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A B S T R A C T

Cloud computing has become the preferred choice by the large major-
ity of organizations to obtain computing resources. Despite the various
advantages of cloud computing, it has experienced difficulty in find-
ing adoption by organizations that have mission-critical workloads
with strict dependability requirements, as it is at a disadvantage when
compared to dedicated infrastructures due to its own ethos. Cloud
computing consists in the sharing of computing resources through a
network to multiple clients that use the same hosted infrastructure.
Resource sharing is usually accomplished using virtualization, how-
ever both the practice of sharing the same physical resources and the
usage of virtualization increase the impact that a failure may have and
the likelihood of failure occurrence.

If cloud computing is to be regarded as a trusted platform to sup-
port mission-critical workloads, then it must provide similar levels
of dependability as those attained by dedicated infrastructures. This
thesis addresses the aforementioned issue through the evaluation of
the current state of cloud computing dependability and the proposal
of contributions that increase its dependability. Both actions are inter-
linked, since the design of fault tolerance mechanisms that can balance
fault coverage and performance overhead requires detailed knowledge
about the manner in which cloud computing fails. This information
can be extracted from realistic failure data, which is obtained in this
thesis using an experimental methodology that employs fault injection
for accelerating the data collection process.

To support the experimental campaigns, the ucXception framework
and the fault injection tools associated with it have been developed
from the ground up as part of this thesis. Before the ucXception
framework, various fault injection tools had been developed, but few
were capable of being used in the context of cloud computing and
virtualization, as well as supporting fault models representative of
transient hardware faults and software faults.

The experimental campaigns yield new findings, from which we
highlight the observation that faults in the hypervisor and privileged
virtual machine can cause common-mode failures that affect multiple
clients at once, and, in some cases, lead to silent data corruption. Faults
during the execution of guest virtual machines largely cause failures
that lead to downtime of the applications in the virtual machine and
which cannot propagate to other virtual machines or to the hypervisor,
thus suggesting that mature virtualization solutions provide good
isolation.
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Using this knowledge, we create Romulus, a fault tolerance tech-
nique that can tolerate hypervisor failures by migrating virtual ma-
chines from the failed hypervisor to a co-located hypervisor. Romulus
provides coverage of software and transient hardware faults with-
out requiring redundant hardware and with low downtime, which
contributes to its goal of increasing the availability of cloud comput-
ing infrastructure. A proof-of-concept implementation is developed
and evaluated using fault injection, thereby showing that it can often
recover at least part of the virtual machines in a system after a failure.

Furthermore, we propose the Availability-as-a-Service framework
for promoting the availability of cloud infrastructure at an agreeable
performance cost. The framework uses nested virtualization to host
a minimal microvisor that contains just the core logic and depends
on modules that encompass specific mechanisms that provide fault
tolerance and which can be enabled and disabled explicitly by the
cloud provider and client.

Keywords: Cloud Computing, Virtualization, Dependability, Avail-
ability, Fault Injection, Fault Tolerance.
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R E S U M O

A computação em nuvem tornou-se na escolha predileta de uma
grande maioria de organizações no momento de adquirir recursos
computacionais. Apesar das múltiplas vantagens da computação em
nuvem, regista-se dificuldade em que esta seja adotada em cenários
nos quais existam requisitos estritos de confiabilidade. O próprio
ethos da computação em nuvem coloca-a numa posição desfavorável
quando comparada com uma infraestrutura dedicada. A computação
em nuvem é a partilha de recursos computacionais para vários clientes
através de uma rede, sendo normalmente implementada usando vir-
tualização. Todavia tanto a prática de partilhar os mesmos recursos
físicos como o uso de virtualização aumentam o impacto que uma
avaria pode ter e a probabilidade da sua ocorrência.

Para que a computação em nuvem possa ser considerada como
uma plataforma adequada e capaz de suportar cargas de trabalho
críticas, esta deve providenciar níveis de confiabilidade semelhantes
aos de infraestruturas dedicadas. A tese aborda este problema através
da avaliação do estado da arte da confiabilidade da computação em
nuvem e da criação de propostas para aumentar a sua confiabilidade.
Ambos estes aspetos estão relacionados, pois o desenho de mecanis-
mos de tolerância a falhas capazes de obter um bom equilíbrio entre
cobertura de falhas e custo de desempenho implica um conhecimento
detalhado sobre os vários tipos de avarias que afetam a computação
em nuvem. Por sua vez, essa informação pode ser extraída de dados
de avarias realísticos, que são obtidos nesta tese com recurso a uma
metodologia experimental baseada no uso de injeção de falhas para
acelerar o processo de coleção de dados.

Para dar suporte às campanhas experimentais, a framework ucXcep-
tion e as ferramentas de injeção de falhas que lhe estão associadas
foram desenvolvidas de raiz durante o decurso deste doutoramento. A
framework ucXception é construída a partir de vários anos de estado da
arte em ferramentas de injeção de falhas, mas adiciona suporte para
modelos de falhas representativos de falhas transitórias de hardware e
falhas de software, para além de ser orientada para o uso em contexto
de sistemas virtualizados e de computação em nuvem.

As campanhas experimentais resultaram em várias descobertas,
das quais salientamos a observação de que falhas no hypervisor e na
máquina virtual privilegiada podem levar a avarias que afetam vários
clientes simultaneamente e com menor frequência podem potenciar a
corrupção silenciosa de dados. Em regra, falhas durante a execução
das máquinas virtuais hóspedes levam a avarias que causam indisponi-
bilidade das aplicações que executam na própria máquina virtual e
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que não é propagada para outras máquinas virtuais ou para o hypervi-
sor, o que sugere que soluções de virtualização maduras providenciam
bom isolamento.

Usando esta informação, criámos a técnica de tolerância a falhas
denominada por Romulus, que é capaz de tolerar avarias do hypervisor
através da migração das máquinas virtuais do hypervisor avariado
para um hypervisor localizado no mesmo sistema físico. O Romulus
consegue cobrir falhas de software e falhas transitórias de hardware
sem necessitar de hardware redundante e obtendo um baixo tempo de
inatividade, factos que contribuem para alcançar o objetivo de melho-
rar a disponibilidade da infraestrutura que suporta a computação em
nuvem. Uma prova de conceito foi desenvolvida e avaliada através da
injeção de falhas, assim demonstrando que frequentemente é possível
recuperar parte das máquinas virtuais do sistema após avaria.

Para além disso, propusemos a framework Availability-as-a-Service,
cujo objetivo é melhorar a disponibilidade da infraestrutura de com-
putação em nuvem sem um custo de performance exagerado. A frame-
work usa virtualização nested para alojar um pequeno microvisor que
trata apenas da lógica essencial e que depende de módulos que imple-
mentam mecanismos de tolerância a falhas e que podem ser ligados e
desligados explicitamente pelos provedores e clientes da computação
em nuvem.

Palavras-chave: Computação em Nuvem, Virtualização, Confiabili-
dade, Disponibilidade, Injeção de Falhas, Tolerância a Falhas.
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1
I N T R O D U C T I O N

Cloud computing pervades society as we known it today, even if the
abstract nature of the “cloud” hides this constatation. Cloud comput-
ing is a paradigm whereby computing resources are accessed through
a network and hosted in an infrastructure that is rented out to mul-
tiple clients. The large majority of the services available through the
Internet are supported by cloud computing, be it the social platforms
that we use to communicate with others, the news platforms, the giant
e-commerce retailers or many other less publicized services.

Organizations and companies have flocked to the cloud because of
the many advantages that it offers, namely lower monetary expenses
due to non-existent acquisition costs and paying only for the resources
that are used, as well the ability to automatically scale the contracted
resources according to load and demand. Scalability, elasticity and
resource sharing are pillars of cloud computing that have proven to
represent a large change from traditional deployment models where
workloads were assigned to dedicated hardware, which would be
underutilized during large portions of the time and unable to follow
large spikes in load.

Resource sharing is attained through virtualization, an enabling
technology of cloud computing that has long existed but only reached
critical mass around the year 2000, when the first consumer micro-
processors capable of fully virtualizing the x86 architecture were
produced. Since then, virtualization has very much contributed to
the adoption of cloud computing, which has trended upwards since
around 2006. Virtualization is a technique that presents a virtual copy
of the physical hardware to the software applications and operating
system, thereby giving the impression that the entire machine is exclu-
sively allocated to them, when in reality multiple applications hosted
in different virtual machines are being executed.

This thesis deals with one of the reasons why cloud computing is
not more widely adopted, specifically by organizations possessing
mission-critical workloads, which is the dependability of cloud com-
puting. Despite its enticing advantages, cloud computing has yet to
find adoption from all potential clients. Organizations that rely on
workloads with strict dependability requirements, namely in terms
of availability and reliability, are reticent to migrate their workloads
to the cloud. These workloads can support use cases such as telecare,
home banking, brokers and other healthcare and financial activities.
For these use cases, organizations prefer to keep workloads hosted
in dedicated infrastructure over which they maintain full control, in
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part due to the lack of guarantees that cloud computing is capable of
ensuring.

Public cloud computing providers offer service-level agreements
(SLAs) which specify, among others, the expected availability. Current
agreements available to the public indicate that even the most popular
cloud providers do not offer availability levels higher than 99.99% (i.e.,
more or less 4 minutes of downtime in a month), which is insufficient
for workloads that demand high-availability. Although SLAs negoti-
ated between large organizations and public or private cloud providers
may offer higher levels of availability, these trail what can be accom-
plished using specialized, dedicated infrastructure. When looking at
reliability of cloud computing, the situation is even more precarious
since SLAs completely disregard this non-functional attribute due to
the difficulty in accurately and fairly measuring reliability, paired with
a lack of interest from cloud providers and demand from cloud clients.

Although virtualization opens a number of possibilities for cloud
computing, it also exposes the cloud to new risks. For example, con-
solidation of workloads over the same physical hardware is a tenet of
cloud computing that is accomplished thanks to virtualization. How-
ever the higher the amount of consolidation, the higher the stress on
the system and the impact that a failure may have, since it can affect
more users at once. Another example of why virtualization leads to
higher exposure to dependability threats is the requirement for a big-
ger software stack that is needed for providing virtualization (e.g., the
hypervisor, privileged virtual machine and toolstack) and managing
the complexity of cloud computing (e.g., cloud management software
like OpenStack), which is expected to introduce software faults in the
system. Finally, the software needed to provide virtualization (e.g., the
hypervisor) effectively constitutes a single point-of-failure that can
affect the entire machine and all of its clients at once.

In order to close the gap between the dependability attainable using
dedicated infrastructure and that of cloud computing, thus reducing a
major obstacle to true widespread adoption and migration of mission-
critical workloads to the cloud, the goals of this thesis are i) to evaluate
cloud computing dependability and ii) to propose contributions that improve
cloud computing dependability. An approach based on the experimental
method was used to collect information needed to design adequate
fault tolerance mechanisms. More specifically, fault injection was em-
ployed to accelerate the collection of failure data that is required to
evaluate how the virtualized infrastructure that supports the cloud be-
haves when affected by transient hardware faults and software faults.
Throughout this thesis, cloud computing dependability is analyzed
at the infrastructure level with a focus in the node that resorts to
virtualization for sharing its computing resources. Although other
levels, such as the application-level or the distributed-level, also have
a role on the dependability of cloud computing as experienced by the
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cloud clients, we focused in the infrastructure because it is there that
the current body of knowledge is less developed and cloud computing
introduces most of its innovations.

The following sections describe the key contributions of this thesis
in detail and explain the structure of this document.

1.1 contributions

The following list details the main contributions found in this thesis:

1. A review of the state-of-the-art on the topic of cloud computing de-
pendability – which identifies the characteristics that make cloud
computing unique, justifies why cloud computing warrants a
study focusing on its dependability, lists the threats that affect
cloud computing dependability, as well as the mechanisms and
techniques that are used to provide fault tolerance in the cloud
(presented in Chapter 2).

2. A framework for evaluating cloud computing and virtualized systems
using fault injection – which is one of the few publicly available
fault injection projects supporting injection of various fault mod-
els (namely, transient hardware faults and software faults) and
injection in virtualized and cloud computing systems. It was
developed during this doctorate to support the experimental
campaigns that were used to evaluate cloud computing depend-
ability and validate the proposed contributions (presented in
Chapter 3, based on Publication XII).

3. An evaluation of the impact of transient hardware faults in a virtualized
system – which provides novel insights and observations regard-
ing how a virtualized system that supports cloud computing
deployments behaves when affected by transient hardware faults.
This analysis aims to characterize the various failure modes that
occur in a virtualized infrastructure, as well as verifying the
error isolation afforded by a mature hypervisor (presented in
Chapter 4, based on Publications I and X).

4. An evaluation of the impact of software faults in a virtualized system –
which provides new insights into the impact that software faults
in the components that compose a traditional virtualized system
may have (presented in Chapter 5, based on Publication III).

5. A fault tolerance mechanism to tolerate hypervisor failures – which
provides tolerance without requiring external hardware and in a
transparent manner. It employs efficient migration of VM state
across two hypervisors hosted in the same physical machine
to enable the VMs to continue executing if their hypervisor
fails and without requiring a reboot. The proposed technique
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is complemented with a publicly available proof-of-concept im-
plementation that has been validated and evaluated using fault
injection (presented in Chapter 6, based on Publication XIII).

6. A framework for increasing the availability of cloud computing infras-
tructure – which exposes a service interface to cloud providers
and clients that can be used to configure a set of modules that
provide availability. These modules integrate into the framework,
which was designed according to the knowledge and experience
obtained during the course of this work (presented in Chapter 7).

1.2 structure of the document

Due to the different objectives tackled in this thesis, we decided to
organize it into three distinct parts, namely:

• Part I: Cloud Computing and Dependability

• Part II: Evaluating Cloud Computing Dependability

• Part III: Improving Cloud Computing Dependability

Part I encompasses the current chapter and Chapter 2, which
presents the state-of-the-art in cloud computing dependability and
fault tolerance, as well as presenting the essential concepts of cloud
computing, virtualization and dependability.

Part II describes the work performed to evaluate cloud computing
dependability and is composed by Chapters 3, 4 and 5. Chapter 3 fa-
miliarizes the reader with fault injection and describes the ucXception
framework, which was developed as part of this thesis for supporting
the required fault injection campaigns. Chapter 4 contains the results
of the evaluation of the impact that soft errors (i.e., transient hardware
faults) can have in a virtualized infrastructure. Chapter 5 analyses the
effect that software faults (i.e, software bugs) in components of the
privileged virtual machine can have in a virtualized infrastructure.

Part III presents two contributions to improve cloud computing
dependability. Chapter 6 presents Romulus, a fault tolerance tech-
nique for attaining high-availability operation even in the presence of
hypervisor failures. Furthermore, a proof-of-concept implementation
of Romulus was developed over the source code of the Xen hypervisor
and evaluated through fault injection of transient hardware faults and
software faults in the hypervisor. Chapter 7 presents the Availability-
as-a-Service framework, which has the objective of increasing the
availability of cloud computing while maintaining a lean performance
overhead that is configurable by cloud providers and clients through
a service interface. Finally, Chapter 8 presents the conclusion of the
thesis, where we reflect on the work that was performed, how this
thesis contributes to a better understanding and improvement of cloud
computing dependability and possible future work.



2
W H Y D O E S T H E C L O U D FA I L A N D W H AT I S
B E I N G D O N E A B O U T I T ?

Since the origin of computer systems, there has been a constant re-
finement and improvement in approaches to optimize the available
resources and expand the boundaries of what can be accomplished,
which has lead to the appearance of trends such as distributed systems,
relational databases and cloud computing, to name a few. Neverthe-
less, the need for dependable and highly available systems is timeless
and implies understanding why computers fail and what can be done
about it. To this purpose, Jim Gray authored one of the pioneering
studies [58] that analyzed these exact questions with respect to the
Tandem line of fault-tolerant computers, which was reproduced by
Oppenheimer et al. some decades later after authoring a paper that
focused on Internet services, the hot and rapidly growing topic at
the time, and analyzed how they fail and what should be done to
avoid that [101]. Since then, cloud computing has gained widespread
adoption and became the standard venue for organizations and indi-
viduals to deploy their systems. This chapter follows the footsteps of
its predecessors by providing the answers to why cloud computing fails
and what is being done about it.

These two questions must be answered specifically for cloud com-
puting because it differs from any other trend or technology that has
come before and possesses unique characteristics that create new chal-
lenges to ensuring dependability. One such challenge is related to the
technology that is more often associated with cloud computing, which
is virtualization. Virtualization is employed in the large majority of
cloud computing deployments with the purpose of enabling workload
consolidation over a shared physical machine, while ensuring isola-
tion between the tenants (i.e, the different users of the machine, which
are usually the cloud clients). Although virtualization is nowadays
sufficiently mature to be trusted by most cloud providers and clients,
specifically if the workload is not critical, it implies the addition of
many thousands of lines of software code in the form of the hypervisor
and other auxiliary applications, toolstack and device drivers, which
will inevitably introduce software faults (i.e., software defects or bugs)
to a layer that represents a single point-of-failure.

Another challenge unique to cloud computing is the consolidation of
multiple workloads (or tenants, cloud clients, VMs, etc.) over the same
hardware using virtualization. By consolidating more than one client,
the potential impact of a failure is largely amplified, as it is multiplied
by all the clients that are executing over the hardware. Moreover

7
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consolidation increases the average usage level of the system, which
tends to increase the rate at which failures occur [20, 52].

Other challenges appear because of the characteristics of the data-
centers that support cloud computing, specifically the datacenters of
large public cloud providers. These datacenters contain a tremendous
amount of hardware that is connected through high speed networks
and are often referred to as hyperscale infrastructure due to support-
ing systems with very high degree of scalability, such as large public
cloud computing providers. Given their size and the raw amount of
physical components, hardware failures are a daily occurrence [52].
Furthermore, these datacenters are extremely complex to manage,
thus requiring the usage of cloud management software. As such,
complexity and extra software lead to the appearance of unexpected
failures that are not anticipated during the design and development
phase of a cloud computing infrastructure [53] and to gray failures,
which leave the system in a degraded mode because they remain
undetected up until the moment when the entire system abruptly
fails [67]. Finally, the cost-sensitive and very competitive nature of the
business model of cloud providers has sustained the popularization
of energy saving techniques, such as dynamic frequency and voltage
scaling, which have been shown to significantly increase the failure
rate of hardware [26].

All of the enumerated challenges are in one way or another unique
to cloud computing and must be handled using adequate approaches.
Thankfully the nature of cloud computing also creates opportunities
that can be used to tackle these challenges. For example, the large
distributed nature and existence of large amount of hardware, most
of which is underused during large parts of the day, makes it a
favorable proposition to migrate or replicate VMs across different
hardware or datacenters. Whereas the omnipresence of virtualization
leads to the development of creative techniques that provide a degree
of redundancy and fault tolerance using the isolation and abstraction
of virtualization.

This chapter starts by introducing essential concepts and the back-
ground in cloud computing, virtualization and dependability, which
are topics that are present throughout the rest of this thesis. Then, it
describes the state-of-the-art regarding the threats that risk damaging
the dependability of cloud computing and the means to attain depend-
ability that are being used nowadays to maximize dependability in
cloud computing.

2.1 background

With the appearance of cloud computing, a range of terms and vo-
cabulary characteristic of virtualization has appeared and entered
everyday usage by IT professionals. The same can be said about the
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terms associated with the large field of dependability. Sometimes a
term definition collides with a meaning assumed in another field,
thus confusion in the terminology may arise. Throughout this thesis,
concepts and terms in the areas of cloud computing, virtualization
and dependability are regularly used, hence this section serves as
a compendium that the reader should take advantage of to better
comprehend this manuscript.

2.1.1 Cloud Computing

Cloud computing has been defined as “a model for enabling ubiq-
uitous, convenient, on-demand network access to a shared pool of
configurable computing resources (...) that can be rapidly provisioned
and released” [92] and has been claimed to “provide on-demand re-
sources and services over a network, usually the Internet, with the
scale and reliability of a data center” [59]. Its appearance represents
an opportunity for clients to have tremendous amount of computing
power at their disposition, which can be quickly allocated and released
according to their needs, thus following demand trends and freeing
the clients from having to pay for unused resources, as was the case
with the traditional on-premises and in-house managed infrastructure.
For cloud providers, many of which are big tech giants, cloud com-
puting provides the opportunity to maximize the utilization of their
existing systems by selling idle computing power.

Cloud computing can be classified according to three properties [92],
which are: i) its characteristics, ii) its service models, and iii) its
deployment models.

The essential characteristics of cloud computing are:

• On-demand self-service – a customer must be able to provision the
desired computing resources automatically and without human
intervention from the cloud provider;

• Broad network access – the capabilities are accessible over the
network using standard protocols that can be universally used;

• Resource pooling – the computing resources of the cloud provider
are kept in a pool from which they will be taken and returned
according to consumer demand;

• Rapid elasticity – resources can quickly be provisioned and re-
leased according to demand, so that highly scalable systems
with seemingly infinite resources can be created;

• Measured service – metering of resource usage is required to keep
track of how the cloud provider’s resources are being used and,
possibly, for billing purposes.
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The service models of cloud computing (i.e., the manner in which
the service is provided to the cloud clients) are:

• Function as a Service (FaaS) – the consumer publishes functions
(i.e., pieces of code) using agreed programming languages and
libraries, which are then executed over the cloud infrastructure.
The consumer has no control over any of the underlying software
stack or hardware infrastructure;

• Software as a Service (SaaS) – the consumer is given access to
software applications that are hosted in the cloud and cannot
manage or access the underlying infrastructure, such as oper-
ating systems. Usually the services are accessible through a
web-based thin client;

• Platform as a Service (PaaS) – the consumer cannot manage or
access the underlying infrastructure, but can deploy his own
applications to the cloud;

• Infrastructure as a Service (IaaS) – the consumer is allowed to
provision and manage all of the resources, as well as being able to
deploy and execute software applications and operating systems
as desired. Nevertheless, the underlying cloud infrastructure is
not managed by the consumer.

Deployment models (i.e., the configuration of the environment with
regards to where the infrastructure is located and who has control
over it) are:

• Private cloud – the cloud is used by a single organization, can be
managed by the organization or a third-party, and its supporting
infrastructure may be on or off-premises;

• Community cloud – similar to a private cloud but may be used by
a group of organizations that share a common goal;

• Public cloud – it is the most common deployment model. The
cloud is open to the public and its infrastructure is managed by
a cloud provider;

• Hybrid cloud – it is a composition of two or more other clouds
that may use different deployment models but share an unified
technology or standard to allow seamless migrations between
them.

Cloud computing is well-known for its usage of service-level agree-
ments (SLAs), i.e., agreements between cloud provider and cloud client
that specify various aspects of the service given by the cloud provider
(usually referred to as service-level objectives) that dictate the quality
of service, availability, and compensation to be awarded to the clients
in the case that any of the objectives are violated.
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2.1.2 Virtualization

The empowering technology behind cloud computing is virtualization,
i.e., “a variety of mechanisms and techniques used to decouple the
architecture and user-perceived behavior of hardware and software
resources from their physical implementation” [48], where users exe-
cute their software systems (operating system and applications) inside
of virtual machines (VMs), i.e., “efficient, isolated duplicate of the real
machine” [110], over the same physical hardware [120]. Popek and
Goldberg’s article [110] laid out the requirements for virtualizability:

1. Efficiency – states that all innocuous instructions (e.g., non privi-
leged instructions) should be executed directly in the hardware.
Its purpose is to avoid performance overhead due to virtualiza-
tion unless when absolutely necessary;

2. Resource Control – states that any application being virtualized
should not be able to interfere with the system resources. In
other words, virtualization must provide isolation between VMs
and the hypervisor and among the VMs themselves;

3. Equivalence – states that any application being virtualized ex-
ecutes indistinguishably from how it would if virtualization
was not used, except in two situations, timing and resource
availability. Timing refers to the fact that virtualization implies
software that will occasionally intrude during execution of the
application and lead it to take longer to execute than its non-
virtualized counterpart. Resource availability deals with the fact
that resources are finite and the software required for providing
virtualization will reduce the overall available resources to a
lower amount than in a non-virtualized counterpart.

These requirements are considered an integral part of full virtualiz-
ability to this day. However, hybrid virtualization is also a viable and
quite popular technique whereby one of the three requirements for
full virtualizability is relaxed.

Virtualization far precedes the appearance of cloud computing, hav-
ing first been used in the 70s to allow time-sharing large and costly
mainframes [48, 120]. However, virtualization soon entered a period
of disinterest and decreased adoption, in part due to missing hard-
ware support to enable virtualization with acceptable overhead on
the popular x86 architecture. In fact, prior to the appearance of hard-
ware extensions that enabled hardware-supported virtualization and
propelled virtualization and cloud computing to become a staple in
the IT world, several organizations had attempted to reach efficient
x86 virtualization using software-only approaches. This is the case
of VMWare and Xen, which pioneered the usage of runtime binary
translation [1] and paravirtualization [14, 151, 152] for virtualizing x86
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systems. With the development of software-based virtualization ap-
proaches and the inclusion of virtualization extensions in the majority
of consumer microprocessors, virtualization, which had once been a
technology available to the few that could afford large mainframes,
has become a technology for the masses [120]. In fact, this thesis is
only now feasible in part due to the fact that virtualization has only
become widespread relatively recently.

Virtualization is implemented through a hypervisor, sometimes also
called as a virtual machine monitor, which provides all the functional-
ities required for providing virtualization and abstracts the physical
resources from the VMs [118]. The hypervisor resorts to a range of
techniques for implementing virtualization, which are often grouped
into virtualization modes. Some techniques can be classified as belong-
ing to software-based virtualization, such as trap-and-emulate, binary
translation and paravirtualization, while the techniques that use func-
tionalities provided by hardware with virtualization extensions are
referred to as hardware-based virtualization. Recently there have been
efforts to create virtualization modes that mix software and hardware
based techniques with the intent of providing the best possible per-
formance, however these virtualization modes are still being actively
developed and are rarely found in production subsystems.

Initially, the most prevalent virtualization technique was trap-and-
emulate [56], which consisted in trapping the execution of privileged
operations inside the VMs and emulating their operation in the hy-
pervisor. The biggest limitation of trap-and-emulate is that it cannot
be used to virtualize the x86 architecture, because this architecture
has various privileged functions that do not trap when called, thus
posing isolation and safety problems since the VMs can interfere with
the rest of the system. Later, VMWare and others heavily researched
binary translation, which was able to virtualize the x86 architecture
by interpreting the instructions that are about to be executed and
rewriting a subset (namely the privileged instructions) to prevent
violations of isolation. Xen [14] was one of the first hypervisors to
employ paravirtualization, a virtualization technique that depends on
modifications to the operating system inside the VMs to explicitly com-
municate with the hypervisor. The advantages of binary translation
when compared to paravirtualization are that the original source code
and binary do not need to be modified and performance optimiza-
tions based on avoiding expensive traps can be performed, whereas
paravirtualization promises better overall performance, particularly
in highly consolidated settings (e.g., hundreds of VMs in the same
hardware) [14, 152].

Hardware extensions from the main microprocessor manufacturers
have enhanced x86 virtualization by providing more privilege rings,
thus allowing a CPU-level separation between hypervisor, operating
system and user-space applications, introducing the concept of VM
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entry and exit, which represents the transitions of control between the
hypervisor and the VMs, specifying which instructions should lead to
traps (in the form of VM exits to hypervisor routines) and supporting
interrupt and memory virtualization [19, 147].

A particular type of virtualization has recently started to gain in-
terest and adoption as a tool to support more complex systems. This
type of virtualization, which is called nested virtualization, consists
on having various levels of virtualization, or, in other words, virtual-
izing a virtualized system recursively [18]. It has experienced recent
interest as a technique for executing already virtualized systems in the
cloud [18], performing intrusion detection [51], virus scanning [117]
or implementing other security and fault tolerance techniques that
operate from outside the VMs that they protect.

Hypervisors may be classified according to their type [133], i.e., the
position in the system that they occupy and hence the functionalities
that they must implement. A bare-metal hypervisor, also known as
a Type 1 hypervisor, is a hypervisor that executes directly on top
of the hardware and, therefore, must handle various functionalities
usually assigned to operating systems, such as memory and CPU
management. A hosted hypervisor, or Type 2 hypervisor, executes
above an existing operating system, thus does not need to implement
the functionalities provided by the operating system, usually at the
expense of worse performance. Figure 1 visually represents these two
hypervisor types.

Hardware

Hypervisor

VM VM VM

Hardware

Operating System

VM VM

Hypervisor

Type 1 (Bare metal) Type 2 (Hosted)

Figure 1: Types of hypervisors.

Many hypervisors, such as Xen, offload certain tasks to privileged
virtual machines (PVMs) that execute over it. In Xen the norm is for
one PVM, which is called Domain-0 (dom0), to be used to provide
the device drivers that will be used by the other (guest) VMs, along
with the operating system that the system administrator will use
to manage the virtualized system. Although Xen was developed as
an academic effort to research paravirtualization, nowadays it has
become one of the most mature and popular hypervisors, particularly
in cloud computing deployments, and supports other virtualization
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modes, including hardware-based modes [63]. The architecture of
Xen is presented in a simplified manner in Figure 2, which has been
adapted and extended from [14].
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Figure 2: Simplified architecture of the Xen hypervisor.

The hypervisor presents the VMs with virtualized copies of the hard-
ware, including the CPU, the memory, network and other I/O devices,
and handles the tasks associated with these, such as scheduling the
VMs across the available CPU time. Above the hypervisor, the PVM is
needed for providing the device drivers for the hardware that will be
used by the guest VMs that use paravirtualization (or hardware-based
virtualization extended with paravirtualized device drivers). The de-
vice driver model in Xen is divided into backend device drivers, which
are located in the PVM and interact with the real device drivers to re-
quest operations on the hardware, and frontend device drivers, which
are located in the VMs and are used to communicate with the back-
end drivers. VMs that use pure hardware-virtualization communicate
directly with the virtualized hardware using their own device drivers
and taking advantage of hardware extensions. Paravirtualized VMs
may communicate with the hypervisor, for example to request modi-
fications to page tables, through hypercalls, which are conceptually
similar to the system calls of operating systems.

The encapsulated nature of VMs has lead to the popularization of
a range of techniques [48], such as suspending and resuming VMs,
which increases the portability of systems by allowing entire systems,
including operating system and user-space applications, to be moved
as a single file. Another popular technique, VM migration, builds
upon the suspend/resume functionality to allow runnings VMs to
be migrated between different physical machines [32]. Finally, virtual
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machine introspection (VMI), i.e., “a technique for viewing the runtime
state of a virtual machine” [103], has also been used to monitor and
modify the state of the VM directly from the hypervisor without the
need for instrumentation inside the VM.

In summary, virtualization represents an enabling technology of
cloud computing that carries both increased risks to dependability and
opportunities to improve dependability by using fault tolerance tech-
niques that take advantage of virtualization. Given its preponderance
in cloud computing, it is a central topic in this thesis.

2.1.3 Dependability

Dependability can be defined as “the ability to deliver service that can
justifiably be trusted” [7], “the ability to avoid service failures that are
more frequent and more severe than is acceptable” [7], “a property
of a system that justifies placing one’s reliance” [136], or “a property
of the system that reflects its trustworthiness” [134]. Dependability
is often assumed to encompass five attributes: availability, reliability,
safety, integrity and maintainability.

Availability is “readiness for correct service”, which reflects the on-
demand probability that the service will offer correct service. It is often
measured using a number that represents the steady-state availability,
i.e, the percentage of time that the system is available assuming an
operation of infinite duration. This number is often associated to the
notion of X-nines that represent the amount of nines in the steady-
state availability (e.g., five nines means an availability of 99.999%).
Another closely related notion is downtime and its inverse, uptime,
which refer to the amount of time that the system is in a incorrect
(non-working) or working state. For example, an availability value of
five nines translates to a downtime lower than 5.26 minutes per year.
Availability can be mathematically defined as in Equation 1.

Availability =
MTBF

(MTBF + MTTR)
(1)

Where MTBF corresponds to mean-time-between-failures, i.e., how
much time is spent between the occurrence of failures of the system,
and MTTR refers to mean-time-to-repair, i.e., how long does a failure
take to repair. MTBF can be calculated as the arithmetic mean between
failures of a existing system and is sometimes described using failures-
in-time (FIT), which corresponds to how many failures occur in a
billion hours of operation and which can be defined as shown in
Equation 2.

FIT =
1

MTBF
∗ 109 (2)

Mean-time-to-failure (MTTF) is conceptually similar to MTBF but
should only be used in systems where repairs are not possible (the
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failed component is discarded after failure). Annualized failure rate
(AFR) is another concept that can be used to describe the dependability
of a component or system and which is defined as the probability that
the component will fail during a full year of use. It can be obtained
from the MTBF and the total number of hours of operation in an year,
as shown in Equation 3.

AFR = 1− e

(
−(365.2∗24)

MTBF

)
(3)

Availability is widely used in cloud computing to measure the
quality of the service provided by the cloud provider and is often
one of the service-level objectives (SLOs) found in the service-level
agreements (SLAs) that are celebrated between cloud providers and
clients to describe the expectations in the contracted service.

Reliability refers to the “continuous and correct delivery of a ser-
vice”. It is far less often employed as a metric of quality in cloud
computing, despite being equally, if not more, important than avail-
ability. However the challenges inherent in measuring reliability have
limited its popularity in cloud computing. Safety is the “absence of
catastrophic consequences on the user(s) and the environment”. In-
tegrity is the “absence of improper system alterations”. Maintainability
is the “ability to undergo modifications and repairs”.

Dependability may be affected whenever its threats – failures, errors
and faults – are present in the system. Failures are events that occur
when the provided service deviates from the correct service. A failure
represents the transition from correct to incorrect state and may have
a temporal duration associated to it, which is the service outage.
A failure ends when a service restoration takes place. The specific
manner in which the system fails is known as the failure mode, which
is usually a crash failure mode, a hang failure mode or a failure mode
where silent data corruption occurs. Errors are the deviations in a
system state that lead to the failures and faults are the root causes of
errors.

Faults may be classified regarding their manifestation as permanent
(when the fault is always present), transient (when the fault exists
during some time but then disappears) or intermittent (when the fault
appears and disappears seemingly randomly). Permanent faults are
often caused by hardware that has failed, such as a disk or network
switch that stopped working completely. Transient faults may be
caused by hardware that is failing but is still operating at an unstable
state or software that has software defects (bugs) that are activated
under specific conditions. Intermittent faults often have harder to
discover root causes.

From this description it is clear that there is a causality chain be-
tween these three concepts: a fault may be activated and cause an error,
which may then lead to a failure. As depicted in Figure 3, an error
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may propagate through various parts and components of a system
before it reaches the system boundary and becomes a failure. This
chain can be extended across multiple connected systems, so that a
failure of a system may be a fault to another system that depends on
the first.

Fault Error Failure Fault

System boundary

activation propagation

Figure 3: Fault-error-failure causality chain.

In order to deal with the threats to dependability, means to at-
tain dependability must be employed. These means consist of fault
prevention, fault tolerance, fault removal and fault forecasting. Fault
prevention is the process of ensuring that faults are not introduced to
the system, such as the usage of software testing during development
to avoid introducing software faults. Fault tolerance aims to avoid
failures by carrying out error detection and recovery actions. Error
detection employs techniques such as duplicate execution to detect the
presence of an error in the system before it causes a failure. Recovery
actions depend on the system and faults being considered, but may
consist on replicating execution, rolling the state back to a error-free
copy (e.g., checkpointing with rollback [76]) or rolling the state for-
ward to a error-free state [112] (e.g., reapplying changes stored in a log
to a fresh instance). Fault removal consists in finding and removing
faults in the system during development or after deployment, such
as performing software testing to find and then fix software faults or
applying patch fixes to a running system. Fault forecasting consists
in performing an evaluation of the system behaviour with regards to
fault activation and occurrence with the objective of modeling the sys-
tem dependability, identifying and ranking the failure modes or event
combinations that may lead to failures, and obtaining probabilistic
dependability measures.

2.2 threats

The dependability of cloud computing is put at risk by various threats.
These threats correspond to the various types of faults that are transver-
sal to every computer system: software, operator and hardware faults.
Hardware faults are a daily occurrence in cloud computing deploy-
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ments [128], being no less common than what has been reported
for other large deployments, such as HPC [122]. Nevertheless, they
represent a minority of all the fault occurrences in cloud computing.
In fact, evidence suggests that operator and software faults domi-
nate the pool of occurrences of faults [20, 52, 60, 61, 87], particularly
when considering only public cloud deployments instead of private
clouds [23].

This observation can be explained by a characteristic of cloud com-
puting: the significant increase in software that is used to provide
consolidation through virtualization and to manage the complex dis-
tributed systems that are cloud computing deployments. At the same
time, the elastic and self-service nature of cloud computing, which
calls for requesting and releasing resources by the client and without
human interaction, the heterogeneity of the workloads that are exe-
cuted, and the overall complexity of cloud computing deployments
lends to the increase in operator faults, which often are caused by
cloud clients that fail to interact with the user-exposed interfaces,
instead of operators working for the cloud provider that perform
incorrect operations.

The aforementioned threats eventually lead to failures, many of
which cause visible outages of the provided service. Between 2009 and
2016, outages in the cloud are estimated to have occurred an average
of three times or more per year in almost half of all big public cloud
providers. However, in the worst years the number of outages can be
as high as eight per year [60]. These outages translate to downtime
that, in turn, cause cloud providers to violate their SLAs, namely
regarding the clauses that specify the provided level of availability.
In fact, the promising goal of five nines (99.999%) availability in the
cloud has yet to be accomplished, since most cloud providers fall short
of even 99.9% availability, with a small minority of providers not even
reaching 99% availability in an average year [60].

The trace log dataset of Google Cloud nodes [115, 154] is a useful
data source that provides information about failure rates and related
metrics in a public cloud provider. Using this dataset, it has been
inferred that the studied cluster, which features ~12500 individual
server nodes, experienced an average of 309 server failures per day,
with a standard deviation of 101 failures, which results in a single-
node MTBF ranging between 12 and 13 hours [52]. Another relevant
observation is that server MTTR ranges between 1 and 9 hours [52],
which suggests that recovery actions are mostly manual, either because
the failure can only be corrected with human intervention (e.g., a
failed hardware part had to be replaced) or because there is a lack of
automatic failure detection and recovery mechanisms put in place.
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2.2.1 Software Faults

Software faults are often considered to account for the majority of
faults that affect cloud computing. Different studies attribute a wide
range of failure percentages caused by software faults, ranging be-
tween 87% [61], 40% [87], 31% [20] and 15% [60]. This variance may
be explained by the different methodologies used in the papers, the
source of information and the fault types that were considered in their
analysis.

Software faults are inevitable in software applications, as software
testing and verification approaches cannot guarantee the complete
absence of faults. Moreover, software faults become more common
as the number of lines of code increase. Given the widespread use of
new software that is designed to aid cloud computing in its endeavors,
such as to provide virtualization or manage cloud deployments, the
logical outcome is an inevitable increase of the number of software
faults and a percentage gain relative to hardware and operator faults.

Cloud computing involves letting the clients manage resources and
operations without direct human-interaction, usually through an inter-
face. Software faults in these interfaces, which are called cloud APIs,
have been the subject of extensive analysis due to their importance
and recurrent usage to satisfy most of the requirements related with
managing the deployments of the cloud client [85, 89, 96, 158].

Cloud management software is another software component es-
sential to cloud computing that is not usually found in other large
deployments. This type of software is used by medium to large cloud
providers to manage their infrastructure. Software faults in this com-
ponent tend to be activated only using specific and somewhat intricate
combinations of inputs and events, hence having a low likelihood of
being detected during software testing, but can cause failures with
a big impact in the system, including causing single and multiple
node failures (about 64% of failures) and catastrophic cluster-wide
failures (about 36% of failures) [158]. Not only can software faults in
cloud management affect the entire cloud infrastructure at once, but
they also tend to cause failure modes that exhibit incorrect output
being produced (about 66% of failures), service crashes (about 14% of
failures) or state inconsistency (about 5% of failures) [158].

Studies have also shown that errors can propagate undetected inside
the cloud management software and its various components before
leading to a failure, and that a large percentage of these failures are
wholly undetected or, if detected, are not reported to the user, thus
increasing the chance of silent data corruption and inconsistency in
the state [37]. Given the complex nature attributed to bugs in cloud
management software, their failures fit perfectly under the definition
of emergent failures [53], which are those failures that are born due to
various fault activations and evolve into unexpected failures that had
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not been planned for during design time due to the high complexity
and high degree of interaction between components that is required
for their occurrence.

In general, the failure modes of software faults vary with the faulty
software component but tend to result in simple failed operations
(42%), performance problems (23%), crashes or hangs that lead to
unavailability (18%), data loss (7%) or data corruption (5%) and data
staleness (5%) [61]. Similarly to what has been reported for software
faults in cloud management software, software faults in other com-
ponents that are part of the cloud infrastructure can lead to failures
that affect and disrupt the entire cloud service [61]. Failures in cloud
APIs tend to cause either halt failures (35%) or failed calls with error
message (about 27%), but can also cause timing failures where the
answer arrives after the specified time interval (about 6%) and missing
or wrong content being returned (about 3%) [85]. Another interest-
ing observation found throughout various papers in the area is that
several documented outages have occurred due to failures being unde-
tected, thus recovery action was never automatically triggered, failure
detection incorrectly classifying events as failures (i.e., false positives)
and prematurely triggering recovery action [60, 87], or recovery action
that fails [60]. This fact supports the importance of error and failure
detection mechanisms [60, 61, 67] and verifying them during develop-
ment and production phases at a cloud scale [61], such as using fault
injection to emulate errors or failures that should be detected by these
mechanisms.

2.2.2 Operator Faults

Historically, operator faults have been a common cause of failures
in different domains such as HPC deployments, clusters, Internet
services and other complex distributed systems [97, 101, 105]. That
observation remains true when applied to cloud computing [62] as, in
fact, operator faults have become more common in cloud computing
due to many of the micro-management operations (i.e., management of
the resources of a client, in opposition to the management of the cloud
computing infrastructure) having passed from qualified operators to
possibly unexperienced cloud clients that have to interact with cloud
APIs to perform the action that they desire.

Several works have classified operator faults into process errors and
configuration errors [101]. Process errors include incorrect actions,
actions that should have been performed but were not or actions
that were taken in an incorrect order. Configuration errors refer to
errors in the formatting of the configuration and errors in the used
configuration values.

In cloud APIs, an estimated 30% of failures are due to operator
faults, namely configuration errors that are often due to misconfigured
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parameters [89]. When discussing operator errors in cloud APIs, the
operator refers to the cloud client and not to an operator belonging to
the cloud provider. In terms of impact, operator faults in cloud APIs
tend to cause mostly content failures (55%) and halt failures (35%),
which result in the desired operation being unsuccessful, in the case
of content failures, and hanged operations that never complete, in
the case of halt failures [89]. Indirectly, the above failures can lead to
downtime of the provided service.

Research about how operator faults can affect the dependability of
cloud computing deployments is limited, despite their importance.
However public cloud providers occasionally release reports detailing
the root causes behind large outages that have affected these providers.
In 2011, Amazon EC2 suffered an outage in the provided service of any
VM that used a set of affected storage resources [142]. The root cause
behind this outage has been identified as an incorrectly performed
change in the network configuration with the objective of redirecting
traffic to another network. In 2012, Amazon ELB suffered an outage
due to one of its developers having inadvertently deleted the state data
during a maintenance process that was wrongly performed against
the production server [143]. In 2017, Amazon S3 suffered disruption
due to an operator mistake that caused a larger than planned number
of servers to be removed from a subsystem, which lead to an overload
of that subsystem and subsequent service failure [144]. In summary,
the available information suggests that operator faults may cause
widespread service outages, which tend to have a high repair time,
and can also lead to data deletion by mistake.

2.2.3 Hardware Faults

Hardware faults happen every day at large cloud datacenters. Al-
though the assumption that is often employed is that hardware only
(or almost always) experiences permanent full-stop failures, reality
has shown that hardware has a range of failure modes other than no
failure or full-stop failure [67]. Hardware may limp (i.e., operate in
a degraded state) or suffer errors and failures that are not reported
to the user [61]. These type of failures often arise due to transient or
intermittent hardware faults, in opposition to the permanent hardware
faults that tend to generate full-stop failures that imply replacing the
faulty hardware component.

Among all the hardware that usually exists in a large datacenter,
hard drive disks (HDDs), DRAM and power supplies (PSU) tend to
be those that account for the highest number of permanent failures.
Some reports indicate a replacement or failure percentage (depending
on how the data was collected) of 20-78% for hard disks, 3-30% for
DRAM memory and 9-12% for PSUs [23, 122, 148]. CPUs are reported
to not fail often, with replacement percentages near 2%, however it
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is well documented that CPUs are susceptible to transient hardware
faults due to radiation, electromagnetic interference and temperature
stress, which are hard to detect and do not cause permanent failures
(hence the low reported numbers). Nevertheless, transient faults can
have devastating effects on the availability and reliability of the system,
including causing silent data corruption.

Many of these transient hardware faults, whose outcome is often
called as “soft error” due to its temporary nature [94] (i.e., the error
disappears when a new value is written over it), occur when an
ionizing particle strikes a sensitive element of a semiconductor device,
which can cause a charge disturbance strong enough to flip the value
that was stored in a flip-flop, latch, register, or memory cell [17]. In
cloud applications, the most common causes of soft errors are alpha
particles resulting from impurities in packaging materials and cosmic
rays that enter the Earth’s atmosphere from the outer space [17, 95].

Soft errors scale up with the amount of transistors and, indirectly,
with the amount of hardware components in the datacenter, which
will continue to increase in the future [77, 127]. Furthermore, soft
errors will become more prevalent as technological developments lead
to reduced node sizes in successive generations [27, 40, 94, 99]. Hence,
the probability of occurrence of a soft error (i.e., the soft error rate) is
expected to continue increasing in the future [69].

DRAM and SRAM memory can also be affected by soft errors [135].
In fact, server-grade DRAM memory is already equipped with error
correcting codes that detect and correct the large majority of soft
errors. Nonetheless, soft errors can still defeat these mechanisms
(some reports state a FIT value for undetected errors in server-grade
DRAM of up to 21.7 per device, with a mean value nearing 1 [135]) and
cause multi-bit errors. SRAM is even more prone to soft errors than
DRAM, particularly to soft errors that cause single bit-flips, and the
most affected SRAM components of a system tend to be also the larger
ones, such as L2 and L3 caches and the translation lookaside buffer
(TLB) [135], although soft errors hitting the smaller CPU registers has
also been documented.

Another challenge to the dependability of hardware in a datacenter
that is going to become more common in the future is the reliabil-
ity of SSDs. SSDs are already replacing HDDs in datacenters due
to their high-performance, low power usage and ever lower acqui-
sition costs [4]. However, SSDs have been shown to be less reliable
than HDDs (e.g., a certain datacenter saw almost twice as many SSDs
replacements than HDD [108]), particularly with regards to uncor-
rectable errors [123]. Uncorrectable errors represent one of the most
dangerous type of errors in storage devices because they lead to data
loss or corruption.

While HDDs are said to experience an annualized failure rate (AFR)
between 1.7% and 8.6%, along with a 2% probability of a HDD experi-
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encing CRC errors during its lifetime [109, 125], SSDs have a slightly
worse AFR that ranges between 4% to 10% [123]. Furthermore, be-
tween 4 to 24% of all SSDs experience at least one uncorrectable error
during their lifetime and almost every SSD has at least one bad block.
The raw bit error rate of SSDs in production is said to range between
5.8 ∗ 10−10 and 3 ∗ 10−8 [123], whereas specifications indicate raw bit
error rate of HDDs around 10−13 to 10−16 [57, 74]. Although failures
that cause silent data corruption in HDDs are less likely than in SSDs,
they still occur [10, 45, 111], despite most fault tolerance mechanisms
not providing coverage against such failures [102], due to failures of
the HDD itself and interferences during data transfer (e.g., exposed
cables), hardware faults in memory and cache that affect the trans-
mitted data, or software faults in the firmware of the drives or RAID
controllers [70, 74].

In summary, hardware faults in large datacenters, like those that
support cloud computing, are commonplace and tend to cause fail-
stop failures (e.g., a HDD stops working) that force the replacement
of the affected component and require redundancy to tolerate its
outcome (e.g., RAID arrays to avoid data loss if a disk stops working).
However, less-known soft errors and other transient and intermittent
faults can also affect the hardware, causing possible data loss or
silent data corruption. The fact that some hardware faults may cause
silent data corruption turns them into a threat that is not matched
by either software and operator faults, since these two tend to cause
unavailability rather than data corruption. This means that hardware
faults deserve special care when designing fault tolerance mechanisms,
which, in our opinion, has not been properly addressed in cloud
infrastructures.

2.3 means of attaining dependability

Dependability can be attained by employing fault prevention, fault
removal and fault tolerance. Fault prevention acts the earliest in the
development cycle, in order to detect and reduce the amount of faults
that are introduced in the system. Fault removal happens during
development, using testing techniques to detect and remove faults
that have been introduced, or during use, by employing corrective
measures. Since programmers that develop the applications that run in
the cloud rarely focus on non-functional requirements, it is less likely
that they employ effective fault prevention and removal approaches,
thus dependability has to be provided by the cloud provider or cloud
client through fault tolerance techniques. Furthermore, the employed
fault tolerance techniques depend on adequate error detection and
recovery mechanisms that should be adapted to the characteristics of
cloud computing, namely by taking advantage of virtualization and
the distributed nature of the cloud.
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Error detection can be a daunting task due to the complexity of
cloud deployments and the fact that the used workloads are very
heterogeneous and managed by the cloud clients, thus being outside
of the purview of the cloud provider. As such, it is common for
failures to occur due to incorrect or insufficient error detection [60,
61, 67, 87]. After an error is detected, the cloud provider can attempt
to recover the affected component before the error evolves into a
failure. This can be the case when a node starts to show unstable
behaviour (e.g., a DIMM memory fails into a limp state and its error
rate increases substantially) and the provider decides to decommission
the node for repair (which can imply a manual root cause analysis
and repair process) by first migrating all the VMs that were hosted
in the affected node over to the other nodes in the cluster. This is an
example that shows how the distributed and highly-scalable nature
of cloud computing deployments, as well as the containerization
and migration capabilities of virtualization, can be used in favor of
ensuring dependability.

After all VMs have been migrated out of the node, cloud providers
will often attempt to reboot it before performing a manual analysis
and repair in an effort to fix transient errors, such as those caused by
memory leaks and other software faults. This process of “gracefully
terminating an application and immediately restarting it at a clean
internal state” [68] is known as software rejuvenation and can equally
be applied at node-level or at a higher level (e.g., VM-level, application-
level). Its effectiveness derives from clearing memory leaks, resource
leaks and other state inconsistencies that long-running processes and
high-uptime systems develop over time and which lead to perfor-
mance loss and service failures if left unchecked. Microrebooting is
a related technique that performs “individual rebooting of fine-grain
application components” [22] to take advantage of the error recovering
properties of rebooting while reducing the downtime associated with
the reboot process.

Most fault tolerance mechanisms depend on support from the cloud
provider, but cloud clients can, in certain cases, configure advanced
mechanisms that are implemented by the cloud providers but are not
enabled by default. An example is availability zones, which consist of
distinct and isolated datacenters spawned across different geographi-
cal locations and which can be assigned, by the client, to specific VMs
or other resources hosted in the cloud. The advantage behind setting
up multiple availability zones is that, if one of the zones fails, the
VMs that are running in the remaining zones can continue to operate
correctly and may take the load of the failed instances, assuming that
the client has configured the failover mechanisms to do so.

More advanced but less common approaches are available to private
and community loud providers that undertake the effort of installing
and configuring them, although their usage in larger public providers
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is rare at best. One such approach relies on VM checkpointing be-
tween an active and a passive node that are executing in different
physical machines through the exchange of VM state over the network.
Whenever the active node suffers a failure (e.g., a hardware failure)
that disrupts the provided service in a way that it stops responding
to periodic heartbeats, the passive node detects and takes its place
from the last known state. The best known example of such an im-
plementation is Remus [38]. However the usage of a technique like
Remus has performance and cost disadvantages which need to be
considered, such as requiring twice as much hardware and respective
energy consumption (although the passive node sees lower usage than
the active node), increased network traffic due to state synchronization,
and performance overhead related with synchronization.

A similar technique that relies on synchronizing and duplicating
VMs across different physical machines is COLO [41], which uses a
setup where both nodes are active and the inputs are replicated across
them, although only the primary node interfaces with the outside
directly. COLO constantly monitors the output of both VMs and
temporarily suspends their operation to synchronize the secondary
VM with the state of the primary VM whenever a discrepancy is found,
in order to ensure that both VMs share a functionally equivalent
state, which may nevertheless differ due to non-determinism as long
as it does not lead to different output being produced. It suffers
from the same drawbacks as Remus and even experiences higher
hardware utilization and energy consumption due to its ‘two active
nodes’ setup, but promises better performance and scalability than
Remus due to less strict synchronization and replication mechanisms.
This technique covers only fail-stop failures caused by hardware faults,
which are incorrectly assumed to be the only possible failure mode,
and disregards other possible faults.

Existing lightweight techniques to protect virtualized and cloud
computing deployments tend to employ microrebooting both in a
reactive and proactive manner to recover from state corruption and
other latent errors that may lead to failures. ReHype [83] performs
microrebooting of the hypervisor by temporarily pausing the execution
of the VMs while the underlying hypervisor is being restarted and
then performing a re-connecting between the rebooted hypervisor and
the previously running VMs. It has been shown to be able to recover at
least part of the VMs of the system after a failure caused by a soft error.
HyperFresh [9] performs software rejuvenation of the hypervisor state
by remapping the VMs from a old to a new hypervisor instance in a
matter of milliseconds.

Manual intervention will be required if everything else fails and the
failure cannot be recovered using automatic measures, which incurs a
significant MTTR and lowers availability. This can be the case when
hardware needs to be replaced, when a operator fault leads to changes
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that must be manually reverted, or when a software fault has to be
patched out.

Most of the aforementioned fault tolerance techniques cover fail-
ures caused by permanent hardware faults that cause outages and
fail-stop crashes of the service. With the exception of the techniques
that perform microrebooting, which cover a subset of transient hard-
ware faults and software faults, the available techniques are wholly
inadequate to tolerate the failures caused by transient hardware faults,
software and operator faults, which are precisely the types of faults
that have increased in likelihood due to cloud computing. For this
reason, there is a clear need for new fault tolerance techniques that
can be applied to cloud computing, preferably taking advantage of
the unique characteristics of cloud infrastructures, as proposed in the
present thesis.

2.4 summary

Cloud computing is unique because it possesses several characteris-
tics that are not shared with other computing paradigms. The main
identifying characteristics of cloud computing that have an impact in
its dependability are:

• Consolidation of tenants over the same physical hardware;

• Usage of virtualization to support tenant consolidation;

• Resources are acquired and released by the cloud client and
without human intervention through automated APIs;

• Heterogeneous workloads that are not controllable by the cloud
provider;

• Size of cloud computing datacenters;

• Complexity of cloud computing deployments;

• Usage of energy saving and cost reduction techniques;

• Primary focus is availability, reliability comes after.

The threats that affect the dependability of cloud computing are
hardware, software and operator faults. Software and operator faults
dominate the pie of occurrences and their high probability is specific
to cloud computing, arising from its increased complexity and higher
dependence on software. Hardware faults represent a minority part
of all occurrences but are nonetheless frequent and will continue to
increase with the expansion in size of datacenters and advancements
in microprocessor manufacturing.

The outcomes of these faults can consist in outages that cause
unavailability in a single or multiple nodes, cloud-wide unavailability,
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data loss, data corruption, among other failure modes. Table 1 provides
an overview of the threats that affect the cloud and the failure modes
that each threat can cause.

threats reasons failure modes

Software faults

Cloud API bugs

Memory leaks

Latent faults in hypervisor

Latent faults in CMS

Other software faults

Failed Operations

Performance Problems

Downtime

Data Loss

Data Corruption

Operator faults
Configuration faults

Process faults

Downtime

Data Loss

Hardware faults
Permanent faults (DRAM, PSU, ...)

Transient faults (Soft errors)

Intermittent faults

Downtime

Data Loss

Data Corruption

Table 1: Summary of threats to the dependability of cloud computing and
failure modes that they cause.

Many outages can be attributed to errors in components that re-
main undetected during large periods of time and eventually lead to
gray failures. This kind of failures exposes a limitation common in
cloud computing deployments, the fact that the state of the system
is assumed to be either correct or failed, without taking into account
that there are other possible states in-between in which the system
appears to operate normally but is in reality working in a degraded
mode.

In general, to defend the dependability of cloud computing against
the aforementioned threats, error detection and fault tolerance mech-
anisms must be employed. The currently available and commonly
employed fault tolerance techniques for cloud computing are lack-
ing in the coverage of faults other than permanent hardware faults.
This fact is specifically preoccupying given that software and operator
faults, and to some extent, transient hardware faults, are expected
to increase the most going forward and already represent the large
majority of faults that affect cloud computing. Thus, new fault toler-
ance techniques must focus in providing coverage against a broader
spectrum of faults, all the while minimizing performance overhead
and energy consumption.
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E VA L U AT I N G D E P E N D A B I L I T Y O F C L O U D
C O M P U T I N G

The evaluation of dependability and its associated attributes is a key
step in the design and evaluation of reliable software systems and
fault tolerance mechanisms. Availability, despite being only one of the
attributes that form dependability, is the attribute most often used in
cloud computing to measure the quality of the provided service [16].
Cloud computing providers publish service level agreements (SLAs)
which specify, among other aspects, the availability (or uptime) ex-
pectable from their platform and below which the cloud provider
becomes liable to compensate the client. As an example, at the time
of writing the SLA used by the majority of Amazon EC2’s customers
indicates that clients are entitled to compensation whenever the pro-
vided monthly availability is lower than 99.99% (i.e., about 4 minutes
of downtime each month), with increasing levels of compensation up
to 95% availability (i.e., 36 hours of downtime in a month) [2].

Evaluating dependability is not straightforward, because failures
represent the rare exceptions to the norm, rather than the normal
behaviour of the system. They represent statistical outliers and the
acquisition of sufficient failure data to estimate coverages, such as fault
handling and error isolation coverage, to identify failure modes and,
in general, to verify hypotheses with sufficient statistical confidence
is difficult to perform with failure data from production systems.
Therefore various approaches have been developed to perform and
accelerate dependability evaluation, such as fault injection [5], which
is the principal technique used in this thesis.

Fault injection consists on the insertion or emulation of faults in a
system or a model thereof, with the objective of producing failures
that are representative of real-world failures, but at an accelerated
rate (e.g., fault injection can produce failure data in a few days compa-
rable to years of production failures). Although fault injection is an
established technique, with decades of research and usage in academy
and industry alike, only a limited number of works have focused on
the intersection between cloud computing and fault injection. More-
over, most available fault injection tools are not adapted to evaluate
cloud computing systems, namely due to the lack of support for or-
chestrating campaigns across multiple nodes and to inject faults in a
virtualized architecture.

In this chapter, we present the ucXception framework, which com-
bines a suite of fault injection tools capable of injecting various fault
models with pre-made code for automating and managing fault in-
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jection campaigns, probing and extracting information from local or
distributed nodes and analyzing results. This framework and, specifi-The ucXception

framework is an
open-source project

which is available at
https://github.

com/ucx-code/

ucXception

cally, its fault injection tools supported the experimental evaluations
described in Chapters 4, 5 and 6. When comparing the ucXception
framework with other available fault injection tools and frameworks,
three main differences exist:

1. ucXception enables the injection of hardware faults and software
faults under the same framework;

2. ucXception natively and transparently supports execution across
multiple nodes of a distributed system;

3. ucXception has native support for injecting faults in virtualized
systems, including in the hypervisor and VMs.

This chapter starts with an explanation of concepts related to fault
injection and proceeds to introduce the ucXception framework, with
particular focus to how it is tailored for evaluating cloud computing
and virtualized systems and the various fault models that it supports.

3.1 background in fault injection

Fault injection can be accomplished using different approaches. Some
approaches depend on external hardware while others are imple-
mented partially or entirely in software. Hardware-implemented fault
injection (HWIFI) acts directly on the hardware to perform fault injec-
tion, whereas software-implemented fault injection (SWIFI) is a more
recent variation that employs software approaches, such as software
traps, running the target application in trace mode, or modifying the
binary executable prior to execution, to perform fault injection in a
generic way across different hardware architectures. Fault injection
can also be performed in models or simulations of the target sys-
tem, which can be particularly useful when the real system is not
yet developed or otherwise unavailable. A mix of the aforementioned
approaches can also be used, which is called hybrid fault injection.

In general, the approach used to perform fault injection can be
classified according to the following properties [12]:

• Controllability – the ability to control the injection in time and
space;

• Observability – the ability to observe the effects of the injected
fault;

• Repeatability – the ability to repeat the fault injection experiment
and obtain the same result;

• Reproducibility – the ability to reproduce the results of a cam-
paign;

https://github.com/ucx-code/ucXception
https://github.com/ucx-code/ucXception
https://github.com/ucx-code/ucXception
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• Faultload representativeness – how accurately the fault represents
real faults;

• Workload representativeness – how accurately the workload repre-
sents real system usage;

• System representativeness – how accurately the target system rep-
resents the real system.

It becomes a theoretically impossible problem to obtain a fault
injection approach that excels at every single property, thus fault
injection approaches balance trade-offs depending on their desired
application. Usually, SWIFI affords higher controllability, repeatability
and reproducibility than HWIFI, but model and simulation-based fault
injection should perform the best in these properties. On the other
hand, HWIFI is less intrusive than other approaches, thus resulting
in better system representativeness than SWIFI and, of course, model
and simulation-based approaches, where the evaluated system is an
approximation of the real system.

Fault injection is usually applied with one or more of the following
goals: i) identify failure modes and estimate their probability of occur-
rence; ii) estimate fault coverage or other coverages and validate the
effectiveness of fault tolerance mechanisms; iii) analyze fault propa-
gation. Measuring failure modes and their probability of occurrence
is one of the principal goals for which fault injection was employed
in this thesis and, in general, enables a characterization of the sys-
tem and how it fails, which is essential for designing fault tolerance
mechanisms that increase the dependability of said system.

Fault coverage, or fault handling coverage, is one of the various
metrics that can be evaluated using fault injection and which measure
the effectiveness of fault tolerance mechanisms [7]. For example, in this
thesis fault injection is used to estimate error isolation coverage of the
Xen hypervisor (in Chapter 4), which reflects how well the hypervisor
is capable of preventing an error in one VM from propagating to the
remaining components of the system, including other neighboring
VMs.

Fault propagation analysis strives to track the path that a fault
follows inside the system since its activation until it causes a fail-
ure. Depending on the system being studied an error may cross the
boundaries of various components (e.g., an error in the hypervisor
may propagate to a VM through the return code of a hypercall),
hence understanding the mechanisms and the components behind
this occurrence enables the design of better isolation mechanisms.

3.2 the ucxception fault injection framework

The ucXception framework was developed to be used in the evaluation
of cloud computing and the various components and layers that form
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a virtualized system. For this purpose it includes a fault injection
tool capable of emulating transient hardware faults in a VM or a
hypervisor and was designed to transparently execute its steps in a
distributed system as if it was executing them in a local system. For
example, a user can configure a fault injection campaign that targets
an application running on the same computer as ucXception, like
shown in Figure 4. Whereas just adding a new entry to a specific data
structure (remote_hosts) and changing part of one code instruction,
as shown in Figure 5, is enough to reproduce the same campaign but
targeting an application in a remote node.

1 fi = (local_hw_fi, "localhost", "<injector_path>")

Figure 4: Example of configuring fault injection locally.

1 remote_hosts = {

2 "node1" : ssh("192.168.1.5", "root"),

3 }

4

5 fi = (local_hw_fi, "node1", "<injector_path>")

Figure 5: Example of configuring fault injection in a remote node.

One of the guiding principles of ucXception was allowing the non-
expert users to design and tailor a fault injection campaign with a
reduced amount of modifications and configurations. To accomplish
this objective, the framework includes multiple out-of-the-box ele-
ments that implement specific functionalities and which can be mixed
and matched according to requirements, as well as including a base
campaign template that can be adapted and various examples of cam-
paign configurations. In fact, it should be possible for most campaigns
to be created solely by performing modifications to the existing vari-
ables in two separate source files, thus freeing the user from having to
delve in the remaining source files.

Figure 6 presents a high-level overview of the architecture of ucX-
ception, where we group the elements into elements that the user
should change to configure a new campaign, core components that
will be reused and the outputs from a campaign.

3.2.1 Components of the ucXception framework

The ucXception framework revolves around a set of pre-made compo-
nents that provide contained functionality and which can be connected
together to solve the user’s needs. These components can be described
as:
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Figure 6: Architecture of the ucXception framework.

• Plan – A plan consists in a set of campaigns. It represents a
high-level experiment that has been designed by the user;

• Campaign – A campaign consists in a set of runs of a specific
campaign configuration (a Python file with logic and configura-
tion options). Different runs can have different parameters, e.g.,
some runs may perform injection while others will not (golden
runs);

• Run – A run represents a single execution of the experiment
flow defined in the campaign configuration, using the given
run-specific parameters and campaign-specific values;

• Watchdog – A watchdog should be used to monitor the execution
time of a run to ensure that it does not extend over the user-
defined alloted time. If the run is taking too long and since it
may even never end (e.g., the application has entered an infinite
loop), the watchdog should kill the workload application and
note the occurrence;

• Probe – A probe represents an application that will be launched
for the duration of the run that has the purpose of monitoring
and storing information relative to the system or application
being evaluated. Probes can be sub-divided into pre- and post-
probes, according to whether they are launched before or after
the workload has started. Pre-probes usually collect system-wide
metrics, whereas post-probes monitor specific processes, hence
the need for post-probes to be launched after the workload;
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• Fault injection tool – The fault injection tool implements a
specific fault model (e.g., single bit-flip for emulating soft errors)
and allows the emulation of faults according to that model;

• Validators – The validators are small pieces of code, usually
Python functions, that inspect the results obtained during a run
and verify acceptance conditions. If a validator fails (e.g., fault
injection was not successful) then the data for that run will not
be written to disk;

• Parsers – A parser is a function that reads the results of the run
(e.g., output from the fault injection tool) and converts them into
a more useful and compact format. The output from the various
parsers is stored in the results CSV file;

• Transformers – Transformers are similar to parsers, in the sense
that both receive raw input and produce a condensed output,
but whereas the output from the parsers is stored in the results
CSV file, the output from transformers is stored as individual
files in the run’s own result’s folder. Transformers are mostly
used to convert the raw output of the probes into a more man-
ageable format, e.g., converting a binary data file originating
from a resource monitoring probe into a CSV file where each
row represents a time interval and each column represents a
monitored resource.

The ucXception framework natively possesses various components,
however users are free to create their own components to fulfill an
unanswered need. In terms of pre-probe components, the following
are available out-of-the-box:

• Logs probe – A simple probe that extracts logs from the target
system during the Post finish phase. It is ready to extract logs spe-
cific to Linux, Xen and Openstack. The user can easily configure
it to support other types of logs;

• IntelPCM probe – Intel PCM (Processor Counter Monitor) [34]
provides a way of monitoring hardware counters in recent Intel
hardware. This probe can be used to monitor the CPU, memory
and power counters throughout the run;

• Ping probe – A simple probe that performs pings at a user-
specified interval between a source and a target computer and
stores the results, along with the timestamps. Can be used as a
rudimentary way of monitoring the state of various systems;

• SAR probe – SAR [55] is an utility that uses the various interfaces
provided by the Linux kernel in order to monitor system-wide
activity information, such as CPU, memory, network, disk or
power metrics. The probe takes a snapshot of all the available
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metrics using an 1 second interval (the lowest possible) and
stores the results in a binary file;

• TCPDump probe – Monitors and stores all the network traffic in
a specific interface. Supports passing TCPDump [141] rules to
filter the packets that are captured;

• Xentrace probe – Xentrace [46] is an utility that monitors the
events that occur in a Xen virtualized system. The results are
stored in (usually large) binary files.

With regards to post-probes, only one such component is currently
available:

• Pidstat probe – Somewhat similar to the SAR probe, since it
also captures similar metrics, but focuses on a specific process
(whereas SAR is system-wide). Can be used to monitor the
workload application.

In terms of parsers, the following are available:

• HW FI parser – Reads the output produced by ucXception’s
Linux-based HW fault injection tool, which emulates transient
hardware faults, and stores the register, the bit, the injection
time, the PID of the process that was affected by the injection
and the pre- and post- injection values of every register;

• SW FI parser – Stores information relative to the injection per-
formed by ucXception’s SW fault injection tool, such as the
applied operator or in which line the fault was injected;

• Pcap -> TCP parser – Reads the data from a TCPDump probe and
very quickly calculates its statistics, such as total packets, total
packets by type (RST, FIN, ...), retries, and others;

• Info parser - Stores generic information about the run, namely,
the run number, its start and end time, and duration;

• MD5 output parser – Obtains the output of the workload applica-
tion and computes its MD5 hash. Compares the obtained MD5

hash against a fixed, expected hash and stores whether both
hashes match and the size of the produced application’s output.
Useful to detect silent data corruptions whenever the workload
application produces a deterministic output (i.e., always pro-
duces the same output when it receives the same inputs);

• Return code parser – Stores the return code of the workload pro-
cess. Can signal a successful termination or an abrupt termina-
tion (e.g., killed by the operating system due to a segmentation
fault);
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• Current folder parser – Minimalistic parser that just stores the path
of the results folder of the current run.

In terms of transformers, the following are available:

• Pcap -> TCP 2 CSV transformer – Uses the Tshark application to
convert a PCAP dump of network traffic into a CSV file with
high-level information about each packet, such as the TCP flags,
packet size, IPs and ports, or timestamps;

• Pidstat 2 CSV transformer – Converts the binary file generated by
the Pidstat probe into a CSV file;

• SAR 2 CSV transformer – Employs the sadf utility [55] to convert
the binary file produced by SAR probe into a CSV file;

• Ping 2 CSV transformer – Converts the output of the Ping probe
into a more structured CSV file;

• Save output transformer – Saves the raw output (stdout and stderr)
from the workload application into files. Can be used when a
more detailed analysis to this output is required, or for debug-
ging.

There is one available validator, called Ensure Injection, which checks
whether one and only one injection (of the ucXception’s Linux-based
HW fault injection tool) has occurred in a run by comparing the pre-
and post-injection values of all registers and ensuring only one bit of
one register has changed.

3.2.2 Fault injection tools of the ucXception framework

ucXception comes equipped with three fault injection tools that imple-
ment different fault models. There are two different fault injection tools
for emulating hardware faults, which operate in a different manner
and target different systems, and one fault injection tool that emulates
software faults. Table 2 summarizes and indicates which tools were
used to perform fault injection campaigns in the various chapters of
this thesis. Once again, if the user desires he can easily integrate other
fault injection tools into the framework.

3.2.2.1 Hardware fault injection in Linux-based systems

This fault injection tool emulates soft errors that affect the CPU’s
register file or other components of the CPU (buses, ALU, FPU, etc.)
by implementing the single bit-flip fault model [71, 116]. Bit-flips are
restricted solely to CPU registers and there is no support for directly
performing bit-flips in the memory. Injection in memory words is not
implemented due to the existence and popularity of very effective
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described in employed in target fault model

§ 3.2.2.1 Ch. 4 Linux Applica-
tions and Kernel

Soft Errors

§ 3.2.2.2 Ch. 6 Any VM (includ-
ing hypervisors)

Soft Errors

§ 3.2.2.3 Ch. 5 & 6 Applications writ-
ten in C and C++
language

Software Faults

Table 2: Fault injection tools of ucXception.

ECC for memory [124] and because part of the soft errors affecting
the memory can be accurately emulated using fault injection in CPU
register files.

The tool can run in any modern Linux kernel and supports the
x86_64 and ARM architecture. When used in a x86_64 system it can
inject on the rip, rsp, rbp, rax, rbx, rcx, rdx, cs, ss, ds, es, fs, gs, eflags
and r8 to r15 registers, as well as, being able to inject in FPU and SEE
registers. If executed in an ARM system it can inject on sb, pc, lr, sp, ip,
a1 to a4 and v1 to v8 registers.

It employs the ptrace functionality available in practically every
Linux installation and which is also the engine behind the famous gdb
debugging tool, to attach itself to a running process, briefly suspend its
execution, obtain the data structures of the Linux kernel that hold the
process’ register values, perform the bit-flip according to the passed
parameters and resume execution. After the target process resumes
execution, its register values will include the bit-flip. Since the tool
is software-only and does not depend on any hardware extension or
feature, we are referring to SWIFI (Software-Implement Fault Injection).
Furthermore, since the injection can be performed without requiring
any modification to the target program’s source or binary code, it can
be classified as a run-time approach.

The tool also includes logging functionality that stores the exact
timestamp of the injection moment and the values of every register
prior and post the bit-flip. This information is extremely useful not
only to validate that injection is working correctly, but also to enable
detailed and complex analyses of the results.

The moment of injection is always temporarily triggered, but there
are two ways of defining the trigger: timeout and deadline. In timeout
mode the user specifies how many milliseconds the tool should wait
before it performs the bit-flip, whereas in deadline mode the user
specifies a UNIX timestamp, including milliseconds, that defines the
desired moment of injection, which the tool will attempt to obey as
closely as possible.

The flow of this fault injection tool is depicted in Figure 7.
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Figure 7: Flow of the fault injection tool for Linux-based systems.

The tool begins by sleeping the determined amount of milliseconds,
accomplished through the nanosleep POSIX function. When the sleep
time has been elapsed, the tool attaches itself to the process that
the user wants to inject a fault in, extracts the register values for
that specific process at that point in time, prints those values to the
standard output stream along with the current timestamp, performs
the bit-flip in the register and lets process execution continue.

3.2.2.2 Hardware fault injection in virtualized systems

A separate fault injection tool capable of emulating hardware faults
was created specifically for use in virtualized systems. It is capable of
injecting faults in any application running inside a VM, including a
hypervisor as long as nested virtualization is used (i.e., the hypervisor
being targeted is executed inside a VM). The fault model remains the
traditional single bit-flip in CPU registers and any of the rip, rsp, rbp,
rax, rbx, rcx, rdx and r8 to r15 registers can be targeted.

The tool was implemented as a set of modifications to the Xen
hypervisor that introduce a new hypercall and respective toolstack
functions to control the fault injection process, as well as modifications
to the scheduling subsystem to enable injections of faults inside VMs.

The injection process consists in modifying the register value stored
in the data structure that holds a VM’s CPU state and which is updated
immediately prior to a context switch. This structure is needed because
any hypervisor must know the latest state of the CPU between context
switches of VMs. We take advantage of this fact to inject faults, but
this means that the approach is dependent on the rate at which context
switches occur, which is a configurable parameter in Xen. While higher
context switching rates (i.e., smaller timeslices) allow the fault injection
tool to have a more precise moment of injection, they can also bring
considerable performance overhead and intrusiveness to the system.

Furthermore, this tool is capable of filtering the application that is
targeted for injection by looking at the value in the rip register (which
points to the next instruction to be executed) and only performing
injection whenever the rip is inside a user-defined range. This function-
ality can be specially useful if one wishes to perform fault injection
that affects solely the hypervisor (or solely the non-hypervisor code)
running in a VM, as there is a well established division between the
virtual memory addresses assigned to the hypervisor, to the operating
system and to the userspace applications.

Figure 8 presents the expected usage scenario for this tool.
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Figure 8: Flow of the fault injection tool for virtualized systems.

The flow starts from the PVM, where a user space application (or
the ucXception framework) will provide the triggering functionality,
which is not embedded in the fault injection tool, and will call the
toolstack at the correct moment. The toolstack performs a hypercall
to a function in the hypervisor, while passing the desired parameters
for fault injection. These parameters include the target VM (when a
system has multiple VMs, the tool can focus on just one of them), the
target register and bit where injection will take place and the start and
end of the memory range that the rip should be pointing at if injection
is to take place, although this last parameter is optional. The hypercall
function writes this information to an internal structure, which will
be read during context switching, and if all conditions are met (the
VM that is receiving CPU time is the same as the target VM and its
rip is inside the expected range) the bit-flip is performed here, right
before the target VM starts executing.

3.2.2.3 Software faults in C source-code

This tool performs software fault injection at the source-code level by
applying program modifications (or mutations) that are representa-
tive of mistakes made by software developers [42], including some
mistakes that tend to cause software vulnerabilities [11]. The faults
defined by the fault model, whose operators are listed in Table 3, are
injected in programs written in the C programming language and the
injector itself is written in Java, using the Eclipse CDT plugin, which
is the plugin that supports C/C++ programming in Eclipse. The fault
injector takes as input the source code and CDT performs lexical and



42 evaluating dependability of cloud computing

syntactic analysis to produce the corresponding abstract syntax tree
(AST). The software fault injector then traverses the AST to identify
nodes in which faults can be injected, according to the operators and
their constraints (e.g., the statement to be modified is not the only
statement in the code block). For each possible location/fault type pair,
the tree is modified and the resulting program is then converted back
into source code representation from which a patch file is generated
and stored in the filesystem. This patch file represents the fault to be
injected.

operators description

MFC Missing function call

MIA Missing if construct around statements

MIEB Missing if construct plus statements plus else be-
fore statements

MIFS Missing if construct an surrounded statements

MLAC Missing and sub-expr. in logical expression used in
branch condition

MLOC Missing or sub-expr. in logical expression used in
branch condition

MLPA Missing localized part of the algorithm

MVAE Missing variable assignment with an expression

MVAV Missing variable assignment with a value

MVIV Missing variable initialization with a value

WAEP Wrong arithmetic expression in parameters of func-
tion call

WPFV Wrong variable used in parameter of function call

WVAV Wrong value assigned to a variable

WALR Wrong algorithm – code was misplaced

WLEC Wrong logical expression used as branch condition

EFC Extraneous function call

EIFS Extra if construct and surrounded statements

Table 3: Software fault model operators.

The default mode of operation produces patch files that contain
solely the modified fault, however the tool also supports producing
patches in an extended mode that supports enabling and disabling
the activation of the fault (e.g., the user might want to enable the
fault activation only after certain steps have been carried out) and
monitoring statistics about the fault, such as the timestamp when the
fault was firstly activated and how many iterations occurred before
and after the first activation. However, if this extended mode is used
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certain operators, such as MVIV, cannot be emulated because they
cannot be combined with conditional activation.

Figure 9 presents a typical flow when using this tool. The steps
can be divided into two phases: the preparation and the execution
phase. During the preparation phase the fault injection tool is called
and provided with the application’s source code as input, from which
it will generate a large amount of patch files. During the execution
phase, each of the generated patch files will be applied once at a time,
the code with the patch applied will be compiled and the user-defined
workload will be executed. After the workload has finished, results
and data should be extracted and this logic starts again for the next
patch file.

file1.c file2.c file3.c

Call Fault Injection
Tool

.patch

.patch

.patch

.patch

Apply patches to
original source code

Compile application

Execute workload

Extract results

Application's source code (C language)

Preparation Phase Execution Phase

Figure 9: Flow of the fault injection tool of software faults.

An important aspect in software fault injection campaigns, specifi-
cally if their objective is to estimate failure modes and their probability
of occurrence, is the representativeness of the injected faults. The ma-
jority of the produced faults does not reflect real faults that could be
found in production systems, despite the usage of a representative
fault model, because even basic software testing procedures, which
are common in the large majority of software projects, would detect
the fault before it reaches production. Residual software faults are
those that escape the testing phase and thus reach production code
and lead to failures.

Although neither the tool nor the framework include code specif-
ically for filtering non-residual faults before injection, such can be
obtained by including a pass where software tests are performed pos-
terior to the fault being applied and compiled. Chapter 5 performed
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this testing and filtering step and the results confirmed that a sig-
nificant percentage of faults do not pass even basic testing, whereas
Chapter 6 did not filter the injected faults because the main objective
of the fault injection campaign conducted in that chapter was not
to estimate failure modes or similar, but rather to evaluate a fault
tolerance mechanism with regards to how it tolerates failures, caused
both due to residual and non-residual faults.

3.3 related work

Given the maturity of fault injection, several fault injection tools have
been developed throughout the years. Thus ucXception does not rep-
resent a revolution in the area but rather an evolution over existing
offers, namely due to the already referred aspects that make ucXcep-
tion ideal for evaluating virtualized and cloud computing systems.
Some of the most well-known fault injection tools are briefly described
below, ordered according to their year of inception.

MESSALINE [6] was one of the first fault injection tools and used
hardware-implemented fault injection at the pin-level, with config-
urable fault location, a temporal trigger and capable of injecting var-
ious transient and permanent hardware fault models, such as stuck
bits.

FIAT [126] was developed for emulating errors generated by soft-
ware and hardware and allowed the definition of when, where and
for how long faults should be injected. It was capable of injecting
faults in registers and memory, as well as communication faults in a
distributed system.

FERRARI [72] is capable of emulating transient and permanent
faults in software, such as bit-flips in memory and registers, and sup-
ports addition of other fault models. Faults may be injected according
to a spatial trigger, using a software trap, or a temporal trigger.

FINE [73] focuses on measuring fault propagation rather than eval-
uating fault latency, fault coverage or failure modes. It is capable of
emulating permanent and hardware faults, such as memory, CPU, bus
and I/O faults, and software faults using a fault model that includes
assignment, condition check, function and documentation faults. The
tool takes advantage of the ftrace system call to inject the faults in
a matter somewhat similar to the fault injection tool described in
Section 3.2.2.1.

FTAPE [146] innovated by adding a synthetic workload generator
and supporting stress-based injection, i.e., performing one or more
fault injection on the most stressed components or during time periods
of higher system stress. It supports injection of single bit-flips in CPU
registers and memory, as well as error codes in disk I/O.

DEFINE [150] is an extension of FINE adapted for distributed sys-
tems which added new triggering mechanisms, namely temporal
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triggering and spatial triggering using software traps, and new fault
models, such as communication and intermittent faults.

Xception [24] is a fault injection tool that takes advantage of de-
bugging and performance features of modern processors to inject
faults and monitor their propagation with lower intrusiveness than
most SWIFI approaches that depend on pre-runtime software modi-
fications, software traps or running the application in trace mode. It
supports multiple triggering mechanisms, including temporal, spa-
tial and event-based (e.g., on memory access), and a fault model that
represents transient hardware faults.

NFTAPE [137] is a framework for fault injection that can be used in
various types of systems and supports multiple fault models, including
bit-flips in registers and memory, communication errors and I/O faults,
and multiple fault triggers, including spatial, time-based and event-
based. Its main advantage is flexibility and the fact that it can use
different fault injectors.

Goofi-2 [131] is capable of performing fault injection using hardware-
implemented and software-implemented techniques and emulates
transient hardware faults in CPU registers and memory using single
and multiple bit-flips.

Gigan [82] is a software-implemented fault injection tool capable
of introducing faults in memory and CPU registers of a virtualized
system as single bit-flips that are triggered using breakpoints.

LLFI [145] is a pre-runtime fault injection tool that introduces the
faults at the intermediate code level using LLVM and supports injec-
tion of single bit-flips in CPU registers.

Marcello Cinque and Antonio Pecchia introduced a fault injection
framework aimed at virtualized multi-core systems [31]. Their frame-
work emulates hardware errors by modifying the values of special
registers that belong to the Machine Check Architecture (MCA), in
doing so they are able to evaluate the error handling mechanisms of
the system.

CloudVal [107] is a framework based on NFTAPE that was devel-
oped to validate the reliability of virtualized environments. It supports
emulation of soft errors and injection of faults mimicking delayed I/O
operations and maintenance events. Its fault injector was implemented
as a loadable kernel module and features a spatial-triggering mecha-
nism based on breakpoints.

G-SWIFT [42] applies Durães et al. fault model for software faults [42]
at the machine code-level, by modifying the binary executable, instead
of directly at the source code, thus enabling fault injection in software
components to which the source code is not available.

EDFI [54] embeds the faults in the source code of the target ap-
plication using basic block cloning and selectively activates only the
desired faults in runtime.
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ProFIPy [36] is a programmable fault injection tool that allows the
users to specify the desired fault model of software faults using a
domain-specific language (DSL) and which can be provided using a
software-as-a-service (SaaS) deployment model.

Of all the aforementioned tools, only CloudVal [107], Gigan [31] and
the framework of Cinque and Pecchia [31] have been developed with
cloud or virtualized systems in mind. Cinque and Pecchia’s framework
emulates errors caused by hardware faults by taking advantage of
error reporting functionalities of the hardware and does not reproduce
the effect of a hardware fault (e.g., it does not perform bit-flip to
emulate the effect of soft error that hits a CPU register). Gigan is
capable of injecting faults that emulate soft errors in CPU register
and memory locations inside VMs. CloudVal is implemented as a
kernel module for Linux that can be loaded in a VM and used to
inject faults representing soft errors and other models, such as delayed
I/O operations and maintenance events. When compared to these,
ucXception contains fault injection tools that can inject both inside
VMs (like Gigan does) and in applications (like CloudVal does), as
well as supporting a fault model capable of emulating software faults.
Furthermore, ucXception has been made publicly available for anyone
to use and modify.

3.4 summary

Dependability evaluation is an important task in the development
and evaluation of reliable systems and fault tolerance mechanisms. In
the context of dependability evaluation, fault injection has historically
been used as a means to accelerate the occurrence of faults. As such,
fault injection is used throughout this thesis to evaluate current cloud
computing systems and uses the framework presented in this chapter
to support these experimental evaluations. Using fault injection we
also obtain knowledge required for designing mechanisms to improve
the dependability of the cloud and validate the effectiveness of the
developed fault tolerance mechanisms.

This chapter presented ucXception, a fault injection framework
designed to evaluate cloud computing and virtualized systems and
capable of emulating transient hardware faults and software faults in
any application or even inside a VM or the hypervisor. It was designed
to be flexible, easy-to-use and expandable, by dividing the various
required functionality into components that can be combined and
interchanged using a few lines of code, according to templates and
examples that accompany the framework. Currently, it features various
components for monitoring the target system, extracting information
regarding the fault injection and validating the results, but the user can
introduce his own components and integrate them with ucXception.
It represents a contribution to the state-of-the-art since it is one of
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the few publicly available fault injection frameworks that is capable
of injecting in cloud computing and virtualized systems and that
supports multiple fault models.





4
O N S O F T E R R O R S A N D C L O U D S Y S T E M S

Hardware faults are the cause behind a significant percentage of fail-
ures in cloud computing deployments and will become more common
in the future due to the expansion of datacenters, thus containing more
hardware components, the miniaturization of microtransistor feature
sizes, which when combined with an increase in transistor count leads
to higher soft errors rates, and the popularization of energy saving
techniques, such as dynamic voltage and frequency scaling, which
dramatically increase soft error rate [26].

The virtualized architecture is composed by various layers (VM,
PVM and hypervisor) that have different responsibilities, roles and
powers. Each layer may be more or less susceptible to soft errors
depending on the percentage of CPU time that it uses, as well as
experiencing different failure modes depending on the code that
executes in the layer.

This chapter reports the results of an experimental evaluation that
used fault injection to emulate soft errors that affect the CPU across the
various layers of a virtualized system. A total of 16 211 injections were
performed across different components (VM, PVM and hypervisor),
different workloads (HTTP and TPC-VMS) and different virtualization
modes (HVM, PV and PVH). The objectives when designing this
evaluation were:

• Identify the failure modes of a virtualized node and estimate
their probability of occurrence;

• Analyze how soft errors in a certain layer can dictate the experi-
enced failure modes and their probability of occurrence;

• Measure the effect of using a different virtualization mode on
the failure modes and their probability of occurrence;

• Measure the error isolation coverage among VMs and between
the hypervisor and the VMs when in the presence of a soft error;

• Analyze the impact that different workloads can have on failure
modes and their probability of occurrence.

The knowledge obtained from this experimental evaluation was
used to design the contributions presented in Chapters 6 and 7, which
aim to improve the dependability of cloud computing systems.

49
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4.1 methodology

The methodology applied to the experimental evaluation consists on
emulating soft errors using fault injection across the various layers
that compose a virtualized node (VM, PVM and hypervisor) while a
workload is being executed, as is described in this section.

4.1.1 Experimental setup

The experimental setup, which is depicted in Figure 10, was designed
to represent a subset of a real-world cloud deployment where mul-
tiple machines, or nodes, cooperate to provide computing resources
to the cloud clients. This study focuses on a single node that pro-
vides the resources required for consolidating multiples clients using
virtualization and on the effect that soft errors can have on it.

VM nVM 1

PVM

Server Server

Fault Injector

Clients

Campaign Manager

External Orchestrator

Compute Node

Fault Injector

Hypervisor (Xen)

...

SSH
connection

Figure 10: Experimental setup.

On this node, virtualization is provided by the Xen 4.4.1 hypervisor,
which has been paired with a PVM running CentOS 7. The spawned
VMs, which vary between two and three depending on the experiment
being performed, use Debian 7.7 with version 3.11.1 of the Linux
kernel. When two VMs are used, fault injection is performed in one
of them, the so-called VM1, while the remaining VM, known as VM2,
does not suffer an injection, since it has the purpose of verifying the
effectiveness of the hypervisor’s isolation mechanisms (i.e., verify if a
failure in a VM does not propagate or affect in any manner other co-
located VMs). When three VMs are used, the fault is injected outside
of any VM and their role is to provide a method for characterizing the
impact of the fault.
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Hardware-wise this node was equipped with an Intel Core i7-4770
CPU, which features 4 physical cores capable of Hyper-Threading and
supporting VT-x, VT-d and EPT, along with 8GB of DDR3 RAM and
two different kinds of physical storage, a 120GB SSD and a 1TB HDD.

Other than the node that is evaluated, another machine is required
to orchestrate and conduct the experiments, namely, execute the work-
load by emulating multiple clients, trigger the fault injection and
extract the results.

4.1.2 Workload

Two workloads were used in the experiments, an HTTP workload
and the TPC-VMS workload. In conjunction both workloads cover all
areas (e.g., memory, disk, processing) of a system but stress different
components individually.

4.1.2.1 HTTP workload

The HTTP workload consists of executing the Apache 2.2.22 Web
server while JMeter performs multiple continuous HTTP requests, as
to emulate 10 concurrent clients. Responding to each request involves
computing a SHA1 hash of a 1GB array of zeros and sending the reply
to the client. Since the input of the hash computation is always the
same, the output must also be the same under normal conditions.
A ramp-up time of 30 seconds, followed by 5 minutes of execution
during which faults were injected, was configured. The load imposed
by clients on the server led the CPU load to 100% during most of the
experiment time. In this workload, two VMs are spawned and the
load is applied equally among the two. The workload is representative
of typical servers deployed in the cloud that provide services that are
accessed via the HTTP protocol, where the Apache Web server is also
a common choice.

4.1.2.2 TPC-VMS workload

The TPC-VMS [139] is a virtualization-oriented benchmark that builds
upon the already existing benchmarks for non-virtualized systems
(in particular, TPC-C, TPC-E, TPC-H and TPC-DS). This benchmark
requires the creation of 3 VMs in the same physical server, each one
running the same non-virtualization benchmark. The final results are
extracted from the worst obtained value of each metric out of the
three VMs, in agreement with the TPC-VMS specification. Whereas
the HTTP workload was mainly CPU-intensive, with some memory
and network usage, the TPC-VMS workload makes balanced use of
all components of the physical system (CPU, memory, network and
disk) and increases the stress on the virtualization mechanisms (more
switching between VMs).
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For our particular case we opted to pair TPC-VMS with the TPC-
C benchmark, with the implementation being provided by jTPCC
v1.2.0 [160]. jTPCC had to be modified in order to become determin-
istic and therefore able to evaluate the correctness of the produced
output. This step required hard coding the seeds of the random num-
ber generator and limiting the number of terminals to one.

4.1.3 Fault model

We use the single bit-flip fault model to emulate transient hardware
faults, such as those that cause soft errors, in microprocessor registers
and main memory [121] and inject only one bit-flip per experiment
run.

Injection in microprocessor registers emulates faults affecting the
processor, which include faults directly affecting the registers and
faults that cause errors in other processor structures (e.g., arithmetic
and integer unit, floating point unit, instruction decoding, internal
buses, internal caches) but whose errors only have consequences when
they reach the registers.

Injection in main memory emulates real faults affecting circuits
(including the CPU) while a value is in transit for storage in main
memory. The goal is not to emulate direct memory errors, since main
memory is typically protected with error-correcting codes and sec-
ondary caches are protected with parity codes, but rather to emulate
a soft error affecting unprotected circuitry (including the CPU) while
a write to memory operation is in transit.

4.1.4 Fault injection tool

Practical fault injection was provided by the ucXception framework,
using different techniques depending on the target component of
injection: registers of processes running inside VMs (guest and PVM
alike), memory of the hypervisor, or registers during the execution of a
hypercall (hence executing in hypervisor mode). However specialized
fault injection tools were built just for these experiments, which often
implied modifications to Xen’s source code.

When performing fault injection in processes that run inside a VM,
the fault injector takes the form of a loadable kernel module for Linux,
which is located in the target system and can be instantiated through
a command using an SSH session or similar approaches. Once loaded,
the module locates the kernel-specific data structures related to the
targeted process and modifies the value of a register according to the
parameters passed during the module loading. Once a context switch
is made by the kernel to the specified process, that process continues
execution with a corrupted register value. The registers suitable for
fault injection with this tool are: rip (Instruction Pointer), user-space
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and kernel-space rsp (Stack Pointer), rax, rbx, rcx, rdx, cs, ss, rbp, flags, si,
di, es, ds, fs, gs and r8 to r15. This tool only supports temporal triggers,
hence experiments are not as repeatable as in other injectors due to
timing imprecisions. Nonetheless, temporal triggers are sufficient to
achieve statistical confidence of the results.

Injecting faults in the hypervisor memory is accomplished by in-
troducing a minimalist hypercall in Xen which can be called using
a user-space tool and receives the location in virtual memory that
we want to target. When this hypercall is used it performs a bit-flip
according to the passed parameters.

The approach that was used to inject faults during the execution
of hypercalls consisted on the modification of the assembly code
of Xen’s hypercalls before each experiment run by adding a small
assembly payload that waits for a temporal trigger (expressed as the
number of CPU cycles since the computer has booted) and performs a
bit-flip in our desired register. The temporal trigger is implemented
by calling the “Read Time Stamp Counter" (rdtsc) instruction, which
writes the number of CPU cycles into rax and rdx. This value is then
compared to the predefined goal and if the current value is the same
or higher then the injection takes place. In general, the amount of extra
instructions added by this approach is minimal (only 15 instructions),
which assures that the intrusiveness of the injection process can be
neglected. The registers that can be targeted with this approach are
rip, rax, rbx, rcx, rdx, rsp, rbp, rdi, rsi and r8 to r15.

Figure 11 shows the assembly instructions that are added, where
[register], [time], [mask] are placeholders that must be filled during
compilation.

4.2 failure modes and classification

Calibration experiments, conducted along with the development of
the fault injector and the experimental setup, aimed at characterizing
the behavior of faulty components from the qualitative point of view.
In other words, with the intent to identify the failure modes of the
VMs and the hypervisor and to calibrate the tool for the remaining
experiments.

In all experiments, the outcome of injecting a fault (i.e., failure
modes) is classified according to its impact on the output produced
by the workload running inside the VM and its impact on the respon-
siveness of the hypervisor, which was obtained by running integrity
tests at the end of each experiment.

As explained previously, two different workloads were used, an
HTTP workload and TPC-VMS [139]. For the HTTP-based workload,
there are five distinct failure modes, along with the possibility of an
experiment having no effect on the provided service. All the failure
modes represent the view from the client side (i.e., the external view).
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.globl counter

.bss

.type counter, @object

.size counter

5 counter:

.zero 1

pushq %rax

cmp $1, counter(%rip)

je final

4 pushq %rdx

rdtsc

salq $32, %rdx,

or %rax, %rdx

movabsq $[time], %rax

9 cmp %rdx, %rax

popq %rdx

jg final

movabsq $[mask], %rax

movb $1, counter(%rip)

14 xorq %rax, %[register]

final:

popq %rax

Figure 11: Assembly payload.

• Incorrect content – The application running within the VM pro-
duces syntactically correct HTML content with wrong values.
Hence, incorrect content becomes visible to the service user,
which may be another machine or a human. This failure mode
is the most serious in its consequences, as it allows errors to
propagate to other components in a system, and also the most
difficult to handle at the system-level, as it is undetectable unless
the output is checked against a redundant computation or using
some other form of redundancy check;

• Corrupted output – The application produces a corrupted stream
of data, while the socket remains open. The output is syntacti-
cally incorrect and the condition is detectable by clients because
the server fails to comply with the HTTP protocol, sends invalid
HTML code, or sends code which is not HTML at all. Conse-
quently, the server maintains the TCP connection open but the
output is corrupted. This behavior is detectable by clients and
a Web browser would display an error message, as such this
behavior may be considered less harmful than incorrect content,
although recovery is necessary;

• Connection reset – The TCP connection between a client and the
server is reset by the server’s network stack. This corresponds
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to an incorrect behavior which is, at least in part, detected by
the operating system running inside a VM. To deal with such
a situation, the operating system closes the socket and sends a
packet with RST flag set to the client. Therefore, the connection
is lost and a client rapidly detects the problem;

• Client-side timeout – One or more clients fail to receive a response
to their request and issue a client-side timeout. The timeout is
configured at 20 seconds, which is reasonably high for HTTP
interactions (the keep-alive mechanism, for example, typically
maintains a connection open for 5–15 seconds at the server-side).
Note that numerous client requests are handled simultaneously
and some responses may be correct while some are missing and
lead clients to time out;

• Hang – The VM stops producing output and fails to answer any
subsequent requests. In this case, the application running inside
the VM no longer produces results and eventually all connected
clients will issue a client-side timeout. A failure classified as a
hang will not be classified, in our experiments, as a client-side
timeout. Nevertheless, due to non-deterministic timing aspects,
some experiments are classified as client-side timeouts when the
actual behavior might be a hang. If a few, isolated client requests
are unanswered, the failure mode is a client-side timeout; but
when this occurs with many client requests, the classification
may be either a hang or a client-side timeout;

• No effect – The injected error has no visible consequences on
the service provided by any VM. Neither the performance or
the correctness of the service is affected in a way that could be
classified as a failure.

For each experiment, the above classification is performed by exam-
ining the output produced at every client request. For this reason, a
single error may cause more than one kind of failure for the same in-
jection. For example, the same fault may lead to a connection reset for
one client request and a corrupted output for another client. Although
the presentation of multiple failure modes, in a single experiment,
is relatively infrequent in our experiments, some results add up to
slightly more than 100% as a consequence.

The second used workload is the TPC-VMS [139] benchmark, which
consists in the execution of an OLTP benchmark concurrently in 3

VMs. Unlike what happened in the HTTP workload, there is now a
persistent aspect to the experiment results, which is the state of the
database at the end of each experiment. For this reason, a slightly
different classification scheme was used to evaluate the results of this
experiment campaign.
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• Corruption – Although the experiment terminates cleanly, when
checking the final state of the database, inconsistencies are found.
This is the equivalent of a Silent Data Corruption (SDC);

• Crash – The entire VM stops responding and the execution of
the workload stops;

• No effect – The workload client receives every response with
the expected values and, at the end of the experiment run, the
database states matches the expected final state.

In either workload, in addition to the failure modes, we also tested
the hypervisor integrity after each injection. To achieve this, we devel-
oped a hypervisor integrity test that consists of a battery of checks,
starting by the establishment of an SSH connection to obtain a console
on the hypervisor, followed by reading a file stored on the file system
and running other processes (e.g., uname, ls) that return deterministic
values that can be used to infer the internal state of the system. A ping
operation is also performed, but it was noted that the results from this
operation cannot be completely trusted to assert the integrity of the
hypervisor. We observed that a test suite like this, although simple, is
comprehensive enough to accurately detect the situations where the
hypervisor is unresponsive. The hypervisor integrity test leads to two
possible classifications of the outcome of a single experiment.

• Unresponsive – The hypervisor hangs and the external probe is
unable to execute the integrity tests;

• Responsive – After an experiment ends, the integrity tests are
executed on the hypervisor successfully.

4.3 soft errors occurring inside a vm

Injections inside a VM should represent the majority of real-world
soft errors, given that this is the layer that accounts for the majority
of CPU time and, thus, the most susceptible to this kind of faults. We
subdivided our injections inside a VM into two groups:

• Faults injected in application processes – to characterize the failure
modes exhibited to external users of the system and to determine
if errors originating within one VM are able to propagate to other
VMs or to the hypervisor. In other words, the application client-
server interaction results in information flow which allows errors
to propagate to the client. However, the hypervisor and other
co-located VMs should remain unaffected by errors originating
in one VM;

• Faults injected in guest operating system processes – aiming to ex-
amine the failure modes exhibited to external users, considering
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that an error directly affecting a guest operating system has
a greater potential to cause failures. Similarly to the previous
category of experiments, the virtualization platform is designed
to prevent such errors from propagating to the hypervisor and
other co-located VMs.

4.3.1 HTTP workload

The results of fault injection targeting Apache processes, within one
VM, for the three modes, are shown in Table 4

1. The results refer
only to the VM where fault injection was performed, because both the
hypervisor and the other VM were never affected (i.e., isolation has
been kept). As to facilitate comparison between the three modes, the
binomial (Clopper-Pearson) confidence interval at the 95% confidence
level is included next to the absolute failure counts.

failure mode hvm pv pvh

Incorrect
Content

4 [0.1%;

1.0%]

6 [0.2%;

1.3%]

24 [1.3%;

3.0%]

Corrupted
Output

2 [0.0%;

0.7%]

1 [0.0%;

0.6%]

1 [0.0%;

0.5%]

Connection
Reset

12 [0.06%;

0.2%]

8 [0.4%;

1.6%]

1 [0.0%;

0.5%]

Client-
side
Timeout

130 [10.7%;

14.8%]

71 [5.8%;

9.2%]

150 [11.0%;

14.9%]

Hang 5 [0.2%;

1.1%]

6 [0.2%;

1.3%]

4 [0.1%;

0.9%]

No
Effect

876 [83.0%;

87.4%]

876 [88.5%;

92.3%]

985 [82.3%;

86.6%]

Total 1027 968 1165

Table 4: Outcomes of fault injection in application processes within a VM,
HTTP workload.

We can observe that the faulty VM (i.e., the one in which the faults
were injected) exhibits diverse failure modes, including a large propor-
tion of client-side timeouts and a small proportion distributed across
the remaining failure modes.

In the HVM mode, about 85.3% of the injected faults had no effect
on the target VM. From all the injections using this virtualization
mode, only 4 (0.4%) caused incorrect content to be sent in response to

1 The sum of failures in HVM mode amount to more than 100% of the injected faults,
because in some occasions a fault caused more than one failure mode.
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client requests. These faults caused transient failures at the server-side,
as the server continues working correctly after sending the incorrect
content to the client, but with a potentially permanent effect on the
client, as the values received from the server are incorrect. This is a
relevant result, as these are exactly the most dangerous type of faults,
as they cause the application to produce incorrect results without being
noticed, unless there are explicit redundant calculation or any form
of data error mechanism over the application output. In the prospect
of the increase of the soft error rate in forthcoming generations of
hardware, this is precisely one of the types of consequences that
must be avoided or mitigated. Even so, the observed number of faults
that caused incorrect content can be considered small (0.4%), but this
judgment is, of course, dependent on the criticality of the application.

When comparing the results between the three virtualization modes
the failure modes of the VM in which bit-flips were injected are
similarly distributed, yet with some small variations. Perhaps the most
noticeable differences are the higher percentage of incorrect content
that was seen in PVH (+1.7%) and the considerably higher proportion
of non-effective injections in PV mode (+5.2%). Hence, although the
set of possible failure modes exhibited by a VM running in any of
these modes are the same, the exact proportions differ slightly.

Fault injection in processes of the operating system, within one VM,
was also conducted with the objective of understanding the effects
of soft errors affecting one VM, determining if the error isolation
provided by the hypervisor is adequate and examining possible differ-
ences between virtualization modes. The results are summarized in
Table 5.

These results indicate that bit-flips in operating system processes
are less likely to affect the application service than errors injected
directly in application processes. It is also worth noting that every
fault with impact had a manifestation as client-side timeouts or VM
hangs. These results do not necessarily exclude the possibility of a
soft error in a guest operating system leading the application software
to produce incorrect content, but provide some evidence that such
errors are much less likely (compared to injections directly affecting
application processes).

Along with the failure modes, understanding error manifestation
with respect to latency and duration is particularly relevant to the
design of appropriate fault tolerance mechanisms. To this end, we
analyzed a subset of the results presented in this section with regards
to the time between fault injection and the first manifestation resulting
from its injection. This analysis was conducted for faults injected in
user-space applications of a VM, more specifically in Apache processes
during the HTTP workload, and excluded those that had resulted in
hangs and client-side timeouts. Client-side timeouts are configurable
and have the value set to 20 seconds in our experiments; hangs are
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failure mode hvm pv pvh

Incorrect
Content

0 (0.0%) 0 (+0.0%) 0 (+0.0%)

Corrupted
Output

0 (0.0%) 0 (+0.0%) 0 (+0.0%)

Connection
Reset

0 (0.0%) 0 (+0.0%) 0 (+0.0%)

Client-
side
Timeout

5 (1.0%) 2 (−0.1%) 4 (−0.2%)

Hang 4 (0.8%) 1 (−0.4%) 3 (−0.2%)

No
Effect

493 (98.2%) 225 (+0.5%) 500 (+0.4%)

Total 502 228 507

Table 5: Outcomes of fault injection in OS processes within a VM, HTTP
workload.

classified at the end of each experiment; error manifestation latency in
such cases would therefore provide meaningless values.

Figure 12 shows the error manifestation latency distribution, for the
HVM and PV modes (values stacked on top of each other). The x-axis
shows time using a logarithmic scale. There are a few clusters of errors,
and one may observe that many errors remain dormant for little over
10 seconds before the first manifestation. One extreme outlier had an
error manifestation latency of 326 seconds. These time values have a
potential impact on the design of error-recovery mechanisms, given
that backward recovery techniques are designed to eliminate errors,
and may consequently require lengthy rollbacks.

Duration of erroneous behavior is also an important concern when
designing error-handling mechanisms and, more specifically, the mech-
anisms that should handle the errors when they are detected. Figure 13

summarizes the duration of such events, that is, the number of re-
quests that were affected by a single bit-flip. It is worth noting that
in the present case there are no specific error detection mechanism
installed that could mitigate or recover from the erroneous behavior
exhibited after the injection of the fault.

The temporal duration, between the first manifestation and the last
manifestation of an error, was always below 1 second (the granular-
ity with which we conducted the analysis). For this reason, we use
the number of requests affected by a single bit-flip on the x-axis of
Figure 13.

Excluding hangs (which have a permanent duration), the majority
of errors affected only a single client request. Nevertheless, in the
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Figure 12: Manifestation latency, for effective errors, both in PV and HVM,
HTTP workload.
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HTTP workload.
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course of our experiments, we observed that a single bit-flip error may
lead up to ten client requests being unanswered, thereby leading to
client-side timeout.

Figure 14 summarizes the failure modes observed for each register,
for all experiments in which a fault was effective. The results in that
figure concern faults injected in microprocessor registers during the ex-
ecution of Apache processes. From all the targeted registers, fourteen
resulted in effective injections, although the used virtualization mode
lead to different subgroups of effective registers. Similarly to what
many other studies have shown in the past, the Instruction Pointer
(rip) and the Stack Pointer (rsp) have a high contribution to VM failure
modes. The rbx register is also relevant, both due to the overall contri-
bution to effective errors and the specific contribution to the incorrect
content classification. The large majority of experiments that were
classified as incorrect content (silent data corruptions) were caused
by bit-flips in the rbx register. The fs register also had a noticeable
contribution to hang failures in all modes. When comparing the three
modes, PV had the lowest amount of effective registers, only seven,
whereas HVM had eleven and PVH had ten. Hence, while the registers
that contribute the most to failures are similar, the three modes are
apparently different with respect to the root causes of failures, if we
take into account also registers with a lower probability of manifes-
tation. Furthermore, the failure modes varied occasionally between
modes. One example is r13 in PVH, which caused only corrupted
output failures, and r13 in HVM which caused only connection reset
failures. According to these results, one may not conclude that some
fault tolerance mechanism that works for one mode will also work for
the other modes, thereby requiring some caution when designing and
evaluating such mechanisms.

4.3.2 TPC-VMS workload

For the TPC-VMS workload, faults were injected in the various pro-
cesses that supported the DBMS (PostgreSQL), namely:

• checkpointer – automatically performs a checkpoint, which con-
sists in the flushing of all dirty data pages, after a certain time
interval has elapsed;

• writer – handles the writing of data pages from shared buffers
into storage;

• autovacuum launcher – periodically reclaims storage space being
occupied by deleted or obsolete information and, then, updates
the table statistics that will be used by the query planner (equiv-
alent to calling VACUUM and ANALYZE commands);
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Figure 14: Distribution of failure modes across processor registers, for injec-
tions in application processes and HTTP workload.
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• stats collector – continuously collects information, such as the
number of access to tables and indexes or the number of rows
in tables;

• postmaster – this process is always active, awaiting for connections
and performing periodic tasks, even when there is no connected
client.

Table 6 presents these results as a breakdown of the behavior seen in
each process. For the HVM mode a total of 1080 runs were performed,
while for the PV mode 2622 runs were performed.

process hvm pv

Crash Corruption No Effect Crash Corruption No Effect

checkpointer 0.0% 18.3% 81.7% 1.3% 0.0% 98.7%

writer 0.0% 26.1% 73.9% 0.7% 22.3% 77.0%

wal writer 0.0% 20.0% 80.0% 2.6% 20.2% 77.2%

autovacuum 0.0% 18.9% 81.1% 2.5% 20.8% 76.6%

stats collec-
tor

0.0% 0.0% 100% 2.6% 0.1% 97.3%

postmaster 0.0% 20.6% 79.4% 3.3% 18.4% 78.3%

Total 0.0% 17.3% 82.7% 2.4% 12.1% 85.5%

Table 6: Outcomes of fault injection in application processes within a VM,
TPC-VMS workload.

As seen with the HTTP workload, in general, between virtualization
modes the experienced failure modes are the same but with slightly
different proportions. A contradiction to this observation is seen in
the checkpointer process, where database corruption only occurred in
the HVM mode. Possibly indicating that the differences between virtu-
alization modes can indeed have a significant impact in the behavior
of the applications under faults but only in certain cases.

All the corrupted states caused by the postmaster process occurred
after an abrupt DBMS crash leading to a state with missing rows, but
no extraneous or incorrect rows, unlike what was sometimes seen in
the other processes, where a corrupted database was missing rows,
had rows with wrong content, had extraneous rows or had rows out
of position.

Surprisingly, in PV mode there were several occurrences of crashed
VMs, which runs against common sense that a user-space application
cannot crash the VM where it is running and differs from what was
seen in the HVM virtualization mode. An analysis of the hypervisor
logs seems to indicate that the activation of a software bug in Xen
might be the cause behind these crashes, although further research is
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needed before blame can be attributed with confidence. In any case,
the neighboring VMs were not affected.

These results reinforce the observation that the hypervisor correctly
isolates the VMs and prevents soft error propagation among VMs
or from VMs to the hypervisor. But they also confirm that there are
a small percentage of faults that cause incorrect application results
and corrupted state and that the errors caused by faults affecting
applications running in a given VM may propagate and affect the
operating system of that VM causing a hang.

Table 7 refers to injections in operating system processes while using
the TPC-VMS workload, for HVM and PV virtualization modes.

failure mode hvm pv

Crash 0 (0.0%) 2 (+0.3%)

Corruption 1 (0.2%) 2 (+0.1%)

No Effect 526 (99.8%) 671 (−0.4%)

Total 527 675

Table 7: Outcomes of fault injection in OS processes within a VM, TPC-VMS
workload.

Interestingly, 3 occurrences in total of corrupted state were seen,
which suggests that, at least for OLTP workloads, faults in kernel-
space processes can indeed cause more than just hangs and timeouts,
thus reinforcing the notion that, although, no incorrect content was
produced during the HTTP workload, it might still be a possibility.

4.4 soft errors occurring inside the pvm

We conducted campaigns targeting the hypervisor’s PVM, known
as dom0 in Xen’s terminology, which is characterized by providing
support to the execution of the hypervisor and having full hardware
access. Hence, although hardware protection prevents it from directly
corrupting Xen’s ring 0 address space, PVM code can theoretically
interfere with the execution of the entire system. The campaigns fo-
cused on injecting faults in the processor registers while the processor
is executing code from processes related to Xen, as these are a part
of the virtualization infrastructure. The targeted processes all have a
specific role within the hypervisor, namely:

• qemu – A Qemu process is used for every HVM guest that is
executing, in order to provide emulation of certain components.
However, even if no HVM guest is running, there is always one
Qemu instance in the system, that is used by the PVM to access
image files and to provide VNC servers;
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• oxenstored – this process implements a key-value store that holds
information about the system and its VMs. Communication with
this process can be done through UNIX domain sockets (PVM
only), or through the kernel ring interface (i.e., xenbus);

• xenwatchdogd – is a user-space processes that makes part of Xen’s
internal watchdog mechanism;

• xenconsoled – is a process that receives and stores in disk the logs
coming from the hypervisor and guests;

• xenbus – this process allows inter-VM communication, particu-
larly as a way of providing hardware access to the guests. All
the device drivers running in the PVM must register themselves
with this process before they can be used by other VMs;

• xenbus-frontend – the device drivers in Xen follow a split model
design and consist in two parts, the front-end and the back-end.
The front-end executes in the guest and connects to the back-end,
which is running in the PVM. In the case of this process, the
front-end is also running in the PVM but only to serve as the
entry point for the PVM itself.

The results of the injection campaign that used the HTTP workloads
are summarized in Table 8. The six processes belonging to the PVM’s
operating system (oxenstored, xenconsoled, qemu, xenwatchdogd, xenbus
kernel process and xenbus-frontend kernel process) had different effects
on the system. Of these six processes, four are user-space processes
and two are kernel-space processes.

process hang timeout no effect

qemu 34 (6.1%) 18 (3.2%) 503 (90.7%)

oxenstored 0 (0.0%) 0 (0.0%) 234 (100%)

xenwatchdogd 36 (12.4%) 31 (10.7%) 223 (76.9%)

xenconsoled 0 (0.0%) 0 (0.0%) 398 (100%)

xenbus 124 (66.0%) 64 (34.0%) 0 (0.0%)

xenbus-frontend 186 (64.5%) 100 (34.7%) 2 (0.7%)

Total 380 (19.5%) 213 (10.9%) 1360 (69.6%)

Table 8: Outcomes of fault injection in PVM, HTTP workload.

The two kernel-space processes (xenbus and xenbus-frontend) had
several cases in which the system was brought down into a hanged
state. Two user-space processes, running within the PVM, also had the
same effect (qemu and xenwatchdogd). The other two PVM user-space
processes never produced any effect on the system when targeted
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with faults. This means that PVM processes, even when running in
user-space, have the potential to cause the system to hang. The effect
of injecting faults into a PVM process depends more on the kind of
responsibility within the system, than on the execution mode.

Of all the injected faults, 30.4% caused the hypervisor to hang,
remaining unresponsive and failing the integrity tests. The remaining
69.6% of the faults had no manifestation within the duration of the
experiments, neither affecting the hypervisor nor any of the VMs.

In those cases where the hypervisor failed, both VMs failed as well.
Furthermore, the failure modes exhibited by VMs were either hang or
client-side timeout. As we described earlier, in our experiments some
VM failures are classified as a client-side timeout when the behavior
is also consistent with a hang. Nevertheless, we believe that the two
different classifications have a common root cause, in which VMs are
unable to continue executing.

A similar campaign was done with the TPC-VMS workload, where
different virtualization modes (HVM and PV) were also tested in order
to study if the virtualization mode used in the VMs has any impact
on the outcome. Table 9 shows the results broken down per process,
where 180 faults were injected in each process, for a total of 1080

faults.

process hvm guests pv guests

Crash Corruption No Effect Crash Corruption No Effect

qemu 9.4% 0.0% 90.6% 8.9% 0.0% 91.1%

oxenstored 0.0% 0.0% 100% 0.0% 0.0% 100%

xenwatchdogd 23.3% 0.0% 76.7% 25.6% 0.0% 74.4%

xenconsoled 1.7% 0.0% 98.3% 5.6% 0.0% 94.4%

xenbus 100% 0.0% 0.0% 100% 0.0% 0.0%

xenbus-
frontend

100% 0.0% 0.0% 100% 0.0% 0.0%

Total 39% 0.0% 61% 40% 0.0% 60%

Table 9: Outcomes of fault injection in PVM, TPC-VMS workload.

As had happened with the HTTP workload, the only failure mode
is the crashing of all VMs along with the hypervisor. The kernel
processes xenbus and xenbus-frontend had a very high impact, whereas
the oxenstored process had no impact and the xenconsoled process had
little effect. The virtualization mode of the VMs showed little to no
impact on the failure modes and their proportions.

Figure 15 shows the failure percentage for faults injected in pro-
cesses of the PVM with error bars at the 95% confidence level, discrim-
inated by workload.
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Figure 15: Failure percentage in processes of the PVM.

It is possible to observe that failures in the PVM were caused some-
what uniformly by every register apart from rbx, which was the most
prone to causing failures. The used workload appeared to exercise rel-
atively little effect on failure probability, likely because the operation
of the studied PVM applications did not vary significantly based on
workload.

4.5 soft errors occurring in the hypervisor

In a virtualized environment, the hypervisor is responsible for imple-
menting the essential functions (e.g., allocating CPU time, managing
memory and other hardware access) and isolating the VMs. It repre-
sents a single point of failure in the architecture that is associated with
this type of virtualized systems.

4.5.1 In the hypervisor memory

As to evaluate the impact of soft errors affecting memory in a virtual-
ized system, we conducted a campaign of injections in the memory
section reserved for Xen, which consisted of 276 runs and found only
one occurrence of a Hang of the entire infrastructure, and a campaign
in the memory of the PVM, which consisted of 102 runs which yielded
no failure.

The relative low number of runs, specifically when talking about
memory injections, was the main contributor to almost no failures
being experienced. In order to improve the efficiency of injections, a
pre-injection analysis to identify the memory locations that should be
targeted would further improve the results of the experiments [13].
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4.5.2 During the execution of hypercalls

Given the size of Xen codebase we opted to restrict register bit-flips to
the parts that had the highest CPU usage. In particular, we focused
on hypercalls because they are called very often and provide the
link between the hypervisor and the VMs. To choose between the
dozens of hypercalls that Xen provides, we performed a profiling
phase where both workloads were executed without any faultload,
while we recorded how many times each hypercall was called. A better
metric would have been the total CPU-time spent by each hypercall,
however the profiler was unable to obtain this value. The results for
the HTTP and TPC-VMS workloads are displayed in Table 10.

http tpc-vms

id hypercall name # calls % # calls %

1 mmu_update 2092 2.68 23099 0.29

3 stack_switch 10232 13.10 847445 10.73

5 fpu_taskswitch - - 264869 3.35

7 platform_op - - 1 <0.01

10 update_descriptor - - 957687 12.13

12 memory_op - - 389 <0.01

13 multicall 552 0.70 331361 4.20

14 update_va_mapping 90 0.11 15342 0.19

17 xen_version 517 0.66 18012 0.23

20 grant_table_op - - 218832 2.77

23 iret 31758 40.68 2471921 31.30

24 vcpu_op 17666 22.63 1256245 15.90

25 set_segment_base 2488 3.18 173044 2.19

26 mmuext_op 2157 2.76 73398 0.93

29 sched_op 6323 8.10 644621 8.16

32 evtchn_op 1458 1.86 447432 5.67

33 physdev_op 2724 3.48 152813 1.94

35 sysctl 1 <0.01 1 <0.01

Table 10: Hypercall profiling for both workloads.

With this information, the iret and stack_switch hypercalls, which
account for about half of all the calls, were chosen as the targets for
fault injection. The stack_switch hypercall is used by a VM to register
the kernel stack segment and pointer into Xen, which is required
because the TSS is not fully virtualized by Xen. The iret hypercall
mimics the behavior of the iret instruction of x86 processors. This
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hypercall returns the execution flow from the interrupt handler routine
to user-space after a hardware or software interrupt.

4.5.2.1 HTTP workload

Table 11 and Table 12 present the results for injections during the
HTTP workload, for the iret and stack_switch hypercalls respectively.

hypervisor failure mode vm1 vm2 both vms

Unresponsive
94

Incorrect content 0 0

100%Client-side timeout 0 0

Hang 94 94

No effect 0 0 —

Responsive
2082

Incorrect content 60 48

74.1%Client-side timeout 13 7

Hang 348 351

No effect 1661 1676 —

Table 11: Outcomes of faults affecting the iret hypercall of Xen, HTTP work-
load.

hypervisor failure mode vm1 vm2 both vms

Unresponsive
28

Incorrect content 0 0

100%Client-side timeout 0 0

Hang 28 28

No effect 0 0 —

Responsive
2001

Incorrect content 0 0

83.4%Client-side timeout 1 37

Hang 732 811

No effect 1268 1153 —

Table 12: Outcomes of faults affecting the stack_switch hypercall of Xen,
HTTP workload.

Of particular importance is the high percentage of incorrect content
failures when injecting in the iret hypercall, whereas no occurrences of
this failure mode happened in the stack_switch hypercall. It shows that
each hypercall causes different failure modes that can have different
impact, therefore prioritization can be done when designing fault
tolerance mechanisms for hypercalls. Another observation is that
injections in hypercalls can affect either VM individually or both VMs
at the same time.
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4.5.2.2 TPC-VMS workload

The same hypercalls were targeted when executing the TPC-VMS
workload, with the results presented in Table 13 and Table 14.

hypervisor failure mode vm1 vm2 vm3 2 vms all vms

Unresponsive
419

Crash 0 0 0 — 419

Corrupted State 0 0 0 — —

No effect 0

Responsive
860

Crash 21 15 5 3 0

Corrupted State 0 0 0 1 0

No effect 815

Table 13: Outcomes of faults affecting the iret hypercall of Xen, TPC-VMS
workload.

hypervisor failure mode vm1 vm2 vm3 2 vms all vms

Unresponsive
342

Crash 0 0 1 — 340

Corrupted State 0 1 0 — —

No effect 0

Responsive
1257

Crash 1 3 5 0 0

Corrupted State 4 7 4 1 0

No effect 1232

Table 14: Outcomes of faults affecting the stack_switch hypercall, TPC-VMS
workload.

In both hypercalls, there were occasions where two out of the three
VMs suffered a failure caused by a single bit-flip, which proves that un-
like what was seen in fault injection campaigns that targeted processes
in the VM or the PVM, a single fault can affect a combination of VMs
other than only one or all the VMs. By using the TPC-VMS workload,
which keeps persistent storage, we found that certain faults were able
to cause corrupted state in the database that was imperceptible to
the client (i.e., the DBMS continues to provide service to the client,
but using incorrect content). When comparing both hypercalls, the
stack_switch hypercall appears to be more likely to cause a crash and
less prone to lead to a corrupted state than iret.

In the stack_switch hypercall, there was one fault that caused two out
of the three VMs to end with corrupted state, thereby showing that a
single fault affecting one hypercall can silently corrupt data in various
VMs simultaneously. More importantly, it proves that there is a risk
in using redundant VMs in the same physical host as a mechanism
against soft errors (e.g., run the same workload, feed the same inputs



4.5 soft errors occurring in the hypervisor 71

and then compare the produced output), because they can be affected
in the same way and return the same incorrect output.

Another new observation is that, as occurred with the iret hypercall,
the hypervisor can be classified as unresponsive, but its VMs can
continue to operate, although with failures.

4.5.2.3 Detailed analysis

Supported by the availability of the assembly code of the hypercalls,
a more detailed analysis was performed to explain why certain fail-
ure modes occur and which variables affect the failure modes and
probabilities of this component.

Figure 16 presents four heatmaps that reflect how register and fault
location (i.e., the line of assembly code where the fault is injected)
affect the percentage of faults that lead to failures, for each workload
and hypercall. Darker colors represent higher failure probability than
lighter colors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fault location

rip
rsp
rbp
rax
rbx
rcx
rdx
rsi
rdi
r8
r9

r10
r11
r12
r13
r14
r15

Re
gi

st
er

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fault location

rip
rsp
rbp
rax
rbx
rcx
rdx
rsi
rdi
r8
r9

r10
r11
r12
r13
r14
r15

Re
gi

st
er

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fault location

rip
rsp
rbp
rax
rbx
rcx
rdx
rsi
rdi
r8
r9

r10
r11
r12
r13
r14
r15

Re
gi

st
er

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fault location

rip
rsp
rbp
rax
rbx
rcx
rdx
rsi
rdi
r8
r9

r10
r11
r12
r13
r14
r15

Re
gi

st
er

ir
et

st
ac

k_
sw

it
ch

HTTP TPC-VMS

Figure 16: Heatmap of failure probability for each register/fault location
pair.
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Immediately it can be understood that different workloads and
hypercalls possess slightly different failure percentages. While the
stack_switch hypercall had homogeneous performance across its loca-
tions, the iret hypercall had almost no failures in its later locations. This
is explained by stack_switch being a very compact function, whereas
iret is bigger and contains error handling code at the end. Hence most
of the later locations of iret fall on this error handling portion, which
is rarely activated.

In terms of the impact that individual registers have on failure
probability, we see that the rip and rsp registers consistently have very
high failure probability, although it is expected given their importance
in the x86 architecture. Registers rbp and rbx also had a tendency to
cause a large percentage of failures, however the magnitude of their
effect varied depending on the hypercall. An analysis of the assembly
code showed that both hypercalls had different levels of usage of rbp
and rbx, which explains this observation. Namely, while stack_switch
did not save the value of rbp in the stack for restoring it later (probably
due to a compiler optimization), iret did, hence rbp causing more
failures in stack_switch than in iret. On the other hand, stack_switch
used a less varied range of registers while iret used more registers
and made particularly intensive usage of rbx for indirect memory
addressing. Interestingly, registers r12 to r15 had significantly large
probability of failure, despite not being used directly by any of the
hypercalls. This suggests that the failures caused by these registers
were long latency failures, where the bit-flip propagated out of the
hypercall and affected other functions.

A similar analysis was performed wrt. silent data corruptions, the
results show that registers r12, r13 and r14 (those that cause long
latency failures) were the main culprits, followed by the rbx and rbp
registers. Interestingly, different workloads had a strong impact in
which registers caused SDC even in the same hypercall. A possible
justification is that since most failures occur in the functions that call
the hypercalls and not the hypercalls themselves, different workloads
lead to different functions being used.

A sample of runs that showed interesting failure modes was man-
ually analyzed to understand why those failures occurred. We will
refer to them as runs A to F.

Run A refers to an injection in the rsp register, bit 60 and location nº
7 of the iret hypercall when running TPC-VMS. It resulted in a crash of
all VMs and hypervisor. In fact the hypervisor restarted automatically
due to this fault. The explanation for this failure is based on the fact
that the rsp register is used as a basis for memory addressing just
a few instructions after the bit-flip. If the value in rsp points to an
invalid memory area then the hardware will throw an exception and
the system is restarted. The large majority of full VM crashes follows
this pattern.
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Run B is a case where one VM sent a single incorrect response to
the client during the HTTP workload. This response maintained the
HTML structure but lacked the SHA1 hash. The injection that lead
to this behaviour affected the rbx register, bit 21 and location nº 5

of iret. An analysis of the assembly code showed that the value in
rbx is used immediately after the bit-flip to specify the destination
of a memory write. We can imagine that the value of rbx was still
valid and the write operation affected a memory area assigned to the
‘sha1sum’ process of a VM, whose job is to calculate an hash for each
response. This may occur because Xen is capable of writing in any
memory area that it wants, even if it belongs to a VM. Consequently,
the ‘sha1sum’ process possibly crashed due to its memory area having
been corrupted. However, one can imagine that in some very rare
occasions, the written value could be benign enough not to crash the
process but still enough to cause the process to produce an incorrect
hash.

Run C is another case where a VM sent a response without hash to
the client. This time the affected register was rdx, bit 50 and location nº
5 of iret. From analyzing the assembly code we see that the value of rdx
is stored in the stack and then overwritten. Hence the corrupted value
propagates through the stack. However we were unable to further
follow its path.

Run D is a case where a VM stopped responding but was still alive
as shown by Xen toolstack. This resembles a ‘hang’ failure of the VM,
but we are not able to completely confirm it a posteriori. In most other
situations of single VM crash, the VM crashes completely and does
not appear as running when using the toolstack. This behaviour was
caused by injecting a fault in register rbp, location nº 13 and bit 13
of the stack_switch hypercall during the HTTP workload. The value
of rbp is not used in stack_switch but it is also not cleared or restored
from stack (as happens in iret). We can imagine that a different rbp
value changes the return address used by a ‘ret’ instruction (called
to return from stack_switch), which will change the execution flow
unpredictably.

Run E refers to an injection in stack_switch when running the TPC-
VMS workload. The target register was rbp and the fault affected bit 59
on location nº 8. The same explanation given for run D can be applied
here, despite the experienced failure mode being different.

Run F is a case where silent data corruption was found in the
database state of two VMs after executing TPC-VMS. VM1 had 4 rows
with wrong numeric values and 2 missing rows, whereas VM2 had 20

rows with wrong numeric values, a couple of rows out of position and
12 missing rows. VM3 completed the workload correctly. The fault
was injected in rbp, bit 49, location nº 1 of iret. Since this bit-flip takes
place immediately before rbp is pushed to the stack, which will only
be popped before returning from the hypercall, it appears that the
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corrupted rbp leads to a different return address being used which
changes the execution flow.

4.6 related work

Fault injection has been employed in the past to evaluate virtualized
and cloud computing systems, although with different scopes and
objectives from those of the present study. M. Le et al. had some of
the first works [81, 82] to combine fault injection with virtualization.
Their research had the objectives of understanding how virtualization
could be applied as a mechanism to facilitate fault injection and
the challenges associated with performing fault injection through
virtualization. To this end they developed a fault injection tool that
would eventually be called as Gigan and performed fault injection
campaigns using multiple fault models, which included single bit-flips
in random memory locations and in a few CPU registers paired with
a location-based triggering mechanism that was applied to the most
often called functions, across VMs, PVMs and the hypervisor. The
results showed that fault injection using virtualization can produce
similarly accurate results as SWIFI performed at other layers (e.g., by
the operating system) and even found several instances where the
evaluated hypervisor (Xen) had allowed isolation violations between
VMs.

Pham et al. proposed CloudVal [107], a framework for performing
fault injection-based experiments for assessing the reliability of virtual-
ized environments. The frameworks supports not only the traditional
single bit-flip in memory and CPU registers, which is representative of
the effect of soft errors, but also includes more artificial fault models
that emulate guest misbehaviour and performance faults.

Xin Xu and H. Howie Huang evaluated the propagation of soft
errors inside a Xen hypervisor with recourse to fault injection in a
simulated environment [156, 157] and concluded that a soft error may
propagate between CPUs through shared hypervisor data structures,
as well as it may also propagate from the hypervisor to a PVM or a
VM, and that there might be significant latency between the moment
of the soft error and the moment when the failure occurs.

Marcello Cinque and Antonio Pecchia [31] have developed a frame-
work for performing fault injection in virtualized multicore systems,
aimed at evaluating critical embedded systems, that emulates hard-
ware faults through the machine check architecture.

4.7 summary

Hardware faults, such as those that cause soft errors, will pose an
increasingly bigger problem to the dependability of cloud computing
due to the ever increasing amount of hardware that constitutes the
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global cloud computing infrastructure and the natural tendency for
improvements in microprocessor manufacturing and energy saving
techniques. An experimental evaluation with recourse to fault injection
of soft errors was performed in a virtualized system, similar to those
that can be found in cloud computing. Injections in the various layers
of a virtualized system (i.e., the VM, the PVM and the hypervisor) and
across different workloads were performed. Despite a small number
of previous research works having focused on evaluating the depend-
ability of virtualized or cloud computing systems, an evaluation that
covered a real cloud computing node, instead of a simulation, and
which performed injection on the various layers of such a system was
absent from the literature before the current work was produced. This
work yielded various key observations with regards to failure modes
and probabilities, which can be summarized as follows:

• Soft errors that affect application processes of a VM may cause
localized failures, which do not propagate to other VMs in the
system. Such failures include client-side timeouts, crashes of the
service and failures where incorrect content is stored locally or
transmitted to the service clients;

• Soft errors occurring inside the PVM have either no effect or
cause the entire virtualized system to crash;

• Soft errors during hypercalls (i.e., representative of hypervisor
execution) can affect one or multiple VMs, including all the VMs,
in the system, causing incorrect data as well as service crashes.

Thus we can conclude that, while the isolation provided by the hypervi-
sor is effective in preventing a soft error from propagating from a VM
to another, common-mode failures that affect more than one VM and can
lead to entire crashes of the virtualized system and even to incorrect
content being produced by multiple VMs are a possible consequence
of soft errors that affect the components of a virtualized architecture.
Even though internal isolation is maintained when soft errors occur
inside a VM, failures, which include hard-to-handle silent data corrup-
tion, can propagate to service clients via information flow. Moreover,
the fact that more than one VM can produce incorrect content due to
a single soft error also means that using redundancy mechanisms that
depend on different replicas running on the same physical virtualized
host is strongly discouraged, as it may suffer from common-mode
failures that cause the mechanism to fail. Although the virtualized
system may crash along with its VMs, this does not mean that the state
of the VMs becomes corrupted (as will be verified in Chapter 6), but
only that the hypervisor or PVM, which are a single point of failure
of the virtualized architecture, have stopped working correctly.

Other observations that better detail the behaviour of a virtualization
system and merit enumeration are:
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• Different virtualization modes of the VMs show, in general,
similar failure modes and probabilities;

• Inside a VM, the most common failure mode leads to service
unavailability (client-side timeouts, crashes or hangs);

• Inside a VM, soft errors in application processes are more likely
to lead to client-visible failures than kernel-space processes;

• In rare occasions when injecting on hypercalls, the correctness
test classified the hypervisor as unresponsive however its VMs
continued to execute nevertheless;

• The two tested hypercalls showed different failure mode distri-
bution.

Fault tolerance mechanisms capable of handling the identified fail-
ure modes must be able to deal not only with the most common failure
mode (i.e., service crashes), but also with failures that cause dangerous
silent data corruption. Whereas timeouts, hangs and crashes can be
easily dealt with using well-established approaches, such as timeout
and retry for idempotent operations, but which ultimately depend on
support from the client side, failures that cause silent data corruption
require application and domain-specific error detection and tolerance
mechanisms. As an example, checkpointing and rollbacks may be used
to restore application or VM state to a previous and error-free copy, as
long as the failure can be detected in an adequate timeframe.

Generic approaches to be applied to the virtualized node indepen-
dently of what application is being executed in the VMs must be
able to work around the single point of failure that is the PVM and
hypervisor. Such can be attained by resorting to external redundant
copies, which carries significant performance and cost overhead, or
by duplicating state (e.g., alternating across two hypervisor instances),
hence reducing the dependency on a single component to provide
virtualization.
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O N S O F T WA R E FA U LT S A N D C L O U D S Y S T E M S

Software faults are recognized as one of the most common causes
of failures, having an even bigger preponderance than hardware
faults [60, 61, 101]. Cloud computing, like any software-based system,
is susceptible to failures due to software faults that are not detected
during the testing phase of software development. However, when “Program testing

can be a very
effective way to show
the presence of bugs,
but it is hopelessly
inadequate for
showing their
absence.”
- Edsger W. Dijkstra,
The Humble
Programmer. 1972
ACM Turing Award
Lecture

compared with traditional systems, cloud computing is more exposed
to the impact of software faults because it depends on software that is
required for providing virtualization (e.g., the hypervisor and its tool-
stack) or to manage the resources of the cloud (e.g., cloud computing
management platform) [23].

This chapter presents the results of an experimental evaluation using
fault injection of realistic software faults on two important software
components that compose a virtualized system, more specifically, the
device drivers and the toolstack. In a virtualized system it is often the
case that all VMs share the device drivers that are hosted in the PVM,
which has less restricted access to the hardware. Furthermore, device
drivers are recognized from literature in operating systems as some of
the components with the highest amount of software faults per lines of
code [30] and which require tailored fault tolerance mechanisms [138].
For these reasons, device drivers represent a single point-of-failure that
is prone to fail due to software faults and affect the entire virtualized
system.

The toolstack consists on the set of applications and libraries that
provide or facilitate the connection between the userland applications
and the hypervisor. They are usually employed by a system adminis-
trator to manage the node and perform operations such as spawning
or killing a VM.

These two components were chosen as targets for injection, as
opposed to other components such as the hypervisor itself, because
they represent new or essential software components of a virtualized
system that, usually, do not receive the highest amount of testing, thus
are more likely to have a higher amount of latent software faults.

Incidentally, both components reside in the PVM, i.e., the VM that
is responsible for managing the guest VMs, multiplexing access to the
hardware, interacting with the hypervisor. Given its role and position
in the virtualized system, the PVM can be viewed as a single point-of-
failure. In this situation, the cloud client is unable to choose or change
the software that is executed on the PVM, as it is managed by the
cloud provider.
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The objective set when designing this evaluation was to identify the
failure modes and estimate their probability of occurrence in a virtualized node
that is affected by a software fault and to measure the impact that software
faults in device drivers and in the toolstack can have in a virtualized system.
The knowledge obtained from this evaluation is used to design and
evaluate the contributions described in Chapters 6 and 7. This chapter
begins with a description of the methodology, including information
about the experimental setup, workload and fault injection process,
and proceeds to present and analyze the obtained results.

5.1 methodology

Fault injection of software faults is the basis of the methodology used
in this chapter. Two different workloads were used over a total of four
VMs in the system and optimizations to the fault injection process
were performed to speed up the campaign execution. A more detailed
description of the components that served as the target for fault
injection and their role in a virtualized system, the used workloads
and which process was employed for performing fault injection is
described in this section.

5.1.1 Architecture & target components

The components chosen as the targets for injection were the default
toolstack of recent Xen versions (libxl) plus the respective command-
line application (xl) and an Intel Ethernet driver included in the Linux
kernel (e1000e), which supports the virtual bridge shared between
all the VMs in our system (the driver can vary according to the
used hardware). In the overall picture of a virtualized system, these
components represent a small yet critical part.

Figure 17 compiles information extracted from multiple sources [29,
88], including the source code of the Xen project, and depicts a Xen-
based virtualized system and the key components of a PVM and their
interactions.

The PVM is running an off-the-shelf operating system from where
it obtains the OS Kernel and “real” device drivers. Along with the
"real" device drivers, the back drivers (or backend drivers) must also be
provided by the operating system package. These backend drivers are
characteristic to the PVM in Xen deployments and are a part of the Xen
split device driver model [29, 50], which divides a device driver into
two sides – the frontend and the backend. The frontend driver must
be present in all paravirtualized guests, while the backend is executed
only in the PVM. Their purpose is to support the interaction between
the VMs and the PVM, most often to request hardware resources.
This model abstracts the details about the underlying hardware from
the VMs, which are now left to the "real" device drivers of the PVM
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Figure 17: Architecture of a virtualized system, focusing on the PVM.

to handle, and allows the VMs to request hardware resources in a
transparent manner.

The messages between the front and back side of these drivers
are transmitted through shared paged communication, which is nothing
more than reserved shared memory. This communication bus is paired
with the event channel which serves for the hypervisor to communicate
events (e.g., interrupts) to all VMs.

Each PV VM requires front drivers, which are used by the "real"
drivers to provide an homogeneous and transparent interface to the
system’s hardware. The front drivers will communicate the desired
actions to the back drivers running in the PVM, which will perform
those actions (through the "real" device drivers) and then return the
results using the inverse path.

HVM guests do not require these special drivers, because thanks to
hardware extensions they can access the hardware almost directly, just
being restricted by those same extensions, which limit the operations
available to these VMs. However, certain hardware devices are not
supported by these hardware extensions and must be emulated. To do
so, the PVM executes a qemu process for each HVM machine.

When a VM needs to communicate with the hypervisor, it must do
so through hypercalls (a concept similar to system calls). However a
deep level of abstraction provided by a range of libraries facilitates
this process. These libraries are usually referred to as the toolstack and,
ultimately, enable the administrator to manage the system, create and
destroy new VMs, and other similar operations. At the bottom and
closest to the hypervisor, we have libxc, which is a very low-level C
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library that implements several commonly used operations. The other
higher level libraries (e.g., libxl) usually resort to libxc to facilitate their
job and avoid duplicated code. The counterpart of the libxl library
is the xl application that can be used by the administrator to take
advantage of the functions implement in libxl.

Previous versions of Xen used different toolstacks and it is not
uncommon for system administrators to change the toolstack. In fact,
the usage of libraries to communicate with the hypervisor is just a
user-friendly option and any user space application running in any
VM is free to explicitly perform a hypercall, as the hypervisor does
not limit this aspect.

A component that has a similar purpose to the shared paged com-
munication is the XenBus, however it sees limited usage nowadays.
Currently, the XenBus is mainly used by guests to share configuration
details with the XenStore. The XenStore is a key component which is
used to store configuration details for each VM and is able of setting
callbacks that are triggered whenever certain fields are altered. Finally,
when the cloud administrator needs to access the PVM, he usually
does so by accessing the SSH Server.

Taking the above figure and explanation into account, it is easy to
see the relative place and role of our target applications – libxl/xl and
e1000e. The libxl/xl is expressly depicted in the figure, where it belongs
to the Toolstack group. It is an important piece of the system and must
support important and regularly used operations, such as creating
new VMs. Furthermore, the administrator of the system can choose to
change the toolstack used in the system with another that he is more
comfortable with, which might lead to the usage of software that has
not been thoroughly tested. Current versions of Xen use libxl/xl as the
default toolstack, but in the past the xend/xm toolstack was the default
and other toolstacks such as libvirt/virsh can be used.

A characterization of both components, in terms of software metrics,
is presented in Table 15.

metrics libxl/xl e1000e

No
¯ of files

C files 63 10

Headers 22 3

No
¯ of lines

Blank 9025 3622

Comment 9134 6190

Code 41350 16523

No
¯ of functions – 1454 485

Table 15: Software metrics of the target components.

A total of four VMs executing two different workloads concur-
rently were used during the experimental evaluation, supported by
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the Xen hypervisor version 4.6.1. In order to cover the various avail-
able virtualization modes – paravirtualization (PV), hardware-assisted
virtualization (HVM), and hybrid virtualization (PVH) – each mode
was used at least in one of the four VMs (PV was used twice). The
VMs run Debian 7.7 with kernel 3.18.27 and 500 Mb of RAM. The
PVM (dom-0) runs CentOS 7, with a manually compiled 3.11.2 kernel.
Figure 18 depicts the experimental setup.

Figure 18: Model of the experimental setup.

5.1.2 Workload

Two workloads that represent traditional applications found in cloud
computing deployments were executed simultaneously as to exercise
different areas (i.e., disk, networking, memory, computing) and code
paths of the virtualized system. These workloads are the same that
have been used in the experimental campaigns of Chapter 4.

The first workload emulates a simple, yet effective HTTP-based
client-server scenario where an Apache 2.2.22 webserver serves a web-
page that contains solely the results from running a SHA-1 calculation
using the same input for every request. Since the input value of the
hash calculation is defined a priori and remains unchanged, it becomes
trivial to evaluate whether an injected software fault had an effect in
the output sent to the client. This workload was implemented with
the aid of JMeter 2.12 to emulate 10 concurrent clients performing
requests in a quick fashion.

The second workload is the TPC-VMS benchmark [139], which was
designed specifically for evaluating virtualized systems and consists
in executing three VMs side-by-side running one of four other TPC
benchmarks – TPC-C, TPC-E, TPC-H or TPC-DS. For our specific
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usage, we opted by the TPC-C benchmark implemented client-side
using jTPCC 1.2.0 [160] and supported server-side by the PostgreSQL
9.4.5 database server.

While the TPC-VMS benchmark reflects an I/O-heavy usage and
keeps a permanent application state which can become irrevoca-
bly corrupted due to software faults, the HTTP workload is more
computation-heavy and does not keep permanent state in disk. In
both workloads, the first step consists in launching the required VMs
and the last consists in shutting them down.

The coverage attained by both workloads, in terms of covered lines
of code (LoC), has been found to be 24% for libxl/xl and around 30% for
e1000e. It is debatable whether this value can be considered good for
the purpose of our study, or whether a more complex workload should
have been used in order to attain higher coverage percentage. There
are two key reasons that make the effort of building a more complex
workload both difficult and misguided. First of all, given the need
of both applications to support different architectures and hardware,
it would be impossible to obtain very high coverage values because
certain code paths that depend on these factors cannot be taken.
Second, and perhaps more importantly, the criteria behind the choice
of workloads to be used should not have the objective of fulfilling
a certain metric such as line coverage, but rather of representing
with high fidelity the kind of workloads seen in the real world, and
hence reproducing also real software faults that can affect those same
systems. For this purpose we are confident of the adequacy of the
chosen workloads.

5.1.3 Fault injection technique & faultload

We resorted to the fault injection tool capable of introducing software
faults [104] that is available as part of the ucXception suite (refer
to Chapter 3 for more information). This tool implements the fault
model proposed by Durães et al. [42], which originates from a study of
software faults found in real-world open-source C applications and is
composed by a set of operators and associated constraints that define
where and how to inject a software fault.

The process of fault injection was improved with techniques that
accelerated the execution of the campaigns and improved the quality
of the obtained results. Namely, the set of software faults to be injected
was sorted according to the McCabe complexity number [91] of the
function where each fault would be applied, so that it would be
possible to obtain a decent estimate (with a global deviation <=

1%) on the failure modes and probabilities using solely ~25% of all
possible software faults [35]. Furthermore, a code execution profile
was obtained in order to understand which lines were never executed
for our specific workload, thus allowing all software faults that reside
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in non-executed lines to be automatically classified as having had no
effect (a software fault in a line that is never executed will never be
activated). Finally, functional test suites were used, when available,
or simple test suites were manually created, to be executed after the
software fault has been injected but before the workload has started,
as to ensure that all injected faults represent realistic faults that may
occur, as we believe that if simple testing can detect the fault, then it
would have been a fault that would not reach production code [98].
If the test suites fails (i.e., detect the fault) then the workload is not
started and the fault is classified as not having passed the testing
phase.

The flow of a fault injection campaign is as follows. It starts with
the generation of all possible software faults for the target application,
which are stored as patch files. Then the target application is compiled
with support for code coverage profiling and a base run (without any
fault) is executed as to obtain information about which lines of code
were executed. Finally, the McCabe complexity number is calculated
for each function through an analysis of the source code and the
generated faults are sorted according to this number.

After this point the fault injection experiments begin. Each experi-
ment starts by checking whether the lines modified by the patch match
at least one of the lines that are executed during the run. If this is the
case, the experiment run can continue, otherwise the run finishes here
and it is classified as ‘No Effect’. Then, the patch (i.e., the software
fault) is applied, the code recompiled and installed. It is at this point
that the functional tests are executed to filter out software faults that
would not be realistic. If the functional test fails, the run is stopped
and classified as such. Otherwise, the run continues and the workload
is executed while relevant information (e.g., the output sent to the
clients) is being collected. Each experiment run takes around twelve
minutes.

5.2 software faults in the toolstack

Software faults were injected in the default toolstack (namely, xl and
libxl) of Xen as to evaluate how the used toolstack, which can be
chosen by the cloud administrator, affects the dependability of the
virtualized node. A total of 7 811 faults were injected out of an overall
24 411 possible faults, or ~32% of all faults, as generated by the fault
injection tool. The obtained results are presented in Figure 19.

Of all the injected faults, only 2 490 (31.8%) affected at least one
line that was exercised by the workload. This observation exemplifies
why residual software faults are difficult to detect during the testing
phase, as even complex workloads fail to cover large portions of the
code. From all the injected faults, 9.1% were detected by the manually
created functional test, which exercises basic functions of the toolstack,
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Figure 19: Failure modes and probabilities when injecting on the toolstack.

thus rendering these faults as non-representative of real software faults.
The detailed analysis of the reasons that led to a fault being detected
by our test suite shows that most of those occurrences were due to the
assert [49, 119] statements introduced by the developers that detected
incoherent situations and stopped the execution from going forward
and possibly causing more damaging consequences. However this was
not always the case and segmentation faults, attempts to free memory
using corrupted pointers or entering inside of other fault handling
routines were also high-noise situations that were easily detected.

Just 299 (3.8%) faults passed through the test suite and caused
failures in the system, which resulted in failures to spawn the VMs
that would be used for executing the workload. In these cases, the
process of creating a new VM fails with an error code, but leaves
behind an inconsistent state (e.g., a zombie-like VM that does not run
properly but appears to be alive). Obviously, more comprehensive
tests would have reduced the number of such undetected faults, since
they do not lead to silent failures, but this is always a difficult problem
since test suites must balance coverage with execution time.

Whenever a fault affected an executed code line, passed the test
suite, successfully spawned all the VMs and executed the workload,
it always caused no visible effect in any VM or in the PVM, both in
terms of overall availability and data corruption of output sent to the
exterior and stored in disk. This was the case of 18.9% of the injected
faults.

Despite the possibility that one of the remaining 68% software faults
that have not been activated by the workload can lead to a different
and not yet experienced failure mode occurring, this observation
strongly suggests that the impact of the used toolstack is either non
existent or very drastic and visible (hence relatively easy to handle).
This generally means that the administrator should not need to worry
about the impact that software faults can have when opting to change
the default toolstack provided by Xen with another toolstack of his
preference. This latter observation may in fact reduce the likelihood of
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operator faults and contribute positively to the overall dependability
of the system.

5.3 software faults in device drivers

Faults injected in the device drivers aimed to investigate the effect that
software faults in this component, which is shared by all VMs of a
virtualized node, can have on the dependability of the node. A total
of 3 353 out of all 9 986 possible faults (~33%) were injected with the
outcomes as presented in Figure 20.
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Failed functional testing
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No Effect due to not being activated

Failure to spawn VM

Figure 20: Failure modes and probabilities when injecting on a device driver.

Of these, 1 849 faults only affected non-executed lines and just 5

faults were detected by the functional tests, which consisted in starting
a SSH connection. Of all faults, 4.1% lead to failures which caused the
VMs to fail when spawning or to not be reachable (probably because
the network connection failed). These failures are easily detectable due
to abruptly crashing the program, returning error codes, displaying
error messages, unreachable VMs, etc. and do not lead to silent data
corruption.

5.4 related work

Literature in the topic of software fault injection has dealt mostly with
the representativeness and performance of the technique. A pivotal
topic respects to the fault types (i.e., what and how to inject) and
fault locations (i.e., where to inject) that should be used to ensure
that the injected faults represent realistic software faults. Natella et
al. [98] conducted millions of software fault injection campaigns over
different applications and have shown that indiscriminately inject-
ing faults in every location of a program yields a large amount of
non-representative faults (i.e, faults that are detectable through testing
and thus would not be present in real applications). The same paper
studied with success the usage of supervised and unsupervised clas-
sification techniques that were trained with simple software metrics,
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namely lines of code, McCabe complexity, fan in and fan out, as to
comprehend their ability to classify the best locations of a software
project to inject faults in order to maximize fault representativeness.

One of the most advanced and popular fault models for emulating
software faults in C applications is derived from Durães et al. field
study [42] and has been implemented by a range of fault injection
tools, including G-SWIFT [42], SAFE [98], EDFI [54] and ucXception.
The named field study analyzed 668 real software faults across 12 pop-
ular open-source applications and classified the reason (e.g., missing
initialization, error in branch condition) behind each fault. From this
classification of real faults, a fault model containing the most common
operators was created.

Earlier works in this topic have tried to emulate a software fault
indirectly, such as by injecting data errors, interface errors and even
hardware faults, however the representativeness of such fault models is
debatable and some works suggest that injecting hardware faults [90]
and faults at the interface-level [80, 93] does not accurately represent
real software faults.

Although software fault injection has rarely been used to evaluate
cloud computing or virtualized systems, it has been prominently used
in the evaluation of operating systems, namely for studying how faults
in device drivers [43, 65].

5.5 summary

Software faults are unavoidable in projects of reasonable dimension
and even the most thorough software testing practices cannot ensure
the absence of faults. Cloud computing is particularly affected by this
problem due to its reliance on software for providing virtualization
and managing its infrastructure. However, when it comes to virtual-
ized and cloud computing systems, there is limited research analyzing
in which components are software bugs more preponderant and how
they affect these type of systems, namely when focusing on availability
and reliability, as opposed to security. This chapter contributes to the
state-of-the-art with an analysis of how two important components of
a virtualized system fail due to software faults that are not detected
during the software testing phase and reach production (i.e., residual
faults). To ensure that only residual software faults were injected in
the fault injection campaigns, simple functional tests were developed
and used to filter out the faults that would be detected during testing.

The main observations to take from the experimental evaluation are:

• Software faults in the toolstack caused solely failures to spawn
VMs;

• Software faults in the device driver lead to failures to spawn
VMs or to interact with spawned VMs;
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• No occurrence of silent data corruption was detected.

These observations suggest that software faults when activated cause
mostly failures that lead the provided service to fail completely but do not
cause data corruption. A more detailed analysis of the results yield more
specific observations, such as:

• The majority of faults affected non-executed lines, which reveals
that even complex workloads are unable to exercise a large
part of the code base, either because of exception handling
routines, which are only entered in exceptional cases, or due to
architecture-specific code (e.g., x86 vs ARM);

• Simple hand-crafted functional tests were sufficient to filter out
software faults that would likely have been detected before
reaching production;

• The consistent and broad usage of asserts in the code base of
xl/libxl lead to functional test being quite effective at detecting
injected software faults, as unexpected conditions or corrupted
state often lead to early errors being thrown;

• However, certain software faults lead to a stop in the middle of
the process of spawning a VM, leaving it in a zombie-like state
in which the VM is not executing but it still appears as up.

The nature of failures caused by software faults suggests that these
failures can be easily detected and that relatively simple fault toler-
ance mechanisms can be applied. A technique such as N-version pro-
gramming [28], despite its known drawbacks and limitations, should
tolerate most failures due to software faults through data and design
diversity. A possible application of N-version programming to a vir-
tualized system could consist on the combination of two different
toolstacks (e.g., libxl and libvirt) or even two different hypervisors (e.g.,
Xen and KVM).
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AVA I L A B I L I T Y T H R O U G H M I G R AT I O N T O A
C O - L O C AT E D H Y P E RV I S O R

Cloud computing is susceptible to outages that cause unavailability
due to hardware, software and operator faults. A part of these faults
may affect the hypervisor, which hosts multiple VMs over the same
node, hence potentiating common-mode failures that affect more
than one VM at once. The previous chapters examine the reasons
behind these failures and provide a characterization of the failure
modes that can occur, thereby supporting the key contribution of
this chapter, Romulus, a fault tolerance technique for protecting VMs
against hypervisor failures.

The goal of Romulus is to improve the availability of cloud com-
puting deployments by maintaining service continuity of the VMs
in the presence of hypervisor failure. Successfully resuming a VM
after a hypervisor failure, e.g., due to a transient hardware fault or a
software fault, has not been considered so far in the literature because
of the assumption that hypervisor failure necessarily leads to all VMs
failing alongside, since the hypervisor has unrestricted access to the
hardware, including every VM’s memory space, and its failure may
propagate to the VMs. However, we hypothesize that VMs are often
left in a correct state after a hypervisor failure due to the results in
Chapter 4 having shown state corruption to be a relatively uncommon
occurrence (e.g., about 2.5% of failures caused by soft errors during hy-
percall execution). In these situations, the hypervisor crashes or hangs,
preventing any execution from taking place, and all VMs become
unavailable (in spite of their internal state remaining correct). Fault
injection experiments were conducted to show that this hypothesis
holds, thus suggesting that VMs can be recovered after hypervisor
failures.

Based upon this observation, we construct a generic and transparent
fault tolerance technique to recover multiple VMs through migration
between two hypervisors co-residing on the same physical hardware
(more specifically, a failed hypervisor and a healthy hypervisor). A
lightweight layer added between the hardware and the hypervisors
monitors the state of the VMs, triggers recovery action on hypervisor
failure and performs part of the VM migration process. This layer is
an essential component that allows Romulus to provide fault tolerance
without redundant hardware resources (e.g., Remus [38] requires two
physical hosts), in a transparent and generic manner (i.e., without
modifications to the VMs, operating system or applications) and with
acceptable performance overhead.

91
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A standalone proof-of-concept implementation was developed over
Xen with a limited number of modifications. The source code has
been made public as to foment development and interest from other
members of academia and industry. The proof-of-concept was eval-The source code of

the Romulus
proof-of-concept is

available at https:
//github.com/

ucx-code/romulus

uated using fault injection, similarly to what has been performed in
Chapters 4 and 5, in order to verify the validity of the hypothesis that
sustains Romulus and the performance of the proof-of-concept. The
results show that Romulus is capable of recovering at least one VM
after the large majority of failures, whereas all VMs in the system can
be recovered successfully but less often. Downtime is in the order of a
few dozen seconds, which is accomplished by simply resuming VM
execution instead of restarting it.

6.1 approach

Romulus performs migration of VMs from a failed and possibly un-
cooperative hypervisor to a co-located and healthy hypervisor as an
approach for tolerating failures of the hypervisor, such as those caused
by software faults and transient hardware faults. More specifically,
Romulus handles failures of the hypervisor that cause it to hang or
crash and, consequently, affect all the VMs running in the system, thus
causing common-mode failures that lead to unavailability.

A novel aspect of Romulus resides in how its migration process
is able to extract VM state from an unresponsive or uncooperative
hypervisor in a transparent manner and then resume the VMs in
another hypervisor. Minimizing migration duration is essential for
increasing availability and Romulus accomplishes a low downtime,
which is mostly spent performing state migration, because its VMs can
resume operation immediately after migration and without requiring
a costly reboot.

The success of Romulus depends on the error inside the hypervisor
being isolated before it can propagate to the VMs and corrupt their
state. As such, the fault detection mechanism plays an important role
in this effort and in obtaining a balance between false positive and
false negative rate. However, Romulus does not dictate the type or
properties of the fault detection mechanism to be used, instead leaving
this decision to the user.

6.1.1 Architecture

Romulus’ architecture requires compliance with a set of requirements:

1. a microvisor, i.e. a minimal hypervisor, must be added directly
above the hardware for managing the failure detection and
migration process;

2. the microvisor must support nested virtualization;

https://github.com/ucx-code/romulus
https://github.com/ucx-code/romulus
https://github.com/ucx-code/romulus
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3. above the microvisor, two full-fledged hypervisors must be in-
stantiated;

4. the microvisor must support virtual machine introspection (VMI)
to enable the migration of VMs between hypervisors;

5. the hardware platform must support hardware-assisted virtual-
ization (e.g., through Intel VT-x or AMD-V extensions);

6. the VMs to be recovered must be virtualized using hardware-
assisted virtualization.

Figure 21 depicts the architecture of Romulus, including the three
layers of virtualization that explain the need for the usage of nested
virtualization [18]. The first layer (L0) is the microvisor, the second
layer (L1) are the two hypervisors and the last layer (L2) are the VMs
managed by the clients (IaaS) or the cloud provider-managed VMs
providing a service (SaaS and PaaS).

Hardware

Microvisor

VM

L0

L1

L2

Hypervisor 
(Active)

Hypervisor 
(Idle)

VM VM

Figure 21: Architecture and layers of Romulus.

The microvisor is a barebones and lean hypervisor that implements
only the most essential functionalities, such as virtualizing a VM,
scheduling CPU execution and managing the system memory. When
compared to a traditional hypervisor, the microvisor does not need to
implement functionalities such as providing a complex interface for
management by the user (e.g., through a toolstack), containing device
drivers to interact with the hardware, implementing mechanisms
for inter-VM communication or memory sharing (e.g., grant-based
memory sharing and event channels), and more. In fact, the microvisor
delegates as many functionalities as it can to other parts of the system
and strives to occupy the least amount of CPU time that is possible,
both in order to reduce its overhead on the system and to reduce its
exposure against transient hardware faults. Moreover, its limited set
of features means that the microvisor needs only a relatively small
number of lines of code, which in conjunction with the usage of
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classical software engineering techniques can lead to the creation of a
robust piece of software.

This is important because the introduction of the microvisor replaces
the single point of failure of a traditional virtualized system, which
is the hypervisor and privileged VM, with the microvisor. Since the
microvisor itself becomes the new point-of-failure, a reduced surface
that is less susceptible to faults can contribute to a more resilient
system.

Above the microvisor, two full-fledged hypervisors (such as Xen
or KVM) are spawned. One of the hypervisors, which is named L1A,
will be actively operating and hosting VMs, while the remaining
hypervisor, known as L1B, will be idling or suspended without any
VM running over it. This dual-hypervisor setup can be extended to
include either a pool of idle hypervisors or a mechanism that destroys
the active hypervisor after the migration process has been concluded
and replenishes the system with a new idle hypervisor for future use.

Both hypervisors may either share the same implementation (i.e.,
source code) or use different hypervisor implementations (e.g., Xen and
KVM). The first option is easier to configure and provides protection
against transient hardware faults and certain software faults, such as
mandelbugs and aging-related bugs, whereas the second option also
provides coverage against other software faults (e.g., some bohrbugs)
through design diversity.

6.1.2 Lifecycle

The lifecycle of Romulus can be divided into three phases: preparation,
monitoring and migration. The preparation phase is used to extract
the static and semi-static state (i.e., the state that does not change or
rarely changes during a VM’s lifecycle), specifically the configuration
and emulation state, for each of the VMs that will be recovered when a
hypervisor failure occurs. The monitoring phase takes up the majority
of the lifetime and consists in two main actions: monitoring and
storing VM state that may change dynamically, as is the case with
some of the CPU state, and monitoring the health of the hypervisor
and/or its VMs in order to detect when a recovery action must be
performed. The exact approach used to monitor the hypervisor health
and to trigger the recovery action when a failure is detected (i.e., the
triggering mechanism) is not the main focus of this article and any
valid option may be combined with this failure recovery mechanism.

The first step in the migration phase is to pause the execution
of the failed L1 hypervisor, in order to prevent corruption to its
data structures or VMs. In the case that the hypervisor has already
sent a shutdown signal (e.g., as a response to a segmentation fault
from hypervisor code), it is essential that the microvisor preserves its
memory state (i.e., it should not free the memory pages). Then, the
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microvisor must employ virtual machine introspection to extract the
missing VM state from the hypervisor’s memory. This implies that
the microvisor knows the offsets and sizes of the hypervisor’s data
structures and hence it requires a hypervisor-dependent configuration.
When all of the required VM state has been obtained, the migration can
take place. Firstly the memory of the VM is moved from the failed to
the sane hypervisor. This operation is implemented by the microvisor
without the need for memory copying, simply by rearranging its
physical-to-machine table so that the memory pages that contain the
state of the L2 VM and that were previously mapped by the failed L1
hypervisor now belong to the sane hypervisor (see Algorithm 1). Thus
reducing the time required for migration.

Algorithm 1 Algorithm for memory state migration of one VM in an
Intel system.

Input: EPTP
1: pml4 = ∗EPTP
2: change_ownership(pml4, L1A, L1B)
3: for l0 = 0 to 511 do
4: pdpt = pml4[l0]

5: if (pdpt is valid) then
6: change_ownership(pdpt, L1A, L1B)
7: for l1 = 0 to 511 do
8: pd = pdpt[l1]

9: if (pd is valid) then
10: change_ownership(pd, L1A, L1B)
11: for l2 = 0 to 511 do
12: pt = pd[l2]

13: if (pt is valid) then
14: change_ownership(pt, L1A, L1B)
15: end if
16: end for
17: end if
18: end for
19: end if
20: end for

In order for the microvisor to know which pages belong to a L2
VM, it must know the location in memory of the entry for the nested
page table structure containing the physical-to-machine mapping that
keeps the VM’s pages, which is known as EPTP (EPT pointer) in
Intel systems and nCR3 in AMD systems. This pointer represents
an entry point to a multi-level paging structure which is used by
every hardware-virtualized VM (in Xen this corresponds to the HVM
virtualization mode) and which can be iterated to find all the pages of
a VM.
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After the microvisor exchanges the ownership of all of the memory
pages from the failed hypervisor to the sane hypervisor, it should
use the hypervisor’s default suspension and resume mechanism for
restoring the VM in the sane hypervisor. This step can be simplified
by updating a template save file with the most recent known VM
state (e.g., configuration, CPU and emulation state) and using it for
resuming the VM.

To complete the recovery of a VM, on the previously idle hypervi-
sor’s (now active) side, the capability for restoring a VM’s memory
state from a memory location containing the entry of the nested page
table must be available. This restoration of a VM’s memory differs
from how most hypervisors’ transfer memory state, which is by adding
the memory page’s contents to the save file and copying the contents
into memory on VM restore. This method of restoring a VM’s mem-
ory state is required in this situation due to the way the microvisor
exchanges the ownership of memory between hypervisors (based on
the entry pointer for the nested paging table), however it also brings
a significant performance advantage by avoiding copying between
memory and disk, which ultimately reduces the downtime during
recovery.

After the recovery of all VMs is complete, the paused and failed
hypervisor can be destroyed and its resources, including the memory
pages that still belong to it, can be freed. At this point the lifecycle
may restart, but not before a new idle hypervisor instance is spawned
to serve as the sane hypervisor.

6.1.3 Optimized state extraction

One of the main elements of novelty in Romulus is the method for ex-
tracting VM state from a crashed or uncooperative hypervisor, which
is an essential part of the process for tolerating and recovering VMs
from a hypervisor failure. For this purpose, virtual machine intro-
spection (VMI) [51], that is ‘monitoring and analyzing the state of
a virtual machine from the hypervisor level’ [106], is performed by
the microvisor, thus enabling extraction of the required state without
hypervisor intervention as long as the internal structure is known a
priori.

The state that is required for migration can be divided into:

1. configuration state – refers to details about the VM, such as how
many memory pages, disks, CPUs, etc. it has;

2. memory state – refers to the memory pages assigned to a VM,
which contain the data of the kernel and user space processes;

3. CPU state – refers to the register values for each of the CPUs used
by the VM and to the data structures required by virtualization
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extensions (e.g., VMCS and VMCB which are mandatory when
using Intel’s VMX extension);

4. disk image – contains the information stored by the VM in its
physical storage;

5. emulation state – refers to the auxiliary state needed by the hy-
pervisor to perform the virtualization and usually refers to the
state of I/O devices (disks, network interfaces, etc.).

Different state requires specific methods for obtaining, treating
and reusing it. Configuration state tends to be static and defined at
VM boot time, hence it can easily be pre-obtained. Memory state is
obtained and restored by taking advantage of the available memory
virtualization extension (Intel EPT, AMD NPT, etc.) which keeps a
multi-level paging structure in memory that describes the memory
structure of a VM. CPU state, in particular the register state, is obtained
by introspecting the L1 hypervisor structures that keep track of each
VM’s CPU state. However, different hypervisor implementations may
keep track of different amounts of state, and part of the state may not
be stored by the L1 hypervisor. For these situations, the microvisor
must keep track of the missing state itself by trapping nested exits from
the L2 VM and storing the required state. Disk state can be obtained
and shared between L1 hypervisors using a range of well-established
techniques, such as through a network file system, hence we will not
dwell on this point. Emulation state, while not very dynamic, may
change (for example when a previously disabled network interface
becomes active) and is particularly difficult to obtain, as this state is
usually stored in user-space processes (e.g., QEMU) and hence harder
to find and obtain. However, it can still be obtained from the L1
hypervisor’s memory using VM introspection, or simply by relying
on an outdated, but possibly correct, snapshot that is obtained after
start up of a VM.

6.2 proof-of-concept

A proof-of-concept implementation of Romulus was created over
the source code of the Xen hypervisor [14], which served as the
basis for the microvisor, and reused the functionalities provided by
libVMI v0.12.0, which was used with caching disabled, and Intel VT-x
hardware extensions. If the proposed technique was to be used in a
production environment, the microvisor would ideally be developed
from scratch, with special attention given to reducing its code size,
focusing on a target architecture, refraining from implementing non-
essential functionalities and, possibly, using defensive programming
or formal verification techniques.
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6.2.1 Modifications

In order to adapt Xen 4.11.1 to serve as the microvisor that is required
by Romulus, a total of ∼ 1K lines of code were modified that largely
account for adding two new hypercalls. One such hypercall is denom-
inated save_nvmcs and has the role of extracting and initiating the
monitoring of the CPU state that is not tracked natively by Xen. More
specifically, this hypercall activates the execution of a branch added to
the nvmx_n2_vmexit_handler function (shown in Figure 22), which is
called after the exit of a L2 VM, that stores the values related to the
es, fs, cs, gs, ds, ss, tr, gdtr, idtr and ldtr segment registers. It should be
noted that different procedures can be used to implement the step of
CPU monitoring that is required by Romulus.

The other hypercall is called migrate and receives as input the EPTP
of the L2 VM to be migrated and the memory location on the idle
hypervisor to where the L2 VM’s memory should be moved and
performs the migration. The key part behind this hypercall is the
iterate_ept_structures function (see Figure 23), which receives the ad-
dress of an EPT structure, moves its ownership from one hypervisor
to another using the update_ept_for_new_host function (see Figure 24),
and iterates over the structure and recursively calls the next structure
until reaching the last level of depth.

Furthermore, the toolstack was extended to support calling the
aforementioned hypercalls and a range of supporting userspace utility
applications was developed to: i) use VMI to obtain the EPTP and
part of the CPU state of the L2 VM; ii) replace the contents of a base
save file (created after the L2 VM has been spawned) with a more
recent CPU state and the EPTP of the L2 VM on the idle hypervisor
(after migration); iii) remove the page tables that Xen stores on the
save file, in order to avoid higher migration time due to unnecessary
information on the save file.

Only the code of the L1 B hypervisor needs modifications to support
Romulus. These modifications provide the capability to restore a VM
from a save file that contains an EPTP, thus extending over the normal
functionality of Xen, which expects the memory content of the VM to
be embedded on the save file. Part of these modifications led to the
addition of a simple hypercall and matching toolstack code whose
purpose is to prepare the hypervisor to receive the memory of the
L2 VMs from the active hypervisor. This can be accomplished by
calling the alloc_domheap_pages function to allocate the free memory
and reserve it for future use.

6.2.2 Lifecycle and flow

Figure 25 presents the flow and actions taken during the lifecycle of
a system that uses this proof-of-concept. The shown flow assumes
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int nvmx_n2_vmexit_handler(struct cpu_user_regs *regs,

unsigned int exit_reason) {

(...)

4 struct vmcs_save_state * save_state;

int slot_id;

if (nvmcs_global_state.enabled == 1) {

unsigned long sysenter;

9
__vmread(GUEST_SYSENTER_EIP, &sysenter);

if (sysenter != 0) {

spin_lock(&nvmcs_lock);

slot_id = nvmcs_has_eptp(sysenter);

14 if (!((slot_id == -1) && (nvmcs_global_state.next_is_domid ==

0)) {

if (slot_id != -1) {

save_state = &nvmcs_global_state.save_states[slot_id];

} else {

save_state = &nvmcs_global_state.save_states[

nvmcs_global_state.free_slot];

19 save_state->eptp = sysenter;

save_state->domid = nvmcs_global_state.next_is_domid;

nvmcs_global_state.next_is_domid = 0;

++nvmcs_global_state.free_slot;

}

24

__vmread(GUEST_SYSENTER_CS, &save_state->sysenter_cs);
__vmread(GUEST_SYSENTER_ESP, &save_state->sysenter_esp);
__vmread(GUEST_ES_SELECTOR, &save_state->es_sel);

(...)

29 save_state->ready = 1;

wmb();

}

spin_unlock(&nvmcs_lock);

}

34 }

(...)

}

Figure 22: Code added to nvmx_n2_vmexit_handler.
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static int iterate_ept_structures(struct domain * d,

unsigned long addr, int level, int page_order,

struct domain * t, ept_entry_t * parent_epte) {

4 ept_entry_t * mapping;

unsigned long mfn, new_gpfn, new_tmp; int i;

struct page_info * page;

page = get_page_from_gfn(d, addr, NULL, P2M_ALLOC);

9 mfn = mfn_x(page_to_mfn(page));

new_gpfn = update_ept_for_new_host(d->domain_id, t->domain_id,

addr, page_order, level, parent_epte, page, mfn);

if ((page_order != PAGE_ORDER_4K) || (level == 4)) {

return new_gpfn;

14 }

mapping = (ept_entry_t *) map_domain_page(_mfn(mfn));

for (i = 0; i < 512; i++) {

ept_entry_t tmp = atomic_read_ept_entry(&mapping[i]);

19 if ((is_epte_valid(&tmp)) && (is_epte_present(&tmp))) {

if (is_epte_superpage(&tmp)) {

int page_order2 = (level == 1) ? PAGE_ORDER_1G :

PAGE_ORDER_2M;

new_tmp = iterate_ept_structures(d, (unsigned long) tmp.mfn,

level + 1, page_order2, t, &tmp);

&mapping[i]>mfn = new_tmp;

24 } else {

new_tmp = iterate_ept_structures(d, (unsigned long) tmp.mfn,

level + 1, PAGE_ORDER_4K, t, &tmp);

&mapping[i]>mfn = new_tmp;

}

}

29 }

unmap_domain_page((void *) mapping);

put_page(page);

return new_gpfn;

34 }

Figure 23: Code of the iterate_ept_structures function that was added to Xen.
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1 static int update_ept_for_new_host(unsigned int source_domid,

unsigned int target_domid, unsigned long source_gpfn,

int page_order, int level, ept_entry_t * parent_epte,

struct page_info * page, unsigned long mfn) {

unsigned long target_gpfn;

6 struct domain * sourceD, * targetD;

sourceD = rcu_lock_domain_by_id(source_domid);

targetD = rcu_lock_domain_by_id(target_domid);

11 target_gpfn = find_next_free_gpfn(targetD, page_order);

spin_lock(&sourceD->page_alloc_lock);

page_list_del(page, &sourceD->page_list);

spin_unlock(&sourceD->page_alloc_lock);

16

guest_physmap_remove_page(sourceD, _gfn(source_gpfn), _mfn(mfn),

page_order);

guest_physmap_add_entry(targetD, _gfn(target_gpfn), _mfn(mfn),

page_order, p2m_ram_rw);

spin_lock(&targetD->page_alloc_lock);

21 page_list_add_tail(page, &targetD->page_list);

page_set_owner(page, targetD);

spin_unlock(&targetD->page_alloc_lock);

rcu_unlock_domain(sourceD);

26 rcu_unlock_domain(targetD);

return target_gpfn;

}

Figure 24: Code of the update_ept_for_new_host function that was added to
Xen.
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that, at the start, all L1 and L2 VMs are up and running and that the
save files and I/O state of the VMs is accessible to the microvisor and
both L1 hypervisors. A total of nine actions have been identified and
grouped into the three phases that constitute the lifecycle of Romulus.
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Figure 25: Lifecycle and actions.

6.2.3 Limitations

Considering that the presented implementation is a proof-of-concept,
it contains several limitations of its own that are not inherent to Ro-
mulus. One limitation of this implementation is that recovery is only
supported for L2 VMs that have just a single vCPU, do not use hyper-
paging (i.e., page sizes bigger than 4Kb), use an Intel EPT hardware
virtualization mode (HVM in Xen), do not use Xen’s PV-on-HVM
drivers (e.g., by passing ‘nopv’ parameter to recent Linux kernels).
Furthermore, LAPIC, APIC, MCE, XSAVE and X2APIC should not be
used in the L2 VMs and hyperpaging must be disabled on both L1
hypervisors, but may be enabled in the microvisor.
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6.3 methodology

To verify the effectiveness of Romulus in fulfilling its objectives, namely
providing fault tolerance against transient hardware and software
faults that affect the hypervisor, an experimental setup and methodol-
ogy was designed following many of the approaches and techniques
that have been used in past experiments. For example, fault injec-
tion was once again employed to emulate the effect of hardware and
software faults. On the other hand, a new workload was developed
and used for the first time in this chapter, as the experience acquired
throughout the development of this thesis has lead to improvements
over the workloads that have been used previously.

6.3.1 Physical setup

The setup supporting the experiments is comprised of two different
physical systems, as depicted in Figure 26. One of the systems has the
role of ‘Compute Node’ (i.e., hosting the VMs) and the other is used
as the orchestrator, client and disk image provider for the VMs. The
compute node is equipped with two Intel Xeon Silver 4114, each with
ten physical cores, 32Gb of RAM and a network interface capable of
1GbE. The orchestrator machine is equipped with a single Intel Xeon
E5620 with four physical cores, 12Gb of RAM and a 1GbE network
interface.

L1 A L1 B

L2 L2

NFS

HTTP

Solr Client (Workload)

Compute Node Orchestrator
Node

Fault Injection Manager
...

Experiments Manager

Fault Injection
ToolMicrovisor

Figure 26: Experimental setup used for the experiments.

The disk images used by the VMs that are running on the compute
node are stored and provided by the orchestrator machine through
NFS [129]. This is a common setup found in the cloud (although using
more advanced technologies [47]) where there is one or more nodes
dedicated to storing and providing disk resources.

In the experiments where fault injection was used to emulate tran-
sient hardware faults both hypervisors used Xen 4.11.1, whereas when
software faults were injected L1A used Xen 4.12.3 and L1B used Xen
4.11.1. The usage of different hypervisor versions reflects a scenario
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where Romulus is used to tolerate software faults that cause tran-
sient failures (e.g., mandelbugs and aging-related bugs) through state
rejuvenation and software faults that cause permanent failures (e.g.,
bohrbugs) through design diversity. If the same hypervisor version
had been used instead, Romulus would only have been able to cover
software faults of transient nature.

6.3.2 Workload and profiles

A new workload was built and used in the experiments described in
this chapter. This workload emulates a Solr server [132] that provides
access to a part (11Gb) of Wikipedia’s index [153]. It is a CPU and
IO-heavy workload that also exercises memory and represents one
of the various workloads often found in cloud deployments. Only
search operations are performed during the course of the workload, in
order to avoid having to keep track of state changes in the workload
client, which would complicate the task of verifying the impact of the
injected faults.

Along with the definition of the workload itself, various profiles,
which configure the various parameters of the workload, were created.
More precisely, a total of two different profiles were used: a full load
profile, which consists in 25 clients performing a request once every
50 milliseconds and represents a worst-case scenario where the VM is
overloaded, and a light load profile, which represents a more common
scenario [15, 25, 39, 86, 114] where the system seldom reaches full
resource usage and consists of one client performing a request every
second. Figure 27 and Table 16 provide insight into the resource usage
of both workload profiles on a VM with 3 000Mb of RAM.

6.3.3 Fault injection

Fault injection was employed to emulate realistic failures of the hy-
pervisor, namely those failures caused by transient hardware faults
in CPU registers and software faults in hypervisor code. To emu-
late transient hardware faults, a fault injection tool of the ucXception
framework (namely, the tool described in Section 3.2.2.2) was used
along with a single bit-flip fault model [121] targeting CPU registers.

For injecting software faults in hypervisor code, another tool of the
ucXception framework was used (more precisely, the tool described in
Section 3.2.2.3). This tool generates patch files according to the fault
model, which are then applied to the source code of the L1A hyper-
visor, one patch per each run during the fault injection campaigns.
In order to speed up the evaluation, an analysis of the lines of the
hypervisor source code that are covered during the workload was
performed and all faults that do not affect those lines were filtered
out.
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Figure 27: Resource usage of the workload and its profiles.

full load light load

max avg med max avg med

CPU

Total (%) 100 88 100 100 21 14

User (%) 83 30 30 89 9 6

Kernel (%) 90 57 66 68 8 4

IO Wait (%) 28 0.3 0 48 4.3 0

Disk

Read (TPS) 99 13.6 9.6 104 7 0

Read (Mbps) 65 9.7 5.6 73.8 5 0

Write (TPS) 68 1.3 0 38.6 1 0

Write (Kbps) 415 20.5 0 280 12 0

Network
Sent (seg./s) 766 365 423 625 33 8

Recv. (seg./s) 682 360 420 376 30 12

Table 16: Statistical analysis of both workload profiles.
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A requirement we set for our experiments was that the software
fault should only be activated while the workload (i.e., Solr) is being
executed, thus after any preparatory steps (e.g., creating base save files)
have been completed. This was reached by encompassing the software
fault inside an if whose activation depends on a variable (a similar
practice has been used in other works [36, 161]) that is manipulated
by the microvisor using VMI. When the value of the variable is false,
the non-faulty code is executed, whereas if the variable is true, the
faulty code is executed. Furthermore, for tracking purposes the exact
moment when the fault is first activated is stored, as well as the
number of iterations that occurred before and after the fault was
activated.

Faults were only injected in lines of the L1A hypervisor that do not
exist in L1B hypervisor, since L1A uses Xen 4.12.3 and L1B uses Xen
4.11.1, as to emulate recovery from a software fault that was introduced
in a more recent version of Xen and that does not exist in older
versions. A comparison between the source code of both versions was
made which showed that about 8% of lines of source code (comments
were disregarded) differed between the two versions, including lines
of source code in files that implement essential functionality, thus
suggesting that migrating VMs between different versions of the same
hypervisor, even if both versions are relatively recent, can provide
some coverage against software faults through design diversity.

When performing fault injection of hardware faults, twelve registers
were targeted (rip, rsp, rbp, rax, rbx, rcx, rdx, r8-15) which represent all
the registers that can be targeted using this fault injection tool. For soft-
ware fault injection, the fault model includes 10 operators out of the 13

operators defined in Durães et al. fault model (see Table 3) and uses 2

operators belonging to the extended fault model [11] (namely, WLEC
and WALR). In summary, the used operators were WVAV, WPFV,
WLEC, WAEP, MVAV, MVAE, MLAC, MIFS, MIEB, MIA, MFC and
WALR. Software faults were injected in 4 different source files, namely
arch/x86/hvm/vmx/vmx.c, arch/x86/hvm/vmx/vmcs.c, arch/x86/msr.c
and arch/x86/mm.c, which were chosen due to being the files that had
the highest amount of changed lines between Xen 4.11.1 and Xen
4.12.3 that were exercised by the workload. These files contain func-
tionality that deals with memory virtualization, hardware-assisted
virtualization and model-specific register (MSR) emulation.

6.3.4 Triggering mechanism for the recovery action

Romulus depends on an error detection mechanism capable of under-
standing when a hypervisor has failed as to commence the recovery
process. Since Romulus does not prescribe a specific error detection
mechanism, leaving its choice up to the user, multiple options were
considered for this role in our experiments. The goal in selecting the
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best alternative for the recovery mechanism resides in reducing the
downtime incurred from the detection interval and increasing the
precision and sensitivity of the mechanism (i.e., reducing the false
positives and false negatives). For our experiments we opted to use
a straightforward mechanism which consists in a constant stream
of ping requests which will trigger recovery after a certain amount
of consecutive pings has timed out. This proved sufficient for our
requirements, which were to detect occasions where the hypervisor
had a crash or hang failure which caused all the other VMs to fail
(common-mode failure), however it might not be capable of detect-
ing more complex failures where silent data corruption has occurred.
Furthermore, it represents a baseline error mechanism, which means
that better error mechanisms may possibly result in even better perfor-
mance of Romulus than what is presented in this chapter.

6.3.5 Correctness verification

The workload client is designed to verify the correctness of the re-
ceived responses depending on the query that was searched. This
is accomplished by having a pre-prepared list of all possible search
queries and the expected response, and then comparing all performed
queries and respective response against the oracle, during workload
execution. This step is essential in ensuring that failure recovery can
be accomplished without corrupting the VM state in a manner that
leads to incorrect output being sent to the service’s clients.

6.3.6 Recovery assessment

Apart from ensuring the correctness of the responses, there is the need
to assess whether each VM recovered successfully from a failure of
the hypervisor. For this purpose two different ‘points-of-view’ are
considered:

1. Service point-of-view – Recovery is measured according to whether
the service (Solr) continued to execute correctly after the hyper-
visor failure. This is the traditional point-of-view, which corre-
sponds to how the service clients experience unavailability;

2. Operating system point-of-view – A VM is considered recovered
if its operating system continues to operate correctly, even if
the service stops working. The state of the operating system
is verified by performing a SSH check and executing a small
number of simple commands at the end of each experiment.
We consider this point-of-view because, although the service
may not be successfully recovered, the operating system may
continue to work correctly and specific methods can be designed
to take advantage of this.
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6.4 evaluation

This section presents the results obtained from the experiments that
were performed, namely the experiments to verify what happens to
the VMs when the hypervisor fails, which served as the motivation
for developing Romulus, and the experiments that aim to evaluate the
proof-of-concept implementation.

6.4.1 What happens to VMs when the hypervisor fails?

When a hypervisor fails, it may fail without affecting the state of its
VMs or it may gain an erratic behaviour and eventually corrupt its
VMs. If recovery is to be attained the basic principle that the VM
state has to remain sane must be upheld. To evaluate this hypothesis,
upon which Romulus depends on, an experimental campaign was
setup where a single VM was migrated to a new hypervisor after its
hypervisor failed, as to assess whether it continues correct execution.

Fault injection in CPU registers during hypervisor execution be-
tween 15 and 40 seconds after the start of the workload was used
to generate hypervisor failures. The timing values were picked as to
allow the VM to warmup while providing enough time for it to recover
and resume responding to Solr requests before the workload finishes.
Both profiles of the workload (light and full load) were evaluated
during 200 seconds. The recovery process is triggered by a process
that constantly performs ping checks to a VM and starts the recovery
process sensibly 8 seconds after the last successful response.

A total of 339 failures using the full load profile and 663 failures
using the light load profile were obtained, the results of which are
displayed in Table 17. Over the course of all experiments, a total
of 55 678 requests were performed and no occurrence of incorrect
response data was detected after a successful VM migration to a new
hypervisor. Although this does not eliminate the possibility that a VM
may be successfully recovered despite its state being partially corrupt
due to the fault in the hypervisor having propagated, which may then
lead to silent data corruption occurring inside the VM, such is not a
common occurrence. Moreover, the lower the detection interval before
triggering recovery action, the higher is the chance of preventing errors
in the hypervisor from propagating to the VMs.

A subset of all the runs, amounting to 102 failures using the light
load and 155 using the full load profile, was extended to include a
operating system check through SSH at the end of the run, in order to
detect situations where the VM may be responsive but the Solr process
has failed. The results indicate that in many situations, specially when
a heavy workload is used, the operating system of the VM is able to
recover but the application under use (Solr) does not, as it is killed by
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the operating system. There was no run where Solr was classified as
responsive but the operating system was unresponsive.

workload profile

light load full load

Point-of-View
Solr 189 (29%) 54 (16%)

O.S. 40 (39%) 64 (41%)

Table 17: Recovery probability (1 VM).

The light load profile resulted in a higher recovery percentage than
when using the full load profile, which suggests that the usage level
of a VM can affect its likelihood of recovery. This is not a significant
problem for cloud computing systems since the majority of the dozens
of VMs consolidated on a physical system are idle or have a small
amount of load during short periods of time [25, 39, 86] and the
presented results can be considered to be a worst-case scenario for
this setting, specially when referring to the full load profile.

6.4.2 Can Romulus provide tolerance against hypervisor failures?

Romulus’ objective is to tolerate common-mode hypervisor failures
that affect multiple VMs at once, hence the most adequate metric to
evaluate the effectiveness of the proof-of-concept implementation is
the total number of recovered VMs and, indirectly, the probability of
recovery of a VM.

For this study a system containing four VMs with one CPU and
900Mb of memory each and executing the Solr workload with the light
load profile was used. Fault injection of transient hardware faults in
CPU registers and software faults in hypervisor code was once again
used to produce realistic failure data. Injection took place between
200 and 210 seconds after the start of the workload and the recovery
action was triggered sensibly 40 seconds after the last successful ping
reply. This is a conservative timeout value as to avoid inadvertent
triggering, but which may reduce the recovery effectiveness by pro-
viding the failed hypervisor more time to corrupt the VMs state. The
L1 hypervisors were configured to have six CPUs, which means that
the system had a consolidation ratio of 0.66 (or in other words, four
L2 VMs executing over six CPUs).

A total of 774 hypervisor failures due to injected hardware faults
and 117 failures due to software faults were collected. To obtain these
failures, we had to inject over 2 000 hardware faults and over 400

software faults. A part of these faults never propagated into a failure
and thus have been excluded from our analysis. Table 18a shows
information about the registers that lead to failures, while Table 18b
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presents information about the operators that caused software failures.
It should be noted that some CPU registers and operators did not cause
any failures and have been omitted from these tables, nevertheless
fault injection using these registers and operators was performed as
usual.

register failures

rip 141 (18%)

rsp 144 (19%)

rbp 68 (9%)

rbx 89 (11%)

rcx 85 (11%)

rdx 100 (13%)

r12 67 (9%)

r13 80 (10%)

Total 774

(a) HW faults.

operator failures

MFC 31 (26%)

MIA 49 (42%)

MIEB 1 (1%)

MIFS 21 (18%)

MLAC 1 (1%)

MVAE 2 (2%)

MVAV 2 (2%)

WAEP 2 (2%)

WLEC 3 (2%)

WPFV 3 (2%)

WVAV 2 (2%)

Total 117

(b) SW faults.

Table 18: Fault injection statistics.

Figure 28 shows the histogram with the count of successfully re-
covered VMs discriminated by the type of fault, for the service and
operating system point-of-view.

Hypervisor failures caused by transient hardware faults translated
to at least one VM being successfully recovered (between 96% and
91% of all failures) and an arithmetic mean of 1.82 recovered VMs
(or 46% of all VMs). When a hypervisor fails due to a software fault,
the mean becomes slightly lower at 1.62 recovered VMs (41% of all
VMs), but the extremes increase (no VM is recoverable between 25%
and 30% of the time, whereas all four VMs are recovered between
10% and 34% of the time). These observations suggest that transient
hardware faults, due to their nature, are more likely to propagate to a
smaller number of VMs, leaving the remaining VMs in a correct state
and thus recoverable, whereas software faults are more likely to affect
and corrupt either all VMs or none at all.

Comparing both of the point-of-views that were considered for
classification of a recovery outcome, the service point-of-view, which
is the most restrictive of the two, experiences lower recovery proba-
bility than the operating system point-of-view. Situations where the
operating system was left operational but Solr was not are explained
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(a) From the service (Solr) point-of-view.
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(b) From the operating system point-of-view.

Figure 28: Total recovered VMs after a hypervisor failure.
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by the hypervisor failure having corrupted only state associated with
Solr, which lead the operating system to kill its process after recov-
ery. In these situations the addition of a simple application restart
mechanism could greatly increase the recovery likelihood, although
such would lose the transparency inherent to this fault tolerance tech-
nique. Figure 29 provides cumulative histograms that improve the
comprehension of the data in the previous figures.
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Figure 29: Cumulative histogram of recovery probability.

The operating system of all four VMs is recovered in 34% of all
failures caused by software faults, but Solr is only recovered 10%
of the time. The probability of all four VMs being recovered after a
failure due to hardware faults is much lower, ranging between 13% for
recovery of only the operating system and 4% for recovery of Solr. The
recovery percentage increases if we consider all cases where at least
three VMs were recovered: 56% of failures caused by software faults
leave the operating system recoverable, but Solr can only be recovered
31% of the time, whereas if a failure is caused by a hardware fault, the
operating system is recoverable 48% of the time and Solr 26% of the
time. If we consider the operating system point-of-view, at least half of
the VMs can be recovered in 83% and 69% of all failures, when caused
by hardware and software faults respectively, or 62% and 51% of the
time, if we use the service point-of-view. Finally, at least one VM is
fully recoverable in 91% of all failures due to hardware faults and 75%
of all failures due to software faults. Ultimately, even the recovery of
one VM corresponds to a big improvement in comparison to a system
that cannot tolerate hypervisor failures.



6.4 evaluation 113

6.4.3 How much downtime is incurred during the migration process?

The downtime associated with the migration process has an important
role on the overall availability of the system and must be evaluated.
Figure 30 shows a boxplot depicting the median and quartiles of the
downtime for a single VM setup using both the full and light load
profiles, as perceived through the clients of the Solr service (service
downtime) and through the operating system logs (VM downtime)
obtained using the SAR utility.
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Figure 30: Downtime in a single VM setup.

The VM downtime reflects the period when the VM is operating
but the network connection has not yet been restored, hence being
considerably lower than the service downtime, ranging between 2 and
26 seconds with a mean of 3 seconds. The discrepancy between VM
and service downtime is explained by a timeout in the network device
driver used in the Linux kernel of the VMs that is only triggered after
some seconds. Modifications to this device driver, or the usage of
another driver, would equalize the VM and service downtimes.

A more detailed analysis shows that the large majority of time spent
performing migration is due to memory page migration. Since the
proof-of-concept implementation does not support hyperpaging in
the L2 VMs, it suffers a lot of overhead in this step that could be
avoided otherwise. Figure 31 shows an analysis of the contributors
to migration time in an one VM system, using the light load profile
and with memory sizes varying from 1 000Mb to 8 000Mb inclusive,
at steps of 1 000Mb. Each step represents the average of 30 runs.

The line with circle markers, labeled as VM state migration, repre-
sents all of the steps required for recovery apart from restoring the
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Figure 31: Duration of the recovery process per VM size.

VM state at the L1B hypervisor, which is represented by the line with
square markers, while the solid line with diamond markers, labeled
as Memory migration, describes the time taken solely for the step of
migrating the memory state. The total time required to complete the
recovery process is not depicted but consists on the sum of the lines
that have circle and square markers.

While the time taken by the recovery process increases linearly with
the memory size, and hence with the amount of migrated pages, the
time to restore a VM remains somewhat constant independently of
the VM memory size. The dashed line represents the hypothesized
time that the step of memory migration would have taken if the
proof-of-concept implementation had support for hyperpaging. It was
obtained by measuring how many pages would be used at the different
memory levels when hyperpaging is enabled and extrapolating from
the known data. This extrapolation transmits a very positive outlook
for the improvements that hyperpaging can bring, since it significantly
lowers the amount of pages that need to be migrated, thus reducing
time spent migrating the memory state to values between 45 and 54

milliseconds. According to this data, if hyperpaging is considered
we can expect the entire recovery process to take between 2 and 4

seconds.

6.4.4 How much performance overhead does Romulus introduce?

As with any fault tolerance technique, overhead may be introduced in
the system. We compared the performance, measured as the number
of successfully answered requests over a fixed time period and their
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average response time, of a system that represents a traditional virtu-
alized cloud computing system (i.e., where no nested virtualization is
used), a system that uses nested virtualization but does not contain
the proposed fault tolerance technique and a system with our imple-
mentation of Romulus. A total of 30 runs were performed for each
setup and all the runs used a single VM with 3 000Mb of RAM and
the full load profile during 60 seconds. The L0 and L1 hypervisors,
when applicable, were configured with 1 CPU and 12 000Mb of RAM,
as to represent a situation where consolidation is present. Table 19

presents the results for the light load and full load profiles, including
a comparison of relative performance difference against the traditional
virtualized system, which show that the proof-of-concept does not
bring a measurable overhead on a system that already uses nested
virtualization, however the addition of nested virtualization carries a
significant overhead, which can reach up to 2.5x lower performance
when a heavy workload is used.

trad. nested virt. w/ poc

Fu
ll N. of requests 1234 487 (+153%) 488 (+153%)

Avg. response time (s) 1.18 3.14 (-62%) 3.13 (-62%)

Li
gh

t N. of requests 96 79 (+22%) 79 (+22%)

Avg. response time (s) 0.09 0.24 (-62%) 0.24 (-62%)

Table 19: Performance overhead of Romulus compared against different se-
tups.

6.5 limitations

Beyond the limitations of the proof-of-concept implementation, which
have already been discussed, Romulus, the fault tolerance technique
itself, also has its own limitations. The first and foremost limitation of
Romulus is its dependency on hardware-assisted virtualization, which
means that it cannot be applied to VMs that are virtualized using other
virtualization modes (e.g., paravirtualization). Another limitation is
the usage of nested virtualization. Nested virtualization is a relatively
recent technique that has had significant adoption in the last few
years, however it adds an additional layer of performance overhead
to a virtualized system, despite the best efforts from developers of
nested virtualization to reduce this overhead. As has been shown,
nested virtualization constitutes the primary factor that introduces
performance overhead to Romulus. Nevertheless, we expect that future
developments regarding nested virtualization will also carry a positive
effect to Romulus.
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With regards to the experimental evaluation described in this thesis,
some limitations should be referred. One limitation is due to only one
workload having been evaluated, which is insufficient to cover the
wide range of workloads that are commonly used in cloud computing
deployments. Another limitation is due to the relatively small number
of VMs that were hosted in the same physical system (more precisely,
4 VMs). The number of VMs was chosen while taking into account
a trade-off between the time taken by each individual run and a
representative amount of consolidated VMs. These limitations are not
expected to invalidate the presented results, but future work will try
to comprehend how different setups affect the performance of the
technique.

6.6 related work

High-availability operation has traditionally implied expensive setups
that require redundant nodes that may be geographically far away [3,
44]. Despite the significant associated cost and performance overhead,
the most common mechanisms for ensuring availability in cloud com-
puting continue to follow such a distributed approach. For example,
Remus [38] relies on a secondary passive host that constantly receives
updates with the most recent state of the VMs and which takes control
when a failure is detected in the active host. Hence it is capable of tol-
erating transient and permanent hardware faults that cause a full-stop
crash of the system without corruption of the VMs, at the expense of
twice as much hardware resources and a performance hit due to the
action of snapshotting a VM and sending its state over the network.

In the same fashion, COLO [41] performs VM replication using
an active-active and on-demand approach that monitors the external
output produced by the VMs to trigger replication. As such, a VM
only needs to be replicated when its output can be detected to differ,
by comparison between both replicas. While PLOVER [149] combines
active-passive backup with state machine replication across three
nodes, thus overcoming some limitations of Remus and avoiding
expensive state transfer.

Other available fault tolerance mechanisms for virtualized and cloud
computing systems tend to rely on resetting the state of the applica-
tions, VMs or hypervisor to a known correct state, in order to eliminate
errors in that same state, usually through microrebooting [22] (i.e.,
rebooting of fine-grained components in order to renew possibly cor-
rupted state and hence recover from a failure). Such is the case of
ReHype [83], whose approach applies microreboot to the hypervisor
as to provide fault tolerance against hypervisor failures. Its approach
temporarily pauses the VMs while the hypervisor is rebooted and
specific data structures are renewed with safe values. Results, obtained
from a fault injection campaign of single bit-flips into registers during



6.7 summary 117

execution of the hypervisor, show decent VM recovery performance
(over 90% probability of recovery of at least one VM in a three VM
system and around 70% chance of recovery of all three VMs) with no
performance overhead. A posterior work [84] states a basic recovery
latency of less than 3 seconds for a single VM, measured through ping
timings, which is then reduced down to around 700ms. A derivation
of ReHype that is based on microreset is able to attain almost as good
recovery rates with a recovery downtime close to 20ms [159].

Similar fault tolerance techniques are RootHammer and HyperFresh.
RootHammer [78] aims to reduce the time required for a normal
hypervisor reboot by maintaining the VM state in memory during this
process and quickly resuming the VMs after the reboot has completed.
HyperFresh [9] presents a technique based on nested virtualization [18]
and memory co-mapping for replacing a possibly corrupt and unstable
hypervisor with a fresh hypervisor in as low as 100ms, which can be
employed as a software rejuvenation [68] mechanism to recover from
transient software failures caused by latent and non-deterministic
software faults.

Nested virtualization is commonly used to support various fault
tolerance mechanisms for virtualized systems, including the already
mentioned HyperFresh, as well as DualVisor and TinyChecker. Du-
alVisor [155] uses redundant VM execution and data structures on the
same physical host as a technique for detecting and tolerating errors
caused by hardware faults. TinyChecker [140] uses nested virtualiza-
tion to support monitoring of the communication between VMs and
hypervisor and to duplicate key data structures, in an effort to detect
and protect VMs from a misbehaving hypervisor.

6.7 summary

Hypervisor failures are a threat to the availability of cloud computing
systems because they may propagate to the dozens of VMs that are
usually consolidated on the same physical hardware and cause service
disruption. Thus far the assumption was that whenever the hypervisor
failed, all VMs were lost. On the contrary, we empirically show that a
significant percentage of VMs remain correct after hypervisor failure
and could be resumed in another hypervisor.

Based on this observation, we developed Romulus, a technique
for tolerating hypervisor failures without requiring spare redundant
hardware nor modifications to the virtual machines, which means that
legacy applications executing in the cloud are natively supported. It
performs efficient migration of the VM state from the failed hyper-
visor to a co-located hypervisor with the purpose of continuing VM
execution after failure.

A proof-of-concept implementation of Romulus was developed over
Xen, solving various technical challenges regarding tracking VM state
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and performing VM migration across co-located hypervisors, which
has been made available using an open-source license.

An experimental evaluation was conducted using fault injection
of transient hardware faults and software faults, which concluded
that nearly half of the VMs in a virtualized system are left in a non-
corrupted state after a hypervisor failure and thus can be recovered
if the failed hypervisor is replaced by a working one. The evalua-
tion also showed that the proof-of-concept is capable of recovering
an average of 41-46% of the VMs in the system after a hypervisor
failure, while incurring a VM downtime in the range of a few seconds,
which accounts in large part for the time taken to migrate the VM
state between hypervisors. Despite occasions where not all VMs were
successfully recovered, at least one VM was recoverable in the large
majority (> 75%) of cases, which, in itself, represents a big improve-
ment over a traditional virtualized system where hypervisor failure
always translates to the loss of every VM.

If the system over which Romulus is applied already uses nested
virtualization, the overhead of the technique is almost non-existent,
otherwise the introduction of nested virtualization, which is a re-
quirement of Romulus, will bring a considerable amount of overhead.
Nevertheless, the overhead is still in line or better than that of other
high-availability techniques and future developments to nested virtu-
alization should lower the overhead.

Our technique is the only, as far as we know, that has been proven
capable of tolerating both failures due to transient hardware faults
and software faults. It is also one of the few techniques that have
an implementation published under an open-source license. In our
opinion, the biggest threat to the adoption of this technique in produc-
tion systems is not the less-than-perfect VM recovery percentage, but
rather the runtime performance overhead, and respective cost, that is
associated to nested virtualization. Nevertheless, if we compare the
overhead of our technique against other alternatives, our techniques
possesses one strong point: no redundant hardware is required. For
example, Remus [38], which provides tolerance against permanent
hardware faults, requires a secondary host and incurs a performance
overhead ranging between 30%-100% depending on the configuration
and workload.

Another point to consider is that nested virtualization is gaining
adoption in cloud computing, driven by user demand, as well as being
a supporting technology for other techniques found in the literature,
such as HyperFresh [9], which replaces a possibly corrupt hypervisor
with a fresh instance before a failure takes place as a means to perform
software rejuvenation, and TinyChecker [140], which protects VMs
from a misbehaving hypervisor by monitoring the communication
between them. As such, adding Romulus to a system that already uses
nested virtualization carries almost no overhead.



7
AVA I L A B I L I T Y- A S - A - S E RV I C E

This chapter presents the Availability-as-a-Service (AaaS) framework,
which has the objective of increasing the availability of cloud com-
puting by providing a robust framework that can be extended with
various fault tolerance techniques that can be used by cloud providers
and clients. A configurable set of modules that implement fault toler-
ance techniques and related functionalities allow AaaS to ensure the
availability of the infrastructure.

We foresee that AaaS may be used by both cloud providers and
cloud clients, albeit with different objectives. Cloud providers will be
in charge of setting up the framework in their infrastructure, choosing
which modules will be available and activated by default (system-
wide), which reflects the cloud provider’s conceived trade-off between
availability and performance. Their goal in adopting this framework
will be to offer a high-availability service, which can be marketed as
a special product to their clients (e.g., similarly to what many public
cloud providers do with regards to shielded and confidential VMs [8,
33, 100, 130]), while reducing the costs (both upfront and recurring)
required to do so. This goal is attainable using AaaS because exist-
ing alternatives for providing fault tolerance in virtualized or cloud
systems usually require spare hardware (hence increasing acquisition
costs), tend to be geographically distant and demand constant network
and CPU usage to replicate state (thus increasing bandwidth and en-
ergy consumption), while still having a significant runtime overhead.
AaaS manages to provide availability at the infrastructure-level and
without being encumbered by these limitations.

Another driver for adoption from cloud providers can be the pos-
sibility to reduce SLA violations or to increase the offered uptime at
a reduced cost to the provider. In this latter hypothetic scenario, the
framework would be configured to prioritize performance during the
majority of the time, with the possibility of selectively enabling some
fault tolerance modules.

Cloud clients using AaaS will be able to explicitly define the active
modules for each individual VM, even though they may simply use
the cloud provider’s default configuration. For the cloud client, this
configurability enables prioritization of certain VMs (e.g., VMs hosting
mission-critical services), thus attaining a more fine-grained control
over availability and performance and tailoring this trade-off based
on the workload that the client desires to execute.

The framework is designed according to the following observations,
which originate from empirical data obtained through the various

119
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fault injection campaign experiments that have been performed and
described in Chapters 4, 5 and 6.

• A node may fail in an abrupt manner, causing it to crash or hang
and bring down all of the VMs running on it (i.e., common-mode
failures);

• An application running in a VM may crash or hang, while
leaving the VM and the remaining virtualized system in a correct
state;

• An application running in a VM may produce silent data cor-
ruption that can be stored locally or propagated outside of the
system (e.g., incorrect responses sent to the clients).

These failure modes can be caused by hardware and software faults
and may be tolerated using fault tolerance as follows:

• Transient hardware faults and most software faults can be recov-
ered by rebooting or resetting the affected component, as long
as corruption has not propagated to other components;

• Permanent hardware faults must be handled using distributed
fault tolerance techniques, such as VM migration across geo-
graphically distant availability zones, which are already common
in cloud computing;

• Software faults that cannot be recovered only with state resetting,
may be tolerated using code diversity.

According to our results, the majority of failures consist in crashes and
hangs of one application or of all the VMs in the system, depending on
the affected component and type of fault, however a small percentage
of failures will lead to data corruption, which must be detected and
handled before it propagates to the exterior of the system. Failures
may affect applications running inside a VM, the entire VM or the
hypervisor and its assisting VM – the PVM.

AaaS provides tolerance at the infrastructure-level, more specifi-
cally, it provides tolerance to a single node and all of the VMs and
applications running on top of it. Nevertheless, existing fault tolerance
techniques that use distributed approaches should be able to inte-
grate seamlessly with AaaS. To demonstrate the integration between
AaaS and other fault tolerance techniques, we analyze the usage of
a straightforward watchdog and restart mechanism hosted in a re-
mote machine that detects whenever a machine is unresponsive and
restarts it using hardware support. The addition of a remote mech-
anism removes some of the advantages of having a local solution,
but offers protection against failures due to rare faults that affect or
propagate to the single point-of-failure, which in this case consists in
the implementation that supports AaaS.
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The sections of this chapter describe the AaaS framework, including
a summary of the considered failure modes and how they may be
tolerated, guidelines for hardening the software implementation sup-
porting the framework and a default definition of the modules that
may be used. Furthermore, a case study that analyzes how Romulus
can be ported into the AaaS framework as a module is presented, as
well as a case study showing how an external watchdog and reset
mechanism can be used to cover additional failure modes of a system
that follows the AaaS framework.

7.1 architecture

The AaaS framework must provide a way for cloud providers and
clients to configure its behaviour and for modules to implement the
functionalities that convey availability to the system. All of these
operations must be done while ensuring that a fault in one of the com-
ponents or any other unexpected behaviour has a limited impact in the
system and that the addition of AaaS in itself does not overly reduce
the availability or performance of the system. Hence, a careful design
based on nested virtualization and separation between three levels of
privilege was adopted, which is characterized by the guidelines that
follow.

The first guideline mandates the existence of a minimal software layer
that is responsible for the essential virtualizating functionalities and for
supporting AaaS and which must be placed below any other layer
(i.e., it is the highest privileged layer). The software component that
embodies this layer must provide memory virtualization, scheduling,
nested virtualization and VM introspection support. We denominate it
as microvisor due to its small size and hypervisor-like properties. If we
compare a microvisor to a traditional hypervisor, the microvisor does
not need to provide the device drivers, does not require a PVM, has a
very simple toolstack and is transparent to the VMs that run above it,
hence does not need a complex mechanism for communication with
its VMs. These and other differences contribute to its small spatial
and temporal footprint. The benefits of offloading the core functional
requirements to the microvisor are a reduction in the amount of lines
of code that execute in the most privileged level, thus reducing the
amount and impact of software faults, as well as allowing the usage
of formal verification methods to ensure its correctness.

Secondly, modules of the framework should be isolated from other modules
and from the microvisor by executing at a privilege layer above that
of the microvisor and using hardware mechanisms for this purpose,
such as isolated memory areas. Modules provide the majority of the
functionality to the AaaS framework and can be added or removed
by the system administrator. Since they are the pluggable pieces of
the framework, it is likely that modules will have higher software
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defect density (i.e., number of software faults per lines of code) than
the microvisor, therefore they should be isolated as well as possible
from the rest of the system.

The third guideline is that modules and microvisor must provide a
service interface that can be used by the cloud client, cloud provider, the
microvisor or other modules to request services from other modules and
from the framework. Interaction among modules and the microvisor is
essential for integration and maximizing synergies and a well-defined
interface facilitates this task. The framework must also allow cloud
providers and clients to configure the list of modules that is active in
the system or for a specific VM.

From the above information, the design of AaaS can be derived,
which will result in the architecture shown in Figure 32. In this figure
Xen was used to exemplify the architecture, however AaaS supports
any hypervisor.

Module
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L2

Hardware

Microvisor

Hypervisor (Xen)

PVM (dom0)

VM VM VM

Service interface

Module

Scheduler Memory
Virtualization ...Stable

Storage

Figure 32: Architecture of the Availability-as-a-Service framework.

In the same manner that Romulus relied on nested virtualization
(i.e., multiple levels of virtualization, where one hypervisor virtualizes
another hypervisor up to the desired nesting level) to support its
operation, AaaS uses nested virtualization to isolate the microvisor
from the remainder of the system, which includes the modules of
AaaS and the VMs of the clients that are hosted in the node. In fact,
any system that uses the AaaS framework is divided in three layers,
representing the three levels of separation and privilege defined in
the guidelines. The most privileged layer (L0) contains the microvisor,
above which the modules and hypervisor are located. The microvisor
must ensure isolation among hypervisor and modules to the extent
allowed by the available hardware mechanisms, despite them sharing
the same layer (L1). The least privileged layer (L2) contains the guest
VMs that belong to the cloud clients.
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Despite the existence of three isolated levels of virtualization, there
is a need for communication between them. For example, a cloud
client (in a VM) must be able to request the microvisor to apply
specific modules to a VM, or, a module must be able to request and
attain access to the memory of a VM. As already explained, these
operations require calls to the service interfaces of the microvisor or
of the modules.

To allow a module to have access to a VM’s memory, which is es-
sential for enabling some modules to implement their respective fault
tolerance techniques, the AaaS framework must support the usage of
VMI (Virtual Machine Introspection) [103] upon the request from the
module. VMI enables read and write access to a VM’s memory area
without requiring alterations to the VM.

Certain modules will need to store permanent state that must per-
sist across reboots of the modules. To support this requirement, the
microvisor must provide a service to read and write from stable stor-
age, which can further contains its own integrated fault tolerance
mechanisms, such as data duplication for redundancy.

7.2 failure mode assumption

AaaS was designed as to support covering the highest percentage of
failures that affect cloud computing while having a reduced perfor-
mance overhead and cost. It can accomplish this objective, in part,
because it is capable of tolerating most failure modes using fault
tolerance at the infrastructure level, thus avoiding the costs and over-
heads associated with the cloud-level (i.e., distributed) fault tolerance
mechanisms that are currently employed by cloud providers.

Table 20 is built from the information collected in the previous
chapters and lists the identified failure modes of a cloud computing
node, as well as indicating at least one detection mechanism and
recovery action that may be used to tolerate each failure mode. Failure
modes are grouped according to the root cause (hardware or software
faults) and the component that they affect: service (i.e., the application
executing inside the VM), VM or hypervisor (which includes the PVM
that supports the hypervisor). Failures that occur in a component
usually (but not always) do not affect components that reside at a
lower level (e.g., a failure in an application of a VM rarely affects
the hypervisor), but the opposite is true (i.e., usually failures of the
hypervisor affect VMs and their applications). In other words, failures
tend to propagate from the bottom up.

Most failure modes, including those that have been shown to ac-
count for the majority of failures, such as crashes of a VM or of the
entire virtualized system (common-mode failures that affect all VMs
co-located in the same node), are tolerable without the need for costly
mechanisms, as long as the client is capable of detecting a timeout and
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failure mode root cause detection recovery
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Timeout Retry

Hang Timeout Retry

Timeout Timeout Retry

Corruption Redundancy Checkpoint & Roll-
back

V
M Crash HW & SW faults Timeout Restart VM

H
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r Crash Transient HW &

SW faults
Timeout Restart node

Hang

Crash Permanent HW
faults

Timeout Passive replication

Table 20: Failure modes of a cloud computing node.

retrying connection. These failures can be recovered using a mecha-
nism that detects whether the service or infrastructure is unresponsive
and performs a reboot of the VM or of the entire virtualized sys-
tem. The drawback with this recovery approach is the considerable
downtime associated with the restart process, however other more
costly mechanisms can be used to tolerate these failure modes without
downtime, such as performing VM replication across different nodes.

A similar failure mode, requests of the client that are not answered
in the alloted time (i.e., timeout), requires application-specific recovery
mechanisms depending on the idempotency of the operation. If the
operation is idempotent, retrying the operation is enough to recover
from this failure (assuming that the service has recovered in the
meantime), however if the operation is non-idempotent, a mechanism
that ensures that an operation is not re-executed must be used, such
as maintaining a history of responses.

The least likely failure mode, silent data corruption, is also the
hardest to detect and can cause significant damage. These failures can
be detected by the client whenever the expected response follows a
well-defined format and the corrupted data violates this agreement,
however corruption that only affects values (e.g., the amount of money
in a bank account is returned as 130€ instead of 1300€) can only be
detected using redundancy, such as performing the same operation
twice and comparing the result.

AaaS supports the integration of fault tolerance mechanisms that
tolerate all failure modes shown in Table 20, except when the failures
are caused by permanent hardware faults, which require distributed
fault tolerance. These mechanisms may include detecting and restart-
ing VMs that have entered hangs, duplicating VM execution to detect
data corruption in I/O, maintaining a list of responses that have been
sent to clients as to allow retry of non-idempotent operations, among
others. Nevertheless, AaaS can be combined with classical distributed
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fault tolerance techniques to cover a wider spectrum of failure modes,
as will be shown in Section 7.7.

7.3 hardening the aaas framework

When introducing mechanisms to improve the dependability or avail-
ability of a system, a common approach relies on the addition of a
new component that provides fault tolerance and which replaces the
component that was the single point-of-failure (SPOF) of the system
by taking its place instead. A possible example of this situation would
be the addition of a voter mechanism in a TMR system, which be-
comes the new SPOF of the system. While at first glance it may seem
like introducing such a component means adding more exposure to
faults in a critical part of the system, that is not the case if the new
component is robust and has a smaller codebase and runtime profile,
thereby representing a net positive effect in the overall dependability
of the system.

This observation is applicable also to the AaaS framework, since
the framework requires its own software component for managing
the modules, interacting with cloud provider and clients, monitoring
system health and the various other functionalities that it implements.
This software component must be robust, have a limited size that
accounts only for the essential functionalities and be capable of tol-
erating unexpected faults and limiting the extent to which a failed
sub-component (e.g., a module) can affect the remaining part of the
system. Furthermore, the microvisor is responsible for ensuring the
temporal and spatial isolation among modules, VMs and itself. For
these reasons, we propose that the AaaS framework should adhere
to several principles found in literature from multiple research top-
ics, ranging from microkernels to crash-only software and service
architectures, which are detailed below.

1. Every module must have its private memory area that cannot be
accessed under normal circumstances by the microvisor or other
modules, in order to avoid unexpected operations that target
these memory areas, which may occur due to latent software
faults in the microvisor or modules. This choice ensures that
a module cannot disturb the operation of the other modules
or of the microvisor in any situation, as well as ensuring that
a faulty microvisor cannot inadvertently corrupt the protected
memory of the modules. Due to the need for communication
among modules and microvisor, an exception to this rule must
be allowed in the form of memory sharing grants;

2. Modules communicate among themselves through a well-defined service
interface. This communication should be synchronous, blocking
and every message should have a fixed-length (e.g., a page size)
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to avoid software faults due to improper handling of variable-
sized messages. Synchronous communication enables simple
implementation of mechanisms for detecting a hanged module
and respective recovery measures;

3. Modules and applications in VMs communicate with the microvisor
through a well-defined service interface, which exposes different
functionalities depending on who is calling it. VMs have ac-
cess to an external interface which allows configuration by the
cloud clients of the modules that will be active. Modules have
access to an internal interface which provides access to low-level
functions that can include spawning, pausing and destroying
VMs, requesting shared memory grants, among others. The
implementation mechanism and properties (e.g., blocking and
synchronous) of the communication between microvisor and
modules/VMs should be same that is used for communication
between modules;

4. Modules are advised to follow a crash-only approach, when possible,
which means that they should support being abruptly terminated
at any moment in time and restarted while being able to resume
correct operation. This property allows misbehaving modules
to be terminated and rebooted, as well as allowing preventive
rebooting of modules at regular intervals in order to perform
software rejuvenation. Developing a module to be crash-only is
not a trivial task, thus the AaaS framework still accepts modules
that do not follow the crash-only principles;

5. Persistent data required for a module’s operation must be registered
with the microvisor. Modules may need to keep track of informa-
tion which must remain available through reboots, in that case,
modules are required to interact with the microvisor to request
storage and retrieval of this information in a state store. The
microvisor will then maintain a state store with this information
and will use fault tolerance mechanisms, such as duplicated
(or more) copies and comparison on read operations, to ensure
the correctness of the information. Data that is temporary does
not need to be stored by the microvisor and can remain in the
module’s address space, but will be deleted upon a module
termination or reboot. Nevertheless, modules should strive to
avoid usage of persistent data due to performance costs and to
maximize the crash-only behaviour of the module;

6. There must be a watchdog component, which monitors the state of every
crash-only module and reboots any module that is deemed unrespon-
sive during a pre-defined period of time. This component performs
periodic checks (e.g., heartbeats) to every other module, through
a well-defined service interface call, and requests a module re-
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boot to the microvisor when it detects that a module has not
responded during a considerable amount of time. This feature
ensures that hanged or severely misbehaving modules are re-
booted with minimal impact to system availability and depends
on the crash-only capability of the modules. Simple heartbeats
may not be sufficient to accurately detect the correctness of a
module, thus more advanced and module-specific correctness
checks may be used;

7. Communication between modules must support timeouts and retries.
Given the fact that modules may be restarted or disabled at any
point in time, or even fail, and since communication between
modules is synchronous, there must be a timeout and a retry
mechanism underpinning this type of communication. When
calls to services represent idempotent operations (i.e., operations
that can be repeated multiple times with the same result), a
mechanism that retries the call after a certain time without
response should be used. This allows transparent handling of
microreboots and temporary hang failures of a module. If the
operation is non-idempotent, a retry cannot be performed, so a
timeout should be used to return control to the caller module,
which should be capable of taking corrective measures based on
the situation;

8. Each module possesses a manifest, which specifies, among other
things, the services that the module may request from the mi-
crovisor. The microvisor enforces this manifest and ensures that
a software fault in a module has a limited destructive potential.
Furthermore, the manifest should list all the services that a mod-
ule exposes, their parameters, return value and idempotency;

9. Modules must be able to request and obtain read-only or read-write
access to a VM’s memory space. Access to a VM’s memory space,
which is provided through VMI, must depend on the acceptance
by the microvisor of a module’s request to have access to a
limited area of memory. Requests that specify the type of access
and the area of memory reduce the chance for VM memory
corruption due to an unexpected behaviour from the module
and allow the microvisor to ensure that only modules that need
this type of access are able to obtain it.

7.4 modules

Modules provide the techniques that convey availability to the system.
Without modules the AaaS framework would be hollow and fail to
deliver on its objectives, despite the careful design that has been built
to support the dependable operation and effective integration of the
modules into the framework. In fact, the framework leverages the
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advantages of each individual module and enhances their effect on
the availability of the system by providing a base that is robust against
faults and that enables synergies between modules and provides
useful functionalities (e.g, persistent storage) that the modules can
take advantage of.

Modules may directly provide availability (e.g., by implementing
a fault tolerance technique) or they may provide functionalities and
resources that will be used by other modules to then provide availabil-
ity. The modules that provide availability can do so in two ways: i) by
reducing the MTTR, such as by providing fault tolerance mechanisms
with short recovery times, or ii) by hardening the system and reducing
the MTBF.

The list of modules that can be used in an AaaS framework is
virtually infinite, as new modules can be developed and integrated
into it. Nevertheless, we propose a list of base modules that tolerate
most failure modes found to occur in cloud computing infrastructure.
All the modules in this list contribute to the system’s availability by
reducing the MTTR of the system, instead of improving the MTBF.

M1 Hypervisor duplication with local VM migration – A module that
spawns a second L1 hypervisor to support the local migration
of (L2) VMs from a failed hypervisor to a new hypervisor, thus
recovering a significant portion of VMs from failing due to a
hardware or software fault in their hypervisor. This module
refers to the fault tolerance technique described in Chapter 6,
Romulus, which has not yet been ported to the AaaS framework.
However, such an endeavor is feasible and will be described in
the current chapter;

M2 Local VM checkpointing & rollback – A module that takes check-
points of a VM state at a certain frequency, so that the state of
the VM can be restored to a past and possibly correct state when-
ever a failure is detected, as to tolerate failures due to transient
hardware faults that cause corruption in a VM;

M3 VM duplication with output comparison and retry – A module that
reproduces a VM across two different hypervisor instances co-
located on the same physical node and which compares the
produced output (e.g., on disk writes and network output) as to
detect failures that cause discrepancies in the output. When a
failure is detected the VM state may be returned to a previous
state by integrating this module with the Local VM checkpointing
& rollback module.

Table 21 indicates a possible association between each of the afore-
mentioned modules and the identified failure modes of cloud comput-
ing that they can tolerate.
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failure mode root cause module
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Table 21: Association between failure modes and modules.

The module M1 is capable of tolerating failures affecting the hyper-
visor that do not cause data corruption. To tolerate the failures where
data corruption occurs, a combination of the modules M2 and M3 is
required, in which module M3 detects the occurrence of corruption
and then triggers module M2 to rollback the VM state to a previous
copy. The module M2 is also capable of tolerating failures of services
and VMs where there is no corruption. Failures of the infrastructure,
including failures that affect the software component that supports the
AaaS framework, cannot be tolerated locally and require distributed
failure tolerance mechanisms, such as a remote watchdog and reset
mechanism.

7.5 service interface

The integration of modules in the framework is a key aspect in its
expandability. To accomplish effective integration, every module needs
to specify a well-defined service interface that contains all functions
that may be accessed by other modules, hence enabling composition
and cooperation among modules. The microvisor also exposes its own
service interface, which is split into an internal service interface, which
can only be accessed by modules, and an external service interface,
which can only be accessed from a VM (i.e., it is available to cloud
providers and clients).

7.5.1 Microvisor Service Interface

The microvisor exposes a well-defined internal service interface that
can be accessed by any module to request management operations.
This interface should extend after the fundamental interface that is
shown in Table 22.



130 availability-as-a-service

name description

Spawn VM Spawns a new VM according to the passed config-
uration.

Destroy VM Destroys a VM.

Pause VM Pauses the execution of a running VM.

Resume VM Resumes the execution of a paused VM.

Clone VM Clones an existing VM instance into a new in-
stance.

Request VM memory access Requests a grant to access the memory of a VM.

Release VM memory access Releases a grant that provided access to the mem-
ory of a VM.

Read VM memory Uses VMI to read a memory portion of a VM, pro-
vided a grant has been given. Parameters should
indicate the VM, memory address and size that
should be read.

Write VM memory Uses VMI to write a memory portion of a VM, pro-
vided a grant has been given. Parameters should
indicate the VM, memory address, size and value
to be written.

Hook Event Interrupts VM execution and performs a callback
to a module function whenever a specified event
(e.g., VMEXIT) takes place.

Trap memory access Interrupts VM execution and performs a callback
to a module function whenever a specified memory
address is accessed.

Read CPU state Returns the CPU state, including register values,
of a CPU in a specified VM.

Reboot module Destroys and restarts an instance of a module. For
use by the watchdog component to reboot unre-
sponsive modules.

Write to persistent store Writes a key-pair value to a persistent store kept
by the microvisor.

Read from persistent store Reads a value given its key from a persistent store
kept by the microvisor.

Table 22: Essential services of the microvisor internal service interface.
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Most services deal with managing the L1 VMs running over the
microvisor, accessing their memory (e.g., using virtual machine intro-
spection) or setting up callbacks on certain events. The functionalities
included in this service interface were generalized from the knowl-
edge about existing fault injection mechanisms that was obtained from
literature review and the observations extracted from the experimen-
tal campaigns that have been presented in this thesis. The presented
services are sufficient to support the operations that the modules
presented in this chapter need to implement their fault tolerance
mechanisms.

At the same time, the microvisor exposes an external interface to
be used by cloud clients and providers to control and configure the
modules that will be operating on a system-wide and per VM basis.
Table 23 presents an example of the idealized external interface.

name description

Turn on module Enables the operation of a specific module, system-
wide or VM-specific.

Turn off module Disables the operation of a specific module, system-
wide or VM-specific.

Table 23: Example of the microvisor external service interface.

7.5.2 Module Service Interface

Modules have their own service interface which can be called by other
modules. Given that modules may implement varied functionalities, it
becomes difficult to define a base service interface. Nevertheless the
interface shown in Table 24, which includes a heartbeat function for
integration with the watchdog component of AaaS, should represent
a subset of the functions included in any module’s interface. However,
non crash-only modules do not need to implement the heartbeat
service call.

name description

Heartbeat Entry point to be called by the watchdog component for
verifying that the module is responsive.

Table 24: Example of the module service interface.

7.6 limitations

The AaaS framework focuses on providing availability to cloud com-
puting using fault tolerance at the infrastructure level. This approach
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has several advantages in terms of lower resource usage (e.g., no need
for different physical machines), lower overhead (e.g., no network
usage) and simplicity. Nevertheless, it misses opportunities that could
exist if a distributed approach had been considered. For example,
since cloud providers manage multiple physical machines, some of
which are idle or partly unused during large amounts of time, these
machines could be used in a classic active-active or active-passive
replication scheme, thus obtaining very low MTTR values and a high
availability. During the development of AaaS we opted to focus on
fault tolerance at the infrastructure level because it has been less ex-
plored than fault tolerance in distributed systems, has some already
mentioned advantages and consolidates the work done in the thesis.

The addition of the microvisor and the dependency on nested vir-
tualization are two other limitations of the AaaS framework. In one
hand, nested virtualization has been shown to carry a non-negligible
performance overhead, although we expect that this overhead may be
lowered as nested virtualization becomes more mature. On the other
hand, adding the microvisor means that a new component is being in-
troduced in a critical part of the system (since the microvisor is located
directly above the hardware, it represents a SPOF), thus increasing the
system’s exposure to failures caused by transient hardware faults and
software faults. It is precisely due to this reason that it is essential that
the microvisor has the smallest possible footprint and is thoroughly
tested.

The usage of a service interface that cloud providers and clients can
use to configure properties of the framework can also open the possi-
bility for operator faults. However, these faults would mostly cause
unintended configurations that affect the performance and availability
levels of the system or of a VM.

7.7 case study : infrastructure reboot using an external

watchdog

A node that follows the AaaS framework may still fail in a manner
that the framework cannot tolerate. This may be the case if a fault in
the software component that provides the implementation of AaaS
(i.e., the microvisor) is activated and causes its failure. In this case,
recovery must be obtained using an external system.

In this section, an external secure watchdog and reset mechanism is
described and its performance evaluated. The mechanism is composed
by a watchdog component that monitors the state of a remote node
using integrity tests, and by a reset mechanism, which is triggered
externally by a watchdog timer when a failure is detected. The em-
ployed integrity tests can vary according to the user needs, but for our
experiments we used tests made via SSH that exercised simple tasks
of the target system. A first attempt at designing integrity tests that
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used ping requests was done, however it was observed that often the
pings would incorrectly indicate that the target system was healthy
despite it being in a hanged state. This observation emphasizes the
need to execute integrity tests on the target system, rather than using
simple but ineffective ping mechanisms or heartbeats.

Once the watchdog determines that the hypervisor is in a hanged
state, it issues a remote command to physically reset the hardware.
This is achieved by using Intel’s AMT technology, which supports re-
mote power cycling. Using Intel’s Ethernet interface, network packets
are inspected by the hardware immediately at reception. Specific net-
work packets, recognized by Intel AMT hardware, lead the hardware
to physically reset the machine.

In order to prevent unintended remote restarts, which could poten-
tially lead to security vulnerabilities, Intel AMT supports Transport
Layer Security (TLS). Power cycling commands, used to reset the phys-
ical machine, may therefore be encrypted with a key shared between
the watchdog and the physical machine running the virtualization
server.

In order to validate the proposed external watchdog, we conducted
a fault injection campaign to measure the efficiency – the proportion
of failures that are correctly recovered – and the latency – the time
it takes to reset. As the target system of the reset, a virtualized node
running one VM was used. However, other types of systems, including
systems that follow the AaaS framework, can be reset using this
mechanism. Logically, the latency will depend on the physical and
logical properties of each system and may vary slightly from the
results shown in this section.

A HTTP workload where multiple clients performed requests to
an Apache server during 2 minutes was used. Fault injection in CPU
registers (more precisely, rip, rbx and rsp) while processes of the PVM
were executing was employed to accelerate the occurrence of failures
of the infrastructure.

After injection, we left the system running and the external watch-
dog recovered the hypervisor correctly in 100% of the cases in which
the system hanged. The time to recover was monitored and, as soon as
possible, an SSH connection was established to the hypervisor, to run
the integrity tests, and one minute of HTTP requests were issued to
the Web server running inside the virtual machine. The HTTP service
was also resumed correctly in all cases.

Table 25 shows the evaluation results, which demonstrate the effec-
tiveness and recovery latency of the mechanism.

The external watchdog recovered the system in all 203 experiments
in which the system hanged. The recovery time for the hypervisor is on
average 31.9 seconds, with a worst case of 34 seconds; the subsequent
recovery time for a virtual machine is 75.2 seconds on average, with a
worst case of 103 seconds.
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system state hypervisor recovery vm recovery

min max avg min max avg

Hang 203 30 s 34 s 31.9 s 54 s 103 s 75.2 s

No effect 3

Table 25: Evaluation of the external watchdog and reset.

7.8 case study: integrating romulus into aaas

Although the proof-of-concept implementation of Romulus was devel-
oped as a standalone project, Romulus (which was presented in Chap-
ter 6) is an ideal candidate to be integrated into the AaaS framework
as one of the modules that can be enabled to protect the infrastructure.
In this section, we specify the essential properties that are required
to encapsulate Romulus into a module of AaaS, such as the service
interface and the manifest.

7.8.1 Service Interface

Other than the heartbeat function that should be part of the service in-
terface of any module (see Table 24), a module implementing Romulus
should possess also the services described in Table 26.

name description

Monitor guest VM Enables monitoring of a specific guest (L2)
VM.

Stop monitoring guest VM Disables monitoring of a specific guest (L2)
VM.

Trigger recovery action Starts the process of migrating all moni-
tored L2 VMs from one hypervisor to an-
other.

Configure detection interval Enables the configuration of the amount of
seconds that the embedded timeout mech-
anism will wait before triggering recovery
action.

Table 26: Service interface of a module that implements Romulus.

Romulus has been presented and used as a technique that attempts
to recovers all VMs running in a virtualized system upon failure of
the hypervisor. Nevertheless it can also be used to recover a specific
and limited set of L2 VMs, which enables selective protection of the
most critical VMs and a trade-off between performance, coverage
and MTTR. To do so, the module exposes Monitor guest VM and Stop
monitoring guest VM services that can be called by the cloud client.
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Error detection mechanisms have an important role in ensuring ef-
fective fault tolerance when using Romulus. A detection and triggering
mechanism may come integrated as part of the module, for example,
in the form of a simple ping mechanism similar to what was used in
Chapter 6, or an external module may be used to provide the error
detection mechanism, thus taking advantage of the flexibility that the
AaaS framework supports. An embedded error detection mechanism
can be configured using the Configure detection interval call, whereas
the Trigger recovery action service can be used by external mechanisms
to trigger recovery action.

7.8.2 Manifest

Modules need to request functionality provided by the microvisor,
however not all the functionality available should be used. To avoid
unintended consequences due to software bugs in the modules, which
may perform incorrect calls to the microvisor, a manifest must be
defined in the module, that states which functions it may request from
the hypervisor. In the case of a module implementing Romulus, it
requires the following services of the microvisor (see Table 22 for the
complete list of the default service interface of the microvisor).

• Spawn VM – The module needs to be able to spawn a new L1
hypervisor to accommodate the VMs of the failed hypervisor;

• Pause VM and Resume VM – The module can use pause/resume
functionality to reduce performance overhead due to the idle
L1 hypervisor, however the essential functionality required by
Romulus that these functions provide is being able to pause the
failed L1 hypervisor before the failure propagates to the L2 VMs;

• Request VM memory access, Read VM memory, Write VM memory –
Romulus depends heavily on virtual machine introspection to
extract the state of the L2 VMs;

• Hook Event – The proof-of-concept implementation of Romu-
lus uses the VMEXIT handler of the microvisor to monitor and
obtain part of the latest CPU state of the L2 VMs. The same func-
tionality can be implemented in AaaS by associating a callback
through this service function;

• Read CPU state – The remaining part of the CPU state that is
not obtained by hooking into the VMEXIT handler is already
available in the microvisor, therefore it can be easily obtained by
our module by calling this service function.

As long as these services are available and provided by the microvi-
sor, it is possible to convert Romulus into a module of AaaS.
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7.9 related work

Several works have dealt with design and implementation of robust
and dependable software and have produced fault tolerance tech-
niques and software design patterns to this effect. The specification
of the Availability-as-a-Service framework takes some of the ideas
found behind crash-only software, microrebooting, microkernels and
operating systems.

In fact, many of the presented rules have been proposed or used in
other works. For example, the Minix operating system [66] uses fixed-
length messages and synchronous message passing for communication
between processes. Moreover, the concept of service interfaces can
be equated to system calls of operating systems, although with the
addition of a manifest.

Watchdog components that monitor the operation of other compo-
nents and trigger recovery actions after a timeout has been elapsed
are also far from novel. For example, such a component, which was
coined as ‘reincarnation server’, was used in an effort to provide fault
tolerance against failures of device drivers [64]. Given that in many
situations there is a need to store non-volatile information (i.e., infor-
mation that cannot be lost between reboots of the component), data
stores have traditionally been used and backed by a stable storage
that can tolerate the considered failure modes and provide atomic
transactional access to the data [79].

Crash-only software [21] defends that software should be grouped
into well-defined self-contained components that can only be stopped
and started in one way – by crashing and restarting it. In order to con-
vert a program to this paradigm, there must be a separation between
program logic and data logic, therefore all important non-volatile state
should be kept in a data store. Furthermore, since components may
be rebooted at any time, communication between modules has to be
ready to handle this fact, through the usage of timeouts and support
for retrying idempotent operations. The concept of resource leases was
also applied due to the need to manage resources that might become
stale after a component is rebooted.

Microkernels [66, 113] are kernels of minimal size that implement
only the basic functionalities of an operating system, such as schedul-
ing and memory management, and defer the remaining tasks to other
components that usually execute in less privileged layers. This type of
kernel is specially well-adapted to be used in a crash-only setting due
to the componentization and compartmentalization that it implies and
which facilitates failure isolation. Furthermore, its small size reduces
the likelihood of software faults and enables it to be formally verified,
as was successfully performed with the seL4 microkernel [75].

Microrebooting [22] uses the ideas behind crash-only software to
propose a technique for cheap and quick rebooting of a small compo-
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nent inside of a system. Given the inexpensive cost of performing a
microreboot, this operation can be performed as a first step of recovery,
whenever the first signs of a failure appear, or even preventively, as a
mechanism of software rejuvenation. Microrebooting has been loosely
applied before to virtualized systems as a technique to recover VMs
from a failing hypervisor [83].

7.10 summary

Availability is of the utmost importance to cloud computing, yet exist-
ing fault tolerance techniques, in particular those that are currently
available in public clouds (e.g., availability zones, physical redun-
dancy), do not cover many failure modes, are costly to cloud providers
and clients and are not transparent to the client. This chapter has pre-
sented Availability-as-a-Service (AaaS), a framework that harnesses
the integration of different modules that provide fault tolerance with
the objective of increasing the availability provided by the cloud, all
the while reducing operational costs, being configurable by cloud
providers and clients, and being generic. AaaS is applied at the infras-
tructure level but can be combined with distributed fault tolerance
techniques, such as an external watchdog and reset mechanism, to
cover the failure modes that cannot be tolerated using only a sin-
gle node, such as failures caused by permanent hardware faults that
require a damaged hardware component to be replaced.

To improve its robustness, AaaS itself follows principles proposed
in literature, such as enforcing memory isolation among components,
avoiding dynamic memory allocation, or using manifests to limit
failure propagation between components. The design of AaaS calls for
the addition of a lean layer between the hardware and the hypervisor
of the node. This microvisor manages the basic operations of the
system, such as CPU scheduling and memory management, provides
an entry point for cloud providers and clients to configure AaaS and
supports the execution of the hypervisor and its VMs through the
usage of nested virtualization. Due to being a possible single point of
failure and having control over the rest of the system, the microvisor
should have a small temporal and spatial footprint, thus reducing its
exposure to transient hardware and software faults, and should be
thoroughly tested, eventually even using formal methods.

Fault tolerance is provided by modules that implement contained
fault tolerance techniques and which can be added, removed, enabled
and disabled at will by the cloud provider. Modules can cooperate
by combining their functionalities, which is accomplished through a
well-defined service interface that every module should provide and
from where other modules can call the available functions.

In summary, AaaS offers cloud providers and availability-focused
clients the possibility to take advantage of fault tolerance mechanisms
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to reinforce availability levels of the entire system or of a specific set of
VMs. This framework was designed using information obtained from
the literature review and experimental campaigns conducted during
this thesis, thus consolidating all of this thesis’ contributions into a
single consistent unit.
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C O N C L U S I O N

In order for the cloud to be trusted and accepted as a platform that
can support mission-critical workloads, the level of dependability that
can be provided to cloud clients must, at least, match that of dedicated
infrastructures. Accordingly, one of the objectives of this thesis is
to improve cloud computing dependability, which we accomplished
by proposing fault tolerance mechanisms that were designed and
validated using empirical methods.

Existing techniques for fault tolerance and increasing dependability
in other fields resort to highly redundant setups, which contain multi-
ple copies of the same hardware and may even use various software
implementations. Although such techniques are greatly effective at
tolerating the large majority of failures, they are also extremely costly,
which directly negates one of the advantages promoted by cloud
computing – lower costs due to resource sharing. On the other hand,
fault tolerance mechanisms commonly used in cloud computing rely
mostly on distinct geographical separations (e.g., availability zones),
VM migration across different physical hosts in the same datacenter,
or simple techniques that rely on rebooting VMs and physical systems
to eliminate possibly corrupted or stale state, along with memory
and resource leaks. In general, these techniques are insufficient for
tolerating most of the failures caused by software faults and transient
hardware faults, thus there is a need for more advanced fault tolerance
techniques that provide dependability and availability, cover a wider
range of failures, while carrying a limited performance overhead.

However, if effective and efficient fault tolerance for cloud comput-
ing is to be attained, redundancy must be applied strategically, by
targeting the components that are more likely to be affected by faults,
more likely to cause failures that affect more clients, and the failure
modes that are more common to occur or which pose a bigger risk to
dependability. In short, designing fault tolerance mechanisms requires
an evaluation of cloud computing dependability, which is precisely
the second objective of this thesis.

Knowledge about the dependability of cloud computing and how it
fails must be extracted from representative failure data. However, such
an endeavor will take years to complete unless measures are taken
to accelerate this process. In this thesis, an experimental methodol-
ogy based around fault injection was used to accelerate the obtention
of representative failure data that was needed to characterize cloud
computing dependability. One contribution of the thesis is the devel-
opment of the ucXception framework and its tools for performing
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fault injection in cloud computing and virtualized systems. There was
the necessity to create the fault injection tools that would be used for
the experimental evaluation, since existing tools were not adequate to
be used in cloud computing, as they did not support injection into the
components required for virtualization, or did not support the desired
fault models.

Using the ucXception framework, faults representing two of the
most significant threats to cloud computing – transient hardware faults
(i.e., soft errors) and software faults – were injected in a virtualized
system similar to those used in cloud computing. These types of
faults are expected to increase in future years, due to technological
advances and more complex and bigger cloud datacenters and cloud-
related software, and have been shown to cause failure modes that are
specially hard to handle (e.g., silent data corruption). The observations
obtained using fault injection show that the hypervisor and privileged
virtual machine are specially at risk of causing failures that affect
multiple clients at once and may also, albeit unlikely, cause failures that
lead to data corruption. These observations constitute new insights
into the importance that the components that provide virtualization
have in the dependability of a virtualized system and, by consequence,
in cloud computing, as well as cautioning against the usage of fault
tolerance techniques that depend on redundancy across VMs that are
hosted over the same hardware, since both VMs may be affected by
common-mode failures. Furthermore, the results from fault injection
confirm that virtualization is largely effective at isolating faulty VMs
from the rest of the system.

To deal with failures of the hypervisor, we proposed a fault tolerance
technique called Romulus, which migrates the VMs running in a
failed hypervisor to a co-located hypervisor, thus enabling the VMs to
continue executing in a healthy hypervisor with minimal downtime.
Romulus was designed after we used fault injection to show that many
times VMs are not affected after hypervisor failure, therefore their
state remains correct and they can continue execution in a different
hypervisor. Up to this point, the consensus was that whenever the
hypervisor failed, no VM could be recovered. We stood for the opposite
hypothesis, which argued that at least sometimes VMs would be left
in a working, non-corrupted state after hypervisor failure. Romulus
represents a novel fault tolerance technique designed specifically for
virtualized and cloud systems and one of the few, if not the only,
technique capable of tolerating failures caused by transient hardware
faults and software faults without requiring redundant hardware. A
proof-of-concept implementation was developed and evaluated using
fault injection, thereby confirming that Romulus can recover at least
part of the VMs affected by a hypervisor failure in most cases.

We also proposed the Availability-as-a-Service (AaaS) framework as
a contribution that enables increasing the availability of cloud comput-
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ing by providing tolerance against the most common failure modes in
an extensible manner and in which cloud providers and clients can
configure the desired fault tolerance mechanisms that are active. AaaS
combines the need for availability by part of the cloud clients that want
to execute their mission critical workloads and cloud providers that
have SLAs to adhere to, with the optimization of resource usage that
cloud providers strive for. The AaaS framework provides tolerance at
the infrastructure-level using fault tolerance mechanisms that operate
locally, however it can be combined with distributed mechanisms to
tolerate failures that affect the infrastructure or the software compo-
nent that supports the AaaS framework and which cannot be tolerated
with local mechanisms.

Overall, this thesis contributes to a better characterization of the
dependability of cloud computing, as well as producing a framework
for carrying out fault injection campaigns in cloud computing and
two well-defined proposals to improve the dependability of cloud
computing at the infrastructure level. Possible future work resides
in continuing to develop Availability-as-a-Service, as well as further
improving Romulus and its proof-of-concept implementation. Further-
more, Romulus can be extended to take advantage of existing fault
tolerance techniques, such as checkpointing and rollback, as to sig-
nificantly improve its recovery effectiveness, at the expense of losing
some performance.
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