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Resumo 

 

O declínio cognitivo é uma consequência normal do envelhecimento e é acentuado por 

doenças neurodegenerativas, como seja a doença de Alzheimer, que leva à deterioração progressiva 

de processos de aprendizagem e memória, atenção e concentração, uso da linguagem e outras 

funções mentais.  

Do mesmo modo, o avanço da idade também reduz a regulação da glicémia, conduzindo à 

instalação de um quadro de diabetes mellitus que contribui para a incidência de disfunção cognitiva. 

De facto, a diabetes e a resistência à insulina estão associadas a modificações da morfologia e 

plasticidade do hipocampo, uma estrutura do cérebro envolvida no processamento da 

aprendizagem e da memória. Nomeadamente, a diabetes induz uma modificação da síntese e da 

libertação de neurotransmissores, da potenciação de longa duração (que é um paradigma 

electrofisiológico de formação e armazenamento de memória), da conectividade sináptica e da 

viabilidade neuronial. A deterioração cerebral pela diabetes foi chamada encefalopatia diabética.  

O trabalho experimental que dá forma à presente tese de doutoramento teve como objectivo 

compreender que modificações moleculares e metabólicas ocorrem no hippocampo que possam 

contribuir para a demência diabética. Três modelos animais de diabetes mellitus foram estudados: 

um modelo de diabetes tipo 1 que consiste no tratamento de ratos com estreptozotocina (STZ), um 

fármaco que destrói as células β, cessando a produção de insulina; ratos Goto-Kakizaki (GK) que 

são espontaneamente resistentes à insulina; e ratinhos NONcNZO10/LtJ alimentados com uma 

dieta rica em gordura (11%) que constituem um modelo de diabetes tipo 2 associada à obesidade, 

assemelhando-se o seu fenótipo à diabetes tipo 2 humana. Tal como ocorre em doentes diabéticos, 

estes modelos animais de diabetes apresentam um défice mnemónico dependente do hippocampo, 

sugerido pela redução da alternação espontânea num labirinto em Y (Y-maze).  

Os processos de aprendizagem e memória envolvem eventos sinápticos, e consistentemente, 

foram observadas alterações sinápticas no hipocampo destes modelos animais de diabetes, 

nomeadamente degeneração sináptica caracterizada por uma redução na densidade de proteínas 

envolvidas na neurotransmição como a sintaxina, a sinaptofisina ou a SNAP25. Juntamente com a 

degeneração sináptica, a diabetes induziu uma astrogliose no hipocampo, avaliada por imuno-

histoquímica e análise de Western blot da proteína acídica fibrilhar da glia (GFAP) e da vimentina. 

Estudos da cinética do transporte de glucose no hipocampo revelaram que o transorte de 

glucose através da barreira hemato-encefálica não estava alterado em ratos tratados com STZ e ratos 
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GK. No entanto, descobriu-se que a diabetes altera o metabolismo da [1-13C]glucose no hipocampo 

sugerindo, em particular, que existe um rearranjo de vias metabólicas intermediárias no hipocampo 

diabético para lidar com elevadas concentrações de glucose (observadas no hipocampo destes 

animais diabéticos). Mais ainda, por resonância magética nuclear (NMR) de protão in vivo foi 

mostrado que, em comparação com animais controlo, ratos diabéticos tiveram alterações do perfil 

neuroquímico do hipocampo, que se relacionam com a regulação osmótica e não com o 

metabolismo energético. Então, uma situação de diabetes não controlada, caracterizada por 

hiperglicémia crónica, induz mecanismos de compensação osmotica e uma adaptação de vias 

metabólicas intermediárias, possivelmente no compartimento glial, para contrabalançar a elevada 

concentração de glucose e para manter o balanço energético necessário à homeostase celular e à 

neurotransmissão. Uma vez que os mecanismos de transporte de glucose na barreira hemato-

encefálica não são alterados numa condição de diabetes, a hiperglicémia crónica induz uma 

permanente elevada concentração de glucose no hipocampo, levando a neurotoxicidade e 

degeneração, que se observou ter início a nível sináptico. 

Sistemas de neuromodulação operados pela adenosina, ATP e endocanabinóides, são 

capazes de controlar quer a transmissão sináptica quer o metabolismo intermediário. Observou-se 

que estes sistemas são afectados pela diabetes, nomeadamente no hipocampo. Assim, a 

hiperglicémia crónica alterou estes três sistemas de modulação ao nível da sinapse, onde modulam 

processos de neurotransmissão, e principalmente em membranas totais do hipocampo, que incluem 

membranas do corpo celular neuronial e de células da glia, onde podem controlar o metabolismo, 

homeostase celular, proliferação glial e neuroinflamação.  

No caso particular do sistema adenosinérgico, a diabetes causou uma redução da densidade 

de receptores inibitórios A1 e um aumento da densidade de receptores facilitatórios A2A no 

hipocampo. O antagonismo de receptores A2A tem sido referido como tendo propriedades 

neuprototectoras no sistema nervoso central sujeito a insultos crónicos como sejam doenças 

neurodegenerativas. Por isso, administrou-se cafeína a animais diabéticos (1 g/L na água de beber). 

A cafeína é a substância psico-activa de maior consumo e é um antagonista não selectivo de 

receptores de adenosina, actuando principalmente em receptores A1 e A2A. Por um lado, a cafeína 

melhora o desempenho em testes de aprendizagem e memória; por outro, ela estimula o 

metabolismo periférico, o gasto energético e a perda de peso, reduzindo o risco de desenvolvimento 

de complicações diabéticas. A hipótese de que o consumo de cafeína poderia prevenir alterações no 

hipocampo causadas pela diabetes foi testada e os resultados obtidos mostraram que a cafeina pode 

ter efeitos benéficos perante a encefalopatia diabética. O consumo crónico de cafeína preveniu ou 
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atenuou a maioria das alterações moleculares e metabólicas induzidas pela diabetes no hipocampo, 

assim como a redução da memória espacial dependente do hipocampo.  

Em suma, no presente trabalho foram encontradas diversas alterações induzidas por 

condições de diabetes no hipocampo, que poderão contribuir para o declínio na aprendizagem e 

memória dependentes do hipocampo, nomeadamente a degeneração sináptica. O consumo habitual 

de cafeína mostrou-se efectivamente benéfico na sua prevenção. 
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Abstract 

 

The decline in memory and cognitive function is a normal consequence of aging and is 

accentuated by neurodegenerative pathologies, such as Alzheimer's disease, which cause 

progressive deterioration of learning and memory, attention and concentration, use of language, 

and other mental functions.  

Also peripheral glucose regulation decreases with age, leading to diabetes mellitus that 

contributes to the incidence of cognitive dysfunction. In fact, diabetes and insulin resistance are 

associated with modifications of morphology and plasticity in the hippocampus, a brain structure 

involved in learning and memory processing. Namely, there is a modification of neurotransmitter 

synthesis and release, long-term potentiation (which is an electrophysiological paradigm for 

memory formation and storage), synaptic connectivity and neuronal viability. The affection of the 

brain by diabetes has been called diabetic encephalopathy.  

The experimental work leading to the present doctoral thesis aimed at understanding which 

molecular and metabolic modifications occur in the hippocampus that may contribute to the 

dementia observed in diabetic patients. Different animal models of diabetes mellitus were studied: a 

model of type 1 diabetes that consisted on the treatment of rats with streptozotocin (STZ), a drug 

that destroys pancreatic β-cells, ceasing insulin production; Goto-Kakizaki (GK) rats that are 

spontaneously insulin resistant; and NONcNZO10/LtJ mice fed on 11% fat diet that constitute a 

model for type 2 diabetes associated with obesity, displaying a phenotype very similar to the 

human type 2 diabetes. As occurs with human diabetic patients, these animal models of diabetes 

display hippocampal-dependent memory impairment, suggested by reduced spontaneous 

alternation in a Y-maze.  

Learning and memory processes involve synaptic events and, accordingly, the different 

diabetic animal models displayed synaptic alterations in the hippocampus, namely synaptic 

degeneration characterized by a reduction of the density of proteins involved in neurotransmission 

such as syntaxin, synaptophysin or SNAP25. Along with synaptic degeneration, diabetes induced 

the occurrence of astrogliosis in the hippocampus, evaluated by both immunohistochemistry and 

Western blot analysis of glial fibrillary acidic protein (GFAP) and vimentin. 

The study of the kinetics of glucose transport in the hippocampus revealed that the transport 

of glucose across the blood-brain-barrier (BBB) is not altered in STZ-induced and GK diabetic rats. 

However, diabetes was found to alter the metabolism of [1-13C]glucose in the hippocampus, in 
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particular suggesting that pathways of intermediary metabolism are rearranged in the diabetic 

hippocampus to deal with high glucose concentration (found in the hippocampus of these animals). 

Furthermore, in vivo 1H nuclear magnetic resonance (NMR) spectroscopy showed that, in 

comparison to controls, diabetic rats have alterations of the neurochemical profile of the 

hippocampus, which are related to osmolarity regulation rather than energy metabolism. Thus, 

uncontrolled diabetes characterised by chronic hyperglycaemia triggers mechanisms of osmotic 

compensation and induce an adaptation of intermediary metabolic pathways, possibly in the 

astrocytic compartment, in order to counteract the high glucose concentration and to maintain 

proper energetic balance for cellular homeostasis and neurotransmission. Since the mechanism of 

glucose transport across the BBB is not altered upon diabetes, chronic hyperglycaemia causes a 

permanent increase of glucose concentration in the hippocampus, leading to neurotoxicity and 

degeneration, which was observed to begin at the level of the synapse. 

Neuromodulation systems that are able to control both synaptic transmission and 

intermediary metabolism, namely those operated by adenosine, ATP and endocannabinoids, were 

found to be affected by diabetes, in particular in the hippocampus. Thus, chronic hyperglycaemia 

was observed to alter these three modulation systems in membranes from the synapse, where such 

systems modulate neurotransmission, and principally in membranes from the whole hippocampus 

that include membrane from neuronal cell bodies and glial cells, where they can be involved in the 

control of metabolism, cellular homeostasis, glial proliferation and neuroinflammation.  

In the particular case of the adenosinergic system, diabetes caused both down-regulation of 

inhibitory A1 receptors and up-regulation of facilitatory A2A receptors in the hippocampus. The 

antagonism of adenosine A2A receptors has been referred as having neuroprotective properties in 

the central nervous system subjected to chronic insults such as neurodegenerative pathologies. Thus 

it was tested the ability of caffeine (1 g/L in the drinking water), the most widely consumed 

psycho-active drug that acts as a non-selective antagonist of adenosine receptors, to counteract the 

hippocampal modifications found in the animal models of diabetes. The results obtained showed 

that caffeine may have beneficial effects on the management of diabetic encephalopathy. Thus, 

chronic caffeine consumption was able to prevent or attenuate most of the diabetes-induced 

molecular and metabolic alterations in the hippocampus, as well as the impairment of 

hippocampal-dependent spatial memory.  

In conclusion, the present work found several alterations induced by diabetic conditions to 

the hippocampus. Such alterations, in particular the synaptic degeneration, can contribute to the 

impairment of hippocampal-dependent learning and memory. Habitual caffeine intake was found 

to prevent or ameliorate these hippocampal alterations, as well as the memory deficits. 
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1.1. Introduction to diabetes mellitus 

 

The increase of glucose concentration in the blood stream, e.g. after a meal, triggers the 

release of insulin, a pancreatic hormone, which stimulates cells, namely from muscle, fat and liver, 

to clear blood glucose, decreasing it to normal levels. In diabetic individuals, blood sugar levels 

(glycaemia) remain high because insulin is not produced, is insufficient, or is ineffective. Therefore, 

diabetes mellitus is defined as a chronic metabolic disorder characterized by hyperglycaemia, 

resulting from inappropriate insulin secretion and/or action (World Health Organization, 1999).  

The vast majority of the diabetes cases are included in two main categories, classified 

according to the underlying cause, which are type 1 diabetes or insulin-dependent diabetes, 

generally caused by an autoimmune reaction to antigens of pancreatic β-cells leading to impaired 

insulin production, and type 2 diabetes or insulin-resistant diabetes, characterised by inefficiency of 

insulin action. While type 1 diabetes is mainly observed in children and adolescents, type 2 diabetes 

is more common among adults, accounting for more than 90% of the diabetes cases worldwide. The 

rapid rising of the prevalence of diabetes and impaired glucose tolerance achieved now epidemic 

proportions, accounting respectively to 5.9% and 7.5% of the world population (International 

Diabetes Federation, 2006), and is a leading cause of dead (the 10th for men and 5th for women) 

within the European Union (Eurostat, 2007). In Portugal, diabetes mellitus is the 7th cause of dead 

contributing to 4.8% of the deaths in 2005 (Instituto Nacional de Estatística, 2007). The main 

contributor for the high prevalence of diabetes is the rise of obesity, related to the combination of 

ample food availability and a sedentary lifestyle, contrasting to less abundant food supplies and 

higher physical activity observed until a century ago (International Diabetes Federation, 2006). 

 

1.1.1. Overview of glycaemia regulation 

 

The regulation of metabolic processes in the organism starts with the control of substrate 

availability in the blood stream. Carbohydrates like glucose are the main substrate feeding the 

majority of the organs and its homeostasis was described in several textbooks on mammalian 

physiology (e.g. Kacsoh, 2000). The endocrine regulation of carbohydrate metabolism is complex 

and involves several pancreatic and non-pancreatic hormones. These hormones can be grouped in 

hypoglycaemic or hyperglycaemic if they reduce or increase plasma glucose levels, respectively. 
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Physiologically, insulin is the only important hypoglycaemic agent, while practically all the other 

hormones are hyperglycaemic (e.g. glucagon, cortisol or adrenaline). Due to this redundancy in 

antagonists of insulin, their deficiencies are usually compensated and masked; in contrast, 

deficiency of insulin signalling is manifested as diabetes mellitus. Insulin is produced in the 

pancreas, in cellular clusters called islets of Langerhans, which include α-cells and β-cells that 

secrete glucagon and insulin respectively (Kacsoh, 2000). Both cell types are highly sensitive to 

small changes in blood glucose concentration and can regulate hormone secretion adequately 

(Kacsoh, 2000). Briefly, insulin is released upon increased glycaemia and restores glucose 

homeostasis by stimulating glucose uptake principally into the liver, muscle and adipose tissue, 

which are the main target organs of glycaemia regulation (Kacsoh, 2000). In addition, insulin 

inhibits hepatic gluconeogenesis and glucose secretion, stimulates glucose storage in the form of 

glycogen or lipid, and promotes glucose oxidation for energy production and formation of 

carbohydrate intermediates to be used in other metabolic pathways. With an action opposite to that 

of insulin, glucagon is released upon low glycaemia (e.g. during exercise or fasting) triggering 

glycogen breakdown and switching the body to use energy stores, namely glycogen, lipids and 

proteins (Kacsoh, 2000).  

 

1.1.2. Diabetic encephalopathy  

 

Diabetes mellitus is associated with the occurrence of well described microvascular 

complications that affect different organs, leading most commonly to retinopathy, nephropathy and 

peripheral neuropathy, which development is dependent on the duration of the disease and 

glycaemia control (Malecki, 2004). The concept that diabetes affects the central nervous system 

(CNS) was recognised in 1922, when evidences appeared for diabetes-induced cognitive 

dysfunction (Miles and Root, 1922), and the term “diabetic encephalopathy” was introduced in 1950 

to describe the complication of diabetes resulting on brain dysfunction and leading to cognitive 

impairment (De Jong, 1950).  

Several clinical studies reported lowered performance on several cognitive domains in type 

1 diabetic patients, when compared to the general healthy population, including notably learning 

and memory impairment (e.g. Brands et al., 2005; Holmes and Richman, 1985; Ryan and Williams, 

1993; Ryan et al., 1993; Ryan, 1988). The magnitude of these cognitive deficits is mild in most cases 

but severe cases can occur (Deary et al., 1993; Gold et al., 1994). Along with these deficits on brain 

function, diabetes can also induce structural alterations, neuronal loss, demyelination and gliosis 
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(De Jong, 1977). Accordingly, magnetic resonance imaging (MRI) and computed tomography 

showed general brain atrophy and increased occurrence of white mater hyper-intensities that are 

thought to result from small infarcts (Araki et al., 1994; Lunetta et al,. 1994; Perros et al., 1997). In 

type 2 diabetic patients, impaired cognitive function was observed in particular when solving 

complex cognitive tasks (e.g. Gradman et al, 1993; Perlmuter et al., 1984; Reaven et al., 1990; Ryan 

and Geckle, 2000; Strachan et al., 1997; Worrall et al., 1993). Cognitive dysfunction is further 

accentuated in elderly type 2 diabetic patients with reduced diabetes control (Sinclair et al., 2000; 

Tun et al., 1990). In summary, diabetes causes cognitive dysfunction that is moderated at younger 

age but can be accentuated in elderly diabetic patients and hampers daily functioning, reducing the 

quality of life. The mechanisms underlying the development of diabetes-associated cognitive 

decline are poorly understood. Animal experimentation has begun aiming to understand processes 

leading to diabetic encephalopathy, but greater efforts must still be taken to achieve this goal. 

Different animal models of diabetes mellitus have been shown to mimic human diabetic 

phenotypes including cerebral dysfunction. Structural alterations were reported in the blood-brain-

barrier (BBB) of diabetic animals (reviewed in Mooradian, 1997), consistent with increased BBB 

permeability observed in type 2 diabetic individuals (Starr et al., 2003), suggesting that loss of BBB 

integrity may de involved in CNS dysfunction in diabetes. Compared to non-diabetic control rats, 

neuronal loss was observed in STZ-induced diabetic rats (Jakobsen et al., 1987) and BB/Wor diabetic 

rats (Li et al., 2002a), and synaptic alterations were observed in the brain of both diabetic Chinese 

hamster (Luse, 1970) and STZ-induced diabetic rats (Nita et al., 2002; Malone et al., 2006). In 

comparison to controls, reduced hippocampal neurogenesis was reported to occur in two models of 

type 1 diabetes, the non-obese diabetic (NOD) mice (Beauquis et al., 2008) and the STZ-induced 

diabetic rats (Beauquis et al., 2006; Stranahan et al., 2008). The concentration of neurotransmitters 

appears to be altered in diabetic brains. In particular, the content of dopamine, norepinephrine and 

serotonin was reported to be altered in certain brain regions in alloxan-induced (Kulikov et al., 1986) 

and STZ-induced (Trulson et al., 1986; Barber et al., 2003) diabetic rats, which may be prevented by 

insulin treatment (Barber et al., 2003), suggesting that the monoaminergic system is affected by 

diabetes. 

The latencies of auditory and visual potentials were found to be prolonged in STZ-induced 

diabetic rats (Biessels et al., 1999; Rubini et al., 1992) and type 1 BB/Wor diabetic rats (Chakrabarti et 

al., 1991; Sima et al., 1992) in relation to controls. Likewise, in hippocampal slices from STZ-induced 

diabetic rats, long-term potentiation (LTP) is impaired, whereas long-term depression (LTD) is 

enhanced compared with control rats (Biessels et al., 1996, 1998; Kamal et al., 1999, 2000), indicating 

that altered hippocampal synaptic transmission and plasticity occurs in type 1 diabetic rats. This 
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altered plasticity was associated with reduced spatial learning and memory (e.g. Gispen and 

Biessels, 2000; Kamal et al., 2000) and was prevented by insulin treatment (Biessels et al., 1998). 

Impaired spatial learning and memory have been demonstrated in different animal models of 

diabetes using the Morris water maze (Flood et al., 1990; Biessels et al., 1996; Kamal et al., 2000; 

Luesse et al., 2001; Li et al., 2002b) and the Y-maze (Nitta et al., 2002). 

Diabetes mellitus is characterised by hyperglycaemia and its treatment with insulin 

frequently results in hypoglycaemia episodes. It remains controversial whether the major 

responsible for CNS injury is diabetes itself or the occurrence of recurrent hypoglycaemia episodes 

due to treatment. Several studies suggested that cognitive performance may be altered during 

experimentally induced hypoglycaemia (Cox et al., 1993; Deary et al., 2003; Draelos et al., 1995; Gold 

et al., 1995; Maran et al., 1995; McAulay et al., 2001; Sommerfield et al., 2003). Furthermore, some 

studies in patients with type 1 diabetes suggest an association between recurrent hypoglycaemia 

and cognitive impairment (Deary et al., 1993; Fanelli et al., 1998a; Langan et al., 1991; Lincoln et al., 

1996; Perros et al., 1997; Wredling et al., 1990). Despite cognitive decline in diabetic patients treated 

with insulin has so far largely been attributed to recurrent episodes of hypoglycaemia rather than to 

hyperglycaemia, some observations do not support this notion (Deary and Frier, 1996; Austin and 

Deary, 1999). Moreover, patients with type 1 diabetes without hypoglycaemia episodes also 

displayed a decline in cognitive function (Kramer et al., 1998; Schoenle et al., 2002).  

 

1.1.3. Glucose homeostasis and cognitive performance 

 

Glucose metabolism is the major pathway of energy production in the mature brain and 

increases in glucose metabolism during brain activation have been used for functional mapping by 

2-deoxyglucose autoradiography (Sokoloff et al., 1977; Schwartz et al., 1979) and positron-emission 

tomography (Phelps et al., 1982), and indirectly influence signal changes observed with functional 

MRI (DeYoe et al., 1994). In fact, brain glucose oxidation was suggested to be stoichiometricaly 

linked to the glutamine-glutamate cycling between astrocytes and neurons, resulting from 

glutamatergic neurotransmission (Sibson et al., 1998). Furthermore, it was shown that extracellular 

glucose decreased in the hippocampus during a hippocampal-dependent spatial memory test that 

depends on this structure (McNay et al., 2000), and that blockade of brain glucose transport or 

astrocytic glucose metabolism inhibits memory consolidation (see Gibbs et al., 2008 and references 

therein). Thus, alterations on brain glucose homeostasis may compromise learning processes and 
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memory consolidation, and this could possibly be the link between diabetes and brain alterations 

leading to diabetic encephalopathy.  
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1.2. Overview of brain metabolism 

 

Cerebral function depends on the coordinated interaction of distinct cell types, such as 

neurons, astrocytes, oligodendrocytes or microglial cells, and relies on a high metabolic activity 

supported by the continuous and adequate supply of glucose and oxygen from the blood stream. 

The high metabolic rate of the brain is used to provide energy for the generation and propagation of 

action potentials, and for neurotransmitter clearance from the synaptic cleft. Neuronal action 

potentials mainly result from Na+ influx and K+ efflux through the neuronal membrane, and 

increased extracellular K+ and intracellular Na+ concentrations stimulate Na+,K+-ATPase activity 

(E.C. 3.6.1.3) to restore ionic gradients to their normal resting levels, with high energy demand 

(Shinohara et al., 1979). Action potentials are associated with neurotransmitter release from nerve 

terminals, such as glutamate that must be cleared from the synaptic cleft to avoid neurotoxicity. 

Through Na+-dependent glutamate transporters, astrocytes reuptake glutamate together with Na+ 

into the cell, and the rise of intracellular Na+ activate astrocytic Na+,K+-ATPase activity and energy 

metabolism (Takahashi et al., 1995). In addition, astrocytes convert glutamate to glutamine, also 

consuming energy. Astrocytes surround the blood vessels and uptake glucose which is believed to 

be mainly oxidized to pyruvate/lactate that are then shuttled to neurons (Pellerin and Magistretti, 

1994). The molecules of ATP produced in astrocytic glycolysis are mainly used for processing 

glutamate, and the ATP formed from the oxidation of pyruvate is consumed to restore ionic 

gradients and action potentials (Sokoloff, 2004). In general, metabolism in the brain tissue starts 

with the transport of glucose or monocarboxylate precursors (e.g. lactate, pyruvate, acetate) across 

the BBB and the plasma membrane of both glial and neuronal cells. After transport, follows the 

cytosolic production of pyruvate and reducing equivalents (through the glycolytic pathway if from 

glucose) and subsequent transport to the mitochondrial matrix, and finally the oxidation of 

pyruvate in the mitochondrial tricarboxylic acid (TCA) cycle.  

 

1.2.1. Brain glucose transport  

 

The brain has the ability to consume several types of substrates but cerebral energy 

metabolism mostly relies on glucose provided from the blood flow to sustain neural activity both in 

the basal and activated states (Sokoloff, 2004). The rate of cerebral blood flow is directly related to 
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cerebral oxygen consumption (Sokoloff et al., 1977), and glucose transport and metabolism namely 

through glycolysis and TCA cycle make the link between the two. In mammalian cells, the transport 

of glucose and other hexoses across the plasma membrane is mediated by the Solute Carrier Family 

2 (SLC2) family of 13 transport proteins, which include glucose trnasporters (GLUT1 to GLUT12) 

and the myo-inositol transporter HMIT1 (summarised in Joost et al., 2002). Most of these 

transporters are present in the brain but many of them are either unable to transport glucose 

(GLUT5, -6, and -11, and HMIT1 have low affinity for glucose), or have limited localization and 

densities (GLUT2 and -4), or their location or ability to transport glucose is not known (GLUT8 and 

-10) (reviewed in Simpson et al., 2007). Excluding these, the predominant cerebral transporters 

involved in cerebral glucose utilization are GLUT1 and GLUT3. GLUT1 is present in all brain cells 

(with low density in neurons) including the endothelial cells of the capillaries, existing in two forms 

with different degree of glycosylation, leading to apparent molecular masses of 55 and 45 kDa. 

While the 55 kDa form is essentially localised in brain microvessels, the 45 kDa protein is widely 

present in brain cells and particularly abundant in astrocytes (reviewed in Maher et al., 1994). 

GLUT3 localisation is almost restricted to neurons (e.g. Maher et al., 1992, 1996; McCall et al., 1994; 

Nagamatsu et al., 1993). Thus, GLUT1 is the main responsible for the facilitative transport of glucose 

across the BBB. With the exception of the HMIT1 which is proton-driven, the GLUTs are facilitative 

transporters (see Simpson et al., 2007), mediating energy-independent transport that leads to 

glucose equilibration. On the other hand, these transporters catalyze bi-directional fluxes, and the 

presence of intracellular and extracellular glucose affects the kinetics of transport both in and out of 

the cell (e.g. Gjedde, 1980; Gruetter et al., 1998; Qutub and Hunt, 2005). The transport across the BBB 

is usually described by a classical Michaelis-Menten kinetics and several types of transport models 

were considered for this system (e.g. Gruetter et al., 1998; Lund-Andersen, 1979).  

 

1.2.2. Brain energy metabolism 

 

Astrocytes are the metabolically most active glial cells in brain, participating in several 

processes, such as provision of nutrients and energy to neurons, uptake and recycling of 

neurotransmitters, and removal of toxic compounds (reviewed in Zwingmann and Leibfritz, 2003). 

However, the specific activity of TCA cycle enzymes is higher in neuronal cells leading to increased 

oxidative capacity relative to glia (Hertz and Hertz, 2003; Hertz, 2004; Stewart et al., 1998). Thus, 

different cellular functions originate at least two distinct metabolic compartments in the brain, 
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neurons and glia, with kinetically different TCA cycles that are connected by the exchange of 

metabolites. 

Glucose crosses the BBB through the endothelial cells and is metabolized mainly in neurons. 

However, a predominant neuronal oxidative metabolism does not necessarily imply that the 

majority of glucose is taken up by neurons. In fact, it is assumed that due to their contact with the 

endothelial cells, astrocytes uptake glucose that is metabolized to produce lactate or other products 

of glucose metabolism that are then provided to neurons (Pellerin and Magistretti, 1994). Thus, 

astrocytes play a pivotal role in cerebral metabolism as a shuttle for the metabolic feeding of 

neurons, and in the coupling of different cellular compartments. In any case, once glucose is in the 

intracellular milieu, it is taken by the glycolytic pathway and converted to two molecules of 

pyruvate with formation of two ATP and two NADH. Pyruvate is then transaminated to alanine or 

reduced to lactate, or can enter into the mitochondria, where it is decarboxylated to acetyl-CoA, in a 

reaction mediated by pyruvate dehydrogenase complex (PDH, E.C. 1.2.4.1) forming NADH and 

releasing CO2 (Patel and Korotchkina, 2001). Molecules of acetyl-CoA condensate with oxaloacetate 

entering the TCA cycle, which constitutes the ultimate oxidation pathway for carbohydrates, fatty 

acids and amino acids. For each acetyl-CoA condensed with oxaloacetate, the TCA cycle produces 

three NADH, one FADH2 and one GTP molecules. Considering that every FADH2 and NADH 

molecule yield respectively three and two ATP molecules when oxidised in the mitochondrial 

respiratory chain, the complete oxidation of one glucose molecule generates 38 or 36 ATP, if the 

glucose-generated NADH is transported via the malate-aspartate or the glycerol 3-phosphate 

mitochondrial shuttles (Voet and Voet, 1995). 

The aerobic oxidation of substrates through the TCA cycle is crucial to provide not only the 

energy needed to maintain cerebral functions (Hertz and Dienel, 2002), but also carbohydrate 

intermediates for biosynthetic processes including neurotransmitter synthesis (see Gruetter, 2002 

and references therein). Likewise, in neurons there is a continuous drain of α-ketoglutarate for 

glutamate production, the major excitatory neurotransmitter, and therefore neurons need an 

anaplerotic oxaloacetate formation to condense with acetyl-CoA. Thus, in the brain, oxaloacetate 

synthesis must occur by pyruvate carboxylation (Gamberino et al., 1997), catalysed by pyruvate 

carboxylase (PC, E.C. 6.4.1.1), that is an exclusively glial enzyme (e.g. Hassel, 2000; Zwingmann and 

Leibfritz, 2003; Waagepetersen et al., 2001). The transference of oxaloacetate from glia to the 

neuronal compartment probably occurs via aspartate exchange (Cruz and Cerdán, 1999). 

To ensure proper brain function, astrocytes rapidly remove neurotransmitters released to the 

synaptic cleft. In the case of glutamate, it is mainly taken by astrocytic glutamate transporters, 

maintaining a low extracellular glutamate concentration to avoid excitotoxicity (e.g. reviewed in 
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Gruetter, 2002). Glutamate is converted to glutamine by glutamine synthetase (GS, E.C. 6.3.1.2), 

another specific glial enzyme, and then glutamine is transported to neurons where it is hydrolysed 

to glutamate by glutaminase (Gase, E.C. 3.5.1.2), completing the glutamine-glutamate cycle (Shen et 

al., 1999; Zwingmann and Leibfritz, 2003). This cycle has the principal function of replenishing 

glutamate losses in the neuron due to neurotransmission and is probably complemented by the 

transport of NH4+ between both compartments, carried out by lactate-alanine shuttle (Zwingmann 

et al., 2000, 2001) or other amino acid  shuttles (Sibson et al., 2001; reviewed in Zwingmann and 

Leibfritz, 2003).  

The maintenance of glutamate synthesis from α-ketoglutarate requires a permanent flow 

through the TCA cycle. In conditions of low acetyl-CoA availability, this metabolite can be formed 

by pyruvate recycling that may occur in astrocytes and to a less extent in neurons (Olstad et al., 

2007; Cruz et al., 1998; Waagepetersen et al., 2002; Sonnewald et al., 1996). Beside the catabolism of 

energetic substrates, two other metabolic pathways converge to the production of pyruvate from 

TCA cycle intermediates: the malic enzyme (E.C. 1.1.1.40) converting malate to pyruvate (Bakken et 

al., 1997; Bernstine et al., 1979; Cruz et al., 1998), and the combined action of phophoenolpyruvate 

carboxykinase (E.C. 4.1.1.32) and pyruvate kinase (E.C. 2.7.1.4) returning oxaloacetate to 

phosphoenolpyruvate and pyruvate (Cruz et al., 1998). Then pyruvate can form lactate or alanine, or 

be re-introduced into the TCA cycle via acetyl-CoA to complete the pyruvate recycling pathway. 

The inhibitory neurotransmitter γ-aminobutiric acid (GABA) is mainly produced in the 

cytosol of GABAergic neurons from glutamate, via glutamate decarboxylase (GAD, L-glutamate-1-

carboxy-lyase, E.C. 4.1.1.15) (Martin and Rimvall, 1993). After being released, GABA is taken from 

the synaptic cleft mainly by astrocytes through specific GABA transporters and introduced in the 

astrocytic TCA cycle in the form of succinate, after the sequential actions of GABA-transaminase 

(E.C. 2.6.1.19) and succinic semialdehyde dehydrogenase (E.C. 1.2.1.24) (Balázs et al., 1970). In this 

pathway, α-ketoglutarate is transaminated to glutamate that can be provided to the neurons in the 

form of glutamine for neurotransmitter re-synthesis.  

Figure 1.1 depicts the principal metabolic pathways for glucose oxidation within neurons 

and glia, leading to the generation of GABA and glutamate that are the main inhibitory and 

excitatory neurotransmitters, respectively. However, other substrates are involved in brain 

metabolism though pathways interacting and regulating glucose oxidation that are coupled to 

neurotransmission. Another metabolic pathway that coexists in the brain, supporting the use of 

other carbohydrate sources than glucose is, for instance, fatty acid oxidative metabolism through β-

oxidation (Kuge et al., 1995, 2002), which can contribute up to 20% of the whole cerebral oxidative 

metabolism in vivo (Ebert et al., 2003). Also monocarboxylates are taken from blood stream to feed 
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neuronal and glial TCA cycles, namely lactate (Bouzier et al., 2000), β-hydroxybutyrate (Künnecke et 

al., 1993), acetate (Badar-Goffer et al., 1990; Cerdán et al., 1990) and acetoacetate (Ito and Quastel 

1970), and these substrates may become important in conditions of reduced substrate availability 

like hypoglycaemia.  

Lactate and pyruvate are two important monocarboxylates since they are involved in the so 

called astrocyte to neuron lactate shuttle (reviewed in Pellerin et al., 2007), in which glutamate 

released by neurons stimulates astrocytic glycolysis. Briefly, during cerebral activation, 

glutamatergic neurons release glutamate into the synaptic cleft that is taken up by the surrounding 

astrocytes co-transported with Na+ that must return to the extracellular milieu through Na+,K+-

ATPase, consuming one molecule of ATP. Once in the astrocyte, glutamate is converted to 

glutamine by glutamine synthetase at the expense of an additional ATP molecule. These two 

molecules of ATP used to clear glutamate are thought to be derived from the glycolytic pathway 

with formation of two molecules of pyruvate that are reduced to lactate. Astrocytic lactate and 

glutamine are then shuttled to neurons for oxidation in the neuronal TCA cycle (leading to energy 

 
 

Figure 1.1. Schematic model of compartmentalised brain metabolism with special enphasis to coupling of glucose 
oxidation and neurotransmission, and metabolic interactions between neurons and astrocytes. Glucose is taken by both 
neurons and glial cells and metabolised as described. Acetate metabolism was included in the figure since it may be used
as specific substrate for the study of the glial compartment. αKG, α-ketoglutarate; GABA, γ-aminobutiric acid; GAD, 
glutamate decarboxylase; Gase, glutaminase; Gln, glutamine; Glu, glutamate; GS, glutamine synthetase; Lac, lactate; OAA, 
oxaloacetate; PC, pyruvate carboxylase; PDH, pyruvate dehydrogenase complex; Pyr, pyruvate. 
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production) and glutamate regeneration, respectively, both required for maintenance of 

neurotransmission.  

Glycogen is present in significant amounts in brain (Choi et al., 1999). It constitutes an 

important source of glucose equivalents, and mainly acts as buffer upon reduced substrate 

availability from the blood stream or strong functional activation (Gruetter, 2003). Brain glycogen 

metabolism is affected by hormones, neurotransmitters and second messengers, and the regulation 

of its content is dependent on glucose availability and on a putative gluconeogenic pathway. 

Actually, production of glucose and glycogen from three-carbon compounds may occur in the 

brain, probably in astroglial cells (Bernard-Hélary et al., 2002; Dringen et al., 1993; Phillips and 

Coxon, 1975; Schmoll et al., 1995a), suggesting that the brain can provide endogenous sources of 

glucose. In fact, all the specific enzymatic machinery necessary for the occurrence of such 

gluconeogenic pathway is present in the brain, namely glucose-6-phosphatase (E.C. 3.1.3.9) 

(Anchors et al. 1975; Dodd et al., 1971, 1972; Ghosh et al. 2005), fructose-1,6-bisphosphatase (D-

fructose-1,6-bisphosphate 1-phosphohydrolase; E.C. 3.1.3.11) (Cloix et al., 1997; Löffler et al., 2001; 

Majumder and Eisenberg, 1977; Vergé et al., 1995; Schmoll et al., 1995b), and phosphoenolpyruvate 

carboxykinase (PEPCK, E.C. 4.1.1.32) (Cheng and Cheng, 1972; Sharma and Patnaik, 1983). Since 

cerebral gluconeogenesis rate is considered negligible compared to the flux of glycolysis (e.g. 

Gruetter, 2002), these enzymatic activities may possibly function as regulators of metabolic fluxes. 

 

1.2.3. Study of brain metabolism  

 

Initial studies of cerebral metabolism used radioactive isotopes or optical methods which 

required the preparation of homogenates and extracts, or isolation and purification of the enzymes 

or transport systems involved to investigate their in vitro kinetics (e.g. Siesjo 1982; Sokoloff 1989). 

This reductionist approach provided fundamental information on metabolic processes of the CNS, 

but the development of non-invasive methodologies over the last decades allowed studying the 

mammalian brain in vivo, enhancing the possibility to investigate and understand regulation of 

brain function. Positron Emission Tomography (PET) was the first technique used to non-invasively 

investigate glucose uptake in animals and man with acceptable resolution (Wienhard, 2002). 

Similarly, functional MRI (fMRI) allowed investigation of changes in the local hemodynamics and 

blood oxygenation, resulting from alterations in neuronal activity associated with for example 

sensory or motor stimulation (Heeger and Ress, 2002). Thus, PET and fMRI provided information 

on the coupling between neuronal activity and metabolism but without investigating metabolic 
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pathways underlying these cerebral processes. The development of novel strategies based on tracers 

detectable by NMR spectroscopy allowed to overcome many of the limitations of the traditional 

approaches. In particular, the use of 13C labelled tracers provided the quantitative assessment of 

transport mechanisms, metabolic fluxes, and cellular and sub-cellular compartmentation of 

metabolic pathways like glycolysis, pyruvate recycling and TCA cycle in a plethora of systems 

(reviewed in Gruetter et al., 2003; Shulman et al., 2004) ranging from in vitro primary cell cultures or 

tissue preparations (e.g. Fonseca et al., 2005) to the intact rodent or human brain (e.g. Behar et al., 

1986; Henry et al., 2003; Patel et al., 2005).  

Concerning the investigation of the regulation of brain metabolism, basically four types of 

methodologies are now becoming important, namely autoradiography, PET, dual photon 

fluorescence confocal microscopy, and NMR. The radioactivity-based autoradiography and PET 

uses glucose analogs labelled with 14C or 18F for the determination of cerebral metabolic rates of 

glucose consumption (CMRgluc) (Herholz and Heiss, 2004; Wienhard, 2002), or 15O2 to quantify 

blood volume, blood flow and oxygen consumption rates in the brain (Hatazawa et al., 1995). Dual 

photon fluorescence confocal microscopy is particularly interesting for the in vivo measurement and 

mapping of NADH fluorescence (Chance, 2004), which basically depends on NADH producing and 

consuming pathways, namely the balanced fluxes through glycolysis and TCA cycle (NADH 

fluorescence increases with increased glycolytic activity and decreases with augmented TCA cycle 

flux). Finally, NMR spectroscopy methods can be used to access brain metabolism in vivo by 

detecting chemical species that are relevant to certain brain processes (e.g. Ross and Sachdev, 2004). 

NMR is based on the magnetic properties of nuclei and can be used in different modalities 

for the most diverse purposes, including the study of brain metabolism (de Graaf, 1998). 1H NMR 

takes advantage of the most sensitive nucleus for magnetic resonance in terms of intrinsic 

sensitivity and natural abundance. However 1H NMR has a number of challenges, including the 

high concentration of water in the tissue (several orders of magnitude more concentrated than 

metabolites) that originates an enormous resonance in the proton spectra, the narrow chemical shift1 

range (5 ppm) that causes several metabolite resonances to overlap, and the low sensitivity of the 

NMR phenomena that compromises the detection of low concentrated metabolites. In any case, 

with the appropriate calibration of the parameters for the NMR scanning, 1H NMR spectroscopy 

can provide reliable quantification of metabolite concentrations. 31P NMR spectroscopy relies on the 

relatively high sensitivity of the 31P nucleus (7% of 1H), the 100% natural abundance and the large 

dispersion of phosphate resonances in the spectrum (over 30 ppm). Despite the limited number of 

                                                           

1 The chemical shift describes the dependence of nuclear magnetic energy levels on the electronic environment, and is 
represented in terms of variations of nuclear magnetic resonance frequencies. 
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detectable resonances, 31P NMR spectroscopy is useful for the detection of phosphate-containing 

metabolites related to energy metabolism. In vivo 31P NMR can also provide other indirect relevant 

parameters such as intracellular pH and Mg2+ concentration. Like protons, almost all metabolites 

contain carbon atoms. NMR detects the stable isotope 13C with a chemical shift spanning of about 

200 ppm. However, 13C has a natural abundance of 1.1% and a magnetogyric ratio one fourth of the 

proton, and moreover the strong heteronuclear scalar coupling complicates the spectra and reduces 

the sensitivity, so that additional hardware is needed for decoupling. Nevertheless, the low natural 

abundance of 13C may be converted to an advantage when using specific 13C-enriched substrates 

that are infused to follow incorporation into metabolites and study a variety of metabolic pathways. 

By applying 13C NMR and 13C tracers to the in vivo and in vitro study of brain metabolism and 

associating this strategy with adequate mathematical models, it has been possible in the last couple 

of decades to detail specificities of regional metabolism in different brain areas, cellular interactions 

and their alteration in pathological situations (Gruetter, 2002; Gruetter et al., 2003). 
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1.3. Modulation systems in the brain 

 

Processes of learning and memory are associated to synaptic events, namely 

neurotransmission that is tightly coupled to brain energy metabolism. Therefore, modulators of 

synaptic activity may directly or indirectly influence energy metabolism, by balancing the cellular 

energy charge, regulating metabolic pathways or controlling substrate uptake from the blood 

stream. 

Diabetes-induced dysfunction of synaptic plasticity is likely to be due to a perturbed 

efficiency of the release of neurotransmitters, as gauged by the reduction of neurotransmitter 

release (Guyot et al., 2001; Yamato et al., 2004) and possible change in pre-synaptic proteins 

associated with vesicular release of neurotransmitters upon diabetes (Grillo et al., 2005; Nitta et al., 

2002). Thus, one possible strategy to correct this diabetes-induced modification of synaptic 

efficiency might be to target neuromodulation systems, in particular at the level of the nerve 

terminal. 

 

1.3.1. Purinergic signalling systems 

 

Adenosine 5´-triphosphate (ATP) is the main adenine nucleotide accumulated and stored in 

synaptic vesicles, at the presynaptic terminal (Sperlagh and Vizi, 1996). Therefore, ATP is released 

from nerve terminals upon stimulation via exocytosis (Pankratov et al., 2006) in a frequency 

dependent-manner (Wieraszko et al., 1989; Cunha et al., 1996). Other brain compartments, such as 

glial cells (e.g. Caciagli et al., 1988; Coco et al., 2003; Queiroz et al., 1997) and postsynaptic structures 

(Hammann et al., 1996; Inoue et al., 1995) may also contribute to ATP release. Once in the 

extracellular milieu, ATP acts directly through the activation of P2 receptors (Ralevic and 

Burnstock, 1998), and additionally it can act as a substrate for ecto-protein kinases (Wierasko and 

Enrlich, 1994) or be converted through ecto-nucleotidases into adenosine (Zimmermann, 2000), with 

subsequent activation of adenosine (P1) receptors (Fredholm et al., 2005).  

This division of purine receptors in P1 receptors that have adenosine as the main natural 

ligand, and P2 receptors recognizing principally ATP and adenosine 5´-diphosphate (ADP) is based 

on the relative potencies and affinities of adenine nucleotides and adenosine, and according to their 

distinct molecular structures and pharmacological profiles (Ralevic and Burnstock, 1998). 
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The ATP molecule is used by virtually all cells as intracellular energy transfer in the most 

diverse metabolic pathways modulating the cellular metabolic state. ATP is a nucleotide composed 

by adenine (a purine) bound to ribose (a pentose), constituting adenosine, which is attached to three 

phosphate moieties (Figure 1.2). Moreover, ATP/adenosine 

also constitutes nucleic acids, the genetic material of the cell. 

Along with these pivotal roles of intracellular ATP, it is also 

released to the extracellular milieu where it acts as signalling 

molecule in several biological systems and as 

neuromodulator in the nervous system (reviewed in 

Burnstock, 2006). Like ATP, besides its metabolic 

involvement, adenosine exerts several biological effects 

including a role as neuromodulator in the nervous system 

controlling neurotransmission and other cellular functions 

(reviewed in Cunha, 2001).  

 

1.3.1.1. Metabolism of adenosine and adenine nucleotides 

 

ATP and adenosine are metabolised both intra- and extracellularly in the CNS (Figure 1.3). 

The intracellular levels of adenosine result from the balance between its anabolism and catabolism. 

This nucleoside is formed from degradation of adenosine 5’-monophosphate (AMP) by action of the 

cytosolic 5´-nucleotidase (5'-ribonucleotide phosphohydrolase, 5'-NT, E.C. 3.1.3.5), and from 

hydrolysis of S-adenosyl-homocystein (SAH) by S-adenosyl-L-homocystein hydrolase (E.C. 3.3.1.1) 

(Latini et al., 1996; Latini and Pedata, 2001). Adenosine may be phosphorylated to AMP by 

adenosine kinase (ATP:adenosine 5'-phosphotransferase, E.C. 2.7.1.20), deaminated to inosine by 

adenosine deaminase (adenosine aminohydrolase, E.C. 3.5.4.4), or converted to SAH by reaction 

with L-homocystein (reviewed in Latini and Pedata, 2001).  

The intracellular concentration of ATP is tightly controlled and only changes upon profound 

metabolic imbalance (Doolette, 1997; Stumpe and Schrader, 1997). ATP and AMP concentrations are 

in the milimolar and the nanomolar range, respectively. Thus, under metabolic stress or increased 

metabolic rate, only minor changes in the ATP catabolism induce large increase in the AMP 

concentration (discussed in Cunha, 2001). The substrate cycle between AMP and adenosine, with 

the enzymatic activities of 5´-nucleotidase and adenosine kinase, allows the translation of the 

modification of ATP concentration in a profound modification of adenosine concentration (Decking 

 
 

Figure 1.2. The chemical structures of 
adenosine (A) and ATP (B). 
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et al., 1997; Kroll et al., 1993), 

which has the capacity of being 

transported to the extracellular 

medium, unlike AMP, through 

non-concentrative bi-directional 

adenosine transporters (Cass et 

al., 1998). Thus, once formed, 

intracellular adenosine must be 

transported out of the cell in 

order to exert its effects upon cell 

surface P1 receptors. 

While ATP is ubiquitously 

distributed in the intracellular 

milieu with concentrations in the 

millimolar range, extracellular 

ATP concentrations range from nanomolar to micromolar (Agteresch et al., 1999; Schwiebert, 2000), 

and thus there is a concentration gradient for ATP efflux, transport or secretion out of the cells. ATP 

is co-released to the extracellular medium with neurotransmitters from synaptic vesicles by Ca2+-

dependent membrane-vesicle fusion, but it can also be directly released from the cytosol through 

membrane channels or transporters, or leak via the damaged cell membranes (reviewed in 

Zimmermann, 1996). ATP transporters at the plasma membrane include connexin hemichannels 

(Cotrina et al., 2000), osmotic transporters linked to anion channels (Abdipranoto et al., 2003; Darby 

et al., 2003), or ATP-binding cassette transporters (Schwiebert, 1999; Ballerini et al., 2002). 

The extracellular ATP controls neuronal activity directly through adenine nucleotide 

receptor (P2 receptors), or indirectly after being hydrolysed by the ecto-nucleotidase pathway. Ecto-

nucleotidases are membrane-bound enzymes with their catalytic site facing the extracellular 

medium, and also include cleaved and soluble isoforms. Several activities which constitute the ecto-

nucleotidase pathway are involved in the extracellular catabolism of ATP (for review see 

Zimmermann, 1996), converting it to AMP: ecto-ATPase (E.C. 3.6.1.3), ecto-ADPase (E.C. 3.6.1.6), 

ecto-ATP-diphosphohydrolase (E.C. 3.6.1.5), ecto-adenylate kinase (E.C. 2.7.4.3) and ecto-ATP-

pyrophosphatase (E.C. 3.6.1.8). Finally, the ecto-5’-nucleotidase activity (E.C. 3.1.3.5) converts AMP 

to adenosine. The ecto-alkaline phosphatase activity (E.C. 3.1.3.1) is able to convert ATP to 

adenosine directly. Beside ATP, other nucleotides can be released, and may constitute a source of 

 
 
Figure 1.3. Main intra- and extracellular pathways of ATP and adenosine 
metabolism. ADA, adenosine deaminase; AK, adenosine kinase; 5’NT, 
endo-5’-nucleotidase; NT, neurotransmitters; SAH, S-adenosyl-
homocystein; T, adenosine transporters. 
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extracellular adenosine if they are substrates for ecto-nucleotidases (Latini and Pedata, 2001; Miras-

Portugal et al., 1999).  

The adenosine in the extracellular medium has two origins: either the release from cells 

through non-concentrative bi-directional adenosine transporters or the dephosphorylation of 

adenine nucleotides by the ecto-nucleotidase pathway, which appears to be the main source of 

adenosine at the synaptic level (discussed in Cunha, 2001). Adenosine can be removed from the 

extracellular medium by uptake into the cytosol via adenosine transporters or by action of the 

extracellular adenosine deaminase activity (Franco et al., 1997). Adenosine is deaminated to inosine 

which may be a substrate for purine-nucleoside phosphorylase (purine-nucleoside:phosphate 

ribosyltransferase, E.C. 2.4.2.1), xanthine dehydrogenase (xanthine:NAD+ oxidoreductase, E.C. 

1.1.1.204) and xanthine oxidase (xanthine:oxygen oxidoreductase, E.C. 1.1.3.22), which catalyse the 

oxidation of inosine leading to the formation of uric acid (Barsotti et al., 2003; Moriwaki et al., 1993; 

Wajner and Harkness, 1989). 

 

1.3.1.2. ATP receptors 

 

Purinergic P2 receptors are classified in two main families, ionotropic P2X and metabotropic 

P2Y receptors, based on protein structure and signal transduction mechanisms, being both robustly 

expressed in the CNS (reviewed in Ralevic and Burnstock, 1998).  

Seven mammalian P2X receptor subunits (P2X1-7) have been cloned (Ralevic and Burnstock, 

1998). They are ligand-gated cation channels that, upon activation by the principal endogenous 

ligand ATP mediate opening of a non-selective cation pore, permeable to Na+, K+ and Ca2+ (North, 

2002). P2X receptor subunits are composed by two transmembrane domains and have both N- and 

C-terminal regions lying on the intracellular milieu. The C-terminus binds to protein kinases 

responsible for the kinetics, permeation and desensitization of the channels, while the extracellular 

loop contains the ATP binding sites and sites for antagonists and modulators (Khakh, 2001). 

Functional and biochemical data established several functional homomultimers and 

heteromultimers of P2X receptors (Brown et al., 2002; King et al., 2000; Lê et al., 1998, 1999; Nicke et 

al., 2005; North and Surprenant, 2000; Radford et al., 1997).  

In contrast to P2X receptors, P2Y receptors not only bind to ATP, but also ADP and the 

pyrimidine nucleotides. Metabotropic P2Y receptors are G protein coupled receptors with seven 

transmembranar domains, an extracelullar N-terminus and an intracellular C-terminus. Eight 

different mammalian P2Y receptors subtypes (P2Y1,2,4,6,11,12,13,14) have been cloned so far (Abbracchio 
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et al., 2006). The intracellular loops and the C-terminus are structurally diverse among the P2Y 

receptor subtypes, conditioning the interaction with different G proteins (Abbracchio et al., 2006). 

Each P2Y receptor binds to a single heterotrimeric G protein, tipically Gq/11, stimulating 

phospholipase C (E.C. 3.1.4.3), resulting in the formation of inositol-(1,4,5)-triphosphate (IP3) and 

diacylglycerol, with subsequent  mobilization of Ca2+ from intracelullar  stores (Abbracchio et al., 

2006). However P2Y11 can couple to both Gq/11 and Gs, stimulating adenylate cyclase, and P2Y12,13,14 

couple to Gi inhibiting adenylate cyclase (Abbracchio et al., 2006). In addition, P2Y receptors may 

activate other second messengers like phospholipases A2 and D, mitogen-activated protein kinases 

(MAPK), tyrosine kinase and the serine-threonine kinase Akt (reviewed in Lazarowski et al., 2003). 

The conjugation of several experimental techniques identified the presence of P2X and P2Y 

receptors in different regions of the CNS, including the hippocampus (e.g. Rodrigues et al., 2005a; 

Rubio and Soto, 2001), located in either neurons (reviewed in Illes and Ribeiro, 2004) or glial cells 

(Abbracchio and Verderio, 2006). The existence of multiple sources of extracellular ATP and the 

localization of distinct P2 receptors in the CNS suggests several possible roles for extracellular ATP. 

In glial elements, P2 receptors are involved in glia-glia and glia-neuron communication (Fields and 

Burnstock, 2006), astrocyte proliferation (Neary et al., 2006), chemotaxis and control of microglia 

reactivity (Farber and Kettenman, 2006). In neurons, P2 receptors constitute a neuromodulatory 

system (Cunha and Ribeiro, 2000), controlling for example excitatory glutamate release (Rodrigues 

et al., 2005a).  

As described above, ATP is co-released with other neurotransmitters, such as glutamate, 

GABA (Pankratov et al., 2006) and acetylcholine (Richardson and Brown, 1987), placing ATP in 

distinct synaptic populations. ATP is not only released by the presynaptic terminal, but can be 

released postsynaptically or from non-neuronal cells (Volonté et al., 2003) and, moreover, each of the 

products of ATP hydrolysis can activate different receptors (P2 receptors bind ATP and ADP and P1 

receptors bind adenosine). These features expand the possibility of ATP as a ubiquitous 

neuromodulator in the CNS. Furthermore, P2X receptors can interact with different ionotropic 

receptors, like GABAA receptors (Boue-Grabot et al., 2004; Sokolova et al., 2001), nicotinic 

acetylcholine receptors (Rodrigues et al., 2006), serotonin receptors (Boue-Grabot et al., 2003), and 

eventually NMDA (Pankratov et al., 2002; Peoples and Li, 1998) and AMPA/kainate receptors (Zona 

et al., 2000). This interesting feature of P2X receptors reinforces the possible neuromodulatory role 

operated by these receptors and suggests that ATP signalling via activation of P2 receptors may also 

control other modulatory systems. 

Functional studies following the release of neurotransmitters in different brain regions, 

suggest that the neuromodulation role of P2 receptors involves a dual action controlling synaptic 
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events operated by inhibitory P2Y and facilitatory P2X receptors (reviewed in Cunha and Ribeiro, 

2000; Hussl and Boehm, 2006). On the other hand, not only there is a direct involvement of 

presynaptic P2 receptor on synaptic function, but there are also astrocyte-mediated effects that may 

lead to modulation of synaptic function. In particular, the activation of astrocytic P2X7 receptors 

modulates the release of glutamate (Duan et al., 2003) and GABA (Sperlágh et al., 2002). Moreover, 

P2X receptors may also control postsynaptic events (Khakh and Henderson, 1998). In the particular 

case of the hippocampus, it was reported a facilitatory effect mediated by presynaptic P2X2 

receptors controlling excitatory transmission (Khakh et al., 2003), activation of presynaptic P2X7 

receptors depresses synaptic transmission (Armstrong et al., 2002), and P2Y1 receptor activation 

increases synaptic inhibition of hippocampal circuits (Bowser and Khakh, 2004).  

 

1.3.1.3. Adenosine receptors 

 

Adenosine exerts its effects through the activation of specific membrane receptors (P1 

receptors) identified in all types of cells studied (reviewed in Ralevic and Burnstock, 1998). The P1 

receptor family comprises A1, A2A, A2B and A3 adenosine receptors, identified by convergent 

molecular, biochemical and pharmacological data. In the CNS, activation of adenosine A1 receptors 

is associated with inhibitory effects on neurotransmission, and activation of adenosine A2A and A2B 

is linked to facilitatory events (reviewed in Fredholm et al., 2005). The lack of good pharmacological 

tools has delayed the knowledge about the function of A2B and A3 in the nervous system. 

All adenosine receptors couple to G proteins and, in common with other G protein-coupled 

receptors, they have seven putative transmembrane domains, the N-terminal lying on the 

extracellular side and the C-terminal on the cytoplasmic side of the membrane. In general, while A1 

and A3 are negatively coupled to adenylate cyclase via Gi protein, A2A and A2B are positively 

coupled to adenylate cyclase via Gs protein (Fredholm et al., 2001). However, all adenosine receptors 

may be coupled to other G proteins and operate through different signal transducing pathways (see 

Cunha, 2005).  

The A1 receptor, with an apparent molecular mass of 34-38 kDa (Nakata, 1992; Stiles et al., 

1985), is widely distributed in the CNS, with particular abundance in the hippocampus, cerebral 

cortex, cerebellum, and in certain thalamic nuclei (Ochiishi et al., 1999), and is specially enriched in 

synapses (Rebola et al., 2003a; Tetzlaff et al., 1987). A1 receptors couple to Gi/Go proteins (Nanoff et 

al., 1995) and, upon activation, can inhibit adenylate cyclase, activate potassium channels, inactivate 

calcium channels and activate phospholipase C, modulating both pre- and postsynaptic 
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mechanisms that summed will cause decreased neuronal excitability (reviewed in Ralevic and 

Burnstock, 1998). This control of neuronal excitability is important for normal brain function (see for 

example, Brambilla et al., 2005; Pascual et al., 2005) and is particularly relevant in pathological 

conditions where excessive stimulation of neurons may eventually lead to neuronal death (Dodd, 

2002). In glial cells, A1 receptors modulate calcium signals (Alloisio, et al., 2004; Cormier et al., 2001), 

cAMP accumulation (Peakman and Hill, 1996) and phospholipase C activation (Biber et al., 1997). A1 

receptors were also reported to modulate oligodendrocyte migration (Othman et al., 2003). 

However, and besides all these evidences for the presence of functional A1 receptors in glia cells, 

their role to brain function needs further clarification. 

The A2A receptor has an apparent molecular mass of 45 kDa (Barrington et al., 1989) and, in 

the brain, is mainly localized in the striatum, nucleus accumbens and olfactory bulb (Peterfreund et 

al., 1996; Rosin et al., 1998). It is also present in the hippocampus, but at much lower density (Cunha 

et al., 1994a; Peterfreund et al., 1996), and here it is particularly enriched in synapses (Rebola et al., 

2005a). In the brain, the A2A receptor may couple to different G proteins in different regions 

(discussed in Fredholm et al., 2003), including coupling to Gs (Marala and Mustafa, 1993; Olah, 1997; 

Cunha et al., 1999) and to Golf (Kull et al., 2000) proteins, increasing cAMP levels, and activating 

protein kinase A and MAPK. Neuronal A2A receptors were suggested to control neurotransmitter 

release by controlling protein kinase C activity independently of cAMP levels (Gubitz et al., 1996; 

Norenberg et al., 1998; Cunha and Ribeiro, 2000b; Queiroz et al., 2003; Rebola et al., 2003b). Other 

signalling pathways that may be recruited by the A2A receptor include coupling to G12/G13 (Sexl et 

al., 1997) and G15/16 (Offermanns and Simon, 1995) proteins. Presynaptically, A2A receptors control 

the release of neurotransmitters, namely GABA (Cunha and Ribeiro, 2000c; Shindou et al., 2002), 

acetylcholine (Rebola et al., 2002), glutamate (Lopes et al., 2002) and serotonin (Okada et al., 2001), 

which appears to be mostly due to the control of the conductance of calcium channels (Gonçalves et 

al., 1997; Cunha and Ribeiro, 2000). A2A receptor activation has been reported to increase neuronal 

excitability (Sebastião and Ribeiro, 1992), synaptic transmission (Cunha et al., 1997) and long-term 

potentiation (d’Alcantara et al., 2001; de Mendonça and Ribeiro, 1994; Rebola et al., 2008). The A2A 

receptor is also present in glial cells and was suggested to modulate glutamate release and calcium 

transients in astrocytes (Nishizaki et al., 2002; Alloisio et al., 2004), astroglyosis (Brambilla et al., 

2003), and microglia activation (Fiebich et al., 1996b; Saura et al., 2005). 

In the brain, the A2B receptor has a low density but is globally distributed (Dixon et al., 1996). 

It can couple to different signalling pathways, such as activation of adenylate cyclase, activation of 

phospholipase C through coupling to Gq/G11, and increase in intracellular calcium concentrations 

through IP3 production (reviewed in Ravelic and Burnstock 1998) and MAPK activation (Schulte 
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and Fredholm, 2003). These receptors seem to have a low affinity for adenosine compared to the 

other adenosine receptors, which indicates a role in pathologic conditions in the CNS (Fredholm et 

al., 2001). A2B receptors in the brain are mainly restricted to glia cells where they were reported to 

control important cellular processes like cAMP accumulation (Peakman and Hill, 1994), interleukin 

secretion (e.g. Fiebich et al., 1996; Schwaninger et al., 1997), ATP-induced calcium transients (Jiménez 

et al., 1999), or glycogen turnover (Allaman et al., 2003).  

The A3 receptor is abundant in peripheral tissues (Ravelic and Burnstock 1998) and the 

presence of its mRNA was observed in several brain regions including the hippocampus (Dixon et 

al., 1996). Among several transducing pathways (Gessi et al., 2008), the A3 receptor couples to Gi 

protein inhibiting adenylate cyclase activity, and to Gq protein activating phospholipase C, 

increasing IP3 levels and intracellular calcium concentration. The functions of this receptor are 

poorly understood but it was also found to be present and functional in cultured microglia cells 

(Hammarberg et al., 2003; Lee et al., 2006), to promote cytoskeleton reorganization in human 

astrocytoma cells (Abbracchio et al., 1997), and to induce apoptosis in cultured astrocytes (Appel et 

al., 2001). 

The effects of adenosine on synaptic transmission are mostly mediated by A1 receptor 

activation, causing inhibition of excitatory neurotransmission and decrease of neuronal excitability 

(Dunwiddie and Masino, 2001), that mainly results from inhibition of glutamate release (Ambrósio 

et al., 1997; Gundlfinger et al., 2007). A1 receptors can also modulate GABA release (Cunha and 

Ribeiro, 2000c; Yang et al., 2004) that seems to be important in the hippocampus of immature 

animals (Jeong et al., 2003), and may act at the postsynaptic level by increasing potassium currents 

(Proctor and Dunwiddie, 1987) and by decreasing NMDA receptor function (de Mendonça et al., 

1995) and voltage sensitive calcium channels function (Mogul et al., 1993). A1 receptor activation 

was reported to oppositely decrease (de Mendonça and Ribeiro, 1994) or stimulate long-term 

potentiation (LTP) (Pascual et al., 2005). This receptor has been observed to be involved in inducing 

heterosynaptic depression of glutamatergic synaptic transmission in CA1 area of the hippocampus 

(Zhang et al., 2003). As mentioned above, A1 receptors are also present in astrocytes, which may 

have an important role in modulating synaptic transmission (Haydon and Carmignoto, 2006).  

Contrasting with A1 receptors, A2A receptors have mainly been described to stimulate 

neurotransmitter release (Cunha, 2001). A2A receptor activation has been reported to modulate the 

release of GABA (Cunha and Ribeiro, 2000c; Shindou et al., 2002), acetylcholine (Rebola et al., 2002), 

glutamate (Lopes et al., 2002) and serotonin (Okada et al., 2001). In the hippocampus, it increases 

LTP amplitude (de Mendonça and Ribeiro, 1994; Fujii et al., 2000), stimulates excitatory synaptic 

transmission by a mechanism dependent on A1 receptor activation (Lopes et al., 2002), and 
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modulates postsynaptic NMDA responses (Rebola et al., 2008). The modulation of inhibitory 

synaptic transmission by A2A receptors is controversial, being reported its inhibition (Mori et al., 

1996) and stimulation (Shindou et al., 2002).  

In the hippocampus, A3 receptor activation was shown to decrease synaptic transmission 

(Brand et al., 2001; Hentschel et al., 2003), to modulate synaptic plasticity (Costenla et al., 2001) and 

to control metabotropic glutamate receptor (mGluR) functions (Macek et al., 1998; Huang et al., 

2007). Nonetheless, the effect of A3 receptor activation on neuronal activity is still mostly unknown, 

as well as A2B receptor functions. 

Like ATP, adenosine acts also as a modulator of other modulator systems allowing a fine-

tuning of synaptic activity. For example, A2A receptor activation modulates the roles of some 

peptides like calcitonin gene related peptide (Correia-de-Sá and Ribeiro, 1994) and brain-derived 

neurotrophic factor (BDNF) (Diógenes et al., 2004), and thus may also indirectly affect hippocampal 

neurotransmission. Moreover, adenosine receptors were described to form hetero-oligomers with 

other receptors. The A1 receptor has been shown to form heteromers with dopamine D1 (Gines et al., 

2000), purinergic P2Y1 (Tonazzini et al., 2007; Yoshioka et al., 2001), glutamate mGluR1 (Ciruela et 

al., 2001) and A2A (Ciruela et al., 2006) receptors. The A2A receptor may form functional heteromers 

with mGluR5 (Ferre et al., 2002) and CB1 (Carriba et al., 2007) receptors. In the striatum, the A2A 

receptor may heteromerize with the dopamine D2 receptor in the GABAergic neurons (reviewed in 

Svenningsson et al., 1999), forming a functional entity that has been explored as a potential 

therapeutic for the treatment of Parkinsons disease (Diaz-Cabiale et al., 2001; Ikeda et al., 2002; Ferré 

et al., 1991).  

 

1.3.2. Endocanabinoid system 

 

The research on the endocannabinoid system was boosted after the characterization of the 

chemical structure of ∆9-tetrahydrocannabinol (∆9-THC), the main component of marijuana, and 

recently much importance was attributed to it due to the involvement in the control of metabolic 

functions on peripheral tissues (reviewed in Pagotto et al., 2006). The endocannabinoid system is 

constituted by cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and enzymes 

that produce and degrade endocannabinoids. Although endocannabinoids can be transported by 

transporter proteins, they are very lipophilic and easily cross cellular membranes, so that their 

actions must be regulated at the level of synthesis and degradation (Piomelli, 2003). This system is 

involved in many physiological functions, and in the brain it has neuromodulation functions 



 
25 Introduction 

(reviewed in Marsicano and Lutz, 2006), regulates certain processes of learning and memory (e.g. 

Marsicano et al., 2002a; Varvel and Lichtman, 2002; Wotjak, 2005) and may afford neuroprotection 

against injuries and degeneration (e.g. Jackson et al., 2005; Marsicano et al., 2002b, 2003; Panikashvili 

et al., 2001, 2005), indicating the possible use of endocannabinoid system as therapeutic target 

(Mackie, 2006). 

Up to now, two cannabinoid receptors have been identified and molecularly characterised: 

the cannabinoid receptors type 1 (CB1 receptor) (Matsuda et al., 1990) and type 2 (CB2 receptor) 

(Munro et al., 1993). Pharmacological studies suggest the existence of other cannabinoid receptors 

(Köfalvi, 2008) but they were not cloned yet. CB1 receptors, which are considered the most 

abundant metabotropic receptors in the brain, are activated by ∆9-THC, the main psychoactive 

constituent of marijuana, as well as by certain endocannabinoids such as 2-arachidonoylglycerol (2-

AG) and anandamide (see Irving et al., 2008). While the CB1 receptor is present at much lower 

density in glia than neurons (e.g. Molina-Holgado et al., 2002; Ramirez et al., 2005), the brain CB2 

receptor is thought to mainly mediate glial functions, in particular controlling immune responses. 

However, they were also suggested to occur in neuronal cells (van Sickle et al., 2005). Both CB1 and 

CB2 receptors can modulate multiple second messenger effectors depending on the cell type or 

experimental conditions but generally couple to inhibitory G1/o proteins and its activation will then 

inhibit adenilate cyclases, depleting intracellular cAMP levels and inactivating the protein kinase A, 

and stimulate MAPK pathway (Irving et al., 2008). These receptors are also able to modulate 

phosphoinositide 3-kinases, glycogen synthase kinase 3 β, and nitric oxide synthase activities, 

through which they afford neuroprotection (Campbell and Downer, 2008).  

The CB1 receptor is particularly highly abundant in the human and the rodent hippocampus 

(Katona et al., 1999, 2000; Degroot et al., 2006) that is known to be a crucial area involved in learning 

and memory processes (Agranoff et al., 1999). The prominent pre-synaptic localisation of CB1 

receptors and their capacity of inhibiting Ca2+ and activate K+ channels suggest a role in modulating 

neurotransmission and neuronal excitability (for review see Gerdeman and Lovinger 2003). In fact, 

activation of hippocampal CB1 receptors reduces neurotransmitter release, namely the release of 

GABA (Katona et al., 1999, 2000), glutamate (Kawamura et al., 2006), dopamine and acetylcholine 

(Degroot et al., 2006), which will be reflected on the control of cognition and memory consolidation 

(for review see Hampson and Deadwyler, 1999). The inhibition of synaptic transmission can be 

transient, occurring by depolarization-induced suppression of inhibition or excitation that relies on 

endocannabinoid production after intracellular Ca2+ increase, or it can result on modulation of long-

term depression (LTD) that is a synaptic plasticity form that can occur from hours to weeks 

(Gerdeman and Lovinger 2003). 
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CB1 receptors may occur in different splice variants or isoforms and homodimerize, 

generating functional diversity (Irving et al., 2008). Furthermore, CB1 receptors might form 

functional heterodimers with different receptors, such as with dopamine D2 receptors (Kearn et al., 

2005), adenosine A1 receptors (Carriba et al., 2007), type 1 orexin receptors (Hilairet et al., 2003) and 

5-HT serotonin receptors (Devlin and Christopoulos, 2002). 

 

1.3.3. Neuroprotection by modulation systems 

 

The CNS has mechanisms to protect its cells, namely neurons, from degeneration upon 

injury. Stressful conditions, for example ischemia, induce adenosine release to the extracellular 

space, which acts predominantly as a neuroprotective factor (Fredhom et al., 2005). Manipulations of 

extracellular adenosine levels with pharmacological or genetic tools were observed to control the 

degree of injury upon noxious stimuli, suggesting an important role of adenosine in 

neuroprotection (Andine et al., 1990; Park and Rudolphi, 1994; Tatlisumak et al., 1998; Pignataro et 

al., 2007). In fact, many effects of adenosine in the CNS are compatible with neuroprotective 

properties, for example the ability to decrease excitatory amino acid release, hyperpolarize neurons, 

restrain the activation of N-methyl-D-aspartate (NMDA) receptors, limit calcium influx, inhibit free 

radical formation, and exert other modulatory effects in astrocytes and microglia (de Mendonça et 

al., 2000), most of these effects being mediated by A1 receptor activation (Cunha, 2001). 

Corroborating this hypothesis, A1 receptor agonists decreased injury whereas A1 receptor 

antagonists aggravated damage in adult animals (de Mendonça et al., 2000). A1 receptor activation is 

protective against brain ischemia in adult animals (e.g. Rudolphi et al., 1992a, 1992b; von Lubitz et 

al., 1994a, 1994b, 1995), and in excitotoxicity models induced by kainate or quinolinic acid 

(MacGregor et al., 1993, 1997), or by 3-nitopropionic acid (Blum et al., 2002). A1 receptor activation in 

microglia cells also attenuates neuroinflammation and demyelination in an animal model of 

multiple sclerosis (Tsutsui et al., 2004).  

Oppositely, under some circumstances adenosine may contribute to neurotoxicity (de 

Mendonça et al., 2000), caused by activation of other adenosine receptors, namely the A2A receptor 

(reviewed by Fredholm et al., 2005). Despite its low abundance in areas of the CNS others than the 

basal ganglia (Cunha, 2001), pharmacological or genetic blockade of A2A receptors results in a 

decrease of the injured cortical tissue area after cerebral-induced ischemia in rodents (e.g. Monopoli 

et al., 1998; Chen et al., 1999). Blocking A2A receptors also proved efficacious in other models of 



 
27 Introduction 

neurodegeneration (e.g. Chen et al., 2001; Ikeda et al., 2002; Popoli et al., 2002), suggesting that this 

might be a general neuroprotective strategy.  

Compared to the A1 and the A2A receptor much less is known about the participation of the 

A2B and the A3 receptor activation concerning neuroprotection, but the A3 receptor activation was 

suggested to be neuroprotective against ischemia and hypoxia (Chen et al., 2006; Von Lubitz et al., 

1994c; Fedorova et al., 2003). 

Extracellular ATP is used as a danger signal in the CNS, and was suggested to control 

neurodegeneration. ATP can activate P2X7 receptors in astrocytes to release glutamate and GABA, 

and can also regulate the excitability of neurons in certain pathological conditions. The interference 

with the ATP-induced excitatory responses may provide neuroprotection and possible therapeutic 

consequences (Majumder et al., 2007). P2X7 receptors mediated neuroprotection may also be related 

to control of microglia reactivity (Melani et al., 2006; Choi et al., 2007; Yanagisawa et al., 2008). 

Pharmacological blockade or genetic deletion of P2Y1 receptors prevented memory impairment, as 

well as hippocampal synaptotoxicity, dendritic atrophy and neuronal dead caused by glutamate 

excitotoxicity and amyloid-β, suggesting that P2Y1 receptor blockade can be protective upon 

Alzheimer’s disease (Cunha et al., 2006a).  

Evidence accumulated over the last few years indicates that the endocannabinoid system is 

potentially useful to reduce the effects of neurodegeneration (Campbell and Downer, 2008). In fact, 

neuronal damage can increase the production of endocannabinoids (Stella et al., 1997; Marsicano et 

al., 2003), and cells lacking CB1 receptors are more vulnerable to damage (Marsicano et al., 2003). 

Cannabinoid receptors may be useful targets for the management of neurodegeneration for example 

in Alzheimer’s disease (Campbell and Gowran, 2007), multiple sclerosis (e.g. Baker et al., 2007), 

Hungtinton’s disease (e.g. Lastres-Becker et al., 2003), or ischemia (e.g. Louw et al., 2000), through 

mechanisms that involve the control of excytotoxicity, calcium influx, oxidative stress, 

neuroinflamation, expression of transcription factors and neurotrophins, and other events 

(Campbell and Downer, 2008). CB1 receptor activation can also promote adult hippocampal 

neurogenesis (Jiang et al., 2005) and regulate interneuron migration and specification (Berghuis et 

al., 2005), which could counteract impairment of hippocampal neurogenesis in neurodegenerative 

pathologies like diabetes (Beauquis et al., 2006; Stranahan et al., 2008). 
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The fundamental purpose of this doctoral research was to evaluate the existence of 

molecular and metabolic alterations in the hippocampus of animal models of diabetes that could 

contribute to learning and memory impairment, and identify if such alterations could be prevented 

or corrected by manipulating modulation systems in order to try to overcome the cognitive deficits. 

To accomplish these main goals, the following tasks were established:  

1. Identification of neuromodulation systems able to control intermediary metabolism in 

the hippocampus, since learning and memory processes are synaptic events and diabetes 

is a metabolic disease. 

2. Understand the effect of diabetes on hippocampal neuromodulation systems, which 

could control not only synaptic phenomena but also metabolic events.  

3. Investigate hippocampal alterations induced by diabetes at molecular, metabolic and 

behavioural levels. 

4. Test the use of caffeine as a mean for prevention or amelioration of diabetes-induced 

hippocampal alterations and cognitive deficits. 

The experimental work performed to accomplish the four objectives stated above is 

described in chapter 3, and resulted in the observations described in chapter 4, which is divided in 

different sections pertinently discussed: the first three sections match the first three objectives 

described above and the last section comprises the last 2 objectives since caffeine consumption 

studies also covered diabetes-induced alterations not studied before.  

All the studies were conducted in the hippocampus for the following reasons. Elderly-

associated mild memory and cognitive impairment and Alzheimer’s disease are accompanied by 

atrophy of hippocampal formation (Convit et al., 1997; de la Monte, 1989; de Leon et al., 1997; 

Pennanen et al., 2004). When compared to healthy subjects, individuals with type 2 diabetes display 

deficits in hippocampal-based memory performance with preservation of other cognitive domains, 

and also show reduction of hippocampal volume but not other brain areas (Gold et al., 2007). 

Cognitive dysfunctions during diabetes are therefore associated with significant changes in the 

integrity of the hippocampus, a brain region considered to mediate memory formation in animals 

(Biessels et al., 2002; Trudeau et al., 2004), and electrophysiological analysis indicate that diabetes 

induces defects on LTP in hippocampal slices, a form of synaptic plasticity considered to reflect 

learning and memory processes in mammals (Biessels et al., 2002). These evidences drove us to 

perform the majority of the studies focusing on the hippocampus. 
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3.1. Animals  

 

All rats and mice used thorough the experimental work here described were handled 

according with the EU guidelines for the use of experimental animals (86/609/EEC), with 

particular care to minimize both animal suffering and the number of animals used in each study. 

Unless otherwise stated, the experiments were performed using male Wistar rats (8 weeks old, 

obtained from Harlan Ibérica, Barcelona, Spain), being animals sacrificed by decapitation under 

halothane anaesthesia. 

 

3.1.1. Experimental models of diabetes 

 

We used a well studied and validated model of type 1 diabetes mellitus, which is based on 

the administration of 2-deoxy-2-(3-(methyl-3-nitrosoureido)-D-glucopyranose (streptozotocin or 

STZ) that acts on β-cells impairing insulin secretion (Szkudelski, 2001; Rees and Alcolado, 2005). 

Male Wistar rats were used for the induction of type 1 diabetes, except for the in vivo NMR studies 

that were performed in male Sprague-Dawley rats (8-weeks old, obtained from Charles River 

Laboratoires, France). STZ (65 mg/kg, prepared in sodium citrate buffer 10 mM, pH 4.5) was 

administered by intra-peritoneal (i.p.) injection and induced sustained levels of blood glucose above 

250 mg/dL after 3 days, as measured by the glucose oxidase method using a glucometer (OneTouch 

Ultra, LifeScan, Portugal). After injected, the rats were maintained with food and water ad libitum 

and all the analysis were carried out 7, 30 or 90 days after STZ treatment. Control rats were age-

matched untreated or vehicle injected rats maintained in the same conditions. STZ is specifically 

taken by GLUT2 transporters which are particularly abundant in pancreatic β-cells (Junod et al., 

1969), and is not known to cross the BBB having to be injected into the brain to cause direct effects 

in the brain parenchyma (e.g. Lester-Coll et al., 2006). Thus, it is assumed that the modifications 

caused by STZ mainly result from its ability to induce a type 1 diabetic state characterised by 

chronic hyperglycaemia (e.g. Rees and Alcolado, 2005).  

As model for type 2 diabetes mellitus we used male Goto-Kakizaki (GK) rats (obtained from 

Taconic, Lille Skensved, Denmark) that spontaneously develop insulin resistance, i.e. non-insulin-

dependent diabetes, without obesity. The GK rat was produced by repeated selective breeding of 
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originally non-diabetic Wistar rats (Goto and Kakizaki, 1981) and therefore we used age-matched 

Wistar-Hannover-Galas rats (also from Taconic) as controls for this model of diabetes.  

For the study of obesity-induced type 2 diabetes, we used the recombinant congenic strain 

NONcNZO10/LtJ developed at The Jackson Laboratory (Bar Harbor, Maine, USA). The 

NONcNZO10/LtJ mouse strain develops type 2 diabetes characterized by maturity onset obesity, 

hyperglycaemia and insulin resistance, among other organ-specific diabetes phenotypes common to 

the human diabetes (Cho et al., 2007). Diabetic NONcNZO10/LtJ mice and control NON/LtJ mice 

were acquired from The Jackson Laboratory with 6 months of age and maintained in identical 

housing conditions, under an 11% fat diet (Labdiet 5K20, from International Product Supplies, UK).  

  

3.1.2. Caffeine treatment 

 

During the present studies, all the animals were housed at room temperature (20 to 25 ºC) 

with food and water ad libitum.  

Caffeine was administered in the drinking water at 1g/L. Due to polydipsia, STZ-induced 

diabetic rats received a variable caffeine dose (depending on fluid volume intake) to achieve 

caffeine consumption levels similar to controls. STZ-treated rats and respective controls were 

exposed to caffeine from 2 weeks before STZ administration until the day of the experiment. GK 

rats and respective controls received caffeine for 14 weeks starting on 8 weeks of age. 

NONcNZO10/LtJ and NON/LtJ mice were treated with caffeine from 7 to 11 months of age.  

During treatment, weight and caffeine consumption were monitored each second day, and 

preprandial glycaemia was measured from tail blood, using a glucometer based on the glucose 

oxidase method (OneTouch Ultra, LifeScan, Portugal; or Ascencia Contour, Bayer, Switzerland). For 

insulin and caffeine quantification, blood samples were collected, allowed clotting, and the serum 

was separated by centrifugation. 

 

3.2. Behavioural tasks 

 

3.2.1. Open field  

 

Exploratory behaviour and locomotor activity of mice were evaluated over 5 minutes in the 

dark, using a squared open field arena, being the animals placed in the central area of the arena. For 
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mice, the arena measured 30x30 cm and 25 cm high, and was divided in 9 squares of 10x10 cm. For 

rats, the arena was 34x34 cm and 30 cm high, and was divided in 4 squares of 17x17 cm. The 

number of crossings of these squares and the number of rearing movements with forepaws were 

quantified as horizontal and vertical activities, respectively. Rearing with the forepaws pressed 

against the walls was not considered.  

 

3.2.2. Y-maze  

 

The Y-maze is a gross test for spatial memory (e.g. Lalonde, 2002; Myhrer, 2003). It tests if the 

animal remembers the arm it has just explored and will therefore enter one of the other arms of the 

maze. This spontaneous alternation was observed in a Y-maze constructed in black Plexiglas, with 

three arms converging to an equal angle. For mice, each arm was 30 cm long, 5 cm wide and 25 cm 

height. For rats, the arms measured 35 cm long, 9 cm wide and 30 cm height. The animals were 

placed at the bottom of one arm in the Y-maze and allowed to explore freely all three arms for a 

single 8 minute session in the dark. The measured spontaneous alternation behaviour was used to 

access hippocampal-dependent spatial memory (e.g. Lalonde, 2002). If the mouse remembers the 

arm it has just explored, will therefore enter one of the other arms of the maze. Complete 

spontaneous alternation was defined as successive entries into the three arms and expressed as 

fraction of the possible alternations in the respective test. Additionally to the open field test, the 

number of entries in the arms of the maze also allowed to access locomotor activity and exploratory 

behaviour of the rodents in test. 

 

3.3. Biological preparations 

 

3.3.1. Nerve terminal preparations (synaptosomes)  

 

Modulation systems are able to fine-tune basic cell functions to maintain cellular 

homeostasis, and synaptic events to regulate neurotransmission. To study diabetes-induced 

synaptic alterations, we used purified nerve terminals, i.e. synaptosomes (Cunha, 1998). The 

homogenization of nervous tissue allows separating the nerve terminal from the respective axon 

and, once separated from the axon, the membrane of the nerve terminal re-seals forming isolated 

synaptosomes, which are free of their integration in the neuronal networks (Gray and Whittaker, 



 
38 Chapter 3 

1962). Synaptosomes are biochemically and metabolically autonomous (Marchbanks, 1967) and 

maintain viable neurotransmission systems (Scott and Nicholls, 1980), being useful for studies of 

bioenergetics or neurotransmitter release, as well as their modulation. Due to the low contamination 

with glial components the synaptosomal preparation can also be used to study the presence and 

density of synaptic proteins (Cunha, 1998). 

 

3.3.1.1. Nerve terminals purified by 45% Percoll gradient  

 

For the generality of the experiments, hippocampal and cortical nerve terminals were 

prepared using a protocol previously described (Lopes et al., 2002). After decapitation under 

halothane anaesthesia, the brain was rapidly removed and the hippocampus and/or cortex were 

dissected. The brain tissue samples from one rat or mouse was homogenized at 4 ºC in sucrose-

HEPES buffer, containing 0.32 M sucrose, 1 mM EDTA, 10 mM HEPES, 1 mg/mL bovine serum 

albumin (BSA), pH 7.4. The resulting homogenate was centrifuged at 3,000 g for 10 min at 4 ºC, the 

supernatant collected and centrifuged at 14,000 g for 12 min at 4 ºC. The pellet was re-suspended in 

1 mL of a 45% (v/v) Percoll solution made up in Krebs-HEPES solution (composition in mM: 140 

NaCl, 5 KCl, 10 HEPES, 1 EDTA, 5 glucose, pH 7.4). After centrifugation at 21,000 g for 2 min at 4 

ºC, the top layer (synaptosomal fraction) was removed, washed and re-suspended in Krebs-HEPES 

solution. Protein content was quantified by the bicinchoninic acid method (Smith et al., 1985) using 

a kit from Pierce Biotechnology (Rockford, USA). 

 

3.3.1.2. Nerve terminals purified by discontinuous Percoll gradient  

 

For immunochemical analysis of mouse hippocampal nerve terminals, synaptosomes were 

obtained through a discontinuous Percoll gradient as previously described (Dunkley et al., 1988; 

Rodrigues et al., 2005). Mice were decapitated under halothane anaesthesia and the hippocampi 

readily dissected and homogenized in a medium containing 0.25 M sucrose and 10 mM HEPES (pH 

7.4) at 4 ºC. The homogenate was centrifuged at 2,000 g for 3 min at 4 ºC and the supernatant 

centrifuged again at 9,500 g for 13 min. Then, the pellets were re-suspended in 2 mL of 0.25 M 

sucrose and 10 mM HEPES (pH 7.4) and were placed onto 3 mL of Percoll discontinuous gradients 

containing 0.32 M sucrose, 1 mM EDTA, 0.25 mM dithiothreitol and 3, 10, or 23% (v/v) Percoll, pH 

7.4. The gradients were centrifuged at 25,000 g for 11 min at 4 ºC. Synaptosomes were collected 
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between the 10 and 23% (v/v) Percoll phases and diluted in 15 mL of HEPES buffered medium (140 

mM NaCl, 5 mM KCl, 5 mM NaHCO3, 1.2 mM NaH2PO4, 1 mM MgCl2, 10 mM glucose, and 10 mM 

HEPES, pH 7.4). After centrifugation at 22,000 g for 11 min at 4 ºC, the pellet constitutes the 

synaptosomal fraction. 

 

3.3.2. Total membrane preparation 

 

For total membrane preparation, the brain tissue was homogenized at 4 ºC in sucrose-

HEPES buffer. The homogenate was centrifuged at 3,000 g for 10 min at 4 ºC. The supernatant was 

then re-suspended in a solution of 50 mM Tris and 10 mM MgCl2 (pH 7.4), centrifuged at 28,000 g 

for 20 min at 4 ºC, and the resulting pellet re-suspended in a Krebs-HEPES solution. An aliquot of 

each membrane preparation was saved for protein quantification by the bicinchoninic acid method 

(Smith et al., 1985) using a commercial kit (Pierce Biotechnology, Rockford, USA). 

 

3.3.3. Hippocampal slices - preparation and superfusion 

 

The hippocampus, located near the thalamus deep in the temporal lobe (one in each 

hemisphere), plays a key role in some forms of learning and memory, especially in the processing of 

complex spatial and temporal patterns, and it is involved in many neurological disorders (Purves et 

al., 2004). It was divided into two regions (regio inferior and regio superior) by Ramon y Cajal in 

1911, and later (in 1934) into four cornu Ammonis (CA) regions from CA1 to CA4, being CA1 and 

CA3 the biggest and the most clearly distinguished parts by Lorente de Nó (see El-Falougy and 

Benuska, 2006). In addition to CA regions, the hippocampal formation consists of the dentate gyrus, 

the subiculum and the entorhinal cortex. The neuronal organization of the hippocampus is well 

defined, with a main excitatory circuit that can be preserved in transversal slices (see Lopes da Silva 

and Arnolds, 1978). The well known cyto-architecture of the hippocampus makes it very suitable 

for physiological and pharmacological investigations isolated from the nervous system. The 

hippocampal slice preparation is also used because it constitutes an excellent electrophysiology 

model for learning and memory, due to the functional plasticity of its circuits. Acutely dissociated 

hippocampal slices were now used to study the modulation of intermediary metabolism. 

The brain was rapidly removed and the isolated hippocampi were transversely cut in 400 

µm slices using a McIlwain tissue chopper. Hippocampal slices were allowed to recover in a 
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modified Krebs solution (115 mM NaCl, 25 mM NaHCO3, 3 mM KCl, 1.2 mM KH2PO4, 2 mM CaCl2, 

1.2 mM MgSO4, 5.5 mM glucose and 2 mM sodium acetate, previously and continuously gassed 

with 95% O2 and 5% CO2 mixture, pH 7.4), at room temperature and during 45 minutes. 

Hippocampal slices were transferred to a submerged chamber and superfused (3 mL/min) with the 

same gassed solution at 37 ºC. After 60 minutes to allow recovery and stabilization (Fredholm et al., 

1984), hippocampal slices were superfused with different experimental protocols that are detailed 

when necessary. For the study of intermediary metabolism, glucose and acetate from the perfusate 

were replaced by [U-13C]glucose and [2-13C]acetate (both from Isotec, Miamisburg, USA). In some 

experiments, slices were superfused in the presence of 4-aminopyridine (4AP; from Alomone Labs, 

Jerusalem, Israel) to allow intermittent burst-like stimulation (Tibbs et al., 1989). To challenge the 

slices with hypoxia, the superfusion solution was gassed with a gas mixture of 95% N2 + 5% CO2 

(Gasin, Coimbra, Portugal). During superfusion, perfusate samples were collected, lyophilized and 

stored at 4 ºC for measurement of lactate production and release from hippocampal slices.  

At the end of the superfusion protocol, hippocampal slices were transferred to liquid 

nitrogen and the water-soluble metabolites were extracted with 7% (v/v) perchloric acid (PCA). The 

grinded tissue mixed with PCA (300 µL for each hippocampus) was centrifuged at 21,000 g during 

15 minutes, at 4 ºC. The supernatant was neutralized with KOH, lyophilised, and stored for high-

performance liquid chromatography (HPLC) and/or NMR spectroscopy. The pellet from the 

extraction was re-dissolved in a 6 M urea solution containing 5% of sodium dodecyl sulphate, and 

the protein content was determined by the bicinchoninic acid method (Smith et al., 1985) using a kit 

from Pierce (Rockford, USA). 

 

3.4. Western blot analysis 

 

Western blot analysis was used for the determination of the density of proteins in 

synaptosomal and total membrane preparations. Each sample was diluted with five volumes of 

SDS-PAGE buffer containing 30% (v/v) glycerol, 0.6 M dithiothreitol, 10% (w/v) sodium dodecyl 

sulphate and 375 mM Tris-HCl pH 6.8, and boiled at 95 ºC for 5 min. These diluted samples were 

separated by SDS-PAGE (7.5% separation gel with a 4% concentrating gel in the top) under 

reducing conditions, together with pre-stained molecular weight markers (Biorad, USA), and then 

electro-transferred to polyvinylidene difluoride membranes (0.45 mm, from Amersham Biosciences, 

UK). After blocking for 1 h at room temperature with 5% milk in Tris-buffered saline (Tris 20 mM, 

NaCl 140 mM, pH 7.6), containing 0.1% Tween 20 (TBS-T), the membranes were incubated 



 
41 Materials and methods 

overnight at 4 ºC with the primary antibodies against the respective proteins (Table 3.1). After three 

15 min washing periods with TBS-T containing 0.5% milk, the membranes were incubated with the 

alkaline phosphatase-conjugated anti-rabbit IgG (Amersham Biosciences, Carnaxide, Portugal), 

anti-mouse IgG (Amersham Biosciences) or anti-goat IgG (Santa Cruz Biotechnology, Frilabo, 

Portugal) secondary antibody (dilution 1:10,000) in TBS-T containing 1% milk during 90 min at 

room temperature. After three 20 min-washes in TBS-T with 0.5% milk the membranes were 

incubated with enhanced chemi-fluorescent substrate (Amersham Biosciences), and then 

immunoreactivity was analysed with a VersaDoc 3000 system and the Quantity One software 

(Biorad, USA).  

The membranes were then re-probed and tested for α-tubulin or β-actin immunoreactivity to 

confirm that similar amounts of protein were applied to the gels. Briefly, the membranes were 

incubated at room temperature for 30 min with 40% (v/v) methanol and 1 h with a stripping buffer 

[containing 0.1 M glycine, 0.1% (w/v) SDS, 1% (v/v) Tween 20, pH 2.2], and then blocked as 

previously described before incubation with mouse anti-α-tubulin or anti-β-actin antibodies 

(dilution 1:10,000) for 2 h at room temperature. The membranes were then washed, incubated with 

Table 3.1. Primary antibodies used in Western blot analysis.  
 

Primary antibodies Supplier Host Dilution 

A1 receptor  Affinity Bioreagents Rabbit 1:600 

CB1 receptor Kindly provided by Dr. Ken Mackie Rabbit 1:500 

P2X1 receptor Alomone Labs Rabbit 1:500 

P2X2 receptor Santa Cruz Biotechnology Goat 1:500 

P2X3 receptor Alomone Labs Goat 1:1,000 

P2X4 receptor Alomone Labs Rabbit 1:500 

P2X5 receptor Santa Cruz Biotechnology Goat 1:200 

P2X6 receptor Santa Cruz Biotechnology Goat 1:200 

P2X7 receptor Alomone Labs Rabbit 1:5,000 

P2Y1 receptor Santa Cruz Biotechnology Goat 1:500 

P2Y2 receptor Alomone Labs Rabbit 1:500 

P2Y4 receptor Alomone Labs Rabbit 1:1,000 

P2Y6 receptor Santa Cruz Biotechnology Goat 1:500 

P2Y11 receptor Zymed Rabbit 1:500 

β-actin Sigma Mouse 1:10,000 

α-tubulin Sigma Mouse 1:10,000 

Synaptophysin  Sigma Mouse 1:10,000 

SNAP-25  Sigma Mouse 1:5,000 

Syntaxin Chemicon Mouse 1:5,000 

PSD-95  Chemicon Mouse 1:20,000 

MAP2  Santa Cruz Biotechnology Rabbit 1:1,000 

Vimentin Sigma Mouse 1:1,000 

GFAP Sigma  Rabbit 1:5,000 
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an anti-mouse IgG alkaline phosphatase-conjugated secondary antibody and analysed as described 

above. 

 

3.5. Binding assay 

 

Hippocampal (either total or synaptosomal) membranes were first incubated with 2 U/ml 

adenosine deaminase for 30 min at 37°C, to remove endogenous adenosine. The mixture was then 

centrifuged at 14,000 g for 10 min at 4°C and the pellets re-suspended in the incubation buffer, 

containing 50 mM Tris-HCl and 10 mM MgCl2 (for [3H]SCH 58261 experiments) or 2 mM MgCl2 (for 

[3H]DPCPX experiments) at pH 7.4. Binding of a saturating but selective concentration (10 nM) of 

the A1 receptor antagonist [3H]DPCPX (specific activity 109.0 Ci/mmol; from DuPont NEN, 

Anagene, Portugal) (Lopes et al., 2004) was for 2 hours at room temperature (23-35ºC) with 92-251 

µg of protein in a final volume of 200 µl in the incubation solution containing 2 U/ml adenosine 

deaminase, as previously described (Rebola et al., 2003a). Binding of a saturating but selective 

concentration (6 nM) of the A2A receptor antagonist [3H]SCH 58261 (specific activity 77.0 Ci/mmol; 

prepared by Amersham, Buckinghamshire, UK) (Lopes et al., 2004) was for 1 h at room temperature 

with 92-251 µg of protein in a final volume of 200 µl in the incubation solution containing 4 U/ml 

adenosine deaminase, as previously described (Rebola et al., 2005a). Specific binding was 

determined by subtraction of the non-specific binding, which was measured in the presence of 1 µM 

8-{4-[(2-aminoethyl)amino]carbonylmethyl-oxyphenyl}xanthine (XAC), a mixed A1 and A2 receptor 

antagonist. All binding assays were performed in duplicate. The binding reactions were stopped by 

vacuum filtration through glass fibre filters (GF/C filters, from Whatman) using a 24 wells Brandel 

harvester. The filters were then placed in scintillation vials and 4 ml of scintillation liquid (Ready 

Safe, Pharmacia-Portugal) added. Radioactivity was determined after at least 12 hours with a 

counting efficiency of 55-60%. To ensure an error lower than 5% of counts, the samples were 

counted for 10 min.  

For CB1 receptors, radioligand binding assays were performed identically to a previous 

study (Thomas et al., 1998). Briefly, hippocampal (either total or nerve terminal-enriched) 

membranes were resuspended in the incubation buffer (50 mM Tris, 2 mM MgCl2, 1 mM EGTA, pH 

7.4). A saturation curve was constructed using 5 different concentrations (0.25–10 nM) of the CB1 

receptor antagonist [3H]SR141716A (Amersham, specific activity 42.0 Ci/mmol). Binding was 

carried out for 1 h at room temperature (23–25 °C) with 32–51 µg of protein in a final volume of 200 

µl of the incubation buffer. Specific binding was determined by subtraction of the non-specific 
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binding, which was measured in the presence of 10 µM N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-

dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), another selective CB1 receptor 

antagonist. All binding assays were performed in duplicate. The binding reactions were stopped by 

rapid vacuum filtration through glass fibre filters (GF/C filters) using a 24-well Brandel harvester, 

followed by washing with 5 ml of incubation buffer containing 0.5% (w/v) BSA. The filters were 

then placed in scintillation vials with 4 ml of scintillation liquid (Packard Ultima Gold). The specific 

binding derived from these saturation experiments was fitted by non-linear regression to a one 

binding site equation, using the Raphson–Newton method, performed with a commercial software 

(GraphPad Prism), to determine the binding parameters (dissociation constant KD, and maximal 

number of binding sites Bmax). 

 

3.6. Real-time PCR 

 

The rat brain was rapidly removed and the hippocampus and cortex isolated and 

immediately frozen in liquid N2. Total RNA was extracted from these tissue samples with MagNA 

Lyser Instrument and MagNA Pure Compact RNA Isolation kit (Roche, Portugal) according to the 

manufacturer’s instructions. Reverse transcription for first-strand cDNA synthesis from each 

sample was performed using random hexamer primer with the Transcriptor First Strand cDNA 

Synthesis kit (Roche) according to manufacturer’s instructions. Resulting cDNAs were used as 

template for real-time PCR, which was carried out on LightCycler instrument using the FastStart 

DNA Master SYBR Green I kit (Roche) and the primers (Tib MolBiol, Germany) listed in Table 3.2.  

Quantification of mRNA in the samples was carried out on the basis of standard curves run 

simultaneously. The cDNA standards for the calibration curve were generated by conventional PCR 

amplification (Table 3.3). The PCR products were run in a 3% agarose gel electrophoresis to verify 

Table 3.2. Primers used in the real-time PCR analysis. 
 

 
Acession 
number 

Primer sequence 
Expected 
product size (bp) 

CB1 receptor  
(Hansson et al., 2006) 

NM_012784 
F 5’- AGA CCT CCT CTA CGT GGG CTC G -3’ 

314 
R 5’- GTA CAG CGA TGG CCA GCT GCT G -3’ 

β-actin  
(Peinnequin et al., 2004) 

V01217 
F 5’- AAG TCC CTC ACC CTC CCA AAA G -3’ 

97 
R 5’- AAG CAA TGC TGT CAC CTT CCC -3’ 

A1 receptor  
(Grenz et al., 2006) 

NM_017155 
F 5’- CTC CAT TCT GGC TCT GCT CG -3’ 

207 
R 5’- ACA CTG CCG TTG GCT CTC C -3’ 

A2A receptor  
(Pawelczyk et al., 2005) 

NM_053294 
F 5’ CAT CTT CTC CCA CAG CAA CTC 3’  

420 
R 5’ GGG GCA AAC TCT GAA GAC  CAT G 3’ 
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fragment size and the absence of other contaminant fragments, quantified by absorbance at 260 nm, 

and serially diluted to produce the standard curve (100 to 108 copies/µL). Each real-time PCR 

reaction was run in triplicate and contained 2 µL of cDNA template, 0.3 µM each primer, and 3 or 

3.5 mM MgCl2 (see Table 3.3), in a reaction volume of 20 µL. Cycling parameters are described in 

Table 3.3. Melting curves analysis was performed to ensure that only a single product was 

amplified. The expression of mRNA was calculated relative to β-actin mRNA expression. 

 
Table 3.3. Cycling parameters for real-time and conventional PCR analysis. 
 

 
 Real time PCR 

 MgCl2  
(mM) 

Initial 
denaturation 

Amplification 

Melting  
curve  
analysis 

 
Denaturation Anealing Extension Cycles 

CB1 receptor 3 95 ºC, 10 min  95 ºC, 10 s  62 ºC, 10 s 72 ºC, 14 s 40 

β-actin 3.5 95 ºC, 10 min  95 ºC, 10 s  61 ºC, 5 s 72 ºC, 4 s 45 

A1 receptor  3 95 ºC, 10 min  95 ºC, 10 s  64 ºC, 10 s 72 ºC, 8 s 45 

A2A receptor 3 95 ºC, 30 s 95 ºC, 1 s 64 ºC, 5 s 72 ºC, 21 s 40 

 
Conventional PCR 

 MgCl2  
(mM) 

Initial 
denaturation 

Amplification 
Elongation 

 
Denaturation Anealing Extension Cycles 

CB1 receptor 

1.5 
95 ºC,  
5 min 

95 ºC,  
1 min  

59 ºC, 1 min 

72 ºC,  
1 min 

45 
72 ºC,  
4 min 

β-actin 56 ºC, 1 min 

A1 receptor  64 ºC, 1 min 

A2A receptor 64 ºC, 30 s 

 

3.7. Immunocytochemical analysis in hippocampal nerve terminals 

 

Hippocampal synaptosomes purified by discontinuous Percoll gradient were resuspended 

in HEPES buffered medium and placed onto poly-L-lisine-coated cover-slips, fixed with 4% 

paraformaldehyde for 15 min and washed twice with phosphate-buffered saline (PBS) medium (140 

mM NaCl, 3 mM KCl, 20 mM NaH2PO4, 15 mM KH2PO4, pH 7.4). The synaptosomes were 

permeabilized in PBS containing 0.2% Triton X-100 for 10 min and then blocked for 1 h in PBS with 

3% (w/v) BSA and 5% (v/v) normal rat serum. The synaptosomes were then washed twice with 

PBS and incubated for 1 h at room temperature with the following combinations of antibodies (in 

PBS with 3% BSA): mouse anti-synaptophysin (dilution 1:200; from Sigma), rabbit anti-A1R (1:200; 

from Affinity Bioreagents) or goat anti-A2AR (1:200; from Santa Cruz Biotechnology), and guinea 

pig anti-vGAT (1:1,000; from Calbiochem) or guinea pig anti-vGluT1 (1:1,000; from Chemicon) plus 

guinea pig anti-vGluT2 (1:1,000; from Chemicon). It should be emphasized that the antibodies anti-

vesicular glutamate transporters type 1 and type 2 (anti-vGluT1 and anti-vGluT2) were applied 
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together to identify the population of hippocampal glutamatergic nerve terminals, being hereafter 

designated as vGluT1/2. The synaptosomes were then washed three times with PBS with 3% (w/v) 

BSA and incubated for 1 h at room temperature with secondary antibodies (in PBS with 3% BSA; 

dilution 1:200): goat anti-mouse, donkey anti-rabbit or donkey anti-goat conjugated with 

AlexaFluor-488 (Invitogen, Barceona, Spain), and goat anti-guinea pig conjugated with AlexaFluor-

598 (Invitogen). After washing and mounting onto slides with Prolong Gold Antifading 

(Invitrogen), the preparations were visualized in a Zeiss Axioscope fluorescence microscope (Hitec, 

Lisbon, Portugal).  

 

3.8. Mouse brain histochemistry  

 

The preparation of brain sections was carried out as previously described (Cunha et al., 

2006). Mice were anesthetized with pentobarbital (60 mg/kg), the heart was exposed and, after 

clamping the descending aorta, a catheter was inserted in the ascending aorta. The animal was then 

perfused with 20 mL of saline [0.9% (w/v) NaCl solution] while opening the right atria to allow the 

outflow of the perfusate. Mice were then perfused with 20 mL of 4% (w/v) paraformaldehyde 

prepared in saline solution. After its fixation, the brain was removed, maintained for 12 h in the 

same paraformaldehyde solution and subsequently for 48 h in PBS containing 30% sucrose at 4 °C. 

The brain was then frozen and sliced in 20 µm coronal sections using a cryostat (Leica 

Microsistemas, Lisboa, Portugal). The sections were stored in PBS containing 0.01% sodium azide at 

4 °C until mounting in slides coated with 2% gelatine with chromium and potassium sulphate. 

After drying at room temperature, the mounted sections were stored at -20 °C. Consecutive sections 

from each animal were used to carry out the histochemical procedures described below. The 

resulting brain slices were then visualized and examined under a Zeiss Axioscope fluorescence 

microscope (Hitec, Lisbon, Portugal). Microscope photographs were processed and analysed with 

the software ImageJ 1.37v (National Institutes of Health, USA). 

Cresyl violet staining of Nissl bodies: The general neuronal morphology in hippocampal 

sections was evaluated by using a Cresyl violet staining of Nissl bodies. Briefly, the sections were 

dried at room temperature and stained for 10 min with 0.5% (w/v) Cresyl violet solution prepared 

in acetate buffer (200 mM, pH 4). The sections were then rinsed twice with acetate buffer, 

dehydrated by rinsing sequentially in ethanol ethanol solutions [75%, 95% and 100%(v/v)], and 

cleared in xylene (during 2 to 3 minutes) before being mounted with H-5000 Vectamount medium 
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(Vecta Laboratories, Burlingame, CA, USA). Nissl staining was evaluated qualitatively by particular 

inspection of the pyramidal cell layer in optical microscopy photographs. 

FluoroJade-C staining: To evaluate recent neuronal dead and degeneration, sections were 

stained with FluoroJade-C (Schmued et al., 2005). The brain sections were immersed in 0.1% (w/v) 

NaOH in 80% (v/v) ethanol for 5 min, rinsed for 2 min in 70% (v/v) ethanol and then for 2 min in 

distilled water. The slides were then transferred to a solution of 0.06% (w/v) potassium 

permanganate for 10 min and were gently shaken on a rotating platform. The slides were then 

rinsed for 2 min in distilled water and incubated with a 10 ppm FluoroJade solution in 0.1% (v/v) 

acetate, being gently shaken for 10 min. The sections were then rinsed three times for 1 min with 

distilled water, dried and immersed in xylene and then cover slipped with DPX Mountant medium 

(from Sigma). 

Nerve terminal immunohistochemistry: The detection of nerve terminals was carried out as 

previously described (Cunha et al., 2006) using an immunohistochemical detection of 

synaptophysin, a protein located in synaptic vesicles. Mouse brain sections were first rinsed for 30 

minutes in Tris buffer saline (TBS: 0.05 M Tris base buffer containing 150 mM of NaCl, pH 7.4) at 

room temperature. After permeabilization for 1 h in TBS containing 1% (v/v) Triton X-100, the brain 

sections were blocked with 10% (v/v) calf serum in TBS during 1 h, and then incubated for 24 h at 4 

°C in the presence of the mouse anti-synaptophysin antibody (dilution 1:500, from Sigma), prepared 

in TBS containing 10% (v/v) calf serum. Sections were rinsed three times for 15 min in TBS and 

subsequently incubated for 2 h at room temperature, in the dark, with goat anti-mouse secondary 

antibody conjugated with the fluorophore AlexaFluor 488 (dilution 1:200; from Invitrogen), 

prepared in TBS containing 10% (v/v) calf serum. After rinsing three times for 15 min in TBS, the 

sections were dehydrated in ethanol and passed through xylol before mounting with Vectashield 

H-1400 mounting medium (Vecta Laboratories). The intensity of synaptophysin immunoreactivity 

in the hippocampus was quantified in the acquired photographs with the software ImageJ 1.37v. 

For this quantification, the total intensity was measured in different regions of the pictures from 

CA1, CA3 and DG, excluding the nuclei of the pyramidal cell layer. Immunoreactivity was then 

expressed as percentage of the average for the corresponding pictures of control animals. 

Astrocyte immunodetection: The population of astrocytes in the hippocampus was 

evaluated by immunohistochemical detection of glial fibrillary acidic protein (GFAP). The brain 

sections were permeabilized and blocked as described above and then incubated overnight with 

Cy3-tagged anti-GFAP antibody (dilution 1:1000, from Sigma) at 4 ºC. After rinsing three times for 

15 min in TBS, the sections were dehydrated and cleared in xylol before mounting with Vectashield 

H-1400. 
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Dendritic immunodetection: Dendritic processes were evaluated by detection of 

microtubule-associated protein 2 (MAP2) immunoreactivity. The brain sections were permeabilized 

and blocked as described above and then incubated overnight with rabbit anti-MAP-2 antibody 

(dilution 1:500, from Santa Cruz Biotechnology) at 4 ºC. After rinsing three times for 15 min in TBS, 

slides were incubated with donkey anti-rabbit secondary antibody conjugated with the fluorophore 

AlexaFluor-488 (dilution 1:200), rinsed again, dehydrated and cleared in xylol before mounting. 

 

3.9. ATP quantification in the cerebrospinal fluid  

 

Rats were anesthetized with sodium thiopental (40 mg/kg, i.p.) and the cerebrospinal fluid 

(CSF) was drawn (40-60 µL per rat) by direct puncture of the cisterna magna with a tuberculin 

syringe (27 gauge x 13 mm length), and immediately stored at -80 ºC until ATP quantification. 

These samples and standard solutions of ATP (10-9 to 10-12 M) were placed in wells of a white 96-

well microplate to determine ATP levels using the luciferin-luciferase luminometric assay (Cunha et 

al., 1996). Briefly, 50 µL of luciferin-luciferase solution (FLAAM kit from Sigma, re-suspended in 5 

mL) were added to 25 µL of sample (diluted 1/5) and the luminescence produced was quantified in 

an LMax II384 luminometer (Molecular Devices, Union City, USA). 

 

3.10. ATP release from hippocampal nerve terminals 

 

The measurement of ATP release from synaptosomes was adapted from a previous study 

(Cunha et al., 1996). Synaptosomes were re-suspended in calcium containing Krebs-HEPES solution 

(composition in mM: 124 NaCl, 3 KCl, 1.25 NaH2PO4, 1 MgSO4, 2 CaCl2, 26 HEPES, 10 glucose, pH 

7.4). Aliquots of 240 µL of synaptosomes (0.21-0.36 mg of protein) were placed in wells of a white 

96-well microplate to which 50 µL of luciferin-luciferase solution (FLAAM kit from Sigma, prepared 

in 5 mL of water) were added. The mixture was placed in the luminometer at 37 ºC and the 

electrical signal generated by the photomultiplier recorded. After obtaining a stable baseline, 10 µL 

of Krebs/HEPES solution with concentrated KCl (to attain a final concentration of 20 mM) were 

automatically injected and the plate shacked for 2 s. The measurement of the photomultiplier signal 

restarted after 4 s, and the variation in signal recorded was used to estimate the evoked release of 

ATP by interpolation in a calibration curve of ATP standards. Mechanical stimulation of the nerve 
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terminals also triggered an outflow of ATP, but this displayed a slower time course and had 

amplitude considerably lower than the K+-evoked release of ATP.  

 

3.11. ATP catabolism in hippocampal nerve terminals 

 

Synaptosomes (0.32 to 0.43 mg of protein) were re-suspended in 500 µL of Krebs-HEPES 

solution and incubated at 37 ºC for at least 5 min of stabilization. At time zero, ATP (made up in 

Krebs-HEPES solution) was added to a final concentration of 10 µM and samples (75 µL) were 

collected every minute during the next 5 min of incubation. Each sample was spun down, and the 

supernatant immediately frozen in liquid N2 and then at -80 ºC until HPLC analysis of adenine 

nucleotides as described bellow.  

 

3.12. Analysis of adenine nucleotides by HPLC 

 

Separation of adenine nucleotides was performed at room temperature as previously 

described (Cunha et al., 2001), using a reverse-phase column [LiChroCART 125x4mm LiChrospher 

100 RP-18 (5 µm) cartridge fitted into a ManuCART holder (Merck Darmstadt, Germany)], using a 

GOLDTM system (Beckman, UK) equipped with a UV detector set at 254 nm. The eluent was a 100 

mM KH2PO4 (BDH, UK) solution with 1.2% methanol (from Riedel-de Haën, Sigma-Aldrich, Sintra 

Portugal), at pH 6.5, with a flow rate of 1.2 mL/min. The identification of the peaks was performed 

by comparison of relative retention times with standards and their quantification achieved by 

calculating the peak areas then converted to concentration values by calibration with known 

standards (0.1-100 µM).  

Adenylate energy charge (EC) of the tissue was determined with nucleotide concentrations 

and the following equation (Atkinson, 1968): EC = ([ATP] + ½[ADP]) / ([AMP] + [ADP] + [ATP]). 

 

3.13. High-resolution NMR spectroscopy 

 

Lyophilised extracts were re-dissolved in 600 µL 2H2O and the p2H was re-adjusted to 7.0 

with 2HCl or NaO2H solutions (both from Sigma-Aldrich, Sintra, Portugal). Sodium fumarate (2 

mM) was used as an internal standard for quantification by 1H NMR spectroscopy. NMR spectra 

were acquired at 25 ºC on an 11.7 T Varian Unity-500 spectrometer (Varian, Palo Alto, USA), using a 



 
49 Materials and methods 

5 mm broadband probe. Solvent-suppressed 1H NMR spectra were acquired with 8 kHz sweep 

width, using 14 s delay for allowing total proton relaxation, 3 s water pre-saturation, 70º pulse 

angle, 3 s acquisition time, and at least 200 scans per tissue extract (or 10 scans for perfusate 

samples). Proton decoupled 13C NMR spectra were acquired using 30 kHz sweep width, 45º pulse 

angle, 1.5 s acquisition time and a 1.5 s relaxation delay. The total repetition time (3 s) allowed full 

relaxation of the aliphatic carbons. To achieve adequate signal to noise ratio, the number of scans 

recorded was at least 10,000. Proton decoupled 31P NMR spectra were acquired with a 32 kHz 

sweep width, 45º pulse angle and a 2.2 s acquisition time, followed by 3 s delay. For each 31P 

spectrum at least 6,000 scans were acquired. In both 13C and 31P NMR spectra, 1H broadband 

decoupling was achieved using a WALTZ-16 decoupling sequence. 

All the acquired spectra were processed using the NUTS software (Acorn NMR, Fremont, 

USA). Free induction decays were baseline corrected, zero-filled and multiplied by an exponential 

function (0.5 Hz for 1H and 13C spectra; 10 Hz for 31P spectra), prior to Fourier transformation. The 

areas of relevant signals in the spectra were quantified by curve fitting. The concentrations of 

metabolites were determined by measuring the peak areas in the 1H NMR spectra, using sodium 

fumarate as internal standard, and normalized to total creatine content. The 13C isotopomer 

populations were determined from the analysis of 13C NMR spectra by deconvolution of the 

multiplets present in the resonance of each carbon, and each multiplet area was reported as a 

fraction of the total area for that specific carbon resonance. PCre/ATP and ATP/ADP ratios were 

calculated from the 31P NMR spectra, averaging the signal areas of the 3 ATP and the 2 ADP 

resonances. 

 

3.13.1. Metabolic modelling of 13C NMR spectra  

 

Multiplets from glutamate (C2, C3 and C4), GABA (C2, C3) and aspartate (C2 and C3) 

resonances in the 13C NMR spectra were used in the estimation of relative fluxes feeding the TCA 

cycle using tcaCALC1 (Malloy et al., 1988; Fonseca et al., 2005). Glutamate and GABA isotopomer 

data were used in separated fittings and in combination with aspartate isotopomer data. The model 

used to fit the 13C data is presented in Figure 3.1 and includes the following parameters: fraction of 

acetyl-CoA derived from [2-13C]acetate (Fc2); fraction of acetyl-CoA derived from the oxidation of 

                                                           

1 The metabolic program tcaCALC was kindly provided by Professor Mark Jeffrey from the Rogers Magnetic Resonance 
Center at the University of Texas Southwestern Medical Center. It consists in an input-output metabolic model which uses 
both 13C fractional enrichment and 13C isotopomer data to determine acetyl-CoA fractional enrichments (Fc0, Fc1, Fc2 and 
Fc12) and fluxes associated with the tricarboxylic acid (TCA) cycle including fluxes through pyruvate dehydrogenase 
(PDH), pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK) (Malloy et al., 1988). 
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[U-13C]glucose (Fc12) via pyruvate dehydrogenase (PDH); fraction of acetyl-CoA formed from 

unlabelled precursors (Fc0) through acyl-CoA synthetase (ACS); combined anaplerotic flux from all 

sources (Y); flux through pyruvate carboxylase (PC); flux through lactate dehydrogenase (LDH). 

The estimated flux parameters are relative to the TCA cycle flux, arbitrarily set to 1. 

 

 
 

Figure 3.1. Metabolic model used to fit the 13C isotopomer data in the tcaCALC program. Fc0 corresponds to the 
contribution of unlabeled acetyl-CoA from unlabeled endogenous substrates; Fc2 and Fc12 show the fraction of acetyl-
CoA labeled in C2 (originated from [2-13C]acetate) and both C1 and C2 (originated from [U-13C]glucose), respectively. 
Fluxes depicted in these model: PDH, pyruvate dehydrogenase; ACS, acyl-CoA synthetase; Y, combined anaplerotic flux; 
PC, pyruvate carboxylase; LDH lactate dehydrogenase. 

 

3.14. Brain neurochemistry by in vivo localised 1H NMR spectroscopy 

 

3.14.1. Animal preparation 

 

Animals were anaesthetized using 2% isoflurane (Attane, Minrad, USA) in oxygen gas for 

surgery (PanGas, Ecublens, Switzerland), and then intubated and ventilated with a pressure-driven 

ventilator (MRI-1, CWE incorporated, PA, USA). Catheters were inserted into the femoral artery for 

monitoring blood gases, glucose, lactate and arterial blood pressure, and into the femoral vein for 

intravenous (i.v.) infusion of α-chloralose (Acros Organics, Geel, Belgium), D-glucose (Sigma-

Aldrich, Switzerland) and insulin (Humulin Normal, Eli Lilly, Switzerland). After surgery, a blood 

sample (200 µL) was collected and the serum was separated by centrifugation and stored for 

quantification of insulin and caffeine. Animals were placed in a home-built holder with a bite bar 

and two ear inserts to provide a fixed position of the skull, which ensures stability of the 
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experimental set-up for extended measuring times. Body temperature was maintained around 37.5 

°C with a warm water circulation system based on a feedback obtained from a rectal temperature 

probe. Arterial blood pressure, heart rate and respiratory rate were continuously monitored with an 

animal monitoring system (SA Instruments, NY, USA). Before inserting the animal in the bore of the 

magnet, the anaesthesia was switched to α-chloralose (i.v. bolus of 80 mg/kg and infusion of 25 

mg/kg/h). Insulin (0.5 U/mL solution) and D-glucose [20% (w/v) solution] were infused at a rate 

adjusted based on the concomitantly measured arterial plasma glucose concentrations to achieve 

stable targeted glycaemia levels. NMR measurements were performed after each glucose level had 

been stable for more than 15 minutes. Arterial pH and pressures of O2 and CO2 were measured 

using a blood gas analyser (AVL Compact 3, Diamond Diagnostics, MA, USA). Plasma glucose and 

lactate concentrations were quantified with the glucose oxidase and lactate oxidase methods, 

respectively, using 2 multi-assay analysers (GW7 Micro-Stat, Analox Instruments, UK).  

 

3.14.2. Localized 1H NMR spectroscopy 

 

All experiments were carried out on a Varian INOVA spectrometer (Varian, Palo Alto, CA, 

USA) interfaced to an actively-shielded 9.4 T magnet with a 31 cm horizontal bore (Magnex 

Scientific, Abingdon, UK) using a homebuilt 10 mm 1H quadrature surface coil. The rat brain was 

positioned in the isocentre of the magnet and located with fast-spin-echo images. Shimming was 

performed with FAST(EST)MAP (Gruetter, 1993; Gruetter and Tkác, 2000), and 1H NMR spectra 

were acquired from a volume of interest (VOI) of 18 µL placed in the left hippocampus using 

SPECIAL spectroscopy (Mlynárik et al., 2006), with echo time of 2.8 ms and repetition time of 4 s. 

The spectral analysis was carried out using LCModel (Provencher, 1993) including a macromolecule 

spectrum in the database, as in previous studies (Mlynárik et al., 2006; Tkáč et al., 1999). The 

unsuppressed water signal measured from the same VOI was used as an internal reference 

(assuming the existence of 80% of water in the brain tissue) for the quantification of the following 

metabolites that constitute the neurochemical profile: glucose (Glc), ascorbate (Asc), 

phosphorylehtanolamine (PE), creatine (Cr), phosphocreatine (PCr), myo-inositol (Ins), taurine 

(Tau), N-acetylaspartate (NAA), aspartate (Asp), glutamate (Glu), glutamine (Gln), γ-aminobutyrate 

(GABA), alanine (Ala), lactate (Lac), β-hydroxybutyrate (βHB), glycerophosphorylcholine (GPC) 

phosphorylcholine (PCho), glutathione (GSH), N-acetylaspartylglutamate (NAAG), scyllo-inositol 

(scyllo). The Cramér-Rao lower bound (CRLB) was provided by LCModel as a measure of the 

reliability of the apparent metabolite concentration quantification.  
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3.14.3. Determination of glucose transport kinetics 

 

1H NMR spectra were acquired at different glycaemia states, and the quantification of 

hippocampal glucose as function of plasma glucose can provide the insight on the kinetics of 

glucose transport across the BBB. 

The predominant transporter protein involved in the facilitative transport of glucose across 

the BBB is GLUT1. The model of glucose transport across the BBB was simplified to consider a 3 

compartment system (Lund-Andersen, 1979, Gruetter et al., 1998): the BBB separates the blood 

circulation compartment from the brain aqueous phase, which is virtually separated from the 

metabolic pool where glucose is consumed. In this model, the physical distribution space of glucose 

at steady-state was assumed to equal the brain water phase, which implies that glucose is evenly 

distributed in the intra and extracellular spaces. The BBB was considered to behave as a single 

membrane, which is a considerable approximation but valid at steady-state. The transport across 

the BBB was described using a classical Michaelis-Menten kinetics with unidirectional fluxes and 

symmetric kinetic constants for influx and efflux, and non-specific permeability of the BBB to 

glucose was excluded. With a blood volume of 3% in the brain and a dry weight of 20%, the size of 

the entire aqueous phase (Vd) was considered 77% of brain's volume. Cerebral glucose consumption 

rate was considered invariable at euglycaemia and above. Under the steady-state condition, the 

model of glucose transport is represented by the following mathematical equation: 

������
�� � T	
��
� � T����
� � CMR��
� � 0  (1). 

In this equation, Ghipp is the glucose in the hippocampus (in µmol.g-1), T is the rate of glucose 

influx or efflux across the BBB (in µmol.g-1min-1), and CMRgluc is the cerebral metabolic rate for 

glucose consumption (in µmol.g-1min-1).  

Two types of enzymatic mechanism were considered for the glucose transporter. First, the 

standard Michaelis-Menten model (Figure 3.2A) uses the unidirectional mechanism given by: 

Gplasma + GT ∏ GT-G → Ghipp + GT  (2). 

Gplasma denotes plasma glucose and GT denotes the glucose transporter protein present at the 

BBB. The following expression is obtained for the relation of hippocampal glucose to plasma 

glucose, as derived in several reports (see Gruetter et al., 1998 and references therein): 

G�	�� � V�K�
� �� !"#$%&'()*+��& ,� )-.
� �� !"#$%&'(/*+-./��& ,� 

  (3). 
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Tmax denotes the apparent maximal transport rate across the BBB (µmol.g-1min-1), Kt denotes 

the apparent Michaelis-Menten (mM), Vd is the volume of the physical distribution space of glucose 

in the brain (0.77 mL/g). 

Second, since at hyperglycemia the hippocampal glucose concentration approaches or even 

exceeds the Kt obtained with the standard Michaelis-Menten model, was used a reversible 

Michaelis-Menten kinetics of glucose transport (Figure 3.2B) that assumes that the product 

formation, i.e. the transport of glucose into the brain, is not unidirectional: 

Gplasma + GT ∏ GT-Gplasma ∏ GT-Ghipp ∏ Ghipp + GT  (4). 

Using this model at steady state, the following equation expresses brain glucose 

concentrations as function of plasma glucose (Gruetter et al., 1998): 

G�	�� � V�
� �� !"#$%&'()*+��& ,� )-.

�� !"#$%&'(/*
  (5). 

Assuming the existence of a single membrane at the BBB, the reversible Michaelis-Menten 

model suggests a linear relation of hippocampal glucose to plasma glucose as previously described 

(Gruetter et al., 1998). 

 

 
Figure 3.2. Scheme of the standard Michaelis–Menten model of glucose transport (A), that assumes that product 
formation for glucose transport in both directions of the BBB is independent of the respective product concentration, i.e.
transported glucose has no effect on the transport mechanism, and of reversible Michaelis–Menten kinetics of glucose 
transport (B) showing a representation of bidirectional fluxes in the glucose transporter at steady state. Gplasma and Ghipp

denote plasma and hippocampal glucose (in µmol.g-1), and CMRgluc is the cerebral metabolic rate for glucose consumption 
(in µmol.g-1min-1).  
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3.15. Intermediary metabolism by ex vivo 13C NMR spectroscopy 

 

Diabetic GK and control Wistar rats (6 months of age) were anaesthetized with i.p. injection 

of a mixture of ketamine hydrochloride (84 mg/kg; Ketalar from Pfizer, Porto Salvo, Portugal) 

and chlorpromazine hydrochloride (8.4 mg/kg; Largactil from Laboratórios Vitória, Amadora, 

Portugal), and cannulated in the left femural vein and artery for [1-13C]glucose 20%(w/v) infusion 

and blood collection, respectively. Body temperature was monitored using a rectal probe and 

maintained at 37.5˚C. A bolus of [1-13C]glucose was infused i.v. at an exponentially decaying rate 

over 5 min, followed by a continuous infusion with rate adjustable to animal glycaemia (Henry et 

al,. 2003). Arterial blood glucose was measured every 10-20 min and maintained constant at 320-370 

mg/dL for controls and at 450-500 for GK rats. This protocol result in a rapid rise of glucose 13C 

isotopic enrichment from natural abundance to 70% or 40% for controls and GK rats respectively 

(see results section). Arterial blood samples were analysed with a GEM Premier 3000 instrument 

(Instrumentation Laboratory, MA, USA) for pH, gas pressures (CO2 and O2), and electrolytes. At the 

end of each infusion protocol, rats were decapitated and the head immediately frozen in liquid N2. 

Perchloric acid extracts of the hippocampal tissue were lyophilized and saved for NMR 

spectroscopy. 1H and 13C NMR spectra were acquired on a Bruker 600 NMR spectrometer with a 

14.1 T UltraShield magnet (Bruker, Germany) and were analysed with MestReC software 

(Mestrelab Research, Santiago de Compostela, Spain). The signal of 13C labelled CH3 lactate in 1H 

spectra was used as reference for 13C NMR signal quantification. 

 

3.16. Insulin quantification  

 

Insulin concentration was quantified by enzyme-linked immunosorbent assay (ELISA) using 

the Mercodia Ultrasensitive Mouse Insulin ELISA kit (Mercodia, Uppsala, Sweden) according to 

manufacturer's instructions. Briefly, this ELISA for insulin determination was a solid phase two-site 

enzyme immunoassay, based on the direct sandwich technique in which two monoclonal antibodies 

were directed against separate antigenic determinants on the insulin molecule. During 2 hours of 

incubation, insulin in the samples (25 µL) and standards (0.025 to 6.4 µg/L) reacts with peroxidase-

conjugated anti-insulin antibody and anti-insulin antibody immobilised in a 96 well-microplate. 

Unbound enzyme-labelled antibody was removed by washing and the bound conjugate was 

detected by reaction with 3,3',5,5'-tetramethylbenzidine. The reaction was stopped with H2SO4, and 
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the colorimetric endpoint measured in a SpectraMax Plus384 spectrometer (Molecular Devices, 

Union City, USA).  

 

3.17. Caffeine quantification  

 

For caffeine measurement, serum samples from each mouse were added to equal volume of 

methanol-acetone (4:1), mixed for 15 minutes, centrifuged at 3,000 g for 15 minutes, and the 

supernatant saved for caffeine quantification. Samples (20 µL) were separated at room temperature 

using a reverse-phase column [LiChroCART 125x4mm LiChrospher 100 RP-18 (5 µm) cartridge 

fitted into a ManuCART holder (Merck Darmstadt, Germany)], using a Gilson system equipped 

with a UV detector set at 274 nm. In our experimental conditions, the maximum peak in the 

absorption spectra of caffeine was confirmed in a 100 µM caffeine solution prepared in water-

methanol (10:1), using a SpectraMax Plus384 spectrometer. The eluent was 40% (v/v) methanol 

with a flow rate of 0.8 mL/min. The identification of the caffeine peak was performed by 

comparison of relative retention time with standard samples prepared in water-methanol-acetone 

(5:4:1) and its quantification achieved by calculating the peak areas then converted to concentration 

values by calibration with known standards ranging from 1 to 100 µM. 

 

3.18. Reagents 

 

Here I refer the origin of the reagents used in the experimental work that were not directly 

stated in the description of the methods. [U-13C]glucose (99%), sodium [2-13C]acetate (99%) and 

2H2O (99.9%) were purchased from Isotec (Miamisburg, USA). Carbogen (gas mixture of 95% O2 + 

5% CO2) was purchased to Linde Sogás (Lisbon, Portugal). FluoroJade-C was obtained from 

HistoChem (Jefferson, AR, USA). H-5000 Vectamount and Vectashield H-1400 mounting mediums 

from Vector Laboratories were purchased to Batista Marques (Lisbon, Portugal). The CB1 receptor 

agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-

yl]-1-naphthalenylmethanone mesylate (WIN55212-2 or WIN), the CB1 receptor antagonist N-

(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide 

(AM251 or AM), 8-{4-[(2-aminoethyl)amino]carbonylmethyl-oxyphenyl}xanthine (XAC), and the 

adenosine antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) were purchased from Tocris 

(Bristol, UK). Solutions of 2HCl (20% w/w) and NaO2H (40% w/w), streptozotocin (STZ; chemical 
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name: 2-deoxy-2-(3-(methyl-3-nitrosoureido)-D-glucopyranose), DPX Mountant, Caffeine, Cresyl 

violet and other common-use reagents were purchased to Sigma-Aldrich (Sintra, Portugal). 

 

3.19. Data presentation and statistics 

 

All the data obtained from the present experimental work was analysed with the software 

GraphPad Prism 4. Results are presented as mean±SEM values of n experiments and significant 

group differences were considered at P<0.05 in the statistical test. Generally, Student’s t test was 

used to compare two data sets, and one-way ANOVA test followed by Bonferroni’s or Newman-

Keuls’ post-tests was used to compare the data from several experimental groups. For the 

comparison of time dependent data measured during the caffeine treatment period, namely body 

weight, caffeine intake and glycaemia, as well as results from behavioural studies performed before 

and after treatment, we used the two-way ANOVA test followed by the Bonferroni's post-test.  
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4.1. Neuromodulation systems controlling intermediary metabolism in rat 

hippocampal slices  

 

Neuromodulation systems not only control synaptic events that lead to regulation of 

neurotransmission, but can also regulate metabolic pathways that may be important when the 

cerebral tissue faces metabolic challenges, neurotoxic conditions, or even neurodegenerative 

disorders. To understand the involvement of modulation systems on intermediary metabolism 

acutely dissociated hippocampal slices were used. They were superfused under different conditions 

and in the presence of different drugs to study their metabolic profile, energy charge, and relative 

metabolic fluxes using NMR spectroscopy and HPLC. The first aim was to characterize the 

metabolic status of the hippocampal slice preparation, in order to establish the basis for studies of 

metabolic control by neuromodulation systems. 

 

4.1.1. Characterization of the superfused hippocampal slice preparation for 

metabolic studies by NMR spectroscopy - different metabolism of 

glutamatergic and GABAergic compartments  

 

13C NMR spectroscopy is a powerful tool to investigate intermediary metabolism since it is 

able to simultaneously detect 13C incorporation into molecules and the positions of 13C 

incorporation within the same molecule (isotopomers). It has been used for studies of brain 

intermediary metabolism both in vitro and in vivo (e.g. Cerdán et al., 1990; Ebert et al., 2003; García-

Espinosa et al., 2004; Gruetter, 2002; Künnecke et al., 1993; Zwingmann and Leibfritz, 2003), allowing 

to follow the fate of labelling from 13C-enriched substrates through particular metabolic pathways. 

This has allowed demonstrating that glucose is the main metabolic fuel although the energy 

requirements of cerebral tissue can be satisfied by the oxidation of other substrates such as ketone 

bodies (Badar-Goffer et al., 1990; Cerdán et al., 1990; Künnecke et al., 1993; Melo et al., 2006), lactate 

(Bouzier et al., 2000; Hassel and Brathe 2000; Tyson et al., 2003) and even fatty acids (Ebert et al., 

2003; Kuge et al., 1995). 

Brain metabolism has been mainly investigated in the brain or in cultured brain cells, but 

scarcely in hippocampal slices (Ben-Yoseph et al., 1993; Bradler et al., 1991; Cohen et al., 1984; Schurr 

et al., 1999; Whittingham et al., 1984), which are the golden standard for electrophysiological studies 
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since slices preserve the anatomy of neuronal circuits and synaptic properties of excitability and 

plasticity (Bahr et al., 1995). However, the physiological performance of hippocampal slices 

ultimately depends on its metabolic status, which has been poorly studied. As would be expected 

from its ability to endure prolonged periods of electrical activity, it has already been shown that 

hippocampal slices are metabolically competent (e.g. Whittingham et al., 1984; Schurr et al., 1999), 

but no detailed characterization of the intermediary metabolism of this preparation has yet been 

carried out. Therefore, to set the basis for studies of metabolism regulation, the present work 

intended to characterize the metabolic status of the superfused hippocampal slice preparation by 

13C NMR isotopomer analysis after labelling with [U-13C]glucose and [2-13C]acetate, to evaluate both 

neuronal and astrocytic metabolic compartments (Cerdán et al., 1990; Melo et al., 2006). 

 

4.1.1.1. Metabolic status and stability over time of superfused hippocampal 

slices 

 

Figure 4.1 shows typical 1H NMR spectra from perchloric extracts of hippocampal slices 

superfused in the presence of unlabelled acetate and glucose for a period of 3 hours in the absence 

and in the presence of 4AP (50 µM) to trigger intermittent burst-like neuronal activity. The 

stimulation of the slices with 4AP induced a different metabolic status, namely an increase in amino 

 
 

Figure 4.1. Typical 1H NMR spectra of neutralized PCA extracts from hippocampal slices superfused for 3 hours with 
unlabelled acetate and glucose, in the absence (A) or presence (B) of 4AP. The height of the spectra was normalized to N-
acetyl-aspartate singlet at 2.02 ppm. The signal assignment was based on the study of Govindaraju et al. (2000): a, lactate-
CH3; b, alanine-CH3; c, acetate-CH3; d, N-acetyl-aspartate2-CH3 (from acetyl group); e, acetoacetate-CH3; f, GABA4-CH2; 
g, glutamate4-CH2; h, pyruvate-CH3; i, glutamine4-CH2; j, aspartate3-CH2 (half of the resonance); k, creatine and 
phosphocreatine N(CH3). 
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acids such as glutamate, 

aspartate and GABA, which are 

quantified in Table 4.1. The 

profile in the proton spectra 

recorded after 3 hours of 

superfusion in the presence of 

unlabeled acetate and glucose 

was maintained from 1.5 up to 

7.5 hours (spectra not shown). 

Figures 4.2 and 4.3 confirm the 

stability over time of 

superfused hippocampal slices. 

Alanine and lactate 

concentrations, which reflect 

the redox status (Ben-Yoseph et 

al., 1993), the neuronal marker NAA (Klunk et al., 1992; Sager et al., 1995), and the metabolic energy 

indicators PCre/Cre, PCre/ATP and ATP/ADP, were essentially constant during the tested 

superfusion period, both in the absence and in the presence of 4AP. 

Although these results confirmed the metabolic viability and stability over time of the 

superfused slice preparation (e.g. Whittingham et al., 1984), it was also noted that there were some 

metabolic differences between hippocampal slices and hippocampal tissue (Table 4.1). The most 

Table 4.1. Metabolite levels in PCA extracts from hippocampal slices superfused during 3 hours in the absence or 
presence of 4AP, and from hippocampal tissue. Values were normalized relative to total creatine, and are presented as 
mean±SEM. One-tailed ANOVA followed by the Newman-Keuls multiple comparison test was used to compare the three 
groups. * P<0.05 compared to hippocampus; $ P<0.05 compared to hippocampal slices superfused in the absence of 4AP. 
 

 
Hippocampal Slices 

(n=6) 

Hippocampal  
Slices + 4AP 

(n=6) 

Hippocampus  
(n=3) 

Lactate 1.61±0.14 * 1.43±0.17 * 0.92±0.05 

Alanine 0.10±0.01 0.13±0.01 * 0.08±0.01 

Glutamate 1.02±0.11 2.66±0.14 *, $ 1.26±0.02 

Glutamine 0.07±0.01 * 0.10±0.01 * 0.43±0.03 

GABA 0.24±0.02 0.67±0.05 *, $ 0.18±0.01 

NAA 0.84±0.04 0.74±0.03 0.71±0.01 

Aspartate 0.33±0.04 0.68±0.05 *, $ 0.21±0.01 

Pyruvate 0.03±0.01 * 0.05±0.01 * 0.08±0.01 

myo-Inositol 0.48±0.05 * 0.48±0.03 * 0.81±0.01 

 

 
 

Figure 4.2. Evolution of the ratios of specific metabolites in extracts of 
hippocampal slices as a function of the suprefusion time. No particular 
changes in such ratios occur for superfusion periods up to 6 hours but some 
tissue deterioration seems to be taking place at longer superfusions. Results 
are presented as mean±SEM of 4 experiments. 
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notable difference was the profound depletion of the content of glutamine in hippocampal slices 

compared to hippocampal tissue. 

Figure 4.3. 31P NMR spectrum of PCA extracts from hippocampal slices superfused for 2 (bottom) and 6 hours (top). The 
inserted histogram shows the PCre/ATP and ATP/ADP ratios as measured by deconvolution of the 
acquired for each superfusion period. The values in the inserted graph are presented as mean±SEM of 4 experiments.
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The metabolic fate of the provided 

also Figure 3.1). [U-13C]glucose is metabolized to [U

13C]alanine and [U-13C]lactate, or is converted to [1,2

13C]α-ketoglutarate is produced in the TCA cycle and exchanges with glutamate that subsequently 

 
Figure 4.4. Schematic model of the fate of 
and [2-13C]acetate. [2-13C]acetate yields [2
CoA molecules enter the TCA cycle by condensation with oxaloacetate, leading to the formation of glutamate enriched in 
the carbons 4 and 4 + 5, respectively. In the next turns of the TCA cycle, when oxaloacetate
of glutamate labelled in the carbons 3 + 4 and 3 + 4 + 5 are produced. This scheme was simplified to highlight the source 
of the labelling pattern observed in glutamate C4 and GABA C2.

notable difference was the profound depletion of the content of glutamine in hippocampal slices 

compared to hippocampal tissue.  

P NMR spectrum of PCA extracts from hippocampal slices superfused for 2 (bottom) and 6 hours (top). The 
shows the PCre/ATP and ATP/ADP ratios as measured by deconvolution of the 

acquired for each superfusion period. The values in the inserted graph are presented as mean±SEM of 4 experiments.

Incorporation of [U-13C]glucose and [2-13C]acetate into intermediary 

The metabolic fate of the provided 13C labelled precursors is summarised 

C]glucose is metabolized to [U-13C]pyruvate that exchanges with [U

C]lactate, or is converted to [1,2-13C]acetyl-CoA entering the TCA cycle. [4,5

glutarate is produced in the TCA cycle and exchanges with glutamate that subsequently 

Schematic model of the fate of 13C labelling in atoms of glutamate and GABA upon metabolism [U
C]acetate yields [2-13C]acetyl-CoA and [U-13C]glucose originates [1,2-13

TCA cycle by condensation with oxaloacetate, leading to the formation of glutamate enriched in 
the carbons 4 and 4 + 5, respectively. In the next turns of the TCA cycle, when oxaloacetate becomes enriched, molecules 
of glutamate labelled in the carbons 3 + 4 and 3 + 4 + 5 are produced. This scheme was simplified to highlight the source 
of the labelling pattern observed in glutamate C4 and GABA C2.  

notable difference was the profound depletion of the content of glutamine in hippocampal slices 

 

P NMR spectrum of PCA extracts from hippocampal slices superfused for 2 (bottom) and 6 hours (top). The 
shows the PCre/ATP and ATP/ADP ratios as measured by deconvolution of the 31P NMR spectra 

acquired for each superfusion period. The values in the inserted graph are presented as mean±SEM of 4 experiments. 

C]acetate into intermediary 

summarised in Figure 4.4 (see 

that exchanges with [U-

CoA entering the TCA cycle. [4,5-

glutarate is produced in the TCA cycle and exchanges with glutamate that subsequently 

 

C labelling in atoms of glutamate and GABA upon metabolism [U-13C]glucose 
13C]acetyl-CoA. Both acetyl-

TCA cycle by condensation with oxaloacetate, leading to the formation of glutamate enriched in 
becomes enriched, molecules 

of glutamate labelled in the carbons 3 + 4 and 3 + 4 + 5 are produced. This scheme was simplified to highlight the source 



 

can be decarboxylated to [1,2-13C]GABA. If the labelling from [4,5

TCA cycle, other intermediates will be 

namely [3,4,5-13C]glutamate and [1,2,3
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and GABA. In contrast, [2-13C]acetate is activated to [2

astrocytic TCA cycle (Waniewski 

13C]glutamate and [2-13C]GABA. If the labelling
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A typical 13C NMR spectrum of a perchloric acid extract of hippocampal slices, superfused 

during 3 hours in the presence of [U

spectrum). Carbons of several metabolic intermediates, namely 

aspartate, lactate and alanine, become enriched by incorporation of 

The expansions of the spectrum show several enriched carbons from the various metabolites 

present in the extract, including the

35.1 ppm, respectively. These two resonances are constituted by 9 lines that can be grouped in 4 

Figure 4.5. Representative 13C-NMR spectra
unenriched acetate and glucose (bottom) or enriched [2
as follows: Ala, Alanine; Lac, lactate; GABA, 

C]GABA. If the labelling from [4,5-13C]α-ketoglutarate remains in the 

TCA cycle, other intermediates will be 13C enriched and other glutamate and GABA isotopomers, 

C]glutamate and [1,2,3-13C]GABA, will be produced in subsequent turns of the 

C]pyruvate can also enter the TCA cycle if converted to [1,2,3

C]oxaloacetate by pyruvate carboxylase (PC), producing multilabelled isotopomers of glutamate 

acetate is activated to [2-13C]acetyl-CoA that preferentially enters the 

astrocytic TCA cycle (Waniewski et al., 1998) producing [4-13C]2-oxoglutarate and then [4

C]GABA. If the labelling from [4-13C]2-oxoglutarate follows the TCA cycle, a 

second turn will produce namely [3,4-13C]glutamate and [2,3-13C]GABA. 

NMR spectrum of a perchloric acid extract of hippocampal slices, superfused 

during 3 hours in the presence of [U-13C]glucose and [2-13C]acetate, is shown in 

spectrum). Carbons of several metabolic intermediates, namely glutamate

aspartate, lactate and alanine, become enriched by incorporation of 13C derived from each substrate. 

The expansions of the spectrum show several enriched carbons from the various metabolites 

present in the extract, including the resonances of glutamate C4 and GABA C2 centred at 34.2 and 

35.1 ppm, respectively. These two resonances are constituted by 9 lines that can be grouped in 4 

 
NMR spectra of PCA extracts from hippocampal slices superfused for 3 hours with 

unenriched acetate and glucose (bottom) or enriched [2-13C]acetate and [U-13C]glucose (top). Resonance assignment was 
as follows: Ala, Alanine; Lac, lactate; GABA, γ-aminobutyric acid; Glu, glutamate; Gln, glutamine; Asp, 
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superfused for 3 hours with 
C]glucose (top). Resonance assignment was 

aminobutyric acid; Glu, glutamate; Gln, glutamine; Asp, aspartate. 
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sets, based on the 13C labelling patterns of the adjacent carbons. Glutamate C4 resonance allows 

distinguishing C4S (C3 and C5 are unenriched), C4D34 (C3 is enriched but C5 is not), C4D45 (C5 is 

enriched but C3 is not) and C4Q (C3 and C5 are both enriched). GABA C2 resonance, which 

originates from glutamate C4, shows a labelling pattern almost identical

glutamate but now the C1 of GABA behaves as the C5 of glutamate. The multiplets C2S, C2D23, 

C2D12 and C2Q refer to isotopomers having both C1 and C3 unenriched, C3 enriched but not C1, 

C1 enriched but not C3 and C1 and C3 both enrich

The present 13C isotopomer analysis was mostly centred in glutamate and GABA 

isotopomers because these two metabolites are the most abundant neurotransmitters and are 

related to the TCA cycle intermediate 

the expansions, other metabolites such as aspartate become enriched and can also be used in the 

metabolic analysis. 

 

4.1.1.3. Evaluation of steady

 

In the present experimental setup, both [U

by 98±1% (n=4) in the superfusion medium, as quantified by 

samples collected after superfusing the hippocampal slices.

As mentioned above, when [U

becomes enriched in the first turn of the TCA cycle and its C3 and C2 isotopomers become enriched 

in the following TCA turns. Thus, the glutamate C3/C4 enrichment ratio is frequently used to 

evaluate metabolic steady-state, which 

absence of 4AP (Figure 4.6). A similar period was required to reach isotopic steady

which enrichment is slower than 

glutamate (Figure 4.6). Stimulation 

of the slices with 4AP (50 µM) 

decreased the time required to reach 

the isotopic steady-state of both 

glutamate and GABA (Figure 4.6). In 

fact, glutamate C3/C4 (0.71±0.04, 

n=4) and GABA C3/C2 (0.76±0.02, 

n=4) ratios obtained after 3 hours in 

the presence of 4AP were close to

C labelling patterns of the adjacent carbons. Glutamate C4 resonance allows 

stinguishing C4S (C3 and C5 are unenriched), C4D34 (C3 is enriched but C5 is not), C4D45 (C5 is 
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originates from glutamate C4, shows a labelling pattern almost identical 

glutamate but now the C1 of GABA behaves as the C5 of glutamate. The multiplets C2S, C2D23, 

C2D12 and C2Q refer to isotopomers having both C1 and C3 unenriched, C3 enriched but not C1, 

C1 enriched but not C3 and C1 and C3 both enriched, respectively.  

C isotopomer analysis was mostly centred in glutamate and GABA 

isotopomers because these two metabolites are the most abundant neurotransmitters and are 

related to the TCA cycle intermediate α-ketoglutarate. Nevertheless, as it can 

the expansions, other metabolites such as aspartate become enriched and can also be used in the 
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Figure 4.6. Evaluation of the isotopic steady
slices based on the glutamate C3/C4 and GABA C3/C2 ratios during 
superfusion with [U-13C]glucose and [2-13C]acetate. With the increase 
in superfusion time both ratios increase and reach a “plateau” value 
for periods of 6-7.5 hours. In the presence of 4AP (50 
are reached for approximately half of the superfusion time.
presented as mean±SEM of 4 experiments. 
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these obtained for 7.5 hours superfusion in the absence of 4AP.  

 

4.1.1.4. Direct analysis of glutamate C4 and GABA C2  

 

Ratios of multiplets of specific carbon resonances in the 13C NMR spectra can be used for a 

direct evaluation of the metabolic status in non-steady-state metabolic conditions provided that the 

labelling patterns of competing oxidative substrates are carefully chosen (Malloy et al., 1990). [U-

13C]glucose yields [1,2-13C]acetyl-CoA, which leads to the formation of [4,5-13C]glutamate in a first 

turn of the TCA cycle and to the labelling of the other carbons of glutamate in following turns. On 

the other hand, [2-13C]acetate yields [2-13C]acetyl-CoA, which labels only carbon 4 of glutamate on 

the first turn of the TCA cycle and other carbons of glutamate (including C3, C2 and C1) in 

following turns. Independently of the labelling patterns of oxaloacetate, the labelling pattern at 

carbon 4 of glutamate will always be determined by the labelling pattern of the acetyl-CoA unit that 

enters the cycle and for that reason the glutamate C4 multiplets will always possess the information 

required to evaluate both the relative contributions of each oxidative substrate and the relative flux 

of the TCA cycle.  Thus, the ratios of glutamate C4Q to C4D45 (GluC4Q/D45) and glutamate C4D34 

to C4S (GluC4D34/S) indicate the flux into the TCA cycle(s) oxidizing [U-13C]glucose and [2-

13C]acetate, respectively. Multiplets in GABA C2, since it derives directly from glutamate C4, can 

also be used in this direct isotopomer analysis. Thus, the ratios GABA C2Q to C2D12 

(GABAC2Q/D12) and GABA C2D23 to C2S (GABAC2D23/S) also reflect the TCA cycle flux 

oxidizing [U-13C]glucose and [2-13C]acetate, respectively. This allows inferring glial TCA cycle flux 

by evaluating glutamate isotopomer populations originated by labelled acetate, based on the 

assumption that that glucose is oxidized in both neurons and glia while acetate is preferentially 

transported into glial cells (Waniewski and Martin, 1998).  

As shown in Table 4.2, similar multiplet ratios were obtained for either glutamate C4 or 

GABA C2 in the absence of 4AP. However, the presence of 4AP increased GluC4D34/S compared 

Table 4.2. Multiplet ratios calculated from glutamate C4 and GABA C2 resonances in 13C NMR spectra acquired in 
extracts from hippocampal slices superfused with 5.5 mM [U-13C]glucose and 2 mM [2-13C]acetate in the absence or 
presence of 50 µM 4AP. Results are mean±SEM of 4 experiments and Student’s t test used for comparison: * different from 
absence of 4AP (P<0.01), $ different from GluC4D34/S (P<0.01). 
 

  Absence of 4AP Presence of 4AP 

GluC4D34/S 1.19±0.03 1.34±0.01 * 

GluC4Q/D45 1.18±0.07 1.09±0.05 $ 

GABAC2D23/S 0.95±0.14 0.97±0.07 $ 

GABAC2Q/D12 1.17±0.09 1.00±0.04 
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to the absence of 4AP, which represents an increment of [2-13C]acetate oxidation. This was not 

observed for GluC4Q/D45, equivalent to [U-13C]glucose oxidation, neither for GABAC2D23/S 

which arises directly from GluC4D34/S by decarboxylation. These results suggest that the 

stimulation of the slices with 4AP causes a flux increase of the TCA cycle in the astrocytic 

compartment mainly exchanging with glutamatergic rather than GABAergic neurons. 

 

4.1.1.5. Determination of relative metabolic fluxes 

 

The obtained 13C isotopomer data (relative peak areas from glutamate, GABA and aspartate 

resonances as well as the multiplet ratios GluC3/C4, GluC2/C4 and GABAC3/C2) were fitted to 

the metabolic model shown in Figure 3.1 using the program tcaCALC to calculate the fractional 

contributions to acetyl-CoA in both steady-state (Malloy et al., 1988) and non-steady-state 

conditions (Malloy et al., 1990) in superfused hippocampal slices. The results presented in Table 4.3 

indicate that the major modification observed corresponds to the greater contribution of glucose 

oxidation as a source of acetyl-CoA upon stimulation with 4AP, as evaluated by the consistent 

increase of Fc12 (contribution of [U-13C]glucose) compared to Fc2 (contribution of [2-13C]acetate) 

and Fc0 (contribution of unlabelled sources). Furthermore, in accordance with the longer period to 

reach steady-state of the GABAergic compared to glutamatergic pool, there was also a greater 

contribution of non-labelled sources for GABA-related acetyl-CoA under resting conditions in the 

non-steady-state analysis (Table 4.3).  

Further analysis of the relative fluxes related to the TCA cycle (figure 3.1) revealed 

additional differences between the metabolic organization of the glutamatergic and GABAergic 

Table 4.3. Fractional contributions to acetyl-CoA in hippocampal slices after superfusion with 5.5 mM [U-13C]glucose and 
2 mM [2-13C]acetate for 3 hours, in the absence and presence of 4AP (n=4). Fc0 corresponds to the contribution of 
unlabeled acetyl-CoA from unlabeled endogenous substrates; Fc2 and Fc12 show the fraction of acetyl-CoA labeled in C2 
and both C1 and C2, respectively. Results are presented as mean±SEM of 4 experiments. $ different from glutamate 
(P<0.05), # different from non-steady-state (P<0.05), * different from absence of 4AP (P<0.05), Student’s t test used for 
comparison. 

  Absence of 4AP 
 

Presence of 4AP 

  Glutamate GABA 
 

Glutamate GABA 

Non-steady-state: 

Fc0 0.16±0.01 0.26±0.02 $ 
 

0.14±0.02 0.25±0.04 $ 

Fc2 0.12±0.01 0.13±0.01 
 

0.10±0.01 * 0.09±0.02 * 

Fc12 0.72±0.01 0.62±0.02 $ 
 

0.76±0.02 * 0.66±0.03 $, * 

Steady-state: 

Fc0 0.21±0.01 # 0.20±0.02 
 

0.17±0.01 * 0.20±0.03 

Fc2 0.12±0.01 0.14±0.01 
 

0.12±0.01 0.11±0.02 * 

Fc12 0.67±0.01 # 0.67±0.02 
 

0.71±0.02 #, * 0.70±0.02 
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compartments (Table 4.4). Lower LDH flux estimated from GABA suggests a lower importance of 

the astrocyte-neuron lactate shuttle (Pellerin et al., 1998) for GABAergic than for glutamatergic 

neurons. This is re-enforced by the observed lower flux through astrocytic PC estimated from 

GABA isotopomer populations, also consistent with a decreased requirement of astrocytes to 

replenish oxaloacetate in the TCA cycle, since the clearance of GABA by astrocytes leads to its 

conversion into succinate that enters the TCA cycle (e.g. Patel et al., 2005). Likewise, the 4AP-

induced decrease in LDH flux estimated from glutamate multiplets suggests an increased 

autonomy of neurons, i.e. lower dependency from the astrocytic compartment in terms of glucose 

oxidation. The decrease in astrocytic PC flux relatively to TCA cycle flux upon 4AP stimulation is 

consistent with the increase in the astrocytic TCA cycle flux inferred from the direct multiplet 

analysis. To sustain this increase, PDH, ACS and Y fluxes in astrocytic compartment increased in 

parallel with the increased flux of the TCA cycle. It was again confirmed that there is a greater 

contribution of glucose to feed the TCA cycle upon 4AP stimulation, which is far greater in 

GABAergic neurons, as concluded from the parallel increased relative flux of PDH and decreased 

relative flux of ACS. The decrease of the anapletoric flux Y estimated from GABA multiplets upon 

4AP stimulation is consistent with the increased oxidative fluxes caused by the 4AP-induced higher 

metabolic demand. These results suggest that the metabolic network in GABAergic and 

glutamatergic compartments in superfused hippocampal slices has a different design and reacts 

differently to the stimulation by the presence of 4AP.  

 

4.1.1.6. Discussion 

 

The present results provide evidence that detailed metabolic studies of intermediary 

metabolism can be carried out in superfused hippocampal slices, which opens novel possibilities of 

Table 4.4. Relative metabolic fluxes in hippocampal slices after a 3 hour superfusion period with 5.5 mM [U-13C]glucose 
and 2 mM [2-13C]acetate in the absence or presence of 50 µM 4AP. Flux parameters were estimated under steady-state 
assumptions from either glutamate or GABA multiplets. Results are presented as mean±SEM of 4 experiments, and 
Student’s t test was used for comparison: * different from absence of 4AP (P<0.05), $ different from glutamate (P<0.05). 
The fitting results do not include aspartate multiplets since their inclusion did not affect the flux estimation (not shown). 
 

  Absence of 4AP 
 

Presence of 4AP 

  Glutamate GABA 
 

Glutamate GABA 

ACS 0.26±0.01 0.27±0.02 
 

0.25±0.01 0.18±0.04 *, $ 

LDH 1.00±0.01 0.93±0.04 $ 
 

0.93±0.01 * 1.04±0.11 

PC 0.25±0.01 0.20±0.02 $ 
 

0.17±0.01 * 0.22±0.07 

Y 0.48±0.03 0.44±0.05 
 

0.47±0.02 0.37±0.05 $ 

PDH 0.75±0.01 0.73±0.02 
 

0.75±0.01 0.82±0.04 *, $ 
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combining metabolic analysis with electrophysiological recordings in the most widely used brain 

preparation. This was now identified by showing different metabolic re-arragements of the 

glutamatergic and GABAergic compartments after stimulation of the slices with 4AP. 

As occurs for the maintenance of synaptic transmission, excitability and ability to undergo 

plastic changes over extended periods of time, it was now confirmed that superfused hippocampal 

slices also displayed a robust and stable metabolic profile (Whittingham et al., 1984). Thus, there 

was no change in the amounts of different reporter metabolites within a 6 hours period of 

superfusion. Namely, key metabolic parameters such as PCre/Cre and ATP/ADP ratios display 

robust and constant values for periods of superfusion up to 6 hours, which indicates that 

superfused hippocampal slices remain metabolically competent over time. Most importantly, this 

robustness and stability of metabolic parameters in superfused hippocampal slices was maintained 

in conditions of continuous neuronal firing triggered by the presence of 4AP. This constitutes a re-

assuring observation for more prolonged physiological studies carried out in brain slices, since it 

provides direct evidence that there is no long-term metabolic adaptation in this preparation to 

sustain electrical activity over prolonged periods in vitro. Instead, the metabolic status of superfused 

slices is maintained over extended periods, which guarantees that treatments of this preparation 

hours apart are comparable from the metabolic point of view. 

This metabolic robustness and stability prompted the use of 13C tracers combined with 13C 

isotopomer analysis to characterise some basic features of intermediary metabolism in superfused 

hippocampal slices. The tested 13C-enriched tracers allowed labelling different metabolites observed 

in the 13C NMR spectrum of hippocampal extracts, out of which attention was focused mainly in 

glutamate and GABA isotopomers because of their abundance and physiological relevance. In fact, 

the combined analysis of glutamate and GABA isotopomers potentially allows distinguishing 

between putative glutamatergic and GABAergic metabolic compartments. Furthermore, a 

combination of 13C-enriched tracers was selected to attempt distinguishing between neuronal and 

astrocytic metabolic compartments. Thus, [U-13C]glucose is expected to be metabolised both in 

neurons and in astrocytes whereas [2-13C]acetate is largely taken up by astrocytes (Waniewski and 

Martin, 1998) where it is metabolised (Cerdán et al., 1990). Finally, it was verified that a period of 3 

hours under intermittent burst-like stimulation triggered by 4AP was required to reach steady-state 

metabolic conditions, the conditions allowing the most faithful estimates of the contribution of 

different metabolic sources for metabolism (e.g. Malloy et al., 1988). However, given the awareness 

that several potential relevant questions amenable for combined electrophysiological and metabolic 

studies in hippocampal slices occur in shorter time periods, mathematical tools to estimate 
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modifications of relative metabolic fluxes in non-steady-state conditions were also successfully 

applied (Malloy et al., 1990). 

In accordance with expectations, the combined GABA and glutamate 13C isotopomer 

analysis with the two different tracers ([U-13C]glucose and [2-13C]acetate) provided estimates of 

metabolic fluxes of the different targeted compartments, namely astrocytes, GABAergic and 

glutamatergic neurons. Initial characterization of the effect of intermittent burst-like neuronal firing 

caused by 4AP indicated that there was a different enhancement of the flux of the TCA cycle in the 

different compartments. In fact, the direct analysis of glutamate C4 and GABA C2 multiplet ratios 

revealed that 4AP induces an increase on the TCA cycle flux in astrocytes but not in glutamatergic 

or GABAergic neurons. This is in agreement with expectations both from the anatomical and 

functional point of views: in fact, there are larger numbers of astrocytes in the hippocampus and it 

is expected that continuous intermittent neuronal depolarization would demand a greater metabolic 

effort of astrocytes to control an excessive and potentially neurotoxic effect of enhanced and 

uncontrolled neuronal activity (Volterra and Steinhauser, 2004). This difference between the 

metabolic adaptations of the different studied compartments to 4AP-induced stimulation was 

confirmed and further detailed by mathematical fitting of the 13C-isotopomer data. This indicated 

that the metabolism of glutamate and GABA use a different carbon source and adapt differently to 

conditions of increased metabolic demand. Thus, in resting conditions, there was a greater 

contribution of glucose oxidation to feed the TCA cycle associated with glutamate than with GABA 

metabolism. Stimulation with 4AP lead to a greater relative contribution of glucose oxidation to 

feed the TCA cycle associated with the production of GABA than with glutamate. Also GABAergic 

neurons seem to have more autonomy from astrocytic glucose oxidation than glutamatergic 

neurons, which also become more autonomous upon 4AP stimulation. These differences are 

relevant to understand the different potential susceptibility to failure of the GABAergic and 

glutamatergic systems in prolonged stressful conditions associated with lower glucose availability 

and increase dependency on the use of alternative carbon sources to feed the TCA cycle. 

In spite of its usefulness to evaluate metabolic adaptations under different experimental 

conditions, the present study also indicates that there are some differences in the metabolic status of 

hippocampal slices when compared with hippocampal tissue. This situation is similar to that found 

in electrophysiological studies where differences between some parameters are also found between 

hippocampal slices and tissue (Bahr et al., 1995). The main metabolic differences found in 

hippocampal slices were decreased myo-inositol levels, which can be related to osmotic 

modifications (e.g. Lien et al., 1990, 1991), increased lactate levels and decreased pyruvate levels, 

which indicate a modification of the redox state, and decreased glutamine levels, suggesting a lower 
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metabolic trafficking from the astrocytic TCA cycle to neurons (Chateil et al., 2001; Müller et al., 

1994). The later presented the greatest difference between hippocampal slices and tissue, which 

could limit the usefulness of hippocampal slices in studying astrocyte-to-neuron metabolic 

communication through the glutamate-glutamine cycle. However, this does not mean that this cycle 

is not operative in hippocampal slices since it was found an enrichment of glutamine in the 13C 

NMR spectra.  

In summary, the present study provides the first extensive metabolic analysis of superfused 

hippocampal slices using combined 1H NMR spectroscopy and 13C isotopomer analysis using 

different tracers. The results obtained indicate differences in metabolic recruitment of astrocytes, 

GABAergic and glutamatergic neurons on activation with 4AP and a different basic set-up and 

adaptability of the metabolism of GABAergic and glutamatergic compartment to stimulation. This 

provides a tool for probing intermediary metabolism in restricted brain regions using a well-

defined preparation, offering the novel opportunity for parallel studies of electrophysiology and 

metabolism or metabolic injuries and pathologies affecting the central nervous system such as 

diabetes mellitus, hypoxia or ischemia. 

 

4.1.2. Effect of CB1 receptor activation on intermediary metabolism in rat 

hippocampal slices  

 

The CB1 receptor modulates brain function and affords neuroprotection (Jackson et al., 2005). 

It is highly abundant in the hippocampus (Degroot et al., 2006; Katona et al., 1999, 2000), and 

activation of hippocampal CB1 receptors reduces the release of several neurotransmitters, including 

GABA (Katona et al., 1999, 2000), glutamate (Kawamura et al., 2006), dopamine and acetylcholine 

(Degroot et al., 2006), which will be reflected on the control of synaptic plasticity and cognition and 

memory consolidation (for review see Hampson and Deadwyler, 1999). 

CB1 receptor activation has been shown to modulate glucose uptake in vivo, in several brain 

areas (Freedland et al., 2002; Pontieri et al., 1999; Whitlow et al., 2002), and was suggested to control 

glucose oxidation to CO2 and glucose incorporation into glycogen and phospholipids in cultured 

astrocytes and C6 glioma cells (Sánchez et al., 1997, 1998). Opposing the effect on other brain 

structures, activation of CB1 receptors was shown to reduce glucose uptake in the hippocampal 

tissue (Freedland et al., 2002; Pontieri et al., 1999; Whitlow et al., 2002), even after chronic 

cannabinoid exposure (Whitlow et al., 2003). Furthermore, cannabinoids were suggested to reduce 

regional blood flow in the hippocampus (Bloom et al., 1997; Stein et al., 1998). Up to now, the 
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reported results indicate that activation CB1 receptors has functional consequences in the 

hippocampus that require the modulation of substrate provided trough the blood flow, but is 

unknown if such receptors can control intermediary metabolism.  

We now investigated the effect of selective CB1 receptor activation on hippocampal 

intermediary metabolism, using 13C NMR isotopomer analysis of hippocampal slices superfused 

with 13C enriched substrates. Briefly, hippocampal slices were superfused as described in the 

methods during an initial 60-minute period of stabilization, followed by the superfusion (for 3 

hours, necessary to reach isotopic steady-state in these experimental conditions) in the presence of 

the 13C-tracers [U-13C]glucose and sodium [2-13C]acetate (equimolar concentration of 5.5 mM), and 

50 µM 4AP to allow intermittent burst-like stimulation (Tibbs et al., 1989). In this superfusion period 

ligands of the CB1 receptor were tested: the CB1 receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-

(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate 

(WIN55212-2 or WIN, at 1 µM) and the CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-

iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251 or AM, at 0.5 

µM), both obtained from Tocris (Bristol, UK). WIN and AM stock solutions were prepared in DMSO 

and the same volume of DMSO was included in the respective paired control experiments. 

 

4.1.2.1. [U-13C]glucose and [2-13C]acetate metabolism upon CB1 receptor  

activation 

 

As in previous experiments, in the present experimental design, the 13C enrichment of both 

[U-13C]glucose and [2-13C]acetate was always 98±1% 

(n=5) in the superfusion medium, as measured in 1H 

NMR spectra of superfusate samples collected after 

superfusing the hippocampal slices. The metabolism 

of [U-13C]glucose trough glycolysis lead to the 

enrichment of lactate and alanine and, as shown in 

Figure 4.7, this enrichment was not changed by the 

pharmacological manipulation of CB1 receptors. 

WIN55212-2 and AM251 also failed to alter lactate 

and alanine concentration in hippocampal slices 

(Table 4.5). The concentration of the neuronal 

marker NAA and the metabolic energy indicator 
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Figure 4.7. Fractional enrichment of lactate and 
alanine as calculated from 1H NMR spectra from 
hippocampal slice extracts after a 3 hour 
superfusion period with 5.5 mM [U-13C]glucose 
and 5.5 mM [2-13C]acetate in the presence of 50 µM 
4AP and CB1 receptor ligands (concentrations of 
agonist WIN55212-2 and antagonist AM251 were 1 
and 0.5 µM, respectively). White, gray, black and 
striped bars represent control, WIN, WIN+AM and 
AM conditions. Results are presented as 
mean±SEM of 5 experiments. 



 
72 Chapter 4 

PCre/Cre remained unaltered upon CB1 receptors activation or blockade (Table 4.5). 

The metabolism of [U-13C]glucose and [2-13C]acetate in hippocampal slices (Figure 4.4) leads 

to the enrichment of intermediary metabolites that are related to the TCA cycle in neurons and glia. 

In particular, as described above, the incorporation of 13C atoms into glutamate and GABA allowed 

inferring about neuronal and astrocytic TCA cycles. As shown in Figure 4.8, selective activation of 

CB1 receptors with 1 µM WIN55212-2 during the superfusion of the hippocampal slices with the 

13C-tracers decreased the ratios GluC4Q/D45 and GABAC2Q/D12 in the 13C NMR spectra, 

suggesting a reduction of [U-13C]glucose oxidation in the TCA cycles that contribute to the 

formation of both glutamate and GABA. The presence of the agonist WIN55212-2 in the superfusion 

medium also inhibited the oxidation of [2-13C]acetate but only in the TCA cycle contributing to 

glutamate production, as suggested by the decreased ratio GABAC2D23/S. The presence of 0.5 µM 

AM251, which did not have effect by itself, prevented the effects of WIN55212-2 on the metabolism 

of [U-13C]glucose and [2-13C]acetate.  

 

 
 
Figure 4.8. Representative resonances of glutamate C4 and GABA C2 in the 13C NMR spectra (left panel) and multiplet 
ratios calculated from these resonances (panel on the right). 13C NMR spectra were acquired from extracts from 
hippocampal slices superfused with 5.5 mM [U-13C]glucose and 5.5 mM [2-13C]acetate in the presence of 50 µM 4AP and 
CB1 receptor ligands WIN55212-2 (1 µM) and AM251 (0.5 µM). White, gray and black bars represent WIN, WIN+AM and 
AM conditions. All the experiments are paired experiments with a test condition (drug) versus control (containing 
DMSO), considered 100%. Results in the histogram are mean±SEM of 5 experiments, comparison was made with the 
Student's t test: * P<0.05, different from control.  

Table 4.5. Metabolite concentrations are not significantly affected by pharmacological manipulation of the CB1 receptor. 
The concentrations of agonist WIN55212-2and antagonist AM were 1 and 0.5 µM, respectively, and the effect of these CB1 
receptor ligands is reported in relation to the respective control condition (in the presence of DMSO). Values are 
mean±SEM of 5 experiments. 
 

  
Control 

(µmol/g protein) 
WIN55212-2 
(% of control) 

WIN55212-2 
+ AM251 

(% of control) 

AM251 
(% of control) 

NAA 16.7 ± 1.9 -0.7 ± 5.3 -5.7 ± 3.3 10.6 ± 5.7 

PCre/Cre 0.63 ± 0.05 -6.3 ± 7.1 1.3 ± 6.6 -4.4 ± 6.9 

Lactate 75.6 ± 9.7 -2.1 ± 9.2 7.3 ± 7.7 2.7 ± 7.9 

Alanine 4.0 ± 0.4 9.0 ± 27.6 5.8 ± 8.3 -14.4 ± 7.0 
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4.1.2.2. Discussion  
 

The present results show that selective CB1 receptor activation with WIN55212-2 decreases 

the global rate of oxidative metabolism in rat hippocampal slices, which is prevented by the 

presence of the antagonist AM251. The relative incorporation of 13C atoms from [U-13C]glucose and 

[2-13C]acetate into the carbon position 3 of glutamate and GABA suggests a reduction in the flux 

through the TCA cycle of both neuronal and astrocytic compartments. CB1 activation inhibited TCA 

cycle flux in neurons participating in both glutamatergic and GABAergic neurotransmission, as 

indicated by reduced 13C label incorporation from [U-13C]glucose into glutamate and GABA C3, 

compared to glutamate C4 and GABA C2, respectively. However, the incorporation of labelling 

from [2-13C]acetate was only reduced in glutamate and not in GABA, suggesting that metabolism in 

the astrocytic compartment supporting and feeding GABAergic neurons is not significantly affected 

by CB1 receptor modulation. 

These data do not exclude the possibility of increased anaplerotic fluxes upon CB1 receptor 

activation. However, previous studies with [14C]2-deoxyglucose autoradiography indicated that 

both WIN55212-2 and ∆9-THC decrease rates of glucose uptake in the hippocampal tissue 

(Freedland et al., 2002; Pontieri et al., 1999; Whitlow et al., 2002), and these results are in agreement 

with decreased oxidative fluxes upon CB1 receptor activation. It was also reported that CB1 

receptor activation stimulates glucose utilization in other brain regions (Freedland et al., 2002; 

Pontieri et al., 1999; Whitlow et al., 2002), and that ∆9-THC increases glucose oxidation to CO2 and 

glucose incorporation into glycogen and phospholipids in primary cultures of cortical and 

hippocampal astrocytes (Sánchez et al., 1998) and C6 glioma cells (Sánchez et al., 1997), which was 

suggested to occur through activation of MAPK (Guzmán and Sánchez, 1999). Moreover, the effect 

of CB1 receptor activation on the uptake of glucose derivatives was shown to be biphasic and dose-

dependent (Margulies and Hammer, 1991), which could explain different results obtained by 

different authors. Together with these glucose uptake studies, reported decreases in cerebral blood 

flow by cannabinoids (e.g. Bloom et al., 1997; Stein et al., 1998) are in agreement with reductions in 

hippocampal intermediary metabolism.  

It was reported that cannabinoids can modulate glucose uptake in the hippocampus 

(Freedland et al., 2002; Pontieri et al., 1999; Whitlow et al., 2002). However, in the present study, the 

fractional enrichments of lactate and alanine, as well as their concentrations, remained unchanged 

upon the manipulation of CB1 receptors. Since the concentration of glucose in the brain at 
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normoglycaemia is around 1 mM (e.g. Gruetter et al., 1998), the lack of effect of CB1 receptors on 

these glycolytic-related measures in superfused hippocampal slices may result from a certain 

degree of saturation of the glycolytic pathway by the amount of glucose provided in the 

superfusion medium (5.5 mM). 

In the hippocampus, activation of CB1 receptors was shown to reduce glucose utilization 

(Freedland et al., 2002; Pontieri et al., 1999; Whitlow et al., 2002) and metabolism through the 

neuronal and glial TCA cycles (in the current study). This observations are in agreement with the 

role of CB1 receptors in controlling neurotransmission in the hippocampus, in particular reducing 

the release of neurotransmitters such as GABA (Katona et al., 1999, 2000), glutamate (Kawamura et 

al., 2006), dopamine and acetylcholine (Degroot et al., 2006). 

It should be emphasized that astrocytes are expected to be involved in the uptake of glucose 

from the blood stream that is metabolized to lactate and shuttled to neurons (Magistretti and 

Pellerin, 1999), and since the superfusion of hippocampal slices provides substrates without using 

the vascular system, there is a metabolic component in astrocytic metabolism that may be 

modulated by CB1 receptor activation that is absent in our experimental system. In any case this 

does not affect the main conclusion of this study because all the cellular elements have access to the 

provided substrates. Thus these results directly show that the global effect of CB1 activation in 

hippocampal slices results in a reduction of neuronal and glial metabolism through the TCA cycle. 

 

4.1.3. Adenosine A1 receptors control the recovery of hippocampal 

metabolism after hypoxia 

 

Adenosine is a neuromodulator predominantly inhibiting excitatory neurotransmission 

through activation of adenosine A1 receptors (Dunwiddie and Masino, 2001), which afford 

neuroprotection upon acute neuronal injury. Thus, at the onset of brain injury, such as hypoxia 

and/or hypoglycaemia, both adenosine and A1 receptor agonists attenuate cell loss and 

degeneration, whereas A1 receptor antagonists exacerbate damage (de Mendonça et al., 2000). This 

A1 receptor-mediated neuroprotection is thought to result from the activation of presynaptic A1 

receptors, which control the depression of excitatory transmission during hypoxia (e.g. Fowler, 1989, 

1993; Gribkoff et al., 1990). In fact, hypoxia depresses excitatory synaptic transmission, which is fully 

reversible by re-oxygenation, but blockade or deletion of adenosine A1 receptors decreases the 

hypoxia-induced depression of synaptic transmission and hampers its recovery after the insult 

(Arrigoni et al., 2005; Johansson et al., 2001; Sebastião et al., 2001).  
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Besides acting as a neuromodulator, adenosine also fulfils a general homeostatic role 

controlling intermediary metabolism, which is considered the basis of the non-brain tissue 

protective effects afforded by extracellular adenosine (reviewed in Cunha, 2001). For instance the 

cardioprotective effect of adenosine is related to the ability of A1 receptor activation to control 

glucose and glycogen metabolism (Finegan et al., 1996; Fraser et al., 1999; Gao et al., 1997; Wyatt et 

al., 1989). Since adenosine also affects brain intermediary metabolism (Allaman et al., 2003; Blood et 

al., 2003; Håberg et al., 2000; Hammer et al., 2001; Magistretti et al., 1986), this ability of adenosine to 

control the metabolism of neurons and astrocytes could be an alternative mechanism by which 

adenosine affords neuroprotection. Thus, the present study was designed to investigate if the 

activation of the adenosine A1 receptors controls the recovery of the hippocampal intermediary 

metabolism after hypoxia, using hippocampal slices superfused with 13C enriched substrates, 

namely glucose and acetate that allow gaining insight on the metabolism in both glial and neuronal 

compartments, as previously described. 

In this particular group of experiments, hippocampal slices were submitted to hypoxic 

(solution gassed with 95% N2 + 5% CO2 mixture) or normoxic conditions during 90 minutes, in the 

presence of unlabelled glucose and acetate, followed by 3 hours of superfusion in normoxic 

conditions in the presence of either unlabelled glucose (5.5 mM) and sodium acetate (2 mM) or [U-

13C]glucose and sodium [2-13C]acetate. These experiments were repeated in the presence of 100 nM 

1,3-dipropyl-8-cyclopentylxanthine (DPCPX, purchased from Tocris, Northpoint, UK) that is a 

selective antagonist of the adenosine A1 receptor at this concentration (Sebastião et al., 2000). DPCPX 

stock solution was prepared in 99% DMSO and 1% NaOH 1 M at a concentration of 5 mM and 

diluted directly into the superfusion medium since amounts of DMSO below 0.01% are devoid of 

effects on intermediary metabolism. 50 µM 4AP was included in the superfusion medium to allow 

intermittent burst-like stimulation (Tibbs et al., 1989), which is essential to allow a build-up of 

sufficient extracellular adenosine to impact on synaptic transmission and hypoxia-induced 

modification of hippocampal function (e.g. Sebastião et al., 2001).  

 

4.1.3.1. Metabolic status of hippocampal slices submitted to hypoxia and re-

oxygenation 

 

It was first characterized the effect of hypoxia and re-oxygenation in the levels of different 

key metabolites in hippocampal slices. For that purpose, metabolic pools and EC were quantified 

from PCA extracts of the tissue either after the 90 min of hypoxia or after 3 hours of re-oxygenation 
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(Table 4.6), using either 1H NMR spectroscopy (Figure 4.9) or HPLC. The concentration of 

metabolites quantified in hippocampal slice preparations under normoxia (Table 4.6) is in general 

agreement with those reported by others (e.g. Whittingham et al., 1984). 

In hippocampal slices submitted to 90 min of hypoxia, there was not only an increase in the 

concentration of lactate (Ben-Yoseph et al., 1993; Kauppinen and Williams, 1990; Müller et al., 1994; 

Table 4.6. Effect of hypoxia (data on the top) or hypoxia plus re-oxygenation (bottom data) on metabolite concentrations 
(µmol/g protein), PCre/Cre, Glu/Gln and energy charge (EC), in the absence or presence of the selective A1 receptor 
antagonist DPCPX (100 nM). Values are presented as mean±SEM (n=4-8). Data was compared using one-way ANOVA 
followed by Newman-Keuls test: * P<0.05, ** P<0.01, *** P<0.001, different from control; # P<0.05, ## P<0.01, ### P<0.001, 
different from control + DPCPX; $ P<0.05, $$ P<0.01, $$$ P<0.001, different from hypoxia or hypoxia plus re-oxygenation. 
 

 
Control (n=8) Hypoxia (n=6) Control + DPCPX (n=4) Hypoxia + DPCPX (n=4) 

Lac 33.8±4.0 57.7±11.6 * 42.7±5.7 70.2±3.0 ***, ## 

Pyr 1.1±0.1 1.9±0.3 ** 1.5±0.3 2.1±0.2 ***# 

Ala 3.0±0.3 5.0±0.8 ** 4.4±0.3 * 7.3±0.3 ***, ###, $$$ 

Glu 62.8±4.3 69.3±6.1 83.8±4.8 ** 84.6±4.4 **, $ 

Gln 2.7±0.4 1.4±0.1 *** 2.6±0.2 1.7±0.2 **, ## 

Glu/Gln 27.8±2.7 51.4±4.2 *** 33.3±3.4 50.3±3.0 ***, ### 

Asp 15.8±0.9 14.0±1.0 19.6±1.0 ** 19.4±0.8 **, $$$ 

GABA 15.8±1.3 18.9±2.3 19.3±1.5 25.4±1.7 ***, ##, $$ 

NAA 17.5±1.2 17.5±1.9 22.7±0.9 ** 23.0±1.0 **, $$ 

Cr 11.9±1.0 14.9±1.2 * 16.7±1.2 ** 21.5±1.3 ***, ##, $$$ 

PCr 11.9±1.3 8.1±1.7 14.5±1.4 9.9±2.2 

Cr+PCr 23.8±1.5 22.9±2.6 31.2±1.3 ** 31.4±1.2 **, $$ 

PCr/Cr 1.07±0.14 0.53±0.10 ** 0.90±0.12 0.49±0.13 **, # 

Ins 11.5±1.1 11.8±0.7 16.3±0.8 *** 16.2±0.8 ***, $$ 

EC 0.74±0.04 0.59±0.03 * 0.73±0.03 0.77±0.03 $ 

     

     

 
Control (n=5) 

Hypoxia + 
Re-Oxygenation (n=5) 

Control + DPCPX (n=5) 
Hypoxia + 

Re-Oxygenation + 
DPCPX (n=5) 

Lac 35.4±3.0 29.3±3.5 35.6±3.8 36.8±2.4 

Pyr 1.1±0.1 0.7±0.1 1.1±0.1 1.1±0.1 

Ala 1.9±0.3 1.5±0.1 2.1±0.3 2.3±0.2 

Glu 64.9±2.4 63.3±0.6 61.8±2.6 62.6±1.4 

Gln 1.74±0.10 1.64±0.17 1.29±0.15 1.11±0.08 *, $ 

Glu/Gln 38.2±1.8 41.4±3.9 52.0±6.0 61.4±6.1 *, $ 

Asp 13.9±0.7 15.1±0.4 13.9±0.3 16.1±0.7 *, # 

GABA 13.6±1.0 13.2±0.5 13.5±1.3 13.0±0.6 

NAA 18.6±0.7 18.5±0.6 19.1±0.8 18.9±1.0 

Cr 10.1±0.9 8.8±0.6 10.8±1.2 10.1±0.8 

PCr 13.5±1.3 12.3±0.2 12.3±0.8 11.2±1.6 

Cr+PCr 23.6±1.2 21.1±0.8 23.1±2.0 21.3±2.3 

PCr/Cr 1.4±0.2 1.4±0.1 1.2±0.1 1.1±0.1 

Ins 10.8±1.1 9.6±1.1 10.0±1.4 9.7±1.3 

EC 0.78±0.03 0.80±0.01 0.73±0.02 0.65±0.04 *, $$ 
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Sonnewald et al., 1994) but also of 

alanine and pyruvate, three end-

products of the glycolytic pathway. 

In accordance with the hypoxia-

induced increase of the flux 

through the glycolytic pathway, it 

was observed an increase of lactate 

release from the superfused 

hippocampal slices (Figure 4.10). 

Hypoxia reduced the content of 

glutamine and increased the ratio 

glutamate/glutamine, suggesting a 

modification in glutamine-

glutamate cycle between neurons 

and glia (Müller et al., 1994). The 

chemical equilibrium between 

creatine and phosphocreatine, a 

buffer system to compensate for 

lack of oxygen or glucose and 

maintain ATP levels (reviewed in 

Balestrino et al., 2002), was altered 

by hypoxia. As reported by others, 

hypoxia decreased not only the 

ratio PCre/Cre (Balestrino et al., 

2002; Brooks et al., 1989; Kauppinen 

and Williams, 1990) but also the EC 

in hippocampal slices (Ikeda et al., 

1988; Müller et al., 1994). These metabolic modifications are characteristic features of hypoxia and 

are globally consistent with an inhibition of the TCA cycle and an increased glycolytic flux, a 

situation characteristic of metabolic deterioration.  

Upon re-oxygenation (3 hours) there was a complete recovery of the metabolic modifications 

observed after 90 min of hypoxia (Table 4.6, Figure 4.10), as reported by others in cortical slices 

(Kauppinen and Williams, 1990) as well as in cell cultures (Sonnewald et al., 1994) or in vivo studies 

(Ikeda et al., 1988). 

 

Figure 4.9. Typical 1H NMR spectra of PCA extracts from hippocampal 
slices superfused with unlabelled acetate and glucose in hypoxic or 
normoxic conditions during 90 minutes. The signals used to estimate 
metabolite concentrations are number-tagged: lactate 3CH3 (1), alanine 
3CH3 (2), NAA 2CH3 from acetyl group (3), GABA 4CH2 (4), glutamate 
4CH2 (5), pyruvate 3CH3 (6), glutamine 4CH2 (7), half resonance from 
aspartate 3CH2 (8), creatine N(CH3) (9), phosphocreatine N(CH3) (10), 
myo-inositol 4CH + 6CH (11). 
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Figure 4.10. Release of lactate from superfused hippocampal slices. 
Lactate was quantified in superfusate samples by 1H NMR 
spectroscopy. Data are presented as mean±SEM from 4 experiments. 
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4.1.3.2. Role of A1 receptors on hypoxia-induced metabolic modifications 

 

The selective blockade of adenosine A1 receptors with DPCPX (100 nM) caused an acute 

modification of the metabolic status of superfused hippocampal slices under normoxic conditions 

after 90 min of superfusion (Table 4.6). The presence of DPCPX for 90 min increased glutamate and 

aspartate concentrations, two excitatory amino acids, as well as the content of alanine, NAA, 

creatine plus phosphocreatine and myo-inositol, a major osmolyte in the brain. The simultaneous 

increase of the total creatine, NAA and myo-inositol levels might be related to osmolarity 

modification, which was reported to occur, for example, in the normal aging brain (Chang et al., 

1996) and in the hippocampus of diabetic rats (van der Graaf et al., 2004). However, this effect of 

DPCPX under normoxia was transient, since the metabolic status of the hippocampal slices 

recovered to control conditions after 4.5 hours of superfusion in the presence of 100 nM DPCPX 

(Table 4.6) 

As shown in Table 4.6, the main effect of DPCPX (100 nM) was its ability to affect several of 

the hypoxia-induced metabolic modifications. Namely, the hypoxia-induced increase of lactate, 

alanine and pyruvate was exacerbated in the presence of DPCPX. In contrast, neither the hypoxia-

induced modification of glutamine content nor the ratios of glutamate to glutamine and 

phosphocreatine to creatine nor EC were significantly altered in the presence of 100 nM DPCPX. 

Notably, the concentration of GABA was particularly increased after hypoxia in the presence of 

DPCPX. 

A complete recovery of hypoxia-induced metabolic changes was observed after re-

oxygenation. However, this was prevented by the presence of 100 nM DPCPX (Table 4.6). Most 

notably, whereas the EC recovered to control values on re-oxygenation after hypoxia, this did not 

occur in the presence of DPCPX. DPCPX also prevented the recovery of glutamine concentration 

and Glu/Gln ratio, as well as aspartate levels in the re-oxygenated hippocampal slices. 

Interestingly, DPCPX failed to modify the levels of metabolites related with glycolysis (pyruvate, 

alanine or lactate; see Table 4.6), as well as the release of lactate (Figure 4.10) upon re-oxygenation. 

This suggests that the metabolic impairment caused by A1 receptor blockade upon re-oxygenation 

might result from a modification of the TCA cycle and glutamate-glutamine cycle rather than of 

glycolysis.  
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4.1.3.3. Modification of the flux through the TCA cycle in hipocampal slices 

 

In order to detail the putative effect of A1 receptor blockade on the recovery from hypoxia of 

TCA cycle fluxes in hippocampal slices, it was carried out a 13C isotopomer analysis (see Figure 4.4) 

after replacement of glucose and acetate in the superfusion medium by [U-13C]glucose and [2-

13C]acetate during the 3 hour re-oxygenation period. Expansions of glutamate C4 and GABA C2 

resonances from representative 13C NMR spectra are shown in Figure 4.11A, and average ratios 

between the multiplet areas of these resonances are presented in Figure 4.11B. Hippocampal slices 

submitted to hypoxia followed by re-oxygenation displayed multiplet ratios similar to the control 

situation (i.e. normoxia). However, the presence of DPCPX during hypoxia plus re-oxygenation 

induced a significant increase (P=0.045) in glutamate C4Q/D45 (Figure 4.11B), indicating that the 

oxidation of glucose through the TCA cycle is indeed modified upon blockade of A1 receptors. The 

values calculated for GABA C2Q/D12 show a trend similar to those obtained in glutamate 

C4Q/D45 (P=0.027). The amount of glutamate C4D34/S and of GABA C2D23/S reflect the 

metabolism of [2-13C]acetate in the TCA cycle presumably in the astrocytic compartment. It is worth 

mentioning that their modification upon hypoxia and re-oxygenation in the presence of DPCPX 

displayed an opposite qualitative variation in contrast to the isotopomer populations of glutamate 

and GABA that reflect glucose oxidation (Figure 4.11B). This suggests that in the specific case of the 

putative astrocytic compartment, A1 receptors may differentially regulate the formation of 

 
Figure 4.11. Panel A shows expansions of glutamate C4 and GABA C2 resonances from representative 13C NMR spectra 
obtained from PCA extracts of hippocampal slices superfused as described before, for the 4 experimental conditions: 
normoxia (C), hypoxia plus re-oxygenation (H), normoxia plus DPCPX (CD), hypoxia plus re-oxygenation plus DPCPX 
(HD). In panel B shows calculated multiplet ratios from GluC4 and GABAC2 resonances. Values presented as mean±SEM 
(n=5-6). Student’s t test was used to compare the effect of the presence and absence of DPCPX on the variation of multiplet 
ratios induced by hypoxia and re-oxygenation. 
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glutamate and GABA upon hypoxia followed by re-oxygenation. 

 

4.1.3.4. Discussion 

 

The present work provides the first direct demonstration that the tonic activation of 

adenosine A1 receptors plays an important role in the recovery on re-oxygenation of the metabolic 

alterations caused by transient hypoxia in rat hippocampal slices. This complements previous work 

showing that the hypoxia-induced adenosine release from both neuronal and astrocytic sources 

(Frenguelli et al., 2003, Martin et al., 2007) contributes for the hypoxia-induced depression of 

excitatory synaptic transmission through activation of A1 receptors (e.g. Fowler et al., 1989, 1993; 

Gribkoff et al., 1990), an effect that is crucial to prevent the long-term impairment of neuronal 

circuits (Arrigoni et al., 2005; Johansson et al., 2001; Sebastião et al., 2001). Since metabolic 

modifications have a strong impact on the efficiency of synaptic transmission (Nicholls, 2003), the 

present results indicate that this ability of A1 receptors to control neuronal metabolism may be a 

mechanism by which adenosine affords brain neuroprotection upon acute noxious brain insults, 

such as upon hypoxia. 

The reduced availability of oxygen during hypoxia caused an expected reduction of the 

energetic status of the preparation, typified by a decreased energy charge and 

phosphocreatine/creatine ratio (see also Brooks et al., 1989; Ikeda et al., 1988; Kauppinen and 

Williams, 1990; Müller et al., 1994). This likely results from a decreased flow through the TCA cycle 

upon decreased regeneration of reducing equivalents by the mitochondrial O2-driven respiratory 

chain (e.g. Chateil et al., 2001), in spite of the increased flow through the glycolytic pathway that is 

aimed at fulfilling the energetic requirements of the tissue. This was experimentally confirmed, as 

concluded from the increased levels of the end-products of anaerobic glycolysis (lactate, pyruvate 

and alanine) as well as an higher release of lactate, together with decreased levels of glutamine, 

which suggests either a lower metabolic trafficking from the astrocytic TCA cycle to neurons 

(Chateil et al., 2001; Müller et al., 1994) that leads to reduced synthesis of glutamate and GABA from 

glutamine, or reduced glutamate and GABA turnover in neurons (Chateil et al., 2001). The blockade 

of A1 receptors using the selective A1 receptor antagonist DPCPX, caused an imbalance of this 

coordinated set of metabolic alterations triggered by hypoxia. Thus, the blockade of A1 receptors 

during hypoxia aggravated the increase of the glycolytic flux, translated in a further increase of 

lactate, pyruvate and alanine. Concomitantly, the presence of DPCPX during hypoxia increased the 

levels of excitatory amino acids (glutamate and aspartate) and increased GABA levels, which might 
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be explained by an adaptation of the cells that release these inhibitory transmitter to compensate the 

lack of inhibitory modulation operated by the adenosinergic system during hypoxia (see also Lucchi 

et al., 1996).  

Finally, it is interesting to note that the blockade of A1 receptors during hypoxia increased 

the levels of myo-inositol and of total creatine-containing compounds, which is in accordance with 

previous suggestions that adenosine might control osmo-adaptation in brain tissues (Saransaari and 

Oja, 2000) that are expected to occur upon hypoxia-induced ionic imbalance (Martin et al., 1994). 

The elevated NAA content upon blockade of A1 receptors is in accordance with its roles in osmo-

regulation and storage of aspartate, which was also elevated (Baslow, 2003). 

As occur with hypoxia-induced decrease of synaptic transmission (see Arrigoni et al., 2005; 

Johansson et al., 2001; Sebastião et al., 2001), all the hypoxia-induced metabolic modifications 

recovered upon re-oxygenation, and this metabolic recovery was prevented by the blockade of A1 

receptors. The most prominent finding was that the energy charge of hippocampal slices, which 

decreased on hypoxia and was restored after re-oxygenation, failed to decrease on hypoxia and was 

decreased after re-oxygenation in the presence of DPCPX. This indicates that the hypoxia-induced 

modification of the energy charge and reducing equivalents of the tissue are under the control of A1 

receptors and are imbalanced by the blockade of the A1 receptors during hypoxia and re-

oxygenation. The metabolic analysis carried out in the present work provides further indications on 

some metabolic pathways modified by the blockade of A1 receptors on hypoxia and re-oxygenation. 

Namely there was an increase in the concentration of end-products of the glycolytic pathway, in 

particular of alanine. Since the release of lactate during hypoxia in the presence of DPCPX was 

lower than during hypoxia alone (Figure 4.10), it is expected that the observed increase in the levels 

of lactate correspond to an accumulation of intracellular lactate that contribute to an acidification of 

the intracellular medium rather than to provide a metabolic source for neurons on re-oxygenation 

(Bouzier-Sore et al., 2003; Tyson et al., 2003; Westergaard et al., 1995). In parallel, the presence of 

DPCPX during hypoxia plus re-oxygenation caused a permanent non-recoverable modification of 

the levels of glutamine and aspartate as well as the ratio glutamate/glutamine, suggesting an 

impairment of the glutamate-glutamine cycle (Hertz et al., 1999; Westergaard et al., 1995). 

Furthermore, the blockade of A1 receptors led to an increase in the flow rate of TCA cycle upon re-

oxygenation, as evaluated in the 13C isotopomer analysis after [U-13C]glucose metabolization. The 

decrease of oxygen availability during hypoxia is expected to decrease the flow rate of the TCA 

cycle (e.g. Chateil et al., 2001) in an effort to reduce the amount of reducing equivalents that are a 

potential source of toxic free radicals when handled in the mitochondria respiratory chain, effect 

that is particularly problematic upon re-oxygenation when there is a full load of reducing 
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equivalents and oxygen becomes available. Control systems have been proposed to understand 

how the flow rate of the TCA cycle is contained on re-oxygenation to avoid excessive formation of 

free radicals (e.g. Tretter and Adam-Vizi, 2004), and the presently observed increase in the flow rate 

of the TCA cycle on re-oxygenation in the presence of DPCPX suggest that A1 receptors constitute 

one possible system with the ability to restrain the burst in the flow rate of the TCA cycle on re-

oxygenation. Furthermore, since [2-13C]acetate metabolism was not significantly modified and 

considering that carbon atoms from [U-13C]glucose oxidized in astrocytes are mainly transported 

into neurons in the form of lactate (reviewed in Magistretti and Pellerin, 1999; Pellerin, 2003), it can 

be inferred that it is the neuronal TCA cycle that is mainly affected by the blockade of A1 receptors, 

which is in accordance with the greater abundance of A1 receptors in neurons compared to 

astrocytes (reviewed in Fredholm et al., 2005). Overall, the obtained results suggest that the 

activation of A1 receptors by endogenous adenosine during re-oxygenation following hypoxia plays 

a key role in the control of neuronal intermediary metabolism. 

One important aspect that should be highlighted is the potential differences in metabolism 

between superfused hippocampal slices and native hippocampal tissue. One experimental 

limitation of slices is that the metabolic substrates are added by superfusion rather than through the 

vascular system. This may explain why it was concluded that neuronal metabolism was more 

intense than its astrocytic counterpart in spite of astrocytes being the most abundant cell type in 

brain tissue. In fact, astrocytes play a key role in the uptake of substrates from blood vessels 

(Magistretti and Pellerin, 1999), a role that is not expected to occur in superfused slices. 

Furthermore, our ability to discriminate astrocytic from neuronal metabolism relies on the use of [2-

13C]acetate, which was used in a concentration lower than [U-13C]glucose to avoid the possibility of 

metabolic modifications due to toxicity, and this may also contribute to hamper our ability to 

highlight the importance of astrocytic metabolism. However, in spite of these technical limitations, 

the present study provides the first direct evidence that the tonic activation of adenosine A1 

receptors controls the recovery of hippocampal intermediary metabolism from transient hypoxia, 

which may be the mechanistic basis for the neuroprotection afforded by adenosine upon acute 

hypoxic insults. 
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4.2. Diabetes-induced modification of neuromodulation systems  

 

As previously introduced, diabetes is often accompanied by cognitive deficits and 

modifications of hippocampal function and plasticity. Since reduced cognitive performance results 

from impairment on synaptic events, and diabetes result on metabolic alterations that may affect 

hippocampal metabolism, it was now studied if diabetes affected neuromodulation systems in both 

synaptic and extra-synaptic compartments of the hippocampus.  

 

4.2.1. Modification of adenosine A1 and A2A receptors in the hippocampus of 

streptozotocin-induced diabetic rats 

 

Adenosine is a neuromodulator acting mainly through metabotropic  A1 and  A2A receptors 

in the brain (reviewed in Fredholm et al., 2005), which can control memory performance in rodents 

(e.g. Kopf et al., 1999; Prediger et al., 2005). Although the A1 receptor is the predominant adenosine 

receptor in the limbic and neo-cortex, chronic noxious brain conditions trigger a down-regulation of 

these inhibitory receptors and cause a parallel up-regulation of facilitatory A2A receptors (reviewed 

in Cunha, 2005). Interestingly, a previous study reported a change of adenosine sensitivity in the 

hippocampus of diabetic rats (Morrison et al., 1992), suggesting that diabetic conditions may also 

induce an adaptation of the density of adenosine receptors in the brain. To test if the 

implementation of a diabetic state triggers a long-term modification of the density of brain 

adenosine receptors, it was evaluated if the density of adenosine A1 and A2A receptors and the 

expression of their mRNA are modified in the hippocampus of STZ-induced diabetic rats, from 7 to 

90 days after diabetes induction. 

For this study Wistar rats (8 weeks old) were treated with STZ and maintained with food 

Table 4.7. Body weight and glycaemia of the rats used in the experiments before and after the induction of diabetes (* 
P<0.01, different from control; **P<0.01, different from before treatment; n.d., not determined). 

 Weight (g)  Glycaemia (mg/dL) 

 Control STZ-treated  Control STZ-treated 

Before treatment (n=8) 203.9±7.4 209.1±6.3  97.8±5.6 97.8±5.3 

3 days after treatment (n=8) n.d. n.d.  101.5±7.8 423.5±26.1 *,** 

7 days after treatment (n=8) 213.3±14.6 216.1±3.3  99.8±6.7 453.1±21.3 *,** 

30 days after treatment (n=8) 304.0±16.5 ** 220.1±10.4 *  104.2±4.4 497.3±31.0 *,** 

90 days after treatment (n=6) 415.6±14.6 ** 267.0±11.8 *  102.1±5.2 506.1±18.5 *,** 
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and water ad libitum for 7, 30 and 90 days. After STZ administration, rats displayed sustained 

hyperglycaemia and failed to gain weight (Table 4.7). 

 

4.2.1.1. Modification of A1 receptor density in total hippocampal membranes  

 

The specific binding of the selective A1 receptor antagonist, [3H]DPCPX (10 nM), to total 

hippocampal membranes was 629±28 fmol/mg protein (n=12). As illustrated in Figure 4.12A, there 

was a lower (P<0.05) density of binding of [3H]DPCPX to hippocampal membranes derived from 

STZ-induced diabetic rats. Thus, the specific binding of 3H-DPCPX (10 nM) to total hippocampal 

membranes derived from rats 7 days after STZ administration was 409±49 fmol/mg protein (n=4, 

P<0.05) and remained lower than control (P<0.05) in total hippocampal membranes 30 days (437±15 

fmol/mg protein, n=4) and 90 days (451±36 fmol/mg protein, n=4) after STZ administration (Figure 

4.12A). 

This decreased density of hippocampal A1 receptors was confirmed by Western blot analysis 

of A1 receptor immunoreactivity. As shown in Figure 4.12B, the A1 receptor immunoreactivity was 

 
 

Figure 4.12. Decrease of the density of adenosine A1 receptors in total hippocampal membranes from STZ-induced 
diabetic rats. Panel A shows the average specific binding of a saturating but selective concentration (10 nM) of the A1

receptor antagonist [3H]DPCPX to total membranes prepared from the hippocampus  of control rats (open bars) or age-
matched rats treated with STZ (filled bars) after different time periods, as indicated below each pair of bars. Results are 
mean±SEM of 4 experiments performed in duplicate. *P<0.05 between control and STZ-treated rats. Panel B shows a 
Western blot (representative of 4-5 similar blots from different groups of rats) comparing the A1 receptor 
immunoreactivity, corresponding to the 37 kDa band, in total hippocampal membranes from control and STZ-treated rats 
after 7 days (left column) and after 30 days (right column), applied in different quantities to the SDS-PAGE gel as 
indicated above each lane. A re-probing of the membranes to detect α-tubulin is shown below each gel in each panel, and 
confirmed that similar concentrations of protein were added for each amount of total hippocampal membrane protein. 
The graphs below the gels show the average relative immunoreactivity of A1 receptors in total hippocampal membranes 
from control rats (open symbols) and from STZ-treated rats (filled symbols) according to the amount of protein applied to 
gel in 4-5 different Western blot analysis using membranes from different groups of animals. *P<0.05 comparing A1

receptor immunoreactivity between control and STZ-treated rats.  
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systematically less intense (21.9±4.2% lower, n=4, P<0.05) in total hippocampal membranes 7 days 

after STZ-induced diabetes. This decreased A1 receptor immunoreactivity was maintained in total 

hippocampal membranes derived from rats sacrificed 30 days (21.4±4.6% lower, n=5, P<0.05) after 

STZ administration (Figure 4.12B). Western blot analysis was not performed to confirm the binding 

data obtained using membranes derived from rats maintained for 90 days in chronic 

hyperglycaemia after STZ injection because the higher mortality rate of this group limited the 

amount of biological material available. 

 

4.2.1.2. Modification of A2A receptor density in total hippocampal 

membranes 

 

The effect of STZ-induced diabetes on the density of hippocampal A2A receptors was the 

opposite of that observed for A1 receptors. First, it is important to stress that the specific binding of 

the selective A2A receptor antagonist, [3H]SCH58261 (6 nM), to total hippocampal membranes was 

26.1±4.1 fmol/mg protein (n=12), i.e. near 25-

times lower than the binding of the A1 receptor 

ligand (see above). However, whereas diabetes 

led to a decrease of A1 receptors binding density 

(see Figure 4.12A), there was a higher (P<0.05) 

density of binding of [3H]SCH58261 to 

hippocampal membranes derived from STZ 

diabetic rats (Figure 4.13). Thus, the specific 

binding of [3H]SCH58261 (6 nM) to total 

hippocampal membranes derived from rats 7 

days after STZ administration was 54.2±11.9 

fmol/mg protein (n=4, P<0.05) and remained 

higher than control (P<0.05) in total hippocampal 

membranes 30 days (54.8±12.1 fmol/mg protein, 

n=4) and 90 days (41.6±6.3 fmol/mg protein, n=4) 

after STZ administration (Figure 4.13). 
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Figure 4.13. Increase of the binding density of A2A 
receptors in total hippocampal membranes from STZ-
induced diabetic rats. The ordinates represent the 
average specific binding of a saturating but selective 
concentration (6 nM) of the  A2A receptor antagonist, 
[3H]SCH58261, to total membranes prepared from the 
hippocampus of control rats (open bars) or age-
matched rats treated with STZ (filled bars) after 
different time periods, as indicated below each pair of 
bars. Results are mean±SEM of 4 experiments 
performed in duplicate. *P<0.05 between control and 
STZ-treated rats. 
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4.2.1.3. Modification of A1 and A2A receptor densities in hippocampal nerve 

terminals  

 

In the hippocampus, both adenosine A1 receptors (Rebola et al., 2003a) and A2A receptors 

(Rebola et al., 2005a) are enriched in nerve terminals. Thus, it was next tested if the diabetes-induced 

modification of the density of A1 and A2A receptors was most evident in nerve terminals. The 

specific binding of [3H]DPCPX (10 nM) to synaptosomal membranes was 985±78 fmol/mg protein, 

i.e. twice larger than that found in total membranes. Interestingly, as illustrated in Figure 4.14A, the 

 
 

Figure 4.14. Absence of modification of the density of A1 receptors and minor increase of the density of A2A receptors in 
nerve terminals membranes from streptozotocin diabetic rats. Panel A shows the average specific binding of a saturating 
but selective concentration (10 nM) of the A1 receptor antagonist, [3H]DPCPX, to  nerve terminals membranes prepared 
from the hippocampus of control rats (open bars) or age-matched rats treated with STZ (filled bars) after different time 
periods, as indicated below each pair of bars. Results are mean±SEM of 4 experiments performed in duplicate. *P<0.05 
between control and STZ-treated rats. Panel B shows a Western blot (representative of 4-5 similar blots from different 
groups of rats) comparing the A1 receptor immunoreactivity, corresponding to the 37 kDa band, in nerve terminal 
hippocampal membranes from control rats and from rats treated with STZ after 7 days (left column) and after 30 days 
(central column) and after 90 days (right column), applied in different quantities to the SDS-PAGE gel as indicated above 
each lane. A re-probing of the membranes with an anti-α-tubulin antibody, shown below each gel in each panel, 
confirmed that similar concentrations of protein were added for each amount of nerve terminal membranes. The graphs 
below the gels show the average relative immunoreactivity of  A1 receptors in  nerve terminal hippocampal membranes 
from control rats (open symbols) and from STZ-induced diabetic mice (filled symbols) according to the amount of protein 
applied to gel in  4-5 different Western blot analysis using membranes from different groups of animals. *P<0.05 
comparing A1 receptor immunoreactivity in the two groups of animals. Panel C shows  the average specific binding of a 
saturating but selective concentration (6 nM) of the A2A receptor antagonist, [3H]SCH58261, to nerve terminal membranes 
prepared from the hippocampus of control rats (open bars) or age-matched rats treated with STZ (filled bars) after 
different time periods, as indicated below each pair of bars. Results are mean±SEM of 4 experiments performed in 
duplicate. *P<0.05 between control and STZ-treated rats. 
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binding density of [3H]DPCPX (10 nM) was not significantly (P>0.05) modified in synaptosomal 

membranes derived from STZ-treated rats (7-30 days). Likewise, the A1 receptor immunoreactivity 

was similar (P>0.05) in synaptosomal membranes from control and STZ-treated rats (Figure 4.14B).  

The average binding density of [3H]SCH58261 (6 nM) to synaptosomal membranes (54.6±8.3 

fmol/mg protein, n=12) was also twice larger than that observed in total hippocampal membranes. 

This binding density of A2A receptors in synaptosomal membranes also tended to be larger upon 

STZ-induced diabetes, although with a lower amplitude than that observed to occur in total 

membranes. Thus, as illustrated in Figure 4.14C, the specific binding of [3H]SCH58261 (6 nM) to 

synaptosomal hippocampal membranes derived from rats 7 days after STZ administration was 

81.4±9.4 fmol/mg protein (n=4, P<0.05), there was a tendency for an increase that failed to reach 

statistical significance (P>0.05) after 30 days (69.8±26.4 fmol/mg protein, n=4) and it was again 

larger (P<0.05) than control after 90 days (72.2±11.3 fmol/mg protein, n=4).  

This modified density of facilitatory A2A, but not inhibitory A1 receptors, in nerve terminals 

of STZ-induced diabetic rats might be related with changes in the efficiency of functioning of 

hippocampal synapses, typified by changes in the vesicular apparatus of hippocampal nerve 

terminals. In fact, the immunoreactivity of syntaxin, a protein located in synaptic vesicles, was 

decreased in synaptosomal membranes from the hippocampus of STZ-treated rats compared to 

controls (Figure 4.15). Thus, syntaxin immunoreactivity was 24.2±4.6% (n=5), 25.0±5.6% (n=6) and 

20.9±4.1% (n=3) lower in hippocampal nerve terminal membranes from STZ-induced diabetic rats 

 
 
Figure 4.15. Decrease of syntaxin immunoreactivity in nerve terminal membranes from STZ-induced diabetic rats. The top 
gels correspond to a Western blot (representative of 4-5 similar blots from different groups of rats) comparing the syntaxin 
immunoreactivity, corresponding to the 37 kDa band, in nerve terminal membranes from the hippocampus of control rats 
and STZ-induced diabetic rats 7 (left column), 30 (central column) and 90 (right column) days after STZ administration. 
The membranes were applied in different quantities to the SDS-PAGE gel as indicated above each lane, and a re-probing 
of the membranes with anti-α-tubulin antibody, shown below each gel in each panel, confirmed that similar 
concentrations of protein were added for each amount of nerve terminal membranes. The graphs below the gels show the 
average relative immunoreactivity of syntaxin in nerve terminal hippocampal membranes from control rats (open 
symbols) and from STZ diabetic rats (filled symbols) according to the amount of protein applied to gel in  4-5 different 
Western blot analysis using membranes from different groups of animals. *P<0.05 comparing syntaxin immunoreactivity 
in the two groups of animals. 
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after 7 days, 30 days and 90 days, respectively, compared to their age-matched controls (see Figure 

4.15). 

 

4.2.1.4. Modification of A1 and A2A receptor mRNA expression in the 

hippocampus 

 

To test whether modification of adenosine receptor density in the hippocampus of STZ-

induced diabetic rats was caused by altered transcriptional processes, it was performed a 

quantitative analysis of mRNA expression by semi-quantitative real-time PCR. As shown in Figure 

4.16A, the expression of A1 receptor mRNA was significantly increased by 31.2±15.8% (n=7, P<0.05) 

in the hippocampus of STZ-

treated rats 30 days after 

treatment, relative to control rats. 

On the contrary, STZ-induced 

diabetes failed to alter 

significantly the expression of 

A2A receptor mRNA (Figure 

4.16B). These results suggest that 

A1 and A2A receptor density is 

modified through mechanisms 

unrelated to the mRNA 

transcription. 

 

4.2.1.5. Discussion 

 

The present results provide direct evidence that the density of adenosine A1 and A2A 

receptors is modified in the hippocampus of STZ-induced diabetic rats. In particular, there was a 

down-regulation of inhibitory A1 receptors and an up-regulation of facilitatory A2A receptors, 

indicating that the induction of diabetes is accompanied by an imbalance of the set-up of adenosine 

receptors in the rat hippocampus.   

Diabetes can lead to several functional and morphological modifications in the central 

nervous system (reviewed in Artola et al., 2002; Gispen and Biessels, 2000). Interestingly, the 

 
Figure 4.16. Expression of A1 (panel A) and A2A (panel B) receptor mRNA 
in the hippocampus of STZ-treated (black bars) and age-matched control 
(adjacent open bars) rats. Receptor mRNA expression was quantified by 
real-time PCR analysis and normalized to β-actin mRNA expression, and 
presented as mean±SEM of 7 experiments from different rats. Relative A1 
receptor mRNA expression was significantly increased in the hippocampus 
of STZ-treated rats when compared to controls (* P<0.05). 
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observed modification of the density of adenosine receptors upon diabetes is in close agreement 

with the modification of the density of cortical adenosine receptors in other noxious brain 

conditions (reviewed in Cunha, 2005). In fact, the induction of epilepsy, either through kainate 

injection or electrical kindling (Rebola et al., 2005b), or sub-chronic restraint stress (Cunha et al., 

2006)  also led to a down-regulation of inhibitory A1 receptors and an up-regulation of A2A receptors 

in cortical regions, independently of neuronal loss. Likewise, independent studies by different 

groups have also concluded that ischemic and/or hypoxic insults lead to a long-term down-

regulation of A1 receptors (e.g. Lee et al., 1986; Nagasawa et al., 1994) and a parallel up-regulation of 

A2A receptors (Kobayashi and Millhorn, 1999). Thus, there is a general trend for the occurrence of 

adaptative changes of the set-up of adenosine receptors upon prolonged noxious brain conditions, 

namely a decrease of inhibitory A1 receptors and an increase of facilitatory A2A receptors, which was 

now extended in the case of STZ-induced diabetes.  

The mechanism by which STZ-induced diabetes leads to the observed modification of the 

density of hippocampal adenosine receptors still remains to be established. In other chronic noxious 

brain conditions, it has been proposed that the long-term down-regulation of A1 receptors would be 

a consequence of their prolonged activation by endogenous adenosine. In fact, noxious insults to 

brain tissue trigger a sustained release of adenosine (reviewed in Latini and Pedata, 2001) and the 

prolonged activation of A1 receptors leads to their down-regulation (e.g. Fernandez et al., 1996; 

Hettinger et al., 1998). However, it remains to be determined if STZ-induced diabetes enhances the 

extracellular levels of adenosine in the hippocampus. As for the up-regulation of A2A receptors in 

noxious conditions, it is still awaiting for a candidate mechanism. But irrespective of the 

mechanism(s) underlying this opposite change of the density of hippocampal adenosine receptors 

upon implementation of a diabetic condition, the present results show that it is an early and 

sustained event. In fact, the up-regulation of A2A receptors and down-regulation of A1 receptors in 

the hippocampus is already present 7 days after STZ-induced diabetes, i.e. at a time when functional 

modifications of hippocampal circuit are not expected to be present (see Biessels et al., 1998 an 

references therein), and remains qualitatively constant up to 90 days after injection of STZ.  

Cerebral cortical adenosine A1 and A2A receptors are enriched in synapses (Rebola et al., 

2003a, 2005a) and their most widely recognized role is their ability to control synaptic transmission  

(reviewed in  Fredholm et al., 2005). However, the changes of the density of adenosine receptors 

upon STZ-induced diabetes were most evident in total hippocampal membranes rather than in 

nerve terminal membranes, implying that it is extra-synaptic A1 and A2A receptors which are 

affected. This implies that the eventual role associated with the STZ-induced modification of the 

density of adenosine receptors is probably unrelated to the control of neurotransmitter release. Most 



 
90 Chapter 4 

relevant for diabetes is the evidence that extracellular adenosine, operating through A1 and A2A 

receptors, acts as a regulator of brain metabolism (Blood et al., 2003; Håberg et al., 2000; Hammer et 

al., 2001; Magistretti et al., 1986), as is well documented to occur in different peripheral organs such 

as the heart (e.g. Wyatt et al., 1989). Given that diabetes is recognized as a metabolic disease, further 

work ought to be designed to investigate if adenosine receptors might control diabetes-induced 

metabolic modifications in the hippocampus (e.g. Biessels et al., 2001).  

One of the prominent central modifications arising in diabetic patients is modified 

hippocampal morphology and function that is accompanied by a cognitive deterioration (see 

general introduction). This is particularly evident in young adult patients with type 1 diabetes  (see 

Brands et al., 2005) and the encephalopathic modifications caused by diabetes resemble a condition 

of advanced aging, namely increasing the risk of dementia (reviewed in Artola et al., 2002). 

Interestingly, there is also an up-regulation and gain of function of hippocampal A2A receptors upon 

aging (Rebola et al., 2003b) together with a down-regulation of A1 receptors (Sebastião et al., 2000). 

Furthermore, adenosine A2A receptors have recently been shown to be involved in the age-

associated decline in memory performance in aged rats (Prediger et al., 2005). This raises the 

hypothesis that the blockade of adenosine A2A receptors, which were now found to be up-regulated 

in the hippocampus of STZ-induced diabetic rats, might eventually counteract the cognitive 

deterioration associated with diabetes. Indirect support for this hypothesis is provided by the 

observation that the consumption of caffeine (an adenosine receptor antagonist, which mostly acts 

as an A2A receptor antagonist when consumed chronically, see Quarta et al., 2004) is associated with 

a substantially lower risk of type 2 diabetes (e.g. van Dam and Hu, 2005; Salazar-Martinez et al., 

2004). With respect to type 1 diabetes, caffeine intake may be a risk factor in childhood (Tuomilehto 

et al., 1990), probably because there is an ontogenic inversion of the role of brain adenosine 

receptors (Rebola et al., 2005c; reviewed in Cunha, 2005), whereas moderate caffeine consumption 

has been proposed as a useful adjuvant therapy for type 1 diabetic patients with hypoglycemia 

unawareness (e.g. Debrah et al., 1996).   

Together with the protein density of adenosine receptors, it was evaluated the expression of 

A1 and A2A receptor mRNAs in the hippocampus of STZ-induced rats. Compared to controls, STZ-

treated rats displayed increased hippocampal A1 receptor mRNA expression (opposite to the 

change in A1 receptor protein) without alteration in A2A receptor mRNA levels. This observation 

suggests that the alteration on the density of membrane adenosine receptors may be caused by post-

transcriptional events, affecting protein turnover for each of the studied receptors. The increased A1 

receptor mRNA expression may constitute a cellular adaptation to maintain the inhibitory function 

of the adenosinergic system, since the presence of inhibitory A1 receptor protein in the membrane 
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may be required for the occurrence of A2A facilitatory function (Lopes et al., 2002) which eventually 

depends on receptor heteromerization (Ciruela et al., 2006).  

In summary, the present work provides the first direct demonstration that the set-up of 

adenosine receptors in the limbic cortex is modified in a rat model of diabetes. The observed up-

regulation of A2A receptors, together with the beneficial and protective effects afforded by A2A 

receptor antagonists in different physio-pathological modifications of brain function (reviewed in 

Cunha, 2005), prompts the hypothesis that A2A receptor antagonists might be considered as a novel 

candidate target to control the cognitive deficits associated with diabetes. 

 

4.2.2. Modification of purinergic signalling in the hippocampus of 

streptozotocin-induced diabetic rats 

 

One promising candidate to target and try to correct diabetes-induced deleterious effects on 

brain function is the ATP modulation system since it has the simultaneous potential to control 

neurotransmitter release (e.g. Rodrigues et al., 2005a) and synaptic plasticity (e.g. Pankratov et al., 

2002), a purported neurophysiological trait of learning and memory (e.g. Lynch, 2004), and can also 

control glucose utilization (e.g. Solini et al., 2003) and insulin release (e.g. Léon et al., 2005). 

ATP is released by most cells, namely from neurons in an exocytotic manner (North and 

Verkhratsky, 2006), and extracellular ATP regulates a variety of cellular processes through 

activation of P2 receptors, which include ionotropic P2X and metabotropic P2Y receptors 

(Abbracchio et al., 2006; Khakh and North, 2006). Extracellular ATP regulates key physiological 

functions such as neurotransmitter release (Rodrigues et al., 2005a), synaptic plasticity phenomena 

(e.g. Almeida et al., 2003) and glucose homeostasis, namely through the modulation of insulin 

secretion (e.g. Léon et al., 2005), hepatic glucose metabolism and release (Buxton et al., 1986; 

Haussinger et al., 1987), and glucose transport in several cell types (Fischer et al., 1999; Kim et al., 

2002; Solini et al., 2003). However, extracellular ATP is a double-edge sword signalling system since 

it is also a danger signal (di Virgilio, 2000), and P2 receptor blockade was shown to afford 

neuroprotection against metabolic insults (Cavaliere et al., 2001a; 2001b), ischemic conditions (e.g. 

Lammer et al., 2006) and glutamate toxicity (reviewed in Franke et al., 2006).  

Previous studies have already indicated diabetes-induced changes of the efficiency of P2 

receptors in different peripheral tissues. Thus, the ATP-driven modulation of glucose transport, 

proposed to rely on P2Y receptor activation (Fischer et al., 1999; Kim et al., 2002), was found to be 

impaired in fibroblasts of type 2 diabetic individuals (Solini et al., 2003) and changes in pancreatic 
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P2 receptors were reported to occur in an experimental model of type 1 diabetes (Coutinho-Silva et 

al., 2003). Also, an enhanced P2X7 receptor activity was associated with diabetes-induced vascular 

damage (Solini et al., 2004) and retinopathy (Sugiyama et al., 2004) and the P2X7 receptor gene 

emerges as a candidate susceptibility gene for NOD diabetes (Elliott and Higgins, 2004). This 

prompts the hypothesis that diabetes may also cause modifications of the purinergic system in the 

brain, which may lead to an impairment of the physiological actions operated by ATP through the 

activation of P2 receptors, such as LTP, that may underlie diabetes-induced cognitive impairment. 

The present study was designed to investigate if the purinergic signalling, namely extracellular ATP 

homeostasis and the density of different P2 receptors, is altered in the hippocampus of STZ-treated 

rats, an animal model of type 1 diabetes, which displays learning deficits (e.g. Biessels et al., 1996). 

In this study, male Wistar rats (8 weeks old) were injected with STZ and maintained for 30 

days with food and water ad libitum. Table 4.8 summarises body weight and glycaemia of both 

control and diabetic rats. 

 

Table 4.8. Body weight and glycaemia of the rats used in the experiments before and after the induction of diabetes (n=18 
for each condition; * P<0.01, different from control; **P<0.01, different from before treatment; n.d., not determined). 
 

 Weight (g)  Glycaemia (mg/dL) 

 Control STZ-treated  Control STZ-treated 

Before treatment 254.7±13.2 245.1±8.0  93.0±6.1 100.5±4.3 

3 days after treatment n.d. n.d.  108.5±7.8 471.6±24.6 *,** 

30 days after treatment 345.7±14.8 ** 225.0±5.6 *  105.2±6.4 491.3±16.6 *,** 

 

4.2.2.1. Modification of extracellular ATP concentration and metabolism 

 

It was first evaluated if the diabetic rats presented abnormal extracellular ATP levels in the 

brain. As shown in Figure 4.17A, one month after STZ-induction of diabetes, the concentration of 

ATP in the CSF was less than half of that in control rats. The synaptic levels of ATP were also 

decreased in diabetic rats, as gauged by the reduction of the K+-induced evoked release of ATP 

from hippocampal nerve terminals (Figure 4.17B, C).  

It was next investigated the rate of extracellular catabolism of ATP by following the 

hydrolysis of ATP after its addition to a synaptosomal suspension (see Cunha, 2001a). It was found 

that the rate of hydrolysis of extracellular ATP and the consequent formation of ADP was reduced 

in hippocampal nerve terminals derived from diabetic rats (Figure 4.18A, B). This indicates that 

diabetes induces a reduction in the activity of membrane-bound ecto-enzymes involved in ATP 

catabolism (Figure 4.18C). This global reduction of extracellular ATP homeostasis prompts the 
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hypothesis that P2 receptors in the brain of diabetic rats may face lower extracellular ATP levels 

than in control rats. 

 

 
 
Figure 4.17. Extracellular ATP levels are modified in the brain of STZ-treated rats. Panel A shows ATP concentration in 
the CSF, measured with a luminometric assay, was lower in diabetic (filled bars) than control (open bars) rats (n=7, * 
P<0.05). Panel B presents the K+-evoked release of ATP from hippocampal nerve terminals prepared from STZ-treated rats 
(filled symbols) was also lower when compared to controls (open symbols). In this experiment, KCl was added at time 
zero in a concentration of 20 mM, thus depolarising the nerve terminals and triggering a vesicular release of ATP, which 
was quantified by luminometry. In C are presented the average data showing that the initial evoked release of ATP 
(measured 4 s after KCl addition) from hippocampal nerve terminals of diabetic (filled bars) was nearly half of that 
observed in hippocampal nerve terminals of control (open bars) rats (n=4, * P<0.05).  

 

 
 
Figure 4.18. Diabetes reduced extracellular ATP hydrolysis activity in rat hippocampal nerve terminals. ATP (10 µM) was 
added at zero time to rat hippocampal nerve terminals (87-145 µg protein) and samples were collected from the bath at 0, 
1, 2, 3, 4 and 5 min. Each collected sample was analysed by HPLC to separate and quantify ATP and its metabolites, ADP 
and AMP. Panel A and B show the average time-course kinetics of ATP (square symbols) catabolism and consequent 
formation of ADP (triangle symbols) and AMP (circle symbols) hippocampal nerve terminals in nerve terminals from 
either control (A) or rats treated one month before with STZ (B). The ordinates display the amount of each nucleotide in 
the bath at each time point, normalised by the amount of synaptosomal protein in the assay and each point is the 
mean±SEM of 7 experiments. Panel C displays the average rate of ATP catabolism (n=7, * P<0.05) found in control (open 
bars) and STZ-treated rats (filled bars). The activity of the ecto-enzymes responsible for the extracellular catabolism of 
ATP was defined as the rate of ATP degradation. The initial rates were calculated by fitting the initial decrease of ATP 
concentration normalised by the amount of protein in the assay. 

 

4.2.2.2. Modification of the density of P2 receptors in hippocampal 

membranes 

 

Since ATP simultaneously fulfils a role as a synaptic modulator (North and Verkhratsky, 

2006) and as a non-synaptic role as a neuron-glia messenger (Fields and Burnstock, 2006), it was 

simultaneously evaluated if there was a modification of the density of P2 receptors in synaptic 
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membranes and in whole membranes of the hippocampus of diabetic rats. This was achieved with 

Western blot analysis using antibodies that were previously defined to be selective for hippocampal 

P2 receptors (Rodrigues et al., 2005a). Two or three different amounts of loaded protein (nerve 

terminals or whole membranes) from the hippocampus of control and diabetic rats were always 

evaluated in each gel to simultaneously gauge the sensitivity of the Western blot assay. This was 

attempted for all the P2X receptor subunits and most P2Y receptors and all results were then 

expressed as average percentage of modification (density found in diabetic relative to its respective 

control) and summarised in the Figure 4.19. 

 

 
Figure 4.19. STZ-induced diabetes causes opposite modification of the density of P2Rs in nerve terminals (filled bars) and 
in total membranes (open bars) prepared from the hippocampus. Thus, whereas P2 receptor immunoreactivity tends to 
decrease in nerve terminal-enriched membranes, there is a global trend for the increase of P2 receptor immunoreactivity 
in whole membranes of STZ-treated rats relative to controls, as evaluated by Western blot analysis (n=3-8, * P<0.05, ** 
P<0.01, *** P<0.001). 

 

In hippocampal nerve terminal membranes of diabetic rats one month after STZ-treatment, 

there was a global trend towards a decrease of the immunoreactivity of P2 receptors. The density of 

the ionotropic receptors P2X3, P2X5 and P2X7 was decreased by 7.8±1.6% (n=6, P<0.005), 7.5±2.4% 

(n=6, P<0.03) and 13.7±2.3% (n=6, P<0.0001), respectively (Figure 4.20). Also the density of the 

metabotropic receptors P2Y2, P2Y6 and P2Y11 was reduced by 12.0±3.0% (n=4, P<0.03), 16.7±3.8% 

(n=4, P<0.005) and 7.5±1.8% (n=3, P<0.005), respectively (Figure 4.21).  

In contrast, in whole hippocampal membranes (which include both neurons and mainly 

glia) of diabetic rats one month after STZ-treatment, there was a global trend towards an increase of 

the immunoreactivity of P2 receptors. In fact, as illustrated in Figure 4.22, there was an increase of 

all ionotropic P2 receptors (with the exception of P2X3 and P2X4). There was an increased density of 

receptors P2X1 (+12.8±3.0%, n=8, P<0.005), P2X2 (+24.4±4.9%, n=8, P<0.0001), P2X5 (+19.2±2.1%, n=5, 

P<0.0001), P2X6 (+7.1±2.4%, n=5, P<0.03) and P2X7 (+10.2±2.6%, n=6, P<0.001) in whole membranes 

derived from rats one month after STZ treatment. With respect to metabotropic P2Y receptors in 

whole hippocampal membranes of diabetic hippocampus, it was found that the density of P2Y6 
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receptors was 19.3±3.7% larger than control (n=3, P<0.001). In contrast, the density of the other P2Y 

receptors was not significantly altered (P>0.05) compared to whole membranes from control rats, 

except for P2Y2 receptors, which density was decreased by 14.1±4.7% (n=7, P<0.03) in diabetic rats 

(Figure 4.23). 

 

 
 
Figure 4.20. Representative Western blots comparing the P2X receptor immunoreactivity in nerve terminal-enriched 
membranes from the hippocampus of control rats and from rats treated with STZ, applied in different quantities to the 
SDS-PAGE gel as indicated above each lane. A re-probing of the membranes with an anti-α-tubulin antibody, shown 
below each gel in each panel, confirmed that similar amounts of protein were added for each concentration of 
hippocampal membranes. The graphs below the gels show the average relative immunoreactivity of in synaptosomal 
membranes from control rats (open symbols) and from STZ-treated rats (filled symbols) according to the amount of 
protein applied to gel in different Western blot analysis using membranes from different groups of rats (n=6 for P2X1,2,3,5,7 
and n=5 for P2X4,6 receptors). * P<0.05, ** P<0.01, *** P<0.001 comparing the immunoreactivity in the two groups of 
animals. 
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Figure 4.21. Representative Western blots comparing the P2Y receptor immunoreactivity in nerve terminal-enriched 
membranes from the hippocampus of control rats and from rats treated with STZ, applied in different quantities to the 
SDS-PAGE gel as indicated above each lane. A re-probing of the membranes with an anti-α-tubulin antibody, shown 
below each gel in each panel, confirmed that similar amounts of protein were added for each concentration of 
hippocampal membranes. The graphs below the gels show the average relative immunoreactivity of in synaptosomal 
membranes from control rats (open symbols) and from STZ-treated rats (filled symbols) according to the amount of 
protein applied to gel in different Western blot analysis using membranes from different groups of rats (n=3 for P2Y1,11 
and n=4 for P2Y2,4,6 receptors). * P<0.05 comparing the immunoreactivity in the two groups of animals. 

 

4.2.2.3. Discussion 

 

The main conclusion of this study is that there is a deregulation of P2 receptor-mediated 

signalling in the hippocampus of STZ-induced type 1 diabetic rats. It was found that there was a 

decrease in the CSF levels of ATP in diabetic rats, together with a decrease of the evoked release of 

ATP in hippocampal nerve terminals, suggesting that P2 receptors may be facing lower 

concentration of extracellular ATP. Also the extracellular metabolism of ATP is reduced in nerve 

terminals from the diabetic hippocampus, possibly due to decreased activity of ecto-nucleotidases 

from the ecto-ATPase family (Zimmermann, 2000). Interestingly, it was found that there was an 

asymmetric global modification of the density of P2 receptors in synapses and outside synapses in 

the hippocampus, in accordance with the double role of ATP as a synaptic modulator (North and 

Verkhratsky, 2006; Cunha and Ribeiro, 2000) and as an extra-synaptic neuron-glia messenger (Fields 
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and Burnstock, 2006). In fact, in nerve terminal membranes, there was a global decrease of the 

density of P2 receptors, whereas in whole hippocampal membranes there was a global trend for an 

increased density of P2 receptors. 

 

 
 
Figure 4.22. Representative Western blots comparing the P2X receptor immunoreactivity in total membranes from the 
hippocampus of control rats and from rats treated with STZ, applied in different quantities to the SDS-PAGE gel as 
indicated above each lane. A re-probing of the membranes with an anti-α-tubulin antibody, shown below each gel in each 
panel, confirmed that similar amounts of protein were added for each concentration of hippocampal membranes. The 
graphs below the gels show the average relative immunoreactivity of in total hippocampal membranes from control rats 
(open symbols) and from STZ-treated rats (filled symbols) according to the amount of protein applied to gel in different 
Western blot analysis using membranes from different groups of rats (n=8 for P2X1,2,3, n=7 for P2X4, n=5 for P2X5,6 and 
n=6 for P2X7 receptors). * P<0.05, ** P<0.01, *** P<0.001 comparing the immunoreactivity in the two groups of animals.  
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Figure 4.23.Representative Western blots comparing the P2Y receptor immunoreactivity in total membranes from the 
hippocampus of control rats and from rats treated with STZ, applied in different quantities to the SDS-PAGE gel as 
indicated above each lane. A re-probing of the membranes with an anti-α-tubulin antibody, shown below each gel in each 
panel, confirmed that similar amounts of protein were added for each concentration of hippocampal membranes. The 
graphs below the gels show the average relative immunoreactivity of in total hippocampal membranes from control rats 
(open symbols) and from STZ-treated rats (filled symbols) according to the amount of protein applied to gel in different 
Western blot analysis using membranes from different groups of rats (n=8 for P2Y1, n=7 for P2Y2, n=5 for P2Y4, n=3 for 
P2Y6 and n=4 for P2Y11 receptors). * P<0.05 comparing the immunoreactivity in the two groups of animals. 

 

It is well established that the development of a diabetic condition is accompanied by the 

increased incidence of neurological complications, in particular cognitive dysfunction (Cox et al., 

2005; Gispen and Biessels, 2000). The hippocampus is a brain region with a key role in the 

implementation of mnemonic traits, and deficits in hippocampal function prime cognitive 

dysfunction (Squire et al., 2004). In particular, deficits in hippocampal synaptic plasticity 

phenomena, namely of LTP, are considered a neurophysiological trait of memory dysfunction 

(Lynch, 2004). Accordingly, there is a parallel deficit of the induction and maintenance of LTP as 

well as of the performance in memory-related tasks in STZ-induced diabetic rats (Biessels et al., 

1996). Interestingly, extracellular ATP, which is released in a frequency-dependent manner (Cunha 

et al., 1996), plays a role in the development of LTP-like changes of synaptic efficiency through the 

activation of P2 receptors (e.g. Pankratov et al., 2002; Almeida et al., 2003). This might be due to 

combined effects of different P2Rs acting both presynaptically to control the release of glutamate 
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(Rodrigues et al., 2005a) and postsynaptically to facilitate the activation of ionotropic glutamate 

receptors, namely NMDA receptors (Kloda et al., 2004; Ortinau et al., 2003). Thus, the currently 

observed lower release of ATP together with the global down-regulation of synaptic P2 receptors in 

the hippocampus of diabetic rats raises the hypothesis that the deficit in synaptic ATP signalling 

may contribute for the memory dysfunction observed in diabetes.  

This down-regulation of ATP signalling in hippocampal synapses may also be an adaptive 

response to preserve nerve terminals. In fact, type 1 diabetes is associated and constitutes a risk 

factor for neurological conditions associated with dysfunction of synaptic transmission, which can 

eventually lead to idiopathic generalised seizures (e.g. McCorry et al., 2006). Convulsive episodes 

are precipitated by hypoglycemic episodes (see Jones and Davis, 2003) and are effective triggers for 

synaptic and neuronal damage (Pitkänen and Sutula, 2002). These hypoglycemic episodes cause an 

acute release of ATP (Juranyi et al., 1999), which play a key role in triggering (e.g. Cavaliere et al., 

2001a) and controlling the recovery (Aihara et al., 2002) of hypoglycemia-induced neuronal damage. 

Therefore, the decrease of synaptic ATP signalling can be viewed as an adaptive response to 

compensate increased risk of P2 receptor-mediated neurotoxicity in type 1 diabetes.  

In contrast to what occurs in hippocampal synapses, it was observed that there was a trend 

for an increase of the density of P2 receptors in whole hippocampal membranes, which are mainly 

derived from extra-synaptic membranes given that synapses only represent <2 % of hippocampal 

volume (Rusakov et al., 1998). Apart from its synaptic role in the control of synaptic transmission 

and plasticity, extracellular ATP also fulfils important signalling roles outside synapses, mainly in 

the communication between neurons and glia, which may also contribute for non-synaptic-

mediated neuromodulation (reviewed in Fields and Burnstock, 2006). In astrocytes, which are the 

most abundant cellular elements in the brain, there is evidence that P2 receptors can contribute to 

astrogliosis (Abbraccio and Verderio, 2006; Neary and Kang, 2005) and P2 receptors actually protect 

astrocytes from damage (Shinozaki et al., 2005). This is particularly relevant in diabetic conditions 

since astrocytes are expected to be the main cellular element able to metabolise and resolve the 

increased extracellular levels of glucose (Pellerin and Magistretti, 2004). Hence, it seems logical to 

expect maintenance of this astrocytic ATP signalling in a diabetic condition and the increased P2 

receptor density in whole membranes may be an adaptive response to compensate for the decreased 

ATP levels faced by these extra-synaptic P2 receptors. Since it has been reported that there is an 

astrogliosis in type 1 diabetes (Saravia et al., 2002), it will be interesting to test if there will be an 

increased P2 receptor-mediated signalling in astrocytes in the diabetic brain and whether this may 

be related to an increased ability to handle extracellular glucose.  
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In conclusion, the present study provides evidence showing that the ATP signalling system 

is compromised in the hippocampus of STZ-treated rats, an experimental model of type 1 diabetes 

mellitus. These modifications could lead to alterations in the modulation of neurotransmission and 

gliotransmission, which may contribute to the diabetes-induced progressive cognitive impairment, 

although the direct impact of such alterations on both neuronal and glial functions remains to be 

determined. In particular, the diversity of P2 receptors and the currently observed different 

modification of the density of different receptors in this model of type 1 diabetes open the real 

possibility of selectively manipulating beneficial responses operated by particular P2 receptors 

without exacerbating noxious responses mediated by other P2 receptors. 

 

4.2.3. Modification of cannabinoid CB1 receptor in the hippocampus of 

streptozotocin-induced diabetic rats 

 

CB1 receptors are ubiquitously expressed in the brain, where they are mostly located 

presynaptically (although also located postsynaptically) in a wide range of neurons (for review see 

Marsicano and Kuner, 2007). In particular, they are highly abundant in the human and the rodent 

hippocampus (Katona et al., 1999, 2000; Degroot et al., 2006, and activation of presynaptic 

hippocampal CB1 receptors diminishes the release of GABA (Katona et al., 1999, 2000), glutamate 

(Kawamura et al.,2006), dopamine and acetylcholine (Degroot et al., 2006). These neurochemical 

findings may underlie the ability of CB1 receptor activation to control cognition and memory 

consolidation (Hampson and Deadwyler, 1999). Of particular interest is the finding that in several 

brain areas including the hippocampus, CB1 receptors have been shown to modulate glucose 

utilisation (e.g. Pontieri et al., 1999; Freedland et al., 2003). As described in the general introduction, 

CB1 receptors are involved in a wide spectrum of physiological and pathological mechanisms that 

are affected in diabetic encephalopathy. Thus, it was now tested whether the density and the 

expression of CB1 receptor is changed in the hippocampus of STZ-induced diabetic rats. 

Table 4.9. Body weight and glycaemia of the rats used in the experiments before and after the induction of diabetes (n=6 
for each condition). * P<0.01, different from before treatment; # P<0.01, different from control; n.d, not determined. 
 

 Weight (g)  Glycaemia (mg/dL) 

 Control STZ-treated  Control STZ-treated 

Before treatment 225 ± 14 231 ± 11  91 ± 4 96 ± 6 

3 days after treatment n.d. 221 ± 7  n.d. 460 ± 14 * 

30 days after treatment 327 ± 21 * 208 ± 15 #  93 ± 1 448 ± 24 *, # 
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In this study, the animals were maintained for 30 days after STZ administration. STZ-treated 

rats developed sustained hyperglycaemia as measured 3 and 30 days following STZ treatment, and 

failed to gain body weight (see Table 4.9). 

 

4.2.3.1. Increase of CB1 receptor density in hippocampal membranes and 

decrease of hippocampal CB1 mRNA expression 

 

As shown in Figure 4.24A, the hippocampus of STZ-induced diabetic rats presented 

significantly increased CB1 receptor immunoreactivity in total membranes (13.0±2.5%, n=6, P<0.05), 

 
Figure 4.24. Panel A shows representative Western blots comparing the CB1 receptor immunoreactivity (53 kDa band) in 
total hippocampal membranes (left panel) and nerve terminal enriched membranes (right panel) from control and STZ-
treated rats. In the graphs bellow, each data point represents the average of relative immunoreactivity from six different 
control rats (open symbols) and six STZ-treated rats (filled symbols), at three different protein loads. Below CB1 receptor 
bands, α-tubulin immunoreactivity is presented confirming that equal protein loadings in the SDS-PAGE gel. Panel B 
shows specific binding determined from saturation plots in total and synaptosomal (nerve terminal enriched) membranes 
from the hippocampus of control (open bars) and STZ-treated (filled bars) rats (n=4 for each data point). In panel C is 
presented the expression of the CB1 receptor (average from seven different rats for each group) that is significantly 
diminished in the hippocampus of STZ-treated animals (filled bar) compared to controls (open bar). Each CB1 receptor 
mRNA concentration value was normalized to β-actin. Results are mean±SEM and were compared with Student’s t test. * 
P<0.05, comparing control and diabetic rats. 
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as well as in nerve terminal-enriched membranes (14.8±3.7%, n=6, P<0.05), compared to controls. 

This observation suggests augmented CB1 receptor density, which was confirmed by measuring 

CB1 receptor binding in total and nerve terminal-enriched membranes. It was found a 38% increase 

in the Bmax of [3H]SR141716A (a measure of the density of the receptor) in the total membranes of 

the hippocampus of the STZ-treated rats (n=4, P<0.05, Figure 4.24B), and an 18% increase in the 

nerve terminal-enriched membranes (n=4, P<0.05, Figure 4.24B). These different relative increases 

of CB1 receptor density might correspond to similar absolute amounts of CB1 receptors since the 

Bmax of [3H]SR141716A was 86% greater (P<0.05) in nerve terminal-enriched than in total 

hippocampal membranes (Figure 4.24B, black bars). In parallel, it was observed that the KD values 

(a measure of the affinity of a ligand for a receptor) tend to increase upon STZ treatment, although 

this did not reach the level of significance (from 1.61 nM [95% confidence interval: 1.21–2.01 nM] to 

2.71 nM [1.80–3.62 nM] in total membranes; and from 1.06 nM [0.89–1.24 nM] to 1.59 nM [1.10–2.08 

nM] in nerve terminal-enriched membranes). To test if increased CB1 receptor density in 

hippocampal membranes of STZ-treated rats is due to an altered mRNA expression, it was 

performed quantitative real-time PCR in total hippocampal membranes obtained from vehicle-

injected and STZ-treated rats, 30 days after injection. Melting curve analysis confirmed that one 

single product has been obtained. Intriguingly, the expression of CB1 receptor mRNA (normalized 

to β-actin from the same sample) is significantly decreased by 25% (n=7, P<0.05, Figure 4.24C) in the 

STZ-induced diabetic animals. 

 

4.2.3.2. Discussion 

 

The involvement of the CB1 receptors in metabolic disorders such as obesity and non-

insulin-dependent diabetes has attracted much attention in the last decade. Deletion of CB1 

receptors leads to leanness and resistance to diet-induced obesity (Cota et al., 2003), which 

anticipates a major role for CB1 receptors in controlling diabetes, given that obesity is a major risk 

factor for insulin-resistant (type 2) diabetes. CB1 receptors can also control insulin levels (Juan-Picó 

et al., 2006, Matias et al., 2006), and CB1 receptor blockade can decrease hyper-insulinemia in obese 

subjects (Gelfand and Cannon, 2006). Furthermore, individuals with obese and/or hyperglycaemic 

type 2 diabetes exhibit higher endocannabinoid concentrations in serum and visceral fat (Matias et 

al., 2006). Accordingly, therapy with the CB1 receptor antagonist SR141716A (introduced to the 

European market under the name of Acomplia) is associated with weight loss, favourable changes 

in serum lipid levels, improved glycemic control in pre-diabetic and type 2 diabetic patients, and 
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decreased hyper-insulinemia in obese subjects (Gelfand and Cannon, 2006; Matias et al., 2006). Not 

much is known about the role of CB1 receptors in insulin-dependent diabetes. In diabetes induced 

by STZ administration, it was now shown that there is an increase in the density of CB1 receptors in 

the hippocampus, in both total membranes and nerve terminals.  

This increased density of synaptic CB1 receptors may reflect an elevated neuromodulator 

power for the CB1 receptor. In the hippocampus, endocannabinoids such as anandamide or 2-

arachidonoyl glycerol, which are endogenous activators of the CB1 receptor, are released upon 

postsynaptic activation and then travel back to the pre-synaptic site to activate CB1 receptors, 

inhibiting transmitter release (for review see Freund et al., 2003). This so-called retrograde 

transmission participates in both short and long forms of synaptic plasticity thought to be key 

elements of cognitive behaviour. LTP is impaired in STZ-induced diabetic animals (Biessels et al., 

1996), which also display an impairment of Ca2+-dependent regulation of postsynaptic AMPA 

receptors (Chabot et al., 1997). Since endocannabinoids can facilitate the induction of LTP in the 

hippocampus via pre-synaptic blockade of GABAergic neurotransmission (Carlson et al., 2002) the 

upregulation of presynaptic CB1 receptors may contribute to restoring normal LTP functions. 

Alternatively, the increased density of CB1 receptors may be an adaptive response to 

counterbalance impaired postsynaptic Ca2+ level regulation and AMPA functions that result in a 

diminished endocannabinoid release. Opposing to these, CB1 receptor activation can restrict LTP 

via presynaptic CB1 receptor activation in glutamatergic terminals (Slanina et al., 2005). Clearly, 

further functional studies will be required to explore the modification of CB1 receptor signalling in 

GABAergic and glutamatergic synapses in the hippocampus of STZ-treated rats to pinpoint the 

exact functional relevance of this modified density of CB1 receptors.  

The observed increase in CB1 receptor density in total membranes upon STZ-induced 

diabetes suggests that there is a broader modification of CB1 receptor function upon chronic 

hyperglycaemia, which is observed in uncontrolled type 1 diabetes. Elevated CB1 receptor density 

in membranes from the whole hippocampus of diabetic rats may reflect a compensatory role for 

CB1 receptors not only in synaptic plasticity but also in metabolic control, cell survival and 

neurogenesis. Indeed, CB1 receptors stimulate adult hippocampal neurogenesis (Jiang et al., 2005) 

that is impaired upon STZ-induced diabetes (Beauquis et al., 2006; Stranahan et al., 2008).  

The level of phosphorylated (active) Akt is also increased in the STZ-induced diabetes, with 

a concomitant increase in levels of phosphorylated (inactive) glycogen synthase kinase 3β (GSK3β) 

(Clodfelder-Miller et al., 2005). Since CB1 receptors can activate the survival factor Akt (Gómez del 

Pulgar et al., 2002), and thus indirectly inhibit GSK3β, they can promote survival, as well as 

dendritic arborisation, which are normally controlled by the active form of GSK3β (for review see 
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Kalkman, 2006). Controlling glucose utilisation of hippocampal neurons (Freedland et al., 2002, 

2003; Pontieri et al., 1999; Whitlow et al., 2002) is another aspect whereby CB1 receptors may affect 

hippocampal function, in particular upon a metabolic disorder like diabetes. CB1 receptors might 

control glia-related functions, such as neuroinflammation (Campbell and Downer, 2008), an this 

should not be excluded given that total membranes also include glial membranes. One striking 

aspect of our study was the observed disparity between changes in the expression and the density 

of CB1 receptors after STZ treatment. This suggests either a modification of protein translation, as 

was reported to occur in the hippocampus after traumatic brain injury (Chen et al., 2007), or 

alternatively a modification of the turnover of CB1 receptors that might be related to oxidative 

stress found in the hippocampus of STZ-induced diabetic rats (Ates et al., 2006a, 2006b).  

In conclusion, the elevated density of the CB1 receptor in the hippocampus may represent a 

compensatory or a pathophysiological process. This change can either counteract or contribute to 

pathophysiological, structural and eventually, cognitive abnormalities, which involve synaptic 

deficits, hampered cell proliferation and apoptosis upon sustained hyperglycemia. Therefore, this 

study prompts the need to explore if the CB1 receptor antagonists would affect (worsen or improve) 

neuro-pathological consequences of diabetes. 

 

4.2.4. Modification of neuromodulation systems in the cerebral cortex of 

streptozotocin-induced and Goto-Kakizaki diabetic rats 

 

Hippocampal atrophy occur in patients with diabetes (Convit et al., 2003; Gold et al., 2007), 

and hippocampal function and hippocampal-dependent learning and memory were found to be 

impaired in animal models of diabetes (Biessels et al., 1996; Kamal et al., 1999; reviewed in Trudeau 

et a., 2004), and to be prevented by adequate control of glycaemia (Biessels et al., 1998). Along with 

hippocampal alterations, the cerebral cortex can also be affected by diabetes. Thus, cortical atrophy 

was observed in diabetic patients (Manschot et al., 2006, 2007), and several alterations were reported 

to occur in the cortex of diabetic rodents, such as morphological changes in neurons (e.g. Nitta et al., 

2002; Malone et al., 2006) and glia (Baydas et al., 2003), increased oxidative stress (e.g. Ates et al., 

2006a, 2006b) and modification of synaptic transmission (Gagné et al., 1997; Valastro et al., 2002). 

It was previously shown that neuromodulation systems can be altered in the hippocampus 

of STZ-induced diabetic rats, particularly the adenosinergic and the endocannabinoid systems, 

which have not only a function in modulating synaptic activity but also intermediary metabolism. It 

was found that adenosine A1 and A2A receptors were respectively down- and up-regulated in the 
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hippocampus of STZ-treated rats maintained up to 3 months under chronic hyperglycaemia. It was 

also observed that the density of CB1 receptors increased in hippocampal membranes from STZ-

treated rats, compared to controls. Since diabetes is being suggested to affect the cerebral cortex, it 

was now tested if the expression and density of cortical A1 and A2A as well as CB1 receptors are 

modified by diabetes, using STZ-induced diabetic rats and Goto-Kakizaki rats, which are models 

for type 1 and type 2 diabetes, respectively. 

For the STZ-treated rats used in this study, body weight and glycaemia were measured 

before and after induction of diabetes, and at the time of experiment, i.e. 30 days after STZ 

administration. As shown in Table 4.10, when compared to controls, STZ-induced diabetic rats 

failed to gain weight and displayed sustained increase in blood glucose levels, indicating the 

establishment of chronic hyperglycaemia. At the time of experiment, GK rats (6 month old) 

presented decreased body weight (427.0±12.1 g versus 505.7±15.7 g of age-matched controls, P<0.01, 

n=8) and increased pre-prandial glycaemia (14.8±2.0 mM versus 4.9±0.3 mM in control rats, P<0.01, 

n=8). 

 

Table 4.10. Body weight and glycaemia of STZ-treated rats and respective age-matched controls. Data are shown as 
mean±SEM of 7 rats, and compared with Student’s t test. * P<0.01, different from control; ** P<0.01, different from before 
treatment. 
 

  Weight (g) 
 

Glycaemia (mM) 

  Control STZ-treated 
 

Control STZ-treated 

Before treatment 246.1±6.4 264.6±6.3 
 

5.7±0.2 5.8±0.2 

3 days after treatment 260.9±6.5 267.6±7.5 
 

5.8±0.2 25.1±2.3 *,** 

30 days after treatment 369.6±11.2 ** 251.3±14.8 * 
 

5.8±0.2 30.3±2.1 *,** 

 

4.2.4.1. Modification of A1 receptor density in total membranes without 

alteration of A1 and A2A mRNA expression 

 

When studying the effect of STZ-induced diabetes on A1 and A2A receptors in the 

hippocampal formation, it was found that the modification in the density of these adenosine 

receptors was most evident in total membranes rather than in nerve terminal-enriched membranes. 

Thus, efforts were now focused on studying whole membranes prepared from the cerebral cortex. 

As illustrated in Figure 4.25, Western blot analysis revealed significantly reduced intensity of A1 

receptor immunoreactivity in membranes prepared from the cortex of either STZ-treated (Figure 

4.25A) or GK (Figure 4.25B) rats, when compared to age-matched control rats. In relation to 
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controls, A1 receptor immunoreactivity was reduced by 9.8±1.9% (n=5, P<0.05) in the cortex of STZ-

induced diabetic rats, and by 11.9±2.3% (n=8, P<0.01) in the cortex of GK diabetic rats. 

To test whether modification of adenosine receptor density in the cortex of diabetic animals 

was caused by altered transcriptional processes, it was performed a quantitative analysis of mRNA 

expression relative to the constitutive expression of β-actin, by real-time PCR. When compared to 

the respective controls, neither STZ-induced diabetic rats nor GK rats displayed altered expression 

of A1 receptor (Figure 4.26A) or A2A receptor (Figure 4.26B) mRNAs in the cortex (P>0.05).  

 

 
 
Figure 4.25. Decrease of A1 receptor immunoreactivity in total membranes prepared from the cerebral cortex of STZ-
treated (A) and GK (B) rats, analyzed by Western blot. The figure shows a Western blot (representative of experiments 
from different groups of rats, n=5 for STZ-treated rats and n=8 for GK rats), comparing A1 receptor immunoreactivity 
corresponding to a 37 kDa band in cortical membranes. Membranes from age-matched control rats and STZ-treated (A) or 
GK (B) rats were applied in different concentrations to the SDS-PAGE gel, as indicated above each lane, to simultaneously 
access the sensibility of the assay. Reprobing of the Western blot membranes with anti-α-tubulin antibody (displayed 
under the A1 receptor bands) confirmed that similar amounts of protein were added for each concentration of cortical 
membranes. The graphs bellow the western blots show the respective average relative immunoreactivity of A1R in control 
rats (open symbols) and STZ-treated or GK rats (filled symbols), according to the amount of protein applied in the gel. 
Data are shown as mean±SEM and compared with Student’s t test. * P<0.05, ** P<0.01, comparing immunoreactivity to 
controls. 
 

 
 
Figure 4.26. Expression of A1 receptor (A) and A2A receptor (B) mRNAs in the cerebral cortex of STZ-treated (black bars, 
n=7) and GK (gray bars, n=8) rats, compared to age-matched control rats (adjacent open bars). Receptor mRNA expression 
was quantified by real-time PCR analysis and normalized to β-actin mRNA expression, and results are presented as 
mean±SEM.  
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4.2.4.2. Modification of cannabinoid CB1 receptor in the cerebral cortex of 

streptozotocin-induced and Goto-Kakizaki diabetic rats 

 

The immunoreactivity of the CB1 receptor in total membranes prepared from the cortex of 

STZ-induced diabetic rats (one month after STZ administration) was significantly increased by 

16.1±4.5% (P<0.01, n=8, Figure 4.27A) in comparison to age-matched control rats. Oppositely, 

cortical membranes of insulin-resistant GK rats (6 months old) displayed a significant reduction of 

CB1 receptor immunoreactivity (-10.9±3.2%, P<0.01, n=8, Figure 4.27B). In the cortex of the same 

rats, the expression of CB1 receptor mRNA was quantified by real-time PCR analysis relatively to 

the constitutive expression of β-actin mRNA. When compared to the respective controls, neither 

STZ-induced (Figure 4.27C) nor GK (Figure 4.27D) rats showed significant alteration of CB1 

receptor mRNA expression (P>0.05). 

 

 

 
 

Figure 4.27. Modification of CB1 receptor immunoreactivity and expression of CB1 receptor mRNA in the cortex of STZ-
treated (A, B) and GK (C, D) rats, analyzed by Western blot and quantitative real-time PCR, respectively. The figure 
shows the respective average relative immunoreactivity of CB1 receptor in control rats (open symbols) and STZ-treated 
(A) or GK (B) rats (filled symbols), according to the amount of protein applied in the gel. The expression of CB1 receptor 
mRNA in the cerebral cortex of STZ-treated (B) and GK (C) rats (black bars) was not modified in comparison to age-
matched control rats (adjacent open bars). Receptor mRNA expression was quantified by real-time PCR analysis and 
normalized to β-actin mRNA expression. Results are shown as mean±SEM of n=8 and n=7 for Western blot and PCR 
analysis, respectively, and was compared with Student’s t test. * P<0.05, comparing immunoreactivity to controls. 
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4.2.4.3. Discussion 

 

The results obtained in the present work indicate that the adenosinergic modulation system 

is altered in the cortex of both insulin-dependent and insulin-resistant diabetic rats, when compared 

to controls. A reduction of about 10% was observed in the density of inhibitory A1 receptors in 

cortical membranes of STZ-induced and GK diabetic rats.  

It was previously found that A2A receptors were up-regulated and A1 receptors were down-

regulated in membranes from the hippocampus of STZ-induced diabetic rats compared to controls. 

These alterations in receptor density were more evident in total membranes, suggesting that upon 

chronic hyperglycaemia the modification of the adenosinergic system may be related to other 

functions that the control of neurotransmission, such as the control of intermediary metabolism 

(Håberg et al., 2000; Hammer et al., 2001) or neuroinflamation (Tsutsui et al., 2004, 2008). In total 

membranes prepared from the cortex of both STZ-induced and GK diabetic rats, it was now found 

similar modification of the adenosine receptors, suggesting that diabetes induced changes of 

adenosinergic function are not restricted to the hippocampal formation. Together with the protein 

density of adenosine receptors, their mRNA expression was now also studied. Diabetes failed to 

alter the relative expression of either A1 receptor or A2A receptor mRNAs in the cortex of both STZ-

induced rats and GK diabetic rats, suggesting that the alteration on the density of membrane 

adenosine receptors may be caused by post-transcriptional events, affecting protein turnover for 

each of the studied receptors. 

In summary, as occurring in the diabetic hippocampus, also in the cerebral cortex there is a 

down-regulation of inhibitory A1 receptors upon a diabetic condition, which is not supported by 

concomitant modification of mRNA expression. These results confirm the possibility of using A2A 

receptor antagonists for the management of diabetes-associated brain dysfunction, as purposed for 

other neurodegenerative pathologies (Cunha, 2005).   

Regarding the endocannabinoid system, and the CB1 receptor in particular, it was found an 

increased density of CB1 receptors in total membranes from the cortex of STZ-induced diabetic 

animals, which was of the same magnitude of the observed increase in the hippocampus. 

Conversely, in the cortex of GK rats, the density of CB1 receptors was decreased. Since it was 

observed that diabetes failed to induce alterations of CB1 receptor mRNA expression, like for 

adenosine receptors, it is also concluded that the modifications of CB1 receptor density in the cortex 

of diabetic animals are related to post-transcriptional events. 

The present finding of an opposite change in insulin-dependent and insulin-resistant 

diabetic animals, suggests that CB1 receptor density in cortical membranes is inversely correlated 



 
109 Results 

with the levels of circulating insulin. Together with reported observations of the ability of CB1 

receptors to modulate brain glucose uptake (Freedland et al., 2002; Pontieri et al., 1999; Whitlow et 

al., 2002), the present results suggest that an interaction between the signalling pathways operated 

by CB1 receptor and insulin receptors may occur. Notably, insulin and CB1 receptors share the 

same signalling cascades: the PI3K-PKB/Akt pathway which can lead to glucose transporter up-

regulation (Summers and Birnbaum, 1997; Plum et al., 2006), and the PKB/Akt-glycogen synthase 

kinase 3β pathway (Clodfelder-Miller et al., 2005). In fact, in CB1 receptor blockade was suggested 

to prevent insulin-induced MAPK activation (Boulaboula et al., 1997), and to modulate insulin 

sensitivity in adipocytes (Motaghedi and McGraw, 2008). Further work is needed to understand the 

relation between endocannabinoids and insulin in controlling the regulation of brain glucose 

transport and metabolism, and to explore this interaction as a possible therapeutic target in diabetic 

encephalopathy.  
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4.3. Diabetes-induced alterations of intermediary metabolism  

 

Diabetes mellitus is a metabolic disorder resulting from inadequate insulin release or insulin 

resistance, leading to an inadequate utilization of glucose as a substrate that, as described in the 

general introduction, may have negative impacts on the CNS (e.g. Biessels et al., 2002; Trudeau et al., 

2004; Manschot et al., 2006), and lead to increased risk of dementia (Biessels et al., 2006a) and 

Alzheimer’s disease (Biessels et al., 2006b).  

It is widely recognized that the brain requires glucose as the primary fuel to generate energy 

for cellular homeostasis and synaptic transmission. Uncontrolled diabetes was suggested not to 

affect brain glucose concentration (Seaquist et al., 2005). Also blood-to-brain glucose transport and 

cerebral glucose metabolism were found not to be reduced in type 1 diabetes (Fanelli et al., 1998b). 

However, subjects with type 1 diabetes and hypoglycemia unawareness display significantly higher 

brain glucose concentrations (Criego et al., 2005a), which does not occur in healthy subjects 

submitted to recurrent hypoglycaemia (Criego et al., 2005b). Other authors suggested that glucose 

metabolism in the brain is reduced by chronic hyperglycaemia (Garcia-Espinosa et al., 2003), which 

could affect neurotransmitter synthesis and release (Trudeau et al., 2004), and eventually cause 

alterations in synaptic connectivity and neuronal loss, mainly through apoptotic events (Sima et al., 

2004). Apart from glucose, the brain is able to use other carbon sources to produce the energy 

required to sustain basic cellular functions and neurotransmission. Thus, the brain uses the 

glycogen stores present within astrocytes to acutely buffer glucose demand (Gruetter et al., 2003). 

Also lactate taken from the blood stream or produced in astrocytes, can be provided to neurons, 

playing a role in brain energy metabolism and sustaining glutamatergic neurotransmission (e.g. 

Pellerin, 2003). Ketone bodies can also be used to produce acetyl-CoA to enter the TCA cycle, and 

lipolysis and proteolysis may also serve as carbon source (McCall, 2004). The contribution of these 

alternative carbon sources for brain metabolism may eventually be altered upon diabetes. For 

example, the monocarboxylic acid transport and oxidative metabolism of acetate have been 

reported to be increased in type 1 diabetic subjects (Mason et al., 2006). 

The lack of knowledge of the impact of a diabetic condition on the metabolic network in the 

brain, and in the hippocampus in particular, prompted the present study aiming at exploring 

changes of hippocampal metabolism in STZ-induced and GK diabetic rats.  
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4.3.1. Intermediary metabolism is not altered in superfused hippocampal 

slices from STZ-induced diabetic rats 

 

Hippocampal slices are the gold standard for electrophysiology studies and, 

electrophysiological analysis indicate that diabetes affects synaptic plasticity in hippocampal slices, 

which is associated with learning and memory processes. In particular, impairment of LTP (e.g. 

Biessels et al., 1996) and facilitation of LTD (Kamal et al., 1999) were reported to occur in 

hippocampal slices prepared from STZ-induced diabetic rats. Likewise, it was now tested if 

intermediary metabolism is also altered in hippocampal slices prepared from rats submitted to 

chronic hyperglycaemia induced by STZ administration.  

In this study, male Wistar rats (8 weeks old) were injected with STZ and maintained for 30 

days with food and water ad libitum, as well as untreated control rats. Table 4.11 summarises body 

weight and glycaemia of both control and diabetic rats. After the 30 days of chronic 

hyperglycaemia, hippocampal slices were prepared and superfused with modified Krebs solution 

containing 5.5 mM [U-13C]glucose and 5.5 mM [2-13C]acetate, in the absence or presence of 50 µM 

4AP.  

HPLC analysis of adenine nucleotide concentrations in PCA extracts from superfused 

hippocampal slices revealed similar energy charge in slices from control and STZ-treated rats 

(Figure 4.28A), in the absence or presence of stimulation with 50 µM 4AP, suggesting that the global 

energy status is not affected by diabetes. PCA extracts of superfused hippocampal slices were then 

analysed by 1H NMR spectroscopy for quantification of the fractional enrichment of lactate and 

alanine. Hippocampal slices from controls and STZ-induced diabetic rats showed equal 

incorporation of labelling from [U-13C]glucose into lactate and alanine, in the absence or presence of 

4AP (Figure 4.28B). The 13C NMR spectra of metabolite extracts from hippocampal slices were used 

to analyse the multiplet patterns in the resonances of glutamate C4 and GABA C2, by performing a 

direct 13C isotomoper analysis of the glutamate and GABA (Malloy et al., 1990) as described in 

section 4.1.1.4. Briefly, the ratios of GluC4Q/D45 (or GABAC2Q/D12) and GluC4D34/S (or 

Table 4.11. Body weight and glycaemia of STZ-treated rats and respective age-matched controls. Data are shown as 
mean±SEM of 18 rats, and compared with Student’s t test. * P<0.01, different from control; ** P<0.01, different from before 
treatment; n.d., not determined. 
 

  Weight (g) 
 

Glycaemia (mg/dL) 

  Control STZ-treated 
 

Control STZ-treated 

Before treatment 222.3±7.5 224.8±7.8 
 

92.7±4.2 92.3±4.1 

3 days after treatment n.d. 211.3±8.1 
 

n.d. 452.1±12.3 *,** 

30 days after treatment 318.9±9.0 ** 209.3±8.2 * 
 

92.1±1.2 458.0±15.1 *,** 
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GABAC2D23/S) indicate the flux into the TCA cycle(s) oxidizing [U-13C]glucose and [2-13C]acetate, 

respectively, and this allows inferring about neuronal and glial TCA cycles leading to glutamate 

and GABA synthesis. As illustrated in Figure 4.28C and D, hippocampal slices from STZ-induced 

diabetic rats showed multiplet ratios similar to controls, either calculated from glutamate C4 or 

GABA C2, in the absence or presence of stimulation with 4AP. Furthermore, when compared to 

controls, STZ-induced diabetes failed to alter the contribution of [U-13C]glucose (Fc3) and [2-

13C]acetate (Fc2) to the pool of acetyl-CoA, either analysed from glutamate C4 or GABA C2 

resonances (Figure 4.29). 

 

4.3.1.1. Discussion  

 

The present results show that hippocampal slices prepared from healthy controls or STZ-

induced diabetic rats have identical metabolic behaviour at the level of the TCA cycle activity and 

anaplerotic fluxes, in resting conditions or upon stimulation with 4AP. Thus, it can be inferred that, 

despite the alterations to which the diabetic hippocampus is submitted in vivo, it can adapt and 

 

Figure 4.28. Intermediary metabolism in hippocampal slices from STZ-treated rats was similar to controls, both under 
resting conditions or stimulation with 4AP. Hippocampal slices prepared from both control (white bars) and STZ-induced 
diabetic rats (black/gray bars) were superfused with modified Krebs solution including 5.5 mM [U-13C]glucose and 5.5 
mM [2-13C]acetate for 3 hours, in the absence (n=3, black bars) and presence (n=4, gray bars) of 50 µM 4AP. Panel A 
presents energy charge from the hippocampal sliced, determined by HPLC analysis. Panel B shows fractional enrichment
of lactate and alanine in hippocampal slices from control and STZ-induced diabetic rats at the end of the superfusion 
period, calculated from 1H NMR spectra. Panel C and D show the multiplet ratios directly calculated from both glutamate 
C4 and GABA C2 resonances in 13C NMR spectra, in the absence (C) or presence (D) of 4AP.  
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perform metabolically identical to controls upon the same metabolic imposition, in this case 

provision of 5.5 mM glucose and 5.5 mM acetate.  

Other functional changes have been recorded in hippocampal slices prepared from STZ-

induced diabetic rats when compared to controls. In particular, when compared to controls, 

hippocampal slices from STZ-induced diabetic rats displayed altered long-term potentiation (LTP) 

and long-term depression (LTD) (Biessels et al., 1996, 1998; Kamal et al., 1999, 2000), indicating 

altered hippocampal synaptic transmission and plasticity, which was associated with reduced 

spatial learning and memory (e.g. Gispen and Biessels, 2000; Kamal et al., 2000). Furthermore, 

chronic hyperglycaemia may eventually lead to modification of NMDA receptor density, 

localization or function in the brain, therefore contributing to altered synaptic transmission and 

plasticity (reviewed in Trudeau et al., 2004). As shown above (section 4.1), the metabolic competence 

of hippocampal slices is preserved if substrates and oxygen are properly provided (e.g. Nichols, 

2003). Moreover, the hippocampus of STZ-treated rats displayed structural changes, namely 

synaptic degeneration (see section 4.2.1.3) that can contribute to memory impairment. Thus, the 

reduction of syntaxin density in hippocampal nerve terminals seven days after STZ-administration, 

which was sustained for at least three months (Figure 4.15), suggests that STZ-treatment caused 

acute rather than chronic toxicity in the hippocampus. This toxicity causes a damage of the 

hippocampal tissue namely at the level of the synapse, possibly being preserved the rest of the 

tissue. Thus, STZ-induced chronic hyperglycaemia may cause synaptic deficits that are permanent 

and dramatically affect learning and memory, but does not lead to metabolic adaptations of the 

hippocampus that are maintained in superfused hippocampal slices.  

 
Figure 4.29. Identical intermediary metabolism of 5.5 mM [U-13C]glucose and 5.5 mM [2-13C]acetate for 3 hours in 
hippocampal slices from STZ-treated rats (black/gray bars) and controls (open bars), both under resting conditions (A 
and B) or stimulation with 4AP (C and D) lead to similar fractional contributions to acetyl-CoA estimated from glutamate 
C4 (A and C) and GABA C2 (B and D) with the program tcaCALC, using non-steady-state analysis.  
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Other metabolic changes may occur in the hippocampus of STZ-treated rats that unrelated to 

the metabolism of glucose and acetate. However, other substrates were not tested in the superfused 

hippocampal slices. For example, processing or presence of free fatty acids or ketone bodies in the 

hippocampus may negatively affect glucose metabolism in the tissue. In particular, ketone bodies 

like β-hydroxybutyrate were shown to by preferentially consumed in the diabetic hippocampus 

(Robinson and Williamson, 1980), and to inhibit glucose oxidation (e.g. Lapidot and Haber, 2001). 

Upon hyperglycaemia, this will further increase the availability of glucose in the hippocampus, 

contributing to neurotoxicity (Tomlinson and Gardiner, 2008). Furthermore, glial metabolism was 

suggested to have a greater contribution to the brain energy production in STZ-induced diabetic 

rats than in controls (Garcia-Espinosa et al., 2003), and acetate (mainly taken by glial cells) uptake 

and metabolism was suggested to be increased in type 1 diabetic subjects (Mason et al., 2006). 

However, the balance of neuronal and glial metabolism was not altered in superfused hippocampal 

slices, possibly because all the cellular elements in the slice have free access to the substrates in the 

superfusion medium and neurons do not depend on the metabolic support from astrocytes. 

A deregulation of osmolarity may occur in the diabetic hippocampus subjected to 

hyperglycaemia, inducing a metabolic adaptation of the tissue (Lien et al., 1990, 1991). In fact, high 

concentration of osmolytes, such as myo-inositol, was also reported in the brain of diabetic patients 

(Geissler et al., 2003; Kreis and Ross, 1992), as well as in the hippocampus of Zucker diabetic fatty 

rats (van der Graaf et al., 2004). Such metabolic adaptation to osmotic modifications was not 

observed in hippocampal slices prepared from STZ-treated rats since they were superfused in the 

same conditions as controls, in particular in the presence of the same glucose concentration. 

In summary, the results now obtained failed to find altered metabolic performance of 

superfused hippocampal slices from diabetic rats compared to controls, in opposition to altered 

synaptic plasticity (e.g. Biessels et al., 1996), suggesting that learning and memory impairment 

caused by diabetes is related to synaptic alterations rather than metabolic stress caused by chronic 

hyperglycaemia.  

 

4.3.2. In vivo metabolism of [1-13C]glucose in the hippocampus of Goto-

Kakizaki diabetic rats 

 

Since the hippocampus plays a crucial role in learning and memory processes that require 

high glucose supply, glucose metabolism was studied in the hippocampus of insulin-resistant GK 

diabetic rats using 13C NMR spectroscopy upon in vivo infusion of enriched [1-13C]glucose.  
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In this study, 6 months old GK rats were used and they displayed significantly increased 

glycaemia (233.4±23.7 mg/dL versus 84.1±11.4 mg/dL of controls, n=15, P<0.0001) and decreased 

body weight (424.6±28.1 g versus 524.7±13.0 g of controls, n=15, P<0.001). Diabetic GK and age-

matched Wistar rats were infused i.v. with [1-13C]glucose under ketamine-chlorpromazine 

anaesthesia at an exponentially decaying rate bolus over 5 min, followed by a continuous infusion 

with a rate adjustable to animal’s glycaemia to maintain stable glucose levels in the blood (Figure 

4.30A), which resulted in a rapid rise of glucose 13C isotopic enrichment from natural abundance to 

70% or 40% for controls and GK rats respectively. This was confirmed by 1H NMR spectroscopy of 

blood samples and Figure 4.30B shows the concentration of [1-13C]glucose in the blood of control 

and diabetic GK rats. At the end of each infusion protocol (for different periods), PCA extracts of 

the hippocampal tissue were prepared and analysed by 1H and 13C NMR spectroscopy. The 1H 

spectra allowed quantifying hippocampal [1-13C]glucose concentration (Figure 4.30C) that 

accompanies plasma glucose 13C enrichment. 

Figure 4.31 shows typical 13C NMR spectra obtained from PCA extracts of the rat 

hippocampus after [1-13C]glucose infusion, illustrating the 13C label incorporation into intermediary 

metabolites including lactate, alanine, glutamate, glutamine, GABA and aspartate. After 90 minutes 

of [1-13C]glucose infusion, one can appreciate doublet signals namely in glutamate resonances. This 

multiplets were not observable at lower infusion times, in particular in GK rats, and therefore were 

 
 

Figure 4.30. Glucose concentration in the arterial blood during [1-13C]glucose infusion measured by glucose oxidase 
method(A), and concentration of [1-13C]glucose in the blood (B) and in the hippocampus (C) of control (filled symbols) 
and GK rats (open symbols). As described in the methods, an exponential bolus of [1-13C]glucose was given to rapidly 
achieve glucose levels of 320-370 mg/dL for controls and at 450-500 for GK rats, which were maintained constant through 
experiment. [1-13C]glucose content in both blood and hippocampus was quantified by 1H NMR spectroscopy of PCA 
extracts of the tissue at 500 and 600 MHz, respectively. Values are mean±SEM of 15 animals in each group. 
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not analysed, being quantified the entire area of the resonance.  

Figure 4.32 presents the 13C enrichment of glutamate and glutamine C4 and C3, and GABA 

C2 and C3, which directly reflect the flux of labelling through the TCA cycle(s) in neurons and 

astrocytes and are involved in neurotransmission and cycling between neuronal and astrocytic 

compartments. Due to insulin resistance there was a much greater accumulation of glucose in the 

blood of GK rats than in controls (Figure 4.30A) and thus reduced infusion rate in GK rats 

compared to controls originated lower 13C enrichment in blood glucose that, consequently, resulted 

in proportionally reduced 13C incorporation into intermediary metabolites (Figure 4.32). This high 

labelling dilution observed in GK rats impairs the observation of alterations in metabolic fluxes. 

Alternatively, the ratios C3/C4 in glutamate and glutamine were calculated, since they are 

inversely proportional to the rate of the TCA cycle in neurons and astrocytes, respectively (Figure 

4.33). When compared to controls, the hippocampus of diabetic GK rats displayed higher C3/C4 in 

both glutamate and glutamine, suggesting increased contributions of unlabelled carbon sources to 

the pool of acetyl-CoA or increased anaplerosis through pyruvate carboxylase (PC). PC activity 

directly labels carbon C2 of glutamate and glutamine from the C3 of pyruvate (e.g. Gruetter et al., 

2001). Methodological limitations of this study did not allow the proper quantification of labelling 

in glutamate and glutamine C2, but due to randomization of 13C enrichment between C2 and C3 in 

the TCA cycle due to back scrambling at the level of fumarase, the analysis of labelling of C3 

relative to C4 can be used for anaplerotic flux analysis. 

In summary, the hippocampus of GK rats displayed a reduction in the 13C enrichment of the 

carbons in glutamate, glutamine and GABA, as result of labelling dilution due to metabolism of 

unlabelled glucose and possibly other carbon sources. In this study, when compared to controls, the 

hippocampus of GK rats showed an increase of 13C incorporation in C3 relative to C4 position in 

 

Figure 4.31. Representative 13C NMR spectrum at 150.7 MHz (expansion from 18 to 58 ppm) of a PCA extract from the 
hippocampus of a control rat, after infusion of [1-13C]glucose for a period of 90 min. [1-13C]glucose was metabolised in the 
hippocampus leading to labelling of intermediary metabolites, in particular 13C was incorporated in aliphatic carbons of 
glutamate, GABA and glutamine. 
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both glutamate and glutamine, suggesting increased contribution of carbon sources other than 

precursors of pyruvate to the hippocampal pool(s) of acetyl-CoA upon diabetes. Possibly, increased 

rate of anaplerosis through PC activity may also account for increased 13C enrichment in C3 versus 

C4 mainly in molecules of glutamate and glutamine, in comparison to controls.  

 

4.3.2.1. Discussion  

 

The in vivo infusion of [1-13C]glucose and the analysis of 13C enrichment of hippocampal 

metabolites allowed to access the relative contribution of metabolic fluxes feeding hippocampal 

TCA cycle(s). The present study evaluated the metabolism of [1-13C]glucose in the hippocampus of 

 
 

Figure 4.32. Enrichment of glutamate (A), glutamine (B) and GABA (C) in PCA extracts of the hippocampus of control 
(left column) and GK (right column) rats, upon infusion [1-13C]glucose, as quantified by 13C NMR spectroscopy at 150.7 
MHz. Open symbols represent enrichment in C3 of glutamate, glutamine and GABA, while filled symbols represent C4 of 
glutamate and glutamine, and C2 of GABA. The labelling appears due to metabolism in the TCA cycle: the first turn of the 
TCA cycle produces labelling of Glu and Gln C4 and GABA C2, and if the labelling continues on a second turn of the 
cycle, will enrich the C3 positions of these metabolites. Values are mean±SEM of 3 rats in each data point (total of 15 
animals in each group). 
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GK diabetic rats in comparison to control rats, and was challenged by the high 13C labelling dilution 

in diabetic GK rats by hyperglycaemia even after overnight fasting. 

When compared to controls, the hippocampus of GK rats showed an increase of 13C 

incorporation in C3 relative to C4 position in both glutamate and glutamine, suggesting increased 

contribution of carbon sources other than precursors of pyruvate to the hippocampal pool(s) of 

acetyl-CoA upon diabetes. In particular, ketone bodies like β-hydroxybutyrate may inhibit glucose 

oxidation (e.g. Lapidot and Haber, 2001) and be preferentially consumed in the diabetic 

hippocampus (Robinson and Williamson, 1980). Possibly, increased rate of anaplerosis, namely 

through pyruvate carboxylation by PC activity that takes place in astrocytes, may also account for 

the diabetes-induced increase in 13C enrichment in C3 versus C4 mainly in glutamine, but also in 

glutamate by exchange in the glutamine-glutamate cycle between neurons and astrocytes. 

Furthermore, some intermediate metabolites of the TCA cycle can be produced from amino acids or 

be used to synthesize them (Voet and Voet, 1995), and the high glucose and pyruvate availability in 

the hippocampus submitted to a diabetic condition may inhibit the catabolism of amino acids, 

leading to reduced anaplerotic incorporation of unlabeled carbon atoms into glutamate and 

glutamine C1, C2 and C3 positions.  

The present observation of increased anaplerotic fluxes through pyruvate carboxilation 

(relative to the TCA cycle activity) in the hippocampus upon diabetes is consistent with increased 

metabolic activity of glial cells relative to the neuronal populations. In fact, the brain of STZ-

induced diabetic rats was suggested to display increased contribution of glial metabolism (Garcia-

Espinosa et al., 2003), and acetate (mainly taken by glial cells) uptake and metabolism was reported 

to be increased in type 1 diabetic subjects (Mason et al., 2006), and this higher glial metabolic fluxes 

could be a form of compensation for probable altered glucose transport and metabolism. In 

agreement with higher metabolic support from astrocytes to neurons, the specific glial enzyme 

glutamine synthetase was increased in the diabetic rat brain (Bhardwaj et al., 1998). Likewise, 

 
 

Figure 4.33. Glutamate and glutamine C3/C4 ratios tend to increase in the hippocampus of GK rats (filled symbols) 
compared to controls (open symbols). Values are mean±SEM of 3 rats in each data point (total of 15 animals in each 
group). * P<0.05, comparing control and diabetic rats. 
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increased astrocyte metabolism in the diabetic hippocampus is consistent with the occurrence of 

astrogliosis, which was observed in animal models of diabetes, namely in STZ-treated rats and 

NOD mice (Baydas et al., 2003; Revsin et al., 2005; Saravia et al., 2002). Moreover, since astrocytes are 

considered the main cells involved in glycogen metabolism and storage (see Gruetter, 2003, and 

references therein), the glucose buffering capacity of the diabetic hippocampus is enhanced by the 

increased metabolic activity of astrocytes. 

In conclusion, the results obtained in the present study suggest that the hippocampus 

submitted to a diabetic condition will rearrange the relative fluxes through intermediary metabolic 

pathways, possibly to counteract alterations of glucose transport and utilization as substrate. From 

the observations of this and previous studies on the brain metabolism upon diabetes (discussed 

above), it can be proposed that in the diabetic hippocampus there is an increased oxidation of 

acetyl-CoA precursors other than pyruvate (e.g. acetate, β-hydroxybutyrate, fatty acids) and 

pyruvate is then carboxylated to oxaloacetate to enter the TCA cycle.  
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4.4. Ability of caffeine consumption to counteract diabetes-induced 

alterations in the hippocampus  

 

A decline in memory and cognitive function is considered to be a normal consequence of 

ageing. However, this age-related cognitive decline is accentuated by neurodegenerative 

pathologies, causing severe deterioration in memory and learning, attention and concentration, use 

of language, and other mental functions (e.g. Keller, 2006). One condition that exacerbates age-

related memory deficits is diabetes (e.g. reviewed in Brayne et al., 2005; Convit, 2005), which are 

particularly associated with atrophy of the hippocampal formation that is involved in learning and 

memory processing (Convit et al., 2003; Gold et al., 2007; Lupien et al., 1998). However, the 

mechanisms underlying the development of diabetic encephalopathy and associated cognitive 

impairments remain unknown.  

The prevention of neurodegeneration represents one of the critical goals of medical research 

today, and one candidate to manage diabetes-induced neurodegeneration is caffeine. Caffeine is the 

most widely consumed psycho-active substance and was suggested to improve performance in 

learning and memory tasks (discussed in Fredholm et al., 1999) in both humans (e.g. Johnson-

Kozlow et al., 2002) and animals (e.g. Angelucci et al., 1999, 2002). Furthermore, chronic caffeine 

consumption has the ability to attenuate CNS injury, namely preventing cognitive impairment 

associated with Alzheimer’s disease (e.g. Arendash et al., 2006; Dall’Igna et al., 2007; Maia and de 

Mendonça, 2002). On the other hand, habitual caffeine consumption has been suggested to reduce 

the risk of diabetes, since it is inversely associated with a reduction of glucose tolerance, possibly 

due to increased resting metabolic rate, peripheral energy expenditure and weight loss (e.g. 

Greenberg et al., 2006; Higdon and Frei, 2006; van Dame and Hu, 2005).  

The molecular targets of caffeine in non-toxic concentrations are the adenosine A1 and A2A 

receptors (Fredholm et al., 1999), and chronic brain insults, including STZ-induced diabetes, modify 

their density in the hippocampus (reviewed in Cunha, 2005). Given that diabetes can lead to up-

regulation of adenosine A2A receptors in the CNS, it was hypothesized that chronic caffeine 

treatment could prevent diabetes-induced alterations in the hippocampus by both antagonizing 

hippocampal A2A receptors and reducing the severity of uncontrolled diabetic condition through 

the control of peripheral glucose homeostasis.  
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4.4.1. Chronic caffeine consumption prevents diabetes-induced alterations 

in the hippocampus of NONcNZO10/LtJ mice 

 

The question of whether caffeine consumption could prevent diabetes-induced hippocampal 

alterations was addressed using the diabetic mouse strain NONcNZO10/LtJ (Cho et al., 2007), 

where it was investigated if chronic caffeine consumption could prevent the molecular and 

morphological alterations induced by diabetes in the hippocampus. 

 

4.4.1.1. Caffeine intake reduced body weight and glycaemia 

 

To evaluate whether caffeine is able to prevent hippocampal alterations induced by diabetes, 

NONcNZO10/LtJ diabetic mice and respective control mice were allowed to access caffeine at 1 

g/L in the drinking water during 4 months, starting at 7 months of age. As shown in Table 4.12, the 

average caffeine intake was similar in both control and diabetic groups through out the treatment 

period, and achieved similar serum caffeine concentrations as measured after four months of 

Table 4.12. Characteristics of the mice involved in the study, during and/or after caffeine treatment. The study included 
10 mice in the control, diabetic and caffeine groups, and 9 diabetic mice treated with caffeine (1 g/L in drinking water). * 
P<0.05, ** P<0.01, *** P<0.001 compared to control; # P<0.05, ### P<0.001 compared to diabetic; $ P<0.05 compared to 
caffeine. 
 

  
Control mice Diabetic mice 

Diabetic mice 
+ Caffeine 

Control mice 
+ Caffeine 

Caffeine intake (mg/day/kg) 

 
month 1 

  
101±12 91±8 

 
month 2 

  
104±5 92±5 

 
month 3 

  
91±5 87±5 

 
month 4 

  
86±5 85±4 

Serum caffeine (µM) 
  

50.1±13.8 54.8±10.4 

Body weight (g) 
    

 
before 43.6±1.5 46.1±1.0 47.0±1.4 $ 41.4±0.7 

 
month 1 44.9±1.4 50.1±0.9 45.7±1.5 43.7±0.9 # 

 
month 2 48.7±1.4 51.1±1.3 46.8±1.2 46.7±1.9 

 
month 3 50.4±1.7 52.5±1.6 47.9±1.2 46.6±1.6 # 

 
month 4 52.9±2.3 53.5±2.2 47.5±1.2 # 47.7±1.9 # 

Glycaemia (mg/dL) 

 
month 1 138.7±3.6 375.0±57.9 *** 249.6±47.4 # 138.4±7.7 ### 

 
month 2 165.6±6.0 396.9±55.2 *** 259.9±41.7 # 181.2±17.8 ### 

 
month 3 153.4±11.9 357.9±58.2 *** 261.4±34.1 # 150.0±7.3 ### 

 
month 4 162.67±23.8 426.1±61.9 *** 282.3±22.9 #. $ 139.4±11.2 ### 

Serum insulin (µg/L) 6.2±1.2 33.4±12.0 * 38.9±7.9 ** 13.2±3.9 
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caffeine consumption. Both body weight and pre-prandial glycaemia were monitored through the 

study, and the serum insulin concentration was quantified at the end of the treatment period. Long-

term caffeine consumption reduced the weight gain and pre-prandial glycaemia in obese and 

diabetic mice but failed to prevent diabetes-associated hyper-insulinemia (Table 4.12). 

 

4.4.1.2. Caffeine prevents diabetes-induced memory deficits 

 

The behavioural study was performed before and after the caffeine treatment period, at 7 

and 11 months of age respectively. Since the Y-maze test is dependent on the exploratory behaviour 

of the mice, this was observed in an open-field arena immediately before the evaluation of Y-maze 

spontaneous alternation. Neither diabetes nor prolonged caffeine consumption affected 

significantly the locomotor activity or exploratory behaviour, as suggested by similar number of 

crossing (Figure 4.34A) and rearing (Figure 4.34B) events in the open-field arena test and similar 

number of explorations in the Y-maze arms (Figure 4.34C). However, the age factor consistently 

affected exploratory activity of the mice in the four animal groups, indicated by significant 

reduction of crossing and reading events (P<0.001, n=8-10) and entries in the Y-maze arms (P<0.001, 

n=8-10). The spontaneous alternation in the Y-maze task revealed that diabetes caused a reduction 

of the performance of hippocampal-dependent spatial memory at 11 months of age, in comparison 

 
Figure 4.34. Behavioural tasks showed that caffeine consumption prevents spatial working memory deficits induced by 
diabetes. Number of crossings in the open-field arena was unaltered by diabetes or caffeine consumption (A), as well as 
the number of rearing events (B). The amount of entries in the Y-maze arms was similar in the four animal groups (C). 
Diabetic mice (black bars) displayed reduced spontaneous alternation in the Y-maze at 11 months of age, when compared 
to controls (white bars), but not if treated with caffeine (gray bars) for four months (D). Control mice consuming caffeine 
(striped bars) did not present significant behavioural alterations. Data is presented as mean±SEM and was compared with 
two-way ANOVA followed by Bonferroni's post-test (* P < 0.05 compared to control). 
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to the control mice (P<0.05, n=8-10); this was prevented by 4 months of caffeine consumption 

(Figure 4.34D), supporting the potential role of long-term caffeine consumption in the prevention of 

memory impairment caused by a diabetic condition. 

 

4.4.1.3. Lack of neuronal degeneration in the hippocampus 

 

Hippocampal cellular organization and degeneration were evaluated on brain sections 

stained with cresyl violet and FluoroJade-C, respectively. These histological analysis revealed 

qualitatively similar cresyl vilet staining of the Nissl bodies (Figure 4.35A) and lack of  FluoroJade-C 

stained cells (data not shown) in the hippocampal formation among the four animal groups, 

supporting the lack of neuronal damage caused by diabetes. This was corroborated by the absence 

of modification of MAP2 immunoreactivity in the hippocampus, as observed in either immuno-

histochemistry of brain sections (Figure 4.35B) or Western blot analysis of hippocampal membranes 

(Figure 4.35C). 

 

4.4.1.4. Caffeine attenuates synaptic degeneration 

 

We further evaluated whether NONcNZO10/LtJ diabetic mice displayed alterations on 

synaptic proteins, integrating the vesicular machinery at the nerve terminal, which could be related 

Figure 4.35. Diabetic NONcNZO10/LtJ mice did not present structural alterations in the hippocampus when evaluating 
Nissl bodies stained with cresyl violet (A) in dentate gyrus (DG), CA1 and CA3 regions. Neither diabetes nor caffeine 
consumption affected MAP2 immunoreactivity in the hippocampus as evaluated by qualitative immuno-histochemisty (B) 
and Western blot analysis (C). Panel B presents photographs of MAP2 immuno-histochemisty in the CA1 region of the 
hippocampus as example. Panel C shows Western blots representative of 6 similar experiments for the analysis of MAP2 
density in hippocampal membranes; the bar graph displays the average immunoreactivity data normalised to α-tubulin 
immunoreactivity and calculated as percentage of control in the same Western blot experiment. Black, gray and striped 
bars represent diabetes, diabetes plus caffeine and caffeine groups, respectively. 
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to decreased hippocampal-dependent Y-maze spontaneous alternation. Western blot analysis of 

synaptic proteins (Figure 4.36A and B) showed a reduction in the immunoreactivity of 

synaptophysin (-23.3+4.9%, n=6, P<0.001) and SNAP25 (-28.6+6.5%, n=6, P<0.05) in membranes 

prepared from the hippocampus, indicating the occurrence of synaptic degeneration, previously 

shown to occur in STZ-induced diabetes (section 4.2.1.3). Caffeine consumption for four months 

was able to prevent diabetes-induced alteration of SNAP25 immunoreactivity (Figure 4.36B) and to 

attenuate synaptophysin decrease (Figure 4.36A) in the hippocampus of diabetic mice. These results 

suggest that caffeine may have a certain protective effect on the synaptic deterioration that occurs 

upon a diabetic condition. The synaptophysin immuno-histochemistry on brain sections (Figure 

4.36C) was not sensitive enough to find the localization of this reduction in synaptophysin density 

within the hippocampal structure. Nevertheless, the quantification of the immunoreactivity in 

hippocampal regions showed a tendency for reduction of synaptopysin in the CA1, CA3 and 

dentate gyrus of the diabetic mice when compared to control mice or the other animal groups 

(Figure 4.36D). 

 

 
 
Figure 4.36. Caffeine consumption attenuated diabetes-induced synaptic degeneration. Western blot analysis revealed that 
diabetic mice displayed reduced immunoreactivity of both synaptophysin (A) and SNAP25 (B) in hippocampal 
membranes, when compared to controls. Caffeine consumption prevented this diabetes-induced reduction of SNAP25 
and attenuated diabetes-induced reduction of synaptophysin. The graphs in panels A and B show the average 
immunoreactivity of synaptic proteins normalised to α-tubulin immunoreactivity and calculated as percentage of control 
in the same Western blot experiment. In the graphs, black, gray and striped bars represent diabetes, diabetes plus caffeine 
and caffeine groups, respectively. Immuno-histochemisty to synaptophysin (C and D) showed a non-significant reduction 
of immunoreactivity in the 3 regions of the hippocampus in the diabetes group compared to control. Data is shown as 
mean±SEM and was compared with ANOVA followed by Bonferroni's post-test (* P<0.05, *** P<0.001 compared to 
control). 
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4.4.1.5. Caffeine prevents diabetes-induced astrocytosis 

 

Qualitative immuno-histochemistry of the astrocytic protein GFAP in brain sections revealed 

an increased number of GFAP-positive cells in the hippocampus of diabetic mice, when compared 

to controls (Figure 4.37A). Accordingly, western blot analysis of hippocampal membranes showed a 

54.7+18.8% increase in the intensity of GFAP immunoreactivity (n=6, P<0.01) in the hippocampus of 

diabetic mice compared to controls (Figure 4.37B). As shown in Figure 4.37, caffeine consumption 

was able to prevent this diabetes-induced astrocytosis, as suggested by the reduction to control 

levels of GFAP immunoreactivity in hippocampal membranes and the number of GFAP-positive 

cells in the hippocampus. 

 

 

Figure 4.37. Caffeine consumption prevented astrocytosis caused by diabetes. Panel A shows representative photographs 
of CA1, CA3 and dentate gyrus (DG) of immuno-histochemistry for GFAP in mouse brain sections. When compared to 
controls, diabetic mice displayed increased number of GFAP-positive cells in the hippocampus, but not when allowed to 
consume caffeine. Panel B presents a Western blot representative of 6 similar experiments for the analysis of GFAP density 
in hippocampal membranes, showing increased of GFAP immunoreactivity in diabetes. Hippocampal membranes were 
applied in equal amounts to the SDS-PAGE gel, which was confirmed by β-actin immunoreactivity. In the graph bellow, 
GFAP immunoreactivity was normalised to β-actin and calculated as percentage of control in the same Western blot 
experiment. Black, gray and striped bars represent diabetes, diabetes plus caffeine and caffeine groups, respectively. Data 
is mean±SEM and was compared with ANOVA followed by Bonferroni's post-test (** P<0.01 compared to control). 

 

4.4.1.6. Density of adenosine A1 receptors 

 

For the evaluation of A1 receptor density, Western blot analysis was performed using 

hippocampal membranes. When compared to controls, diabetic mice displayed a significant 

reduction of A1 receptor immunoreactivity (-29.6+6.7%, n=6, P<0.05) in hippocampal membranes, 

which was prevented by long term caffeine consumption (Figure 4.38). 
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4.4.1.7. Synaptic distribution of adenosine A1 and A2A receptors 

 

The distribution of adenosine A1 and A2A receptors within glutamatergic and GABAergic 

nerve terminals was evaluated by quantifying the co-localization of A1 and A2A receptors in 

synaptosomes purified from the hippocampus, as illustrated in Figure 4.39A. The fraction of co-

localization of glutamatergic (vGluT1/2) and GABAergic (vGAT) markers with synaptophysin was 

not affected by either diabetes or caffeine consumption (Figure 4.39B), suggesting a preservation of 

the ratio of glutamatergic and GABAergic synapses in the hippocampus. The immunoreactivity of 

A1 receptor and A2A receptor detected in glutamatergic nerve terminals (identified by vGluT1/2) 

was similar in the four experimental groups (Figures 4.39C). As shown in Figure 4.39D, diabetes 

Figure 4.38. Diabetes-induced alteration of the density of hippocampal adenosine 
A1 receptors is prevented by caffeine consumption. Western blot analysis 
(representative of 6 similar blots from different groups of rats) comparing the A1

receptor immunoreactivity, corresponding to the 37 kDa band, in total 
membranes from the hippocampus of control and diabetic mice treated or not 
with caffeine, applied to the SDS-PAGE gel in equal amounts. A re-probing of the 
membranes to α-tubulin is shown below each gel, and confirmed that similar 
amounts of protein were added to the lanes. The graph below the gel shows the 
average immunoreactivity of A1 receptors in total hippocampal membranes, 
normalized to α-tubulin and expressed as percentage of control 
immunoreactivity. Black, gray and striped bars represent diabetes, diabetes plus 
caffeine and caffeine groups, respectively. Data is mean±SEM and was compared 
with ANOVA followed by Bonferroni's post-test (* P<0.05 compared to control).  

 
Figure 4.39. Co-localization analysis of A1 and A2A adenosine receptors in glutamatergic and GABAergic nerve terminals 
purified from the hippocampus. Panel A exemplifies the double immunostaining performed in this analysis, in this case to 
determine the fraction of glutamatergic (vGluT1/2-positive) nerve terminals (synaptophysin immunoreactivity). The 
fraction of glutamatergic and GABAergic nerve terminals in the hippocampus was similar in the four experimental 
groups (B). The amount of glutamatergic nerve terminals containing A1 or A2A receptors was not altered (C) but, 
compared to controls, diabetic mice displayed increased number of GABAergic nerve terminals endowed with A1 or A2A

receptors (D). The fraction of nerve terminals immunoreactive for both A1 and A2A receptors was similar in the four 
animal groups. White, black, gray and striped bars represent control, diabetes, diabetes plus caffeine and caffeine groups, 
respectively. * P<0.05, ** P<0.01 compared to control (n=5 for each co-localization analysis). 
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increased the fraction of vGAT positive nerve terminals endowed with either A1 receptor or A2A 

receptor immunoreactivity by 30.7+1.3% (P<0.05, n=4) and 17.9+3.9% (P<0.05, n=4), respectively. 

This diabetes-induced increase in the fraction of GABAergic nerve terminals equipped with 

adenosine receptors was prevented by long-term consumption of caffeine (Figures 4.39D). 

Furthermore, the co-localization of A1 receptor and A2A receptor in hippocampal nerve terminals 

was investigated by double labelling of purified synatosomes with antibodies against each receptor; 

it was observed that there was neither modification of the fraction of A1 receptor-positive nerve 

terminals containing A2A receptors, nor vice versa (Figure 4.39E). Taken together, these results 

indicate that the balance between nerve terminals equipped with A1 receptors and A2A receptors is 

maintained upon a diabetic condition, but there is an alteration on adenosinergic signalling, 

occurring in GABAergic rather than glutamatergic nerve terminals. 

 

4.4.1.8. Discussion 

 

The main finding of the present work is that long-term caffeine consumption attenuates the 

deleterious effects of diabetes on the hippocampal tissue, associated with the prevention of 

diabetes-associated learning and memory impairments. Our results showed that NONcNZO10/LtJ 

diabetic mice neither display alterations on cellular organization nor present neuronal degeneration 

in the hippocampal structure. However, when compared to NON/LtJ controls, diabetic mice had 

reduced density of synaptic proteins in the hippocampus, indicating the occurrence of synaptic 

degeneration, which likely contributes to the diabetes-induced memory impairment. Likewise, 

streptozotocin-induced diabetic rats displayed a reduction of the density of synaptic proteins when 

compared to control animals (Nitta et al., 2002; see also section 4.2.1.3), which could be related to the 

observed spatial memory deficits in the Y-maze (Nitta et al., 2002) or the Morris water maze (e.g. 

Biessels et al., 1996).  

Furthermore, synaptic alterations in the hippocampus were accompanied by astrocytosis, 

suggested by increased GFAP immunoreactivity and number of GFAP-positive cells in the diabetic 

hippocampus, when compared to controls. In the central nervous system, neurons and surrounding 

glial cells compose a highly specialized functional unit, where neurons form a network through 

synaptic contacts and the adjacent astrocytes provide a structural, metabolic and trophic support to 

neurons, and modulate neuronal excitability and neurotransmission (e.g. Dong and Benveniste, 

2001). Upon neuronal damage, astrocytes can become reactive by altering their morphology and 

proliferating, and the hippocampus of diabetic mice displayed hypertrophic cell bodies and 
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increased processes with augmented density of GFAP. Similar to the observed astrocytosis in the 

aged brain (Pilegaard et al., 1996; Rozovsky et al., 1998; Wagner et al., 1993), these astrocytic changes 

may occur due to primary neuronal damage, and this altered glial function may negatively affect 

synaptic activity and neuronal survival for example due to the specific downregulation of 

glutamate transporters, which was observed in several pathologies such as amyotrophic lateral 

sclerosis (Barbeito et al., 2004), Alzheimer’s disease (Lauderback et al., 2001) and Lewy-body 

dementia (Honig et al., 2000), or in result of the contribution for the formation of free radicals  

through the induction of iNOS (e.g. Chao et al., 1996), or even by the astrocytic production of 

apoptotic factors that was suggested to occur in several neurodegenerative pathologies (e.g. 

Crutcher et al., 1993; Fahnestock et al., 1996; Ferrer et al., 2000, 2001). 

As shown to occur in STZ-induced diabetes (section 4.2.1), NONcNZO10/LtJ diabetic mice 

showed an alteration on the adenosinergic modulation system in the hippocampus. In particular, 

there was a global down-regulation of inhibitory A1 receptors, and an increase in the fraction of 

GABAergic nerve terminals equipped with A1 and/or A2A adenosine receptors. The action of 

caffeine on synaptic A2A receptors that are upregulated neurodegenerative disorders, in particular 

in the diabetic hippocampus, may cause a reduction of glutamate release into the synaptic cleft 

(Lopes et al., 2002), and eventually prevent glutamate excitotoxicity induced by hyperglycaemia. In 

addition, A2A receptor blockade by caffeine on the glial compartment may inhibit glutamate outflow 

(Nishizaki et al., 2002; Pintor et al., 2004). Adenosine was already suggested to have a homeostatic 

role in the CNS, which could be related to direct control of intermediary metabolism (Hammer et al., 

2001; Håberg et al., 2000). Because diabetes induces modification of extra-synaptic adenosine 

receptors, in particular increasing the density of A2A receptors, neuroprotective effects of caffeine 

could be related to this ability of controlling brain metabolism, also suggested by its effects on 

glucose transport, namely in the hippocampus (Nehlig et al., 1984, 1986).  

In the present experiments, long-term caffeine consumption attenuated diabetes-induced 

synaptic degeneration and prevented astrocytosis in the hippocampus. This beneficial effect of 

caffeine intake was reflected in the prevention of diabetes-associated memory impairment, as 

evaluated by the spontaneous alternation in the Y-maze. It was investigated the density of two 

synaptic markers with different locations: synaptophysin that is located in synaptic vesicles and 

SNAP25 that is a membrane protein at the active zone of nerve terminals (Pinheiro et al., 2003, and 

references therein). The density of both proteins decreased in the hippocampus of diabetic mice 

when compared to controls, and long-term caffeine intake prevented SNAP25 reduction and 

attenuated synaptophysin alteration. Also the alterations induced by diabetes on the adenosinergic 

modulation system were prevented by caffeine intake and interestingly, in this particular mouse 
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strain, it was not observed alteration of distribution of synaptic adenosine receptors caused by four 

months of caffeine consumption. 

Astrocytes are the main glial cells involved in the metabolic support to neurons, and their 

glycogen storing capacity can be used to buffer fluctuations on glucose concentration (Gruetter, 

2003). Moreover, adenosine receptors can control intermediary metabolism in the hippocampus (in 

both neurons and astrocytes; see section 4.1.3) and modulate astrocytic glycogen synthesis (Allaman 

et al., 2003; Magistretti et al., 1986). Thus there is the possibility of caffeine controlling glucose 

availability to neurons through actions on the metabolism of astrocytes.  

The present work studied the global effect of caffeine intake on the prevention of the 

development of diabetic encephalopathy. Together with the action of caffeine on A2A receptors 

located at the CNS, caffeine administered in the drinking water can activate peripheral adenosine 

receptors, leading to increased metabolic rates and elevated energy expenditure, which contribute 

for the management of the diabetic condition (e.g. Greenberg et al., 2006; Higdon and Frei, 2006; van 

Dame and Hu, 2005). In fact, adenosine was suggested to be involved in regulating glucose 

homeostasis in peripheral organs like the heart (e.g. Finegan et al., 1996; Fraser et al., 1999; Gao et al., 

1997; Wyatt et al., 1989), liver (e.g. Buxton et al., 1986; Vanstapel et al., 1991) or muscle (e.g. Derave 

and Hespel, 1999; Hespel and Richter, 1998; Vergauwen et al., 1994). Moreover, caffeine can regulate 

the secretion of insulin by blocking adenosine receptors at the pancreatic islet cells (Johansson et al., 

2007). Accordingly, diabetic mice that consumed caffeine displayed glycaemia lower than untreated 

diabetic mice, but circulating levels of insulin remained unaltered by caffeine intake. One can not 

exclude that the reduction of glycaemia may contribute to the beneficial effects of long-term caffeine 

intake in diabetic animals. However, since blood glucose levels of diabetic mice consuming caffeine 

was sustained above 250 mg/dL during 4 months (twice than in control mice), the observed 

neuroprotective effects of caffeine are likely due to blockade of central adenosine receptors. 

In conclusion, the present animal model of diabetes displays spatial memory impairment, 

hippocampal synaptic degeneration without neuronal loss and astrocytosis. The results now 

obtained provide evidences to support the hypothesis that long-term caffeine consumption 

attenuates synaptic degeneration in hippocampal neurons and the extent of astrocytosis, leading to 

a prevention of diabetes-induced memory impairment. These are pioneering results suggesting that 

caffeine, or eventually other adenosine (A2A) receptor antagonists, may be used for the prevention 

of diabetic encephalopathy. 
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4.4.2. Glucose transport and neurochemical profile in the hippocampus of 

streptozotocin-induced diabetic rats - effect of caffeine consumption   

 

Glucose is the main source of energy for brain function, but the brain may eventually be able 

to adapt to a new metabolic condition (Pelligrino et al., 1992). In peripheral tissues, inadequate 

glucose utilization is the hallmark of a diabetic condition. However, published studies 

inconsistently report the effects of diabetes on substrate transport into the brain. In particular, 

glucose transport into the brain was suggested to be reduced (McCall et al., 1982), augmented 

(Duelli et al., 2000) or unaffected (Kainulainen et al., 1993; Simpson et al., 1999) by hyperglycaemia.  

The recent developments in the resolution of in vivo 1H NMR spectroscopy prompt re-

evaluating the impact of diabetes on glucose uptake. Thus, the aim of the present work was to 

determine the effect of a diabetic condition characterized by chronic hyperglycaemia on the 

transport of glucose across the BBB and on the neurochemical profile in the hippocampus, and to 

test the potential protective role of chronic caffeine consumption on the observed hippocampal 

alterations. This was evaluated taking advantage of in vivo 1H NMR spectra measured in the 

hippocampus of STZ-induced diabetic rats and age-matched controls that consumed or not caffeine. 

The technical and methodological developments in high-field in vivo NMR spectroscopy increased 

localization performance and sensitivity gain leading to high spectral quality and improved 

reliability of the metabolite concentrations achievable from in vivo 1H NMR spectra (e.g. Mlynárik et 

al., 2006; Tkáč et al., 1999).  This approach allowed revealing alterations in the neurochemical profile 

of the hippocampus caused by chronic hyperglycaemia, as well as to study hippocampal glucose 

transport kinetics. 

Type 1 diabetes mellitus was induced with STZ in male Sprague-Dawley rats, resulting in 

blood glucose levels above 300 mg/dL after 3 days as in previous studies. Sham-treated age-

matched control rats received vehicle injection and were maintained in the same conditions. Half of 

the animals were allowed to consume caffeine (1 g/L) that was provided for 6 weeks starting 2 

weeks before STZ injection. Rats were maintained for 4 weeks with food and water ad libitum, and 

the NMR study was carried out 30 days after STZ-treatment. 

During the period when the rats had free access to caffeine solution, both before and after 

STZ-treatment, body weight and pre-prandial glycaemia were monitored. As shown in Figures 

4.40A and B, after STZ injection, there was a reduction of weight gain and a significant sustained 

increase in pre-prandial glycaemia of the diabetic rats when compared to controls, whether the 

animals consumed caffeine or not. Caffeine consumption was similar in control and STZ-treated 
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rats (P>0.05, Figure 4.40C), and achieved similar serum caffeine levels (P>0.05, Figure 4.40D). 

Insulin concentration was reduced in STZ-treated rats when compared to controls (P<0.05), and 

caffeine consumption did not affect significantly circulating insulin levels (Figure 4.40E), suggesting 

that caffeine treatment did not interfere with STZ action. 

 

4.4.2.1. Streptozotocin-induced diabetes affects neurochemical profile but 

not glucose transport in the hippocampus 

 

Physiologic parameters measured during the period of NMR data acquisition were similar 

in the four experimental groups (Table 4.12). In healthy rats, plasma lactate concentration increased 

with the increase of plasma glucose concentrations. This did not occur in STZ-treated rats, 

suggesting reduced glucose uptake due to hypo-insulinemia, and consequent reduced glucose 

metabolism. 

 

 
Figure 4.40. Characteristics of the animals used in the study, including body weight (A), pre-prandial glycaemia (B) and 
caffeine intake (C) measured across the housing period, and caffeine (D) and insulin (E) concentrations in the serum 
determined at the end of the treatment. Caffeine was available in the drinking water from 6 weeks old onwards and STZ 
was administered at 8 weeks of age (A), being the animals maintained under hyperglycaemia (B) and hypo-insulinemia 
(E) for 4 weeks. White, dark, grey and striped bars the graphs represent control (n=8), STZ-treated (n=6), STZ plus 
caffeine-treated (n=6), and caffeine-treated control (n=6) rats, respectively. Values are mean±SEM and significant 
differences on glycaemia (B) and serum insulin (E) were estimated with the ANOVA and are noted as follows: * P<0.05, ** 
P<0.01, *** P<0.001, relative to control. 
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Table 4.12. Physiologic parameters measured at 5 different ranges of plasma glucose concentration during the NMR 
experiment. Values are shown as mean±SEM of n experiments for the different groups: control (n=8), caffeine-treated 
(n=6), STZ-treated (n=6) and STZ and caffeine-treated (n=6) rats. Significant differences in plasma lactate were determined 
with ANOVA and Bonferroni’s post test, and are noted as follows: * P<0.05, ** P<0.01, *** P<0.001, relative to 
normoglycaemia (< 8 mM of plasma glucose). 
 

Plasma glucose range (mM) < 8 8 to 12 12 to 18 18 to 26 > 26 

Body 
Temperature 
(°C) 

Control 
Caffeine 
STZ 
STZ+Caff 

37.8±0.1 
37.2±0.2 
37.4±0.1 
37.2±0.1 

37.3±0.2 
37.6±0.1 
37.4±0.1 
37.5±0.1 

37.3±0.2 
37.4±0.1 
37.3±0.2 
37.6±0.1 

37.5±0.1 
37.4±0.1 
37.3±0.3 
37.6±0.2 

37.7±0.1 
37.7±0.1 
37.5±0.1 
37.4±0.2 

Arterial  
pH 

Control 
Caffeine 
STZ 
STZ+Caff 

7.36±0.02 
7.37±0.02 
7.32±0.04 
7.42±0.01 

7.35±0.01 
7.32±0.04 
7.40±0.01 
7.44±0.01 

7.31±0.02 
7.35±0.04 
7.37±0.01 
7.43±0.01 

7.36±0.01 
7.33±0.02 
7.38±0.02 
7.40±0.01 

7.35±0.04 
7.36±0.04 
7.39±0.01 
7.37±0.03 

PaCO2 
(mm Hg) 

Control 
Caffeine 
STZ 
STZ+Caff 

41.0±1.1 
46.4±4.3 
47.5±4.8 
39.7±1.1 

40.6±1.7 
40.8±3.9 
41.6±3.9 
40.8±1.7 

44.0±1.5 
44.5±7.2 
37.6±0.7 
40.5±0.8 

44.4±0.9 
45.2±7.1 
38.2±1.6 
43.1±0.5 

46.0±2.1 
48.6±3.6 
42.6±2.0 
41.6±0.8 

Plasma 
glucose 
(mM) 

Control 
Caffeine 
STZ 
STZ+Caff 

5.6±0.4 
6.2±0.3 
5.7±0.5 
5.9±0.5 

10.2±0.5 
10.4±0.2 
10.4±0.5 
10.3±0.3 

14.5±0.6 
14.7±0.6 
15.7±0.5 
15.4±0.6 

22.3±0.5 
22.2±0.5 
20.4±0.8 
22.0±0.8 

32.8±1.2 
31.7±1.0 
32.6±1.2 
32.1±1.3 

Plasma 
lactate 
(mM) 

Control 
Caffeine 
STZ 
STZ+Caff 

0.8±0.1 
1.1±0.2 
1.3±0.1 
1.5±0.2 

1.5±0.1 ** 
1.6±0.2 
1.2±0.1 
1.9±0.2 

2.2±0.3 *** 
1.8±0.2 * 
1.5±0.1 
1.8±0.2 

2.8±0.1 *** 
2.2±0.2 *** 

1.4±0.3 
1.7±0.2 

3.2±0.1 *** 
2.9±0.1 *** 

1.0±0.1 
2.0±0.2 

 

A detailed investigation of diabetes-induced alterations in the hippocampal metabolite 

concentrations under hyper- and normo-glycaemia was then carried out. Figure 4.41 shows typical 

1H NMR spectra from the hippocampus obtained in the present study, which illustrates the spectral 

quality achieved at high field, i.e. high spectral resolution and signal to noise ratio in a volume as 

small as 18 µL localised in the hippocampus.  

When compared to controls at euglycaemia (plasma glucose of 5.6±0.5 mM, n=8), 

STZ-induced diabetic rats under hyperglycaemia (plasma glucose of 33.3±3.4 mM, n=6) displayed 

significant alterations on the neurochemical profile of the hippocampus (Figure 4.42). Namely, there 

was an increase on the concentration of βHB, GPC, myo-inositol, NAA, taurine and total creatine, as 

well as a reduction of the concentration of GSH and NAAG. When glycaemia of STZ-treated rats 

was reduced by means of insulin infusion, the majority of the metabolic alterations in the 

hippocampus were normalised to control levels (Figure 4.42), suggesting that the metabolic 

alterations in the diabetic hippocampus result from deregulated osmolarity. In comparison to 

controls, STZ-treated rats under euglycaemia (plasma glucose of 7.9±1.7 mM, n=6) presented a 

significant increase of myo-inositol concentration in the hippocampus (36±5%, n=6, P<0.001). 
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Figure 4.41. Representative in vivo 1H NMR spectra of the rat hippocampus expanded from 0.5 to 5.5 ppm. The top 
spectrum was acquired from the hippocampus of a 12 week old healthy rat, while the spectra bellow were acquired from a 
STZ-induced diabetic rat of the same age either at hyper- or euglycaemia. The spectra were measured by the SPECIAL 
sequence with echo time of 2.8 ms, repetition time of 4 s, 640 scans and VOI of 18 µl. For resolution enhancement, a shifted 
Gaussian function (gf = 0.12 and gsf = 0.05) was applied before Fourrier transformation. Zero-phase but not baseline was 
corrected.  

 

 
Figure 4.42. Effect of STZ-induced diabetes on the neurochemical profile of the hippocampus. The histograms show 
metabolite concentrations in the hippocampus of STZ-treated rats at hyperglycaemia (grey bars, n=6) and at euglycaemia 
(dark bars, n=6), and age matched healthy rats (white bars, n=8), determined by 1H NMR spectroscopy. Values are 
presented as mean±SEM and statistically significant differences achieved with the Student’s t test are noted for 
comparison with the control group: * P<0.05, ** P<0.01, *** P<0.001. 
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Chronic caffeine consumption had a distinct effect on the neurochemical profile at 

normoglycaemia (Figure 4.43). In fact, diabetes-induced increase of myo-inositol concentration in the 

hippocampus was attenuated by caffeine consumption to 15±5% increase (n=6, P<0.01) compared to 

controls. However, while the high taurine content in the hippocampus of STZ-treated rats was 

normalized at euglycaemia, it remained increased in the hippocampus of STZ-treated rats that 

consumed caffeine (23±6%, n=6, P<0.001, compared to controls). Interestingly, chronic caffeine 

consumption resulted in a slight reduction of total creatine (P<0.05 compared to controls) in the 

hippocampus of control rats (Figures 4.43 and 4.44). Control rats under hyperglycaemia did not 

exhibit significant alterations on the neurochemical profile of the hippocampus, when compared to 

euglycaemia (data not shown).  

Regarding the group of rats treated with both STZ and caffeine, the neurochemical profile 

shown in Figure 4.43 was determined at euglycaemia (plasma glucose of 6.1±1.0 mM, n=6) and it 

 
Figure 4.43. Metabolite concentrations in the hippocampus of control (white bars, n=8), STZ-treated (dark bars, n=6), STZ 
plus caffeine-treated (grey bars, n=6), and simply caffeine-treated (striped bars, n=6) rats, determined by 1H NMR 
spectroscopy. Values are mean±SEM and significant differences determined in comparison with the control group by the 
ANOVA are noted as follows: * P<0.05, ** P<0.01, *** P<0.001. 

 

 
Figure 4.44. Neurochemical profile in the hippocampus of caffeine-treated STZ-induced diabetic rats at hyperglycaemia 
(grey bars, n=6) and at euglycaemia (dark bars, n=6), and age matched healthy caffeine-treated rats (white bars, n=6), 
determined by 1H NMR spectroscopy. Values are presented as mean±SEM and statistically significant differences 
achieved with the Student’s t test are noted for comparison with the control group: * P<0.05, ** P<0.01, *** P<0.001. 
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was similar to that found upon hyperglycaemia (plasma glucose of 31.6±2.7 mM, n=6) (Figure 4.44). 

Figures 4.43 and 4.44 illustrate the differences in the hippocampal neurochemical profile from 

diabetic and control rats, both treated with caffeine. Compared to the caffeine-treated group, the 

STZ-induced diabetic animals consuming caffeine had higher concentration of myo-inositol, PCr, 

taurine, alanine and GSH, and these concentrations were similar at hyper- and euglycaemia. In 

summary, from the analysis of the neurochemical profile in the hippocampus of the animals used, 

there are robust modifications in myo-inositol and taurine concentrations caused by STZ-induced 

diabetes. Compared to healthy rats, diabetic rats under hyperglycaemia displayed increased myo-

inositol and taurine concentrations, being taurine levels restored at euglycaemia. However, diabetic 

rats that were allowed to consume caffeine, showed smaller increase of myo-inositol content, and 

did not normalise diabetes-induced increment of taurine levels at euglycaemia. 

Glucose concentration was significantly increased in the hippocampus of the diabetic rat, as 

visible in the glucose signal at 5.23 ppm in 1H NMR spectra, but returns to control levels upon 

normalization of glycaemia (Figure 4.41). However, as shown in Figure 4.45, the dependence of 

 
 

Figure 4.45. Relationship between hippocampal and plasma glucose concentrations in control, STZ-treated, STZ plus 
caffeine-treated, and caffeine-treated control rats. Open squares represent hippocampal glucose determined from 1H NMR 
spectra measured (during about 40 minutes) after plasma glucose was stable for at least 15 minutes. The solid line is the 
best fit of the reversible Michaelis-Menten model to hippocampal glucose concentrations, up to 20 mM of plasma glucose. 
The dashed line represents the best fit of the standard Michaelis-Menten model to hippocampal glucose, over the entire 
range of plasma glucose concentrations measured. The kinetic parameters estimated from these fittings are presented in 
table 4.13 for each experimental group and each kinetic model. 
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hippocampal glucose on plasma glucose was not significantly different between controls and STZ-

induced diabetic rats, suggesting that the rate of glucose transport across the BBB was not altered in 

the hippocampus in chronic hyperglycaemia. This was further supported by similar kinetic 

parameters for glucose transport estimated with either the standard or reversible Michaelis-Menten 

models (Table 4.13). Likewise, caffeine consumption did not significantly affect glucose transport in 

the hippocampus (Figure 4.45, Table 4.13). 

 

4.4.2.2. Discussion  

 

In the present study it was evaluated the effect of chronic hyperglycaemia, induced by STZ 

administration, in the neurochemical profile of the hippocampus. When compared to controls, STZ-

induced diabetic rats under hyperglycaemia displayed a plethora of metabolic alterations in the 

hippocampus, most of which were normalised upon restoration of euglycaemia, suggesting that 

such alterations may be related to acute regulation of osmolarity. The observed modifications 

included increased concentration of glucose, βHB, GPC, myo-inositol, NAA, taurine and total 

creatine, as well as reduced concentration of GSH and NAAG. Being the hippocampus subjected to 

osmolarity deregulation upon hyperglycaemia, osmolites such as myo-inositol, taurine and creatine 

may be playing a role on osmotic adaptation (Lien et al., 1990, 1991). High concentration of myo-

inositol was also reported in the hippocampus of Zucker diabetic fatty rats compared to controls 

(van der Graaf et al., 2004), and in the brain of diabetic patients relatively to healthy subjects 

(Geissler et al., 2003; Kreis and Ross, 1992).  

Under hyperglycaemia, increased βHB concentration in the hippocampus of STZ-induced 

diabetic rats indicated ketoacidosis. However, upon glycaemia normalization, βHB concentration 

recovered to control levels, suggesting that inhibition of glucose metabolism by βHB with 

concomitant glucose accumulation (Lapidot and Haber, 2001) may occur only at hyperglycaemia.  

Table 4.13. Apparent Michaelis-Menten constant Kt and ratio of Tmax to CMRgluc for the glucose transport across the BBB, 
estimated with the reversible and standard Michaelis-Menten models from the relationship between hippocampal and 
plasma glucose concentrations in control, STZ-treated, STZ and caffeine-treated, and caffeine-treated rats (data in Figure 
4.45). While the standard model was fitted to the whole range of plasma glucose concentrations, the reversible model was 
applied up to 20 mM. Values are mean (95% confidence interval). Units of Kt are mM and Tmax/CMRgluc is adimensional. 
 

 Reversible model Standard model 

 Kt Tmax/CMRgluc Kt Tmax/CMRgluc 

Control 1.23 (0.00 - 3.79) 1.77 (1.48 - 2.07) 7.77 (5.68 - 9.86) 3.11 (2.91 - 3.31) 

STZ-treated 2.44 (0.00 - 5.41) 2.15 (1.82 - 2.51) 6.53 (4.91 - 8.26) 3.57 (3.27 - 3.86) 

STZ and Caffeine-treated 0.49 (0.00 - 4.39) 1.98 (1.53 - 2.45) 6.41 (4.25 - 8.61) 3.64 (3.25 - 4.01) 

Caffeine-treated 0.34 (0.00 - 1.58) 2.06 (1.77 - 2.34) 5.83 (4.41 - 7.25) 3.98 (3.64 - 4.31) 
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The brain mainly requires glucose as the primary fuel to generate energy for cellular 

homeostasis and synaptic transmission. In the present study, the rate of glucose transport across the 

BBB was not altered in the rat hippocampus submitted to chronic hyperglycaemia for one month 

(Figure 4.44). Likewise, previous works in humans reported that poorly controlled diabetes did not 

affect brain glucose concentration (Seaquist et al., 2005) or glucose transport and metabolism (Fanelli 

et al., 1998). This reflects a preservation of the capacity of the BBB to transport glucose relative to the 

glucose metabolic rate and could thus be affected by alterations in glucose metabolic rate. However, 

[14C]glucose uptake in the hippocampus and brain GLUT1 density were not altered in STZ-treated 

rats (Simpson et al., 1999), supporting the unaltered glucose transport through the BBB in diabetes. 

Other studies reported that diabetes increased 2-[14C]deoxyglucose uptake in the dentate gyrus of 

the hippocampus without modification of GLUT1 or GLUT3 density (Duelli et al., 2000) or that 

glucose metabolism is reduced by chronic hyperglycaemia (Garcia-Espinosa et al., 2003), which 

could eventually result in altered neurotransmitter synthesis (Trudeau et al., 2004), or even altered 

synaptic connectivity and neuronal loss (Sima et al., 2004). To what extent glucose metabolic rates 

are specifically altered at high plasma glucose concentrations, or in chronic caffeine consumption, 

or in chronic hyperglycaemia (Pelligrino et al., 1992) remain to be determined. For example, acute 

but not chronic caffeine administration has been reported to increase the uptake of 2-

[14C]deoxyglucose in the hippocampus (Nehlig et al., 1984, 1986). 

Disruption of the BBB was suggested to occur upon diabetic conditions, and particularly in 

STZ-induced diabetes (Huber et al., 2006). Such a disruption of the BBB is expected to lead to 

substantial increases in the glucose content of the brain approaching that in plasma. However, the 

presence of a sustained glucose concentration gradient into the hippocampus in this study suggests 

that leakage through a disrupted BBB did not occur for glucose. In the present modelling of 

hippocampal glucose transport, glucose consumption rate was considered invariable at 

euglycaemia and above. Thus, the present data suggest that chronic hyperglycaemia does not affect 

glucose transport across the BBB, contrary to what was reported in chronic hypoglycaemia (Lei and 

Gruetter, 2006), and suggests a differential regulation of GLUT1 gene expression at the BBB in 

response to alterations in glycaemia.  

Habitual caffeine consumption has been reported to have peripheral effects that may aid in 

the control of glucose homeostasis (e.g. Greenberg et al., 2006; Higdon and Frei, 2006; van Dame and 

Hu, 2005). Moreover, caffeine is a non-selective adenosine receptor antagonist mostly acting as an 

A2A receptor antagonist when consumed chronically (see Quarta et al., 2004), and thus should 

mainly block the up-regulated adenosine A2A receptors in the hippocampus of STZ-induced diabetic 

rats. It is expected that caffeine would counteract hippocampal deterioration associated with 
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diabetes and aging process. In the present study, chronic caffeine intake attenuated diabetes-

induced increase of myo-inositol concentration, and furthermore caused an increase in hippocampal 

taurine levels. Since taurine is a cerebral osmolyte whose intracellular content hippocampal changes 

in parallel with plasma osmolality, STZ-induced diabetes was suggested to increase brain taurine 

transport (Trachtman et al., 1992) and concentration (Rose et al., 2000). It is interesting that caffeine 

had an effect on the regulation of taurine homeostasis in the hippocampus of diabetic rats, and such 

effect could result from blockade of adenosine A2A receptors and thus would antagonise adenosine 

modulation of taurine release from both neurons and glia (Corsi et al., 1997; Hada et al., 1998; 

Saransaari and Oja, 2000). Furthermore, taurine may have a role on neurotransmission, interacting 

with inhibitory GABAA, GABAB and glycine receptors (reviewed in Albrecht and Schousboe, 2005), 

and modulating synaptic plasticity in the hippocampus (e.g. del Olmo et al., 2000). However, the 

presently used in vivo NMR spectroscopy does not allow revealing whether the observed changes in 

taurine levels are intra- or extracellular. Finally, taurine and its antioxidant effect may also 

contribute to reduction of oxidative stress (e.g. Di Leo et al., 2004) caused by glucose neurotoxicity 

that occurs in diabetes (e.g. Tomlinson and Gardiner, 2008), and was implicated in possible 

prevention of defects in nerve blood flow, motor nerve conduction velocity, and nerve sensory 

thresholds in experimental diabetic neuropathic rats (Li et al., 2006; Pop-Busui et al., 2001). Thus, one 

can speculate that an eventual neuroprotective role of caffeine upon diabetes may be linked to 

regulation of taurine homeostasis. 

In summary, it was found that glucose content and thus glucose transport were unaltered by 

chronic hyperglycaemia. Thus, metabolic alterations in the hippocampus caused by STZ-induced 

diabetes are not related to changes in glucose transport through the BBB or alteration of the energy 

status. Otherwise, chronic hyperglycaemia induced a number of changes in the neurochemical 

profile, possibly linked to osmolarity regulation that is essential for the maintenance of cellular 

homeostasis. Habitual caffeine consumption was able to prevent metabolic alterations in the 

diabetic hippocampus under chronic hyperglycaemia, and that it has a potential effect on the 

mechanisms of osmolarity regulation, modulating myo-inositol and taurine metabolism. 

 

4.4.3. Glucose transport and neurochemical profile in the hippocampus of 

Goto-Kakizaki diabetic rats - effect of caffeine consumption   

 

In the previous study, it was not observed alteration of glucose transport in the 

hippocampus of STZ-induced diabetic rats, which are insulin-dependent. Since there are 
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inconsistent reports regarding the effects of a diabetic condition on glucose uptake into the brain, 

which was found to be reduced (McCall et al., 1982), augmented (Duelli et al., 2000) or to unaffected 

(Kainulainen et al., 1993; Simpson et al., 1999) by hyperglycaemia, it was now tested if glucose 

transport is affected by mild hyperglycaemia associated with hyper-insulinemia in a model of type 

2 diabetes. Thus the previous study was repeated but now using GK rats to determine the effect of 

type 2 diabetes on the transport of glucose across the BBB and on the neurochemical profile in the 

hippocampus. Furthermore, it was also tested the potential protective role of chronic caffeine 

consumption on the observed hippocampal alterations. Again, in vivo 1H NMR spectroscopy was 

used to achieve these goals (Mlynárik et al., 2006). 

The experiments were performed in GK rats and age-matched controls at 6 months of age. 

Half of the animals were allowed to consume caffeine for 4 months, starting at 2 months of age. 

During the period when the rats had free to access caffeine solution, body weight and pre-prandial 

glycaemia were monitored, and insulin plasma levels were quantified two months after starting 

caffeine intake and at the end of the experiment. When compared to controls, GK rats showed 

reduced body weight (Figure 4.46A), significantly increased pre-prandial glycaemia (P<0.05, Figure 

4.46B), and a significant augmentation of insulin concentration in plasma (P<0.05, Figure 4.46C). 

Caffeine consumption was similar in control and GK rats (P>0.05, Figure 4.46D), and achieved 

 

Figure 4.46. Characteristics of the GK rats and controls used in the study, including body weight (A), pre-prandial 
glycaemia (B) and caffeine intake (C) measured across the housing period, and caffeine (D) and insulin (E) concentrations 
in the serum determined after 2 months of treatment and/or at the end of the treatment. Caffeine was available in the 
drinking water for 4 months, starting from 2 months of age. White, black, grey and striped bars in the graphs represent 
control, GK, GK treated with caffeine, and caffeine-treated control rats, respectively. Values are mean±SEM of 8 rats and 
significant differences were estimated with the ANOVA followed by Bonferroni test and are noted as follows: * P<0.05, ** 
P<0.01, relative to controls. 
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similar serum caffeine levels (P>0.05, Figure 4.46E). Caffeine restored plasma insulin concentration 

of GK rats to control levels (Figure 4.46C) but did not affect blood glucose concentration (Figure 

4.46B). 

Physiologic parameters measured during the period of NMR data acquisition were similar 

in the four experimental groups (Table 4.14).  

 

4.4.3.1. Neurochemical profile is altered in the hippocampus of GK rats 

 

Typical 1H NMR spectra from the hippocampus of GK and of control rats obtained, in the 

present study, were similar to the spectra shown for control and STZ-treated rats in the previous 

experiments (Figure 4.41). When compared to controls at euglycaemia (plasma glucose of 6.9±0.4 

mM, n=6), GK diabetic rats under hyperglycaemia (plasma glucose of 13.5±1.6 mM, n=8) displayed 

significant alterations on the neurochemical profile of the hippocampus. Namely, there was a 

significant increase on the concentration of glucose, NAA, taurine and ascorbate, as well as a 

reduction of the concentration of choline-containing compounds and PE (Figure 4.47). From these, 

the most prominent alteration was the diabetes-induced increase in hippocampal taurine levels of 

Table 4.14. Physiologic parameters measured at 5 different ranges of plasma glucose concentration during the NMR 
experiment. Values are shown as mean±SEM of 6 to 8 experiments for the different groups. Significant differences in 
plasma lactate were determined with ANOVA followed by Bonferroni’s test and are noted as follows: * P<0.05, ** P<0.01, 
*** P<0.001, relative to normoglycaemia (< 8 mM of plasma glucose). 
 

Plasma glucose range (mM) < 8 8 to 12 12 to 18 18 to 26 > 26 

Body 
Temperature 
(°C) 

Control 
Caffeine 
GK 
GK+Caff 

37.5±0.2 
37.5±0.2 
37.0±0.1 
37.5±0.1 

37.4±0.1 
37.2±0.2 
37.3±0.2 
37.3±0.2 

37.5±0.1 
37.3±0.1 
37.2±0.3 
37.5±0.2 

37.2±0.2 
37.1±0.1 
37.4±0.2 
37.6±0.1 

37.3±0.1 
37.4±0.1 
37.0±0.1 
37.2±0.1 

Arterial  
pH 

Control 
Caffeine 
GK 
GK+Caff 

7.34±0.01 
7.42±0.02 
7.41±0.02 
7.44±0.01 

7.34±0.01 
7.38±0.01 
7.40±0.02 
7.45±0.01 

7.34±0.01 
7.35±0.01 
7.42±0.02 
7.39±0.02 

7.31±0.02 
7.35±0.01 
7.40±0.01 
7.39±0.02 

7.33±0.03 
7.33±0.02 
7.39±0.01 
7.38±0.02 

PaCO2 
(mm Hg) 

Control 
Caffeine 
GK 
GK+Caff 

44.7±2.0 
39.9±2.9 
39.0±3.4 
35.7±1.7 

44.7±1.6 
41.5±2.7 
38.6±2.0 
39.5±4.7 

46.8±1.3 
45.7±3.9 
37.2±2.7 
38.9±3.0 

44.9±1.9 
41.7±2.7 
40.3±2.6 
40.7±3.0 

42.1±2.0 
41.4±2.9 
43.2±2.3 
40.1±1.3 

Plasma 
glucose 
(mM) 

Control 
Caffeine 
GK 
GK+Caff 

6.0±0.3 
6.4±0.4 
6.4±0.5 
7.1±0.2 

10.2±0.3 
10.5±0.6 
10.4±0.4 
10.2±0.5 

14.5±0.7 
15.2±0.4 
14.1±0.6 
14.5±0.6 

20.1±0.4 
21.3±0.8 
21.0±0.7 
21.5±1.0 

30.0±0.9 
31.9±1.6 
31.7±1.7 
29.6±1.0 

Plasma 
lactate 
(mM) 

Control 
Caffeine 
GK 
GK+Caff 

0.8±0.1 
1.3±0.1 
1.9±0.2 
1.7±0.1 

1.5±0.1 * 
1.8±0.1 
2.0±0.2 
2.0±0.1 

2.2±0.3 ** 
2.6±0.2 ** 

2.2±0.2 
2.3±0.2 * 

2.8±0.1 ** 
2.7±0.2 ** 
2.7±0.2 * 
2.4±0.2 ** 

3.2±0.1 ** 
2.9±0.4 ** 
2.7±0.5 * 

2.8±0.1 *** 
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24±2% (P<0.001, n=8) compared to controls. The reduction of blood glucose of GK rats to approach 

normoglycaemia levels (plasma glucose of 7.6±0.8 mM, n=8) reduced hippocampal glucose content 

but did not affect the neurochemical profile to a great extent, relatively to hyperglycaemia. When 

compared to control rats, GK rats at euglycaemia showed the same metabolic alterations, and 

furthermore there was a reduction on the concentration of GABA and creatine, with increase of 

phosphocreatine, resulting in increased PCr/Cr of 28±2% (P<0.001, n=8), relative to control rats. 

These results suggest that the hippocampus of GK rats is adapted to the metabolic condition of mild 

hyperglycaemia. 

While caffeine intake prevented most of the alterations in the hippocampus of STZ-induced 

diabetic rats, caffeine consumption for 4 months did not cause major modifications on diabetes-

induced alterations in the neurochemical profile of GK rats, as shown in Figures 4.48 and 4.49. At 

euglycaemia (plasma glucose of 7.4±0.4 mM, n=8), GK rats consuming caffeine showed increased 

taurine, scyllo-inositol and ascorbate levels, and decreased GPC, GSH and NAAG levels (Figure 

4.48). As shown in Figure 4.49, this neurochemical profile of GK rats treated with caffeine, 

determined at euglycaemia, was similar to that found at hyperglycaemia (plasma glucose of 

12.5±1.0 mM, n=8). In addition to the referred metabolic alterations, caffeine-treated GK rats 

displayed increased myo-inositol content in the hippocampus, either at normoglycaemia (+6.8±2.1%, 

P<0.05) or hyperglycaemia (+6.5±0.7%, P<0.01) , when compared to caffeine consuming controls 

(Figure 4.49). 

Chronic caffeine consumption resulted in alteration of the neurochemical profile in the 

hippocampus of control rats, namely a there was a significant reduction of total myo-inositol of 

9.8±1.4% (P<0.05 compared to controls, Figure 4.48 and 4.49). Finally, it should be noted that control 

 
Figure 4.47. Effect of insulin-resistant diabetes on the neurochemical profile of the hippocampus. The histogram shows 
metabolite concentrations in the hippocampus of GK rats at hyperglycaemia (grey bars, n=8) and at euglycaemia (dark 
bars, n=8), and age matched healthy rats (white bars, n=6), determined by 1H NMR spectroscopy. Values are presented as 
mean±SEM and statistically significant differences achieved with the Student’s t test are noted for comparison with the 
control group: * P<0.05, ** P<0.01, *** P<0.001. 
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rats treated or not with caffeine did not show modifications of the neurochemical profile of the 

hippocampus under hyperglycaemia, when compared to euglycaemia (data not shown).  

 

4.4.3.2. Diabetes does not affect glucose transport in the hippocampus 

 

Glucose concentration in the hippocampus was dependent on glucose levels in the blood 

stream, and this dependence was similar in GK and control rats (Figure 5.50). This suggests that 

glucose transport rate across the BBB was not altered in the hippocampus in insulin-resistant rats, 

characterized by chronic mild hyperglycaemia (see Figure 4.46B).  

Also chronic caffeine consumption failed to modify glucose transport rate in the 

hippocampus (Figure 4.50). Similar kinetic parameters for glucose transport were estimated with 

either the standard or reversible Michaelis-Menten models (Table 4.15). This reinforces the 

 
Figure 4.48. Metabolite concentrations in the hippocampus of control (white bars, n=6), GK (dark bars, n=8), caffeine-
treated GK (grey bars, n=8), and caffeine-treated (striped bars, n=7) rats, determined by 1H NMR spectroscopy. Values are 
mean±SEM and significant differences determined in comparison with the control group by the ANOVA are noted as 
follows: * P<0.05, ** P<0.01, *** P<0.001. 
 

 
Figure 4.49. Neurochemical profile in the hippocampus of caffeine-treated GK rats at hyperglycaemia (grey bars, n=8) and 
at euglycaemia (dark bars, n=8), and age matched healthy caffeine-treated rats (white bars, n=7), determined by 1H NMR 
spectroscopy. Values are presented as mean±SEM and statistically significant differences achieved with the Student’s t test 
are noted for comparison with the control group: * P<0.05, ** P<0.01, *** P<0.001. 
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conclusion that neither chronic hyperglycaemia nor chronic caffeine intake affect the transference of 

glucose from the blood stream to the hippocampus.  

 
 

Figure 4.50. Relationship between hippocampal and plasma glucose concentrations in control and GK rats treated or not 
with caffeine (1 g/L). Open circles represent hippocampal glucose levels determined from 1H NMR spectra measured 
(during 40 minutes) after plasma glucose was stable for at least 15 minutes. The solid line is the best fit of the reversible 
Michaelis-Menten model to hippocampal glucose concentrations, up to 20 mM of plasma glucose. The dashed line 
represents the best fit of the standard Michaelis-Menten model to hippocampal glucose, over the entire range of plasma 
glucose concentrations measured. The kinetic parameters estimated from these fittings are presented in Table 4.15 for each 
experimental group and each kinetic model. 

 

Table 4.15. Apparent Michaelis-Menten constant Kt and ratio of Tmax to CMRgluc for the glucose transport across the BBB, 
estimated with the reversible and standard Michaelis-Menten models from the relationship between hippocampal and 
plasma glucose concentrations in control, GK, caffeine-treated GK, and caffeine-treated control rats (data in Figure 4.50). 
While the standard model was fitted to the whole range of plasma glucose concentrations, the reversible model was 
applied up to 20 mM. Values are mean (95% confidence interval).Units of Kt are mM and Tmax/CMRgluc is adimensional. 
 

 Reversible model Standard model 

 Kt Tmax/CMRgluc Kt Tmax/CMRgluc 

Control 4.78 (2.30 - 7.26) 2.24 (1.98 - 2.49) 8.18 (6.73 - 9.63) 3.21 (3.10 - 3.33) 

GK 0.00 1.93 (1.67 - 2.18) 4.67 (3.46 - 5.87) 3.80 (3.47 - 4.13) 

Caffeine-treated GK 0.57 (0.00 - 3.83) 1.99 (1.60 - 2.37) 6.58 (5.11 - 8.03) 3.63 (3.38 - 3.87) 

Caffeine-treated control 1.22 (0.00 - 3.15) 1.95 (1.75 - 2.15) 8.21 (7.01 - 9.39) 3.42 (3.30 - 3.54) 

 

4.4.3.3. Discussion 

 

The present study evaluated the neurochemical profile in the hippocampus of GK rats, an 

animal model of insulin-resistant diabetes without obesity, in comparison to healthy age-matched 
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controls. Like STZ-induced diabetic rats (see previous study), when compared to controls, GK rats 

under mild hyperglycaemia (its normal pre-prandial glycaemia levels) displayed a plethora of 

metabolic modifications in the hippocampus. Thus, GK rats displayed alterations of the 

neurochemical profile that included an increase on the concentrations of NAA, taurine and 

ascorbate, as well as a reduction of choline-containing compounds and PE levels. Surprisingly, the 

concentration of myo-inositol was not significantly altered in the hippocampus of GK rats, as 

observed in STZ-induced diabetic rats (previously shown results) or in Zucker diabetic fat rats (van 

der Graaf et al., 2004). These last animal models of diabetes displayed sustained hyperglycaemia 

ranging 25 to 30 mM of blood glucose (see Figure 4.40B and e.g. Wilkes et al., 2005), while GK rats 

are characterised by sustained but mild hyperglycaemia (around 11 mM blood glucose, see Figure 

4.46B). This suggests that myo-inositol levels may be related to the levels of glucose or the degree of 

hyper-osmolarity. Instead, GK rats showed a marked increased in taurine concentration in the 

hippocampus, relative to the control rats. As discussed above, taurine may have a role on 

modulating inhibitory receptors (reviewed in Albrecht and Schousboe, 2005) and synaptic plasticity 

in the hippocampus (e.g. del Olmo et al., 2000), may act as antioxidant contributing to reduction of 

oxidative stress (e.g. Di Leo et al., 2004), and can eventually prevent defects in nerve blood flow, 

motor nerve conduction velocity, and nerve sensory thresholds in experimental diabetic 

neuropathic rats (Li et al., 2006; Pop-Busui et al., 2001). These functions of taurine in the CNS, in 

particular upon a diabetic condition, link this metabolite to a possible neuroprotective role. 

Supporting a need of the diabetic hippocampus to scavenge reactive oxygen or nitrogen species and 

prevent oxidative stress, there was also an increase in hippocampal ascorbate (vitamine C) 

concentration in GK rats, compared to controls. The reduction on the concentrations of choline-

containing compounds and PE in the hippocampus, together with an increased concentration of 

NAA, suggest that a reduction of membrane mielination and lipid synthesis, which relies on 

oligodendrocyte activity (see Moffett et al., 2007). Usually reduced NAA concentration would be 

expected upon neurodegeneration associated with neuronal loss (Moffett et al., 2007), but as shown 

for NONcNZO10/LtJ mice, neuronal dead may not occur upon diabetes. 

Compared to controls, GK rats at euglycaemia displayed augmented PCr/Cr ratio, 

suggesting that metabolic alterations observed in the hippocampus of GK rats may result from 

cellular adaptation and be devoid of deleterious effects, so that when glycaemia is restored to 

normal values there is a higher metabolic performance that results in increased storage of high 

energy phosphate bounds on creatine.  

Like for STZ-induced diabetes, insulin-resistant diabetic GK rats did not show altered 

glucose transport rate across the BBB that leads to hippocampal glucose concentrations similar to 
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controls. Caffeine-treatment failed to prevent or attenuate diabetes-induced alterations of 

neurochemical profile in the hippocampus of GK rats, in opposition to what occurred in STZ-

induced diabetes. Once again, chronic caffeine intake for four months did not affect hippocampal 

glucose transport rate in healthy rats. 

Chronic caffeine-treatment prevented hyper-insulinemia without affecting circulating blood 

glucose level of GK rats. In fact, by modulating adenosine receptors at the pancreatic islet cells, 

caffeine can regulate the secretion of insulin (Johansson et al., 2007). Since caffeine consumption 

prevented hyperglycaemia and failed to prevent hippocampal metabolite alterations in GK rats, it 

can be inferred that hyperglycaemia and not hyper-insulinemia must by related to diabetes-induced 

modification of the neurochemical profile in the hippocampus.  

The most relevant observation of this study is that GK rats show increased taurine 

concentration in the hippocampus, relative to controls, either at hyper- and normoglycaemia, 

treated or not with caffeine. The roles in the CNS of taurine as neuromodulator, antioxidant or 

osmolyte must be clarified, in order to understand its function on diabetic encephalopathy. 

This and the previous study showed that diabetes does not affect glucose transport into the 

hippocampus, and this structure will be subjected to glucose neurotoxicity that will possibly lead to 

learning and memory impairment. 

 

4.4.4. Chronic caffeine intake prevents alterations caused by diabetes in the 

hippocampus of streptozotocin-treated and Goto-Kakizaki rats 

 

As observed in the studies described above, diabetic conditions affect the CNS, namely the 

hippocampus, causing several metabolic and molecular alterations, as well as spatial memory 

impairment. Furthermore, the results obtained with NONcNZO10/LtJ diabetic mice (described in 

section 4.4.1) suggested a neuroprotective role of caffeine, in particular in the prevention of 

astrogliosis, synaptic degeneration, and memory impairment. Thus, behavioral tests in the open-

field arena and in the Y-maze were carried out with the GK rats treated or not with caffeine (and 

respective controls), two days before the in vivo 1H NMR experiments. After the each NMR study, 

the hippocampus of the animals (STZ-treated, GK and respective control rats, treated or not with 

caffeine) was dissected and stored at -80 °C. A Western blot analysis was then carried out with 

particular interest in accessing synaptic degeneration and astrogliosis. For physiological 

characteristics of these rats refer to Figures 4.40 and 4.46.  
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4.4.4.1. Caffeine prevents spatial memory impairment in Goto-kakizaki rats 
 

As explained before, the Y-maze test is dependent on the exploratory behaviour of the rats, 

which was observed in an open-field arena immediately before testing Y-maze spontaneous 

alternation. Control and GK rats showed similar locomotor activity or exploratory behaviour, as 

suggested by similar number of crossing (Figure 4.51A) and rearing (Figure 4.51B) events in the 

open-field arena test, and similar number of explorations in the Y-maze arms (Figure 4.51C). 

Caffeine consumption reduced the number of rearing events in both controls and GK rats (P<0.05; 

Figure 4.51B). The spontaneous alternation in the Y-maze task revealed that diabetes caused a 

reduction on the performance of hippocampal-dependent spatial memory, in comparison to control 

rats (P<0.05), which was prevented by 4 months of caffeine consumption (Figure 4.51D), supporting 

again a role of chronic caffeine consumption in preventing diabetes-induced memory impairment. 

 

 
 

Figure 4.51. Caffeine consumption prevents spatial working memory deficits in diabetic GK rats. The number of crossings 
in the open-field arena was unaltered by diabetes or caffeine consumption (panel A), but the number of rearing events 
was reduced upon chronic caffeine consumption (panel B). The number of entries in the Y-maze arms was similar in the 
four animal groups (panel C). GK rats (black bars) displayed reduced spontaneous alternation in the Y-maze at 6 months 
of age, when compared to controls (white bars), but not if treated with caffeine (gray bars) for four months (panel D). GK 
rats from in vivo studies with [1-13C]glucose infusion were included in these behavioural experiments. Results are 
presented as mean±SEM of 23 animals (for control and GK) or 8 animals (for caffeine and GK plus caffeine), and were 
compared with one-way ANOVA followed by Bonferroni's post-test (* P < 0.05 compared to control). 
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4.4.4.2. Synaptic alterations in the hippocampus of GK rats are prevented by 

caffeine consumption  
 

As shown before for STZ-induced diabetic rats and NONcNZO10/Ltj diabetic mice, the 

hippocampus of insulin-resistant GK rats displayed synaptic degeneration, as suggested by reduced 

immunoreactivity for SNAP25 (-22.7±5.4%, P<0.05, n=8) and synaptophysin (-18.5±2.6%, P<0.05, 

n=5) in synaptosomal membranes, when compared to control rats (Figure 4.52A and B). In order to 

evaluate if diabetes also affected the post-synaptic zone, it was quantified the immunoreactivity of 

postsynaptic density-95 (PSD95), a standard postsynaptic marker. As described in Figure 4.52C, the 

immunoreactivity of PSD95 was not significantly altered in nerve terminal membranes of GK rats 

when compared to controls (P>0.05, n=5). Chronic caffeine consumption for 4 months prevented 

diabetes-induced reduction on immunoreactivity for SNAP25 but not synaptophysin. In control 

rats, caffeine treatment did not affect significantly the immunoreactivity for any of these synaptic 

markers.  

 

 

Figure 4.52. Caffeine consumption had a beneficial effect on diabetes-induced synaptic degeneration. Western blot 
analysis revealed that nerve-terminal membranes from diabetic GK rats displayed reduced immunoreactivity of both 
SNAP25 (panel A) and synaptophysin (panel B) but not PSD95 (panel C) in hippocampal membranes, when compared to 
controls. Caffeine consumption prevented diabetes-induced reduction of SNAP25 but not synaptophysin. 
Immunoreactivity of synaptic proteins was normalised to α-tubulin and calculated as percentage of control (open bar) in 
the same Western blot experiment. In the graphs, black, gray and striped bars represent GK, caffeine-treated GK, and 
caffeine-treated control rats, respectively. Results are shown as mean±SEM of 5-8 experiments with membranes from 
different animals, and were compared with ANOVA followed by Bonferroni's post-test (* P<0.05 compared to control). 

 

4.4.4.3. Synaptic alterations in the hippocampus of STZ-treated rats are 

prevented by caffeine consumption  
 

Previous studies suggested the occurrence of synaptic degeneration upon a diabetic 

condition (Figures 4.15 and 4.36). The hippocampus of STZ-induced diabetic rats displayed synaptic 
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degeneration, as suggested by reduced immunoreactivity for SNAP25 (-19.4±2.7%, P<0.05, n=7), 

synaptophysin (-17.4±2.2%, P<0.05, n=5) and syntaxin (-18.3±2.8%, P<0.05, n=7) in synaptosomal 

membranes, when compared to control rats (Figures 4.53A B and C). Furthermore, 

immunoreactivity of PSD95 was determined to evaluate the post-synaptic zone and was not 

significantly altered in nerve terminal membranes of STZ-treated rats when compared to controls 

(P>0.05, n=4, Figure 4.52D). Caffeine treatment prevented diabetes-induced reduction of 

synaptophysin and syntaxin, but failed to prevent the decrease of SNAP25 immunoreactivity. 

Again, one month of caffeine treatment did not affect significantly the immunoreactivity for any of 

these synaptic markers.  

 

 
Figure 4.53. Caffeine consumption had a beneficial effect on diabetes-induced synaptic degeneration. Western blot 
analysis revealed that nerve-terminal membranes from STZ-induced diabetic rats displayed reduced immunoreactivity of 
SNAP25 (panel A), synaptophysin (panel B) and syntaxin (panel C) but not PSD95 (panel D) in hippocampal membranes, 
when compared to controls. Caffeine consumption prevented diabetes-induced reduction of synaptophysin and syntaxin 
but not SNAP25. Immunoreactivity of synaptic proteins was normalised to α-tubulin and calculated as percentage of 
control (open bar) in the same western blot experiment. In the graphs, black, gray and striped bars represent STZ-treated, 
STZ plus caffeine-treated, and caffeine-treated control rats, respectively. Results are shown as mean±SEM of 5 or 7 
experiments with membranes from different animals, and were compared with ANOVA followed by Bonferroni's post-
test (* P<0.05 compared to control). 
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4.4.4.4. Chronic caffeine intake prevents diabetes-induced astrogliosis in 

GK and STZ-induced diabetic rats 
 

Astrogliosis occurs upon several neurodegenerative diseases, which was also found in the 

hippocampus of NONcNZO10/LtJ diabetic mice (see above). It was now found that both GK and 

STZ-induced diabetic rats displayed hippocampal astrogliosis, as suggested by increased GFAP or 

vimentin immunoreactivity in the hippocampus (figure 4.54). In fact, when compared to 

membranes from controls, total hippocampal membranes prepared from GK rats showed a increase 

in GFAP (+31.5±13.4%, P<0.05, n=8) and vimentin (+65.3±27.9%, P<0.05, n=8) immunoreactivity. 

Hippocampal membranes from STZ-treated rats also displayed increased immunoreactivity of 

GFAP relative to control rats (+19.6±4.7%, P<0.05, n=8). Caffeine consumption prevented diabetes-

induced increase in GFAP and vimentin immunoreactivity, indicating prevention of astrogliosis, 

without effect on control rats. 

 

 

Figure 4.54. Caffeine consumption prevented diabetes-induced astrogliosis, as suggested by Western blot analysis 
revealing that GFAP immunoreactivity was increased in total hippocampal membranes from GK (panel A) and STZ-
induced diabetic (panel B) rats, relative to the respective control rats. Panel C shows vimentin immunoreactivity in total 
membranes from the hippocampus of GK rats that corroborates occurrence of astrogliosis, when compared to controls. 
Caffeine consumption prevented diabetes-induced increase of GFAP and/or vimentin immunoreactivity. 
Immunoreactivity of GFAP and vimentin was normalised to β-actin and calculated as percentage of control (open bar) in 
the same Western blot experiment. In the graphs, black, gray and striped bars represent diabetic, caffeine-treated diabetic, 
and caffeine-treated control rats, respectively. Results are shown as mean±SEM of 8 experiments with membranes from 
different animals, and were compared with ANOVA followed by Bonferroni's post-test (* P<0.05 compared to control). 

 

4.4.4.5. Modification of the density of adenosine A1 receptor in the 

hippocampus of GK and STZ-induced diabetic rats  
 

Previously it was demonstrated that STZ-induced diabetes affected the adenosinergic 

system in the hippocampus (see section 4.2.1). It was now observed that the density of adenosine A1 
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receptors is reduced in the 

hippocampus not only of STZ-

induced diabetic rats but also of GK 

rats. As shown in Figure 4.55A, 

synaptosomal membranes prepared 

from the hippocampus of GK rats 

displayed reduced immunoreactivity 

for A1 receptor (-27.8±7.0%, P<0.05, 

n=8), which was reversed by caffeine 

consumption for four months. It was 

repeated this test in synaptosomal 

membranes from STZ-induced 

diabetic rats Figure 4.55B and it was 

not observed significant alterations 

on A1 receptor immunoreactivity 

either on STZ-treated or caffeine-

treated rats. Total hippocampal 

membranes from GK rats showed 

52.8±8.3% reduction of A1 receptor 

immunoreactivity (P<0.05, n=8, 

compared to controls), which was 

prevented by chronic caffeine intake 

(Figure 4.55C). Also total 

hippocampal membranes from STZ-

induced diabetic rats showed a 

decrease of 29.0±10.4% in A1 receptor 

immunoreactivity (P<0.05, n=8, 

compared to respective controls), 

which was prevented by caffeine intake (Figure 4.55D). Like before, the present results suggest that 

a diabetic condition result on decreased density of adenosine A1 receptors, which is more evident in 

total membranes rather than nerve terminal-enriched membranes from the hippocampus. This 

reduction on A1 receptors was prevented or even reversed (in the case of nerve terminals from GK 

rats) by log-term caffeine consumption. 

 

Figure 4.55. Western blot analysis revealed that diabetes reduced A1 
receptor density immunoreactivity in the hippocampus, which was 
prevented by caffeine consumption. Nerve-terminal membranes from 
the hippocampus of GK rats (panel A) showed reduced A1 receptor 
immunoreactivity reversed by caffeine intake. Nerve terminal 
membranes from STZ-induced diabetic rats did not show alteration 
of A1 receptor immunoreactivity (panel B). Total membranes from the 
hippocampus of GK (panel C) or STZ-induced diabetic rats (panel D) 
displayed reduced A1 receptor immunoreactivity ehich was 
prevented by caffeine consumption. A1 receptor immunoreactivity 
was normalised to α-tubulin and calculated as percentage of control 
(open bar) in the same western blot experiment. In the graphs, black, 
gray and striped bars represent diabetic, caffeine-treated diabetic, 
and caffeine-treated control rats, respectively. Results are shown as 
mean±SEM of 8 experiments with membranes from different animals, 
and were compared with ANOVA followed by Bonferroni's post-test 
(* P<0.05 compared to control). 
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4.4.4.6. Discussion  
 

The main finding of this work is that long-term caffeine consumption prevents deleterious 

effects of diabetes on the hippocampus of GK and STZ-induced diabetic rats, as showed before for 

NONcNZO10/LtJ diabetic mice. These results show that GK and STZ-treated rats present 

neurodegeneration that is not in the entire neuron, as suggested by unaltered MAP2 

immunoreactivity (data not shown), but instead at the nerve terminal level. Supporting this 

synaptic degeneration, it was observed a diabetes-induced reduction of the density of synaptic 

proteins in the hippocampus, namely syntaxin, SNAP25 and synaptophysin. The density of the 

postsynaptic protein PSD95 was not significantly altered in the hippocampus of GK and STZ-

treated rats, when compared to the respective control rats, suggesting that diabetes mainly affects 

the pre-synaptic component of the nerve terminal. These synaptic modifications eventually induce 

cognitive impairment, which was confirmed by observation of a reduction in the Y-maze 

spontaneous alternation of GK rats.  

Furthermore, astrocytosis occur in the diabetic hippocampus suggested by increased GFAP 

and/or vimentin immunoreactivity in hippocampal membranes of GK and STZ-induced diabetic 

rats, when compared to controls. This astrocyte proliferation might result from neuronal damage, as 

observed in other situations of neurodegeneration such as amyotrophic lateral sclerosis (Barbeito et 

al., 2004), Alzheimer’s disease (Lauderback et al., 2001) and Lewy-body dementia (Honig et al., 

2000). On the other hand, astrocyte proliferation can contribute for the formation of free radicals  

(e.g. Chao et al., 1996) or production of apoptotic factors (e.g. Crutcher et al., 1993; Fahnestock et al., 

1996; Ferrer et al., 2000, 2001), accentuating neuronal damage. 

As shown to occur in STZ-induced diabetes and NONcNZO10/LtJ diabetic mice, also GK 

rats showed down-regulation of inhibitory adenosine A1 receptors, which occur mainly in total 

membranes and to a less extent in the nerve terminal membranes. This down-regulation of 

adenosine A1 receptors was prevented by caffeine intake, and even reversed in the hippocampal 

nerve terminals from GK rats. Since A2A receptors are the main target of chronically consumed 

caffeine (see Quarta et al., 2004), it would be interesting to perform further binding studies to test 

whether the hippocampal facilitatory A2A receptors are up-regulated, like previously observed in 

other models of diabetes. 

Chronic caffeine intake was again tested on the prevention of the development of diabetic 

encephalopathy, not only by acting on A2A receptors located at the CNS, but also by regulating 

peripheral metabolic rates and energy expenditure, which contribute for the management of a 

diabetic situation. It was now found that long-term caffeine consumption prevented some diabetes-
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induced alterations at the synapse and astrocytosis in the hippocampus. This beneficial effect of 

caffeine intake was reflected in the prevention of diabetes-associated memory impairment, as 

evaluated by the spontaneous alternation in the Y-maze. It was investigated the density of synaptic 

proteins with different locations: synaptophysin that is located in synaptic vesicles, and syntaxin 

and SNAP-25 both in the membrane of nerve terminals (Pinheiro et al., 2003, and references therein). 

The density of the three proteins decreased in the hippocampus of diabetic GK and STZ-induced 

diabetic rats, when compared to controls. Like occurring in NONcNZO10/LtJ mice, long-term 

caffeine intake prevented SNAP25 but not synaptophysin alteration, in the hippocampus of GK rats. 

However, in STZ-induced diabetic rats caffeine treatment prevented the reduction of synaptophysin 

but not SNAP25 caused by diabetes. Because the prevention of the decrease of syntaxin by caffeine 

intake was observed in nerve terminals from STZ-induced diabetic rats, it can be inferred that this 

effect is not revealing an alteration on the synaptic membrane, but suggests specific alteration on 

particular synaptic proteins. In fact, the density of synaptic proteins may depend on insulin receptor 

signalling, since both NONcNZO10/LtJ mice and GK rats present hyper-insulinemia, and STZ-

induced diabetic rats are characterised by hypo-insulinemia. Furthermore, insulin receptor was 

suggested to have a role on learning and memory by controlling synaptic function (reviewed in 

Zhao and Alkon, 2001) and, in particular, to be involved in the regulation of the number of synapses 

(Chiu et al., 2008). 

In conclusion, the present results reinforce the neuroprotective role of caffeine in diabetic 

encephalopathy, since chronic caffeine consumption may help preventing synaptic degeneration, 

astrogliosis, and memory deficits caused by uncontrolled diabetes. Caffeine consumption was 

successful in ameliorating diabetes-induced hippocampal alterations in both insulin-dependent 

(STZ-treated rats) and insulin-resistant (GK rats) diabetes, indicating that caffeine effects are 

unrelated to insulin availability. 
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The main goal of the present research was to reveal the existence of important molecular and 

metabolic alterations in the hippocampus of animal models of diabetes that could contribute to the 

diabetes-induced memory deficits, and to test if such alterations could be prevented or corrected by 

manipulating neuromodulation systems. The major conclusion is that a diabetic condition affects 

the hippocampal structure causing degeneration of the nerve terminals (without neuronal loss), 

astrocyte reactivity and proliferation, adaptation of the metabolic network, modification of 

neuromodulation systems that are able to control neuronal and glial metabolism, and leading to 

spatial memory deficits. Moreover, this thesis provides the first evidences supporting the value of 

long-term caffeine intake for the prevention or amelioration of diabetes-induced hippocampal 

alterations, therefore preventing diabetes-associated memory decline. 

It was implemented and validated the use of acutely dissociated hippocampal slices 

superfused with specific 13C enriched substrates to simultaneously investigate metabolism in 

different brain compartments, namely astrocytes, glutamatergic and GABAergic neurons. This 

methodology was then used to demonstrate that neuromodulation systems like those operated by 

adenosine and endocanabinnoids may directly control intermediary metabolism in neuronal and 

glial compartments. In particular, it was found that the tonic activation of adenosine A1 receptors in 

the hippocampal slices controls the metabolic recovery from a metabolic insult like hypoxia. It was 

also shown that CB1 cannabinoid receptors directly control the flow of the TCA cycle flux in 

neurons and astrocytes, in superfused hippocampal slices under stimulation.  

Since diabetes is a metabolic disease and affects learning and memory processes that result 

from synaptic events (e.g. Biessels et al., 2002; Trudeau et al., 2004), it was investigated the effect of a 

diabetic condition on neuromodulation systems in synaptic and extra-synaptic compartments of the 

hippocampus. In the particular model of STZ-induced diabetes characterised by sustained chronic 

hyperglycaemia, it was observed that hippocampal modulation systems operated by adenosine, 

ATP and endocannabinoids are modified in membranes from the synapse, where such systems 

modulate neurotransmission processes, and principally in extra-synaptic membranes, from 

compartments where they would be typically involved in the control of events in the neuronal body 

and glial cells, such as metabolism, cellular homeosthasis, glial proliferation, neuroinflamation. The 

adenosinergic and endocannabinoid modulation systems were found altered in the cortex of STZ-

induced and GK diabetic rats, suggesting that these alterations are not restricted to the hippocampal 

structure. 

The in vivo metabolism of [1-13C]glucose in the hippocampus of Goto-Kakizaki (GK) diabetic 

rats was studied by 13C NMR spectroscopy and suggested that intermediary metabolic pathways in 
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the diabetic hippocampus are rearranged, namely becoming more flexible in the use of other 

substrates in alternative to glucose, possibly in order to counteract alterations of glucose transport 

and utilization. However, in vivo studies of the kinetics of glucose transport in to the hippocampus 

revealed that the transport of glucose across the BBB is not altered in STZ-induced and GK diabetic 

rats. Thus, these observations suggest that the glucose-buffering effect of glycogen (Gruetter, 2003) 

may have an important role upon a diabetic condition. Furthermore, in vivo 1H NMR spectroscopy 

showed that STZ-induced and GK diabetic rats have alterations of the neurochemical profile of the 

hippocampus, mainly related to osmolarity regulation rather than energy metabolism. In 

conclusion, upon chronic hyperglycaemia (observed in both STZ-induced and GK diabetic rats), 

glucose transport kinetics at the BBB is not altered and thus the hippocampus is subjected to high 

glucose concentrations, which trigger mechanisms of osmotic compensation and induce an 

adaptation of intermediary metabolic pathways, likely in the astrocytic compartment. However, the 

high glucose concentration (considered glucose toxicity) in the hippocampus induces primarily and 

typically the formation reactive oxygen species, leading to oxidative stress and then degeneration 

(Tomlinson and Gardiner, 2008). Moreover, in hippocampal slices prepared from STZ-induced 

diabetic rats, which were suggested to display altered synaptic plasticity compares to controls (e.g. 

Biessels et al., 2002), did not show significant modifications of relative fluxes of intermediary 

metabolism, indicating that synaptic alterations rather than metabolic stress may be responsible for 

the observed spatial memory deficits (e.g. Gispen and Biessels, 2000). 

In different animal models of either insulin-dependent or insulin-resistant diabetes, which 

display spatial memory impairment evaluated in the Y-maze, it was shown that diabetes causes the 

degeneration of nerve terminals that is characterized by decreased density of synaptic proteins 

including syntaxin, synaptophysin and SNAP25. In general, the density of the postsynaptic protein 

PSD95 was not altered in the hippocampus of diabetic rats, suggesting that mainly the pre-synaptic 

button, involved in neurotransmitter release, is affected by diabetes. In fact, synaptic transmission 

was suggested to be affected by diabetes (e.g. Biessels et al., 2002). The general morphological 

structure of the hippocampus was similar between control and diabetic rats, as well as the density 

of the neuronal marker MAP2. Thus, it is concluded that diabetes causes a synaptic degeneration 

without occurring neuronal dead. The present results do not support the occurrence of neuronal 

loss caused by diabetes, but it can eventually occur in latter stages of diabetes, as suggested by other 

authors (De Jong, 1977; Jakobsen et al., 1987; Li et al., 2002a). Furthermore, when compared to 

controls, the hippocampus of diabetic animals displayed elevated number of astrocytes and/or 

higher density of astrocyte-associated proteins, namely GFAP and vimentin, suggesting the 

occurrence of astrocyte reactivity and proliferation.  
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Finally, caffeine, which is an antagonist of adenosine mainly acting on A2A receptors that 

was now found up-regulated in chronic hyperglycaemia, was tested as a neuroprotective strategy 

for the prevention of diabetes-induced hippocampal alterations. In fact, long-term caffeine intake 

was shown to prevent diabetes-induced memory impairment, and to counteract synaptic 

degeneration, astrocytosis and some metabolic alterations caused by diabetes in the hippocampus. 

Caffeine exerts effects not only in the CNS, but also in peripheral tissues in particular controlling 

glucose metabolism in the heart (e.g. Finegan et al., 1996; Fraser et al., 1999), liver (e.g. Buxton et al., 

1986; Vanstapel et al., 1991) or muscle (e.g. Hespel and Richter, 1998; Vergauwen et al., 1994), and 

regulating the secretion of insulin (Johansson et al., 2007). However, the study of three animal 

models of diabetes characterized by sustained hyperglycaemia but with different diabetes 

phenotypes, namely insulin-dependent (STZ-treated rats), insulin-resistant (GK rats) and obesity-

associated (NONcNZO10/LtJ mice) diabetes, consistently revealed attenuation or prevention of the 

diabetes-induced hippocampal alterations, strongly supporting the beneficial effect of habitual 

caffeine intake that successfully prevented cognitive decline on diabetic animals. 

The in vivo NMR study of the neurochemical profile of the hippocampus of diabetic rats 

showed that in general, alterations of metabolite levels observed under hyperglycaemia were 

normalised upon acute glycaemia restoration to control levels. In line with these results, 

hippocampal slices prepared from STZ-treated rats that were superfused in the same conditions as 

controls did not show altered glial or neuronal metabolism. Observing the effect of caffeine 

consumption, in general it did not restore diabetes-induced metabolic modifications but, on the 

other hand, long-term caffeine intake prevented diabetes-associated spatial memory impairment as 

well as synaptic alterations. Thus, from the present studies, it can be concluded that hippocampal 

metabolism is flexible and adapts to the metabolic challenge upon diabetes, and that synaptic 

degeneration caused by hyperglycaemia is possibly the major cause for the diabetes-induced 

memory decline. 

In summary, the work in the present thesis identified several hippocampal alterations 

induced by diabetes mellitus, and assigned synaptic degeneration as the major event contributing to 

the observed diabetes-associated cognitive decline. Furthermore, long-term caffeine consumption 

was shown to be successful in the amelioration of such hippocampal alterations, thus preventing 

diabetes-induced memory impairment. 
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