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Abstract: Aging is characterized by several progressive physiological changes, including changes in
the circadian rhythm. Circadian rhythms influence behavior, physiology, and metabolic processes in
order to maintain homeostasis; they also influence the function of endothelial cells, smooth muscle
cells, and immune cells in the vessel wall. A clock misalignment could favor vascular damage
and indirectly also affect skeletal muscle function. In this review, we focus on the dysregulation of
circadian rhythm due to aging and its relationship with skeletal muscle changes and vascular health
as possible risk factors for the development of sarcopenia, as well as the role of physical exercise as a
potential modulator of these processes.

Keywords: sarcopenia; inflammation; circadian rhythms; clock genes; vascular disfunction; skeletal
muscle disfunction

1. Introduction

Aging is characterized by several progressive physiological alterations, such as hor-
monal imbalance, impaired proteostasis, mitochondrial dysfunction, and cellular senes-
cence, which lead to functionality loss and increased risk of death [1]. The circadian
rhythm also undergoes significant age-related disturbances, which can contribute to the
development of several morbidities [2].

Circadian rhythms involve biological rhythms that work by the interaction of sev-
eral exogenous and endogenous factors, which together influence behavior, physiology,
and metabolic processes in order to maintain homeostasis. The suprachiasmatic nucleus
(SCN), together with other autonomous clocks, present in virtually all cells of the body,
is responsible for controlling the central and peripheral circadian rhythm. However, the
so-called synchronizers (also known as “zeitgebers”), such as external factors, can influence
the functioning of these rhythms. The main synchronizer for SCN is the light–dark cycle
that, through the retinohypothalamic tract, provides information to the SCN, which, by
means of neurohumoral signaling and core body temperature oscillating, leads to the
synchronization of peripheral clocks [3]. However, there are also non-photic synchronizers
such as food, physical activity, and stress [4].
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Two main elements control the activity of the molecular clock—circadian locomotor
output cycles kaput (CLOCK) and brain and muscle ARNT-like protein 1 (BMAL1), which
activate the transcription of the period 1,2 and 3 (Per) proteins and cryptochrome 1 and 2
(Cry) that, when migrating to the cell nucleus, inhibit the initial dimerization of CLOCK-
BMAL1, closing a cycle of approximately 24 h. The circadian oscillation of BMAL1 is
also up- and downregulated by retinoid-related orphan receptors RORs (α, β, and γ) and
REV-ERBs (α and β), respectively [5]. This daily self-sustaining circuit of gene expression
controls several physiological processes, essential for the organism [3].

Some physiological changes related to the aging process favor central and peripheral
rhythms impairment [6] such as reduction in the total secretion of melatonin [2,7] and
metabolism-related rhythms (glucose control, lipid metabolism, and xenobiotic detox-
ification), controlled by clocks in the liver and pancreas, which can contribute to the
development of metabolic diseases [8].

In muscle tissue, endogenous clock alteration can influence myogenic capacity, making
it difficult to transcribe mTOR and impairing the development and growth of skeletal
muscles [9]. Evidence shows that the loss of CLOCK-BMAL1 molecular rhythm function
is associated with metabolic inefficiency with protein catabolism and the replacement of
glucose metabolism by lipids [10,11]. Still, there may be changes in the types of muscle fiber,
reduction in mitochondria, and damage to mitochondrial breathing, and in the structure
and function of sarcomeres, causing severe muscle damage [8,12]. Therefore, clock gene
misalignment alters muscle composition and function, which has a strong association
with health status, with low strength and muscle mass being independent factors for
the development of sarcopenia, which is strongly associated with breaking the circadian
rhythm regardless of age; in the elderly, this factor is enhanced, which leads to functional
incapacities, falls, osteoporosis, dyslipidemia, increased cardiovascular risk, metabolic
syndrome, immunosuppression, and increased risk of mortality [13].

An inherent factor in aging that can also affect clock genes and muscle functions is
chronic low-grade inflammation. Among other factors, it can be developed as a result of
the immunosenescence process. It is known that the senescence of immune cells can reflect
changes in skeletal muscle function, such as muscle regeneration and repair [14,15]. In
addition, senescent immune cells accumulated during aging generally express senescence-
associated inflammatory factors (SASP) with overexpression of IL1β, IL-6, IL-8, TNF-α,
IFN-γ, etc. [16]. These factors associated with resident muscle cells can also modulate
the expression of other surface molecules in muscle cells and promote an inflammatory
environment [14], which, in turn, can negatively influence the local clock, making it a
vicious cycle.

It is suggested that the decrease in vascular health also causes clock activity in the
skeletal muscle. There is a decrease in vascular health with aging, such as increased stiffness
of the large elastic arteries and endothelial dysfunction [17]. The dysfunction of peripheral
arteries decreases blood flow to the body extremities, which can lead to decreased calf
muscle area and strength [18]. Circadian rhythms also influence the function of endothelial
cells, smooth muscle cells, and immune cells in the vessel wall, so a clock misalignment
could favor vascular damage (e.g., impair vessel contractility and endothelial integrity [19])
and indirectly also affect skeletal muscle function.

In this sense, several studies attempt to elucidate the role of circadian rhythm in the
inflammatory process (and vice versa) related to aging. In this review, we focus on the
dysregulation of circadian rhythm due to aging (mainly from an inflammatory perspective)
and its relationship with skeletal muscle changes and vascular health as possible risk
factors for the development of sarcopenia (Figure 1), as well as the role of physical exercise
as a potential modulator of these processes (Figure 2).
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Figure 2. The role of physical exercise as a potential positive modulator of circadian rhythm and
sarcopenia.

2. Sarcopenia: Concept and Relationship with Inflammation

The reduction in muscle strength and mass are important morphological changes that
occur as a result of aging, and when associated, characterize a muscle disease called sar-
copenia [20]. Sarcopenia is associated with a greater likelihood of adverse outcomes, such
as falls, fractures, physical disability, development of chronic diseases, and mortality [20].
Primarily, its development is related to aging, but other causal factors contributing to the
disease include a sedentary lifestyle, inadequate nutrition, and inflammation [21–23].

Chronic low-grade inflammation is characterized by an increase in circulating concen-
trations of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), IL-1 β, etc., and is present
in numerous chronic diseases [24–26], including sarcopenia [27]. Among the causal factors
of inflammation associated with aging (inflammaging) are the accumulation of adipose
tissue, mainly visceral adipose tissue (VAT), common in the elderly due to hormonal
changes, unbalanced diet, and reduced physical activity [28]. VAT produces and releases
pro-inflammatory cytokines and chemokines, influencing, in addition to body weight,
the onset of and increase in inflammation [29]. Another causal factor of inflammation
associated with age may be the decline in the functionality and efficiency of immune
cells during the aging process, called immunosenescence [30]. The constant ineffective
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signaling of senescent cells favors a continuous stimulus for the inflammatory response in
the elderly [31].

High plasma concentrations of pro-inflammatory cytokines, such as IL-6 and TNF-α,
among other disorders, are associated with lower strength and MM in the elderly [32],
as they provoke the stimulation of protein catabolism and suppression of muscle synthe-
sis [27,33,34]. Positive regulation of TNF-α activates the expression of proteolytic enzymes
(e.g., muscle ring finger1 (MuRF1) and atrogin-1) that, via ubiquitin-proteasome (UbP) or
mitogen-activated p38 protein kinase (p38MAPK), increase protein degradation [35–37].
IL-6 already acts in a pleiotropic manner, and when expressed by immune cells (such
as CD4/CD8-TEMRA cells), it has a pro-inflammatory function that can impair muscle
anabolism and energy homeostasis, and directly mediate muscle catabolism through STAT3-
IL-6 signaling [14,38]. However, when expressed through muscle contraction, it has an
anti-inflammatory function, by promoting the increase in an important anti-inflammatory
cytokine, IL-10 [39]. IL-10 can also be expressed in response to the presence of overregu-
lation of cytokines pro-inflammatory, blocking (via inhibition of the transcription factor
NF-kB) the expression of pro-inflammatory cytokines, such as TNF-α, IL-6, etc. [40].

2.1. Crosstalk between Skeletal Muscle and Immune Cells

Skeletal muscle remodeling is dependent on the interaction between skeletal muscle
and immune cells; thus, the immunosenescence process alone can also negatively influence
skeletal muscle morphology and regenerative capacity [14]. Although the skeletal muscle
has “resident” immune cells, after an acute effect, such as injury, the peripheral blood
circulation immune cells are recruited into the muscle by chemotactic signals to assist tissue
repair [41]. The signaling of CXCL1 or CXCL5 by muscle cells are potential candidates
to act as early activators of the inflammatory response to acute muscle injury [42]. Both
chemokines are chemoattractive to neutrophils, which rise significantly in the muscle
shortly after injury and help to boost the inflammatory response.

Neutrophils are the first immune cells that infiltrate muscle lesions, and their presences
are required for an optimal muscle regeneration process [42]. Following neutrophil infiltra-
tion, there is a monocyte migration in response to chemokines secreted. At this moment,
the expressed cytokines characterize a Th1 response (e.g., interferon-γ (IFN-γ) and TNF-α)
that lead to the activation of macrophages to an M1 (pro-inflammatory) phenotype capable
of continuing the inflammatory response. Macrophages, in addition to attracting satellite
cells to the injury site and stimulating their proliferation, also produce cytokines (e.g.,
TNF-α, IL-6) that also stimulate satellite cell proliferation [43]. After the M1 macrophages
perform their function and reach their peak, they are replaced by M2 macrophages (anti-
inflammatory) that act to decrease inflammation and promote tissue repair. These are
activated by Th2 cytokines, interleukin-4 (IL-4), IL-13 (wound healing and tissue repair),
IL-10 (inhibition of the M1 phenotype), or by other molecules that enable the release of
anti-inflammatory cytokines [44]. T lymphocytes also influence other immune cells or
muscle satellite cells and play a pleiotropic role in the process of muscle regeneration and
repair [14,15]. T cells affect the proliferation and migration of satellite muscle cells [45]. In
damaged muscles, CD8+ T cells stimulate the recruitment of macrophages, thus promoting
the proliferation of myoblasts [46], and regulatory T cells can release growth factors and
promote muscle growth in response to specific cytokines [47].

In this sense, temporal immune response (acute inflammation) is necessary for muscle
stem cell activation and proliferation during regeneration; however, a continued immune
response, as explained above (Section 2), triggers protein catabolism and impairments
anabolic processes of skeletal muscle in the long-term leading to sarcopenia [48]. With
aging, there may be a possibility of prolonged accumulation of neutrophils in skeletal
muscle during muscle recovery, an abundance of inflammatory monocytes, and impaired
macrophage polarization, which would affect their function in muscle repair [49]. The im-
paired signaling of some aging-related cytokines can also significantly impact the immune
system and consequently the skeletal muscle. The impairment in IL-15 signaling impairs
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the proliferation and survival of naïve T cells on CD8 T cells, as well as the migration and
phagocytosis of neutrophils [14]. Impairment in IL-7 signaling affects the development
and maintenance of T- and B lymphocytes, failing to support the thymic function that has
already decreased with age [50]. In addition, senescent T cells accumulated during aging
usually overexpress pro-inflammatory cytokines [16], which, in addition to enhanced skele-
tal muscle wasting, can modulate the expression of other surface molecules in muscle cells
and favor a possible establishment of a local inflammatory environment [14]. Furthermore,
the impairment of immune cell function as a result of aging itself affects skeletal muscle
repair function, which can also contribute to the development of sarcopenia.

2.2. Inflammation and Circadian Misalignment: A Two-Way Road in Contributing to Sarcopenia

Chronic low-grade inflammation could also influence the dysregulation of circadian
rhythm controlling genes. Studies indicate that cytokines affected the expression of core
clock genes expressed by the peripheral clocks, despite the intrinsic mechanisms are still
unknown. Cavadini et al. suggested that pro-inflammatory cytokines (TNF-alpha and
IL-1beta) impair the function of clock genes in fibroblasts of mice [51]. In synovial cells,
TNF-alpha promotes an increase in the expression of BMAL1 and Rorα, while decreasing
Rev-erbα [52].

Conversely, the deregulation of clock genes also affects inflammation. Deletion of clock
genes in macrophages induces upregulation of pro-inflammatory cytokines production,
which can be accompanied by a rise in oxidative stress [53]. In BMAL1-deficient mice, there
is a pro-inflammatory increase due to upregulation of NF-κB-mediated by CLOCK, which
may result in chronic inflammation [54]. In the same sense, the absence of Cry proteins
upregulates the expression of pro-inflammatory cytokines, through NF-κB activation
through phosphorylation of p65 [55]. Studies show that BMAL1 KO mice have a short
lifespan, have advanced aging phenotypes, and favor the emergence of chronic diseases [56].
In this sense, the power of clock genes on the inflammatory profile (and vice versa) can be
a key point for the development of treatment strategies for the adverse effects of aging.

The age-related circadian rhythm disruption relationship with inflammation could in-
directly promote negative influence in skeletal muscle tissue, in addition to direct disorders
in the skeletal muscle intrinsic molecular clock itself. Several studies have found specific
changes in clock genes with different muscle disorders, including changes in structural and
metabolic processes (decreased glucose uptake and insulin sensitivity, impaired oxidative
capacity, mitochondrial decrease, atrophy, and impaired regeneration (reviewed in [9]))
As examples, deficiency in BMAL1 clock gene promotes severe sarcopenia with age [57].
BMAL1 and Sirtuin1 (SIRT1) are downregulated in skeletal muscle of mice maintained
in constant abstaining from light [58]. Furthermore, regardless of age, circadian rhythm
disruption associated with shift work may contribute to an increased risk of sarcopenia [59].
In this sense, muscle clock genes regulate the expression of several genes that act on the
local metabolism, and a change in these clocks could cause losses in insulin sensitivity and
loss of muscle mass, contributing to the development of sarcopenia [8,58].

Despite the current understanding of the role of the molecular clock in preventing age-
related sarcopenia, investigations into the potential modulating effect of physical exercise
on physiological mechanisms, including the maintenance of skeletal muscle growth and
function, are emerging.

2.3. Vascular Disfunction and Sarcopenia

One of the most noteworthy expressions of biological aging is vascular aging, and
arterial stiffness (AS) is currently an established independent risk factor for cardiovascular
disease (CVD), above and beyond conventional risk factors [60]. Several studies have
documented a close relation between sarcopenia and AS [61], and an interplay between AS,
sarcopenia, and cognitive impairment in the elderly has also been suggested [62]. The link
between sarcopenia and vascular dysfunction may even be aggravated by the clustering of
cardiovascular risk factors in old adults, which impair blood circulation and muscle supply,
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constituting an added factor for impaired muscle function and overall functionality in the
elderly population [63].

The link between vascular dysfunction and sarcopenia can be examined at the micro
and macrovascular levels, with intersecting contributions that add to significant muscle
effects, and may share common denominators, e.g., endothelial dysfunction and vascular
calcification [64].

Vascular calcification follows aging as a result of the long-lasting stress that is imposed
hemodynamically onto the arterial wall. Its distribution may include the inner layers of
the arterial wall or even spread onto the outer layers, promoting changes in the arterial
wall dynamics, which, in turn, produces downstream hemodynamic changes germane to
inadequate muscle perfusion [65,66]. Several biological mechanisms have been implied in
age-dependent vascular calcification. Oxidative stress is an all-mark in aging and has a
well-established role in vascular dysfunction. Reactive oxygen species yields endothelial
cell apoptosis, interferes with nitric oxide (NO), and unbalances monocyte dynamics, lead-
ing to endothelial dysfunction and impaired endothelial-dependent vasodilation [67,68].
Deposition of calcium in the arterial wall as a consequence of vascular smooth muscle cells
senescence and osteochondrogenesis is also related to oxidative-stress-induced hyperphos-
phatemia through the promotion of p65 translocation [69,70]. Oxidative stress is also a
cornerstone for a proinflammatory status in the circulatory system, activating the NF-κB,
which, in turn, increases the release of proinflammatory cytokines, decisively contributing
to atherosclerosis and calcification [71,72]. Circulating cytokines are known to promote cal-
cification through TNF-α, which interferes with the MGP and induces mineral deposition
in the atheroma plaque encompassed in the atherosclerotic continuum [73] vis-a-vis the
stimulation of smooth muscle cell differentiation onto osteoblast-like configurations [74].
Increasing blood pressure further enhances these effects, combining a mechanical substrate
in the arterial wall with neurohumoral paths that further damages and stiffens the arterial
wall [60,65]. Aside from the shear-stress aggression promoted by high blood pressure,
insulin resistance is also a crucial contributor to vascular dysfunction and calcification by
reducing NO bioavailability [75].

An inverse relation between micro- and macrovascular dysfunction and skeletal
muscle mass and function has been recently depicted in a systematic review including
33 clinical studies [63]. It is believed that this association between vascular dysfunction and
muscle loss (mass and function) may be associated with impaired muscle perfusion through
a reduction in peripheral blood flow, relying both on anatomic changes and hemodynamic
features of the aging circulatory physiology. The blood flow restrictions to the muscles will
limit the supply of important nutrients and hormones to the myocytes, from which muscle
function and structure will be affected and progress in close connection with sarcopenia. In
fact, it is suggested that this reduction in the nutritive supply may contribute to muscle
dysfunction and loss through changes in anabolic resistance of the muscle (e.g., [76]).

The identification and implementation of strategies to prevent and treat these features
are of the utmost importance. These may include aspects such as proper management
of behavioral and environmental risk factors, such as nutrition, exercise, smoking habits,
stress management, social support, pollution, and body composition. Physical exercise
should play a major role, as it is the main component for the prevention and treatment
of sarcopenia [77], and further evidence exists that additionally supports the positive
modulation of physical exercise for vascular health [78,79] in old adults. Therefore, physical
activity should contribute to a positive modulation of the aging trajectories, particularly if
administered in a personalized approach, tailored to the individual needs and expectations.

3. Impact of Exercise on Inflammatory Profile and Association with Clock Genes

Exercise, specifically aerobic and combined with resistance training, have been rec-
ognized as a potential intervention to modulate inflammatory profile in humans [80–82],
with a particular emphasis in older adults, in reversing or attenuate immunosenescence in
aging [83–85], as well as reducing the development of chronic diseases [86].
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During exercise, skeletal muscle functions as an endocrine organ, secreting several
myokines such as IL-6, IL-7, and IL-15. In addition to the pleotropic effects mentioned
above, IL-6 can stimulate cortisol released by the adrenal glands, acting as a second anti-
inflammatory signal and improving glucose uptake through the stimulation of AMPK
signaling [87]. IL-6 is conventionally used as marker of inflammation and several stud-
ies evaluating the impact of exercise in their inflammatory profile report the significant
reduction in IL-6 levels after different periods of intervention. A study on females with
metabolic syndrome found that a 12 week-long aerobic exercise intervention promotes a
decrease in IL-6 [88]. The role of IL-6 in the framework of exercise as an anti-inflammatory
therapy for cancer cachexia is also very significant (reviewed in [86]).

A study conducted by Chen et al. [89] performed an evaluation of the differentially
expressed genes (DEGs) in a group of 24 sedentary middle-aged men with different basal
levels of IL-6 that undertook a 24 week-long physical activity program. The analysis
of DEGs, followed by functional enrichment analysis and protein–protein interactions,
showed that C-C motif chemokine receptor 7 (CCR7) and hemoglobin subunit delta (HBD)
genes were induced by myocyte enhancer factor 2A (MEF2A), arising as key regulatory
factors modulated by exercise [89]. The authors conclude that inflammation-related genes
such as CCR7, HBD, and interferon-gamma (IFN-γ) might serve vital roles in reducing
inflammation by exercise and might prevent the risk of chronic diseases in sedentary
individuals [89].

IFN-γ is a cytokine with a relevant role in several aspects of both adaptive and in-
nate immunity. Firstly, it is most recognized for its pro-inflammatory properties but has
been also recognized for its pleiotropic functions such as induction and maintenance of
regulatory T cells, induction of tolerogenic dendritic cell characteristics, and immunosup-
pressive tumor environment. These properties place IFN-γ among the major endogenous
immune regulators, contributing to both immunity and tolerance in several stages of the
immune response [90,91]. Svajger et al. (2021) demonstrated that IFN-γ can exert important
tolerogenic effects on dendritic cells, in in vitro assays, through a strong upregulation of
programmed death-ligand 1 (PD-L1), an inhibitory molecule [90].

Shaw et al. (2020) observed that exercise in acute hyperketonemia appears to amplify
the initiation of the pro-inflammatory T-cell-related IFN-γ response, with an increased
IFN-γ mRNA expression during and following prolonged, strenuous exercise [92]. Hasanli
et al. (2020) evaluated the impact of physical or psychological stress on the IFN-γ levels
in male Sprague Dawley rats submitted to exercise activity, psychological stress, or the
combination of exercise and psychological stress. The study showed that the different
interventions did not modulate significantly the levels of IFN-γ either immediately after
exercise or after 72 h, despite fluctuations in cytokine values, with a tendency to decrease
immediately after exercise and increase 72 h later [93]. Vijayaraghava (2017) conducted an
experimental study with the application of different grades of exercise and evaluated the
impact on IFN-γ plasma levels, in individuals of different ages and body mass index (BMI)
values. The levels of plasma IFN-γ were significantly modulated by moderate exercise,
with a significant increase in plasma levels after a bout of moderated exercise, and the
highest values were found after 1 month of moderate exercise. On the contrary, after a
bout of strenuous exercise, plasma levels reduced in comparison with baseline values. The
study results also showed that regular physical activity confers protection against excessive
inflammation in spite of higher age or BMI, with respect to IFN-γ levels [94]. Conversely,
Farinha et al. evaluated the impact of 12 weeks of aerobic exercise and observed a decrease
in IL-1β, TNF-α, IL-6, and IFN-γ in women with metabolic syndrome [88].

Therefore, exercise has an emerging potential to improve immune system performance
and reduce the risk of low-grade inflammation from childhood to old age [88,95–99]. A sys-
tematic review conducted by Bautmans et al. (2021) revealed significant anti-inflammatory
effects of exercise in the elderly—namely, in reducing circulating levels of CRP, IL-6, and
TNF-alpha and also that the performed exercise interventions seem suitable to apply
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and safe for older patients, without inducing an exacerbation of inflammation following
exercise [100].

Desynchronization of circadian clocks induced by modern lifestyle could predispose to
inflammation and metabolic impairment and increase the risk of chronic diseases [101,102].
A relevant aspect is the connection of exercise with circadian rhythm physiology. Several
studies point that exercise can modulate circadian rhythm, acting as a circadian time
cue and changing the phase of a molecular clock in peripheral tissues. In addition to
studies on animal models, studies on humans have revealed that endurance and resistance
exercises stimulate the expression of clock genes [103–105]. Several studies explain the
effect of exercise on core molecular clock genes, through the influence in exercise-responsive
genes—AMPK, HIF-1α, and PGC1α. Increased activity of AMPK changes Per and Cry
stability, modulating clock genes expression [103,105,106].

A recent study by Souza Teixeira et al. shows an improvement in the anti-inflammatory
profile, with a lifelong physical exercise related to clock genes expression in effector-
memory CD4+ T cells in master athletes. Master athletes presented different peripheral and
cellular inflammatory responses after acute exercise, compared with untrained individuals,
with higher levels of IL-8, IL-10, IL-12p70, and IL-17A and augmented expression of Cry1,
REV-ERBα, and TBX21 [107].

Clock genes are involved in inflammatory response through the activation of NF-κB
transcription and activation of pro-inflammatory cytokines [107,108]. CLOCK can upregu-
late NF-κB-mediated transcription in the absence of BMAL1; therefore, BMAL1 may have
an anti-inflammatory role [54]. Tylutka et al. concluded that physical activity sustained
throughout life could lead to rejuvenation of the immune system by increasing the per-
centage of naïve T lymphocytes or by decreasing the inverse CD4/CD8 ratio [108]. Taking
into account the available data, growing evidence supports the vision that exercise may
counteract immunosenescence and improve the immune system. Exercise-induced changes
in immunosenescence-related markers of immune cells were reviewed by Mathot et al.,
supporting the effect of long-term exercise on senescent T-lymphocytes and the increase in
dendritic cells after exercise in older adults. The data also suggest a significant influence of
the type and intensity of exercise on immunosenescence-related markers, mainly in older
adults, highlighting the greater impact of aerobic exercise and resistance exercise protocols
with lower loads and a greater number of repetitions (2 sets of 30 consecutive repetitions at
40% of 1RM) [85,107].

4. Impact of Exercise on Circadian Skeletal Muscle Rhythm

The skeletal muscle system has its own clock gene expression and can be stimulated by
physical activity. Acute aerobic and resistance exercise increases the expression of skeletal
muscle clock genes in humans [109]. An acute session of aerobic exercise (70 min at 70%
VO2max) increased the expression of the BMAL1 gene by 1.6 times 4 h after exercise, and to
3.5 times 8 h after exercise, in trained men [109]. Likewise, an active session of isotonic knee
extension resistance, including both concentric and eccentric phases (10 sets of 8 repetitions
at 80% of 1RM) increased the expression of the BMAL1 gene by approximately 1.2 times,
assessed 6 h after exercise in untrained healthy men [110], as well as positively regulating
the clock genes Cry1 and Per2 by exercise, compared with control without exercise.

Four weeks of low-intensity resistance exercises resulted in a significant change in
the expression of clock genes in the skeletal muscle of mice [111], supporting the fact that
exercise can be an external stimulus for skeletal muscle rhythm. Skeletal muscle BMAL1
and Per2 gene expression significantly increased after a 12-week exercise intervention
in elderly with obesity and prediabetes [112] Furthermore, skeletal muscle BMAL1 gene
expression may improve insulin sensitivity. Interestingly, Clock- and BMAL1 gene mutant
mice exhibit approximately 30% reductions in maximum muscle strength and 40% in
mitochondrial volume [12]. Although with the absence of the CLOCK gene, the animals’
ability to adapt to 8 weeks of endurance exercise was not impaired [113].
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Thus, the practice of physical exercise seems to modulate the interrupted skeletal
muscle clock, contributing to improvements in the metabolic health of the entire body.
These data have broad implications in the context of clinical practice, suggesting the
importance of exercise, and, more specifically, the interaction of exercise and muscle, as a
therapeutic strategy to help readjust body molecular clocks.

5. Impact of Exercise on Vascular Circadian Rhythm

The cardiovascular system is influenced to a great extent by chronobiologic rhythms
that are determined by the CNS and peripheral clocks, determining short- (minutes and
hours) and long-term (months and years) functional fluctuations. The peripheral clocks
are within each cardiovascular cell and are crucial in the modulation of aspects such as
endothelial function, vasodilation and resistance, blood pressure, hormone dynamics, body
temperature, heart rate, etc. [114].

The effects of physical exercise on the cardiovascular system have been widely de-
scribed, which include improvements in endothelial function, relaxation of the arterial
wall and vasodilation, lower blood pressure and impedance, lower heart rate, improved
heart-to-vascular coupling, and overall greater cardiovascular efficiency [115]. Even though
acute exercise induces an increase in systolic blood pressure and heart rate, the intensifica-
tion in shear stress that encompasses physical activity stimulates the release of NO by the
endothelial cells, thus promoting vasodilation and improved blood supply to the working
muscles [116–118]. The post-exercise phase depicts lower blood pressure and heart rate,
in line with a positive modulation of the autonomic nervous system, with a change in the
sympathetic/parasympathetic balance toward a higher influence of the parasympathetic
axis [118]. The positive modulation of the cardiovascular system provided by physical
exercise has also important long-term effects, mostly due to its beneficial impact on the
endothelium and overall arterial structure, able to shift the trajectories of arterial aging
toward a more beneficial one and therefore preventing the occurrence of early vascular
aging [119,120]. Physical exercise thus provides a valuable tool to prevent biological aging
and contribute to better cardiovascular health and lesser incidence of major cardiovascular
events. Furthermore, physical exercise has been shown to modulate the circadian clocks to
a similar extent as that produced by photic light cues [121], thus adding to its regulatory
effect on the cardiovascular system. Physical exercise, particularly aerobic training, also
produces important neuroendocrine changes, including, but not limited to, decreased corti-
sol and increased melatonin production during the night, contributing to a more effective
sleep [122–124].

The adjustments of circadian rhythmicity produced by exercise have been shown
to occur, even for low-intensity endurance exercise [111], and seem to be independent
of the time of day the individual performs the exercise [125], although optimal diurnal
exercise periods can be adjusted according to the individual chronotype [126]. Accord-
ing to previous research, individuals can be categorized into three distinct chronotype
groups: early circadian chronotype, intermediate circadian chronotype, and late circadian
chronotype [127]. Individuals in the early circadian chronotype group appear to have a
greater disposition to early (morning) physical exercise, while those in the late circadian
chronotype prefer to exercise during the late evening. The matching of exercise periodicity
with individual chronotype could thus be an enhancement factor for skeletal muscle per-
formance and circadian clock adjustments, producing better cardiovascular protection and
improved sleep quality [128].

6. Conclusions

Mainly due to the pro-inflammatory cytokines impact of aging, there is a deregulation
of the circadian rhythm, and its relationship with skeletal muscle changes; vascular health
may be a possible risk factor for the development of sarcopenia. Lifestyle interventions
such as regular physical exercise are essential to promoting an anti-inflammatory status,
reducing muscle loss and strength, and improving endothelial function usually affected by
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aging. In addition, the adoption of physical exercise can act as a potential resynchronizer of
peripheral muscle and vascular clock misalignment, which could favor vascular health and
indirectly also affect positively skeletal muscle function. However, the exercise modality,
as well as the ideal intensity and frequency to promote better effects on senescence, should
be better investigated in future experimental studies.
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