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Simple Summary: Osteosarcoma (OST) is the most common type of high-grade primary bone
tumor, which mainly affects young adults. Despite the efforts that have been made to address the
importance of immune-related factors in OST, there is still a lot to understand. The purpose of the
current study was to evaluate the tumor-infiltrating lymphocytes (TIL), the expression of proteins
involved in tumor biology, and their impact on the clinical outcome of OST patients. Our results
suggest that the presence of tumor-infiltrating CD4+ cells provides protection to patients, and that
CD8+ cells have a significant impact on the patient’s overall survival (OS) and progression-free
survival (PFS). In addition, a strong association of tumor-infiltrating CD4+ cells and the presence of
CD44s expression in tumor samples was observed. These findings reinforce the idea that TIL and the
expression of tumor markers should be taken into consideration in order to improve OST treatment
and management.

Abstract: Osteosarcoma (OST) is the most common type of high-grade primary bone tumor, which
mainly affects young adults. The current standard of care for OST combines surgical resection with
chemotherapy. The clinical outcomes and the current options to treat OST patients are unsatisfactory
and novel treatment strategies are needed. The crosstalk between tumor cells and immune cells
is essential to the OST microenvironment. Despite the efforts that have been made to address the
importance of immune-related factors in OST, there is still a lot to understand. The purpose of the
current study was to evaluate the tumor-infiltrating lymphocytes (TIL), the expression of proteins
involved in tumor biology, and their impact on the clinical outcome of OST patients. We studied
93 samples of OST patients using immunohistochemistry and histomorphometry. We looked for the
infiltration of CD3+, CD4+, CD8+, TIA1+ and CD20+ cells and for the expression of CD44 standard
(CD44s) and variant 6 (CD44v6), CD95/Fas, Fas-L, p53 and p-glycoprotein. All the parameters were
analyzed for the influence on the occurrence of death and metastasis, plus patient overall survival
(OS) and progression-free survival (PFS). The effect of sex, age, tumor location (distal femur or
proximal tibia) and the combination with neoadjuvant chemotherapy was also assessed. Our results
suggest that the presence of tumor-infiltrating CD4+ cells provides protection to OST patients, and
that CD8+ cells have a significant impact on the patient’s overall survival (OS) and progression-free
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survival (PFS), which is more evident in male patients. In addition, a strong association between
tumor-infiltrating CD4+ cells and the presence of CD44s expression in tumor samples was observed.
Analysis of TIL and tumor markers related to tumor biology could be useful to stratify patients
and monitor the response to therapy, as well as to assist with the development of immunotherapy
strategies to improve the effects of cytotoxic TIL to eradicate the tumor cells.

Keywords: osteosarcoma; tumor-infiltrating lymphocytes; tumor markers; tumor microenviron-
ment; survival

1. Introduction

Conventional osteosarcoma (OST) is the most common type of high-grade primary
bone tumor, which mainly affects young adults [1]. The neoplasm arises preferentially
in the metaphyses of the long bones with the highest incidence around the knee [2]. In
general, the therapeutic strategy consists of local control surgery, combined with pre- and
postoperatively systemic chemotherapy to reduce the likelihood of the disease spreading [3].
For localized OST, the 5-year rate of survival is 70%; however, OST often metastasizes
and the 5-year survival rate for recurrent or metastatic disease drastically declines to less
than 20% [4,5]. In advanced OST, multidrug resistance to chemotherapy is also a recurrent
problem, and the only curative treatment is complete surgical resection of the metastasis,
which is a challenging process most of the time [6]. Despite targeted or immune therapies
being widely used in various cancers, so far no other strategies have been introduced in
OST clinical practice [3]. As such, the clinical outcomes, and the current options to treat
OST patients, are unsatisfactory and novel effective treatment strategies are needed.

OST exhibits high-confidence chromothripsis and a high number of genomic struc-
tural alterations, but low tumor mutational burden according to the Pan-Cancer Analysis
of Whole Genomes (PCAWG) and others [7–9]. Therefore, the use of targeted therapy
is limited in this context. On the other hand, the interest in the exploration of novel
OST-immunotherapies or immune-related biomarkers to predict the response to therapy
has been increasing [10]. Moreover, the osteoid matrix produced by osteosarcoma cells
is surrounded by immune cells, amongst blood vessels, mesenchymal and stromal cells.
As such, it is evident that immune cells are active players in tumor sustainment and pro-
gression [11–13], and that the crosstalk between tumor cells and immune cells, through
the release of soluble factors and cell–cell contact, is essential for the OST microenviron-
ment [1,14–16].

Efforts have been made to address the importance of immune-related factors in OST [10].
Immunological studies have revealed a strong association between the inflammation-based
score and the neutrophil–lymphocyte ratio and the overall survival (OS) and progression-
free survival (PFS) of OST patients [17,18]. Yet, knowledge about tumor-infiltrating lym-
phocytes (TIL) and their function in OST is still scarce. Recent studies, mostly using
bioinformatics to analyze genome wide expression profiles, correlated the higher infiltra-
tion of immune cells with a better clinical outcome [19–23]. Additionally, the potential
of prognostic models based on immune-related genes (IRG) profiles or immune scores to
predict survival in OST patients has been shown.

TIL are recruited to the tumor site; however, tumor cells have the capability of escaping
the immune response [24]. For example, molecules expressed by tumor cells could input
inhibitory signals in immune cells thereby promoting cell death, or redirect an anti-tumor
response to a pro-tumoral one, such as in the process of angiogenesis. Given this, the
analysis of tumor-associated molecules is essential to better understand the interaction of
tumors and immune cells.

In the present study, tumor samples from OST patients were analyzed to identify TIL
and to evaluate the expression of molecules related to tumor biology and metastasis. The
clinical significance of each parameter compared to patient survival was also assessed. Our
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data suggest a role for CD4 and CD8 T cells in patient survival, and the expression of CD44s
seems to be implicated in CD4 T cell infiltration. The identification of TIL and the evaluation
of tumor markers provide valuable information about the tumor’s microenvironment,
which can lead to the identification of potential immune-related biomarkers to predict
response and improve OST treatment and management.

2. Materials and Methods
2.1. Patients and Tissue Samples

A total of 93 OST patients with lesions localized in the distal third of the femur and
proximal third of the tibia were identified in accordance with the criteria applied. The
specific characteristics of the patients are summarized in Table 1. The inclusion criteria
were high-grade osteosarcoma; at stage IIB (G2, T2, M0) according to the Musculoskeletal
Tumor Society (MSTS) staging system; lesion localized in the sites stated around the knee;
patient age less than 40 years; and treatment initiated by surgical resection or chemotherapy
prior to surgery, since both treatments were performed at the same institution. According
to these criteria, there were 73 resection specimens without prior chemotherapy, diagnosed
and treated by surgical resection (39 cases were from Rizzoli Orthopedic Institute (Bologna,
Italy), 20 cases from Rede Sarah (Brasília, Brazil), 7 cases from the Coimbra Hospital and
Universitary Centre (Coimbra, Portugal), 7 cases from the Shands Hospital at the University
of Florida (Gainesville, FL, USA), and 20 resection specimens from patients diagnosed by
surgical biopsy, followed by neoadjuvant chemotherapy, according to previously estab-
lished protocols, with a minimum of 3 years follow-up (all 20 samples were from Shands
Hospital at the University of Florida).

Table 1. Clinicopathological features from OST cases included in the study.

Characteristic, Unit N (%) Mean (95% CI)

Samples 93
Sex (proportion female) 39 (41.9%)

Age, years 18 (17–21)
≤18 65 (70.0%)
>18 28 (30.0%)

Localization
Distal Femur 62 (66.7%)

Proximal Tibia 31 (33.3%)
Neoadjuvant Chemotherapy 20 (21.5%)

Metastasis 57 (61.3%)
TAD, months 103 (85–122)
DFI, months 83 (64–103)

Legend: OST—osteosarcoma; TAD—time after diagnosis; DFI—disease-free interval; CI—Confidence interval.

2.2. Immunohistochemical (IHC) Staining

The samples studied were obtained from 4 µm thick sections from paraffin-embedded
tumor tissue blocks and mounted on poly-L-lysine-coated slides [25,26]. The paraffin
present in the mounted sections was melted in the drying oven at 60 ◦C for 4 h, and the
tissue sections were deparaffinized, first in Xylene (2 passages, 5 min each) and then in
95% ETOH (2 min). The slides were immersed in 3% H2O2 diluted in 95% ETOH for 4 min,
to block endogenous peroxidases, and then washed in running water for another 4 min.
The primary antibodies used for specific antigen staining and specifications of the antigen
retrieval and staining methods for each antigen are summarized in Table S1. Representative
images (400× amplification) of each antibody staining are shown in Figure S1.

2.3. Histomorphometry

The number of CD3-, CD8-, and CD20-immunereactive cells was quantified by image
analysis with a semi-automated system. It was not possible to perform the analysis of
CD4- and TIA1-immunoreactive cells. The cell density in each section was measured
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in a 1 mm2 area of tissue. High-resolution images (1315 × 1033 pixels) were acquired
using a Zeiss Axiophot microscope (Zeiss, Jena, Germany) with a digital color camera
(Diagnostic Instruments, Inc., Sterling Heights, MI, USA). First, the area of the histologic
section containing the host–tumor reaction was present. The 1 mm2 area of interest was
acquired by digital image with the acquisition of four histologic fields (200× amplification).
Images were then analyzed with Pro Plus software (Media Cybernetics, Silver Spring,
MD, USA).

2.4. Data Analysis

The patients were divided according to the presence or absence of each parameter to
employ the Log-rank test and plot the Kaplan–Meyer curves to explore the influence of
the parameters studied on OS and PFS. Through univariate Cox regression, the individual
Hazard Ratio (HR) of each marker for OS and PFS was calculated. The degree of association
between the TIL and the proteins studied was estimated using the Chi-square independency
test and the quantification of the association was presented by the Phi-coefficient (ϕ). Phi
and Cramer’s V Interpretation were defined as strong (ϕ > 0.4), moderate (ϕ > 0.2) and
weak (ϕ > 0.1). Fisher’s exact test was used to analyze the relationship of the presence of
TIL and their distribution through the tumoral zone, and the expression of tumor-related
markers according to sex, age, tumor localization and the combination of neoadjuvant
chemotherapy. The Mann–Whitney U test was employed to compare the cell number
between two groups and two-way ANOVA followed by Sidak’s multiple comparisons test
was used to compare more than two groups, just as the cell number per region according
to the groups studied. Statistical significance was set at p ≤ 0.05. ClustVis was accessed
online [27] to visualize the clustering of multivariate data using heatmaps [28]. No scaling
was applied to rows and imputation was used to estimate missing values. Rows were
clustered using correlation distance and average linkage. Statistical tests were performed
using IBM SPSS Statistics for Macintosh version 26.0 (IBM Corp, Armonk, NY, USA). The
graphical data were executed using Graphpad Prism version 9.1 (GraphPad Software,
San Diego, CA, USA).

3. Results
3.1. Identification of Tumor-Infiltrating Lymphocytes in Osteosarcoma

Immune cells recruited to the tumor site are an active and integrative part of the
tumor’s microenvironment. Therefore, we wanted to examine the presence of TIL in the
histologic sections of tumor tissue obtained from the 93 OST patients included in the study.
Antibodies to CD3, CD4, and CD8 were used to identify T-cell subsets, and antibodies to
CD20 were used for B cells. The TIA1 antibody was used to identify cytotoxic lymphocytes
(CL). From the IHC analysis, we showed that more than 50% of the samples had inflamma-
tory infiltrates consisting of CD3+ cells (89%, N = 81/91), CD8+ cells (78%, N = 71/91) and
CD20+ cells (57.85%, N = 52/90), while infiltration of CD4+ cells (19.60%, N = 18/92) and
TIA1+ cells (34.10%, N = 31/91) was detected in a smaller group (Figure 1A).

Four tumoral histologic zones were identified in the OST samples: (1) the tumor
zone (T) corresponding to the trabecular bone containing osteosarcoma; (2) the reactive
zone (Rz) related to the local lymphocyte reaction; (3) the interface of the tumor and
reactive zones (T/Rz) corresponding most often to the periosteal area; and the interface
reactive/tumor zone (Rz/T) containing tumor cells invading surrounding tissues. The
infiltrate consisting of CD3+, CD8+, TIA1+, and CD20+ cells was investigated in each of the
four zones described above (Figure 1B). In the samples with CD3+ T-lymphocytes (N = 81),
39.5% (N = 32) were identified in the Rz, 13.6% (N = 11) in the T, 30.9% (N = 25) in the Rz/T,
and 16% (N = 13) in the T/Rz. Among the samples with CD8+ T-lymphocytes (N = 71),
47.9% (N = 34) were identified in the Rz, 7% (N = 5) in the T, 8.5% (N = 6) in the T/Rz and
36.6% (N = 26) in the Rz/T. In the samples with TIA1+ cells (N = 31), 67.7% (N = 21) were
found in the Rz, 16.1% (N = 5) in the T, 12.9% (N = 4) in the Rz/T and 3.2% (N = 1) in the
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T/Rz. In the samples with CD20+ B-lymphocytes (N = 52), 69.2% (N = 36) were found in
the Rz, 15.4% (N = 8) in the T, 13.5% (N = 7) in the Rz/T and 1.9% (1/52) in the T/Rz.
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Figure 1. Characterization of the OST microenvironment. Tumor tissues were collected from 93 OST patients and evaluated
through IHC staining. (A) Frequency of positive samples for CD3+, CD4+, CD8+, TIA1+ and CD20+ infiltration. (B)
Distribution of the CD3+, CD8+, TIA1+ and CD20+ cells according to the tumoral region. (C) CD3+, CD8+ and CD20+
cell number. (D) CD3+, CD8+ and CD20+ cell number according to the tumoral region. (E) Frequency of positive
samples for CD44s, CD44v6, CD95/Fas, Fas-L, p53 and p-glycoprotein expression. Rz—reactive zone; T—tumor zone;
IHC—Immunohistochemical.

The histomorphometry method only allowed the quantification of CD3+, CD8+ and
CD20+ cells. Considering the total tissue analyzed, the median cell count obtained per
1 mm2 of tissue analyzed was 98 CD3+ cells (Min = 22, Max = 344; N = 80), 57 CD8+ cells
(Min = 14, Max = 189; N = 69) and 30 CD20+ cells (Min = 8, Max = 273; N = 51) (Figure 1C).
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We also determined the average number of CD3+, CD8+ and CD20+ cells according to the
tumoral regions (Figure 1D). For CD3, we calculated 113 cells in the Rz (SD = 71, N = 31),
99 cells in the T (SD = 62, N = 11), 106 cells in the Rz/T (SD = 64, N = 25) and 113 cells in the
T/Rz (SD = 28, N = 13). For CD8, we calculated 73 cells in the Rz (SD = 43, N = 34), 58 cells
in the T (SD = 43, N = 5), 75 cells in the Rz/T (SD = 47, N = 25) and 41 cells in the T/Rz
(SD = 21, N = 5). For CD20, we calculated 54 cells in the Rz (SD = 54, N = 35), 21 cells in the
T (SD = 8, N = 8), 32 cells in the Rz/T (SD = 17, N = 7) and 10 cells in the T/Rz (N = 1).

3.2. Expression of Tumor Markers in Osteosarcoma

The expression of p-glycoprotein, CD44s (CD44 standard), and its CD44v6 isoform
(CD44 variant 6), which are associated with tumor biology and the development of metas-
tases, and the expression of the CD95/Fas, Fas-L (Fas ligand) and p53 that are directly
involved in cell apoptosis (Figure 1E), were also studied in tumor samples. The expression
of CD44s was observed in 25.3% (N = 23/91) of the samples, and the expression of CD44v6
in 13.3% (N = 12/90) of the samples. P-glycoprotein was present in 48.4% (N = 45/93)
of the samples. The CD95/Fas was detected in 11% (N = 10/91) of the samples; Fas-L
was present in 48.9% of the samples (N = 44/90); and 18.5% (N = 17/92) of the samples
exhibited p53 expression.

3.3. Tumor-Infiltrating CD4 + Cells—A Protective Factor in Osteosarcoma

To characterize the protective effect of the immune cell populations that infiltrate the
tumor, and of the molecules expressed in the tumor cells, we calculated the odds ratio
(OR) associated with the occurrence of death (mortality) or metastases for each parameter
studied (Table 2). The results obtained revealed a significant association between the
infiltration of CD4+ T-lymphocytes and death (p = 0.028). The related OR was 0.514 (95% CI:
0.081–0.806), suggesting a decreased risk of death for patients with infiltration of these cells
comparatively to those without tumor-infiltrating CD4+ cells. The OR of death calculated
for the presence of p-glycoprotein was 2.210 (95% CI: 0.939–5.197). Although this was not
statistically significant (p = 0.088), the presence of p-glycoprotein expression represented an
increased risk of death in the patients studied. No other relevant associations were found.

Table 2. Descriptive statistics of the calculated relative risk of death or metastasis occurrence associated with the presence of
CD3+, CD4+, CD8+, TIA1+ and CD20+, or with the expression of CD44s, CD44v6, CD95/Fas, Fas-L, p53 and p-glycoprotein.

Markers
Mortality Metastization

Fisher’s
Exact Test OR 95% CI Fisher’s

Exact Test OR 95% CI

Tumor-Infiltrating
Lymphocytes

CD3 0.503 0.514 0.124–2.138 0.734 0.623 0.150–2.587
CD4 0.028 0.256 0.081–0.806 0.177 0.433 0.152–1.232
CD8 0.183 0.420 0.135–1.305 0.199 0.456 0.149–1.391

TIA1 0.656 0.812 0.332–1.986 1.000 1.056 0.434–2.566

CD20 1.000 0.995 0.417–2.377 0.385 1.529 0.649–3.604

Tumor
Markers

CD44s 0.226 0.526 0.201–1.380 0.806 0.805 0.309–2.099

CD44v6 1.000 1.190 0.346–4.093 0.756 1.391 0.386–5.015

CD95/Fas 0.105 0.305 0.073–1.269 0.509 0.620 0.166–2.136

Fas-L 0.386 1.602 0.681–3.768 0.289 1.624 0.693–3.806

p53 0.163 0.405 0.133–1.236 0.271 0.500 0.173–1.447
P-glycoprotein 0.088 2.210 0.939–5.197 0.201 1.874 0.802–4.379

Legend: Row cells with dark background represent statistically significant value and cells with light background represent statistical value
close to the significance level. OR—odds ratio; CI—Confidence Interval.
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3.4. OS and PFS Correlated with Infiltrating CD8+ T Cells in OST Patients

To understand whether the clinical outcome of OST patients correlated with the
parameters analyzed, we considered the time after diagnosis (TAD, months) and the disease-
free interval (DFI, months) to calculate the overall survival (OS) and the progression-free
survival (PFS), respectively. Overall, the mean estimated TAD was 103 months (95% CI:
85–122) and the mean estimated DFI was 83 months (95% CI: 64–103, Figure S2). For
each parameter studied, we analyzed the individual survival curves and calculated the
associated hazard ratio; the results are summarized in Table 3.

Table 3. Descriptive statistics of the overall survival, progression-free survival and associated risks calculated for all the
parameters evaluated in the present study.

Markers

Overall Survival Progression-Free Survival

Log-Rank
Test

TAD
(Months) HR

Exp (B)
(pos)

Log-Rank
Test

DFI
(Months) HR

Exp (B)
(pos)neg pos neg pos

CD3 0.201 74 107 0.60 0.414 66 87 0.723
CD4 0.073 94 149 0.441 0.744 75 114 0.590
CD8 0.043 61 112 0.526 0.049 39 91 0.561
TIA1 0.794 103 108 0.922 0.631 85 81 1.143

Tumor-Infiltrating
Lymphocytes

CD20 0.773 103 103 0.919 0.678 89 77 1.120

CD44s 0.361 100 115 0.725 0.369 80 92 0.756

CD44v6 0.389 106 94 1.419 0.368 86 73 1.403
CD95/Fas 0.084 99 150 0.373 0.320 81 104 0.634

Fas-L 0.154 115 94 1.513 0.158 93 75 1.459

p53 0.200 98 127 0.577 0.299 76 105 0.678

Tumor
Markers

P-glycoprotein 0.081 117 87 1.638 0.258 93 71 1.344

Legend: Row cells with dark background represent statistically significant value and cells with light background represent statistical
value close to the significance level. TAD—time after diagnosis; DFI—disease-free interval; HR—Hazard Ratio; neg—negative samples;
pos—positive samples.

Focusing on OS, the patients with infiltrating CD8+ cells had a significantly higher
estimated TAD compared to those without CD8+ cells (CD8−: 61, N = 18; vs. CD8+:
112, N = 69; p = 0.04), and the risk associated was almost two times lower (HR = 0.526,
95% CI: 0.278–0.993; p = 0.048). The analysis of CD4, CD95/Fas and p-glycoprotein
demonstrated differences close to the significance level ((CD4−: 94, N = 71; vs. CD4+:
149, N = 17; p = 0.073); (CD95/Fas−: 99, N = 77; vs. CD95/Fas+: 150, N = 10; p = 0.084);
(p-glycoprotein−: 117, N = 45; vs. p-glycoprotein+: 87, N = 44; p = 0.081)). Patients
with CD4+ cell infiltration or with CD95/Fas expression had a lower probability of death
((CD4+: HR = 0.441, 95% CI: 0.175–1.113, p = 0.083); (CD95/Fas: HR = 0.373, 95% CI:
0.116–1.201, p = 0.098)). On the other hand, for patients where p-glycoprotein expression
was observed, there was a higher chance of death occurrence (p-glycoprotein: HR = 1.638,
95% CI: 0.933–2.875, p = 0.086). OS curves for CD8, CD4, CD95/Fas and p-glycoprotein are
shown in Figure 2A.

Considering the PFS analysis, the difference of the DFI estimated for patients with or
without CD8+ cell infiltration was also statistically significant (CD8−: DFI = 39, N = 19 vs.
CD8+: DFI = 91, N = 69, p = 0.049) and those patients with infiltration of CD8+ cells were
less likely to develop metastases (HR = 0.561, 95% CI: 0.963–4.498; p = 0.062). PFS curve for
CD8 is shown in Figure 2B.
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Figure 2. OS and PFS curves according to TILs and the molecules expressed in the tumor. The survival curves for OS
and PFS were obtained by the Kaplan–Meyer (Log-rank) method. (A) Impact on OS—The median OS for infiltration
of CD8+ and CD4+ cells, expression of CD95/Fas and p-glycoprotein non-expression were higher when compared to
their counterparts ((CD8−: TAD = 61, N = 18; vs. CD8+: TAD = 112, N = 69); (CD4−: TAD = 94, N = 71; vs. CD4+:
TAD = 149, N = 17); (CD95/Fas−: TAD = 99, N = 77 vs. CD95/Fas+: TAD = 150, N = 10); (p-glycoprotein−: TAD = 117,
N = 45; p-glycoprotein+: TAD = 87, N = 44)). (B) Impact on PFS—The median PFS for CD8 infiltration was longer when
compared to their counterpart (CD8−: DFI = 39, N = 19 vs. CD8+: DFI = 91, N = 69). IHC—Immunohistochemical;
OS—overall survival (months); PFS—progression-free survival; TAD—time after diagnosis (months); DFI—disease-free
interval (months). Statistical significance was set at p < 0.05.

Interestingly, when we looked only for patients that had developed metastatic disease,
we observed a significant difference in the time of metastasis occurrence in the patients
with positive samples for the expression of CD44v6 compared to those without CD44v6
expression (CD44v6−: 15, N = 46; vs. CD44v6+: 7, N = 8; p = 0.048) and those with the
expression of CD44v6 develop metastases two times faster (HR = 2.081, 95% CI: 0.963–4.498;
p = 0.062). The difference between the time to metastasis occurrence of the patients with
or without CD44s expression was close to the significance level (CD44s−: 11, N = 42; vs.
CD44s+: 23, N = 13; p = 0.088) and patients with expression of CD44s had prolonged PFS
(CD44s: HR = 0.561, 95% CI: 0.278–1.134; p = 0.107). PFS curves for CD44v6 and CD44s are
shown in Figure S3. No other associations with OS or PFS were observed.

OS curves for the location of tumor infiltration of CD3+, CD8+, TIA1+ and CD20+
cells were also examined. Patients with CD3+ cells infiltrated in the T/Rz compared to
those with infiltration in Rz had significantly superior TAD (CD3-T/Rz: 137, N = 13; vs.
Rz: 74, N = 31; p = 0.025) and DFI (CD3-T/Rz: 119, N = 13; vs. Rz: 54, N = 31; p = 0.037).
Patients with CD20+ cells infiltrated in the Rz/T compared to those with infiltration in Rz
had significantly superior TAD (CD20-Rz/T: 166, N = 7; vs. Rz: 85, N = 36; p = 0.025) and
DFI (CD20-Rz/T: 55, N = 7; vs. Rz: 153, N = 36; p = 0.016). No other differences were found
according to region distribution on OS or PFS. We established the cut-off for CD3, CD8, and
CD20 cell numbers according to the median cell count (98, 57 and 30 cells, respectively).
The survival curves, the risk associated with OS and PFS, and the influence of cell number
according to region were evaluated, without significant results.
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3.5. CD4 T Cells and Tumoral CD44s Expression Were Strongly Associated in OST

To understand whether the infiltrating tumor cells were associated with the expression
of the tumor proteins studied, we performed a multivariate cluster analysis using heatmaps
and proceeded with a statistical analysis (Figure 3).
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Figure 3. Heatmap of the interactions of TIL and molecules expressed in the tumor. Tumor tissues were collected from 93
OST patients and evaluated using IHC staining. Multivariate cluster analysis was applied to rows for interactions between
the presence of CD3+, CD4+, CD8+, TIA1+, and CD20+ cells and the expression of CD44s, CD44v6, CD95/Fas, Fas-L,
p53 and p-glycoprotein. ClustVis was accessed online [27] to visualize the clustering of multivariate data using heatmaps.
IHC—Immunohistochemical.

From the heatmap we obtained four clusters. The first cluster isolated the expression
of CD44v6, the second grouped the expression of p-glycoprotein and Fas-L, the third
grouped the expression of CD95/Fas, CD44s and the infiltration of CD4+ cells, the fourth
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cluster grouped the expression of p53 with the presence of CD20+, TIA1+, CD8+ and CD3+
cells.

Additionally, we quantified the degree of dependency between each cell type that
infiltrates the tumor and the molecules studied in samples from OST patients by statistical
analysis, the significant and close to the significance level outcomes are summarized in
Table 4. We found a strong association between the infiltration of CD4+ cells and the
expression of CD44s (ϕ = 0.408, p = 0.000, Table 4) and a moderate association between the
infiltration of TIA1+ cells and the presence of p53 (ϕ = 0.248, p = 0.019; Table 4).

Table 4. Descriptive analysis of the degree of association between the presence of TIL and the
expression of molecules related to tumor biology.

TIL Molecule Pearson
Chi-Square

Phi
Coefficient

Effect
Size

CD4 CD44s 0.000 0.408 Strong
TIA1 p53 0.019 0.248 Moderate
CD20 p53 0.076 0.188 Weak
CD8 CD44s 0.086 0.182 Weak
TIA1 CD44s 0.087 0.180 Weak
CD4 CD95/Fas 0.089 0.178 Weak

Legend: TIL—tumor-infiltrating lymphocytes.

We observed a higher expression of CD44s and p53 in samples with CD4+ cells and
TIA1+ infiltration, respectively (Figure 4A,B).
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Figure 4. Interaction of CD4 and TIA infiltration with CD44s and p53, respectively, expressed in the tumor. Tumor tissues
were collected from 93 OST patients and evaluated using IHC staining. (A) Frequency of infiltrating CD4+ cells regarding
CD44s tumoral expression. (B) Frequency of infiltrating TIA1+ cells regarding p53 expression. IHC—Immunohistochemical.

We further investigated whether the association of the CD4+ cells and the expression
of the CD44s molecule was implicated in patient survival. We categorized the patients into
four groups: CD4+ and CD44s− samples, CD4+ and CD44s+ samples, CD4− and CD44s+
samples and the remaining CD4− and CD44s− samples. Then, we evaluated the OS and
PFS through the Kaplan–Meier curves for each group of patients (Figure S4). Although
without significant value, we observed that patients with infiltrating CD4+ cells had longer
estimated TAD (CD4+ CD44s−: 144, N = 6; vs. CD4+ CD44s+: 143, N = 11; vs. CD4−
CD44s+: 96, N = 11; vs. CD4− CD44s−: 96, N = 57; p = 0.410) regardless of the expression
of CD44s. For PFS no relevant differences were found.

3.6. The Influence of Sex, Age, Localization and Neoadjuvant Chemotherapy on the
Microenvironment of Tumors in OST Patients

We sought to understand the influence of sex, age, tumor location and neoadjuvant
chemotherapy (NACT) on the lymphocyte infiltration and tumor biology. When we
analyzed the influence of sex in the group studied, a statistically significant difference was
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observed for the infiltration of CD20+ cells. Male patients exhibited infiltration of CD20+
cells in 68.6% (N = 51) of samples while, for female patients, only 43.6% (N = 39) of samples
were positive (p = 0.020) (Figure 5A,B). The average age of the patients was 18 years, so we
compared patients aged less than or equal to 18 years (N = 65) with patients over 18 years
old (N = 28). However, we did not find any statistically significant differences (Figure 5C,D).
The tumors included in the study were all found around the knee area, located specifically
in the distal femur (DF, N = 62) or in the proximal tibia (PT, N = 31). Statistical analysis
showed significant differences for the infiltration of TIA1+ cells and for the expression of
p-glycoprotein (Figure 5E,F). Patients with the tumor located at the PT had more infiltration
of TIA1+ cells compared with tumors located in the DF (PT: 53.3%, N = 16; vs. DF: 24.6%,
N = 15; p = 0.010) and a higher expression of p-glycoprotein (PT: 64.5%, N = 20; vs. DF:
40.3%, N = 25; p = 0.047). We also found some tendencies for the infiltration of CD8+ cells.
Tissue samples from patients located at the PT had more infiltration of CD8+ cells (PT:
90%, N = 27; vs. DF: 72.1%, N = 44; p = 0.063). Among the 93 patients studied, 20 of them
were treated with chemotherapy prior to surgery. No significant effect of neoadjuvant
chemotherapy was observed in this group of patients (Figure 5G,H).

Considering the infiltration sites in the tumor, we analyzed the CD3+, CD8+, TIA1+
and CD20+ cells regarding sex, age, tumor location and neoadjuvant chemotherapy. We
found significant differences in the infiltration site of CD20+ cells in males (Rz = 82.9%,
Rz/T = 5.7%, T/Rz = 0%, T = 11.4%; N = 35) compared with females (Rz = 41.2%,
Rz/T = 29.4%, T/Rz = 5.9%, T = 23.5%; N = 17, p = 0.013) and of CD8+ cells in young
patients (Rz = 54.9%, Rz/T = 27.5%, T/Rz = 7.8%, T = 9.8%; N = 51) compared with the older
patients (Rz = 30%, Rz/T = 60%, T/Rz = 10%, T = 0%; N = 20; p = 0.045). In samples from
patients without treatment prior to surgery, CD20+ cells were identified only in the reactive
zone (Rz = 100%, N = 13), in contrast to patients subjected to neoadjuvant chemotherapy
(Rz = 59%, Rz/T = 17.9%, T/Rz = 2.6%, T = 20.5%; N = 39, p = 0.053; Figure 6A). According
to the groups established, we also observed significant differences in the number of CD20+,
CD3+ and CD8+ cells (Figure 6B). On average, male patients had higher numbers of CD20+
cells than females (M: 55 cells, SD = 55, N = 34 vs. F: 24, SD = 10, N = 17; p = 0.020). In
addition, younger patients had more infiltrating CD20+ cells than older patients (≤18:
51, SD = 53, N = 36 vs. >18: 30, SD = 27, N = 15; p = 0.036). Tumors located at the PT
exhibited a trend for higher infiltration of CD3+ cells (DF: 99, SD = 58, N = 53 vs. PT:
127, SD = 66, N = 27; p = 0.058). The patients exposed to neoadjuvant chemotherapy had a
greater number of CD8+ cells than those who were not treated before surgery (no-NACT:
64, SD = 42, N = 55 vs. NACT: 93, SD = 41, N = 14; p = 0.014).

The cell numbers quantified per tumor region were also investigated and some signifi-
cant differences were found. In the Rz/T we observed higher numbers of CD3+ cells in
females compared with male patients (F = 146, SD = 78, N = 10; vs. M = 79, SD = 35, N = 15;
p = 0.035; Figure 6C). Likewise, patients treated with neoadjuvant chemotherapy had
higher numbers of CD8+ cells localized at the Rz when compared with patients without
treatment prior to surgery (no-NACT: 110, SD = 39, N = 8; vs. NACT: 62, SD = 37, N = 26;
p = 0.013; Figure 6D).
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Figure 5. Characterization of the OST microenvironment considering sex, age, tumor location and the use of neoadjuvant
chemotherapy. Tumor tissues were collected from 93 OST patients and evaluated using IHC staining. Statistical analysis
of the CD3+, CD4+, CD8+, TIA1+, and CD20+ cell infiltration and of the CD44s, CD44v6, CD95/Fas, Fas-L, p53 and
p-glycoprotein expression was performed. (A) Representative heatmap of the positive and negative samples according to
sex. (B) Frequency of positive samples in males and females (male: N = 54; female: N = 39). (C) Representative heatmap
of positive and negative samples according to age. (D) Frequency of positive samples in younger and older patients
(≤18: N = 65; >18: N = 28). (E) Representative heatmap of positive and negative samples according to tumor location. (F)
Frequency of positive samples in patients with the tumor located at the DF or PT (DF: N = 62; PT: N = 31). (G) Representative
heatmap of positive and negative samples according to neoadjuvant chemotherapy. (H) Frequency of positive samples
in patients without any prior treatment to surgery and those that had undergone neoadjuvant chemotherapy (no-NACT:
N = 73; NACT: N = 20). Fisher’s exact test was used for comparative analysis. IHC—Immunohistochemical; DF—distal
femur; PT—proximal tibia; p-value < 0.05 * or < 0.01 **.
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Figure 6. The influence of cell distribution and number on sex, age, tumor location or neoadjuvant chemotherapy. Tumor
tissues were collected from 93 OST patients and evaluated using IHC staining. (A) Illustration of the tumoral distribution of
CD20+ cells by sex, CD8+ cells by age and CD20+ cells by neoadjuvant chemotherapy. Comparative analysis was performed
using Fisher’s exact test. (B) Count of CD20+ cells according to sex and age, CD3+ cells according to tumor location and
CD8+ cells according to neoadjuvant chemotherapy. (C) CD3+ cell count per tumoral region in males and females (Rz/T:
females = 146, SD = 78, N = 10; vs. males = 79 cells, SD = 35, N = 15). (D) CD8+ cell count per tumoral region in no-NACT
and NACT patients (Rz: NACT = 110, SD = 39, N = 8; vs. no-NACT = 62, SD = 37, N = 26). Mann–Whitney U test was used
to compare means between two groups and two-way ANOVA followed by Sidak’s multiple comparisons test was used to
compare more than two groups. IHC—Immunohistochemical; DF—distal femur; PT—proximal tibia; NACT—neoadjuvant
chemotherapy; Rz—reactive zone; T—tumor zone.

3.7. The Influence of Sex, Age, Localization and Neoadjuvant Chemotherapy on Survival

No influence on OS or PFS was associated with gender (M: 58.1%, N = 54; F: 41.9%,
N = 39), age (≤18: 69.9%, N = 65; >18: 30.1%, N = 28), tumor localization (DF: 66.7%, N = 62;
PT: 33.3%, N = 31) or neoadjuvant chemotherapy (no-NACT: 78.5%, N = 73; NACT: 21.5%,
N = 20) (Figure S5). We then explored the influence of TILs and the molecules expressed
on tumor samples for OS and PFS according to sex, age, tumor location and neoadjuvant
chemotherapy.

In male patients, we observed lower TAD for those with positive samples for p-
glycoprotein (p-glycoprotein-: 123, N = 27; vs. p-glycoprotein+: 72, N = 24; p = 0.036),
with approximately two times greater risk of mortality (HR = 2.175, 95% CI: 1.025–4.616;
p = 0.043; Figure 6). In addition, in males the CD8+ cell infiltration was associated with
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a higher DFI (CD8−: 24, N = 9; vs. CD8+: 76, N = 40; p = 0.043) and a lower risk of
developing metastasis (HR = 0.285, 95% CI: 0.249–1.506; p = 0.056; Figure 7A,B).
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Figure 7. OS and PFS curves of TILs and molecules expressed in the tumor according to sex, age, tumor location and
neoadjuvant chemotherapy. The survival curves were obtained by the Kaplan–Meyer (Log-rank) method. (A) Impact
on OS—In male patients, the OS for p-glycoprotein non-expression was higher when compared to their counterpart
(p-glycoprotein−: TAD = 123.477, N = 27; vs. p-glycoprotein+: TAD = 71.788, N = 24). In addition, in males the PFS for CD8+
cell infiltration was higher compared with their counterpart (CD8−: DFI = 24, N = 9; vs. CD8+: DFI = 76, N = 40). (B) Impact
on PFS—In younger patients, the PFS for FasL expression was lower compared with their counterpart (Fas-L−: DFI = 100,
N = 32; vs. Fas-L+: DFI = 63, N = 32). In NACT patients, the OS for TIA1+ cell infiltration was higher compared with the
absence of infiltration (TIA1−: TAD = 52, N = 10; vs. TIA1+: TAD = 95, N = 9). In patients with tumors located in the PT
region, the PFS for the cell number of infiltrating CD20+ cells were higher compared with their counterpart (CD20−: 118,
N = 9; vs. CD20+: 24, N = 10). IHC—Immunohistochemical; OS–overall survival (months); PFS—progression-free survival;
TAD—time after diagnosis (months); DFI—disease-free interval (months); NeoChem—Patients treated with neoadjuvant
chemotherapy. Statistical significance was set at p < 0.05.

Considering the patient’s age, no statistically significant differences were found regard-
ing patients’ OS. However, for DFI, we observed a statistical difference for the expression
of Fas-L in the group of younger patients (Fas-L−: 100, N = 32; vs. Fas-L+: 63, N = 32;
p = 0.047) and those with Fas-L positive expression were almost two times more likely to
develop metastases (HR = 1.847, 95% CI: 0.989–3.448; p = 0.054; Figure 7A,B).

In tumors located in the PT no significant differences were observed regarding TILs
or the expression of cancer markers. Considering patients who underwent NACT, longer
TAD was associated with the infiltration of TIA1+ cells (TIA1−: 52, N = 10; vs. TIA1+:
94, N = 9; p = 0.035) and with a lower risk of death (HR = 0.206, CI: 0.041–1.027; p = 0.054;
Figure 7A,B).

The influence of CD3, CD8 and CD20 cell numbers on OS and PFS was also considered.
We observed that, in patients with the tumor located in the PT zone, higher numbers of
CD20+ cells correlated with longer DFIs (CD20−: 118, N = 9; vs. CD20+: 24, N = 10;
p = 0.002), and the risk of these patients’ developing metastases was significantly lower
(HR = 6.171, 95% CI: 1.770–21.510; p = 0.004). No other effect on OS or PFS was observed
for the cell number quantified in each group analyzed (Figure 7A,B).

4. Discussion

In the present study, we sought to explore the infiltration of TIL and the expression
of tumor markers implicated in tumor biology, and their influence on OS and PFS in OST
patients.



Cancers 2021, 13, 6075 15 of 20

It is well known that immune cells are active elements of the tumor microenvironment
that support the development and growth of the OST [12]. Our data showed infiltration
of T (CD3+), CD8 T (CD8+) and B cells (CD20+) in more than 50% of the tumor samples
and a lower infiltration of CD4 T cells (CD4+) and CL (TIA1+). Like others, we concluded
that TIL are recruited to the tumor site suggesting that OST tumors are susceptible to
the anti-tumoral activity of TIL, which controls, at least in part, the aggressiveness of the
tumor [29,30]. In the case of the OST of the jaws, it has been suggested that the absent
or weak infiltration of CD4 and CD8 T cells was one of the possible explanations for the
aggressiveness of this specific type of bone tumor [31]. Recent studies have shown that
tumor-infiltrating immune cells play an important role in the progression of OS. Thus, we
investigated whether there was a risk or protective factor for death, or the occurrence of
metastases associated with the immune cells that infiltrate the tumor.

A study centered on immune cells and gene signatures in OST revealed that CD4+ T
cells may represent a potential prognostic factor, and suggested that specific analysis of
the signature of Th1 cells may improve prognosis in OST patients [32]. Interestingly, even
though only 20% of the samples studied had CD4+ T cell infiltrates, our results corroborate
the previous work suggesting that infiltrating CD4+ cells give protection from death to
OST patients. Nonetheless, a recent study in OST [33] showed a higher proportion of
CD4 T cells regarding the infiltration of CD8+ cells. In our group of patients, we found
a reduced number of CD4+ cells compared with CD8+ cells, and this difference may
be due to the different techniques employed, namely that the results obtained through
immunohistochemistry and mass cytometry were difficult to compare. No other parameter
studied showed significant risk or protection associated with mortality or metastatic
disease.

Beyond the statistical odds for mortality or occurrence of metastases in OST patients,
we also evaluated the OS and PFS according to the presence or absence of each TIL and
calculated the individual, associated HR. In our study, besides the risk associated to the
absence of infiltrating CD4+ T cells we did not find a significant statistical value for OS,
even though the impact of CD4+ cells on OS was close to the significancy level, which
suggests that CD4+ cells may have some clinically significant value in OST.

We also observed that higher infiltration of CD8+ cells conferred superior OS and PFS
in the patients studied, suggesting a possible indicator of a good response. Our results
were in line with what has already been reported, namely the importance of infiltrating
CD8 T cells on OST patient survival [30,34]. A recent study on OST established a prognostic
model based on the expression of 14 immune-related genes (IRG) that stratifies patients
in low or high risk for the occurrence of metastases, and the score risk was negatively
correlated with infiltrating CD8 T cells and macrophages, and positively correlated with B
cell infiltration [20]. Another study identified two gene-immune subtypes of OST based on
high and low expression of IRG using bioinformatics analysis [22]. The highest infiltration
of CD8+ T cells and anti-tumoral macrophages were observed in the high IRG expression
subtype and those patients had a better prognosis than patients in the low IRG expression
subtype. Another model to stratify OST patients based on IRG showed a positive relation-
ship between high-level CD8+ cell infiltration and good responders [23]. In patients with
the tumor located at the PT, we found a tendency for a higher infiltration of CD8+ cells
compared to DF tumors. This suggests that patients with the tumor located at the PT are
more likely to achieve a longer survival. The distribution of CD8+ cells according to the
four tumor zones defined was different in the age groups. In older patients, CD8+ cells did
not infiltrate the tumor and remained in the adjacent areas, unlike younger patients. We
also had a greater number of infiltrating CD8+ cells in patients undergoing neoadjuvant
chemotherapy, namely at the Rz. When we examined the influence on patient survival,
we observed that the influence of CD8+ cells on PFS was more evident in male patients.
Together, these findings suggest an increased benefit for: patients with tumors in the PT
area, for younger patients, for patients who received neoadjuvant chemotherapy and for
male patients regarding CD8+ cell infiltration.
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B cell infiltrates were identified in tumor samples from OST patients [13]; however,
studies centered on B cells are scarce. We found expression of CD20+ cells in half of the
OST samples studied and we did not find significant associations with patient OS and
PFS. Nevertheless, we found a lower infiltration in female patients and the distribution
in the tumor zone was also different from male patients. A lower infiltration in the oldest
patients was also observed and, in patients with the tumor located at the PT, a higher
infiltration was correlated with inferior PFS. The above-mentioned study that established
an IRG-based prognostic model to stratify OST patients correlated the score risk with the
infiltration of B cells positively [20].

The study of molecules expressed by the tumors provides important information
about the behavior of the tumor itself. Given this, the expression of molecules related
to apoptosis, drug resistance and metastatic capacity were evaluated. We found that
approximately 50% of the OST samples had p-glycoprotein and Fas-L expression, while
lower percentages were observed for CD44s, CD44v6, CD95/Fas and p53.

P-glycoprotein is a drug efflux pump and its overexpression by tumor cells has been
implicated in multidrug resistance in several solid tumors [35]. In OST, p-glycoprotein
has been associated with resistance to chemotherapy and it has been hypothesized that
targeted therapy to p-glycoprotein could be of importance to overcome the chemotherapy
resistance in OST [36–38]. When we explored the risk or protective value of the presence
of each tumor marker, we observed that patients with p-glycoprotein expression had a
higher chance of death occurrence, despite only presenting a statistical value close to
the significance level. Similarly, when we analyzed the OS according to p-glycoprotein
expression, we observed a lower survival for those with p-glycoprotein expression. In the
literature, the predictive value of this protein is still controversial [26,39,40]. The analysis
of p-glycoprotein according to the tumor location was different. The percentage of positive
samples for p-glycoprotein expression was higher in PT patients but did not correlate with
patient survival or the occurrence of metastases. On the other hand, the expression of
p-glycoprotein was significantly associated with a decreased OS rate in male patients.

Fas-L-induced apoptosis upon engagement with its own receptor (CD95/Fas) con-
tributes to immune cell-mediated cytotoxicity [41]. In OST, the increased expression of
CD95/Fas has been correlated with a reduced metastatic potential of tumor cells [42,43].
As expected, in our study, a trend towards longer survival was observed in patients with
CD95/Fas expression. In OST, the expression of Fas-L has been implicated in the occurrence
of metastasis [44,45]. Overall, we did not observe a predictive value for Fas-L expression;
however, the expression of Fas-L was correlated with poor survival in the youngest group
of patients. The manipulation of this pathway could be another strategy to improve OST
treatment.

Additionally, we investigated whether there was a significant association between
TILs and the molecules studied. To our knowledge, for the first time in the field, we found
a strong relationship between the infiltrating CD4+ cells and CD44s expression. CD44 is a
homing cellular adhesion protein that could be expressed in a standard form (CD44s) as
well as a multitude of CD44 variants (CD44v) [46]. CD44s is known to exert recruitment
functions in hematopoietic cells [47]. CD44v has been associated with the ability of tumor
cells to adhere to, migrate to and invade other body sites [48]. However, the role of the
link between CD44s expression and CD4+ cells is still unknown. Several authors have
identified the expression of CD44 and its isoforms in tumor tissue from OST patients, which
has been mentioned as a key factor in metastasis development and drug resistance [49–51].
Particularly, the expression of the CD44v6 isoform has been associated with the occurrence
of metastasis [51,52]. Our data revealed that the time for metastasis to occur is two times
faster in patients with CD44v6 expression. Interestingly, the survival analysis for CD44s
revealed that for patients where metastasis occurred, the time to metastasis was longer
for patients with CD44s expression. We found a strong association of tumor-infiltrating
CD4+ cells and the expression of CD44s and further evaluated the survival rate of patients
with positive or negative samples for each factor. Although without statistical value,
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we observed higher TAD for those with CD4+ cell infiltration independent of the CD44s
expression. The presence of CD44s expression without CD4+ cell infiltration revealed lower
TAD, similar to the patients with negative samples for both. No significantly different TAD
was observed in patients with samples positive for both CD4 and CD44s when compared
to those with positive samples only for CD4+ cell infiltration. We hypothesized that CD44s
expression may be involved in CD4+ cells recruitment, and that the presence of CD44v6
expression may represent a defense mechanism of host cells.

Despite no associations being found between TIA-1 and p53 expression and disease
progression in our study group, a moderate positive association was observed for the
infiltration of TIA-1+ cells and for the expression of p53. TIA-1 was described as a cytotoxic
granule-associated protein that is expressed on cytotoxic lymphocytes as NK and CD8 T
cells [53]. In localized OST, the infiltration of cells positive for CD8 and TIA-1 at diagnosis
was correlated with a superior survival rate [54]. The p53 protein is encoded by a tumor
suppressor gene and the deficient function of p53 affects the bone microenvironment, there-
fore opening doors for the development of the OST [55,56]. Regarding TIA-1+ infiltrates
we found that patients with the tumor located in the PT were more susceptible to TIA-1+
cells and the infiltration of these cells conferred superior survival to patients that were
treated with neoadjuvant chemotherapy.

5. Conclusions

The major findings of this study were the protective character of infiltrating CD4
T cells, the influence of CD8 T cells on survival and the strong association between the
infiltrated CD4 T cells and the CD44s expression. This study confirmed the importance of
studying the cells that are able to be recruited and exert their function against tumor cells in
the context of OST. The expression of tumor markers is also a matter to be considered and
should be further explored to bring new insights about the mechanisms that promote the
tumor’s growth and escape. Thus, the identification of novel targets or biomarkers with a
predictive value that may be useful to stratify patients and monitor the response to therapy
could occur, as well as assisting with the development of immunotherapy strategies to
improve the effects of cytotoxic TIL on the eradication of tumor cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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