002) reported a small but 

significant decrease in overall productivity of desertified shrub systems of New Mexico in 

comparison to grasslands. However, there is still a degree of uncertainty regarding how 

biomass and productivity of herbaceous and woody components interact in response to shifts 

in plant life form composition (Hughes et al. 2006), particularly in Mediterranean, where such 

studies are scarce. Studies in Mediterranean areas (Karakosta and Papanastasis 2007, Zarovalli 

et al. 2007) suggest a possible decrease in herbaceous ANPP but this may be compensated by 

shrub productivity, resulting in no change in ANPP, or more than compensated, resulting in 

an increase in ANPP (Huenneke et al. 2002, Reich et al. 2001, House et al. 2003)   

Our question is focused on the effect of abandonment and, more specifically, the shift 

from herbaceous to shrub dominated communities, on the community above-ground biomass 

and ANPP. We hypothesized that the change in life form dominance would affect both 

biomass and productivity but while the total biomass was expected to increase, because shrubs 

have larger biomass than herbaceous species, the effects on ANPP were less clear.  

 

METHODS 

Study site 

The study site (Monte do Vento, Mértola) is located in the Southeast of Portugal, at about 

37º48’21.72’’ N and 7º40’44.96’’ W. 

At the study site, three land use categories were selected to represent a decrease in land use 

intensity. The first category, ‘grazing’, is used for extensive grazing by sheep (0.99 CU/ha). 

The two other categories, ’intermediate succession’ and ‘advanced succession’, represent areas 

that were abandoned, 10 to 15 years, and 20 or more years ago, respectively. Within each land 
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use category three permanent plots were set. Please refer to chapter 1 of this dissertation for a 

more detailed description of the study site and land use categories. 

 

Sampling 

Herbaceous Aboveground Biomass and ANPP 

The methods chosen to measure above-ground biomass and ANPP in each land use 

category were different for shrub and herbaceous vegetation.  

For herbaceous vegetation, the sampling of plant above-ground biomass and ANPP 

followed “Method 1” of Scurlock et al. (1999). This method estimates above-ground biomass 

and ANPP based on a single harvest at the peak of live biomass. It assumes that any standing 

dead matter or litter was carried over from previous years, and death in current year is 

negligible. This method was considered adequate for the studied communities, which are 

mostly composed of annual species.  

One harvest of above-ground biomass was conducted in April-May 2004 to assess 

maximum standing biomass (Scurlock et al. 2002). Eight quadrates of 0.25 x 0.50 m were 

sampled in each of the three permanent plots in ‘grazing’ and ‘intermediate succession’ land 

use categories, resulting in an area of approx. 1 m2 sampled per plot. Each plot was considered 

a replicate, resulting in three replicates per land use category (Garnier et al. 2007). For each 

quadrate, all above-ground material (live and dead) was collected by clipping at ground level. 

Live material was separated from the dead and the two fractions were oven-dried to constant 

mass at 60ºC and weighed (Garnier et al. 2007). Live material was used to determine above-

ground live biomass and ANPP. 
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Shrubs Aboveground Biomass and ANPP 

Shrub measurement techniques (e.g. Vora 1988, Fernández et al. 1991, Armand et al. 1993, 

Jobbágy and Sala 2000, Sternberg and Shoshany 2001, Navarro and Oyonarte 2006) used in 

other semi-arid areas of the world were examined with the objective of adapting a suitable, 

non-destructive, and relatively simple and accurate method to the shrub species in the study 

area. Although a large number of variables could be used to predict biomass and ANPP, 

variables that express the size of the crown appeared to be the most useful (Murray and 

Jacobson 1982).  

The collection of data for the estimation of shrub above-ground biomass and ANPP 

consisted of two steps.  

First, in order to establish regression equations for the estimation of above-ground 

biomass and ANPP, we measured and harvested 6 to 12 individuals of the shrub species Cistus 

ladanifer, Genista hirsuta, Helichrysum stoechas, Lavandula stoechas and Lavandula viridis, which were 

the dominant shrub species in the studied plots (other shrub species present had negligible 

cover. See Appendix 1). For each individual we measured: (1) Total height, defined as the 

maximum vertical distance from the ground level to the highest point of the plant; (2) Crown 

diameter, as the mean of two perpendicular diameters. From these measurements we 

determined crown area and volume. Crown volume was determined, for each species, using 

the formula of the solid that appeared to give the best fit of the natural shape of the crown. 

The geometric shape that best fitted the sampled species was the inverted cone. Assuming a 

cone shape, plant volume (V) was calculated as V = π/3r2h, where r is the crown radius and h 

is total height.  

In the laboratory, the harvested individuals were separated into green leaves and current 

year shoots, woody parts, and dead material. The different fractions were oven-dried to 

constant mass at 60ºC and weighed. Green leaves and current year shots were considered as 
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current year production (Fernández et al. 1991, Alldredge et al. 2001) and used as an estimate  

of ANPP. The measured variables were regressed against dry weight (see description below).  

Second, three quadrates of 6 m2 per plot were sampled in ‘intermediate’ and ‘advanced 

succession’ land use categories. In each of these quadrates, we counted and measured (as 

above) all the individuals of each shrub species present. Plant biomass within these quadrates 

was estimated by applying the developed regression equations (see description below). Total 

above-ground biomass values for each species in a quadrate were summed to obtain biomass 

per square meter. The three quadrates in each plot were averaged to yield a single value per 

plot. 

Above-ground net primary productivity was calculated as a proportion of the total plant 

biomass based on the mean values obtained from the individuals collected (0.25% in Cistus 

ladanifer, 0.14% in Genista hirsuta, 0.58% in Helichrysum stoechas, 0.40 % in Lavandula stoechas and 

0.27% in Lavandula viridis). 

For ‘intermediate succession’ plots the above-ground biomass and ANPP of the 

herbaceous layer was measured as for the ’grazing’ plots while for the shrub layer we 

proceeded as for ’advanced succession’ plots. The total above-ground biomass and ANPP per 

plot was obtained as the sum of the herbaceous and shrub layers. 

 

Statistics 

Regression equations 

Curve estimation regression models were used to determine the type of regression that 

best described the relationship, in each species, between measured variables (height, volume 

and area) and dry weight. The variable that best predicted dry weight was volume (V) in Cistus 

ladanifer, Genista hirsuta, and Helichrysum stoechas, and area (A) in Lavandula stoechas and Lavandula 

viridis. The curves that best described these relationships were linear and power. The best 
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equation for each species was selected based on the coefficient of determination. The 

equations selected, linear for Cistus ladanifer and Helichrysum stoechas, and power for Genista 

hirsuta, Lavandula stoechas and Lavandula viridis are presented in Table 1. The coefficients of 

determination for the selected equations ranged from 0.889 to 0.987 (Table 1). 

 

Table 1 - Regression equations (Wt = estimated weight in g, V = Canopy volume in cm3, A = canopy 

area in cm2), coefficients of determination (r2), significance (p), and number of samples (n).  

 Equations r2 p n 

Cistus ladanifer Wt = 90.819 + 0.002*V 0.953 <0.001 12 

Genista hirsuta Wt = 0.003*V1.027 0.973 <0.001 6 

Helichrysum stoechas Wt = 7.009 +0.003*V 0.987 <0.001 6 

Lavandula stoechas Wt = 0.213*A0.872 0.960 <0.001 6 

Lavandula viridis Wt = 0.009*A1.366 0.889 <0.001 6 

 

 

Data analysis 

Differences in mean above-ground live biomass, ANPP and total above-ground dead 

biomass between land use categories were tested, on untransformed data, with the ANOVA 

or students t-test, according on the number of land use categories that were under analysis. 

The Pearson’s correlation coefficient was used to test for correlations between above-ground 

live biomass and shrub cover, and ANPP and shrub cover. All statistical analyses were 

performed with SPSS 14.0 for windows (SPSS, Inc. Chicago, IL). 

 

Methodological considerations  

In this study, annual herbaceous ANPP was estimated by the peak of green biomass. 

Studies in other system indicate that if the purpose is to estimate annual primary production, 

peak of green biomass is one of the methodological options with the smallest error (Jobbágy 
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and Sala 2000). Furthermore, annual herbaceous communities fulfil the assumption that live 

biomass that was not carried over from previous years (Scurlock et al. 2002). In the case of 

shrubs, we assumed that current year leaf and twig biomass accounted for annual ANPP. A 

slight underestimation of shrub ANPP may be expected since we did not account for stem 

diameter changes in older branches. The use of current year biomass accumulation at the end 

of the growing season as an estimate of ANPP has been successful in other studies were shrub 

ANPP was estimated (Jobbágy and Sala 2000). Additionally, we calculated ANPP as a 

proportion o total shrub biomass. We compared the obtained from the collected individuals 

with those obtained in other studies when these were available. Values found in other studies 

ranged from 0.21 to 0.27 in Cistus ladanifer (Simões 2002, Navarro and Oyonarte 2006), and 

from 0.21 to 0.35 in Lavandula stoechas (Armand et al. 1993, Navarro and Oyonarte 2006), were 

about 0.15 in Gennista spp (Navarro and Oyonarte 2006), and 0.46 in Helichrysum italicum. 

Values found in the present study were generally within the range of those reported for the 

same species or genus, except in the case of Lavandula stoechas and Helichrysum stoechas which 

showed higher values. Even though one should be aware of the possible errors resulting from 

the methodology used, we consider that it was adequate for the purpose of this study.  

 

RESULTS 

Aboveground biomass and ANPP 

Above-ground biomass differed significantly between all land use categories, from a 

minimum of 194.71 gm-2 in ‘grazing’ to a maximum of 1164.89 gm-2 in ‘advanced succession’ 

(Fig. 1).  

The increase in above-ground biomass after abandonment was strongly related to the 

increase in shrub cover (Table 3), particularly Cistus ladanifer.  
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Figure 1 - Above-ground biomass in grazing (G) and intermediate (I) and advanced (A) succession 

land use categories (F = 115.07, p < 0.0001, n=9). Values in intermediate succession represent the sum 

of plant biomass in the herbaceous and shrubs layers. 

 

 

Table 3 - Relationships (Pearson’s correlation coefficients) between above-ground biomass, ANPP 

and shrub cover. Significance levels: *p < 0.05, **p < 0.01  

 Shrub cover  Cover of C. ladanifer 

Above-ground biomass 0.887** 0.985** 

ANPPTotal 0.70* 0.885** 

ANPPshrubs 0.858* 0.972** 

 

 

Aboveground net primary productivity ranged from 194.71 gm-2 in ‘grazing’ to 271.15 gm-2 

in ‘advanced succession’ (Fig. 2). When the herbaceous and shrub layers were separately 

analysed (Fig. 3 and 4), intermediate succession had a significantly lower herbaceous ANPP 

when compared to ‘grazing’ (Fig. 3; t = 4.14, p < 0.05), and significantly lower shrub ANPP 

when compared to ‘advanced succession’ (Fig. 4; t = 5.38, p < 0.05).  
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Additionally, data for the total above-ground dead biomass of the herbaceous layer were 

analysed. This analysis showed a significantly higher (Fig. 3; t = 3.58, p < 0.05) amount of 

dead material in ‘intermediate succession’ when compared to grazing. The increase in ANPP 

of the shrub layer was strongly related with the increase in the cover of Cistus ladanifer (Table 

3). As shown in Fig. 4, shrub ANPP and Cistus ANPP significantly increased from 

‘intermediate’ to ‘advanced’ succession while the sum of ANPP of the other shrubs did not 

change significantly. 
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Figure 2 - Above-ground net primary productivity (ANPP) in grazing (G), intermediate (I), and 

advanced (A) succession land use categories (F = 6.95, p < 0.05, n=9). Values in intermediate 

succession represent the sum of plant biomass in the herbaceous and shrub layers. 
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Figure 3 - Above-ground net primary productivity (ANPP) and above-ground dead plant material 

(AGTdead) of the herbaceous layer in grazing (G) and intermediate succession (I) land use categories. 

Both variables are significantly different among areas (ANPP: t = 4.14, p < 0.05, n=6; AGTdead: 

t=3.58, p < 0.05, n=6). 
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Figure 4 - Above-ground net primary productivity of all shrubs sampled (ANPP), of Cistus ladanifer 

(Cistus) alone, and the sum of other shrub species (Other shrubs) in intermediate (I) and advanced 

succession (A) land use categories (ANPP: t = 5.38, p < 0.01, n=6; Cistus: t =3.41, p < 0.05, n=6; 

Other shrubs: t =1.29, p > 0.05, n=6). 



 
Biomass and productivity 

 89 

DISCUSSION 

Above-ground biomass of shrub communities showed lower values than those reported 

for Mediterranean shrub communities (2190 to 4600 g m-2, Ehleringer and Mooney 1983) and 

than those found by Simões (2002) for the above-ground biomass of Cistus ladanofer in a study 

in South Portugal (1605 to 1936 g m-2). Above-ground net primary productivity of shrub 

communities showed higher values than those reported for Mediterranean shrub communities 

(110 to 130gm-2, Ehleringer and Mooney 1983) but lower than reported by Simões (2002) for 

the sum of green leaves and current year shoots of Cistus ladanifer in a study in South Portugal 

(420.6 to 538.8 g m-2). 

The herbaceous species that generally dominate early secondary successional sites return 

most of their biomass to the soil each year. As perennial species, particularly shrubs, increase 

in abundance, biomass increases more rapidly because woody species retain a larger 

proportion of their biomass than do herbaceous species (Chapin III et al. 2002). Our results 

showed an increase in total above-ground biomass with abandonment time and are therefore 

consistent with what would be expected following the replacement of herbaceous with woody 

species. The increase in above-ground biomass through succession in our study was strongly 

related to the increase in shrub cover. Differences in biomass thus reflect the changes in the 

dominant life form.  

When only herbaceous species were taken into account, the above-ground biomass and 

ANPP decreased from ‘grazing’ to ‘intermediate succession’ in our study. Herbaceous biomass 

and production were also significantly reduced as shrub cover increased in Greek rangelands 

(Karakosta and Papanastasis 2007, Zarovalli et al. 2007). The accumulation of dead material 

has important implications for productivity and community composition by intercepting light, 

and shading seeds and seedlings (Facelli and Pickett 1991, Grime 2001). In herbaceous 

communities, most of the aerial biomass is allocated to short lived organs resulting in a rapid 
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accumulation of litter in early stages of succession (Facelli and Pickett 1991). The higher mass 

of herbaceous above-ground dead material in ‘intermediate succession’ is likely to be a 

consequence of the absence of grazing, which together with the increase in shrub cover may 

explain the decrease in both biomass and ANPP of herbaceous vegetation in this area. A 

negative effect of larger amount of above-ground dead material on ANPP in ungrazed plots 

was also reported by Altesor et al. (2005) for temperate sub-humid grasslands. 

Different types of vegetation can attain similar aboveground productivities because of 

compensating factors in the productive structure of the community. In a study which 

encompassed forest, scrub, and herbaceous Mediterranean communities, Ehleringer and 

Mooney (1983) reported a difference between these communities of 30-fold in aboveground 

biomass and only a 2-fold difference in aboveground productivity. In a temperate oak 

savanna, an increase in ANPP with increasing woody plant cover was caused by an increase in 

woody ANPP, large enough to more than compensate for the decrease in grass ANPP (Reich 

et al. 2001). In contrast, ANPP was reduced with shifts from grass to woody plant dominance 

in desertified systems of New Mexico (Huenneke et al. 2002). In our study, the shift from 

herbaceous to woody dominance resulted in an increase in woody ANPP and in a decrease in 

herbaceous ANPP as well as in a significant change in the community ANPP. The increase in 

shrub ANPP was mostly accounted by C. ladanifer and it was in the plots dominated by this 

species (‘advanced succession’ plots) that ANPP significantly increased. C. ladanifer is a pioneer 

species that colonises degraded areas and forms one of the first stages of succession of woody 

communities (Correia 2002). Under unfavourable conditions, C. ladanifer successfully competes 

with other species and quickly spreads over recently disturbed areas. This species can grow 

fast and attain large amounts of biomass in a short amount of time (Nuñez et al. 1989). Patón 

et al. (1998) found a production of 170 g m-2, in natural communities, in 2 year-old C. ladanifer, 

and Simões (2002), reported values ranging from 420.6 to 538.8 g m-2 for photosynthetical 
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active components for this species. In the studied system, the early ruderal herbaceous 

communities were replaced by pioneer shrub species that have themselves high growth rates. 

Therefore the increase in ANPP may not be a surprising result in these systems.  

 

CONCLUSIONS 

Our study showed an increase in total above-ground biomass with abandonment time 

indicating a positive effect of the shift to woody vegetation on total above-ground biomass. 

Total ANPP was significantly higher in ‘advanced succession’ than in ‘grazing’ while 

herbaceous ANPP decreased indicating a negative effect of increase in shrub cover on 

herbaceous ANPP. The decrease in herbaceous ANPP was compensated by the increase in 

shrub ANPP, which was greatly due to the high ANPP of Cistus ladanifer.  
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CHAPTER 4 

 

EFFECTS OF LAND USE CHANGE ON PLANT LITTER DECOMPOSITION IN AN 

EXTENSIVE AGRO-PASTORAL SYSTEM: RELATION TO LITTER CHEMISTRY AND 

PLANT FUNCTIONAL TRAITS 
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INTRODUCTION 

Recycling of carbon and nutrients during decomposition is an important ecosystem 

process. It has a major control over the carbon cycle, nutrient availability, and, consequently, 

plant growth and community structure (Bardgett and Shine 1999). In ecosystems where 

nutrients are limited, such as those of the Mediterranean type, the amount of plant material 

returning to the soil and the rate of litter decomposition are particularly critical factors 

(Fioretto et al. 2003). Litter decomposition is controlled by abiotic factors, such as climate and 

soil chemical and physical properties, and by biotic factors, such as litter quality and the nature 

and abundance of the decomposer organisms (Coûteaux et al. 1995, Chapin III et al. 2002). 

Although climate is the factor that most strongly influences decomposition, within a particular 

climatic region, litter quality is the factor exerting the strongest control on litter 

decomposability (Aerts and Chapin 2000). Decay is controlled by a wide variety of chemical 

properties of litter including its nitrogen concentration, carbon to nitrogen ratio, phosphorus 

concentration or carbon to phosphorus ratio, lignin concentration or lignin to nitrogen ratio, 

cellulose and hemicellulose concentration (Melillo et al. 1982, Aerts and Chapin 2000, Cortez et 

al. 1996). Some studies report strong correlations between litter initial nitrogen concentration, 

C:N ratio, or lignin or lignin:N ratio, and the decomposition rate (e.g. Jamaludheen and Kumar 

1999, De Angelis et al. 2000, Melillo et al. 1982, Cortez et al. 1996). Litter initial phosphorus 

concentration has also been pointed out to be well correlated to decomposition rate (Aerts et 

al. 2003). However, the chemical properties that best predict decomposition can vary across 

groups of species (Eviner and Chapin 2003) and climatic region. When Mediterranean adapted 

vegetation is considered, physical properties are of great importance and leaf toughness has 

been considered the best predictor by Gallardo and Merino (1993) for Mediterranean species.  

In addition to the effects of litter quality, the presence of growing plants significantly alters 

the decomposition dynamics through effects on microbial activity and in soil temperature and 
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moisture, both increasing and decreasing rates of decomposition (Eviner and Chapin 2003). 

Because plant species can differ in their effect on ecosystem structure and function, shifts in 

vegetation composition due to land use change can have strong effects on ecosystem 

processes such as nutrient cycling, primary productivity and trophic transfer (Pérez-

Harguindeguy et al. 2000).  

We investigated the effects of land use change on a key ecosystem process, decomposition, 

along a gradient of decreasing land use intensity in an agro-pastoral system in Alentejo, 

Southern Portugal, where, as a consequence of the rapid industrial and socio-demographic 

changes of the last decades, large areas of former arable land are being abandoned. At the 

vegetation level, the major consequence of abandonment is the change in plant composition 

and community structure. Abandonment, in this system, leads to the replacement of annual 

herbaceous communities with shrub communities, frequently dominated by one or few 

species (see chapter 2). Previous studies have shown that decomposition patterns are modified 

during succession and that these changes may be associated with species replacement during 

succession (Aber and Melillo 1982, Pardo et al. 1997). This vegetation change might be 

expected to coincide with slower decomposition rates as a consequence of the decline in litter 

quality as later-succession species replace earlier ones (Cornelissen et al. 1999). While assessing 

the effects of land use change on litter quality and litter decomposition, we tested the 

hypothesis that decomposition tends to slow down with abandonment, as woody species, 

richer in lignified structures replace herbaceous species. 

Recent works have demonstrated strong associations between decomposition and leaf 

chemical composition (Wardle 2002) and physical properties (Cornelissen et al. 1999, Pérez-

Harguindeguy et al. 2000). Decomposition of herbaceous communities was correlated to 

community specific leaf area, leaf dry matter and nitrogen content in a study of land 

abandonment in Mediterranean Southern France (Garnier et al. 2004). We tested whether 
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these traits of leaving leaves were also related to litter decomposition at sites with a high 

woody component and where important changes in life form occur, such as the ones in the 

present study.  

 

METHODS 

Study area 

The study site (Monte do Vento, Mértola) is located in the Southeast of Portugal, at about 

37º48’21.72’’ N and 7º40’44.96’’ W. The area has the typical winter-wet, summer-dry pattern 

of a Mediterranean type climate with little if any precipitation from June to September. Mean 

annual rainfall is around 438 mm and mean annual temperature of 16.8º C. The variation in 

temperature and precipitation during the study period is shown in Fig. 1. Most of the rainfall 

was concentrated on the first three months of the study and the mean annual rainfall was 

lower than the normal mean for a period of 30 years presented above.  

At the study site, we selected three land use categories to represent a decrease in land use 

intensity. The first category, ‘grazing’, is used for extensive grazing by sheep (0.99 CU/ha). 

The two other categories, ’intermediate succession’ and ‘advanced succession’, were 

abandoned, 10 to 15 years and 20 or more years ago, respectively. Within each land use 

category three permanent plots were set. Please refer to chapter 1 of this dissertation for a 

more detailed description of the study site and land use categories. 
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Figure 1 - Temperature and precipitation during the study period (October 2003 – April 2005), 

Mértola meteorological station.  

 

Characteristics of plant communities and species traits 

The three following traits, previously shown to relate to field age and litter mass loss 

(Garnier et al. 2004) and also tested for Mediterranean herbaceous communities by (Cortez et 

al. 2007), were measured: specific leaf area (SLA), leaf dry matter content (LDMC) and leaf 

nitrogen content (LNC). In addition to these traits we also measured leaf carbon content 

(LCC), leaf phosphorus content (LPC) and calculated leaf C:N ratio. These traits were 

measured following standardized protocols (Garnier et al. 2007, Cornelissen et al. 2003). Leaf 

nitrogen content, LCC and LPC were obtained from the analysis of a composite sample from 

the 5 individuals collected within each plot. Total amounts of carbon and nitrogen of leaves 

were determined with CHN elemental analyser (Carlo Erba elemental analyser, Model 

EA1108; CEFE – CNRS, Montpellier, France). Total amount of phosphorus was determined 

by a colorimetric method adapted from Murphy & Riley (1962). Samples were reduced to 

ashes at 500ºC for 3h and the ashes dissolved in 5ml cloridric acid. The resulting solution was 

adjusted to pH of 5 with NaOH solution and later to a total volume of 25 ml with bi-distilled 
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water. Finally, 4ml of the colorimetric reagent (ascorbic acid – ammonium paramolibdate 

complex) were added and the absorbance of the samples obtained at 882 nm in a 

spectrometer Jenway 6100. Please refer to chapter 2 for methodology regarding SLA and 

LDMC. Data on plant functional traits was collected for the most abundant species (see 

chapter 3 and Appendix 1). 

Community-aggregated traits (hereafter community-trait) were calculated from species 

abundance and plant traits (Garnier et al. 2007). Please refer to chapter 2 for a more detailed 

description. 

 

Litter decomposition 

Litter decomposition studies were carried out using the litterbag technique as described in 

(Garnier et al. 2007). At the time of major peak of senescence, litter of all plant parts of all 

vascular plants species (in ‘advanced succession’ only shrub species were sampled) was 

collected in the proportions in which it is naturally shed in the plots. Coarse woody litter (>5 

mm diameter), live biomass, substantially decomposed material, and seeds were excluded. 

Litter material was cut up into 5 cm lengths, in order to enable long leaves and stems to fit 

inside the litterbags and to get a representative mixture of the different parts and species in 

each litterbag. Litter was dried at room temperature for 3-4 days. A standard 1-mm mesh 

(Northern Mesh, Oldham, UK) was used to build flat bags of about 10 x 10 cm. The bags 

were filled with litter portions of 2g (±0.1).   

Incubation was initiated in the beginning of October 2003. Litterbags containing 

community litter were incubated, at the soil surface, in the plot from which they came (Fig. 2). 

Four harvests were made after 3, 6, 12 and 18 months. The litter bag contents were carefully 

cleared of any extraneous plant material, soil animals, and soil aggregates, dried at 60ºC for 3 

days and weighed.  



 
Chapter 4 

 102 

 

 

Figure 2 - Example of the placement of the litter bags in the field. 

 

To test the influence of plot local conditions on litter decomposition, samples of the same 

litter type, hay2 (hereafter, standard litter), were incubated in each of the sampled plots. The 

samples were treated as described above. 

To test the influence of litter quality, an additional decomposition experiment was carried 

out under standard condition in a microcosm at the ‘Centre d’Ecologie Fonctionnelle et 

Evolutive’ (CEFE), CNRS (Montpellier, France), as part of the objectives of project VISTA. 

Data was obtained from the project VISTA data set. For description of the methodology, 

please refer to Garnier (2007).  

  

Litter quality: 

A subset of the litter samples representative of the litter collected in each plot were ground 

to pass through a 1 mm mesh in a cyclone mill (Cyclotec Sample mill 1903), and scanned by 

near infrared reflectance spectrophotometer (NIRSystem 6500). Calibrations between initial 

                                                 
2 Hay was chosen as common litter type to all sites of Project VISTA. 
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litter spectral data and litter decomposability were calculated using cross-validated partial least 

square method. Four indicators of litter chemical quality were determined from initial litter 

spectral data at the CEFE, CNRS (Montpellier, France), following the method described by 

Joffre et al. (1992) and Gillon et al. (1999): nitrogen, lignin, cellulose and hemicellulose. In 

addition, three indices of litter chemistry, relating to the proportions of labile and non-labile 

compounds in the litter, were calculated (Cornelissen et al. 2004, Gillon et al. 1994, Cortez et al. 

1996): the lignin:N ratio, the total fibre content (LCH = lignin + cellulose + hemicellulose), 

and the hollocellulose (cellulose + hemicellulose) to holocellulose + lignin ratio (HLQ). Total 

C was estimated as 50% of the ash-free biomass (Gallardo and Merino 1993, Schlesinger 

1977). 

 

Data analysis 

Mass loss over time was fitted to a simple exponential model that assumes that a constant 

fraction of the mass is lost per unit time (Olson 1963) given by:  

kt
M

Mt
Ln −=









0
 

where Mt is the mass at time t and M0 is the original mass, and decomposition rates are given 

as fractional mass lost per year. 

Mean litter mass loss values from each plot and harvest were calculated, and analysis 

performed treating each of the three plots in each land use category as a replicate. Single-

factor ANOVA was used to test for differences in initial litter quality. Differences in litter 

mass remaining were tested using two-way ANOVA followed by the Tukey test. To test for 

significant differences between slopes of the regression functions we used the procedure 

described by Zar (1996) followed by a Tukey multiple comparison test to determine 

differences between slopes. The relationships between initial litter quality and litter mass 
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remaining and decay rate were assessed using Pearson’s correlation coefficient. All statistical 

analyses were performed with SPSS 14.0 for windows (SPSS, Inc. Chicago, IL). 

 

RESULTS 

Litter mass loss and decomposition rate 

A rapid initial phase of litter mass loss was observed for all litter types (Fig. 3). Litter mass 

remaining after 3 months of incubation was 81.43%, 71.92%, and 73.00%, in ‘grazing’, 

‘intermediate’, and ‘advanced succession’ land use categories, respectively. Values for control 

litter were lower: 71.85%, 65.84% and 61.72% in ‘grazing’, ‘intermediate’, and ‘advanced 

succession’ land use categories, respectively.  

Mass loss from community litter was significantly different among land use categories at 

the 6 and 18 months harvest and non-significant at the 3 and 12 months. Litter mass loss at 

the 6 month harvest was higher in abandoned plots than in grazed plots while, at the end of 

the experiment, bags in grazed plots had lost more weight than bags in ‘advanced succession’ 

plots. Litter mass loss in ‘intermediate succession’ land use category was not different from the 

other two categories. The mass loss of the standard litter only differed significantly at the 6 

month harvest and as for community litter, mass loss was higher in abandoned than in grazed 

plots. 

The Tukey test analyses showed a significant effect of land use category on litter 

decomposition rate. For the overall 18 month period (Table 1), ‘grazing’ land use category 

showed a significantly higher decomposition rate when compared to the other land use 

categories. Decay rates determined for ‘advanced succession’ land use category are in the 

range of values found for other Mediterranean evergreen species. Gallardo and Merino (1993) 

found decay rates between -0.14 and -0.50 year-1 after two years of decomposition for species 



 
Litter decomposition 

 105 

of Cistus, Halimium e Quercus. The decay rate at 6 months also differed significantly among land 

use categories but contrary to the overall results, ‘grazing’ land use category showed a 

significantly lower decay rate (Table 1). Litter from ‘intermediate’ and ‘advanced succession’ 

decomposed faster in the first 6 months of incubation and slower during the remaining period 

when compared to ‘grazing’ land use category (Table 1). 
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Figure 3 - Litter mass remaining (%) at different times from litterbags containing: (a) – community 

litter incubated in situ, (b) – standard litter incubated in situ (control litter). Mean values (± s.e.) are 

shown for the three replicate plots per land use category. G – grazing, I – intermediate succession, A – 

advanced succession. 
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Decomposition in microcosm showed decreasing decay rates with abandonment time, 

with ‘grazing’ land use category having highest decay rate and ‘advanced succession’ the lowest 

(F = 7.43, p < 0.05). ‘Intermediate succession’ was not different from the other land use 

categories.   

 

Table 1 - Decomposition rates (year-1) from community and standard litter in the different land use 

categories: G – grazing, I – intermediate succession, A – advanced succession. Values calculated from 

an exponential model at different collection dates.  

 Decay rate 

 6 months After 6 months* Overall period 

 Community Control Community Control Community Control 

G -0.607 (b) -0.728 (a) -0.869 (a) -0.966 (a) -0.732 (a) -0.847 (b) 

I -0.963 (a) -1.296 (b) -0.434 (b) -0.435 (b) -0.578 (b) -0.657 (a) 

A -0.914 (a) -1.066 (a,b) -0.443 (b) -0.676 (b) -0.575 (b) -0.707 (a,b) 

*considering mass remaining at 6 months as starting point 

 

Litter initial quality 

Initial chemical composition of litter is presented in table 2. Litter from ‘grazing’ land use 

category showed significantly lower values of Nitrogen (N) and was significantly richer in 

cellulose and hemicellulose when compared to ‘intermediate’ and ‘advanced succession’ land 

use categories. Lignin and carbon (C) content, as well as, lignin:N and C:N rations were not 

significantly different among land use categories. The lack of significant differences in lignin 

was likely due to large variation between replicas. Litter phosphorus content increased while 

LCH and HLQ decreased from ‘grazing’ to ‘advanced succession’. 
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Table 2 - Initial chemical composition of species mixtures from the three land use categories. Litter 

chemical parameters: N- nitrogen, C- carbon, P- phosphorus, C:N- carbon to nitrogen ratio, Cell- 

cellulose, hemi- hemicellulose, lign- lignin, LCH- total fibre content, HLQ- holocellulose to 

holocellulose + lignin ratio. Land use categories: G- grazing, I- intermediate succession, A- advanced 

succession. Values are means ± 1 s.e. (n=3). The last row gives the results of the one-way ANOVA: 

n.s.- non significant, * p<0.05, ** p<0.01, *** p<0.001. Values with different superscript letter are 

significantly different (significance of Tukey-test given at p<0.05) 

 
N  

(mg g-1) 

C  

(mg g-1) 

P  

(mg g-1) 

C:N 

(mg g-1) 

Cell 

(mg g-1) 

Hemi 

(mg g-1) 

Lign 

(mg g-1) 
Lign:N LCH HLQ 

G 
4.81± 

0.71(a) 

478.93

± 2.20 

0.39± 

0.07(b) 

104.36± 

16.14(b) 

326.02± 

8.75(b) 

263.64± 

10.90 (b) 

51.6± 

16.20 

10.1± 

2.47 

641.30±

4.00(a) 

0.92± 

0.03(a) 

I 
8.59± 

0.51(b) 

479.86

± 0.13 

0.56± 

0.09(a,b) 

56.29± 

3.71(a) 

164.62± 

24.23(a) 

133.42± 

27.03 (a) 

102.± 

25.47 

12.3± 

3.93 

400.33±

73.10(a,b) 

0.75± 

0.02(b) 

A 
9.25± 

0.11(b) 

478.00

± 0.11 

0.76± 

0.2 (a) 

51.68± 

0.75(a) 

149.16± 

8.91(a) 

95.759± 

2.43 (a) 

68.9± 

8.36 

7.45± 

0.91 

313.83±

7.69(b) 

0.78± 

0.03(b) 

One-way Anova         

F 22.34** 0.30n.s. 7.00* 9.29* 46.79*** 27.22** 2.03n.s. 0.82n.s. 15.94** 14.54** 

 

 
 

Plant traits 

Results from community-trait analysis showed significant differences in LDMC, SLA and 

LCC between land use categories (Table 3). Plots abandoned for longer (advanced succession) 

had species with higher community LDMC and LCC, and lower SLA. Community-LNC and 

LPC, as well as leaf C:N did not show significant differences among land use categories (Table 

3). 
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Table 3 – Community-aggrgated traits in the three land use categories. Community-aggregated traits: 

SLA - specific leaf area, LDMC - leaf dry matter content, LNC- leaf nitrogen content, LCC- leaf 

carbon content, LPC- leaf phosphorus content, Leaf C:N- leaf carbon to nitrogen ratio. Land use 

categories: G- grazing, I- intermediate succession, A- advanced succession. Values are means ± 1 s.e. 

(n=3). The last row gives the results of the one-way ANOVA: n.s.- non significant * p < 0.05, ** p < 

0.01, *** p < 0.001. Values with different superscript letter are significantly different (significance of 

Tukey-test given at p<0.05) 

Land use  
SLA  

(m2 kg-1) 

LDMC 

(mg g-1) 

LNC  

(mg g-1) 

LCC  

(mg g-1) 

LPC 

(mg g-1) 
Leaf C:N 

G 
24.14± 

0.92(a) 

222.10± 

7.52(a) 

23.26± 

0.62  

427.24± 

0.92(a) 

1.22± 

0.07  

18.39± 

0.44 

I 
15.92± 

0.22(b) 

329.31± 

10.00(b) 

22.06± 

1.40. 

462.47± 

1.01(b) 

1.31± 

0.003  

21.11± 

1.22  

A 
10.95± 

1.21(c) 

471.69± 

5.06(c) 

21.01± 

1.35. 

478.02± 

0.81(c) 

1.25± 

0.007. 

22.96± 

1.60  

One-way Anova      

F 56.59*** 257.98*** 0.916 n.s. 803.97*** 1.024 n.s. 3.74 n.s. 

 

 

Linking traits, litter chemistry and decomposition 

Of the litter chemical parameters measured, cellulose, hemicellulose and LCH were 

positively related to litter decomposition rate of the overall study period both in the in situ 

experiment and in microcosm (Table 4). On the contrary, N and P were negatively related to 

decomposition rate. Considering the relationships between the chemical parameters measured 

and decomposition rate at other harvest times, none of the parameters was correlated with 

decay rate at the 12 month harvest. Nitrogen content was positively correlated with decay rate 

at the 3 and 6 month harvests while cellulose showed a negative correlation.  
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Table 4 - Relationships (Pearson’s correlation coefficients) between decomposition of community 

litter under standard conditions (microcosm) or field and litter chemistry. Litter chemical parameters: 

N- nitrogen, C- carbon, P- phosphorus, C:N- carbon to nitrogen ratio, Cell- cellulose, hemi- 

hemicellulose, lign- lignin, LCH- total fibre content, HLQ- holocellulose to holocellulose + lignin ratio. 

Significance levels: n.s.- non significant, * p < 0.05, ** p < 0.01. 

 microcosm k3 K6 k12 K18 

N -0.717* 0.700* 0.677* 0.406 -0.742* 

P -0.749* 0.381 n.s. 0.334 n.s. 0.429 n.s. -0.740* 

C 0.600 n.s. -0.234 n.s. -0.067 n.s. -0.232 n.s. 0.091 n.s. 

C:N 0.546 n.s. -0.597 n.s. -0.612 n.s. -0.317 n.s. 0.625 n.s. 

Lignin 0.162 n.s. 0.382 n.s. 0.521 n.s. -0.186 n.s. -0.254 n.s. 

Lignin:N 0.588 n.s. -0.057 n.s. 0.116 n.s. -0.432 n.s. 0.221 n.s. 

Cellulose 0.789* -0.776* -0.741* -0.409 n.s. 0.804** 

Hemicellulose 0.808** -0.681 n.s. -0.657 n.s. -0.452 n.s. 0.776* 

LCH 0.872** -0.682* -0.621 n.s. -0.419 n.s. 0.701* 

HLQ 0.453 n.s. -0.689* -0.734* -0.207 n.s. 0.701* 

 

 

Several of the measured litter chemistry parameters were strongly related to the measured 

community-traits (Table 5). Litter N and P were negatively related to community-SLA, and 

positively related to community-LDMC and LCC. Litter cellulose, hemicellulose 

concentrations and LHC were positively related to community-SLA, and negatively related to 

community-LDMC and LCC. 

There were clear links between litter decay rate and community-aggregated traits in the in 

situ experiment (Table 6). Community-LDMC and LCC were significantly and negatively 

related to decay rate at the end of the incubation period, both in in situ and under standard 

conditions while community-SLA showed a positive correlation with decay rate only under 

standard conditions.  
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Table 5. - Relationships (Pearson’s correlation coefficients) between community-aggregated traits and 

litter chemistry. Community-aggregated traits: SLA - specific leaf area, LDMC - leaf dry matter 

content, LNC- leaf nitrogen content, LCC- leaf carbon content, LPC- leaf phosphorus content, Leaf 

C:N- leaf carbon to nitrogen ratio. Litter chemical parameters: N- nitrogen, C- carbon, P- phosphorus, 

C:N- carbon to nitrogen ratio, Cell- cellulose, hemi- hemicellulose, lign- lignin, LCH- total fibre 

content, HLQ- holocellulose to holocellulose + lignin ratio. Significance levels: n.s.- non significant, * 

p < 0.05, ** p < 0.01. 

 SLA LDMC LNC LCC LPC C:N 

N -0.846* 0.853** -0.276 n.s. 0.930** 0.195 n.s. 0.574 n.s. 

P -0.740* 0.884** -0.375 n.s. 0.800** -0.125 n.s. 0.595 n.s. 

C 0.144 n.s. -0.146 n.s. -0.166 n.s. 0.075 n.s. -0.440 n.s. 0.124 n.s. 

C:N 0.759 n.s.* -0.765* 0.233 n.s. 0.855 n.s. -0.142 n.s. -0.519 n.s. 

Lignin -0.287 n.s. 0.122 n.s. -0.230 n.s. 0.342 n.s. -0.286 n.s. 0.294 n.s. 

Lignin:N 0.176 n.s. -0.339 n.s. -0.058 n.s. -0.166 n.s. 0.198 n.s. -0.033 n.s. 

Cellulose 0.88** -0.845** 0.335 n.s. -0.942** 0.349 n.s. -0.612 n.s. 

Hemicellulose 0.892** -0.897** 0.389 n.s. -0.942** -0.264 n.s. -0.657 n.s. 

LCH 0.865** -0.885** 0.328 n.s. -0.912** -0.260 n.s. -0.600 n.s. 

HLQ 0.739* -0.636 n.s. 0.376 n.s. -0.808** -0.378 n.s. -0.583 n.s. 

 

 

Table 6 - Relationships (Pearson’s correlation coefficients) between decomposition of community 

litter under standard conditions (microcosm) or field and community-aggrgated traits: SLA - specific 

leaf area, LDMC - leaf dry matter content, LNC- leaf nitrogen content, LCC- leaf carbon content, 

LPC- leaf phosphorus content, Leaf C:N- leaf carbon to nitrogen ratio. Significance levels: n.s.- non 

significant * p < 0.05, ** p < 0.01. 

 microcosm k3 k6 k12 K18 

SLA 0.789* -0.751* -0.809* -0.599 n.s. 0.660 n.s. 

LDMC -0.836** 0.609 n.s. 0.615 n.s. 0.647 n.s. -0.688* 

LNC 0.206 n.s. -0.186 n.s. -0.420 n.s. -0.266 n.s. 0.248 n.s. 

LCC -0.804* 0.793* 0.801** 0.542 n.s. -0.766* 

LPC -0.325 n.s. 0.435 n.s. 0.475 n.s. -0.123 n.s. -0.179 n.s. 

C:N -0.445 n.s. 0.444 n.s. 0.633 n.s. 0.458 n.s. -0.444 n.s. 
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DISCUSSION 

Litter mass loss  

All litter types showed rapid initial litter mass loss. After 90 days litter mass loss ranged 

from about 18% in ‘grazing’ land use category to 28% in ‘advanced succession’ land use 

category. The rapid initial mass loss may be attributed to initial leaching of readily soluble 

components of the litter. This initial mass loss coincided with autumn and early winter and 

with the highest rainfall amount registered in the entire study period (Fig. 1). Under 

Mediterranean conditions, large litter mass losses have been reported to occur during the 

favourable conditions of autumn and, end of winter and beginning of spring (Gallardo and 

Merino 1993, Moro and Domingo 2000, Simões 2002). Additionally, rainfall directly 

influences litter breakdown in initial decomposition stages through leaching of soluble 

compounds and indirectly through impacts on the microbes and fauna (Coûteaux et al. 1995). 

Lensing and Wise (2007) found that litter decay was 50% faster in high rainfall plots that in 

low rainfall plots, in a temperate deciduous forest. Simões (2002) also found higher mass loss 

to be associated with periods of higher rainfall in litter decomposition of two Cistus species in 

South Portugal. The author reported a mass loss of 20% for the first 65 days under 

precipitation values similar to those of the present study.  

Litter mass loss of community litter at the end of the study period ranged from about 56% 

in ‘advanced succession’ to 69% in ‘grazing’. These values are in the range of those reported 

by Simões (2002), Fioretto et al. (2003), and Gallardo and Merino (1993) in shrub communities 

(values ranging from about 20 to 50%) and by Cortez et al. (2007) for grasslands (around 60%) 

in Mediterranean areas.  
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Effects of litter chemistry and land use category on litter decomposition 

The hypothesis that decomposition will tend to slow down with abandonment, as woody 

species replace herbaceous species, was partially confirmed by our results. Overall, there was 

an effect of land use category on litter decomposition as shown by higher decomposition rate 

of litter from ‘grazing’ when compared to ‘intermediate’ and ‘advanced succession’ plots. This 

seems to reflect the differences in the initial litter composition, which is supported by the 

results of the microcosm experiment. In accordance to in situ results for the entire incubation 

period, results from microcosms showed a decrease in decomposition rate with abandonment, 

indicating that litter quality is important in controlling litter decomposition (Coûteaux et al. 

1995, Aerts 1997).  

Several litter chemistry parameters were correlated with litter decomposition, both in situ 

and in microcosm and the amount of holocellulose was one of the main determinants of litter 

decomposition rate. Litter from ‘grazing’ land use category showed higher values of cellulose 

and hemicellulose, when compared to ‘intermediate’ and ‘advanced succession’ land use 

categories, and these were positively correlated with decomposition rate, both in situ and in 

microcosm. The chemical components of litter can be divided into three broad groups: 

soluble substances, insoluble polymer carbohydrates (holocellulose) and insoluble phenolic 

substances (mostly lignin). Isolated holocellulose (cellulose + hemicellulose) is easily degraded 

by microorganisms (Berg et al. 1984). The decomposition rate of cellulose and hemicellulose is 

generally higher than that of lignin (Fioretto et al. 2005, Berg and McClaugherty 2008). 

However, when all unshielded holocellolose is decomposed only lignin incrusted holocellulose 

and lignin remain, and, at this point, both components are degraded at the same rates because 

they are so well mixed in the fibre structure that they can not be degraded separately (Berg and 

McClaugherty 2008). Thus, at this stage, lignin rules the litter decomposition rate (Berg and 

Laskowski 2006a). The larger contents of cellulose and hemicellulose relative to lignin in litters 
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from ‘grazing’ suggest that a larger amount of unshielded holocellulose was available, and 

likely played a role in determining the higher decomposition rate of these litters. 

Litter lignin concentration and the C:N and lignin:N ratios, that are frequently used as 

indicators of decomposition, were not significantly related to decomposition rates in our 

study. This is consistent with the results from a review of 96 temperate zone decomposition 

experiments where only a relationship with litter N concentration was found (Aerts 1997). It is 

not consistent with previous studies from Mediterranean areas where good correlations were 

found between litter decomposition and C:N ratio (Cortez et al. 2007, Moro and Domingo 

2000) or lignin:N (Gallardo and Merino 1993).  

The pattern of litter mass loss was not consistent throughout the time of the study. Litter 

decomposition in ‘intermediate’ and ‘advanced succession’ was faster in the first 6 months and 

slower thereafter when compared to ‘grazing’ land use category. Litter decomposition is 

generally accepted to be divided in two parts: decomposition of labile litter constituents 

(hydrosolubles, non-lignified cellulose), which is controlled largely by the stimulating effects of 

nutrient concentration (mainly nitrogen), and decomposition of lignified carbohydrates, that 

depends on the initial lignin content (Berg and Laskowski 2006b, Couteaux et al. 1998). 

Soluble substances and labile compounds are rapidly degraded in early stages of 

decomposition by fast growing microorganisms that may require a high concentration of 

nitrogen (Fioretto et al. 2005). High initial N content may lead to high initial decay rates, but to 

low long-term litter decay (Berg et al. 1996, Aerts 1997) because in a high N environment, the 

growth of slow-growing fungi, able to decompose lignin is reduced due to competition with 

fast growing microbes (Fioretto et al. 2005, Berg et al. 1996). Initial litter nitrogen 

concentration was higher in ‘intermediate’ and ‘advanced succession’ when compared to 

‘grazing’ and it was positively related to decomposition rate in early stages. Moreover, even 

though there were no significant differences in control litter at the end of the study period, for 



 
Chapter 4 

 114 

the first six months it followed a pattern similar to that of community litter, decomposing 

faster in abandoned than in grazed plots. This suggests that, at least during this period, there 

was an effect of the site microenvironment. The rates of decomposition are known to be 

correlated to soil moisture and temperature regimes and the chemical properties of the soil 

and litter, especially the initial N concentration, C:N ratio, in the litter and surrounding soil 

(Hobbie 1996, Chadwick et al. 1998). The decomposition of control litter in abandoned areas 

may have been enhanced by higher litter N of community litter. Additionally, the shift from 

herbaceous to shrub dominated communities with consequent changes in species composition 

and community structure may have resulted in different effects on soil moisture, temperature 

and root exudates thereby influencing decomposition differently (Eviner and Chapin 2003). 

However, if this effect was present, as the results for the first 6 months may suggest, it was 

overcome by the effect of litter quality in the second half of the decomposition period. 

Further studies are needed in order to better understand the effects of litter quality and 

microclimate on litter decomposition at the study site. 

 

Linking traits, litter chemistry and decomposition 

The replacement of species during the course of succession led to changes in functional 

traits of the plant community with the replacement of species with high SLA and low LDMC 

and LCC with species having opposite traits. At the single species level, LDMC has been 

related to lignin in litter and to decomposition rate (Kazakou et al. 2006). At the community 

level, LDMC and SLA were found to correlate to litter carbon and nitrogen concentration, 

hemicellulose and C:N ratio, in Mediterranean herbaceous communities (Cortez et al. 2007). 

Also at the community level, LDMC was found to correlate positively to lignin, LCH, and 

lignin:N and negatively with cellulose, hemmicellulose and HQL along gradients of decreasing 

land use intensity in a study across 11 sites with different climate (Fortunel et al. in press). In 
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the same study, LDMC and LCC were found to be negatively correlated to decomposition 

rate (Fortunel et al.). Slower decomposition rates were also found in Mediterranean herbaceous 

communities composed of species with high LDMC (Garnier et al. 2004, Cortez et al. 2007). In 

the present study, LDMC and SLA were linked to key chemical litter quality indices, such as 

nitrogen and phosphorus concentration, C:N ratio, cellulose and hemicellulose and the LCH 

index. Regarding the correlation between leaf traits and decomposition rate, LDMC and LCC 

were negatively related to decomposition rate of the all study period. Leaf dry matter content 

is a strong indicator of the relationship between the different structural components of the 

leaf that make litter more or less decomposable, i.e., it is and index of the amount of 

mesophyll vs. structural compounds (lignin, cellulose, hemicellulose; Garnier and Laurent 

1994). Our results confirm that also at the community level, traits more related to 

decomposition are those more strongly linked to physical attributes of the leaves, such as 

LDMC, as found by Kazakou et al. (2006) at the species level. This is interesting considering 

that community litter, particularly that containing herbaceous species, was composed of a 

considerable quantity of stems, which likely differ from leaves in their composition.  

 

CONCLUSIONS 

Overall, our results are in line with a number of studies that have identified a link between 

increasing successional age and the presence or abundance of plant species which produce low 

quality litter (Wardle et al. 1997, Garnier et al. 2004, Kazakou et al. 2006). 

Our results are also in agreement with previous studies that indicate that that shifts in 

plant life form alter ecosystem litter chemistry, which in turn, control decomposition rates and 

soil organic matter quantity and quality. Shrub litter was found to be higher than herbaceous 

litter in nutrient content, especially nitrogen, which seemed to favour higher initial 

decomposition rates but lower decomposition rate in the longer term. Shrubs also contribute 
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with woody litter, richer in lignin and secondary compounds that retard decomposition, and 

may play a role in increasing pools of slowly decomposing soil carbon (Gill and Burke 1999).  
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The studied agro-pastoral system is the result of centuries of human management and its 

structure is dependent on human practices and management. Similarly to the Montado, it 

likely originated from mixed forests of holm and cork oak and other species with persistent 

leaves (Capelo and Catry 2007). Control of invasion by shrub species is usually achieved by 

clearing and ploughing even though grazing also contributes to control shrub invasion 

(Fernández Alés et al. 1993, Joffre et al. 1999). When these cease, it is invaded by 

Mediterranean matorral species (Fernández Alés et al. 1993). The results of our study confirm 

these earlier findings. Grazed plots were composed mostly of annual herbaceous species, 

whose number and abundance decreased in abandoned plots, and of few disperse holm and 

cork trees. On the contrary, shrub cover increased with abandonment. In ‘intermediate 

succession’ plots the dominant shrub species were chamaephytes (mainly Lavandula stoechas) 

while ‘advanced succession’ plots were dominated by nanophanerophytes, in particular Cistus 

ladanifer. This change in life form dominance was accompanied by a decrease in plant species 

richness, which was mostly a consequence of the decrease in the number of herbaceous 

species. 

The dominance of Cistus ladanifer after 20 years of abandonment is an interesting aspect to 

point out in the present study. The existence of communities dominated by species from the 

genus Cistus has been reported to occur following abandonment of agro-pastoral practices 

(Correia 2002). It has been suggested that such communities may represent a case of arrested 

succession, i.e. succession is strongly delayed or stopped (Acacio et al. 2007). In the studied 

system, and in the absence of human management and other disturbances, the expected 

pathway of natural succession would be through the gradual colonization of the understorey 

by pioneer shrubs followed by other shrub communities mixed with oak natural regeneration 

leading to an oak forest (Correia 1998). However, Mediterranean ecosystems have a long 

history of human management and regeneration of original vegetation types may not occur. In 
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these cases, persistent alternative stages of succession may occur (Westoby et al. 1989, Scheffer 

et al. 2001). A recent study of the regeneration of cork oak showed that there are several 

recruitment limitations (high levels of seed predation, low seedling survival) and that seedling 

recruitment is severely limited in Cistus shrublands (Acacio et al. 2007). Cistus ladanifer is known 

to have allelopathic affects inhibiting the seedling germination and growth of several plant 

species (Chaves and Escudero 1997, Herranz et al. 2006). This may explain why after 20 years 

of abandonment there is a strong dominance of Cistus ladanifer. On the other hand, Genista 

hirsuta, which is also present in ‘advanced succession’ plots, has been shown to have facilitative 

effects on the recruitment of holm oak (Smit et al. 2008). Further studies including plots 

abandoned for longer times and an assessment of possible holm and cork oak regeneration 

would be necessary in order to understand whether successional pattern at the study site could 

progress towards its expected climax vegetation.  

The change in vegetation composition was followed by a change in plant functional traits 

(Fig. 1). Both at the species and community level, changes in plant functional traits with 

abandonment time pointed to the replacement of small, short-lived and generally fast growing 

species (high SLA and low LDMC), acquiring external resources rapidly, with medium and tall 

shrub species, which grow slower (low SLA and high LDMC), and tend to conserve internal 

resources more efficiently (Garnier et al. 2004a). Changes in trait values with abandonment 

time may be due to the replacement of species with different trait values, to changes in trait 

values within a species, or both (Garnier et al. 2004b). Here, changes in trait values were 

mostly due to species replacement because there was a high species turnover from ‘grazing’ to 

‘advanced succession’.  

There is no universal functional group classification. It often depends on the aim and scale 

of the study and the ecosystem process or environmental factor of interest (Diaz and Cabido 

2001). Here we searched for a functional group classification in response to abandonment. By 
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combining two plant functional traits, life form and SLA, we found several plant functional 

groups in response to abandonment. Therophytes with medium SLA were the dominant 

functional group in grazed areas, while nanophanerophytes with medium or low SLA were 

associated with later phases of abandonment. At intermediate stages of succession the 

dominant group was chamaephytes with medium SLA but functional diversity was highest, as 

all the groups, except hemicriptophytes with medium SLA, were represented. 

 

 

Figure 1. Summary of changes in vegetation, plant species richness, plant functional traits and 

ecosystem processes as a consequence of abandonment in the studied area. 

 

 

The shift from herbaceous to shrub dominated communities resulted in changes in above-

ground biomass and ANPP. Herbaceous above-ground biomass and ANPP decreased with 

abandonment, as woody cover increased, which is consistent with results from previous 

studies (Karakosta and Papanastasis 2007, Zarovalli et al. 2007). Total (herbaceous and shrubs) 
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above-ground biomass and ANPP increased with increasing shrub cover, particularly with the 

increase in the cover of Cistus ladanifer. 

Shifts in land use and plant species composition can influence decomposition by a number 

of mechanism, including changes in the quality of the litter produced and influences on the 

temperature and moisture regime at the soil surface (Eviner 2004). Previous studies have 

indicated that shifts in plant life form alter total-ecosystem litter chemistry (e.g. Dorrepaal et al. 

2005, Quested et al. 2007). Litter chemistry, in turn, controls decomposition rates and soil 

organic matter quantity and quality (Coûteaux et al. 1995). Overall, results showed that the 

shift from herbaceous to shrub dominated communities lead to a decrease in decomposition 

rate. Results also showed that the changes in community litter decomposition with 

abandonment were primarily driven by changes in litter quality even though an effect from 

possible differences in microclimate may also have played a role since the pattern of litter 

mass loss was not constant throughout the study period. Aboveground plant structure may 

affect ecosystem processes through airflow, albedo, and water percolation patterns (Gill and 

Burke 1999). Further studies are necessary in order to understand the effects of shifts on 

vegetation structure on soil microclimate and micro-organisms activity and how this in turn 

influences litter decomposition, as well as to separate the effects of litter quality and 

microclimate. 

Collecting information at the species and ecosystem levels allowed us to look at the links 

between plant traits and ecosystem processes. By weighing trait values by the relative 

abundance of the species in the community, these specific traits could be related with 

ecosystem level processes (Garnier et al. 2004b). As shown in Fig.2, higher LDMC was related 

to lower decomposition rates, higher soil carbon and organic matter content, higher biomass 

and ANPP, and all of these are associated to longer abandonment times and to the increasing 

abundance of Cistus ladanifer. This species has LDMC values that are higher and SLA values 
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that are lower than any of the other species measured (Appendix 3) and a high abundance in 

‘adavanced succession’ plots (Appendix 1) having therefore a large influence on community-

trait values and, likely, a strong influence on ecosystem processes. This species showed high 

ANPP (see Chapter 3) and is known to have a high biomass and nutrient turnover 

representing an important input of organic matter and nutrients into the soil (Simões et al. 

2001, Correia 2002). 

 

 
Figure 2 – Principal components analysis combining soil, community-aggregated trait and ecosystem 

data. Only the first two axes, which explain 77.4 % of the total inertia (67.7% is explained by the first 

axis). Analysis was carried out with Canoco 4.5 (TerBraak) on standardized data. Soil parameters: 

SoilP- soil phosphorus, SoilC- soil carbon, SoilN- soil nitrogen, WCH- soil water holding capacity, 

moisture- soil moisture, SOM- soil organic matter, SoilCN: soil carbon to nitrogen ratio; Community-

aggregated traits: cTh- therophytes, cCh- chamaephytes, cPh- phanerophytes, cSLA- specific leaf area, 

cLDMC- leaf dry matter content, cLNC- leaf nitrogen content, cLCC- leaf carbon content, cLPC- leaf 

phosphorus content, cheight- plant height; ecosystem level data: SpNb- species number, biomass- 

above-ground biomass, ANPP- above-ground net primary productivity, k- decomposition rate, LMR- 

litter mass remaining; Others: Aband- abandonment time, CLcover- relative abundance of Cistus 

ladanifer. Symbols represent plots in the different land use categories: grazing (circles), intermediate 

succession (squares) and advanced succession (triangles). 
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The increase in the cover of woody species was also associated to higher soil carbon and 

organic matter content and higher soil C:N. Woodiness is particularly important in enhancing 

carbon sequestration because woody plants tend to contain more carbon, live longer, and 

decompose more slowly than smaller herbaceous plants (Díaz et al. 2005). Therefore the shift 

from herbaceous to shrub dominated communities may result in higher accumulation of C in 

these ecosystems, contributing to reduce CO2 in the atmosphere. On the other hand, this shift 

represents an increase in the flammability (higher LDMC and canopy height) and amount of 

fuel (more biomass) which may increase the probability and severity of fires (Lavorel and 

Garnier 2002, Pausas 2004). Since the regeneration of Cistus species is generally favoured by 

fire (Pausas 1999b, Correia 2002), a positive feedback between fire and the maintenance of 

Cistus dominated shrublands may occur.  

At the landscape level, the increasing abandonment may promote the appearance of large 

continuous areas of uniform flammable vegetation with the consequence of an increase in the 

number of fires, total surface burned and the distribution of areas affected by fire (Pausas 

1999a). Additionally, the complete abandonment of agricultural uses implies the loss of a 

traditional landscape and many ecosystem functions as well as loss of habitat and species 

diversity (Plieninger et al. 2004, Moreira et al. 2005). On the other hand, and increase in 

shrubland areas may represent different potentials for other complementary uses such as 

hunting, beekeeping, collection of natural products or recreation, and are therefore important 

for the multifuntionality of the landscape (Pinto-Correia and Vos 2004) and services provided 

to humans. In order to maintain the multifunctionality of these landscapes and the services 

provided by these ecosystems a certain degree of management is necessary. 
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Appendix 1. Species name, botanical family and mean relative cover (%) in each land use category. 

Information collected from literature or field observation on life form is also listed. Land use category: 

G – grazing, I – intermediate succession, A – advanced succession; Life form: Th – therophyte, Geo – 

geophyte, hCr – hemicryptophyte, Ch – chamaephyte, nPh – nanophanerophyte, Ph – phanerophyte. 

Species in bold represent the species for which trait values were obtained. 

Relative cover (%) 

Species Family 

Life 

form G I A 

Agrostis curtisii Gramineae hCr – 0.01 – 

Agrostis pourretii Gramineae Th 7.41 0.27 0.13 

Anagallis arvensis Primulaceae Th 0.29 0.14 0.05 

Anarrhinum bellidifolium Scrophulariaceae hCr 0.14 0.13 – 

Andryala integrifolia Compositae hCr 0.12 0.14 0.02 

Anthyllis lotoides Leguminosae Th 2.60 0.93 0.22 

Arisarum vulgare Araceae Geo – 0.02 – 

Avena barbata Gramineae Th 0.12 0.23 – 

Biserrula pelecinus Leguminosae Th 2.47 0.23 0.11 

Brachypodium distachyon Gramineae Th 2.00 4.86 1.52 

Briza maxima Gramineae Th 0.09 0.25 0.08 

Briza minor Gramineae Th – 0.04 – 

Bromus hordeaceus Gramineae Th 0.26 0.04 – 

Calendula arvensis Compositae Th 0.13 – – 

Campanula lusitanica Campanulaceae Th 0.06 0.07 – 

Carlina corymbosa Compositae Geo 0.47 4.11 0.79 

Carlina racemosa Compositae Th 6.07 – 0.07 

Centaurium erythraea Gentianaceae hCr 0.19 0.57 0.07 

Cerastium glomeratum Caryophyllaceae Th 0.21 0.01 – 

Chamaemelum mixtum  Compositae Th 10.92 0.18 – 

Cistus crispus Cistaceae nPh 0.09 – – 

Cistus ladanifer Cistaceae nPh 0.81 10.33 52.39 

Cistus monspeliensis Cistaceae nPh – 0.31 – 

Cistus populifolius Cistaceae nPh – – 0.94 

Cistus salvifolius Cistaceae nPh – – 0.22 

Coleostephus myconis Compositae Th 0.09 0.26 – 

Coronilla scorpioides Leguminosae Th – 0.04 – 

Crepis vesicaria Compositae – 0.09 0.08 – 
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Appendix 1. (cont.). Species name, botanical family and mean relative cover (%) in each land use 

category. Information collected from literature or field observation on life form is also listed. Land use 

category: G – grazing, I – intermediate succession, A – advanced succession; Life form: Th – 

therophytes, Geo – geophyte, hCr – hemicryptophyte, Ch – chamaephyte, nPh – nanophanerophyte, 

Ph – phanerophyte. Species in bold represent the species for which trait values were obtained. 

Relative cover (%) 

Species Family 

Life 

form G I A 

Crucianella angustifolia Rubiaceae Th – 0.10 0.02 

Cynara cardunculus Compositae H 0.05 – – 

Cynosurus echinatus Gramineae Th – 0.04 – 

Daphne gnidium Thymelaeaceae nPh – – 0.99 

Daucus carota Umbeliferae hCr – 0.30 0.24 

Echium plantagineum Boraginaceae Th 0.22 0.07 – 

Erodium moschatum Geraniaceae Th 0.06 0.05 – 

Galactites tomentosa Compositae Th 0.14 0.36 – 

Galium spp Rubiaceae Th 0.09 0.01 – 

Gastridium ventricosum Gramineae Th – 0.08 – 

Gaudinia fragilis Gramineae Th 0.88 0.26 – 

Genista hirsuta Leguminosae nPh – 15.64 22.49 

Genista triacanthos Leguminosae nPh – – 0.24 

Geranium molle  Geraniaceae Th 0.02 0.01 – 

Helichrysum stoechas subsp. stoechas Compositae Ch – 1.64 0.16 

Holcus lanatus Gramineae hCr 2.87 0.38 – 

Hyparrhenia hirta Gramineae hCr – 0.02 – 

Hypochoeris glabra Compositae Th 5.49 0.22 0.05 

Jasione montana Campanulaceae Th 0.30 0.30 0.01 

Juncus bufonius  Juncaceae Th 0.08 0.11 – 

Lathyrus angulatus Leguminosae Th 0.02 – – 

Lavandula stoechas subsp. luisieri  Labiatae Ch – 32.06 13.38 

Lavandula viridis  Labiatae Ch – 5.06 1.41 

Leontodon taraxacoides subsp. longirostris  Compositae Th 11.33 2.83 0.57 

Linaria amethystea  Scrophulariaceae Th – – 0.02 

Logfia gallica  Compositae Th 1.59 0.29 0.08 

Lolium rigidum  Gramineae Th 0.47 – – 

Lotus subbiflorus subsp. castellanus Leguminosae Th 0.02 – – 
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Appendix 1. (cont.). Species name, botanical family and mean relative cover (%) in each land use 

category. Information collected from literature or field observation on life form is also listed. Land use 

category : G – grazing, I – intermediate succession, A – advanced succession; Life form: Th – 

therophytes, Geo – geophyte, hCr – hemicryptophyte, Ch – chamaephyte, nPh – nanophanerophyte, 

Ph – phanerophyte. Species in bold represent the species for which trait values were obtained. 

Relative cover (%) 

Species Family 

Life 

form G I A 

Lotus conimbricensis Leguminosae Th 0.73 0.03 0.05 

Olea europaea var. sylvestris Oleaceae Ph – – 0.02 

Ornithopus compressus  Leguminosae Th 3.50 0.52 0.15 

Orobanche minor Orobanchaceae Th 0.81 0.17 – 

Parentucellia viscosa  Scrophulariaceae Th 1.79 0.91 0.05 

Paronychia argentea Caryophyllaceae hCr 0.77 – – 

Paronychia cymosa Caryophyllaceae Th 0.06 0.19 – 

Paronychia echinulata Caryophyllaceae Th – 0.09 – 

Phagnalon saxatile Compositae Ch – 0.09 – 

Plantago afra Plantaginaceae Th 0.34 – 0.02 

Plantago coronopus Plantaginaceae hCr 2.84 0.14 – 

Plantago lagopus Plantaginaceae H 0.03 – – 

Pulicaria paludosa  Compositae Th 0.26 0.09 – 

Quercus rotundifolia Fagaceae Ph 0.93 0.90 1.95 

Quercus suber Fagaceae Ph 0.81 0.47 – 

Raphanus raphanistrum  Cruciferae Th 0.06 – – 

Rosmarinus officinalis  Labiatae nPh – – 0.53 

Rumex acetosella subsp. angiocarpus  Polygonaceae H 2.01 0.12 – 

Rumex bucephalophorus  Polygonaceae Th 0.36 0.30 – 

Rumex conglomeratus  Polygonaceae H 0.09 0.02 – 

Sanguisorba minor  Rosaceae H 0.07 0.12 – 

Scorpiurus vermiculatus Leguminosae Th – 0.04 – 

Senecio vulgaris  Compositae Th 0.07 – – 

Silene gallica  Caryophyllaceae Th 0.91 – – 

Spergularia capillacea Caryophyllaceae Th 0.30 0.02 – 

Stachys arvensis Labiatae Th 0.07 – 0.02 

Taeniatherum caput-medusae Gramineae Th 0.37 0.28 – 

Teesdalia nudicaulis Cruciferae Th 0.07 – – 
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Appendix 1. (cont.). Species name, botanical family and mean relative cover (%) in each land use 

category. Information collected from literature or field observation on life form is also listed. Land use 

category : Geo – grazing, I – intermediate succession, A – advanced succession; Life form: Th – 

therophytes, G – geophyte, hCr – hemicryptophyte, Ch – chamaephyte, nPh – nanophanerophyte, Ph 

– phanerophyte. Species in bold represent the species for which trait values were obtained. 

Relative cover (%) 

Species Family 

Life 

form G I A 

Tolpis barbata  Compositae Th 7.57 4.00 0.47 

Trifolium angustifolium  Leguminosae Th 1.50 1.64 0.11 

Trifolium arvense  Leguminosae Th 1.10 1.64 0.02 

Trifolium bocconei Leguminosae Th 1.88 1.27 0.02 

Trifolium campestre  Leguminosae Th 2.82 1.96 0.05 

Trifolium cherleri  Leguminosae Th 1.26 0.17 – 

Trifolium glomeratum  Leguminosae Th 0.78 0.28 – 

Trifolium hirtum Leguminosae Th 0.09 – – 

Trifolium spumosum Leguminosae Th 0.02 – – 

Trifolium stellatum  Leguminosae Th 0.41 0.04 – 

Trifolium subterraneum Leguminosae Th 0.70 – – 

Trifolium tomentosum  Leguminosae Th 0.05 0.02 – 

Tuberaria guttata  Cistaceae Th 0.23 0.17 – 

Vulpia bromoides  Gramineae Th 5.42 1.14 0.22 

Vulpia geniculata Gramineae Th 0.65 0.02 – 
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APPENDIX 2 

The original fourth corner method multiplies the presence/absence matrix A (k×m) of k 

species recorded at m sites with a matrix B (k×n) coding the species traits into n classes and a 

third matrix C (p×m) assigning the p environmental conditions to the m sites. The matrix 

product D=CA’B lists the frequencies at which each plant group occurs at a given treatment. 

These count data are not suitable for Chi-square testing, because the observations are not 

independent of each other (several species may occur at one site). A randomisation (null 

model) test is used instead of a classical test. Matrix A is randomised using a null model, and 

for each null community (Aper) a new matrix Dper is computed (Dper=CAper’B). For each cell in 

D, the frequency of containing a value greater than or equal to the associated cells in the set of 

Dper is calculated. If an entry in Dper is only rarely greater than or equal to the corresponding 

entries in D, the trait combination is thought to occur more often than expected by the null 

model, and is positively related to the treatment. Given a large set of permutations, this 

frequency is an estimator of the one- tailed probability (p-value) of D(cell)≥Dper(cell). If the p-

value is below 0.05, the group is considered to respond to the associated treatment. Values 

higher than 0.5 indicate a negative association i.e. the plant group occurs less often than 

expected by the null model. In this case a (-) sign indicates the probability of generating a 

value less than or equal to the value in D.  

Legendre et al. (1997) corrected their p-values to accommodate for the increased 

probability of committing a Type I error in the case of multiple simultaneous tests. We 

decided not to correct the p-values, because (i) each plant group will be compared individually 

against the occurrence of the same group in the null model and (ii) no indirect comparisons 

are made between different plant groups or treatments. 

The extended fourth corner method gives a matrix of p-values for each plant classification. 

Subsequently an optimisation criterion is applied to find the most appropriate one. Such 
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criteria can be designed according to different objectives. One might aim at a small set of 

FRGs with a strong response of each FRG to all environmental conditions, at the expense of 

not identifying FRGs which may only have a significant response to some environmental 

conditions. On the other hand, a larger set of FRGs can result in more significant responses in 

total but fewer per FRG. The optimal set of FRGs is chosen in a two-step procedure. In the 

first step, the total response of all sets are compared with each other based on their p-values 

to test whether the combination of two adjacent groups into a single group leads to a similar 

or even better response for the combined group. In this case the larger group is discarded if 

the direction of response of each group of the divided group is either similar to the response 

of the pooled group or non significant. For instance, if the subdivided groups respond 

positive and negative to one of the land use categories, while the undivided group responds 

negatively, the set will not be discarded. In the second step, the categorisation with the highest 

number of significant p-values is chosen from the remaining set. 

From the remaining set of FRGs, the one with the highest number of p-values below a 

threshold, in our case 0.05, is chosen. In case that several classifications are similar according 

to these criteria, the classification with smallest number of groups is preferred or if this is still 

not sufficient to rule out a single classification, the one with the lowest total sum of significant 

p-values is preferred. In case of multiple classifications are similar to these criteria, the one 

with the lowest number of positive significant responses is chosen. After calculating the 

optimised species groups and their response for each trait, we combine traits to get a final 

classification.   

To test for plant group responsiveness, we designed a new null model which is related to 

the use of the ‘lottery’ model (Sale, 1978, Legendre et al., 1997). A null model is a pattern 

generating procedure based on the randomisation of ecological data which generates new 

assemblage pattern that would be expected in the absence of the ecological mechanism of 
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interest (Gotelli & Graves, 1996). To design a null model it is therefore necessary to include 

every ecological pattern/mechanism except the one it is designed to test. Unlike the original 

‘lottery’ model we use frequency data instead of presence/absence data. A species/frequency 

combination is drawn at random from a list of all observed species/frequencies regardless of 

the site. This combination is placed at a site until the site has reached the same total cover as 

recorded in the observation. In this way we keep the frequency distribution of each species 

similar to the frequency distribution in the observed data and can therefore account for the 

different size of species as well as for different colonising strategies e.g. clumped occurrence 

of tussock species.  
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